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Abstract

In the traditional wireless communication systems, the access way to

the spectrum resources is static, which means the allocation of the

available frequency bands is unchangeable and pre-reserved; thus the

systems often result in inefficient utilization of the valuable frequency

bands. The cognitive radio (CR), as a raised paradigmatic solution to

the frequency-scarceness, recycles the idle bands left by the static dis-

tribution and enables the coexistence of the licensed and unlicensed

user without compromising the communication quality. A primary

user (PU) is the entitled with the privilege, or higher priority, to use

the frequency bands. Meanwhile, a secondary user (SU) is equipped

with cognitive radio capabilities that cannot only sense the spectrum

reliably to detect if it is occupied by a primary user, but also alter

certain related parameters to exploit the unused spectrum. In such

an execution platform, the spectrum sensing through the physical

layer takes the task of being aware of the current utilization status

of the spectrum or the existence of the primary user. Therefore this

technology normally includes determining the spectral content, rec-

ognizing the occupied signal and obtaining the usage characteristics

across multiple dimensions such as time, space and code.

The orthogonal frequency division multiplexing (OFDM) modulated

signal is able to achieve high spectral efficiency while survive from

the narrow-band co-channel interference, as well as the inter-symbol

interference and fading caused by multipath propagation. The bene-

factor is the special frame-by-frame signal structure of OFDM mod-

ulation that contains pilot tones, a cyclic prefix, and preambles. The

OFDM-based CR system inherits the flexibility of the OFDM signals



and tends to be easily modified to meet the on-demand transmis-

sion. Then inspired by a feasible conventional method of the spec-

trum sensing, the cyclostationary feature detection, this dissertation

focuses on the cyclic spectral signature which can be extracted from

the mentioned built-in structures of the OFDM modulation scheme.

Among those, the pilot-tones-based spectrum sensing is emphasized

more than the other two due to its robustness of cyclostationarity

against harsh transmission environments.

The objective of this dissertation is to develop and provide advanced

OFDM signal-identification schemes to perform the spectrum sensing

in the CR system. In order to achieve this, an efficient data an-

alyzing process is necessarily executed after the cyclostationary fea-

ture extraction. The term cognitive involves obtaining knowledge and

comprehension by perception, learning, reasoning to problem-solving,

which links itself to a trendy technology of machine learning with

similar features. It performs the ”cognition” by extracting patterns

and exploiting deeper connections from massive amounts of raw data.

Furthermore like the focused spectrum sensing, the machine learning

senses the environment and internal states, classifies and generalizes

needed information and achieves goals and decision-making. On the

one hand, massive sets of data help to increase the learning accu-

racy during the training process, which means the machine learning

performance is strongly dependent on the selection of data expres-

sion/representation. For this reason, a proper data transformation,

such as the mentioned cyclostationary feature extraction, is able to

effectively support and localize the machine learning into the spec-

trum sensing. On the other hand, the implementing competence of

the data processing task depends on the classifier architecture of the

neural networks of machine learning. This dissertation particularly

pays attention to how the network constructions, including the layer,

node, type, etc., affect the data processing results.



A classification problem is usually the purpose of a machine learn-

ing network. Therefore, to integrate the machine learning and spec-

trum sensing together, a fundamental implementation frame is pro-

posed to convert the signal recognition into classification. The sta-

tuses of licensed user are considered as different classes of data. More

specifically, this dissertation discusses two converted implementation

schemes. Firstly, for unlicensed user terminals that utilize the full-

duplex (FD) mode where severe self-interference will be encountered,

the cyclostationary periodogram generated by OFDM pilots is exhib-

ited in the form of images. These images are subsequently plugged

into convolutional neural networks (CNNs) for classifications owing

to CNNs strength in image recognition. More importantly, to real-

ize spectrum sensing against residual self-interference, noise pollution,

and channel fading, this dissertation uses adversarial training, where a

CR-specific, modified training database was proposed. This disserta-

tion analyzes the performances exhibited by the different architectures

of the CNN and the various resolutions of the input image to balance

the detection performance with computing capability. This disserta-

tion also proposes a design plan of the signal structure for the CR

transmitting terminal that can fit into the proposed spectrum-sensing

scheme while benefiting from its own transmission. The simulation re-

sults prove that the proposed method has excellent sensing capability

for the FD system; furthermore, it achieves a higher detection accu-

racy than the conventional method. Secondly, an ensemble learning

(EL) framework is adopted for cooperative spectrum sensing (CSS) in

an OFDM signal based CR system. Each unlicensed user is accord-

ingly considered as a base learner, where the local spectrum sensing is

for investigating the probability of the licensed user being inactive or

active. The CNN with simple architecture is applied for the limited

computation ability of each unlicensed user, while the cyclic spectral

correlation feature is still utilized as the input data. As for the super-

vised learning, the bagging strategy is helped to establish the train-

ing database. For the global decision, the fusion center employs the



stacked generalization for further combination learning the SU output

of the probability predictions of the PU status. The proposed method

shows significant advantages over conventional CSS methods in term

of the detection probability or false alarm probability performance.

Simulations are performed to test whether the proposed schemes can

provide better spectrum sensing performances than conventional meth-

ods. Comparisons are usually conducted with the energy detection

and cyclostationary feature detection: the former for its well-recognized

symbolic while easy realization, the latter for the fact that it is us-

ing the same feature for sensing as the proposed schemes. All the

results show that the proposed schemes can possess capabilities of

better OFDM signal recognition. Other inner comparisons are also

performed within each proposed scheme to identify the best struc-

ture for data processors, the most suitable number for SU cooper-

ative system, etc.. Such simulation results are given and carefully

analyzed for future references. As long as machine learning technolo-

gies have drawn a lot of attentions in various fields including advanced

researches, manufactures, etc., one can only expect such a situation

to keep moving forward. In the future, learning may more orient to

system management in order to directly learn from the actual user

terminal and integrate the data in the first place. Meanwhile, from

the technology level, both the hardware and software will face more

challenges; for example, the cognitive radio user may need a proces-

sor with stronger computing ability but smaller body size. Therefore,

revolutions in the system integration mode, central processor or indi-

vidual terminals are expected to happen.
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Chapter 1

Introduction

At the beginning of the thesis, this chapter introduces the study about orthogonal

frequency division multiplexing (OFDM) signal recognition in the cognitive radio

(CR) using machine learning (ML). The structure of this chapter is as follows.

In Section 1.1, the background of the research as well as some critical technolo-

gies related to the applications in the cognitive radio is introduced. Section 1.2

explains the motivation as well as problems that inspire applying the machine

learning in an OFDM signal-based cognitive radio system. Section 1.3 lists both

the contributions and novelties of this dissertation. Section 1.4 gives scope and

objectives. The dissertation organization, as well as the overviews of all chapters,

are stated in Section 1.5 at the final of this chapter.

1.1 Background

From the moment that only-voice communications evolve into multi-media appli-

cations, such kinds of devices with high data rate is developing in an explosive

growth speed. Taking into account the nature spectrum limitations, obviously,

the previous static spectrum allocation strategy in wireless communication can-

not provide enough transmission channels and serve the massive number of the

mentioned high data rate devices. Therefore, innovative technologies that are

able to offer a new distribution approach of the available spectrum bands is de-

sired. Being a promising solution to the congestion problem, cognitive radio can

offer the opportunistic utilization to recycle not heavily occupied entitled bands

1



1. INTRODUCTION

[1, 2]. Since there seems no unified common understanding of the general concept

of CR, recently it has been exploited to contain different definitions for an in-

dividual specific background. However, this dissertation uses the definition that

employed by the FCC (Federal Communications Commission), that the cognitive

radio refers to a smart radio mechanism which can be aware of its interesting

transmission environment then automatically operate self-modifying to guaran-

tee a free channel for the secondary markets and upgrade the max throughout [2].

This means the CR system offers new spectrum accesses through automatically

exploring locally unused frequency bands.

The cognitive radio must observe its operating environment and understand

its current situation, then make in-place decisions based on their observations,

expectations, and experiences, and finally perform intelligent adjustments to max-

imize its utilities subject to many limitations. It is inspired by a learning process,

”cognition cycle”, as shown in Figure 1.1. In order to execute thusly, the cog-

nitive radio should possess the ability to measure, sense, learn and understand

parameters that are related to characteristics, availability and operating environ-

ment for spectrum channels, user policies, networks, as well as other operational

limitations. On the one hand, a primary user (PU) is entitled with higher priority

or privilege for the utilization of a particular portion of the spectrum bands. On

the other hand, a secondary user (SU) with lower priority can access to the enti-

tled spectrum bands only when it will not cause any interference to the primary

user. Hence, the SU requires to have CR functions of diagnosing the interested

frequency band to make sure if its current utilization status from the PU then

changing the related transmission schemes to take advantage of such band por-

tion.

It is worth mentioning that a survey conducted by the FCC revealed a fact

that, in the frequency bands below 3 GHz, the utilization situations of the ra-

dio spectrum are very different from each other, and their occupancy rates are

from 15% to 85% [2]. Driven by this real survey results, interleave cognitive

radio models are widely applied among industrial standardization bodies, which

is led to not only because interleave cognitive radio with the capability of recy-

cling low utilization parts of the radio spectrum, but also because the models can

take full advantage of the spectrum while reasonably ensure quality of service

2



1.1 Background

(QoS). Therefore, many communication protocols including the IEEE 802.22 and

802.11af protocols as well as Ecma-392 were constructed to employ interleave cog-

nitive radio models. Because of the dramatic number increasing of application of

such interwoven CR models, this dissertation focuses on enabling technologies for

this model. To implement this model, essential components including spectrum

sensing, spectrum analysis, and spectrum decision making must be equipped.

Outside 

world

New 

states

Prior 

states

Observe

Orient

Learn

Plan

Decide

Act

Receive a message

Pre-process

Establish priority

Normal

Immediate

Urgent

Register to 

current time

Save global states

Send a message Set display

Initiate process

Figure 1.1: Ideal cognition cycle.

The CR ought to detect the operating environment and dynamically adapting

itself according to the observation, as it shown in Figure 1.2. Therefore, the tasks

realized by the cognitive radio should include,

• Spectrum sensing (SS): SS is considered to be the most crucial while fun-

damental function for performing the cognitive radio and is twofold. First

of all, the interested frequency bands have already been assigned to the

primary user according to a static protocol without a doubt. The spectrum

sensing performs an inspection to confirm whether some or all of the fre-

quency band resource is free over time, frequency, space, and code or angle

domain. Secondly, according to the sensed results, the secondary user ad-

justs its radio parameters to be able to access these free spectrum bands to

complete its own transmission [3, 4, 5, 6].

• Spectrum management : It is performed by the cognitive radio is to guaran-

tee the secondary user can obtain the most appropriate available frequency

3



1. INTRODUCTION

band, enabling data transmission to meet user and QoS requirements. One

can verify whether the current frequency band has good transmission perfor-

mance while guarantees transmission quality by considering indicators such

as hold time, uncertain noise power, transmission loss, and error/delay in

the radio media.

It consists of two basic parts including spectrum analysis and decision.

The spectrum analysis posses the capability of analyzing and estimating

characteristics from white space has been determined. The SD selects the

best spectral position from the effective results provided through SA, so that

current selection can meet the communication requirements of the required

QoS while balancing cost-effectiveness [7, 8, 9].

• Spectrum mobility : The ability of this function is that it can cause the SU

to quickly leave the band to ensure that the SU does not interfere with the

PU transmission, when the PU in question is detected it arrival for reuse

the spectrum bands. In another word, the cognitive radio can move from

the currently borrowed frequency band to another frequency band, thereby

ensuring a smooth transition of the CR [10, 11].

• Spectrum sharing : It is performed to set up sound utilization arrangement of

the spectrum as well as fair and sound spectrum allocation strategy among

several secondary users. It is implemented in conjunction with spectrum

access and transceiver handshake operations [12, 13].

Spectrum holes, also known as spectrum opportunities, are parts of the radio

spectrum initially allocated but currently free. In this dissertation, the SS is to

gain an understanding of the interested band usage and presence of primary users,

in other works to obtain awareness about the spectrum holes, as shown in Figure

1.3. The focal point of this dissertation is then the SS executed in CR since it has

a broader range of applications but lower infrastructure requirements. It can also

function to recognize the types of signals that are transmitted by PUs through

the interested spectrum bands, including the signal modulation, waveform, band-

width, carrier frequency, etc.. However, the execution may require certain prior

information, powerful signal analysis methods or extra computational complexity.
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1.2 Motivation and Objection

Researchers have invested significant effort in establishing the cognitive radio

models, then addressing serious challenges of realizing the key models and finally

solving the problems encountered during actual implementation. Thanks to a

significant amount of surveys and works, it is possible for this dissertation to

review the summarized problems and their corresponding solutions. Research

on practical solutions for actual system implementation has become the key to

5



1. INTRODUCTION

actual system deployment.

As mentioned before, the cognitive radio should have the capability to learn-

ing beneficial information from the operating environment, including the natural

transmission environment as well as the primary user activities. That is the rea-

son why the spectrum sensing is the main ingredient at this point. In the past

few years, the spectrum sensing in the cognitive radio have come across many

challenges and had to adjust its study directions accordingly. Researchers have

proposed practical technologies from various starting positions and processing

styles [14, 15, 16]. Among those, the energy detection, matched filter detection,

cyclostationary feature detection, wavelet detection, and covariance detection

represent the major research fields and therefore are considered to be the ”con-

ventional spectrum sensing methods” [17, 18, 19, 20, 21, 22]. However, as stated

in [8, 11, 15, 18], when establishing the spectrum sensing scheme, performance

degradation is caused by practical imperfections which include uncertainty from

signal, noise, interference and channel, transceiver imperfections, channel corre-

lation, etc..

Up till now, the practical implementation of the deuterogenic, advanced ver-

sions of conventional spectrum sensing methods are still at the front stage of

the investigation. These solutions have been recognized as the update or even

revolution of existing technologies. For example, on the one hand, some of these

sensing methods are able to provide high detection precision with the support of

specified extra complexity and sensing time, which are called spectrum scanning;

on the other hand, some of these sensing methods can take complete efficient

and high-speed sensing procedure with a slight sacrifice of the detection accuracy

such as methods with downsampling scheme regarded to the Nyquist sampling

rate. The work teams are still putting efforts on strengthening the current algo-

rithms and implementation schemes every day to obtain almost perfect sensing

methods which can balance among the detection accuracy, monitoring time and

computing complexity [23]. Furthermore, the spectrum sensing/monitoring while

performing cognitively transmission is another attractive issue which is objective

to become the solution to the throughput problem of the secondary network.

Cooperative spectrum sensing scheme is also developed to integrate each thin

detection ability to improve the global accuracy as well as address the problem

6



1.2 Motivation and Objection

of the hidden terminal which is commonly inherent in the wireless communica-

tion network [24, 25, 26]. Besides, from an industrial perspective, there are some

new standards introduced for discussion, including IEEE 802.11af and 802.15.4m

protocols, which are counting on the interweave network. They contribute to

bringing in not only new definitions but also the new challenges brought by ex-

ecution perspective. It is a truth that a lot of solutions with novel aspects have

revolutionized the traditional spectrum sensing technologies.

Inspired by those ways of thinking, advanced technology from another field

may also assist in raising the spectrum sensing performance. A CR is expected

to be a smart wireless communication system that possesses learning ability by

nature to understand and built from the interactions with the environment. Such

characteristics of the learning and reasoning capabilities indeed make the cogni-

tive radio ”cognitive”. In recent years, it becomes more and more popular and

promising to apply machine learning algorithms into the cognitive radio applica-

tions. The strength of coordinating the thoughts and actions make the machine

learning a nearly perfect core to be embedded in a cognitive engine. Typically, the

learning mechanism becomes more critical if a particular unknown factor from the

input data affects the accuracy of the output in a given system [27]. It means that

learning can suggest an appropriate input scheme to make a regression curve of

the input-output function better. To fit into the modern wireless communications,

the cognitive radio system has to develop with more complicated structure as well

as more degrees of freedom [28]. At this point, multiple dimensional parameters

as well as policies, such as coding and modulation scheme, sensing algorithm and

policy, communication protocols, etc., may need to cooperate and to be adjusted

simultaneously. These requirements frame the conventional rule-based methods

of model establishing to a disappointing position, since there is no simple function

to describe the complex interactions within the CR system under the impact of

these factors. Back to the signal identification for the spectrum sensing, the influ-

ences from outside or inside the CR system, such as uncertainty of signal, noise,

interference and channel aspects, transceiver imperfections, channel correlation,

severely cost the detection capability of the spectrum sensing. However, if the

machine learning is employed to estimate the channel characteristics, or to deter-

mine the specific coping technologies, or to find out the relationship between the

7
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received data and the sensing results, such executions are able to allow efficient

the spectrum sensing to guarantee the fundamental principle of the cognitive

radio.

In order for the realize the intelligence for a machine, there are three neces-

sary conditions: perception, which collects valuable information from from the

surrounding or internal states for further processing; learning, which analyzes

data and deduces specific relationship or pattern model hidden inside the data;

reasoning, which contribute results in the forms of classification or policy-making,

as shown in Figure 1.4. Obviously, learning is the core of any intelligent sys-

tem, especially CR. Researchers have proposed several implementation schemes

to intercept the machine learning into the CR system, including both supervised

learning and unsupervised learning [29, 30, 31]: approaches based on neural net-

work or support vector machines (SVMs) for the former and approaches based

on reinforcement learning (RL), game theory, etc.. It has been proven that these

methods can efficiently perform a parameter optimization or refine a cognitive

engine framework for the operating channel state even comparatively high appli-

cation requirement. Needless for extra description, the autonomous learning in

the partially observable environment will be the match point. Based on this idea,

this dissertation conducts studies to link the available information to accurate

sensing results through the assist of machine learning.

Perception ReasoningLearning

Sensing the 

environment 

and the 

internal states

Classifying and 

generalizing 

information

Achieving 

goals and 

decision-

making

Information Knowledge

Intelligent Sensing

Figure 1.4: Implementation of intelligent sensing.
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1.3 Contributions and Novelty

As the research background is the cognitive radio, the machine learning technolo-

gies, whose main idea is to wisely understand and build interactions within the

operating environment, are therefore applied throughout this thesis considering

their consistency and similarity in solving specific problems. The detection of the

primary user, or spectrum sensing, can then use the classic classification func-

tion of ML after accordingly converting the signal recognition scheme, where the

absent PU and present PU scenarios are treated as two classes.

This thesis firstly would like to exploit the capability limitation of the proposed

scheme, in another word how capable the ML technology is in solving spectrum

sensing problem. Therefore, the secondary user equipped with the full-duplex

(FD) mode is set to be the operating system since it has one of the most com-

plicated and harsh transmission environment where not only the additive noise

and fading effects but also self-interference effect, are demanded to be considered.

Secondly, after verifying the effectiveness of the proposed scheme, this thesis then

would like to consider a more practical situation where the common SU as a sens-

ing terminal in the CR system, only has limited computing power meaning the

huge computing complexity that required in the FD mode cannot be met. In this

case, the SU can only use a neural network with simple structure which limits

its sensing ability. In order to again reach the fine performance as the one of the

FD situation, several spatially distributed SUs should work together as in the

cooperative spectrum sensing scheme. In summary, to test the proposed scheme,

Proposal 1 is conducted to maximum the sensing performance from simple simu-

lation level, and Proposal 2 is conducted to research on the balance between the

performance and computing power from practical application level.

The two proposed machine learning based spectrum sensing schemes support

the contributions and novelties of the thesis. Aiming for two practical implemen-

tation plans of spectrum sensing, proper machine learning algorithms are selected

to fit into the cognitive radio system with the full-duplex (FD) mode, and the

cooperative spectrum sensing (CSS) structure.

For the full-duplex equipped CR scheme, the contributions and novelties are

as follow:
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• For spectrum sensing in the FD mode, a novel implementation scheme, as

well as its specific adversarial training strategy which establishes a modified

training database to cope with residual self-interference (RSI) are given.

Simulation results prove the improved sensing under RSI effects and even

other transmission influences;

• A thorough theoretical analysis of the spectral cyclic signature brought by

the OFDM signal applied in the full-duplex is presented, particularly the

pilot peak coordinates in the spectral periodogram;

• To determine a balance between the computing limitation and detection

performance, the input image formations with two different resolutions as

well as various CNN architectures are proposed and analyzed, while their

leading performances are evaluated;

• In order to realize a better secondary transmission with full-duplex mode,

which means the SU data transmission plan has to consider the SS in the

same time, a signal design focusing on the pilot arrangement is proposed.

For the cooperative spectrum sensing structure, the contributions and novel-

ties are as follow:

• aiming at an OFDM signal based cooperative spectrum sensing, the en-

semble deep learning is employed due to the similar characteristic between

these two structures. The proposed scheme shows an improved sensing

performance compared to classic sensing approaches;

• advanced execution strategies from the ensemble learning including the bag-

ging for the supervised learning in local sensing and the stacking generaliza-

tion for the combination strategy for the fusion center are borrowed and set

for the cooperative spectrum sensing to expect better sensing performance;

• both hard and semi-soft strategies are proposed to optimize the fusion

method.

• various types of weak learner network including changing in SU number and

structure are also tested to conduct a quantitative analysis on their brought

affects.
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1.4 Scope

A complete cognitive radio system should contain several layer-wise functions

including the spectrum sensing, spectrum management, spectrum mobility, and

power control, as mentioned before. However, the spectrum sensing detecting

the spectrum holes through the Physical (PHY) layer is considered to be the

given study confine. More particularly, the spectrum sensing can perform from

multiple dimensions containing the time, frequency, spaced and code domain. In

this dissertation, only the spectrum sensing from the time domain is focused. It

means the primary user is continuously utilizing one certain frequency with the

invariable bandwidth and center frequency, in the meantime the secondary users

only pay attention to this entitled frequency band and access to it from time to

time.

Although hardware conditions, system network plan, signal model, etc., ap-

pear in various formations in CR systems. From the signal aspect, signal and

multiple carrier modulation are both widely used. However, to meet the require-

ment of high data rate, the latter one attracts more attentions. In particular, the

orthogonal frequency division multiplexing is quite popular in CR systems owing

to its higher data rates and reliability; nevertheless, studies on such structure

are still developed because of the consideration of the system complexity. In this

study, the OFDM modulation is the main research object.

With the development of artificial intelligence (AI), several branches have

been evolved, such as machine perception, knowledge representation, and machine

learning, etc. However, for this study and the proper usage for the CR system,

only the machine learning will be employed and discussed in detail considering

the mentioned strength of learning capability. Specifically, the two key learning

mechanism will be paid extra attention to, including supervised learning and un-

supervised learning. The advantages and limitations of each learning paradigms

will be taken into account and carefully analyzed particularly under the frame-

work of the cognitive radio application. Furthermore, for special task/context of

the cognitive radio, both centralized learning as well decentralized learning will

be described.
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1.5 Organization of the Thesis

The dissertation provides recent researches about single-device as well as co-

operative spectrum sensing schemes. For both circumstances, proper machine

learning algorithms are carefully selected and localized according to their partic-

ular requirements and implementation contexts. This dissertation consists of six

chapters as the following description.

• Chapter 1 gives the introduction about the background, motivation as well

as objection. The contributions, novelty, as well as research scope of the

proposed researches are also described.

• Chapter 2 explains the specific operating system models of the spectrum

sensing in this research. Several representative spectrum sensing methods

are listed for their advantages and limitation in order to conduct further

comparison among those and the proposed methods. After that, in the

spectrum sensing background, the OFDM modulation signal model, espe-

cially its cyclostationary feature is analyzed for data collection phase in

classification.

• Chapter 3 gives an overview of the recently revealed implementation schemes

of adapting the machine learning into the spectrum sensing context. Both

supervised and unsupervised learning, as well as their classic algorithms

for various purposes are discussed. The aim is to conduct the fundamental

work for to-be-discussed proposals.

• Chapter 4 explains a classification-converted sensing based full-duplex sens-

ing method. The spectral cyclic signature induced by the pilot structure of

OFDM modulation acting as input image data is put through the CNNs for

classifications. Moreover, in order to survive from residual self-interference,

noisy and fading channel, a sensing-oriented adversarial training of a local-

ized training database was presented.

• Chapter 5 presents a cooperative spectrum sensing scheme assisting by the

ensemble learning framework to ease the local computation power tense
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while remaining a good sensing performance. Each SU is accordingly con-

sidered as a base learner. Then in order to better apply supervised learning

for sensing, a bagging strategy from the ensemble learning is invited here

for building databases. The fusion center employs a stacked generalization

for further raise the sensing accuracy.

• Chapter 6 gives the conclusions of the dissertation and summarize the con-

ducted research contributions in chapters 4 and 5.
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Chapter 2

System Model and Signal Model

In this chapter, the system mode, which is the in-question spectrum sensing

scheme, and the signal model, which is the considered OFDM modulation sig-

nal are carefully stated to lay the groundwork for the to-be-discussed proposed

methods. The spectrum sensing is considered to be the most critical component

for its capability of preparing the groundwork which is executed nicely so the fol-

lowing step can be built upon it. Methodologies for the spectrum hole detection

have already been established as a soundest system. Among those, some main

concerned problems such as performance increasing, environmental uncertainty,

etc., have been challenged. According to these, specific efficient mathematical

formulas have been constructed as valuable references. However, even under such

great help, insufficiencies that need more devoted efforts and novel ideas are al-

ways left behind. Then, as one of the most widely applied modulation type, the

OFDM modulation signal also helps further raise the channel utilization situa-

tion, since it supports high data rate transmission. Open- to- public protocols

for its formation as well as usage regulated the transmission style, which in some

way even make the spectrum sensing more valid than before. As a result of its

particular structure, the induced cyclostationary feature can be extracted for its

better detection.

This chapter is organized as follow. Section 2.1 describes the system mode

of the spectrum sensing. Concretely, the general formation and its related con-

cepts and applications are given in section 2.1.1; the mathematical expression is

presented in section 2.1.2; several representative spectrum sensing methods and
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their advantages and limitations are listed in section 2.1.3. Section 2.2 carefully

explains the OFDM modulation model: the protocol of the OFDM modulation

signal that regulates the specific forms as well as parameters, are stated in detail

in section 2.2.1; in section 2.2.2, the model induced cyclostationary feature is an-

alyzed for data collection which will be discussed later. Section 2.3 summarizes

this chapter.

2.1 System Model of Spectrum Sensing

2.1.1 Spectrum Sensing Hypothesis

As stated before, factors like uncertainty from signal, noise, interference and chan-

nel, transceiver imperfections, channel correlation, make the spectrum sensing a

real challenge. Besides that, the temporal sensing for a primary user signal relates

to a seriously complicated signal processing problem. Furthermore, in particular

circumstance, the secondary users may be required to evaluate the channel condi-

tions to refrain from causing interference towards the primary user. Since there is

no information interchange between the primary and secondary users, the signal

recognition or channel exploitation is supposed to be very tough.

The spectrum sensing query generally distinguishes between the PU statuses

of existence(presence) and inexistence(absence), or in another word, the busy/idle

situation of the aim band. The sensing results are mainly evaluated or measured

with the formation of two probabilities which are the probability of detection (pd)

and the probability of false alarm (pf ).

Previous studies provided a binary hypothesis mechanism to describe the SS

[8], where H0 stands for quiet PU and H1 stands for busy PU, respectively. Its

mathematic expression is considered as

H0 : x = n, Absent PU

H1 : x = hp+ n, Present PU
(2.1)

where p and x stand for the original transmitted signal from the primary user

terminal and the received signal at the SU terminal, respectively. h and n is

channel coefficient and the additive noise (Throughout this dissertation, the ad-

ditive white Gaussian noise, AWGN, is the only considered, which is with mean
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of zero and variance of σ2
n so that n ∼ CN (0, σ2

n)). Moreover, if π0 represents

the probability when the PU is absent, i.e. true for H0, and π1 represents the

probability when the PU is present, i.e. true for H1, and as π0 +π1 = 1, then two

types of error may be encountered for the sensing results:

• Error Type 1 : as defined in pf , the secondary user mistake H1 when H0 is

actually true;

• Error Type 2 : the probability of miss detection (pm), as the opposite of pd

(pm = 1− pd), the secondary user mistake H0 when H1 is actually true.

2.1.2 Classic Spectrum Sensing Approaches

As described in the last section, obviously, the underlying problem for the spec-

trum detector is to select the sensing plan then establish a proper threshold of γ.

Methodologies of the detection theory have built up a sound system to an idea

with such issue. The scheme of the classical statistics and Bayesian statistics [32]

are the two main implementation plans of detection theory. For the implemen-

tation scheme of the traditional statistics, the prior information is the hypnosis

results which means H0 or H1 is deterministically known, while the aim of the

execution is to maximum pd according to a fixed pf . However, for the implemen-

tation scheme of the Bayesian statistics, based on a certain priori information,

the hypotheses are randomly set to be true. Then the aim of the execution is to

minimize the Bayesian cost.

This section will list several most traditional spectrum sensing schemes that

are often compared with as the benchmarks and instruct most of the recent

research for further exploring the detection performance.

2.1.2.1 Energy Detection

Energy detection (ED) is a widely developed non-coherent signal detection ap-

proach for the SS owing to the comparatively low computing complexity [33, 34,

35, 36, 37, 38]. It is mostly applauded by the fact that it requires no priori infor-

mation about the primary user nor the channel status compared to other methods.

The result will be given out only by comparing the energy accumulation value
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calculated by the detector with the threshold depended on the noise floor [39].

However, such simple strategy may leave out some challenges for performing the

spectrum sensing: the threshold calculation error when the noise uncertainty oc-

curs, the difficulty of distinguishing the inference from the primary user or noise,

the poor detection performance under harsh transmission environment, i.e. low

signal to noise ratio (SNR=σ2
s/σ

2
n) value and the inefficiency for detecting the

wide-band signal [38, 40, 41].

As stated before, when the primary user is currently occupying the interested

spectrum band, the received signal is in the form of

x = hp+ n, (2.2)

where h is considered to be 1 here. Then, the energy accumulation value will be

set to be the decision metric as

M =

∫ T

0

x(t)2, (2.3)

where T stands for the testing period of the considered received signal part. Then

the sensing results will be obtain after compared the metric M with the pre-

decided fixed threshold Λ. The decision for Λ should a perfect balance between

pd and pf . However, such Λ may require both noise and PU signal information.

Therefore in actual execution, the threshold is set to guarantee a certain value of

pf , resulting in the only required information is the noise power.

To simplify the analysis, besides the noise, the signal term is also set to be

the Gaussian distribution, i.e. s (n) = N (0, σ2
s). However if the fading effect is

also considered, the signal model s(n) will be much more complicated. Upon on

these settings, the metric M then behaves as the chi-square distribution with the

freedom degrees of 2N , χ2
2N , as in

M =

{
σ2
w

2
χ2

2T H0,
σ2
w+σ2

s

2
χ2

2T H1.
(2.4)

Then the pd and pf can be written as [42]

pfa = 1− Γ

(
LfLt,

λ

σ2
w

)
, (2.5)
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pd = 1− Γ

(
LfLt,

λ

σ2
w + σ2

s

)
, (2.6)

where Γ is the half gamma function.

The energy detection needs to set a noise power based threshold, where even

a small variance estimation of the noise may cost the sensing performance. At

this point, the multiple signal classification (MUSIC) algorithm which divide the

received data into signal and noise spaces, can be applied for reducing the esti-

mation error. The MUSIC calculates the autocorrelation matrix of the received

data and chooses the smallest eigenvalue to be the noise variance which is also

chosen according to the set pf .

2.1.2.2 Matched Filter Detection

As a part of communication theory, a matched filter normally have the objective

of the maximizing the received SNR in the AWGN channel. Therefore, for the

spectrum sensing, such detector is proven to take full advantage of the coherent

condition [43, 44]. If the cognitive user knows about not only the necessary

parameters of the signal establishing as well as the entire PU signal structure, the

coherent technology can well function. The specific execution is that: the detector

will calculate the cross-correlation between the received and pre-mastered primary

user signal; then if there is a true correlation peak (confirmed after comparing

it to the set threshold) appears, the detector makes a decision of active primary

user; otherwise the decision will be inactive primary user. Actually, as long as

the cognitive system applying the signal with certain synchronization structure

of the preamble, pilots, or spreading codes, the coherent feature is prepared and

guarantee the matched filter detection.

In contrast to the energy detection, the matched filter detection leave an

impression of well behaving in the low SNR environment, which make it more

desirable to sense the weak signal [45, 46]. Based on this characteristic, the

matched filter is often used to detect the mistaken transmission during a silent

period, in spite of its comparatively high computing complexity. Besides these,

the matched filter has also been used to estimate the power of the primary user

signal.
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Even though the matched filter detector is able to provide an excellent per-

formance, such detection capability builds on the well known of the primary user

network. Only a few spectrum sharing schemes are able to meet this requirement,

such as the spectrum trading circumstance where the entitled user will rent the

band for the silent period. However, it is not the most common scenario for the

cognitive radio system. Besides, during the actual implementing phase, the lack

of information of the fading channel parameters or the frequency/time offset, the

matched filter detection may degrade due to the unfortunate correlation situation.

2.1.2.3 Cyclostationary Based Detection

When the primary user applying a signal with the cyclic spectral signature, the

cyclostationary based detection can be adopted in a given, interested spectrum

bands [47, 47, 48, 49, 50, 51, 52, 53]. The cyclostationarity can be explored from

the periodicity in a signal or its related statistics such as autocorrelation. In some

circumstances, the cyclostationarity can be deliberately installed into the signal

structure to apply the cyclostationary based detection. This sensing method is

able to distinguish the signal from the background additive noise due to the fact

that the primary signal applying the modulated signal with spectral periodic

correlation while the noise is a wide sense stationary with no correlation at any

point over the time domain. At this point, the cyclostationary based detection

can also be applied for differentiate among several primary users as long as they

apply signals with different types of the cyclostationarity.

Assume that c (n,m) stands for the OFDM symbol sequences, where n and

m denote the symbol and carrier number. The expression of variance is as:

σ2
d = E {c (n,m) c∗ (n,m)} . (2.7)

Then the auto-correlation is

Rxx(t, τ) =σ2
c ·Re[
∞∑

n=−∞

M∑
m=0

d(t− nTs)d(t− nTs + τ)·

exp

(
−j2π

(
m− M − 1

2

)
∆fτ

)
·

exp(−j2πfcτ)],

(2.8)
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where M and Ts denote the total carriers number and symbol duration. ∆f and

d(t) are the carrier spacing and rectangular pulse. Ts is centered at 0. Then,

a(τ) =
M−1∑
m=0

·exp
(
−j2π

(
m− M − 1

2

)
∆fτ

)
=
sin(π∆fMτ)

sin(π∆fτ)
exp

(
−jπ∆f(m+ 1)

2τ

)
.

(2.9)

Applying the above equation, the original auto-correlation can be rewritten as:

Rxx(t, τ) =σ2
ca(τ)·

Re

{
∞∑

n=−∞

M∑
m=0

d(t− nTs)d(t− nTs + τ)

}
.

(2.10)

Normally, a signal used for data transmission can be viewed as the integrate

of a series of weighted spectrum ingredients. Due to such fact, the statistical

periodicity analysis can be utilized to decompose the interested signal back into

several weighted cosine waves. Accordingly, signals in different modulation types

can be formed by a group of different cosine functions for their specific intrinsic

periodic characteristics. Sometimes the received signal does not directly show

periodicity from appearance, however, various transformation algorithm like the

Fourier or inverse Fourier analysis can help reveal the inner periodicity features.

In this dissertation, the second order spectral transformation, such as the men-

tioned auto correlation, is applied to analyze the cyclostationarity. For further

explore the periodicity spectrally from the time domain formation of x(t), the

cyclic auto correlation function of x(t) can be written as

Rα
x = lim

T→∞

1

T

∫ T/2

−T/2
x
(
t+

τ

2

)
x
(
t− τ

2

)
e−j2παtdt, (2.11)

where α is the amount of shift, also as know as the cycle frequency. The expres-

sion for the spectral correlation as a Fourier transformation of the cyclic auto

correlation, can deeply exhibit the frequency correlation spectrally. The spectral
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correlation function (SCF) can be written as,

Sαx (f) =

∫ +∞

−∞
Rα
x(τ)e−j2πfτdτ

=

∫ +∞

−∞
lim
T→∞

1

T

∫ T/2

−T/2
x
(
t+

τ

2

)
x
(
t− τ

2

)
e−j2παte−j2πfτdtdτ

= lim
T→∞

SαXT
(f)

(2.12)

where f is the frequency, and SαXT
(f) is the cyclic periodogram of the spectral

correlation. SαXT
(f) is:

SαXT
(f) =

[
XT

(
t, f +

α

2

)
·X∗T

(
t, f − α

2

)]
/T. (2.13)

Then the spectral coherence density (SCD) of x(t) is defined as:

SαXT
(f)∆t=

1

∆t

∫ ∆t/2

−∆t/2

1

T
XT

(
t,f+

α

2

)∗
X∗T

(
t, f−α

2

)
dt. (2.14)

XT here is fitting for the x(u) local spectral representation written as:

XT (t, v) =

∫ t+T/2

t−T/2
x(u)∗e−j2vfudu, (2.15)

where f is the general frequency and v is the cyclic frequency, respectively. Mean-

while the limit SCD is expressed as lim
T→∞

lim
∆t→∞

SαXT
(f)∆t.

2.2 Signal Model of OFDM Modulation

2.2.1 OFDM Modulation

At first, the frequency division multiplexing was proposed to assign channel for

different purposes of data transmission. The OFDM modulation signal developed

such idea but multiplexed in the frequency domain to create a certain number of

subcarriers to apply them all to transmit data from one channel. The modulation

scheme is to divide the data over parallel low rate orthogonal subcarrier, which

should be modulated using traditional single carrier modulation plan from BPSK

(Binary Phase Shift Keying) to N-QAM (N-Quadrature Amplitude Modulation)
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2.2 Signal Model of OFDM Modulation

for guaranteeing high data rate and sound transmission in the integrated chan-

nels. The subcarriers of orthogonality can be divided through applying correlation

techniques, which can reduce inter-Symbol interference (ISI) between subcarriers.

The bandwidth on each subcarrier is smaller than relevant bandwidth, resulting

in the fact that subcarriers can be regarded as flatness fading and thereby elimi-

nating inter-code interference (ICI). Since the sub-bandwidth only takes a small

portion of original bandwidth, the channel equilibrium becomes comparatively

easy. The OFDM modulation and demodulation are realized based on IFFT and

FFT respectively, and the lowest complexity makes the OFDM modulation the

widest application. The OFDM modulation is even able to apply dispersed free

frequency bands in order to distribute transmission, owing to the capability to re-

shape and integrate subcarriers. The good quality and adaptability of the OFDM

modulation signal result in such technology currently being adopted in forms of

Wi-Fi, Wi-Max, DVB-T, etc. in many radio systems.

For this dissertation, here are some reasons why among all of the data mod-

ulation technology, the OFDM modulation is the best choice for the CR system.

As stated before, the cognitive radio as a software-defined radio system, relies on

the flexibility of the digital domain means flexibility and demands a high level

of programmability. Meanwhile, the characteristics of the OFDM modulation

allow it to step into different spectrum bands and meet different transmission

requirement by adjusting the specific implementation parameters, which again

meet the definition of the CR system. Furthermore, the spectrum sensing from

the physical layer is often realized by FFT which has already built within the

OFDM modulation and can be shared by the spectrum sensing technology.

To measure the OFDM application in the CR, the advantages and disadvan-

tages of OFDM should be mentioned:

Advantages:

• High channel utilization and effectively resist interference between signal

waveforms make the OFDM modulation suitable for high-speed data trans-

mission in multipath environments and fading channels, which is especially

important in wireless environments with limited spectrum resources;
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2. SYSTEM MODEL AND SIGNAL MODEL

• High resistant to narrow-band interferences, since these interferences only

affect a small fraction of subcarriers. In a single carrier system, a single

fading or interference can cause the entire communication link to fail, but

in a multi-carrier system, only a small fraction of the carriers are subject

to interference;

• Strong anti-fading ability. Through the joint coding of subcarriers, the

modulation utilizes the frequency diversity, and if the fading is not par-

ticularly severe, there is no need to add a time domain equalizer. Error

correction codes can also be used for these subcarriers for error correction.

Meanwhile, when frequency selective fading occurs, only the subcarriers

falling in the band recess and the information carried by them are affected,

and other subcarriers are not damaged, so the overall BER (bit error ratio)

performance of the system is better.

The OFDM modulation requires a amount of the orthogonal multiple subcar-

riers closely spreading over certain spectrum band, which is intently invited to

avoid the interference while reduce the total bandwidth. The complex subcarriers

would be modulated then loaded with 2 bits in the BPSK modulation case, 4 bits

in the QPSK and 2n in the N-QAM modulation case, as

Sc(t) = Ac(t)e
j[2πfct+φc(t)], (2.16)

It is a time-vary signal with magnitude and phase. N sets of this signal consist

the entire OFDM modulation definition, which expresses as

Ss =
1

N

N−1∑
n=0

An(t)ej[2πfnt+φn(t)]. (2.17)

Throughout a complete OFDM symbol, the amplitude and phase stay still

Ss(t) =
1

N

N−1∑
n=0

Ane
j[2πfnt+φn]. (2.18)

Since the subcarriers centralize around one certain central frequency of f0 leading

fn = f0 + n∆f , and when f0 = 0 for reference, fn = n∆f . In the mean time,
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2.2 Signal Model of OFDM Modulation

a discrete time domain makes t = KT , where T is the whole sampling period.

Then

Ss(KT ) =
1

N

N−1∑
n=0

Ane
j[(2πn∆f)KT+φn]. (2.19)

A further transformation is written as

Ss(KT ) =
1

N

N−1∑
n=0

Ane
jφnej[(2πn∆f)KT ]. (2.20)

Such mathematical equation expresses a similarity to the IFFT where Ane
jφn

clearly represents the frequency domain

x[n] =
1

N

N−1∑
n=0

Xke
j2π nk

N . (2.21)

It describes the integrate of orthogonality subcarriers over the frequency domain

by the IFFT definition, which is also a condition to guarantee the orthogonal

exponentials of 2π∆fnKT = 2πn k
N

. For the to-be-transmitted data stream

which is in the form of complex modulation expression, dn = an + jbn where the

values of an and bn are based on the chosen scheme of BPSK, QPSK or N-QAM.

Substitute N of the complex data, the expression of the OFDM modulation over

the time domain can be rewritten as

Ss(KT ) =
N−1∑
n=0

dne
j[2φnfntk]. (2.22)

The real part of the OFDM symbol after complex multiplication is

Re {Ss} = y(t) =
N−1∑
n=0

[ancos(2πfntk) + bnsin(2πfntk)] . (2.23)

The establishment of the OFDM modulation is shown in Figure 2.2.

2.2.2 OFDM Structure Induced Cyclostationarity

On the one hand, the OFDM modulation is also valued for its robustness against

multi-path fading effect, which provides by its unique design of the structure of

the cyclic guard intervals. Such a featured design makes it easy to modify to
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Figure 2.1: Establishment of OFDM modulation.

suit various transmission. On the other hand, the OFDM modulation needs high

synchronization not only over the frequency and time domains but also from the

aspect of the channel estimation. The mentioned cyclic guard intervals including

the pilots, preambles and cyclic extensions, enables the receive terminal to achieve

urgent synchronization demands, as shown in Figure 2.3.
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(1 OFDM symbol)

Data or payload

(Variable number of OFDM symbols)

Short training

(10 short syms)

Long training
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Data l
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Data l
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Data l
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Every 4
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equal magnitude 

signal detect AGC 

diversity sel timing 

sync coarse freq offset 

est.
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freq offset est

Signal symbol

4 us duration 

always BPSK rate 

info length info
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52 subcarriers per symbol

48 data, 4 pilots and zero Null sub.

data: same mod fmt per burst 

(BPSK, QPSK  16QAM, 64QAM)

Pilots: BPSK only

Max 4096 bits per frame

802.11g OFDM signal frame structure

Preamble Signal Data OFDM symbols

Figure 2.2: OFDM modulation frame structure of IEEE 802.11g.

• Cycle Prefix : Due to the existence of the multipath fading, delays of differ-
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2.2 Signal Model of OFDM Modulation

ent OFDM symbols in one same frame can be caused by different propaga-

tion paths for the frame. In the relevant frequency domain, the cross inter-

ference between the subcarriers is caused, which affects transmission perfor-

mance. A good modulation design must include some efficient structure to

avoid the mentioned inter-symbol and inter-carrier interference which may

be caused by the frequency selective fading, or at least suppress them to an

acceptable level. In the OFDM system, that is to select a sufficient cycle

prefix (CP) to prevent the ISI and ICI.

The CP structure deliberately copies certain length of the last portion of

an OFDM symbol and add it at the beginning of the symbol, and such

extension version of the original symbol would be the final transmission

applied form. The extension portion between each symbol within one frame

is known as guard interval. An appropriate length of the extension should

be selected to be longer than the channel impulse response (CIR) then to

eliminate the ISI. In addition, because of the cyclic prefix, the IFFT FFT

operation turns the original linear convolution into a circular convolution,

which greatly simplifies the corresponding signal processing complexity;

• Preamble: Synchronization of the system is an important issue due to the

Doppler shift and Doppler change rate of the radio system. The preamble

sequence is designed to solve this problem. The preamble sequence consists

of a special synchronization sequence for solving the problem of the time

synchronization and the estimation of the Doppler shift and its change

rate. In addition, the OFDM modulation scheme encodes the preamble

sequence to implement information feedback between the point-to-point

communication. The transmitting and receiving terminals are both well

known about the parameter of the preamble, and it can play an important

role when the receiving terminal approximately estimates the interference

of the transmitting channel. That is, for the equalizer to generate a channel

model including the channel estimation, frequency offset estimation and to

search for the starting point of the OFDM signal.

The preamble must be able to possess correlation properties, and in order

to perform recovery tasks smoothly, it must avoid a complex algorithm.
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2. SYSTEM MODEL AND SIGNAL MODEL

Therefore, the task of searching for the starting point of the OFDM signal

is completed by correlating the input data with the reserved preamble copy.

The frequency offset estimation between the transmitting and receiving

terminals is completed by multiplying the input signal by the conjugate of

the reserved preamble copy;

• Pilots : The sequence as the commonly known information for both the

transmitting and receiving terminals is evenly inserted in the time-frequency

two-dimensional domain, so that the receiving terminal can conveniently ex-

tract the corresponding transmission channel information for the channel

estimation, frequency estimation, data management, and space-time decod-

ing. An unfixed number of the subcarriers functioning as such sequence is

the well-known pilot tones; meanwhile, they are modulated by BPSK or

QPSK (quadrature phase shift keying). However the number, modulation,

etc. are given in the design parameters for a specific frame format.

Considering the channel change in time and frequency, the pilot insertion

must also be uniform, which can correctly reflect the average channel varia-

tion in an information resource block. The receiving terminal digs out them

then utilizes the minimum mean square error (MMSE) criterion for max-

imum likelihood channel estimation. In fact, the previous researches have

revealed various pilot schemes. Several design schemes are mostly utilized,

including using pseudo-random values to avoid frequency lines, using pilot

tones at the same frequency position of every OFDM symbols, and moving

the pilot tones among the symbols to the current position. Notice that in

any case, the design scheme of the scattered or fixed pilot tone must be

inserted at the same power and guarantee the cyclic spectral signature over

the whole OFDM symbol or frame. However, for the actual implementa-

tion, the pilot design has to consider its effect on increasing the power to

peak average ratio.

As the OFDM modulation signal is adopted in the CR system, its excellent

characteristics of the flexibility and modifiability can be transferred and passed

on to the CR system. All the built-in structure of the OFDM modulation, as
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2.3 Chapter Summary

mentioned above the cycle prefix, preamble and pilot tones can devote for the

on-demand transmission. Among these three structures, this dissertation pays

more attention to the pilot tones and utilizes them for the spectrum sensing.

The reasons are: on the one hand, the cycle prefix generally cannot provide the

comparatively better detection performance due to its short length and being

easily disturbed by the frequency selective channel [55]; on the other hand, the

cyclic stability of the preamble is usually interrupted by the transmission mode

of its random WiFi packet [22, 56].

According to the mathematical expression of the spectral correlation density

as in

Sαxx(f) =

∫ ∞
−∞

Rα
xx(τ) · e−j2πfτdτ. (2.24)

From this equation, the bi-frequency plane with the horizontal and vertical axises

of the frequency f and cycle frequency α can be visualized by the magnitude of

the spectral correlation density |Sαxx(f)|, and be utilized as the to-be-processed

data for the spectrum sensing. The cyclostationarity induced by the pilot tones

is shown in Figure 2.4

2.3 Chapter Summary

This chapter introduces the system mode of the spectrum sensing. Several typi-

cally considered spectrum sensing scheme is listed. Then since the time dimension

sensing is the focus of this dissertation, the mathematical expressions are then

presented for future discussion and reference. Conventional spectrum sensing are

also listed and compared each other with their strengths and limitations.

This chapter also introduces the signal model of the OFDM modulation and

its utilization for the in-question cognitive radio system. The underlying math-

ematical expressions are given, and so are its cyclostationarity. Inspired by the

cyclostationary feature detection, the bi-frequency plane will act as the image

data for the future process.
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Figure 2.3: spectral correlation density of pilot tones induced cyclostationarity.
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Chapter 3

Machine Learning for Signal

Recognition

Machine learning is a multidisciplinary subject containing disciplines of probabil-

ity theory, statistics, and convex analysis, etc.. It specializes in making machines

simulate or implement human learning customs for obtaining new information or

skills. The ML is the crucial technology of AI, and its applications span over all

fields of AI. Currently, the ML is mostly applied in the induction and synthesis

rather than deduction.

At this stage, the scope of applications with various machine learning meth-

ods has been expanding, and some of them have already formed commodities.

Knowledge acquisition tools of the induction learning have been widely used in

diagnostic subtype expert systems. Connection learning is dominant in acoustic

image recognition. The analytical learning has been used to design integrated

expert systems. The genetic algorithm and reinforcement learning have a good

application prospect in engineering control. The neural network connection learn-

ing coupled with the symbol system will play a role in intelligent enterprise man-

agement and intelligent robot motion planning.

Particularly for the signal process, in fact, some research in the field of signal

processing does not only focus on simple analysis, but also considers reasoning

factors. At present, the signal processing algorithms and techniques have bor-

rowed a lot from the development of machine learning, to solve many problems

that traditional algorithms cannot solve and to achieve performance indicators
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3. MACHINE LEARNING FOR SIGNAL RECOGNITION

that are not easy to achieve. As the field of machine learning is relatively new

and has more opportunities, more signal processing research is beginning to be

integrated into machine learning research. This dissertation is inspired by such

kind of idea of utilizing the machine learning to help raise the performance of

signal recognition for the spectrum sensing.

This chapter is organized as follow. The introduction about the data collection

scheme that specifically designed for the SS is in Section 3.1. The interception-

based as well as simulation-based detection which are explained in Sections 3.1.1

and 3.1.2. For Section 3.2, the machine learning, particularly the signal recog-

nition relate part, is introduced. Section 3.2.1 introduced the two main learning

schemes of the supervised and unsupervised learning. Section 3.2.2 considers the

consumption of the neural network and presents the calculation method of the

computing complexity. Section 3.2.3 gives the examples and simulation results

showing how the network structure affects the final performance. Section 3.3

summarizes this chapter.

3.1 Data Collecting

The main task of the SS is to detect if the PU is transmitting its signal nor

not. No matter implementing this in a conventional way or a new way, data is

needed to be received and to be pre-processed. In this dissertation, the machine

learning is applied into the spectrum sensing to help with the primary user signal

recognition.

Being able to accept support from the cognitive radio system, the supervised

learning which will be explained later, is invited to complete the signal process-

ing task. Therefore, the data preparation or data collection is important to build

up the supervised database to train the classifier. Under the framework of the

OFDM based CR system, various prior information about the PU signal, channel

situation, etc. provide various beginning conditions and lead to various imple-

mentation flows of the signal recognition. In this dissertation, two data collecting

scheme is discussed including the interception-based as well as a simulation-based

collection for training database establishment.
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3.1 Data Collecting

3.1.1 Interception based Data Collection

Interception based data collecting means data can directly be intercepted from

the real transmission process of the PU for training. Two kinds of data with dif-

ferent contents, such as the only noise existing data and the primary user signal

mixed with noise data, must happen in different periods and can be intercepted

for establishing different training database. Although these should not be any

interaction between the primary and secondary users and will not be any oppor-

tunities of obtaining such kinds of data, a two-step sensing scheme then can be

utilized in this scenario [9, 57]. The implementation flow is as following:

• Performing a comparatively more complex and accurate spectrum sensing

method to precisely assure the periods for different activity statuses of the

primary user;

• Sum up and extract certain parameters and information about the signal or

channel condition, or for the case that discussed in this dissertation, record

the required data to establish the training database;

• Execute a time-saving spectrum sensing method but still be able to remain

the high sensing performance thanks to the prior information obtained from

the above step.

The specific implementation flow is shown in Figure 3.1, and recently it has been

employed in most of the standard CR system. For instance, the draft fo IEEE

802.22 standard allows an inter-frame period with duration time up to 158ms,

and an intra-frame period with duration time up from 5ms to 10ms [58]. Based

on these supportive conditions, ECMA 392 standard uses a conventional sensing

period of more than 5ms, and further spectral measurements are made with a

selectable desired sensing time [59]

At this point, the proposed machine learning based SS is considered executing

in the rapid sensing period, because of the fact only a few or even one OFDM

symbol is enough to implement the spectrum sensing, which will be described in

detail later). The exceptional sensing period is used for performing another time-

consuming high-capability method to confirm the signal transmission periods of
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Time
Fine sensing  periods

Rapid sensing periods

Figure 3.1: Implementation flow of two step sensing scheme.

the PU and collect datasets for the active as well as inactive periods. After

collecting the data, it can be further pre-processed including the de-correlation,

de-mean, etc., and then be sent to the final data-processing/signal-recognition

phase.

3.1.2 Simulation based Data Collection

Nowadays, the OFDM signal utilization has been utilized to accomplish higher

information rates and quality in the rapidly developed CR system. To fully utilize

the limited wireless spectrum, the established transmission scheme protocols, for

example, IEEE 802.11 protocol [58], have already employed by major communi-

cation companies and organizations. Since the protocol is widely acknowledged,

more and more specific parameters and information about the transmission sig-

nal are open to share with the public and academic research. The simulation

based data collection is, therefore, executable. In this dissertation, assume IEEE

802.11g protocol is obeyed by the primary user for its data exchange, which make

this research can directly use the information about the modulation mode, signal

structure, etc. for simulating the primary user signal. Database for training the

classifier then can be built by just loading such kinds of simulation data sam-

ples. Moreover, instead of performing the pre-processing for the raw intercepted

data, the simulated data can directly appear in the forms that are desired for the

research.

3.2 Data Processing

The ML is invited to help with raising the performance of signal recognition in

the cognitive radio system, due to its strength in data processing compared to
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3.2 Data Processing

Figure 3.2: Machine learning based solutions to classic problems in cognitive

radio system.
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other conventional methods. Most of the machine learning inspired methods aims

for tasks of classification or decision-making, as shown in Figure 3.2.

As long as this thesis focuses on the SS which is all about detecting if the

primary user signal is in the interested band or not, as stated before, it is easily

transformed as classification issue when data received in both active and inactive

primary user is counted as two classes of data. The spectrum sensing task of

detecting the signal being there or not is converted into a classification task

of classifying/dividing two mentioned data classes. Focus on the branch of the

classification in Figure 3.2, the supervised and unsupervised learning is needed

to be discussed in detail.

3.2.1 Learning Paradigms

Typically ML contains two learning paradigms: supervised or unsupervised. The

simple way to distinguish between the two is to look at the added information

for the data. Whether it is supervised, it depends on whether the input data has

a label. If the input data has a label, it is supervised learning, and if there is no

label, it is unsupervised learning.

The middle of these two is semi-supervised learning which is proposed recently

for meeting the new challenges. At this point, part of the training data is labeled

and the other part is not labeled, and the amount of unlabeled data is often

greater than the amount of tagged data (which is also true). The basic rule hidden

under semi-supervised learning is that the distribution of data is not entirely

random. Through some local features of tagged data and the overall distribution

of more unlabeled data, an acceptable or even outstanding classification result

can be obtained.

3.2.1.1 Supervised Learning

For supervised classification learning, the input training data has features and la-

bels. The essence of so-called learning is to find the relationship between features

and labels. In this way, when there is a characteristic and unlabeled unknown

data input, we can get the unknown data label through the existing relationship.

The supervised learning is a machine learning method in which a training model
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can be learned or established; then another new instance can be inferred from

this model. Training data should contain designed input of vectors as well as

the expected output of label. Usually, the output is either a relationship func-

tion as known as regression analysis or a prediction of a classification label also

known as the classification. For a supervised learner, after observing some train-

ing paradigms (inputs and expected outputs), predicts the output of this function

for any possible input values. To achieve this goal, learners must generalize from

existing sources to non-observed situations in a ”reasonable” manner. In human

and animal perception, it is often referred to as concept learning.

The main concerns of supervised learning are the computing complexity and

trade-off variances and deviations. Please note that both are interrelated. The

appropriate computing complexity usually depends on the nature of your training

data. If your data volume is small, or if your data is inconsistently distributed

in all possible situations, you should choose a learning algorithm with computing

complexity. This is because high complexity models will be overused if used on a

small number of data points. Over-fitting means that the learning function is very

suitable for your training data, but it will not be able to assimilate other datasets.

One rigorously learn to generate training database under no understanding of

tendency or structural output. In theory, you can use any degree of function, and

one will carefully adopt another complicated model while using linear functions.

From the view of this dissertation, there are various types as well as capa-

bilities of classifiers. The classification accuracy is primarily related to the data

expression to be classified. Various rules of experiences are used to compare the

performance of the classifier and to find data characteristics that will determine

the performance of the classifier. Deciding a classifier that fits a problem is both

an art and a science.

3.2.1.2 Unsupervised Learning

Usually, the main goal of unsupervised learning is to cluster the data. The unsu-

pervised means one only need to provide the data without a label for the learning

algorithm and let it find out the inner relationship lying within the data. Here,

different the execution scheme of the supervised learning, the comparison among

various learning algorithms is hard to conduct.
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3.2.1.3 Semi-supervised Learning

Part of the training data for semi-supervised learning is labeled, and the other

part is unlabeled, and the amount of data without labels is much more substantial

than the amount of data with labels. The basic rule hidden under semi-supervised

learning is that the distribution of data is not entirely random. Through some

local features with tag data and more overall distribution of unlabeled data, you

can get acceptable or even outstanding classification results. The basic idea of

this learning scheme is to use the model assumptions on the data distribution to

create a learner to label unlabeled samples.

3.2.2 Computing Complexity

Since the research method of this dissertation is to use the simulation results to

verify the effectiveness of the proposed method and evaluate its performance. As-

sume that the hardware device meets the requirements required for the study and

does not need to be discussed in the dissertation as a focus. Therefore throughout

this dissertation, the computational complexity here refers to the time complex-

ity rather than the space complexity (access stock) which is a measurement of

the amount of storage space temporarily occupied by an algorithm during its

operation.

The time complexity is the number of operations of the model can be measured

by FLOPs, which is the floating-point operations. A floating point operation can

be defined as one multiplication and one addition (although sometimes a floating

point operation will also be defined). Since the spectrum sensing, in this research,

is to recognize the OFDM modulation signal as it is assumed to be applied by the

primary user transmission. Its cyclostationary feature then will be adopted as the

final form from the data collecting to plug into the classifier. As stated before,

the cyclostationarity appears in the form of a bi-frequency plane, i.e., a piece

of image data. The requiring of the image processing ability push this research

to employ the convolutional neural network as the data processor or classifier.

Therefore, let us take the CNN as an example to show the specific calculation

process of the time complexity.
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• Time complexity of one single convolutional layer:

Time ∼ O(M2 ·K2 · Cin · Cout), (3.1)

where M is the side length of each convolution kernel output feature map, K

is the side length of each convolution kernel. Cin is the number of channels

per convolution kernel, which is the number of input channels, also known

as the number of output channels of the previous layer, and Cout is the

number of convolution kernels that this convolution layer has, which is the

number of output channels. It can be seen that the time complexity of

each convolutional layer is completely determined by the output feature

map area M2, convolution kernel area K2, input channel Cin and output

channel Cout.

The input matrix size determines the output feature map size itself X,

the convolution kernel size K, Padding, and Stride, which are expressed as

follows:

M = (X −K + 2 ∗ Padding)/Stride+ 1. (3.2)

Notice here, in order to simplify the number of variables in the expression,

and it is assumed here that the shapes of the input and convolution kernels

are all square. Meanwhile, strictly speaking, each layer should also contain

one bias parameter, which is omitted here for brevity.

• Time complexity of one complete convolutional neural networks:

Time ∼ O(
D∑
l=1

M2
l ·K2

l · Cl−1 · Cl), (3.3)

where l is the convolutional layer index of the neural network, D is the total

number of the convolutional layers belonging to the neural network, which

is the depth of the network. Cl is the number of the output channel Cout of

the lth convolutional layer, which is the number of convolution kernels. For

the lth convolutional layer, the number of input channels Cin is the number

of output channels of the (l − 1)th convolutional layer.
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In summary, for conventional calculations, the nonlinearity function is usually

not considered, then the computing complexity for convolution operations is cal-

culated as [60]

FLOPs = 2 ·H ·W · (Cin ·K2 + 1) · Cout, (3.4)

where H, W and C are the height, width and channel. It can be seen that the

overall time complexity of the convolutional neural network is not mysterious,

but the time complexity of all convolutional layers is cumulative. In short, the

layers are multiplied and accumulated between layers.

From this calculation, the computing complexity of the full connected neural

network, taking bias into account, is according to

FLOPs = 2 · I ·O, (3.5)

where I and O is the numbers of input and output nodes.

3.2.3 Deep Neural Network

3.2.3.1 Structure of Deep Neural Network

Suppose we have a system S with n layers (S1, ...Sn) whose input is I and whose

output is O, which is represented graphically as: I => S1 => S2 => ...... =>

Sn => O, if the output O is equal to the input I, that is, there is no information

loss after the input I changes through this system. The information remains the

same, which means that input I passes through each layer of Si without any

loss of information, i.e., in any layer of Si, it is another representation of the

original information, i.e., input I. That is the basic information flow in the deep

neural network (DNN). It is needed to learn the features automatically, assuming

having a bunch of input I, such as a bunch of images or text and having designed

a system S with n layers. The parameters are also required to be adjusted in the

system, so that its output is still inputted I.

For deep learning, the idea is to stack multiple layers, that is, the output of

this layer as the input to the next layer. In this way, the input information can

be hierarchically expressed. In addition, the front is to assume that the output is

strictly equal to the input. This limit is too strict. One can relax this restriction
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slightly. For example, one only need to make the difference between input and

output as small as possible. This relaxation will lead to another kind of different

deep learning method.

Deep learning itself is a branch of machine learning, which can be understood

as the development of the neural network. About twenty or thirty years ago, the

neural network was once a particularly hot direction in the ML field, but it slowly

faded out, including the following:

• It is easier to overfit, the parameters are harder to tune, and it may need

special tuning tricks;

• Learning speed is relatively slow, while the effect is not better than other

methods when the level is relatively small (less than or equal to three).

The same is true for deep learning. It uses a similar hierarchical structure of

neural networks. It contains a multi-layer network consisting of input, hidden

(multilayer), and output layer. Joined nodes have connections. Each layer then

is regarded as a logistic regression structure; this hierarchical model is closer to

the structure of the human brain.

In order to overcome the problems in neural network training, deep learning

uses a training mechanism that is very different from neural networks. In the

traditional neural network, the back propagation method is adopted. In simple

terms, an iterative algorithm is used to train the entire network, the initial value

is randomly set, and the output of the current network is calculated, and then The

parameters of the previous layers are changed according to the difference between

the current output and the label until convergence (the whole is a gradient descent

method). Deep learning as a whole is a layer-wise training mechanism. The reason

for this is because, if the back-propagation mechanism is employed, for a deep

network, the residual propagation to the foremost layer has become too small,

and a so-called gradient diffusion occurs.

3.2.3.2 Trade-off of Deep Neural Network

In this section, certain simulation results are conducted to reveal the trade-off

between the DNN or computing complexity and classification accuracy. In or-

der to quantitatively analyze the relationship between the network structure and
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sensing performance, a full connected neural network known as the stacked de-

noising autoencoders (SDAEs) are selected to be the classifier, since it is more

intuitionistic to see the performance gaps caused by different numbers of layers

and nodes. IEEE 802.11g is considered to be the PU applying signals. For the

supervised learning scheme, five training databases are prepared here as in Table

3.1.

Table 3.1: Training datasets under various SNR conditions

Training

database

Training datasets of C0/C1

(Transmission condition)

Number of

datasets

1
C0: pure noise 10,000

C1: PU signal under SNR 5 dB 10,000

2
C0: pure noise 10,000

C1: PU signal under SNR 0 dB 10,000

3
C0: pure noise 10,000

C1: PU signal under SNR −5 dB 10,000

4
C0: pure noise 10,000

C1: PU signal under SNR −10 dB 10,000

5
C0: pure noise 10,000

C1: PU signal under SNR −15 dB 10,000

Based on previous research and experiments, one should consider altering

the structure of the neural network to obtain or maintain good performance

when there are changes in the number of input/output units, the number of

training datasets, the complexity of the function, background noise situation, etc.

Obviously, in this research when the target background becomes noisier, i.e., the

C1 training-data situation becomes worse, the data structure of C1 becomes more

similar to that of C0, which makes the classification harder to realize. Therefore,

to maintain the good SDAE situation from the training, a more powerful, deeper

and wider SDAE network structure, i.e. structure with an increasing number

of hidden layers and their nodes, should be considered. Figure 3.3 provides the

specific values of the determined hidden layer number and hidden node number of
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each layer. As shown here, to achieve a better performance, a more sophisticated

structure is required.
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Figure 3.3: Structure of SDAE network for each training database condition

Different training strategies lead to different training duration, which is con-
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sistent with the network structure analysis. Therefore, another evaluation index

of the training phase would be the elapsing time, as shown in the second column

of Table 3.2. The training datasets are split into small batches for each iteration

to calculate model error and update model coefficients. Therefore, the elaps-

ing time is measured in every iteration under a suitable mini-batch value of 100,

which was decided by the training phase. The number of the training datasets, as

well as the epoch that represents the pass times over the whole training datasets,

can be varied for a different accuracy demands or computing power status. Only

the duration of one iteration under a certain structure is worth being provided

a serviceable reference. Although minutes may be required for one iteration in

the training phase, such an assignment could be done beforehand without delay-

ing the actual signal classifying process for the CR system. Still, due to worse

C1 training-data condition, a longer elapsing time will be required correspond-

ing to the more complicated SDAE structure. In conclusion, the complexity of

the SDAE structure as well as the training time consumption should both be

considered when optimizing the detection performance.

Table 3.2: Elapsing time of each training database condition

Training database Training phase (s) Testing phase (ms)

1 79.7 0.5

2 201.2 1.1

3 219.0 1.3

4 302.4 1.4

5 498.4 2.0

Once the training phase is done with the five C1 training databases under

different interception conditions, the five training-decided SDAE structures are

then ready to be employed. On one hand, for the detection performance curve, as

the C1 training data is from worsening transmission conditions, the general down-

ward trend is accelerating. This dividing line also changes along the training data

conditions. On the other hand, owing to the training procedure, although the

training data condition is deteriorating, it can provide an increasingly superior
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performance. For example, when detecting the testing data under a SNR of −10

dB, the training procedure of Database 4 guarantees that such data can be de-

tected. However, for Databases 1, 2, and 3, the data can be detected because of

the high tolerance and flexibility of the SDAE network. In any case, the proposed

method shows a higher detection capability compared to energy detection. This

is attributed to the training datasets intercepted from an actual communication

environment. In addition, the superior performance of the proposed method is

rational, because it can be obtained as an integration of the higher-order cumu-

lants, spare autoencoders, and a softmax classifier. The higher-order cumulants

suppress Gaussian noise. The autoencoders extract feature from the higher-order

cumulants. Then, the softmax classifier provides maximum likelihood classifica-

tions. In terms of the specific values, the energy detection shows a pd of > 77%

at a SNR of −4 dB. The proposed method, Database 1 shows a pd of > 95% at

−4 dB, Database 2 shows a pd of = 100% at −4 dB, Database 3 shows a pd of

= 100% at −8 dB, Database 4 shows a pd of = 100% at −10 dB, and Database

5 shows a pd of = 100% at −14 dB.
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Figure 3.4: Performance comparison of the proposed method of each training

database condition and energy detection for various SNR of the testing data

The false alarms probabilities are affected by the fitting situation of the SDAE

network training. As shown in Figure 3.4, the pfs of Databases 1, 2, and 3 are

under 0.001, and the pfs of Databases 4 and 5 are 0.0046 and 0.005, respectively.

Databases 1, 2, and 3 reached an almost perfect fitting situation from the SDAE
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network training, as reflected in the classification accuracy approximately equal

to 100% in the pretesting mentioned before. It guarantees that for these three

training schemes, the pure AWGN will be perfectly and accurately classified into

C0 most every time, resulting in the pure AWGN also being classified into C0 in

the final testing phase, i.e., a low false alarm probability. Though the classification

accuracy values of Databases 4 and 5 are comparatively big, there is still just a

small probability of the AWGN being mistakenly classified into C1. These two

training scheme are still effective enough to provide low false alarm probabilities

compared to some conventional spectrum sensing methods. In fact, the low false

alarm probability is actually one of the advantages of the proposed method.

3.3 Chapter Summary

In this chapter, firstly since the CR system allows either monitoring the pri-

mary user activity or announcing key parameters of the primary user signal, the

supervised learning is adopted for this research. The data collection procedure

of collecting and preparing data samples for establishing the training database

both interception-based and simulation-based, is introduced. Then the theory

and characteristic of the machine learning are well described to explain how its

advantage can assist the spectrum sensing. The learning schemes, computing

complexity, and neural network establishment are discussed in detail as the ref-

erence for the future researches.
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Chapter 4

Full-duplex Spectrum Sensing

using Convolutional Neural

Network

This chapter introduces an advanced spectrum sensing method for SU terminal

with full-duplex (FD) technology. The proposed sensing scheme can provide an

excellent detection performance even under a severe self-interference. The imple-

mentation flow is executed following a ”classification-converted sensing” frame-

work. The spectral cyclic signature brought by the OFDM modulation structure

is treated as input image data, then the convolutional neural network is em-

ployed as the image data processor. In the implementation process, in order to

perceive residual self-interference (RSI), noise pollution and channel fading ef-

fect, the proposed method modifies the conventional adversarial training to built

a CR-specific, training database. Meanwhile, to balance the computing ability

and the detection performance, different input data formation as well as different

CNN structures are discussed to decide a suitable combination for this research.

Several SU structure designs are also proposed to benefit the spectrum sensing

and its own transmission [61, 62, 63].

This chapter is organized as follow. Section 4.1 introduces of the background

and the proposed scheme. Section 4.2 explains the system model and the imple-

mentation framework of the proposed method. Section 4.3 gives the mathematical

derivation of the pilots induced cyclostationarity in the FD mode. In Section 4.4,
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the theory and architecture of the CNN, and the corresponding adversarial train-

ing plan are presented. In Section 4.5, the performances given by the different

CNN architectures and image resolutions are analyzed and balanced with the

computing capability; meanwhile, signal designs that can fit into the proposed

method while benefiting SU transmission is presented. Section 4.6 summarizes

this chapter.

4.1 Introduction

Currently, most of conventional sensing approaches are designed especially for SU

equipped with half-duplex mode, which means it can only alternately perform

spectrum sensing and data transmission. Such SUs are unable to utilize the

required spectral band fully: the SU wastes precious data-exchanging time when

performing independent SS, and would not be able to adjust itself in time if

PUs suddenly arrive because of the divided sensing periods. However, if the SU

adopted FD mode which functions the channel sensing and data sending at the

same time, the utilization of the sensed free band will be more efficient [64]. SU

equipped with FD mode is capable of identifying spectrum occupation statuses

even during data exchanging period.

The biggest obstruct for FD widely be applied due to the severely self-interference

from its own data transmission. However, such worrying situation has been im-

proved from both the analog and digital scheme of the SU terminal [64, 65, 66, 67,

68]. Even so, residual self-interference cannot easily ignore. Most of the work on

FD improvement primarily mostly pays attention to refine the full-duplex execu-

tion scheme [68, 69] or providing better allocations of executing the SS and data

sending slots [70, 71]. Previous studies [72, 73] about FD-mode spectrum sensing

under the RSI effect prefer to focus on the mathematical analysis from physical

transmission aspect and lack in offering detailed problem-solving methods. For

the OFDM modulation applied by the PU in this study, related researches are

still in the development [74, 75].

Aiming for the mentioned challenges, this dissertation provides a novel SS

method which posses an effective combination of solving RSI problem, surviving

from harsh transmission environment and maintaining highly accurate sensing
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performance. The machine learning assisting SS is the basic framework converting

the signal recognition into classification. Two main steps are required here: the

cyclostationary feature generated by the pilot structure of OFDM modulation

is considered to be collected image data [76, 77, 78, 79]; therefore, in order to

sufficiently explore the inner construction of the input image, the convolutional

neural network is then applied as the data processor/classifier [77]. Specialized

adversarial training is assisting through the two-step in order to further improve

the SS performance [80].

4.2 System Model and Implementation Frame-

work

4.2.1 System Model

The in-question CR model is shown in Figure 4.1. Assuming that the considered

SU equipped with FD module functions as a base station in the CR system, which

means it has the capability and duty of SS towards the PU and exchanging data

with other affiliated ordinary SU with FD module [69]. Without saying, the SS

of the base station SU must be degraded for the RSI.

PU
Cognitive base station

SU Transmitter

(Full-duplex)

PU sig
nal (p

)

Cognitive user

SU receiver

(Half-duplex)

SU signal (s) 
RSI (χs) 

hp

hs(=1)

Figure 4.1: Basic system model of full-duplex in CR system

Putting aside the data exchanging between the SUs, which can only be pro-

cessed after the status of sharing band being identified, the SS is still the priority

mission. Therefore, based on the working position of PU, the mentioned binary
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hypotheses can be established as:

H0

PU absent
x =

{
n, H00 SU silent,

χs+ n, H01 SU busy,
(4.1)

H1

PU present
x =

{
hpp+ n, H10 SU silent,

hpp+ χs+ n, H11 SU busy.
(4.2)

Notice here, Equations (4.1) and (4.2) are way more complicated than the basic

mathematical expression in Equation (2.1), due to the consideration of the RSI

from FD mode. However, like before, x, p and n are the received signal at the FD

SU terminal, the original transmitted signal from PU terminal and the AWGN,

respectively. The power of p and n are then expressed as σ2
p and σ2

n. s stands for

the original transmitted signal from the base station SU terminal to ordinary SU

with the power of σ2
s which is assumed to be calculated before the self-interference

suppression (SIS). hp denotes the channel from p to x, and hs is omitted here since

a perfect channel (hs = 1) is considered from stx to srx. Only RSI is considered

through this dissertation meaning some effective SIS must be carried out, where

χ denotes the suppression level. χ∈ [0, 1], if χ= 0 means there will be RSI; else

if χ 6= 0 RSI power equals to χ2σ2
s/σ

2
n. The interference-to-noise ratio (INR) as

σ2
s/σ

2
n.

4.2.2 Implementation Framework

For establishing the converted classification model, H0 and H1 can be treated as

two types, or classes, of data represented by C0 and C1.

Even though the SS is the priory, and its results only are to decide C0 or

C1. However, the subdivision of these classes as expressed as H00, H01, H10,

and H11 are able to help upgrade the sensing performance in the to-be-discussed

adversarial training step.
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4.3 Data Collection: Extraction of Cyclostation-

arity

4.3.1 Cyclostationarity

Assuming the autocorrelation of x(t):

Rxx(t, τ) = E {x(t+ τ/2) · x∗(t− τ/2)} . (4.3)

The periodicity of Rxx reflected on t, where the cycle value is Tx. Rxx can also

be expressed by a series of Fourier expressions as:

Rxx(t, τ) =
∑
α

Rα
xx(τ) · ej2παt, (4.4)

where α = z/Tx, z ∈ Z. Subsequently, Rα
xx are expressed as:

Rα
xx(t, τ) = lim

T→∞

1

T

∫ T/2

−T/2
Rxx(τ) · e−j2παtdt. (4.5)

If there is an α value guarantees Rα
xx 6= 0, x(t) is said to possessing a second order

cyclostationarity. The Fourier transformation of Rα
xx is:

Sαxx(f) =

∫ ∞
−∞

Rα
xx(τ) · e−j2πfτdτ, (4.6)

which can also be regarded as the spectral correlation density (SCD) function,

whose magnitude, |Sαxx(f)| can be expressed as a bi-frequency plane with X-axis of

cycle frequency α and Y-axis of spectrum frequency f . Such graphical expression

can be later utilized as the input for data processor.

4.3.2 Model of OFDM Signals

Starting from one OFDM symbol, xk(ts) (with index k and ts ∈ [0, T )) consists

of N subcarriers, and resulting in an N-point iFFT where fn is fn = n/Ts for

n ∈ [0, N/2] and fn = (n − N)/Ts for n ∈ [N/2 + 1, N − 1], where Ts stands

for the pulse-shaping period. The pulse shaping procedure is realized by using
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p(ts) with a length of T . Concatenating xk(ts) with ts ∈ [0, T ) and k ∈ [−∞,∞)

yields:

x(t) =
N∑
n=0

∞∑
k=−∞

an,kp(t− kT ) · ej2πfn(t−kT ). (4.7)

Assume the filter qn(t) has the duration of ts ∈ [0, T ), then

qn(t) = p(t) · ej2πfnt, (4.8)

Equation (4.8) can be rewritten as

x(t) =
N∑
n=0

xn(t) =
N∑
n=0

∞∑
k=−∞

an,k · qn(t− kT ), (4.9)

with the discrete-time input an,k [81]. Combining an,k with a series of Dirac

impulses δ(t), the impulse sampled auxiliary signal is as:

bn(t) =
∞∑

k=−∞

an,k · δ(t− kT ) (4.10)

Equation (4.10) is then expressed as

x(t) =
N∑
n=0

bn(t) ∗ qn(t). (4.11)

Furthermore, the OFDM modulation with a focus of pilot structure is as [82]

x(t) =

√
σ2
p

N
[xdata(t) + xpilot(t)], (4.12)

where,

xdata(t) =
N−1∑
n=0

bn(t)
data

· ∗qn(t), (4.13)

and

xpilot(t) =
N−1∑
n=0

bn(t)
pilot

· ∗qn(t). (4.14)
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4.3.3 Pilot-induced Cyclostationarity in FD Mode

Normally, cross-spectral density of the data carrying subcarriers bn−data(t) is ex-

pected to be 0 due to their independent and identical characteristics. Conversely,

the bn−pilot(t) data are correlated and parallelly inserted into designated subcar-

riers, which is able to offer the required cyclostationarity in this study. Then to

make the derivation process easier to understand, bn−pilot(t) will be rewritten to

bn,t from here on. According to the considered IEEE 802.11g protocol, a pilot

symbol in the kth OFDM symbol is subsequently as:

bn,k = bm,ke
iϕ, (4.15)

where ϕ ∈ [−π, π]. For exhibiting the joint cyclostationarity of multi-pilots, its

discrete-time cyclic cross-correlation function is expressed as

Rα
xy(k, u) = lim

M→∞

1

2M + 1

M∑
k=−M

∑
α

Rxy(k, u) · e−j2παk. (4.16)

By substituting (4.4) and (4.16) in (4.17), obtain:

Rα
b(nm)(k, u)= lim

M→∞

1

2M + 1

M∑
k=−M

∑
α

E
{
bn,k ·b∗m,k

}
·e−j2παk, (4.17)

where,

E
{
bn,k · b∗m,k

}
= σ2

be
iϕ
∑
ι∈Z

δ[k − ιK − k0]. (4.18)

σ2
b denotes the power of bk and k0 denotes the very first received OFDM symbol.

The cross-correlation function for pilot is then expressed as:

Rα
bnm,k

=
σ2
be
−j(2παk0+ϕ)

K

∑
l∈Z

δ

[
α− l

K

]
, (4.19)

If α ∈ [(l−bK/2c)/K, l ∈ {0, 1, ..., K − 1}] (b·c is integer flooring), then Rα
bnm
6= 0,

where α ∈ [−1/2, 1/2]. Subsequently, the local maximum value is localed at:

Sαbnm,k
(f) =

{
(n,m,K) | Rα

bnm,k
6= 0
}
, (4.20)
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where (n,m) is a pilot-tone pair. When 2K pilots are symmetrically distributed,

local maximum value are localed on the SCD figure according to following coor-

dinates:

α = ±(n−m) ·∆f, f = ±(n+m) ·∆f/2. (4.21)

As in IEEE 802.11g, n,m = {±7,±21 | n 6= m}, and the subcarrier interval ∆f

would be 312.5 kHz. The SCD of IEEE 802.11g protocol is shown in Figure 4.2.

Figure 4.2: Pilot-induced SCD of IEEE 802.11g protocol signal.

For FD mode, the SU signal can be designed based on IEEE 802.11g protocol,

specifically the pilot structure, to borrow the robustness in channel equalization.

The pilot specific positions of the SU should be changed from those of the PU

for distinguishing SU and PU during the sensing:

bsn,k = bsm,ke
iϕ1 = bpr,ke

iϕ2 . (4.22)

For sensing under RSI, the condition of H11 is written as:

Sαx (f) = Sαp (f) + Sαs (f) + Sαps(f), (4.23)

where Sp and Sp are the auto-SCD term of the PU and SU signals, respectively.

Sps denotes their cross-SCD term. Subsequently, the peaks in the pilot-generated

SCD plane are as:

Sαbnm,k
(f)=

{
((np,mp), (np,ms), (ns,ms), K)|Rα

bnm,k
6=0
}
, (4.24)

at the coordinates:

α=±{(np −mp), (np −ms), (ns −ms)} ·∆f,
f=±{(np +mp), (np +ms), (ns +ms)} ·∆f/2.

(4.25)
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If a certain pilot design is applied by the SU signal, then its SCD plane is shown

in Figure 4.3(a). Under such circumstance, the received data with mixed signal

as in H11 is shown in Figure 4.3(b). The result figures again prove the accuracy

of the mathematical derivation. The SCD peaks standing for the maximum value

in the correlation should show themselves at both the auto-term and cross-term

coordinates.

4.4 Classification: Utilization Scheme of CNN

As stated in Chapter 2, the SCD transformation is in the form of two-dimensional

figure, where α, f , and |Sαxx(f)| are as the ”x” and ”y” pixel coordinates and the

pixel value, respectively. Therefore, to deeply exploit the image features, the

convolutional neural network is applied here for data processing.

4.4.1 Convolutional Neural Networks Architecture

Suppose that input SCD plane expresses as:

Xb=[xf,α, ...,xF,A], b∈ [1,B], (4.26)

where b is the dataset index. The CNN processes the image data through the

convolution and pooling layer: the former is for extracting region characteristic

of one input image using a decided kernel; the latter is to generalize the informa-

tion from extracted feature maps as well as reduce the oversize convolution layer

output at some level. These two steps are as:

ol=pool (σ (wv
l ·ol−1+bvl )), v∈ [1,cl], l∈ [1,L− 1] (4.27)

where supposing o0 = xb. L stands for the total layer number of the complete

processor network; c, w, and b stand for the number of the convolutional filters,

weight, and bias parameters, respectively. σ stands for the nonlinear activation

function, which can map the output into certain acceptable range.

The full connected layer will be used as final decision making layer after

integrate the convolutional output to a vector. The complete execution flow is

as:

yl−1=σ(wf(f(pool (σ(wv
l ·ol−1+bvl ))))+wf ). (4.28)
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(a) Pilot-induced SCD peaks of one particular SU signal

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
 (Hz) 107

-1

-0.5

0

0.5

1

f (
H

z)

107

0

0.2

0.4

0.6

0.8

1

(b) Pilot-induced SCD peaks of PU signl under self-interference

Figure 4.3: Pilot-induced SCD peaks in FD mode.

As one type of the full connected layer, the sensing results will be provided by the

softmax layer. It quantifies a given probability and integrate the vector expression

for giving the probability of each class, as in:

Ψi = eyi/
∑

eyk , (4.29)
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Figure 4.4: CNN architecture.

where yi stands for the class predictions while k is the number of classes. It is

noteworthy that long with the changing in the network structure such as layer

number, kernel size, etc., the final classification will be altered. Therefore, in this

dissertation, CNN architecture with various parameters will be tested to find out

the performance pattern and decide the most suitable one. The CNN architecture

is shown in Figure 4.4.

4.4.2 Training Strategy

Most of the related research usually establish two training databases of clean PU

signal and pure background noise [76, 77, 78]. However, when receiving data

under hash transmission conditions, such data samples are considered as adver-

sarial data that will severely disturb the spectrum sensing, let alone the existing

RSI. Even so, when proper training can be executed, the deeply polluted adver-

sarial sample can still be guaranteed an accurate classification. Generally, two

adversarial schemes can be used to improve the accuracy: modifying the proces-

sor structures or modifying the training strategies, for example, establishing a

new, more robust database. In this dissertation, adjusting the training strategy

is adopted for following reasons: due to the utilization of open information about

IEEE protocol, the simulation of PU transmitting signal under any environments

can be done and used to build the training database; for regular image process-

ing using machine learning, considering the complicated inner relationship among

pixels, the CNN may face a tough job but still be qualified. Comparing to such

situation, the processing of the comparatively organized SCD planes is too easy

a task for CNN, where the adversarial samples will not cause any extra trouble;
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modifying the processor architecture seems easy, however, more often, the price

of cost more computing power must be paid. Table 4.1 gives the concrete estab-

lishing plan of the adversarial training databases. The power of the simulated

AWGN data remains the same and the PU and SU signal power are changed

according to the exhibiting values to build the training database.

Table 4.1: Training databases

Class Component

Subcomponent

PU SU AWGN

(fading effect) (χ2) (in dB)

C0

1 (H00) 1 × × ©

2 (H01)
1 × 0.1 INR 10

2 × 0.2 INR 20

C1

1r (H10)

1 © (no fading) × ×
2 © (Rayleigh) × ×
3 © (no fading) × SNR -15

4 © (Rayleigh) × SNR -15

1m (H10)

1 © (no fading) × ×
2 © (multi-path) × ×
3 © (no fading) × SNR -15

4 © (multi-path) × SNR -15

2r (H11)

1 © (Rayleigh) © ×
2 © (Rayleigh) 0.1 SNR -5

3 © (Rayleigh) 0.1 SNR -15

4 © (Rayleigh) 0.2 SNR -15

2m (H11)

1 © (multi-path) © ×
2 © (multi-path) 0.1 SNR -5

3 © (multi-path) 0.1 SNR -15

4 © (multi-path) 0.2 SNR -15

As illustrated in Table 4.1, a multicomponent database is built to carry out a

more suitable training plan. The smallest unit of data group (subcomponent) will
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contain N sets of data (N equaling 10,000 in this research). However, to reach a

balance training which demands an even number of datasets, H00 component will

contain 4 ∗N sets of data while each subcomponent of H01 will contain 2 ∗N sets

of data. Here two fading channel effects are considered for the PU transmission,

where components 1r and 2r form the C1 training database for the Rayleigh fading

effect and components 1m and 2m form the C1 training database for multi-path

fading effect (the channel tap numbers are 4,6, and 8 and the channel coefficient

is set randomly). After the CNN reaching a fitting mode for the training data,

the data originally belongs specified label will be accurately classified to the

same class no matter how bad the data condition is. Under this circumstance,

the sensing/classification performance is expected to rise as long as training the

CNN to learn that the polluted adversarial data samples should be labeled to C1.

The execution flowchart is shown in Figure 4.5.
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Figure 4.5: Implementation flow-chart.

Because the classifier structure is undecided, for different accuracy and com-

plexity requirements, one can establish the CNN architectures accordingly.
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4.5 Simulation and Results

4.5.1 Simulation Setup

This research assumes that PU uses IEEE 802.11g protocol with 16QAM to trans-

mit data under both AWGN as well as Rayleigh/multi-path fading effect. GPU

acceleration is utilized via Nvidia GeForce GTX 1080. Other working platforms

contain a 3.20-GHz Intel Core i7-6900K CPU and MATLAB R2016b.

As multiple pilots inserted into SU signal structure,

Since multiple pilots may be inserted into the SU OFDM signal, the SCD

planes of the received signal at the SU terminal with the FD mode may peak at

many coordinate points, as shown in Figure 4.3. A relatively high resolution of

the SCD plane is desired for the input image. Meanwhile, the CNN possesses

the capability of deeply exploring the inner feature of a comparatively dim input

image. The size and formation of the input image may be reduced to reduce

the computing ability and the time complexity, which means that an input im-

age with an overly high resolution may not fully utilized. Combining these two

points, 10 OFDM symbols are utilized to transform into the input SCD image.

For every piece of the input image, the original plane is rotated and abandoned

pixels equaled to zero. Data preparation steps are executed too, including princi-

pal component analysis and mean elimination. It should be noted that compared

with traditional sensing schemes, such as the energy sensing and cyclostationary

feature detection which need to calculate the accumulated energy value or cyclo-

stationarity, the sensing schemes proposed are able to save a lot of observation

time. Furthermore, if one is willing to invest more computing power to perform

the spectrum sensing with more complex CNN structures and larger size input

image formation, high sensing performance can be achieved fewer symbols.

4.5.2 Results Analysis

4.5.2.1 Input Formation and CNN Structure

According to the results of the previous formula derivation, as the number of built-

in pilots increases, their SCD peaks will also increase. Therefore, to clearly exhibit

the peaks in the input plane, three input formations of low-resolution (Low-R),
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high-resolution (High-R) and extra-high-resolution (XHigh-R) SCD planes are

presented. Figure 4.6 shows the detailed expressions of the three input formations

for IEEE 802.11g protocol.
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Figure 4.6: Input image formations.

As shown, the Low-R plane is of the size of 64 × 64. Subsequently, to save

computation power, the plane of High-R and XHigh-R will be divided into small

parts with the same size of 64 × 64. For High-R one, two parts that contain

the entire pilots-induced information owing to the symmetry of the SCD feature,

will be jointly plugged into the classifier through two input channels; meanwhile,

as for XHigh-R one, eight parts will be plugged into the classifier through eight

input channels

The CNN architecture can vary according to the equipped computing power

and the demanded classification accuracy. Therefore, several CNN models are

discussed to provide a ready-to-use architecture for further reference. For better

analysis and comparison, this proposal firstly focus on the situation where the

SU is always silent or perfect self-interference suppression is in place, instead of a

thorough consideration of the FD mode sensing. Hence, similar to the traditional

half-duplex, only the sensing results of H00 and H10 will be obtained. Therefore,

only component 1 of C0/C1 in Table 4.1 is plugged into the classifier as input

training data. Firstly, the Low-R input formation is used to locate a CNN ar-

chitecture with better image-feature-exploiting capability. Five architectures of
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Figure 4.7: Performance comparison between different CNN architecture with

Low-R input formation under various SNR of non-fading transmission environment,

where the SU is always silent or a perfect self-interference suppression is in place.

IEEE 802.11g protocol with 2 and 4 pilots are considered to be the PU signals.

the CNNs are tested in this study, and their detailed conditions are exhibited in

Table 4.2.

Figure 4.7 shows pd, pf curves for the purposed five CNN architectures. As

one can imagine, for pf curves, the perfectly fitting training cannot be reached

with the proposed training database since we increase the training samples as

many as possible. In another word, when the databases in Table 4.1 are used

in the training phase, some samples in C0 will be misclassified into C1 and

vice versa. After executing training, a pretesting process is necessary to see if

the training is successfully done; this is done by utilizing sets of generated data

with the same condition as the training data. The misclassification probability,

which is calculated by misclassifying C0 to C1, is pf . Therefore, pf is entirely

determined by every training/pretesting phase instead of being set randomly.

Hence, even though a receiver-operating characteristic (ROC) curve is commonly

used to evaluate the performance of the spectrum sensing, the inability to change

pfs or pd along pf means that only a separated result analysis of pd and pf is

possible.

The SCD peaks exhibit certain distribution rules that allow one to alter the

hyper-parameters such as strike, padding, and feature map channel number ac-
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Table 4.2: Conditions of 5 CNN architectures

Architecture
Time

Complexity
Parameters

1 2.85× 105

1 convolution layer (6*6)

1 pooling layer

1 full connection layer

2 4.25× 105

1 convolution layer (10*10)

1 pooling layer

1 full connection layer

3 4.21× 105

2 convolution layers (6*6)

2 pooling layers

2 full connection layers

4 6.87× 105

2 convolution layers (10*10)

2 pooling layers

2 full connection layers

5 7.02× 105

3 convolution layers (6*6)

3 pooling layers

2 full connection layers

cordingly. If a large kernel value is used, one is able to choose a large strike while

still obtain excellent performance, while saving computing power. In Figure 4.7,

as the convolution kernel becomes larger, the detection accuracies significantly

increase. Meanwhile, the depth of the CNN architecture increases and a large

amount of computation is required; however, pd curves do not increase as ex-

pected. Furthermore, even though Architectures 1 and 4 give the lowest time

complexity and the best performance, the low pd and the computing power con-

ditions may not be met for every SU terminal. Therefore, the CNN architecture

of Architecture 2 is applied.

To further prove our determination of the CNN architecture, Figure 4.8 shows

the sensing performances (pd, pf ) of five CNN architectures versus their time

complexities. The horizontal axis indicates the index of five proposed CNN ar-

chitecture, and the vertical axis indicates the pd/pf to the time complexity ratio,
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where the pds are the values at an SNR of −20 dB in Figure 4.7. As shown in

Table 4.2 and Figure 4.7, different sensing performance are provided by different

architectures, or time complexity, of CNN; therefore, it is unfair to compare the

pd and pf values directly. At this point, Figure 4.8 calculates the pd (pf ) vs. time

complexity ratio, i.e. how much the sensing ability can a unit time complexity

provide for each architecture, to conduct a fair competition and find out the most

economical and practical architecture. All the vertical coordinates are normal-

ized by the maximum value, i.e. the pd (pf ) vs. time complexity for Architecture

1. The value beside every double arrow indicates the difference between the two

ratio values for the corresponding architecture, which can be obtained as:

Differencei =
pdi/time comlexityi

(pd1/time comlexity1)
− pf i/time comlexityi

(pf 1/time comlexity1)
, (4.30)

where i is the index for each CNN architecture. As one can expect, for pd,

the higher value the better the performance; however, for pf , the lower value

the better the performance. It means the greater the difference values between

these two curves, the better CNN architecture it is. Once again, Architectures

1 and 4 show their advantages in the cases of pf and pd, respectively. However,

combining these two curves enables final determination the CNN architecture

with the biggest difference value, which best balances the general performance

and the time complexity. According to the above analysis and evaluation, this

is the CNN of Architecture 2. Meanwhile, from the performance comparison

between IEEE 802.11g protocol with 2 and 4 pilots, one can conclude that, with

certain limits, the SCD plane with more pilot peaks can contribute a better

sensing capability since it will have more image feature for the CNN classifier to

capture and be easier to distinguish itself from AWGN transmission environment.

In Figure 4.9, the detection results for the Low-R/High-R/XHigh-R scheme

and the conventional cyclostationary feature detection (CFD) [16] under non-

fading, Rayleigh fading, and multi-path fading channels with AWGN are subse-

quently compared. pf of CFD is 0.01. As shown, in the perfect self-interference

suppression condition or half-duplex mode, the proposed method shows superior

capability in PU sensing. Furthermore, the High-R and XHigh-R schemes provide

better sensing performances than the Low-R scheme. However, for High-R and
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Figure 4.8: Performance vs. time complexity ratio for five CNN architecture

XHigh-R schemes, with two and eight input channels, their time complexity of

CNN Architecture 2 increase to 7.59×105 and 3.65×106. As shown in Figure 4.10,

when comparing the raised pd versus the costing computing complexity values,

such improvements are not sufficient enough, especially the one from XHigh-R

formation. Even though for the sensing task in the FD mode, the improvement is

expected to be higher; to balance the sensing performance and costing computing

power, the testing will be conducted only between the High-R and Low-R input

formations.

The time complexity comparison between the proposed CNN classification

and conventional CFD is exhibited in Table 4.3. When considering the com-

putation situation, the proposed method with such a deep artificial intelligent

neural network indeed requires higher computing power. However, as mentioned

earlier, only applying 10 OFDM symbols to calculate the SCD input plane helps

sufficiently reduce the observation time compared to the conventional method, in

order to obtain a satisfactory performance. When sufficient OFDM symbols are

provided for these methods, their time complexity will increase by a large margin.

4.5.2.2 Pilot Structure Evaluation for SU Signal Selection

Since the SU is able to design its signal formation by itself to facilitate SS and

own transmission, it can consult the efficiency proved IEEE 802.11g protocol. The
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Figure 4.9: Performance comparison between three input formations and CFD

under various SNR of transmission environment where, still, the SU is always silent

or a perfect self-interference suppression is in place.
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Figure 4.10: pd vs. computing complexity comparisons for non-fading transmis-

sion at SNR of −20 dB among three input resolutions.

Table 4.3: Time complexity comparison with silent SU

Proposed scheme CFD

Time complexity
4.25× 105 Low-R

6.16× 104

7.59× 105 High-R
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investigation is based on the pilot induced cyclostationarity; therefore, only the

number and location of the pilot need to be designed. Let us focus on the number

first. Three pilot number is proposed including two (Design 1), four (Design 2),

and six (Design 3). This research considers these three plans are suitable, since

too few or too many will drag on the frequency band utilization and equalization.

However, in order to distinguish Design 2 with the PU signal, their specific pilot

arrangements will be different from each other. Firstly, to confirm that the SU can

be distinguished from both the PU and AWGN, the t-SNE technique [83] is used

to exhibit the clustering situation of different SU signal designs. Figure 4.10(a)

shows the feature clustering maps for clean SU signals of a certain design, IEEE

802.11a protocol, and the AWGN. Figure 4.10(b) subsequently shows their re-

extraction feature after being plugged into the CNNs. The input image formation

is in Low-R and the CNN of Architecture 2 is applied. Notice, the SU signals are

assumed to be synchronized with the PU signals. As stated in Chapter 4.3, one

can learn that the relative location of the pilot subcarriers decide the cross-term

peak coordinates on the SCD plane. If the synchronization is assumed between

the SU and PU signals, then the relative locations of their pilot subcarriers are

fixed, so are the cross-term peaks. At this point, the training database can

be established accordingly, and be utilized to train the classifier. However, if

the relative location is changed due to the random arrangement of the pilot

subcarriers, the training database should be modified, too.

As it shown, the SCD features of the designed signals with two and six pilots

are projected into a different feature space compared to IEEE 802.11g protocol,

which is beneficial to the spectrum sensing. After the CNN feature re-extraction,

the signals can again be expressly separated from the AWGN, which will benefit

the SUs own transmission. However, both results suggest that a four-pilot struc-

ture is not compatible with the SU signal as its feature space is intertwined with

IEEE 802.11g protocol. Even though the two-dimensional t-SNE mapping is a

narrow feature space and the CNN training process can be further improved, this

confusion cannot be ignored.

Then quantified test should conduct for more valuable reference. Firstly,

the misclassification probability of misclassifying SU into PU and AWGN are

provided, i.e., whether the SU with the designed signal will successfully execute
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Figure 4.11: t-SNE feature mapping of SU signal designs and AWGN in Low-R

formation.

self-transmission and PU-detection. Figure 4.10 shows the mean and variance of

the misclassification probability of misclassifying SU into PU and AWGN. Here,

the training data of the clean PU signal, clean SU signal, and pure AWGN are

utilized as training data to distinguish the SU signal from the AWGN and the

PU signal. Subsequently, the SU signals under different SNRs become the testing

data to test how far the designed SU signal can help the CNNs with the distinction

and self-transmission. Notice that, the adversarial training scheme is not applied

in this section. The SU pilot design determination is, in reality, a testing setup
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Figure 4.12: Mean and variance values of misclassification for each considered

pilot number in Low-R input formation.

before the final performance evaluation for the FD mode; therefore, to determine

the most suitable design, the adaptation competence of the pilot designs are

explored deeply. If the designed SU signal is accurately adapted without the help

of the adversarial training, this will result in an even better performance during

the final testing. Different design of pilot positions are tested, which gives the

mean and variance values shown in Figure 4.11. The input image formations are

in Low-R and the CNN of Architecture 2 is applied.

As shown in Figure 4.12, SU different pilot number will be more easily to

be distinguished from PU. Design is firstly dropped. Design 1 is more easily

distinguished from the AWGN than Design 3. However, when the transmission

condition is worse than the SNR of−5 dB, pfs of the SU self-transmission becomes

unacceptably high. Such results are caused by the fact the adversarial training is

not applied and only the clean PU/SU/AWGN data is plugged into the CNN for

training. Even though the CNN is a powerful tool for image processing and is able

to withstand image shifting and distortion, it cannot classify a highly polluted

AWGN signal into the right class. This result also shows the importance of the

proposed training scheme and limitations of simple applications of the CNN.

Therefore, the high misclassification probability of Design 3 can be reduced using
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adversarial training. The value of variances and means shows that the actual pilot

position will not affect the sensing result as the pilot number do. Fortunately,

Design 1 is the most promising design, and the limited position can allow us

provide an optimal complete design plan (p = {±13}).
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Figure 4.13: Mean and variance values of misclassification for each considered

pilot number in Low-R input formation.

When considering the FD mode, the design should ensure the PU interfered

by the SU (H11) is able to be adequately identified from the two components of

Class C0: the AWGN (H00) and the SU signal (H01). Therefore, these three data

kinds, i.e., received data of PU interfered by SU, SU, and AWGN, are used as the

three training databases. Again, the adversarial training is still not applied here.

Subsequently, the PU signal interfered by the designed SU signal and AWGN are

regarded as the testing data. Here, one should focus on whether the designed SU

signal is able to improve the sensing of the PU signal; therefore, the transmission

environment is set to prioritize this situation. With or without AWGN, for the

PU signal interfered by or mixed with the designed SU signal of the same power,

i.e., the INR remains at a relatively high value of 0dB for the training and testing

data collection at this step. The SNRs are again changed to analyze how far

the designed SU can help the CNNs with the distinction and execution of the

PU-detection. Figure 4.13 shows the misclassification probability concerning SU
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or AWGN. The input image formation is in Low-R and the CNN of Architecture

2 is applied.

Consistent with Figure 4.12 results, Design 1 shows the most superior distin-

guishability, in the perfect channel and with an SNR of 0dB; hence, Design 1 is

the decided plan of the SU design. It is noteworthy that for all proposed pilot

numbers, the mean value of the misclassification with regard to the AWGN at

an SNR of −5dB appears to be too high. Even though the adversarial training

scheme can fix such a high misclassification probability, when considering that

the many pilot peaks in the SCD plane are clearly shown with a Low-R input

formation, a high-resolution condition should be tested.

Figure 4.14 shows the misclassification probability with regard to SU and

AWGN category in High-R input formation. The conditions of the training and

testing data are similar to those in Figure 4.13.
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Figure 4.14: Mean and variance values of misclassification for each considered

pilot number in High-R input formation.

As shown, the previous result is again proven, in that a High-R can contribute

significantly to the increase of the classification/sensing performance. When pro-

cessing the SCD feature plane with more pilot-induced peaks, such as a six-pilot

built-in OFDM signal for powerful channel estimation ability, the High-R is sub-

sequently recommended.
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4.5.2.3 Spectrum Sensing in FD Mode

Figure 4.15 gives comparisons between the performance of the proposed method

and the cyclic prefix (CP)-based detection, which utilizes cyclostationarity and

conventional energy detection [75][72]. Both the pfs of CFD and energy detection

are 0.01, and INR is 20dB while the Rayleigh or multipath fading effect is used

for the PU signal. Except for when χ2 = 0, all the other simulation conditions

are considered for testing the performance under H10 (pf ) and H10 (pd), which is

the focusing point for the full-duplex mode. The complete adversarial training is

applied here, which means that the training data is prepared and collected ex-

actly according to Table 4.1. Although the detection performance decreases with

the increase in χ2, the proposed method exhibits an outstanding advantage over

traditional methods. Even though the sensing accuracies decrease when χ2 value

becomes bigger, the proposed method is still able to contribute a better perfor-

mance. Notice here, as stated in Table 4.1, the training data component does not

contain a χ2 = 0.3 data; therefore, the performance drops greatly comparing to

others. However, thanks to the anti-distortion ability of CNN, the performance

can still be satisfied.

Figure 4.15: Performance comparison between the proposed Low-R input forma-

tion and CFD, energy detection under various SNR of transmission environment.

In order to test the sensing limitation of the proposed scheme, training strate-

gies of training database under various conditions are considered, as shown in

72



4.5 Simulation and Results

Table 4.4. Databases A, B, C, D and E contains several components of data, for

example, Database E contains Subcomponent 1 from H00, Subcomponents 1 and

2 from H01, Subcomponents 1-2 from H10 and Subcomponents 1-3 from H11. The

sensing results are shown in Figure 4.16. For the training database containing

data with worse condition, the pd and pf values both rise. In another word, ad-

vantage and disadvantage both come along with new harsh training strategies,

so it is not easily and precisely decided which one can present the maximum

achievable performance.

Table 4.4: Training databases

Database Class Component
Subcomponent

PU SU (χ2) AWGN (in dB)

A B C D E C0

1 (H00) 1 × × ©

2 (H01)
1 × 0.1 INR 10

2 × 0.2 INR 20

A
B

C
D

E

C1

1 (H10)

1 © × ×
2 © × SNR -10

3 © × SNR -15

4 © × SNR -20

5 © × SNR -25

6 © × SNR -30

A
B

C

D

E

2 (H11)

1 © © ×
2 © 0.1 SNR -5

3 © 0.1 SNR -10

4 © 0.1 SNR -15

5 © 0.2 SNR -15

6 © 0.2 SNR -20

7 © 0.3 SNR -20

8 © 0.3 SNR -25

9 © 0.3 SNR -30

The time complexity comparison between the proposed CNN classification and
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Figure 4.16: Performance comparison between the proposed Low-R input forma-

tion and CFD, energy detection under various SNR of transmission environment.

the ED as well as the CP-based detection for the FD mode is exhibited in Table

4.5. The unsatisfactory large computation cost is still present. However, the

proposed scheme with the adversarial training may continue to further increase

pd; a surprisingly good detection performance may be attained by adding deeper

polluted PU signal data samples to the training database. Such an excellent and

robust sensing capability should be weighed greater against the time complexity

for further development.

Table 4.5: Time complexity comparison with busy SU

Proposed scheme
Energy

detection

CP based

detection

Time 4.25× 105 Low-R
1.60× 103 4.50× 104

complexity 7.59× 105 High-R

In Figure 4.17, the comparison between the performance of High-R and Low-R

are shown. The INR is 20dB and the Rayleigh or multipath fading is applied for

the PU signal. The proposed adversarial training is again applied according to

Table 4.1. A High-R can provide a much better sensing performance than a Low-

R. A pd of χ2 = 0.2 with High-R is even better than a perfect self-interference

74



4.5 Simulation and Results

implemented in Low-R. Furthermore, as the χ2 values increase, the decreasing

performance rate of the High-R scheme is not as fast as that of the Low-R scheme.

Therefore, when a superior sensing performance is required and large computing

power can be disregarded, a High-R is highly recommended.

Then, let us focus on the channel situation of the PU transmission with a

multi-path fading effect. The collected training data is difficult to truly simulate

the actual transmission, since only numerable channel tap numbers can be set up

to build the training database. After a satisfactory fitting is reached, even though

the SCD feature is sensitive to the frequency selective fading, the immunity of

image distortion and shifting of CNN as well as the excellent competence of the

proposed adversarial training can help with executing the spectrum sensing and

reach a high pd value. However, the fact is that the condition of the multipath

is highly dependent on the transmission environment and hard to predict. The

simulation training data cannot be transferred to the actual situation testing. In

this case, a mentioned two-step sensing scheme can be used; then, the multi-path

fading condition will be learned by the classifier and utilized to realize the final

FD sensing [63].
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Figure 4.17: Performance comparison between Low-R and High-R input forma-

tion under various SNR of transmission environment.
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4.6 Chapter Summary

This research suggests a novel SS method when the SU is equipped with FD

module. The machine learning algorithm is adopted here to assist in raising the

detection performance, by converting the signal recognition into classification.

The prior information about the PU signal, the supervised learning is conducted

with two steps: data collecting of extracting cyclostationarity plane induced by

pilot structure; data processing of modifying and localizing the CNN and its

corresponding adversarial training. Different input formation, as well as SU signal

design, are tested to decide the most suitable set for this research. The final

simulation results prove the superiority of the proposed method.

76



Chapter 5

Ensemble Learning Based

Cooperative Spectrum Sensing

An ensemble learning (EL) framework is proposed, in this chapter, to overcome

the difficulty of the OFDM signal based cooperative spectrum sensing (CSS). A

local spectrum sensing scheme is achieved by considering each secondary user as

a base learner, where the convolution neural networks play a role of classifier,

as it does in image recognition. And a feature termed cyclic spectral correlation

is used as network input. For the global decision, fusion centers learn the SU

output that is obtained from the probability predictions of the PU status. This

proposal shows superiority in the detection probability or false alarm probability,

compared with conventional CSS methods [84].

This chapter contains following sections. Section 5.1 provides an introduction

of the background and the proposed scheme. Section 5.2 explains the system

model and the implementation framework of the proposed method. Section 5.3

presents the specific implementation scheme for both of the local sensing and

global decision method. In Section 5.4, the local sensing performances given by

the different CNN architectures is analyzed and balanced the limited computing

capability at each cooperative user. Meanwhile the integrate detection perfor-

mances of each proposed fusion center plans are compared with the conventional

methods. Section 5.5 summarizes this chapter.
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5.1 Introductions

As stated before, the spectrum sensing is able to maintain bands entitlement

of the licensed (primary) user, meanwhile helps the unlicensed (secondary) user

search for opportunities to access the interested bands. However, the shadowing

[38] and multi-path fading [85] definitely impact on the detection performance

of an non-cooperative spectrum sensing scheme. Cooperative spectrum sensing

scheme, in contrast, locates multiple spatial distributed SUs [86]. Therefore, it

can get rid of the hidden terminal problem. For final decision of PU’s activity

status, a typical CSS scheme will merge a series of local detection results which

can be obtained by some of the non-CSS efficient approaches, such as energy

detection [87] and cyclostationary feature detection [88]. Till date, there are two

main global decision schemes: hard fusion and soft fusion. The former allow its

SU makes one-bit decision of 0/1 (inactive/active PU) [89]. The latter centralized

processes those estimated parameters collected from SUs [90].

It is far from new that machine learning has become quite popular in CSS.

However, the unsatisfactory capability of learner or system structure [77, 89] will

definitely degrade the sensing performance that is provided by CSS. Therefore,

a more stereoscopic and cyber structure for CSS should be considered. It must

require an efficient processor as each SU and a sound network to connect and

bound them to realize a spectrum sensing system with high performance. It

comes naturally that ensemble learning can be relied on as a modification of

machine learning to compensate the mentioned defectiveness. In [91], a strong

learner is formed by an integration of weak learners by certain ensemble strategy.

On one hand, it is suitable to consider the SUs as weak learners when used to

predict the probability of PU activity status. On the other hand, the convolution

neural network, constrained by simple structure, can be adopted locally due to

its fine image processing ability. In [92], bagging-strategy formed databases were

used for the CNN training. [55] input the cyclostationary feature plane induced

by pilots tones to aid learning process. A particular ensemble strategy can achieve

the FC, e.g. another learner of the full connected neural network can make the

global decision from EL [93]. Both a hard fusion and semi-soft fusion can be
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performed by inputting the classification prediction of PU status given by softmax

regression.

5.2 System Model and Framework

5.2.1 System Fundament of CSS

An OFDM signal based CSS scheme is proposed by this article. We assume that

a spectrum channel which belonged to one PU has been temporarily allocated to

a cooperative system. The PU alternates between active and inactive states.

The centralized CSS network contains M SUs, where i = 1, ...,M . For each

SU, its status can be considered as an effective binary hypothesis, which is

H0 : xi = n, Inactive PU

H1 : xi = p+ n, Active PU
(5.1)

Here, n represents the sampling index, p denotes the transmitted signal from

PU. x denotes the received signal at one SU end. And n denotes the additive white

Gaussian noise. After the local sensing decision of each SU is made, the FC will

use those decisions to make the global decision according to certain combination

rule. In Figure 5.1, the system model is given.

PU

Cooperative SU

Fusion Center

Cooperative SU

Cooperative SU

Cooperative SU

Figure 5.1: Cooperative spectrum sensing system model.
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5.2.2 Framework of proposed CSS scheme

5.2.2.1 Ensemble Learning

EL combines the outputs of a collection of base/weak learners to improve a pre-

diction. Specifically, EL can be built by altering algorithms of a set of learners

or altering learners of the same algorithm. Either way, overlapped datasets or

independent databases will be learned respectively. Although the prediction of

each single learner is biased, those biased prediction can be calibrated by an

”ensemble” strategy.

5.2.2.2 Establishment of proposed CSS scheme

As we mentioned above, the advantage of CR system is that it can integrate

the decision results of each SU, and then calculate the global decision results

according to a certain weight. EL also has a similar mechanism, that is, each

weak learner is combined based on a certain strategy to form a strong learner

to give the final decision. The commonness of the two impels us to implement

EL in CSS. Therefore, the advantages of the former can be translated into the

improvement of the latter in detection performance.

The proposed EL based CSS scheme is depicted in Figure 5.2.

Weak 

Learner
Weak 

Learner

Weak 

Learner
Weak 

Learner

Sub-database

(N Training 

Datasets)

Wholesome General 

Training Database

Stacked Generalization

Middle Classifier

(Fusion Center)

Base Classifier

(cooperative SU)

Base Classifier

(cooperative SU)

Base Classifier

(cooperative SU)

Base Classifier

(cooperative SU)

Sub-database

(N Training 

Datasets)

Sub-database

(N Training 

Datasets)

Sub-database

(N Training 

Datasets)

Bagging

Bagging Bagging

Bagging

Figure 5.2: Cooperative spectrum sensing system model.
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Although the strength of each SU in CSS will be compensated and corrected,

we prefer to choose a relatively good SU in the selection process of weak learners.

Since CNN has been proven to be able to be used by CR systems, we can use

it as a weak learner to improve accuracy. Furthermore, since the base learner

has to classify inactive and active PU before study, apparently the base learner

is acting as a weak/base classifier. Figure 5.2 shows that using sub-databases

independently, the bagging strategy in EL improves the accuracy by training

each weak learner. In this proposal, the training database is built in advance,

and then a fixed predetermined number of datasets is randomly extracted to form

a series of sub-databases for classifier training. In fusion center, hard fusion and

semi-soft fusion schemes are considered. The stacking strategy combines all the

predictions of the other learners to make a final decision.

In this chapter, for the above stacked generalization scheme, a full connected

neural network is used. And the final decision is made by this full connected

neural network as well.

5.3 Scheme of proposed CSS

5.3.1 Local Sensing - Classification to Spectrum Sensing

In the El based CSS, the probability perditions of PU’s statuses which are sent

from each SU learner is required by FC for the global decision. Firstly, to better

understand this scheme, the concept of signal classification should replace the

term–local detection. According to Equation (5.1), H0 and H1 are treated as two

categories to state the PU as: C0: PU is inactive; C1: PU is active. Then, as for

the final classification outputs, on one hand, when performing a hard fusion, the

classification decision of C0 or C1 will be sent to the fusion center including the

information of 0/1; on the other hand, when performing a semi-soft fusion center,

the probability predictions of the classification of C0 or C1 will be reported to the

fusion center, where the probability sum of two classes equals 1.
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5.3.1.1 Data Collection

As we mentioned in Chapter 2, OFDM signals include a preamble, framed data

packages and inserted pilot tones. Therefore, the OFDM signal has a power-

ful anti-multi-path ability. Naturally, for supervised feature extraction machine

learning, PU can provide usable features as input to classifiers.

Generally speaking, if the data on the individual sub-carriers are random, the

spectral correlation is expected to be zero. However, we can rely on the spectral

relationship of built-in pilot tones. When the correlated data is transmitted in

parallel on the subcarriers, signal detection and identification can be achieved

due to the spectral feature contributions to the cyclic signature.

One can realize statistical spectrum analysis by decomposing a signal into

sinusoidal waveforms. The relationship between the cyclic spectral analysis and

the second-order unearthly expression can be established. Assuming that we have

a signal x(t) which is second order periodical. Then the cyclic correlation spectral

periodogram which is a crucial expression to measure its spectral correlation is

given by

SαXT
(f) =

[
XT

(
t, f +

α

2

)
·X∗T

(
t, f − α

2

)]
/T, (5.2)

with frequency f + α/2, f − α/2, where f is coordinates spectral location

(shift center). α is spectral separation (shift amount). Then, we can define the

spectral coherence density as :

SαXT
(f)∆t=

1

∆t

∫ ∆t/2

−∆t/2

1

T
XT

(
t,f+

α

2

)∗
X∗T

(
t, f−α

2

)
dt, (5.3)

where XT is the local spectral representation as:

XT (u, v) =

∫ u+T/2

u−T/2
x(t)∗e−i2vftdt. (5.4)

According to equations above, second-order cyclic spectral correlation feature

can be visualized by plotting the SCD over the bi-frequency plane (with f and

α), which can be considered as expert feature for classification. The problem of

PU detection of OFDM signal is replaced by a task of image classification on

SCD plane.
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5.3.1.2 Base Learner of CNN

In EL based CSS, regarding the selection of the local classifier or PU-detector,

one should be more concerned about the contribution of valuable information

rather than an potent classification capacity.

Similar to conventional image recognition tasks, image preprocessing of SCD

of OFDM signal, is necessary. As a deep forward network, CNN is widely used

in image field. In order to simplify the preprocessing process, we redesigned the

CNN into a variation version. Specifically, individual units only respond to a

local region, where units overlap partially, thus ensuring coverage of the entire

input field.

Supervised learning requires training input database to train the network,

so as to determine network parameters. At the same time, we need a testing

input database to test the network performance. The network input data forms

a feature plane of SCD, which can be expressed as:

xb = [xi,j, ..., xF,A] , i ∈ [i, F ], j ∈ [i, A], b ∈ [i, B], (5.5)

where b denotes the index of dataset in the training/testing database, and F

express the total pixel resolution of SCD feature plane. After convolution and

pooling of SCD features, the output is as:

ol = pool (σ (wv
l · ol−1 + bvl )) , v ∈ [1, cl], l ∈ [1, L− 1] (5.6)

where we assume o0 = xb, L is the layer number of the CNN structure. c denotes

the number of convolutional filters. w denotes the weight in each layer, and b

denotes the bias parameters in each layer. σ is a non-linear function known as the

activation function. A manageable and measurable data range can be mapped to

from the input of network. Then, the final output is expressed as:

yb=wf (f(pool (σ (wv
l ·ol−1+ bvl ))))+ wf , b∈ [i, B], (5.7)

where f denotes a linear function for the concatenation process including wf

and wf . The former denotes the weight parameters and the latter denotes bias

parameters of the full connection layers.
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The softmax regression is, finally, used for the class-predicting layer. The

softmax regression is a kind of activation function that considers the posterior

probability to quantity classification confidence, as

Ψθ(yb) =
eθiy

i∑
K e

θiyk , (5.8)

where yi represents the label predictions of each class i = 1, 2, ..., K, (we have

K = 2 here because only two classes are considered). θ can be optimized in

the gradient descent by minimizing the cost function. Normally, the output of

the entire network will be the classification prediction of C0 and C1, which will

be considered as the hard fusion for all the base learner has already made its

own final decision. However, thanks to the characteristic of the softmax layer,

the local classifier can also export a in-process set of value, i.e. the probability

predictions of C0 and C1, and send to the fusion center. Such local report scheme

of providing a comparatively soft decision can contribute to a better performance.

At the same time, we need to emphasize that we need not excessively pursue

the accuracy of the classifier, but consider the limited computing power of the

equipment in practical application. Therefore, on the premise of guaranteeing

the performance, we should simplify the network structure as much as possible

to improve the realizability of the system.

5.3.2 Global Decision-Stacking to Fusion Center

5.3.2.1 Hard Fusion center

For each secondary user, it detects the status of the interested channel indepen-

dently, which means the received signal is different from each other. Meanwhile,

considering the utilization of the bagging strategy to train the local classifier,

this leads different CNN model for each classifier. Each local sensor of the CNN

performs a complete sensing process using the unique received data and classifier

model, and makes its own decision of either C0 or C1. One bit of information,

i.e. 0 or 1 is fed back to the FC, as the same as the conventional hard fusion.

Unlike the powerful process capability required for the image data in local

sensing, the middle classifier requires to process a small number of datasets. The
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full connected neural network is applied as the middle classifier to process the

report data, due to the comparatively simple formation of the local report. Even

though the reporting scheme is rigid, the final decision made by the center still

can be expected to be satisfying.

5.3.2.2 Semi-soft Fusion center

The same as the hard fusion scheme, the model of the base classifier and the

received data are still different and a set of independent local decisions can still

be made. However in this time, since the classification results can be exhibited as

the probability predictions for C0 and C1, FC are fed by outputs of the SU local

sensing information and makes a semi-soft global decision. The term ”semi-” is

used here because each SU reports mild version of the output that the classifier

should give. It is neither a hard ”0 or 1” classification decision nor some estimated

parameters as in common soft fusion.

As mentioned above, a machine learning is required to achieve the stacking

generalization strategy and integrate the local outputs.

To meet this requirement, a full connected neural network is adopted once

more as a middle classifier which gives the C0 or C1 classification decision. Notice

that, since each SU only reports two probability values to the FC, only a small

number of collected data is needed to be processed through the middle classifier

unlike the analysis of the SCD plane. Therefore, a fully connected network can

achieve high performance while avoiding unrealistic computational requirements

to the FC. The stacking strategy combining with the CNN is shown in Figure

5.3.

5.4 Result Evaluations

5.4.1 Simulation and Training Setup

5.4.1.1 Experimental Parameters

In this study, we assume that there is a single PU that transmits OFDM signals

according to the 802.11g protocol with 16QAM. At the same time, there are
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Figure 5.3: The stacking generalization.

multiple SUs with fixed positions, which perceive the state of PU in AWGN

environment and send the results to FC without error, thus forming a CSS system.

In order to investigate the relationship between SU number and performance, we

tried several different SU number configurations.

The hardware environment is with a 3.20 GHz Intel Core i7-6900K CPU and

Nvidia GeForce GTX 1080 GPU. Simulations software is MATLAB R2016b on a

64-bit Windows operating system. Relu activation function and average pooling

layers are used for CNN structure, which contains several dense full connection

layers with Relu activation function. The softmax layer is built in the end to

provide C0 and C1 probability predictions. The batch size is 100, and the learn-

ing rate is 0.01 In order to make the results more valuable, we investigated the

performance of several different structures of SU classifiers. Details are given

later.

5.4.1.2 Training Process

Notice, only one OFDM symbol is used for the SCD-plane, which could help

each SU to save sensing time and make near real-time decision. It should be

emphasized that the input SCD feature is only a 64 × 64 pixel image, so the

computational load of the system is very small. Under low such resolution, the

deep CNN for high efficient image processing instead of simple full connected

network, is indispensable to obtain and analyze the hyper-connection between

each pixel.
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Then we need to prepare two wholesome general training databases who share

the same structure. The first is for training SU classifiers, and the second is for

middle training the FC classifier.

In both wholesome general training databases, the C0 and C1 classes both

have 100,000 mentioned input datasets for their own learning.

However, in order to find a balance between accuracy and computational

complexity, all cooperative weights are equal, and all training data are derived

from random extraction of the general training database. The extracted sub-

databases have the same size of: 10,000 for C0 and 10,000 for C1. Notice that,

the training database for C1 is not pure but polluted by Gaussian noise (SNR =

−10dB) to improve the robustness of classification.

The training flow is as follows:

1. to decide the parameters of CNN structure, extract sub-databases from

the 1st general training database and use individual sub-database to train

corresponding SU classifier;

2. testify the classification performance of trained base learners using the 2nd

general training database;

3. collect training results and train FC to determine the structure;

4. The entire architecture of proposed method is fully decided. Perform overall

performance evaluation using test databases.

After observation, each SU feedback its sensing prediction to the FC and the

input of the base classifier only transforms from only one OFDM modulation

signal. Regarding the report size, for the hard fusion scheme, only one bit of

information is sent to the center. Assume CSS includes M SUs, the middle data

has M dimensions; for the semi-soft fusion scheme, information of the probability

prediction of the classification is sent to the center. Assume CSS includes M SUs,

the middle data has M × 2 dimensions. These two types of data are used to then

train the middle classifier.

In order to better evaluate the system performance, 5,000 datasets were tested

under each SNR.
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5.4.2 Results Analysis

We tested three CNN architectures of local base classifiers to gain insight into

the relationship between local sensing and the global decision. The parameters

are shown in Table 5.1.

Table 5.1: three CNN architectures

Architecture
Time

Complexity
Structure

1 1.27× 106

1 convolution layer (3*3)

1 pooling layer

1 full connection layer

2 1.74× 106

1 convolution layer (5*5)

1 pooling layer

1 full connection layer

3 4.29× 106

2 convolution layer

2 pooling layer

1 full connection layer

Notice that, the local sensing performance curves in Figure 5.4 are obtained

when each SU classifier gives a final hard classification decision of 0 or 1 when

the entire classification process is completed. As is shown in Figure 5.4, with

the increasing complexity of structure, the training fitting degree of classifier

increases, resulting in the ascent of the local pd and the descent of the local pf .

Firstly, let us on the hard fusion center. As is shown in Figure 5.5, in the

same trend with the local sensing result, architecture 3 shows the highest pd since

it combines base CNN classifiers. However, a trade-off has to be made to balance

the local computation complexity with the sensing performance. Moreover, all

three curves drop to low pd no matter how they behave in the local sensing.

It means that the ability of stacking strategies to compensate for performance

deficiencies in underlying classifiers is limited.

Figure 5.6 shows performance variation curves of pd and pf . To better evaluate

proposed method, a comparison with FC based cyclostationary feature detection
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Figure 5.4: Local sensing performance comparison of pd and pf . The SUs number

M = 4.
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Figure 5.5: Global sensing performance comparison of pd and pf variation curve

for different base classifier architectures in hard fusion scheme. The SUs number

M is 4.

and FC based energy detection are exhibited where pf = 0.001. In order to prove

the superiority and promise of this research, the architecture with the poorest

performance, Architecture 1 is used for the comparison.

If we pay attention to the pd curves, we can find that the performance of

the energy detection method cannot meet the detection requirements under low

signal-to-noise ratio. The performance of cyclostationary feature detection is
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Figure 5.6: General performance comparison of pd and pf variation curve with

the conventional sensing methods in hard fusion scheme. The SUs number M is 4.

much better. This is due to the robustness of the efficient cyclic spectral feature.

Therefore, this paper also makes use of the cyclic spectral feature. However,

the performance of the proposed method is better than that of the conventional

cyclostationary feature method, which is attributed to the ensemble learning

structure and superior strategies. For the pf curves, although the false alarm of

the conventional methods are very low, the proposed method can further reduce

the false alarm probability to0.00005 for the hard FC. This excellent false alarm

performance is attributed to the stacking strategy in the FC, where adequate

training samples ensure the fitting performance of the system. Although the

ROC curves are commonly used to evaluate the system performance in spectrum

sensing studies, pfs in the proposed scheme can only be provided by the training

process and cannot be set randomly as one may be needed. It means once the

training database and execution are determined, one can only expect pf naturally

given by the fitting training result, i.e., the misclassification proportion. The

network and the training database can be further refined to get lower pf value,

however since the nonlinear mapping is included in the CNN for each training,

pf is hard to calculate in a common method.

Finally, the performance comparison of the proposed method under different

SU numbers is shown in Figure 5.7. Apparently, when the number of cooperative

SUs increases from 4 to 32, the pd continues to rise. This is because the increase
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in the number of SUs enhances the dimension of the input data of the middle

classifier, thus carrying more signal features and allows a better learning. How-

ever, when the number of SUs exceeds 32, the performance basically does not

change. This is because the improvement of data dimension cannot provide more

signal features. Therefore, when CSS contains a large number of SUs, splitting

SUs into groups may further improve performance.
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Figure 5.7: Performance comparison of pd variation curve for different numbers

of SUs where Ms equal 4, 8, 16, 32, 64 and 128, respectively.

Then, turn our eyes to the semi-soft fusion center. As is shown in Figure 5.8,

still, architecture 3 shows the highest pd since it combines base CNN classifiers.

However, a trade-off has to be made to balance the local computation complexity

with the sensing performance. Moreover, all three curves drop to low pd no

matter how they behave in the local sensing. It means that the ability of stacking

strategies to compensate for performance deficiencies in underlying classifiers is

limited.

Figure 5.9 shows performance variation curves of pd and pf . To better evaluate

proposed method, a comparison with FC based cyclostationary feature detection

and FC based energy detection are exhibited where pf = 0.001. In addition,

to reveal the advantage of the semi-soft strategy, the evaluation also compares

it with a hard FC of the same stacking classifier structure, where the reported

results from SUs are simply 0 or 1.
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Figure 5.8: Global sensing performance comparison of pd and pf variation curve

for different base classifier architectures in semi-soft fusion scheme. The SUs num-

ber M is 4.

-30 -25 -20 -15 -10 -5 0
SNR in dB

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

EL based Hard FC
Proposed EL based
Semi-soft FC
Energy Detection with
Soft FC
Cyclostationary Feature 
Detection with Soft FC

-5 0
0

1

2 10-3

Pd

Pf

Figure 5.9: General performance comparison of pd and pf variation curve with

the conventional sensing methods in semi-soft fusion scheme. The SUs number M

is 4.

As the hard fusion scheme, if we pay attention to the pd curves, we can find

that the performance of energy detection method cannot meet the detection re-

quirements under low signal-to-noise ratio. The performance of cyclostationary

feature detection is much better. This is due to the robustness of the efficient

cyclic spectral feature. Therefore, this paper also makes use of the cyclic spectral

92



5.4 Result Evaluations

feature. However, the performance of the proposed method is better than that

of the conventional cyclostationary feature method, which is attributed to the

ensemble learning structure and superior strategies. In addition, our proposed

CSS with semi-soft FC can provide the best detection performance with the ad-

ditional help of the mild decision-making scheme. Besides of the generally better

performance, the downtrend is more moderate against the hard FC methods, and

it ensures a higher pd at low SNR values where specifically the proposed method

is 25% better at SNR of −20 dB.

For the pf curves, although the false alarm of the conventional methods are

very low, the proposed method can further reduce the false alarm probability

to0.00005 for the hard FC and 0.000075 for the semi-soft FC from the mid-

dle training results. This excellent false alarm performance is attributed to the

stacking strategy in the FC, where adequate training samples ensure the fitting

performance of the system.

Then this research considers more complicated condition for PU transmission:

the training sample are collected not only under AWGN but also Rayleigh effect,

while the testing data is in the same condition. Figure 5.10 show that even

the performances of the conventional sensing methods is high degraded under

the Rayleigh effect, the proposed method can still provide a satisfactory sensing

ability owing to the adversarial training.

Finally, the performance comparison of the proposed method under different

SU numbers is shown in Figure 5.11. Apparently, when the number of cooper-

ative SUs increases from 4 to 32, the pd continues to rise. This is because the

increase in the number of SUs enhances the dimension of the input data of the

middle classifier, thus carrying more signal features and allows a better learning.

However, when the number of SUs exceeds 32, the performance basically does not

change. This is because the improvement of data dimension cannot provide more

signal features. Therefore, when CSS contains a large number of SUs, splitting

SUs into groups may further improve performance.

93



5. ENSEMBLE LEARNING BASED COOPERATIVE SPECTRUM
SENSING

-30 -25 -20 -15 -10 -5 0
SNR in dB

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

EL based Hard FC
Proposed EL based
Semi-soft FC
Energy Detection with
Soft FC
Cyclostationary Feature 
Detection with Soft FC

-5 0
0

1

2 10-3

Pd

Pf

Figure 5.10: General performance comparison of pd and pf variation curve with

the conventional sensing methods in semi-soft fusion scheme. The SUs number M

is 4. The PU transmission is under Rayleigh effect.
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Figure 5.11: Performance comparison of pd variation curve for different numbers

of SUs where Ms equal 4, 8, 16, 32, 64 and 128, respectively.

5.5 Chapter Summary

In this study, a novel ensemble learning based CSS method is proposed. Both

hard and semi-soft FCs are considered. The EL model is used for cooperative

SU and FC respectively, and the final decision comes from the integration result.

The local sensing scheme is transformed into a signal classification based on CNN
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deep network and cyclic spectral correlation feature. The bagging strategy is also

adopted to build the training database. The semi-soft FC integrates the reported

predictions to make the global decision. The results show that the proposed

method has obvious advantages over traditional methods in terms of pd and pf .

In addition, increasing the number and complexity of SU can further improve the

detection performance of the proposed method.
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Chapter 6

Conclusion

This chapter summarizes the research work on applying the machine learning into

the spectrum sensing system. The contributions and discussions of two proposed

schemes, i.e., ”full-duplex spectrum sensing using convolutional neural network”

and ”ensemble learning based cooperative spectrum sensing” is provided first.

Then the directions for related future work is presented at the end.

6.1 Contribution and Discussion

The cognitive radio is inspired by cognition cycle to minimize the burden in terms

of the spectrum efficiency. It can observe and understand its operating environ-

ment, make an in-place decision based on observations and experiences, and per-

form a reasonable adjustment. The CR helps secondary user recycle and reuse the

vacant spectrum channels, while the primary user possesses entitlement of spec-

trum channels. The spectrum sensing operating from the PHY layer performs an

inspection to confirm whether some or all of the frequency band resource is free.

According to the sensed results, the secondary user adjusts its radio parameters

to be able to access these free spectrum bands to complete its own transmission.

In this dissertation, the basic idea is to invite the machine learning to assist the

spectrum sensing, and built the intelligent sensing scheme. The reasons are: on

one hand, there are some problems of uncertainty of the signal, noise and chan-

nel, external or inner interference, spectrum mobility, etc. resulting in problems

97



6. CONCLUSION

of requiring for high sensibility for signal recognition, hidden terminal, inaccu-

rate estimation of parameters, high false alarm, difficulty of spectrum hand-off,

etc.; on the other hand, there is a similarity between the artificial intelligence

with cognitive radio since both of them obtain knowledge and comprehension by

perception, learning, reasoning to problem-solving automatically.

Firstly, this research suggests a novel SS method when the SU is equipped with

FD module. A machine learning algorithm is adopted here to assist in raising the

detection performance, by converting the signal recognition into classification.

The prior information about the PU signal, the supervised learning is conducted

with two steps: data collecting of extracting cyclostationarity plane induced by

pilot structure; data processing of modifying and localizing the CNN and its

corresponding adversarial training. Different input formation, as well as SU signal

design, are tested to decide the most suitable set for this research. The final

simulation results prove the superiority of the proposed method.

Secondly, an ensemble learning based CSS method is proposed. Each SU per-

form its own local sensing and gives elementary sensing results using a simplified

CNN network for its ability in image processing. A full connected neural network

performs the combination task and acting as the FC to integrate reports from all

the secondary users and upgrade performance by strong integrate capability. The

bagging strategy is adopted for the establishment of the local training database to

generalize each classifier model of the weak learner. The semi-soft FC integrates

the reported predictions to make the global decision. The results show that the

proposed method has obvious advantages over traditional methods in terms of

pd and pf . In addition, increasing the number and complexity of SU can further

improve the detection performance of the proposed method.

6.2 Function Extensions

With the continuous improvement of computer processing power and the latest

developments in the field of cloud storage, the science fiction concept of artifi-

cial intelligence is becoming an attractive reality. Many industries are currently

exploring how to make better use of artificial intelligence, and the wireless com-

munications industry is no exception. Artificial intelligence is often compared to
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the ”brain”, while communication carries the role of ”brain stem”, like the brain

stem controls the movement of people’s breathing, heartbeat, etc. Communica-

tion also supports the transmission of data and the normality of various types

of artificial intelligence hardware. Operation. At the same time, communication

itself is one of the industries that have been transformed by artificial intelligence.

Recent survives in the wireless communications industry, there is a strong

desire to start implementing artificial intelligence solutions, but the industry has

not reached a consensus on the best path to apply artificial intelligence). From

network management to predictive maintenance, there are some fledgling AI ap-

plication cases, but one has to admit that the wireless communications indus-

try faces many challenges in adopting AI. It offers unparalleled opportunities in

two broad categories: network management and operations, and customer focus.

Clearly, network management actually has many possible requirements that can

benefit from artificial intelligence solutions to cope with the rapidly expanding

number of connected devices and users. Even the customer-oriented commu-

nications service providers terminal services can benefit greatly from artificial

intelligence technology, as customers will increasingly need personalized services.

The form of the communication network will be decentralized, no longer have

complex levels. And it can modify, self-heal, and process large amounts of data

in parallel. Technological innovations are bound to drive the transformation of

wireless communications. For a long time in the past, communication operators

have continued a relatively simple business model. After the completion of the

artificial intelligence transformation, operators are likely to turn to provide data

services for all walks of life. After all, communication operators are sitting in the

gold mine of big data. The massive sensors in the Internet of Things era are the

source of massive data. Using user data to improve services, using network data

to improve operation and maintenance, and using data to support innovation will

be The trend of the times. Moreover, in the 5G network, the huge investment

in infrastructure construction and the decline in network revenue are suddenly

contradictory. In other words, to solve such contradictions, artificial intelligence

and data services are inevitable choices. Dealing with large-scale data is precisely

inseparable from artificial intelligence.
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