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Development of a Flying Robot
with Pantograph-based Variable Wing Mechanism

Naohiro Hara, Kazuo Tanaka, Member, IEEE, Hiroshi Ohtake, Member, IEEE, and Hua O. Wang, Senior
Member, IEEE

Abstract— We develop a flying robot with a new pantograph-
based variable wing mechanism for horizontal-axis rotorcrafts
(cyclogyro rotorcrafts). A key feature of the new mechanism is
to have a unique trajectory of variable wings that not only change
angles of attack but also expand and contract according to wing
positions. As a first step, this paper focuses on demonstrating
the possibility of the flying robot with this mechanism. After
addressing the pantograph-based variable wing mechanism and
its features, a simulation model of this mechanism is constructed.
Next, we present some comparison results (between the sim-
ulation model and experimental data) for a prototype body
with the proposed pantograph-based variable wing mechanism.
Both simulation and experimental results show that the flying
robot with this new mechanism can generate enough lift forces
to keep itself in the air. Furthermore, we construct a more
precise simulation model by considering rotational motion of
each wing. As a result of optimizing design parameters using the
precise simulation model, flight performance experimental results
demonstrate that the robot with the optimal design parameters
can generate not only enough lift forces but also 155 gf payload.

Index Terms— Flying robot, pantograph-based variable wing
mechanism, horizontal-axis rotorcrafts, optimal design.

I. INTRODUCTION

THERE have been a number of studies on flying machines
in the last few decades. Most of studies on airplanes

and gliders as fixed wing aircrafts, helicopters as vertical-
axis rotorcrafts, and balloons as lighter-than-air aircrafts have
focused on improving their flying performance rather than on
developing new and innovative flying mechanisms.

In recent years, flying robotics researches [1] - [7] have
been mainly conducted from the biologically inspired points
of view. Another recent topic on flying robots is micro air
vehicles (MAVs), e.g., [8]. In particular, the DARPA project
(e.g., [9], [10]) on MAVs is well known. Although a number of
MAV studies have been reported in the literature, e.g., [11–14],
there are few studies on small-size horizontal-axis rotorcrafts.
This paper deals with development of a small-size horizontal-
axis rotorcraft mechanism that is different from that used in
[1] - [14].
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Very recently, a new and innovative mechanism for very
few types of horizontal-axis rotorcrafts has been proposed
in [15] [16] [17]. The horizontal-axis rotorcrafts are called
”cyclogyro”. Cyclogyro that is a unique mechanism of gener-
ating lift forces was proposed in 1930’s. The cyclogyro is a
rotorcraft propelled and given lift by horizontal assemblies of
rotating wings. Very few prototypes were built, and those that
were constructed were completely unsuccessful. The essential
principle is that the angle of attack of the rotating wings
is altered as they go round, allowing the lift/thrust vector
to be altered. This allows the rotorcraft to rise vertically,
hover, and even go backwards. Thus, cyclogyro-based flying
robot has possibility of being a high maneuverability MAV.
However, to the best of our knowledge, nobody has proposed
effective and practical mechanisms of altering angles of attack
until the mechanism [17] has been proposed. This is the
main reason that there has been no record of any successful
flights although rotorcrafts of this type have been designed by
some companies. Very recently, it was shown in [17] that the
developed cyclogyro-based flying robot can generate at least
enough lift force to fly. However, in spite of the successful
development of the cyclogyro-based flying robot, its payload
was very few (only about 10 g). Hence, we need to develop
a flying robot that realizes more efficient flight performance.

The main purpose of this paper is to develop a more
efficient and innovative flying mechanism for cyclogyro-based
horizontal axis rotorcrafts. To accomplish the purpose, in
this paper, we newly propose a pantograph-based variable
wing mechanism that can be regarded as an extension of
that proposed in [17]. A key feature of the new mechanism
is to have a unique trajectory of variable wings that not
only change angles of attack but also expand and contract
according to wing positions. As a first step, this paper focuses
on demonstrating the possibility of the flying robot with this
mechanism.

The rest of the paper is organized as follows. Section II
describes a pantograph-based variable wing mechanism and its
features. In Section III, we construct a simulation model of this
mechanism and present some comparison results (between the
simulation model and experimental data) for a prototype body
with the mechanism. Both simulation and experimental results
show that the flying robot with the mechanism can generate
enough lift forces to keep itself in the air. Furthermore, we
construct a more precise simulation model by considering rota-
tional motion in Section IV. Section V gives design parameters
optimization using the precise simulation model. As a result
of optimizing design parameters using the precise simulation
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model, flight performance experimental results demonstrate
that the robot with the optimal design parameters can generate
not only enough lift forces but also 155 gf payload.

II. PANTOGRAPH-BASED VARIABLE WING MECHANISM

Fig. 1 illustrates an outline of our robot with the pantograph-
based variable wing mechanism proposed in this paper. The
robot consists of three pantograph-based variable wing units.
Each unit has two wing segments. As will be mentioned
later, the numbers of pantograph-based variable wing units
and wing segments are design parameters of the robot. This
mechanism is composed of two different mechanisms. One
is a revolving slider-crank mechanism that causes revolving
and reciprocating motion. The other is a pantograph-link
mechanism that causes flapping motion.

Fixed link

Sub-link

Pantograph link
Wing segment

Main link

Main axis

Sub-axis

Slider

Pantograph-based variable wing unit

Angle of 
 fixed link ;

Innermost position

Fig. 1. Outline of robot with three pantograph-based variable wing units.

As the main links rotate around the main axis, the sub-
links also rotate around the sub-axis due to the slider-crank
mechanism. The innermost position of a pantograph-based
variable wing unit is connected to the main link and the first
segment is linked to the slider that is connected on the end of
the sub-link. Thus the pantograph links expand and contract,
as the sliders shuttle along the linear guides on the main
link. Because of these motions, the wing segments (located on
the pantograph links like as in Fig. 1) reciprocate and swing
around the center of the wing chord.

Fig. 2 shows the trajectory of the wing segments according
to the revolution of the main link. In downstroke motion of the
wing segments, this mechanism can generate heavy drags (,
i.e., lift forces) to the upward direction by expanding the wings
with larger angles of attack. Conversely in upstroke motion,
this mechanism can reduce anti-lift forces to the downward
direction by contracting the wings with smaller angles of
attack. Due to this folding up motion of the wings, it is
possible for this mechanism to have a larger wing area in
a small space and to get a larger lift force in comparison with
the mechanism proposed in [17].
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Fig. 2. Trajectory of variable wings.
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Fig. 3. Design parameters and variables in a pantograph-based variable wing
unit.

The symbols and variables in this paper are summarized in
Fig. 3. The parameters of the robot used in this paper are
listed below.

l:length of sub-links,
e:length of fixed link,
c:length of pantograph links,
b:length of wing spans,
q:angle of fixed link,
θ:rotating angle of main link,
nf :number of pantograph-based variable wing units,
n:number of wing segments,
r0:radius of first pantograph segment,
ri(θ):radius of wing segment i,
γ(θ):flapping angle of wing segments.

Fig. 4 shows the developed prototype body with the pro-
posed mechanism. The design parameters of the developed
prototype body (245 g) are as follows:

l = 100 [mm], e = 25 [mm],c = 40 [mm],
b = 230 [mm], nf = 5 [units], n = 2 [seg.].
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Fig. 4. Developed prototype body with five pantograph-based variable wing
units.

The prototype body has five sets (nf = 5) of variable wings
with two wing segments (n = 2), and is totally 245 g including
a brushless DC motor.

III. SIMULATION MODEL

This section presents a simulation model for calculating lift
force and power of the proposed mechanism and shows the
possibility of flying the robot through the developed simulation
model and experiments.

A. Trajectories of Wing Segments

In the mechanism, the radius ri(θ) of the wing segment i
and the wing’s flapping angle γ(θ) are functions of rotating
angle θ(t) of the main axis as shown in Fig 3:

ri(θ) = ro + (rm(θ) − ro)i, (1)

γ(θ) = cos−1 rm(θ) − ro

2l
, (2)

where rm(θ) = e cosθ+
√

l2 − e2sin2(θ). The vector Rch(θ)
from the main axis to the aerodynamic center on the wing
chord (see Fig. 3) is expressed as

Rch(θ) = (ri(θ) + chsinγ)ir − chcosγjr

=
[

ri(θ) + chsinγ
chcosγ

]T

×
[

cos(θ + q) sin(θ + q)
−sin(θ + q) cos(θ + q)

] [
ix
iy

]
. (3)

B. Translational Lift

The simulation model discussed in Section III simply con-
siders only translational motions of the wings in the mecha-
nism, as illustrated in Fig. 5. To consider the translation of
wing segments based on the quasi-steady theory, we need to
obtain the translating velocity v∗ that gives an average of
dynamical pressure. In this paper, for simplicity, we fix the
aerodynamic center at the 1/4 chord position Rch(ch = c/2).
Hence for a rotational frequency f [Hz] of the main link, the
translating velocity of the wing segment i is calculated as

v∗
i (θ) = |v∗i | ∼=

2πf

δθ

√
∆R2

chxi
(θ) + ∆R2

chyi
(θ), (4)

φi(θ) = ∠v∗
i
∼= ∆Rchyi(θ)

∆Rchxi(θ)
, (5)

���� ���� �	�
	��

Fig. 5. Wing translation in i-th wing segment.

where δθ denotes a very small change of θ during the rotation
and

∆Rch(θ) = (∆Rchx(θ),∆Rchy(θ))
= Rch(θ + δθ) − Rch(θ).

The attack angle α can be calculated as

αi(θ) = −φi(θ) + θ + q + γ(θ) − π

2
. (6)

For the velocity v∗(θ), the attack angle αi(θ) and the wing
segment area S = 2cb, the lift and drag forces of wing segment
i are given by

Di(θ) =
1
2
ρv∗

i
2(θ)SCD(αi(θ)), (7)

Li(θ) =
1
2
ρv∗

i
2(θ)SCL(αi(θ)), (8)

where CL(αi(θ)) and CD(αi(θ)) denote the lift and drag
coefficients, respectively. The lift and drag coefficients at low
Reynolds numbers (Re = 104) provided in [19] are used as
CL(αi(θ)) and CD(αi(θ)), respectively.

Next, to calculate the total torque of nf units with n wing
segments, we define r∗i (θ) as

r∗i (θ) =
v∗

i (θ)
2πf

=
1
δθ

√
∆R2

chxi
(θ) + ∆R2

chyi
(θ). (9)

The total torque T (θ) of nf units with n wing segments is
calculated as

T (θ) =
nf∑

if =1

n∑
i=1

(Di(Θif )r∗i (Θif )) + 2πCfricf, (10)

where

Θif = θ(t) + 2π
if − 1

nf
(11)

and Cfric is the friction loss coefficient of the prototype body
given as Cfric = 0.062 [mNm·sec/rad] that is calculated from
experimental data.
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The motor power P can be expressed as

P (θ) = 2πT (θ)f

= 4ρπ3S

nf∑
if

n∑
i

(
r∗i

3(Θif )CD(αi(Θif ))
)
f3

+4π2Cfricf
2. (12)

Equation (12) shows the relation between P (θ) and f . Hence,
for given P (θ), the rotational frequency f can be calculated
by (12). Conversely, the power P (θ) can be obtained if the
rotational frequency f is given.

The lift force N(θ) directing upward is calculated as

N(θ) = ρSCN(θ)f2 , (13)

where

CN(θ) = 2π2

nf∑
if=1

n∑
i=1

{r∗i 2(Θif )CD(αi(Θif ))cosΘif

+CL(αi(Θif ))sinΘif }. (14)

The total lift force N is obtained as

N =
1
2π

∫ 2π

0

N(θ)dθ

=
1
2π

∫ 2π

0

ρSCN(θ)f2dθ. (15)

C. Simulation and Experimental Results

Fig. 6 shows the simulation results for the fixed link’s
angle q and several rotational frequencies f at each revolv-
ing direction (CW or CCW), where CW and CCW denote
clockwise and counter clockwise, respectively. It is found in
the simulation results that the calculated lift forces are exactly
the same in the CW and CCW directions and that there exists
about 180 [deg.] phase difference with respect to q.

Table I is simulation results at the CCW and q=240 [deg.].
This results show that the robot can generate nearly 330 gf
lift force exceeding its own weight (245 g). This shows the
possibility of flying this mechanism.

TABLE I

SIMULATION RESULTS.

q=240 [deg.] and CCW
Motor power P 40 W 50 W 60 W

Frequency f 7.9 Hz 8.6 Hz 9.2 Hz
Lift Force N 245 gf 290 gf 331 gf

Fig. 7 shows the experimental system for measuring lift
forces. Lift forces are obtained by measuring strains of the
aluminum bar with strain gages. Fig. 8 shows the experimental
results of lift forces for q =40 [deg.] and q = 210 [deg.] at the
revolving directions (CW and CCW). This results show that
in spite of the same f , the lift forces are not the same for the
revolving directions. The lift forces in the CCW direction are
higher than those in the CW. In addition, the required power P
in the CCW are higher than that in the CW as well. However
these differences do not appear in the simulation results (Fig.
6) that indicates exactly the same force distributions. We will
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Fig. 6. Simulation results of lift forces for angle of fixed link.

Strain GageStrain GageFlying Robot

Aluminum barAluminum bar

Fig. 7. Experimental system for measuring lift forces.

discuss a modification of the simulation model in the next
section.

In Fig. 8, the highest lift force is generated at q=210
[deg.] in the CCW direction. Fig. 9 (a) (motor power P and
frequency f) and (b) (frequency f and lift force N ) show
experiment results at q=210 [deg.] in the CCW. Table II shows
a part of the experimental results given in Fig. 9 (a) and (b)
at q=210 [deg.] in the CCW direction. The lift force arrives at
330 gf that is larger than its own weight (245 gf). This means
that the generated lift force is sufficient to keep the robot in
the air and the robot has 85 gf payload.

IV. NEW SIMULATION MODEL

As a reason of the simulation error between Figs. 6 and 8,
we focus on a rotational effect of each wing. The simulation
model considers only translational motions. The variable wing

TABLE II

PERFORMANCE AT EACH POWER AT q=210 [DEG.] IN CCW.

Motor power P 20 W 40W 60 W
Frequency f 6 Hz 7.8 Hz 9 Hz
Lift Force N 150 gf 235 gf 330 gf
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Fig. 8. Experiment results of lift forces for angle of fixed link.

mechanism has a very remarkable flapping motion of the
pantograph. As shown in Fig. 10, the force at highly rotating
position contributes to upward in the CCW, whereas that at
highly rotating position contributes to downward in the CW.
Hence the rotational motion of the wings need to be considered
for this mechanism.

In this section, we construct a new precise simulation model
considering not only translational motions but also rotational
motions. As a first step, we simply consider the individual
force generated by rotational motion of each wing. The
simulation results will show that even the simple consideration
is effective to calculate lift force accuracy. As mentioned in
Introduction, this paper focuses mainly on demonstrating the
possibility of the flying robot with this mechanism. In near
future, our focus will be shifted from demonstration of flying
the robot (in experiment) to detailed aerodynamics analysis,
e.g., [20–23]. The aerodynamics analysis for this remarkable
wing motion is really interesting and will be one of next
subjects in our research.

A. Rotational Wing Motion

Fig. 11 illustrates a wing rotation in the i-th wing segment.
For the rotating velocity ωri and the translating velocity v∗

i ,
the leading edge velocity vi1 and the trailing edge velocity vi2

are expressed as

vi1 = vi1tiv + vi1njv =
[
v∗

i − cωrisinαi

cωricosαi

]T[
iv
jv

]
, (16)

vi2 = vi2tiv + vi2njv =
[
v∗

i + cωrisinαi

−cωricosαi

]T[
iv
jv

]
, (17)

respectively. According to conservation law of energy, pressure
gradient ∆P is expressed as

∆Pi = Pi1 − Pi2 =
1
2
ρ
(|vi2|2 − |vi1|2

)

=
1
2
ρ(vi2

2
t − vi1

2
t )

=
1
2
ρ(4cωriv

∗
i sinαi). (18)
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Fig. 9. Experiment result at q=210 [deg.] in CCW. (a) Motor power P and
frequency f . (b) Frequency f and lift force N .

This means that ∆P is equal to the gradient of dynamical
pressures of the wing velocity vi1t and vi2t. Hence assuming
a flow and pressure field like water pressure illustrated in Fig.
12, the rotational lift Fri of one wing segment is expressed as
a pressure gradient force:

Fri =
[
Frix

Friy

]
= ∆P (2c cosαi b)jv

=
1
2
ρ(4cωriv

∗
i sin αi)(2c cos αi b)jv

= 4ρc2bωriv
∗
i sinαi cos αi

[− sin φi

cos φi

]T[
ix
iy

]
. (19)

Finally, the total upward (vertical-axis direction) force Fry

with respect to the rotational motion is calculated as

Fry =
1
2π

∫ 2π

0

Fry(θ)dθ, (20)
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Fig. 11. Wing rotation in i-th wing segment.

where

Fry(θ) =
n∑

i=1

nf∑
if =1

Friy

= 2ρc2b
n∑

i=1

nf∑
if =1

(
ωri(Θif )v∗i (Θif )

× sin 2αi(Θif ) cos φi(Θif )
)
. (21)

B. Simulation Results

The total lift force N ′ considering the rotational motion
can be calculated as N ′ = N +Fry . Fig. 13 shows simulation
results of lift force distribution N ′ for the angle of fixed link
q with considering both translational and rotational effects.
The results in Fig. 13 agree well with the experimental
results in Fig. 8. Fig. 14 shows lift forces at each frequency
(simulation and experiment). Thus, our developed simulation
model considering the rotational motions has a sufficient high
performance for calculating lift forces of the pantograph-based
variable wing mechanism.

Fig. 12. Pressure gradient force Fri in i-th wing segment.
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Fig. 13. Simulation results of lift force for angle of fixed link with
consideration of rotational effect.
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Fig. 14. Lift force at each frequency (simulation and experiment).

V. REDESIGN AND EXPERIMENTAL RESULTS

A. Optimal Design Parameters

In the previous section, we have showed the possibility of
flying the developed prototype body. However flight perfor-
mance of the robot with the optimal design parameters has not
been considered. This section provides the optimization result
for the design parameters of the robot through the simulation
model developed in Section IV.

The purpose of the optimization is to determine the design
parameters that can generate larger payload. To evaluate the
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payload in the simulation model, we need to formulate a
weight model M [g] of the developed prototype body for
changing the design parameters. By considering the specific
gravity and sizes of materials, the weight model is formulated
as

M = 160 + 0.135(10 + e) + 2.4nf

+0.015(e + l − ro + 30 + l)nf

+5.7 × 10−5(ro − 20)2 + 1.04 × 10−5(4n − 3)nf c3

+22S + 1.15 × 10−7b3(n − 1)nf , (22)

where the first term is the weight of motor and all other
unchanging structural parts, the second term is of fixed link,
the third term is of sliders, the forth term is of cranks, the fifth
term is of gears, the sixth term is of pantograph links, and the
last two terms are of wings.

We search the optimal parameters by calculating the payload
PL(= N ′ − M) for all combinations of variable parameters.
In this paper we optimize the five parameters l, e, c, nf and
n, where the searching ranges are as follows:

l = 80 ∼ 140 [mm], e = 0 ∼ 70 [mm],
nf = 3 ∼ 6 [units], c = 0 ∼ 100 [mm],
n = 1 ∼ 3 [seg.].

Tables III and IV show optimization results for two cases
of the motor powers (P =40 [W] and 60 [W]), respectively.
In Tables III and IV, the payload of the prototype is also
calculated through the simulation model. In particular, when
the motor power is 60 [W], the optimal body can be expected
to get over 165 gf payloads. This result means that the flying
robot with the optimal parameters has 660 gf (= 165 × 4)
payload since the full model of the robot consists of four sets
of the bodies as will be shown in Fig. 17.

TABLE III

OPTIMIZED DESIGN PARAMETERS I (40 W).

nf n l e c Payload freq.
units seg. mm mm mm gf Hz

Optimized body 5 2 110 30 45 55 6.4

Prototype 5 2 100 25 40 16 7.7

TABLE IV

OPTIMIZED DESIGN PARAMETERS II (60 W).

nf n l e c Payload freq.
units seg. mm mm mm gf Hz

Optimized body 5 2 110 30 45 165 7.4

Prototype 5 2 100 25 40 97 8.9

B. Experimantal Results

We build a flying robot with the optimal parameters given
in Table IV. Fig. 15 shows the experimental system. The
robot is put on the attachment. The attachment goes up and
down along the vertical guide according to lift force generated
by the robot. We need to provide the vertical guide so far
since the robot can not be stabilized due to no feedback
control. To investigate the lift force generated by the robot, the

�������� 	
���

����

��	

����� ��� 	

���������� ���	

��
����

���	��

������

Fig. 15. Experimental setup.

attachment with the robot is connected to the counter weight.
The weights of the robot and the attachment are 248 g and 772
g, respectively. Even when the counter weight is 617 g, the
robot can go up through the vertical guide. This result shows
that the developed robot has at least 155 gf ( = 772 - 617)
payload. Fig. 16 shows flight performance experiment of the
optimal body with the counter weight 617 g. The payload of
the prototype mentioned in Section III is 85 gf. Hence, the
design optimization achieves about 182 % flight performance
improvement for the prototype. This result means that full
body of the flying robot with the optimal parameters has 620
gf (= 155 × 4) payload since the full body of the robot has
four rotors as will be shown in Fig. 17. The power is supplied
from outside in the current robot. However, this result shows
that it is possible to fly the robot with a battery, some sensors
and even a control board. A slight difference between the
simulation result (165 gf lift force) and the experimental result
(155 gf lift force) is mainly caused by the friction between the
attachment and the vertical guide.

VI. CONCLUSIONS

We have developed a flying robot with a new pantograph-
based variable wing mechanism for horizontal-axis rotorcrafts
(cyclogyro rotorcrafts). A key feature of the new mechanism
is to have a unique trajectory of variable wings that not only
change angles of attack but also expand and contract according
to wing positions. We have presented some comparison results
(between the simulation model and experimental data) for a
prototype body with the proposed pantograph-based variable
wing mechanism. Both simulation and experimental results
show that the flying robot with this new mechanism can
generate enough lift forces to keep itself in the air. Further-
more, we have constructed a more precise simulation model
by considering rotational motion. As a result of optimizing



A TEST FOR IEEETRAN.CLS— [RUNNING ENHANCED CLASS V1.6] 8
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Fig. 16. Flight performance experiment.
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Fig. 17. Picture image of full model with four sets of developed bodies
(pantograph-based variable wings).

design parameters using the precise simulation model, flight
performance experimental results have demonstrated that the
robot with the optimal design parameters can generate not only
enough lift forces but also 155 gf payload.

Our next subjects are to consider detailed aerodynamics for
this remarkable wing motion and to develop a full body flying
robot with the optimal parameters. Fig. 17 shows images of
the full model flying robot that we will develop. The full
model consists of four sets of the bodies (pantograph-based
variable wings) shown in Fig 4. The four pantograph-based
variable wings are symmetrically located due to cancelling the
total anti-torque generated by each pantograph-based variable
wing. We will design a stabilizing controller for the robot
using nonlinear control techniques.
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