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Chapter 1

Introduction

1.1 Research Background

Wearable devices are increasingly been adopted for the ambulatory monitor-
ing of human vital signs [6]. Currently and widely available wearable tech-
nologies platforms provide the capabilities of collecting and storing health
and fitness related data, empowering patients with the capability of doing
self assessments about their health condition [7].

With the proliferation of cardiovascular diseases within the global aging
population, more preventive measures must be enforced in order to reduce
the number of fatalities due to heart disease. One key application within
this domain is the monitoring of Electrocardiogram (ECG) signals for
the early detection and treatment of a broad range of cardiac diseases [6].

Wearables devices destined for the task of ECG monitoring offer an unique
opportunity by incorporating anomaly detection capabilities on the moni-
tored signals. This, however, can be a challenge due to the fact that they
are usually resources limited devices thus difficulting the implementation of

very complex detection techniques.



The algorithm for Data Compression with Antidictionaries (DCA) was
first introduced by Crochemore et al [5]. It makes use of the set of pat-
terns that never appear on a source data set to effectively predict redundant
symbols.

The feasibility of the DCA for the compression of ECG signals has been
previously studied, and it was also shown that the DCA method can be
used for the detection of irregular heart beat patterns [16]. It has been also
demonstrated that the algorithm can be implemented effectively in relative
small memory footprints, making it an attractive alternative for wearable
and mobile ECG monitoring applications.

The algorithm constructs finite-state probabilistic models with the forbid-
den patterns obtained from the antidictionaries. The presence of expected
patterns within the signals causes the algorithm to output a low and steady
Compression Ratio (CR), while the appearance of forbidden patterns such
as those that occur on arrhythmias causes an abrupt increase on the CR,
thus enabling the DCA algorithm to be suitable for detection tasks.

It has been also shown that by translating the domain of the ECG dis-
tribution into a finite set of small integers it is possible to implement the
detection algorithm with the use of less memory resources while maintaining
an acceptable performance. This was done by the implementation of differ-
entiation and a quantization stages on the signal processing chain that in

effect redefines the signal in a restricted alphabet set [8].

1.2 Research Purpose

In this study, further exploration on the potential of the use of the anti-

dictionary coding algorithm for irregular heartbeats detection on quantized



ECG signals is undertaken.

The main objectives of the research project are listed next:

o The consolidation of a process for the redefinition of the ECG signal
distribution and the evaluation of its effects on the associated proba-

bilistic models used by the algorithm.

o Analysis of the impact in computational resources that Finite State
Machine probabilistic models constructed with the antidictionary cod-
ing scheme can have in resources constrained devices such as mobile

devices.

« Examination of the possibility of extending the capabilities of the de-
tection algorithm from a binary classification problem into a multi-class

classification problem.

1.3 Document organization
Contents are presented in the following order:

o Chapter 2 presents a brief description about the the anatomical struc-
ture of the the heart, the characteristics of the ECG signal and arrhyth-

mia.

e Chapter 3 introduces the core concepts related with the antidictionary
coding algorithm and the constuction of Finite State Probability Mod-

els.

o Chapter 4 describes the processes of differentiation and quantization

for redefining the ECG distribution.



e Chapter 5 describes the set of experimental procedures carried for of-
fline processing of the ECG signals, detailing the process involved in the
construction of the probabilistic models and the corresponding results

for the detection of Premature Ventricular Contractions.

o Chapter 6 describes the set of experimental procedures and correspond-
ing results obtained after porting pre-trained Finite State Chapter

probability models into a mobile platform.

e Chapter 7 explores the statistics on Minimal Forbidden Word patters
distribution for quantized ECG signals, characterizing them according
to their correlation with Normal heartbeats, Premature Ventricular
Contractions and Premature Atrial Contractions in order to establish

the basis for a multi-class arrhythmia classification approach.

e Chapter 8 contains the main conclusions derived from the research

project alongside some considerations for further research endeavours.



Chapter 2

The heart, ECG signals and

Premature Contractions

The heart is the organ responsible of pumping the blood throughout the body.
It is composed of two superior chambers, the atria, and two lower chambers,
the ventricles. Synchronous functioning of the chambers is vital for proper
functioning of the cardiovascular system. During normal operation, the atria
are activated first to fill the ventricles with blood. Later, the ventricles are
activated to pump the blood out of the heart.

The Electrocardiogram (ECG) is a signal that represents the electrical
activity of the heart. Usually measured directly on the body’s surface, the
ECG waveform is mainly composed of five characteristic components denoted
by the letters P, Q, R, S and T. Each component corresponds to a change
in electrical activity in the heart and the corresponding movement of the
cardiac muscle. Sometimes an U component is also present following the T
peak. [17]

Figure 2.1 shows the anatomical structure of the heart and a normal

sinus ECG waveform. The electrical conduction system of the heart is also



highlighted.
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Figure 2.1: The anatomical and electrical structure of the heart (top) and a
normal ECG signal (bottom) with its main peaks and valleys displayed. Green
arrows on the heart’s figure represent the normal flow of electrical impulses, from
the Sinoatrial node down to the Purkinje fibers. The contoured peaks and valleys

in the ECG waveform describe the main structure of a heartbeat.

To achieve the proper sequential functioning of the cardiac muscle, the
cardiac cycle start from the Sinoatrial (SA) node where an electrical impulse
is generated and then conducted through the Atrioventricular (AV) node and
then to the ventricles trough the Bundle of His and the Purkinje fibers.

An arrhythmia is a disturbance of the rate, rhythm or pattern of the

cardiac cycle [22]. Premature Beats are heartbeats that occur earlier in the
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Figure 2.2: Two ECG waveforms showing 4 heartbeats each. In the top one, a
Premature Atrial Contraction occurs in the third heartbeat. On the waveform on
the bottom, a Premature Ventricular Contraction also occurs in the third heart-
beat. The heart regions (ectopic focus) were the irregular pulses are triggered are

also shown.

cardiac cycle due to the presence of ectopic focus, that is, segments of tissue
that spontaneously fire impulses due to some underlying pathology [3].

Two common types of premature beats are Premature Atrial Contractions
(PAC) and Premature Ventricular Contractions (PVC). Figure 2.2 shows the
ECG waveform for those type of arrhythmia and the the hypothetical location
of the ectopic focus in the heart.

Premature Atrial Contractions produce a change in the heart rate and
present an altered P-wave that usually overlaps with the T-wave of the prece-
dent heartbeat. Premature Ventricular Contractions also produce a change

in the heart rate and can be identified by larger QRS complexes [3].



The occurrence of premature contractions can be an important indicator
of the presence of an underlying hearth disease. Continuous ECG monitoring

constitute a vital tool for early identifying such premature beats.
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Chapter 3

Finite State Machines (FSM)
probability models with

antidictionaries

3.1 Overview of Antidictionary Coding The-
ory

For a string " = xyx5...x, of length n defined over a finite alphabet of
integers X, = {0,1,...,m — 1}, the set D(x™) called the dictionary of z"
is considered as the set that contains all substrings of " including the null
string A of length zero. In contrast, the antidictionary A(z") of ™ is defined

as the set of minimal strings that never appear in . An element v =
V1V ... v in A(z™) is called Minimal Forbidden Word(MFW) which must

satisfy the following three conditions:
1. v ¢ D(x™)
2. A one-symbol shorter prefix of v, defined as p(v) = v1vs...v5_1, must

11



be contained in D(z").

3. A one-symbol shorter suffix of v, defined as s(v) = v9v3...v;, must be

also contained in D(z").

Consider a short string w = 2210010 over the alphabet X3 = {0, 1,2}.
The antidictionary A(w) of w is given by the set of all MEWs of w, thus
A(w) = {02,000, 11,12, 101, 20, 222, 0100}

A suffix trie structure T'(w) can be used to obtain A(w) [14]. The string
path defined by the path covered from the root r of the trie to a given node
s, here denoted by V(s), corresponds to a suffix of w. Here, it is important
to differentiate two types of nodes in the trie structure: implicit nodes have
one child node while explicit nodes have at least two child nodes.

Given T'(w), an extended trie 7., (w) is formed by adding new child nodes
to all émplicit nodes on T'(w). To find all elements in A(w) it is sufficient to
consider the strings defined by the newly added nodes on the leaf with the
shortest distance to the root and all internal nodes [14].

Figure 3.1 shows the extended suffix trie T.,(w) for string w. On the
figure, nodes are identified by an integer number j, with the root r being the
node with 7 = 0.

A string V(s) defined by an extended node s in T.,(w) is an MFW if
it satisfies the three conditions mentioned before. In the case of Figure 3.1,

strings V(24) = 0100 and V(34) = 222 are examples of valid MFWs.

12
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Figure 3.1: Extended suffix trie for string w = 2210010. Black edges de-
note the path of the original suffix trie while blue edges signify the added
edges pointing to the extended nodes. Green edges correspond to MF-link
pointers [12].

For the efficient computation of A(w), a special pointer structure named
MF-link is employed. An MF-link points an internal node u in T(w) to a
node v such as the string path of v equals the string path of u plus a single

prefix symbol a, that is, V(v) = aV(u) for a € ¥ [13] [14].
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3.2 Finite State Machine (FSM) models

A probabilistic model can be built for the assessment of irregular pattern
occurrence following the Data Compression using Antidictionary (DCA) al-
gorithm [15]. A proper set of MFW is selected from the antidictionary set
A(z") of a string " for the construction of a Finite State Machine (FSM). A
probabilistic model is built on top of the FSM, such as that normally it would
accept substrings of ", but in the presence of an MFW it will transition into
a terminal state.

Let’s reconsider the string w = 2210010 defined over X3 = {0,1,2},
introduced on section 3.1. A subset of A(w), say As(w) = {02,11,20}, can
then be used for the construction of a FSM probabilistic model. The FSM
is displayed in Figure 3.2.

The FSM is composed by a total of seven states or nodes, with four states
S1, 9o, S3 and Sy being the internal states and the remaining three states Ry,
Ry and Rj3 being the external states. Each internal state points to another
state (or to itself) through an outgoing edge, in Figure 3.2 an edge is defined
by an arrow and the accompanying symbol ¢ € >3 that causes the transition

to a new state.

3.3 Probabilistic Model Construction

Assume that the ith symbol of (1 < i < n) is being processed by the
FSM, and let’s define the next state reached sequentially by z; as s;, where
1 < i < n and sy denotes the initial state of the FSM. Moreover, assume
that the state sequence s™ = s¢s1 ... s,, is uniquely determined by the input
string €™ = x125 ... x,(1 < m < n). The probability of transitioning to a

state specified by the next symbol on the sequence, P(x;11]s;), is given by

14



Figure 3.2: An FSM model for MFWs 02, 11 and 20. Coloured edges denote

the corresponding transitions after a forbidden state is reached.

P(ziq1]8:) = %, 0<i<n (3.1)
where N (c|s;) holds the number of times that a transition has occurred from
state s; with symbol c.

The FSM is devised to normally loop through internal nodes. In the
case of a transition to a (forbidden) external state s; through symbol z;,

the algorithm would point next to the node that covers the sequence v =

Zi_g...Tiv1, where v coincides with the Longest Common Prefix with one

MFEFW in A(w) and (0 < s <i—1).
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Chapter 4

Redefinition of the ECG

distribution

In this section a dual process aimed to translate the binary ECG distribution

into a distribution defined over an alphabet of small integers is presented.

4.1 Signal differentiation

The ECG signal usually contains non stationary features, such as individual
RR and QT intervals between heartbeats [4]. Furthermore, noise and arti-
facts can significantly affect the shape of the probability distribution con-
structed from the ECG series [23]. Irregular arrhythmia heartbeats can also
cause asymmetry and flattening on the distribution [21].

The irregular shape of the ECG amplitudes distribution can be appre-
ciated on Figure 4.1. The left part shows a histogram computed from the
amplitudes of an ECG record consisting of 650,000 samples (with 11 bit
resolution).

The irregularities in the shape of the ECG distribution can difficult the

16



computation of accurate probability models from the time series. A solution
to overcome the lack of stationarity of the distribution consists on the use
of a differentiation operation over successive samples in the time series. For
a sampled ECG signal sequence denoted by 2" = 2zyz5...2, where z; €
Y04, 1 < i < n, the differentiation process that yields the output sequence

Y™ = y19s . . . Yo is stated as follows:

where |y;|< 2047 (1 <i <mn).

The amplitudes histogram built from y shows a shape that resembles the
Laplace distribution although the former is a discrete distribution while the
latter is a continuous one, with a considerable less amount of dispersion than
the distribution of z. On the right part of Figure 4.1, the histogram of the
distribution obtained after the application of the differentiation process on

the ECG signal is presented.
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Figure 4.1: Histograms for raw ECG amplitudes (in millivolts) distribution
(left) and the resultant differential amplitudes distribution after the differ-

entiation process (right).

4.2 Signal quantization

In order to translate the information contained in the differential signals
into a domain defined over a smaller alphabet set, a quantization stage is
introduced. Let @ be the odd number of quantization levels under which the
quantization will take place. Quantized symbols can be defined only on the
set of integers {0,1,...,Q — 1}.

The quantization process is carried out with a simple ranking system
that assigns to each differential sample its corresponding quantized symbol
depending on its differential amplitude value.

A sequence of quantized symbols of length n is denoted as a string x"
over Yo where m = (). The ith quantized symbol z; on the sequence " =
T1Xo ... %, € E% can be obtained from the differential sequence y™ and the
set of quantization parameters {qo, q1,...,qg—2} where ¢/’s (0 <1< Q — 2)

arereals and p; <p; (0<i<j<@Q—2).

18



The quantization rule is then given as follows:

(

0 Yi S qo,

T =41 1<y <q (4.2)

Q-2 yi>qg-

\

Quantization on Resultant Quantized
Differential Distribution Distribution

> 0=7 >

q:o q:1 42 g3 qs cis

Figure 4.2: Quantization operation on a differential ECG distribution (left)
and the resultant quantized distribution (right). The location of the quanti-
zation parameters and the corresponding interval for each symbol are high-

lighted.

The quantization procedure is illustrated on Figure 4.2 for a value of

Q="1.
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Chapter 5

FSM model construction and
accuracy assessment for PVC

detection

This section presents the description of the experimental procedure under-
taken with a set of ECG records for the detection of Premature Ventricular
Contractions in an offline fashion.

The test signals used for the experiments were taken from the MIT-BIH
Arrhythmia Database, a library of annotated ECG records commonly used
for the evaluation of ECG arrhythmia detection algorithms. It consists of 48
records, each one comprising 30 minutes of ECG recording on two channels
digitized at 360 samples per second per channel at an 11-bit resolution span-
ning a 10 mV dynamic range. Each ECG record contains annotations given
by two or more cardiologists, thus providing a medical grade benchmark for
the assessment of the quality of arrhythmia detectors [11, 9.

Figure 5.1 shows a schematic diagram of the proposed detection system.

Multiple FSM probabilistic models were constructed for the accurate detec-

20



tion of PVC on the quantized ECG signals.

L]

|

Differentiation

Quantization

Training Data
+
AD

Arrhythmia

Probability
model

Not
Arrhythmia

Figure 5.1: Schematic diagram of the detection system.

5.1 Training data and Antidictinary AD gen-

eration

Let A be the antidictionary set to be used in the encoding process. A is

generated from a short segment of training ECG data in a preprocessing

stage as follows:

Step 1. Let k be a certain positive integer denoting the total number
of training files from which the antidictionary A will be constructed. Each

training file u; (1 < ¢ < k) consists of 5 ECG waveforms (roughly between



3 and 5.5 seconds of ECG recording). Here, a waveform is defined as the
portion of the signal covered by one R-R interval. For each training file u; an
antidictionary set A(wu;) is constructed and the process results in the family

of antidictionaries

.AK = {.A(Ul), A(’UQ), c. ,.A(’U,k>} .

The process is illustrated on Figure 5.2.

Step 2. A common antidictionary set A is conformed primarily by the set
of MFWs that show a higher frequency of occurrence among all the generated
antidictionaries A(uwy), A(ua), ..., A(w) in Ag. Some MFWs are expected
to appear constantly among the majority of the generated antidictionaries.
However, the dynamic variations in the amplitude and periods of the training
waveforms induce some variability on the frequency of occurrence of some
MFWs. Given an MFW w in A, the frequency of occurrence f(w) on w
is given by

F(w) = [{ilw e A(w),1 <i <k} (5.1)

Step 3. The MEFWs are next sorted based on those f values and the an-
tidictionary set A can then be built with the MFWs that exhibit a relatively
high frequency of occurrence. Experimental trials show that the MFWs with
the higher frequency of occurrence are in general short strings of length one
or two. Those short strings usually perform poorly when implemented in the
FSM model in the detection scheme. In that sense, for the construction of
A, the constraint of choosing MFWs of length greater than or equal to 3 is

imposed in order to achieve better performance in the detection algorithm.
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Figure 5.2: Antidictionary set construction from the ECG training files set.

5.2 FSM construction and detection criteria

With the appropriate set of MEWs picked out from the antidictionary set A,
the FSM can be build alongside the accompanying probability model.

Given a set of MF'Ws defined over an alphabet ¥, in the implementation
of the FSM each state is modeled with two memory registers for each outgoing
edge associated with symbol ¢ € Y. The first register acts as a pointer to the
next state reached through symbol ¢ and the second register is implemented
as a counter that holds the number of transitions to the next state though c.

For the particular case of the FSM with () = 3 on Figure 3.2, there are
seven states in total with three outgoing edges per state. Thus, the number
of memory registers necessary for the implementation of the FSM would be
equal to 42.

Once the FSM model is constructed, the transition probabilities are calcu-
lated by performing a second pass in the training data, that is, by sequentially
feeding the quantized sequence contained in each training file into the FSM

model. After every node transition, the corresponding transition counter

23



would be updated.
Figure 5.3 exemplifies the memory map for node S3 on the FSM intro-

duced on Figure 3.2.

Memory Map for

node S;
Pointer to Transitions
Next State Counter
o R, 2
1 S, 350
2 S; 280

Figure 5.3: A table of memory registers corresponding to node Ss on the

FSM from Figure 3.2 .

Assume a string €™ = x5 ... 2, to be processed with the detection al-
gorithm by means of a FSM constructed with the appropriate probabilistic
model. For 1 <4 < n and a given number d > 0, the instantaneous Com-

pression Ratio R; defined on a sliding window w; of size d is given by

( i+1
E > I ! i—d>0
k=i—d-+2 (x| 5t-1)
R, = (5.2)
41
- Z n——— i—d<O0.
\ ﬂsz\sk 1

where P(xy|sk_1) is the transition probability defined in (3.1).
A proper threshold value T" must be chosen in such a way that an in-

stantaneous Compression Ratio R; greater than 7" will signal the presence of
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an arrhythmia pattern in the input string. Most experiments suggest that a

threshold value between the range [2.0,2.8] can lead to the best results.
Figure 5.4 illustrates the case of a positive detection when the PCV lo-

cated around 156 sec. time stamp causes an increase on the compression

ratio, and thus surpassing the set threshold (2.5).
Input ECG Signal

Amplitude (mV)

154.0 1545 155.0 155.5 156.0 156.5 157.0 157.5 158.0

Time (Seconds)

Resultant Instantaneous CR

e A |
- MMM/ ALY L \WW/\WN \b

154.0 154.5 155.0 155.5 156.0 156.5 157.0 157.5 158.0

Time (Seconds)

Figure 5.4: Positive detection of a PVC heartbeat. The top figure displays an
ECG sequence containing one PVC heartbeat while the bottom figure shows
how the Instantaneous Compression Ratio goes above the set threshold value

(T=2.5), likely due to a forbidden pattern occurring within the PVC.

The accompanying annotations files from the MIT-BIH Arrhythmia
Database where used for the posterior calculation of the detection evaluation
metrics sensitivity and specificity. The sensitivity Se, or true positive rate,

measures the ratio of true arrhythmia heartbeats detected while the speci-
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ficity Sp measures the ratio of normal heartbeats identified as such by the

algorithm. Both metrics are computed as

TP TN

Se=Fpr PN P T TN L FP

(5.3)

were the True Positive (TP), True Negative (TN), False Positive (FP) and

False Negative (FN) conditions are defined in the confusion matrix on Table

5.1.
Table 5.1: Confusion matrix
Detected Abnormal | Detected Normal
heartbeat heartbeat
Actual Abnormal

TP FN

heartbeat
Actual Normal

FP TN

heartbeat

5.3 Experimental procedure and results for
offline FSM construction and PVC detec-
tion

In this section, the details of two different set of experiments for the detection
of PVC are given alongside the obtained results in each case. A family of
FSM probabilistic models was constructed in each experiment set.

The first group of experiments was performed with quantized ECG signlas
under a range of different quantization levels (), and the results give an insight

into the most suitable quantization level and parameters.
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The second group of experiments was carried on quantized ECG signals
that were obtained with the quantization criteria learned from the results of

the first set of experiments.

5.3.1 Preliminary experimentation for different quan-
tization levels: assessment on optimal quantiza-

tion parameters
Experimental procedure with multiple quantization leves

A set of experiments was carried out with 15 different records from the MIT-
BIH database targeting the detection of PVC. Each record consists of a total
of 650,000 samples.

In order to explore the performance of the detection algorithm under
different quantization levels (), the preliminary stage of experimentation
consisted in the construction of FSM probabilistic models for the set of 5
different quanization levels Q, = {3,5,7,9,11}.

For a given an ECG record, and a quantization level () € Q)s, the experi-
mental procedures were performed as described next:

Step 1. The differentiation of the binary ECG signal z™ was performed
to yield the differential time series y™, with n = 650, 000.

Step 2. The quantization of the differential sequence y™ was then per-
formed according to the picked value of @), to yield the quantized sequence
z".

Step 3. A training set {uj, uy ... us} was form from 50 different seg-
ments of data from the quantized ECG sequence ". Each segment contains
the data of 5 contiguous RR intervals of the sequence. The corresponding

information on the R peaks location within the ECG time series is easily
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obtained from the MIT-BIH database annotation files.

Step 4. The set of antidictionaries A5y = {A(uy), A(uz), ..., A(uso)}
was computed from the set of 50 training files.

Step 5. The frequency of occurrence f(w) of every MEW w in A5y was
then evaluated in addition to its string length |w| and a common antidic-
tionary set A, was formed with the 10 MFWs with the highest frequency
f(w) and a string length |w|> 3.

Step 6. From the common antidictionary set 4., A family of 45 dif-
ferent FSM models {FSM, FSM,, ..., FSM ;5} was constructed taking
into consideration all unique combinations of 2 MFWs in A,.. The transition
probabilities for each FSM model in the set were learnt by performing a pass
through the data on the training set {u;, us ... us0}.

Step 7. For each model in {FSM, FSM,, ..., FSM ,}, the resultant
instantaneous compression ratio R; was calculated from the whole quantized
ECG sequence x", where 1 < i < n and n = 650000, as stated on equation
5.2. The used value for the size of the sliding window was d = 25 for all FSM
models.

Step 8. The accuracy of each FSM model for PVC detection was calcu-
lated multiple times on a range of threshold values T in the closed interval
[1.8,3.2] with increments of 0.01 units, for a total of 141 different evaluations.
The performance metrics sensitivity Se and specificity Sp were calculated as
described in section 5.2 of Chapter 5.

Step 9. The FSM model with the highest combination of Se and Sp
was then selected as the best performing model, and the process was then

repeated for the next quantization level in Q),.
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Results for FSM with multiple quantization leves

The obtained results for the FSM probability models constructed with multi-
ple quantization levels are displayed in Table 5.2. The average performance
values for each quantization level () over all records, points out that the
algorithm may perform at its best when Q) = 7.

From observations made on the quantization parameters {qo,q1,...,qs}
used in the experiments for () = 7, a rough approximation to the best quan-
tization parameters is given as follows: consider the percentile P, as the value
on the ECG distribution below which a percentage r(%) of the samples is
allocated. Then, the quantization parameters for quantization rule 4.2 are

given as:

G@0=Ps @a=Po, @=DPs; q¢=PFPs5 q=>PFPo ¢=DPss (54)

5.3.2 Experimentation for FSM models with percentile

quantization and (Q =7
Experimental Procedure with percentile quantization and Q) =7

The second stage of experimentation was undertaken with the quantization
parameters given in 5.4. Similar to the previous round of experiments, the
MIT-BIH database was employed as the source of the annotated ECG data.
In particular, records 105, 201, 205, 215, 221 and 228 were used.

The experimental process is described in the following 9 steps:

Step 1. The differentiation of the binary ECG signal z™ was performed
to yield the differential time series y", with n = 650000.

Step 2. The quantization of the differential sequence y™ was made with
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Table 5.2: Table of results (%) for the detection of PVC on 15 ECG records
under 5 different quantization levels (Q). Sensitivity and Specificity values

for PVC detection are given for each Q, with total averages in the last row

8].

Q=3 Q=5 Q=7 Q=9 Q=11

Record Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec. Sen. Spec.
105 4.87 97.26 95.12 91.01 100 76.56 100 87.45 100 48.85
106 1.73 99.40 94.42 99.20 92.50 93.09 98.07 93.43 94.80 94.09
114 4.65 100 97.67 86.75 95.34 83.18 83.72 83.13 97.67 60.82
116 3.66 99.13 98.16 99.21 98.16 94.43 95.41 93.22 97.24 97.30
119 8.78 99.61 100 100 99.54 99.54 100 99.44 99.77 99.48
200 11.98 99.65 72.76 84.27 80.38 79.23 87.65 82.32 87.16 81.46
201 5.05 99.87 94.54 95.94 96.46 97.53 72.22 96.18 86.36 86.70
203 3.82 98.97 69.59 63.02 72.07 78.84 70.04 67.69 55.18 82.99
205 33.80 98.56 76.05 89.80 94.36 97.51 98.59 96.69 98.59 93.27
210 23.19 99.71 77.31 79.15 94.32 66.85 72.68 76.22 60.30 91.63
215 3.04 99.78 96.34 93.77 90.85 96.24 84.14 93.52 95.73 86.38
219 9.37 99.85 89.06 93.99 70.31 95.82 84.37 97.83 93.75 98.27
221 74.24 40.22 9.59 97.83 96.46 98.03 98.48 97.63 99.24 90.94
228 0.82 99.70 96.68 94.84 97.79 96.44 97.23 95.26 96.40 96.20
233 1.44 99.50 75.21 93.67 85.92 97.21 85.07 86.72 89.89 90.53
Averages 12.69 95.41 82.83 90.83 90.96 90.03 82.90 89.78 90.13 86.59

the set of quantization parameters {qo, q1,...,¢s} obtained as stated on ex-
pression 5.4 and @ = 7.

For the determination of the set of quantization parameters, the per-
centiles values where calculated from the distribution of differential ECG
samples obtained within the first minute of recording (corresponding to
21,600 samples for records from the MIT-BIH Arrhythmia Database).

Step 3. A training set {uy, us ... us0} was formed from 50 different seg-
ments of data from the quantized ECG sequence ™. Each segment contains
the data of 5 contiguous RR intervals of the sequence.

Step 4. The set of antidictionaries A5y = {A(uy), A(uz), ..., A(uso)}
was computed from the set of 50 training files.

Step 5. The frequency of occurrence f(w) of every MEW w in Aj

was then evaluated in addition to its string length |w| and a common anti-
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dictionary set A, was formed with the 20 MFW with the highest frequency
f(w) and a string length |w|= 3.

Step 6. From the common antidictionary set A., A family of 190 dif-
ferent FSM models {FSM |, FSM,, ..., FSM 4} was constructed taking
into consideration all unique combinations of 2 MFW in A.. The transition
probabilities for each FSM model in the set were learnt by performing a pass
through the data on the training set {u;, us ... us}.

Step 7. For each model in { FSM |, FSM,, ..., FSM 4}, the resultant
instantaneous compression ratio R; was calculated from the whole quantized
ECG sequence ™, where 1 < ¢ < n and n = 650, 000, as stated on equation
5.2. The used value for the size of the sliding window was d = 25 for all FSM
models.

Step 8. The accuracy of each FSM model for PVC detection was calcu-
lated multiple times on a range of threshold values 7" in the closed interval
[1.8,3.2] with increments of 0.01 units, for a total of 141 different evaluations.
The performance metrics sensitivity Se and specificity Sp were calculated as
described in section 5.2 of Chapter 5.

Step 9. The FSM model with the highest combination of Se and Sp was

then selected as the best performing model.

In some cases the FSM architecture models constructed with 2 MFW
did not performed well enough (Se and Sp values below 90%), so bigger
models were then implemented. In those cases, the FSM architecture was
increased from 2 MFW to 4 MFW, taking into consideration the MFW pair
Ay = {wy, wy} from the top performing FSM model.

To build the expanded FSM models, the conditions depicted on steps 5

and 6 for the construction of the common antidictionary A, and family of
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FSM models were modified as is described next:
Updated Step 5. With the MFEW pair A; = {w;, wy}, look for a set of
6 new MFW A, = {ws, wy, ..., ws} such as any MFW w in A,, satisfy the

three conditions
1. has a string length |w|> 3.
2. displays highest appearance frequency f(w).
3. shares a two symbol common prefix with w; or ws».

The new common antidictionary set A. is then arranged as

Ac:AtUAn:{wlaw27"'aw8}

Updated Step 6. From the new common antidictionary set A., con-
struct a family of 70 different FSM models {FSM, FSM,, ..., FSM 7}
from all possible different combinations of 4 MFWs in A.. The transition
probabilities for each FSM model are acquired by performing a pass through
the data on the training set {uy, us ... us}-

After building the new set of FSM probability models, their performance
is evaluated following steps 7 through 9.

Results for FSM probability models with percentile quantization
and Q =7

Table 5.3 shows the performance results for the set of records 105, 201, 205,
215, 221, 228. The results for records 105, 205 and 228 correspond to cases
with FSM models of 2 MFWs, while in the cases of records 201, 215 and 221

bigger models of 4 MFWs were obtained to improve detection accuracy.
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Table 5.4 shows a comparative outline of the average metrics (sensitivity
and specificity) obtained with the proposed detection method and the metrics

achieved by other methods available on literature.

Table 5.3: Table of results (%) for the detection of PVC on 6 ECG records

from the MIT-BIH database.
Record | Sen. | Spec.

105 100 94.77

201 98.98 | 98.40

205 97.18 | 99.57

215 93.29 | 79.74

221 97.97 | 94.43

228 97.79 | 96.44

Average | 97.53 | 93.89

Table 5.4: Comparison of the proposed method with other arrhythmia de-

tectors. Results are given on percentages (%).

Algorithm Sensitivity | Specificity
Proposed method 97.53 93.89
(Ota et al, 2013)[16] 97.9 98.6

(Ittatinut et al, 2013)[10] 91.05 99.55
(Adnane et al, 2013)[1] 97.21 98.67
(Alajlan et al, 2014)[2] 100 93.71

The proposed detection algorithm achieves comparable values of Sen-
sitivity with the other approaches highlighted on Table 5.4. The average
Specificity, however, is quite low in comparison with the other methods, this
most likely due to the fact that no previous treatment for noise removal on

the test signals was performed in the experimental process. It is expected
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that improvements on Specificity would follow with the use of appropriate
methods for noise removal.

Table 5.5 shows a comparative description of the antidictionaries and
FSM implementation characteristics for the proposed detection system and
the detection system for binary ECG signals proposed in [16]. For the calcu-
lation of the antidictionary size values a byte has been assigned to describe

every quantized symbol that conform an MFW.

Table 5.5: Antidictionaries and FSM characteristics for quantized signals
from six different ECG records. Results obtained previously in [16] are given

for comparison purposes.
Results obtained on (Ota et al, 2013) [16]

ECG record 105 201 205 215 221 228

number of MFWs | 281 90 56 178 85 189

AD size (bits) 3,586 996 436 1,792 988 2,316

FSM size (kB) | 24.2 | 65 | 26 | 115 | 65 | 154

Results obtained with the proposed method

ECG record 105 201 205 215 221 228

number of MFWs 2 4 2 4 4 2

AD size (bits) 48 120 48 144 | 112 48

FSM size (kB) | 1.568 | 3.136 | 1.568 | 3.584 | 2.464 | 1.568

Figure 5.5 displays the Receiver Operating Characteristics (ROC) curves
for three different FSM built for record 228, evaluated on a range of threshold
values T raging from 1.8 to 3.2 on increments of 0.01 units. The set of
MFWs for FSM Model-1 is AD; = {656,513} while the antidictionary sets
for the remaining two models (FSM Model-2 and FSM Model-3) are ADy =
{656,5351} and AD, = {013,514}, respectively.
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A common MFW, 656, can be found on the antidictionary set of the
two best performing FSM models (FSM Model-1 and FSM Model-2), thus
suggesting that ME'W very likely corresponds to a forbidden pattern within
the PVCs morphology.

Figure 5.6 shows the corresponding architecture for each FSM model.
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FSM Model-2 (acc = 0.9468)
—— FSM Model-3 (acc = 0.8673)
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Figure 5.5: Receiver Operating Characteristics curves for three different FSM
trained to process record 228 under a wide range of threshold values (T"). Maximum
accuracy values and the corresponding threshold values for each model are given
as follows: FSM Model-1 achieving 97.02% accuracy at T' = 2.56, FSM Model-2
reaching 94.68 % at T' = 2.67 and FSM Model-3 with 86.73% accuracy at T' = 2.63.
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(FSM Model-3)

Figure 5.6: FSM models architectures. External states are represented in

red, while internal states are blue.
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Chapter 6

FSM Implementation and the
evaluation of computational
resources usage fo online

processing on a mobile platform

A third stage of experimentation consisted on the port of the detection algo-
rithm into a mobile environment for the evaluation of performance at online
operation. The experimental setup is described on Figure 6.1. It basically
consists of an emulated wearable ECG sensor for the transmission of ECG
samples and a companion mobile application.

A pre-trained FSM model has been ported into the mobile application, in
addition to a differentiation and quantization stages for the processing of a
stream of ECG samples on real time. Continuing with the same methodology
used on off-line experimentation, the records from the MIT-BIH Arrhythmia
databased have been employed for testing the algorithm.

For the wireless transmission of the ECG samples from the emulated
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Emulated Wearable Mobile Device
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Figure 6.1: Schematic digram of the experimental setup used for the evalu-

ation of the detection algorithm on a mobile platform.

sensor in an efficient and versatile fashion, the Bluetooth Low Energy (LE)

wireless communication protocol has been used.

6.1 Bluetooth Low Energy stack implemen-
tation

Introduced on the 4.0 version of the Bluetooth specification, the Bluetooth
LE standard enables low power communication for short distances, making
it ideal for Internet of Things (IoT) applications. The Generic Attribute
Profile (GATT) specification provides guidelines on standard data transfer

38



procedures and formats for Bluetooth LE devices[18].

A custom Bluetooth LE profile has been designed to transmit the ECG
samples. Figure 6.2 displays a conceptual view of the devised profile. The
profile specifies a Service, that is, a collection of related data structures called
characteristics. The ECG Measurement Characteristic holds the actual sam-
ple values for two ECG samples at a given time. Samples are represented in
a 16 bits (11 bits resolution) unsigned integer format each.

As shown on Figure 6.2, the characteristic is granted with a set of prop-
erties that specify the set of allowed operations that can be undertaken with
the . Of particular importance is the NOTIFY property which informs the
client side (mobile phone) of the availability of new samples to be trans-
mitted. Each new notification is pushed every 6 ms, for a data rate of 333

samples/second.

ECG Service

ECG measurement
Characteristic

4 )

Properties:
>READ
>WRITE
>NOTIFY
>|NDICATE

.

( Value A
ECG sample O

16 /]
ECG sample 1

16 0o
\ J

Figure 6.2: Conceptual view of the constructed Bluetooth LE profile. The profile
implemented in both the emulated ECG sensor and the mobile application, holds

a characteristic with the data pertaining two 16 bits ECG samples.

39



6.2 Wearable ECG hardware device charac-
teristics

In order to simulate the characteristics of a wearable ECG sensor, a custom
hardware arrangement has been configured. The device is capable of handling
the wireless transmissions of the ECG samples obtained from the annotated
files on the MIT-BIH Arrhythmia database. This allows the possibility of not
only transmitting regular heartbeat patterns, but also arrhythmia heartbeats,
simulating under different scenarios.

The virtual wearable monitor is based around the ESP32-WROOM-32
Microcontroller Unint from Espressif Systems[19]. Some of the main specifi-

cations of the device are:

e Dual Xtensa dual-core 32 bit processors.

80 to 240 MHz frequency of operation.

520 KiB SRAM memory.

Bluetooth v4.2 and Wifi 802.11 b/g/n communication.

The ECG samples are read from binary files stored on a SD card with the
use of one of the multiple on-board Serial Peripheral Interface (SPI) buses
available on the ESP32-WROOM-32 device. The ESP32 (SoC) device sup-
ports a broad range of open software initiatives, such as the Arduino Open
Software project. For this particular project, the whole configuration of the
ESP32 core device has been carried out on top of the SPI and Bluetooth LE
libraries freely provided by Espressif Systems and the open source commu-

nity[20].
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6.3 Mobile application deployment

6.3.1 Application architecture

The development of the mobile application has been carried on the IOS mo-
bile operating system. The object oriented approach of the Swift program-
ming language has facilitated the implementation of the quantization and
FSM related data structures in conjunction with the Bluetooth LE related
functionality in a relative short development time.

Key frameworks employed in the application architecture are listed next:

« Core Bluetooth (establish and manage Bluetooth LE connections).
o Charts (ECG and Compression Ratio signals plotting).
o SigmaSwiftStatistics (statistical features calculation).

o CSVImporter (management of text files in Comma Separated Values

format).

An overview of a schematic flowchart that describes the application struc-
ture and functionality is given on Figure 6.3. The client side of the Bluetooth
connection is implemented in the application.

Arriving samples are feed to a queue data structure that in turns updates
a plot on the User Interface view. In the same fashion, another queue is
responsible of holding the corresponding Compression Ratio samples of the
already processed samples and updating a secondary graph with the Com-
pression Ratio signal. Both graphs are refreshed for every new 10 samples
feed to the queues structures.

The Differentiator class (abbreviated as Diff. on Figure 6.3) performs the

subtraction of contiguous samples.
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Figure 6.3: IOS application flowchart.

A training process is carried out with one minute of ECG recording, 21600
samples for records of the MIT-BIH database sampled at 360 Hz. An array
structure store the incoming differential samples during the training process.
After the array gets full, a calculation of the quantization parameters over
the samples distribution on the array is performed as stated in expression
5.4.

The Quantizer class is updated with set of learned quantization parame-

ters, and quantization is then performed following rule 4.2. The FSM class
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Figure 6.4: The experimental setup for the online evaluation of the trained
FSM models. The emulated ECG sensor (on the left) transmits the ECG
samples through Bluetooth LE while in the mobile application the quantiza-
tion and posterior processing in the FSM is effectuated to produce the output

CR waveform displayed on the phone scrreen.

holds the architecture and probabilistic features of a pre-trained Finite State
Machine from the set of experiments described on section 5.3.3. The con-
stituent nodes on the F'SM class are implemented as described on section 5.2,
using 16 bits signed integer registers for the memory units.

Figure 6.4 displays the working mobile application alongside the wireless
ECG sensor. An USB connection was used to upload the firmware on the

ESP32-WROOM-32 unit and to power it during operation.
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6.3.2 Application benchmarks

The mobile application performance was evaluated with Apple’s Xcode de-

velopment environment and tested on an Iphone 6s device.
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Figure 6.5: Mobile application benchmark statistics. CPU (brown line) and
memory (blue line) usage are displayed for FSM models varying in increased

size (from left to right).

The performance of the application was evaluated using Xcode’s memory
profiler and benchmark tools. Figure 6.5 shows the percentage of CPU and
Memory resources used by the application for 5 different FSM models. The
models are given in increasing order of size. The application ran in one thread
demanding between 60% and 70% of one of the two cores resources in the
Iphone device. Likewise, an average of 30.5 Mb of memory resources were

spent for all models.
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Chapter 7

Analysis on MFWs statistics
for Normal, PVC and PAC

heartbeats

7.0.1 Limitations on the thresholding method for a

multi-class arrhythmia classification approach

As shown in Chapter 3, the proposed algorithm can perform reasonably well
for the detection of Premature Ventricular Contractions as long as a proper
threshold value (T') is chosen. The thresholding method, however, has some
considerable limitations when implemented in a multi-class classification ap-
proach.

Figure 7.1 gives an illustrative example of the resultant instantaneous
Compression Ratio R; obtained after processing an ECG signal. The signal
in question contains three normal heartbeats, one PAC and one PVC.

On Figure 7.1, the PVC heartbeat produces a pronounced peak in the CR
signal, while the opposite happens for the PAC heartbeat. The reason for
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Figure 7.1: Failed detection of a PAC heartbeat with thresholding method.

this lays in the fact that the PVC morphology greatly differs from the Normal
and PAC heartbeats, thus increasing the chances of transitions to forbidden
states with low transition probabilities within the constructed FSM.

PAC heartbeats present themselves with an overlap in T and P waves
on contiguous heartbeats. The relative small change in the resultant ECG
morphology usually do not translate in comparable increments in the CR
signal.

A solution to the problem relays on the use of multiple threshold values to
discriminate between the three types of heartbeat. In that sense, a primary
threshold value is set to binary discriminate from PVC heartbeats and others
types of heartbeat. In those cases when the primary threshold is not reached,
a second evaluation is made under a secondary threshold value to further
classify the heartbeats into Normal or PAC heartbeats.

The following section tries to take a different approach for the possible
classification of heartbeats in a multi-class scenario. By taking a closer look
at the MFW statistics and their morphology, the basis are set for a multi-

class heartbeat classification approach based on antidictionaries statistical
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features.

7.0.2 Minimal Forbidden Word analysis on Normal,
PVC and PAC heartbeats

In order to extend the capabilities of the antidictionary coding algorithm for
a multi-class detection problem, a survey on the characteristic of the different
MFWs that can be linked to each type of heartbeat has been performed.

Using records 114, 200 and 201 from the MIT-BIH database, individual
MFW statistics for each type of heartbeat were collected. For each record,
a common antidictionary set A, was constructed from the quantized ECG
signal 2", following the procedure described on section 5.3.1 of Chapter 5,
picking up the 300 most common MFW acording to their frequency f(w)
values.

From the ECG annotation files, a set that contains the sample location of
the R peak of every heartbeat within the ECG time series can be expressed
as Rsgr = {R1, Ry, ..., R}, were s is a positive integer and its value varies
from record to record.

Given the location of the R peak of some heartbeat R, in Rggr, it is
possible to delimit the heartbeat in terms of a fragment of quantized signal
xl = {z;, 21, .. 2} with 2 C ™.

The boundaries (I, h) of the segment of quantized signal x/* are given as

1 1
l:Rv,I +§(RW—RU,1>, h:Rv+§(Rv+1 —Rv) (71)

where 1 <l < h <n.
With every heartbeat delimited in terms of the quantized signal ™ and

with the aid of the corresponding annotation label for each heartbeat, it
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is possible to categorize the set of MFWs found within the confines of the
quantized sequences.

Figure 7.2 shows an ECG signal with a scatter plot of a set of MEFW found
through the signal quantized sequence. Three different kinds of heartbeats
are considered: 'Normal’, 'PAC’ and 'PVC’.

1 N#1 PAC#1 N#2 PVC#1 N#3 PVC#2 N#4
Z

<0

0

T

2-1

Q

)

©

3 724 725 726 77 728
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Figure 7.2: ECG signal displaying the localization (red markers) of MFW
found in the quantized signal. Three different types of heartbeats are shown,
with Normal heartbeats identified with the 'N’ label (green background),
PVC heartbeats with the "PVC’ label (pink background) and one PAC dis-
playing the "PAC’ label (orange background).

For a given MFW w, lets define the frequency of occurrence within the
set of 'Normal’ labelled quantized sequences as fy(w). Likewise, fpac(w)
and fpyc(w) correspond to the frequencies of occurrence of the MEW on
quantized sequences labelled as 'PAC’ and 'PVC’, respectively.

For ECG records 114, 200 and 201, a survey on the MFW that display
the maximum values of fy(w), fpac(w) and fpyc(w) has been performed

yielding the results shown on Table 7.1.
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Table 7.1: MFW occurring most frequently within the quantized sequences

of three different types of heartbeats.

114 200 201
N PAC | PVC N PAC | PVC N PAC | PVC
11111,
2312,
MFEW | 1135 | 1355 565 | 0112 | 144 | 22222 11111 | 2111,
4224
5555/
f-value
23.90 | 50.00 100 100 30 88.37 | 18.46 | 83.33 100
(%)

The obtained results give an insight into

MFWs withing the quantized ECG sequence.
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Chapter 8

Conclusion and future works

The study on the antidictionary coding theory has shown that the imple-
mentation of the quantization and differentiation procedures on the ECG
time series can lead to the construction of Finite State Machine probabilis-
tic models that require less memory resources for their implementation in
comparison to models built on signals defined over a binary alphabet.

The constructed models on the experimental process achieved relative
high average levels of sensitivity (97.53%), while suffering on the specificity
metric (93.89%) due to the lack of noise treatment of the test signals.

The low requirements of computational resources for the trained FSM
probability models was confirmed with the port of a pre-trained FSM model
into a mobile application. Average performance results of CPU (65%) and
memory (30.5 MB) usage for online processing of ECG samples transmit-
ted through BLuetooht LE confirm the antidictionary coding algorithm as a
viable option for arrhythmia detection on mobile and wearable devices.

A look into the statistical features of MFWs on quantized segments of
ECG signal show that it is possible to classify the MFWs according to the

type of heartbeat in which they are most likely to appear. This sets the bases
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for extending the binary classification scheme based on antidictionaries for a

multi-class perspective.

8.1 Future works

From the obtained results and the difficulties encountered during the exper-

imental process, some key points of improvement have been identified. From

those points, it is possible to comment on future task to further improve the

detection algorithm performance:

The execution of further experiments including denoising techniques to

further reduce the rate of false positive detection.

The increment of the FSM models sizes on future experiments in order
to increase the rate of true positive detection of abnormal heartbeats
and to potentially include multiple types of MFWs corresponding to

the diverse kinds of arrhythmias.

To look for the optimum threshold value T from the data already col-

lected from the multiple set of experiments.

The implementation of the antidictionary construction algorithm in the
IOS mobile application to effitiently construct the antidictionaries from

the transmitted ECG signals on the fly.

To dive in more specific details about the characteristic forbidden pat-
terns that appear in each type of heartbeat. The use of string similar-
ity metrics between the set of MFWs could be a valuable tool for their

proper classification.

o1



e The experimentation with more sophisticated methods for the evalu-
ation of the changes in the Instantaneous Compresio Ration signal to

better discriminate between the different types of heartbeats.
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