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Guaranteed Cost Control of Polynomial Fuzzy
Systems via a Sum of Squares Approach

Kazuo Tanaka, Member, IEEE, Hiroshi Ohtake, Member, IEEE, and Hua O. Wang, Senior Member, IEEE

Abstract—This paper presents guaranteed cost control of
polynomial fuzzy systems via a sum of squares (SOS) approach.
First, we present a polynomial fuzzy model and controller that
are more general representation of the well-known Takagi-Sugeno
(T-S) fuzzy model and controller, respectively. Secondly, we derive
a guaranteed cost control design condition based on polynomial
Lyapunov functions. Hence, the design approach discussed in
this paper is more general than the existing LMI approaches (to
T-S fuzzy control system designs) based on quadratic Lyapunov
functions. The design condition realizes guaranteed cost control
by minimizing the upper bound of a given performance function.
In addition, the design condition in the proposed approach can
be represented in terms of SOS and is numerically (partially
symbolically) solved via the recent developed SOSTOOLS. To
illustrate the validity of the design approach, two design exam-
ples are provided. The first example deals with a complicated
nonlinear system. The second example presents micro helicopter
control. Both the examples show that our approach provides
more extensive design results for the existing LMI approach.

Index Terms—polynomial fuzzy control system, guaranteed
cost control, sum of squares, polynomial Lyapunov function,
stability.

I. INTRODUCTION

THE Takagi-Sugeno (T-S) fuzzy model-based control
methodology [1] has received a great deal of attention

over the last two decades [2]-[6]. There is no loss of gener-
ality in adopting the T-S fuzzy model based control design
framework as it has been established that any smooth nonlin-
ear control systems can be approximated by the T-S fuzzy
models (with liner model consequence) [7], [8]. Recently,
we presented a sum of squares (SOS) approach [10], [11]
to stability and stabilizability of polynomial fuzzy systems.
This is a completely different approach from the existing
LMI approaches [1], [9]. To the best of our knowledge, the
paper [10] presented the first attempt at applying an SOS to
fuzzy systems. Our SOS approach [10], [11] provided more
extensive results for the existing LMI approaches to T-S fuzzy
model and control.

This paper presents guaranteed cost control of polynomial
fuzzy systems via a sum of squares (SOS) approach. First, we
present a polynomial fuzzy model and controller that are more
general representation of the well-known T-S fuzzy model
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and controller, respectively. Secondly, we derive a guaranteed
cost control design condition based on polynomial Lyapunov
functions. Hence, the design approach discussed in this paper
is more general than the existing LMI approaches (to T-S fuzzy
control system designs) based on quadratic Lyapunov func-
tions. The design condition realizes guaranteed cost control by
minimizing the upper bound of a given performance function.
In addition, the design condition in the proposed approach can
be represented in terms of SOS and is numerically (partially
symbolically) solved via the recent developed SOSTOOLS
[12]. To illustrate the validity of the design approach, two
design examples are provided. The first example deals with a
complicated nonlinear system. For this nonlinear system, any
globally stabilizing T-S fuzzy controllers can not be designed
via the existing LMI approach. The second example presents
micro helicopter control from the application points of view.
Even for the helicopter dynamics represented by a Takagi-
Sugeno fuzzy model, we will show that the SOS control
approach is better than the existing LMI approach. Both the
examples show that our approach provides more extensive
design results for the existing LMI approach.

II. GUARANTEED COST CONTROL

In [10], we proposed a new type of fuzzy model with
polynomial model consequence, i.e., fuzzy model whose con-
sequent parts are represented by polynomials. First, we briefly
summarize the polynomial fuzzy model and controller.

It is well known that stability conditions for the T-S fuzzy
system and the quadratic Lyapunov function reduce to LMIs,
e.g., [1]. Hence, the stability conditions can be solved numer-
ically and efficiently by interior point algorithms, e.g., by the
Robust Control Toolbox of MATLAB1. On the other hand,
stability [10] and stabilization conditions [11] for polynomial
fuzzy systems and polynomial Lyapunov functions reduce to
SOS problems. Clearly, the problem is never solved by LMI
solvers and can be solved via SOSTOOLS [12]. Thus, SOS
can be regarded as an extensive representation of LMIs.

The computational method used in this paper relies on the
sum of squares decomposition of multivariate polynomials.
A multivariate polynomial f(x(t)) (where x(t) ∈ Rn) is a
sum of squares (SOS, for brevity) if there exist polynomials
f1(x(t)), · · · , fk(x(t)) such that f(x(t)) =

∑k
i=1 f

2
i (x(t)). It

is clear that f(x(t)) being an SOS naturally implies f(x(t)) ≥
0 for all x(t) ∈ Rn. For more details for SOS, see [10], [11].
A monomial in x(t) is a function of the form xα1

1 xα2
2 · · ·xαn

n ,

1A registered trademark of MathWorks, Inc.
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where α1, α2, · · · , αn are nonnegative integers. In this case,
the degree of the monomial is given by α1 + α2 + · · · + αn.

A. Polynomial fuzzy model and controller

Consider the following nonlinear system:

ẋ(t) = f(x(t),u(t)), (1)

where f is a nonlinear function. x(t) =
[x1(t) x2(t) · · · xn(t)]T is the state vector and
u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector.

A polynomial fuzzy model has been proposed in [10].
Using the sector nonlinearity concept, we exactly represent
(1) with the following polynomial fuzzy model (2). The
main difference between the T-S fuzzy model [13] and the
polynomial fuzzy model is consequent part representation. The
fuzzy model (2) has a polynomial model consequence.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai(x(t))x̂(x(t)) + Bi(x(t))u(t), (2)

where i = 1, 2, · · · , r. zj(t) (j = 1, 2, · · · , p) is the premise
variable. The membership function associated with the ith
Model Rule and jth premise variable component is denoted
by Mij . r denotes the number of Model Rules. Each zj(t)
is a measurable time-varying quantity that may be states,
measurable external variables and/or time. x̂(x(t)) is a column
vector whose entries are all monomials in x(t). That is,
x̂(x(t)) ∈ RN is an N × 1 vector of monomials in x(t).
Ai(x(t)) ∈ Rn×N and Bi(x(t)) ∈ Rn×m are polynomial
matrices in x(t). Therefore, Ai(x(t))x̂(x(t))+Bi(x(t))u(t)
is a polynomial vector. Thus, the polynomial fuzzy model
(2) has a polynomial in each consequent part. The details of
x̂(x(t)) is given in Proposition 1 of [11]. We assume that
x̂(x(t)) = 0 iff x(t) = 0 throughout this paper.

The defuzzification process of the model (2) can be repre-
sented as

ẋ(t) =
r∑

i=1

hi(z(t)){Ai(x(t))x̂(x(t)) + Bi(x(t))u(t)}, (3)

where

hi(z(t)) =

∏p
j=1 Mij(zj(t))∑r

k=1

∏p
j=1 Mkj(zj(t))

.

It should be noted from the properties of membership functions
that hi(z(t)) ≥ 0 for all i and

∑r
i=1 hi(z(t)) = 1. Thus,

the overall fuzzy model is achieved by fuzzy blending of
the polynomial system models. A stability condition for the
polynomial fuzzy systems without the inputs (i.e., u(t) = 0)
was derived in [10].

Since the parallel distributed compensation (PDC) mirrors
the structure of the fuzzy model of a system, a fuzzy controller
with polynomial rule consequence can be constructed from the
given polynomial fuzzy model (2).

Control Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then u(t) = −F i(x(t))x̂(x(t)) i = 1, 2, · · · , r (4)

The overall fuzzy controller can be calculated by

u(t) = −
r∑

i=1

hi(z(t))F i(x(t))x̂(x(t)). (5)

If x̂(x(t)) = x(t) and Ai(x(t)), Bi(x(t)) and Fj(x(t)) are
constant matrices for all i and j, then (3) and (5) reduce to
the Takagi-Sugeno fuzzy model and controller, respectively.
Therefore, (3) and (5) are more general representation.

From (3) and (5), the closed-loop system can be represented
as

ẋ(t) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

× {Ai(x(t)) − Bi(x(t))Fj (x(t))}x̂(x(t)). (6)

A stable controller design consisting of (3) and (5) was
discussed in [11].

Remark 1: As shown in [10], [11], the number of rules in
polynomial fuzzy model generally becomes fewer than that in
T-S fuzzy model, and our SOS approach to polynomial fuzzy
models provides much more relaxed stability and stabilization
results than the existing LMI approaches to T-S fuzzy model
and control. These facts will be found in Section III.

B. Guaranteed Cost Control via SOS

This subsection gives a guaranteed cost control design
condition whose feasibility can be checked via SOSTOOLS
(not via LMI solvers). Hence the fuzzy controller design
with polynomial rule consequence is numerically a feasibility
problem. From now, to lighten the notation, we will drop the
notation with respect to time t. For instance, we will employ x,
x̂(x) instead of x(t), x̂(x(t)), respectively. Thus, we drop the
notation with respect to time t, but it should be kept in mind
that x means x(t). In addition, we will employ x̂ instead of
x̂(x). It should be also kept in mind that x̂ means x̂(x(t)). Let
Ak

i (x) denotes the k-th row of Ai(x), K = {k1, k2, · · · km}
denote the row indicies of Bi(x) whose corresponding row is
equal to zero, and define x̃ = (xk1 , xk2 , · · · , xkm ).

To obtain more relaxed stability results, we employ a
polynomial Lyapunov function [10] represented by x̂T P (x̃)x̂,
where P (x̃) is a polynomial matrix in x. If x̂ = x and P (x̃)
is a constant matrix, then the polynomial Lyapunov function
reduces to the quadratic Lyapunov function xT Px. Therefore,
the polynomial Lyapunov function is a more general represen-
tation.

Next, we define the outputs for the polynomial fuzzy model
(3) as

y =
r∑

i=1

hi(z)Ci(x)x̂, (7)

where Ci(x) are also polynomial matrices. We also consider
the following performance function to be optimized.

J =
∫ ∞

0

ŷT

[
Q 0
0 R

]
ŷdt, (8)
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where

ŷ =
r∑

i=1

hi(z)
[

Ci(x)
−F i(x)

]
x̂. (9)

Q and R are positive definite matrices. Theorem 1 provides
the SOS design condition that minimizes the upper bound of
the given performance function (8).

Theorem 1: If there exist a symmetric polynomial matrix
X(x̃) ∈ RN×N and a polynomial matrix M i(x) ∈ Rm×N

such that (10), (11), (12) and (13) hold, the guaranteed
cost controller that minimizes the upper bound of the given
performance function (8) can be designed as Fi(x) =
Mi(x)X−1(x̃) .

minimize λ
X(x̃),Mi(x)

subject to

vT
1 (X(x̃) − ε1(x)I)v1 is SOS (10)

vT
2

[
λ x̂T (0)

x̂(0) X(x̃(0))

]
v2 is SOS (11)

− vT
3

⎡
⎣ N ii(x) + ε2ii(x)I

Ci(x)X(x̃)
−M i(x)

X(x̃)CT
i (x) −MT

i (x)
−Q−1 0

0 −R−1

⎤
⎦ v3 is SOS, (12)

− vT
4

⎡
⎢⎢⎣

N ij(x) + N ji(x)(
C i(x)X(x̃)

+Cj(x)X(x̃)

)
−M i(x) −M j(x)(

X(x̃)CT
i (x)

+X(x̃)CT
j (x)

)
−MT

i (x) − MT
j (x)

−2Q−1 0
0 −2R−1

⎤
⎥⎥⎦v4

is SOS, i < j, (13)

where

N ij(x) =
T (x)Ai(x)X(x̃) − T (x)Bi(x)M j(x)

+ X(x̃)AT
i (x)T T (x) − MT

j (x)BT
i (x)T T (x)

−
∑

k∈K

∂X(x̃)
∂xk

Ak
i (x)x̂. (14)

v1, v2, v3 and v4 are vectors that are independent of x.
T (x) ∈ RN×n is a polynomial matrix whose (i, j)-th entry
is given by T ij(x) = ∂x̂i

∂xj
(x). ε1(x) > 0 and ε2ii(x) > 0 at

x �= 0, and ε1(x) = 0 and ε2ii(x) = 0 at x = 0.
(proof) If (10) is satisfied for ε1(x) > 0 at x �= 0 and

ε1(x) = 0 at x = 0, then X(x̃) is a positive definite
polynomial matrix. Next, consider a candidate of polynomial
Lyapunov function V (x) = x̂T P (x̃)x̂, where P (x̃) =
X−1(x̃). If (10) is satisfied, then it is clear that V (x) > 0 at
x �= 0.

By noting that ẋk =
∑r

i=1 hi(z)Ak
i (x)x̂, the time deriva-

tive of the Lyapunov function V (x) along the trajectory of (6)

becomes as follows:

V̇ (x) = x̂T P (x̃) ˙̂x + ˙̂x
T
P (x̃)x̂ + x̂T Ṗ (x̃)x̂

=x̂T P (x̃)T (x)ẋ + ẋT T T (x)P (x̃)x̂

+ x̂T

(
n∑

k=1

∂P (x̃)
∂xk

ẋk

)
x̂

=
r∑

i=1

r∑
j=1

hi(z)hj(z)

× x̂T

(
P (x̃)T (x){Ai(x) − Bi(x)F j(x)}

+ {Ai(x) − Bi(x)F j(x)}T T T (x)P (x̃)

+
∑

k∈K

∂P (x̃)
∂xk

Ak
i (x)x̂

)
x̂

=
r∑

i=1

r∑
j=1

hi(z)hj(z)x̂TUij(x)x̂ (15)

where

Uij(x) = P (x̃)T (x)Ai(x) − P (x̃)T (x)Bi(x)F j(x)

+ AT
i (x)T T (x)P (x̃) − F T

j (x)BT
i (x)T T (x)P (x̃)

+
∑

k∈K

∂P (x̃)
∂xk

Ak
i (x)x̂. (16)

Next, we assume that there exists a positive definite poly-
nomial matrix P (x̃) satisfying (17).

r∑
i=1

r∑
j=1

hi(z)hj(z)x̂T U ij(x)x̂

+ x̂T

( r∑
i=1

hi(z)
[

C i(x)
−F i(x)

])T [
Q 0
0 R

]

×
( r∑

i=1

hi(z)
[

Ci(x)
−F i(x)

])
x̂ < 0 (17)

Then, V̇ (x) < 0 at x �= 0 since

x̂T

( r∑
i=1

hi(z)
[

Ci(x)
−F i(x)

])T [
Q 0
0 R

]

×
( r∑

i=1

hi(z)
[

Ci(x)
−F i(x)

])
x̂ ≥ 0.

In other words, the closed loop system (6) is stable if (10)
and (17) are satisfied. We will show that (17) holds if (12)
and (13) are satisfied later.

We note that (17) is equivalent to the following condition:

ŷT

[
Q 0
0 R

]
ŷ < −V̇ (x) (18)

By integrating (18) from 0 to ∞, we have

J =
∫ ∞

0

ŷT

[
Q 0
0 R

]
ŷdt

< −V (x)|∞0 = −x̂T P (x̃)x̂|∞0 . (19)
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Since the closed loop system (6) is stable (if both (10) and
(17) hold), x̂ → 0 at t→ ∞. Hence, (19) becomes

J < x̂T (0)P (x̃(0))x̂(0). (20)

Here we consider the following relation.

J < x̂T (0)P (x̃(0))x̂(0) ≤ λ (21)

From Schur complements, the above inequality can be rewri-
iten as [

λ x̂T (0)
x̂(0) X(x̃(0))

]
≥ 0. (22)

If (11) is satisfied, then (22) holds. Hence, we can design the
guaranteed cost controller (that minimizes the upper bound of
J ) by minimizing λ under the guarantee of (10), (11) and (17).

Next, we show that (17) holds if the SOS conditions (12)
and (13) are satisfied. If (12) and (13) hold, then we have

−
r∑

i=1

h2
i (z)

(
W ii(x) + Eii(x)

)
> 0, (23)

−
r∑

i=1

r∑
i<j

hi(z)hj(z)(W ij(x) + W ji(x)) ≥ 0, i < j,

(24)

where

Wij(x) =

⎡
⎣ N ij(x) X(x̃)CT

i (x) −MT
i (x)

Ci(x)X(x̃) −Q−1 0
−M i(x) 0 −R−1

⎤
⎦ ,

Eii(x) =

⎡
⎣ ε2ii(x)I 0 0

0 0 0
0 0

⎤
⎦ .

The inequalities (23) and (24) imply

−
r∑

i=1

r∑
j=1

hi(z)hj(z)W ii(x)

− 2
r∑

i=1

r∑
i<j

hi(z)hj(z)
(

W ij(x) + W ji(x)
2

)

= −
r∑

i=1

r∑
j=1

hi(z)hj(z)W ij(x) > 0. (25)

Using Schur complements,
r∑

i=1

r∑
j=1

hi(z)hj(z)W ij(x) < 0

can be converted into
r∑

i=1

r∑
j=1

hi(z)hj(z)Nij(x)

+
( r∑

i=1

hi(z)
[
Ci(x)X(x̃)
−M i(x)

])T
[
Q 0
0 R

]

×
( r∑

i=1

hi(z)
[
Ci(x)X(x̃)
−M i(x)

])
< 0. (26)

We note that Mi(x) = Fi(x)X(x̃).

Again, recall (14).

Nij(x)
=T (x)Ai(x)X(x̃) − T (x)Bi(x)M j(x)

+ X(x̃)AT
i (x)T T (x) − MT

j (x)BT
i (x)T T (x)

−
∑

k∈K

∂X(x̃)
∂xk

Ak
i (x)x̂ (27)

We rewrite the fifth term of (27). Since P (x̃)X(x̃) = I , we
first partially differentiate it with respect to xk .

∂P (x̃)
∂xk

X(x̃) + P (x̃)
∂X(x̃)
∂xk

= 0 (28)

Hence, we have the following equation.

−∂X(x̃)
∂xk

= X(x̃)
∂P (x̃)
∂xk

X(x̃) (29)

Therefore, (27) can be rewritten as

Nij(x)
=T (x)Ai(x)X(x̃) − T (x)Bi(x)M j(x)

+ X(x̃)AT
i (x)T T (x) − MT

j (x)BT
i (x)T T (x)

+
∑

k∈K

X(x̃)
∂P (x̃)
∂xk

X(x̃)Ak
i (x)x̂

=X(x̃)U ij(x)X(x̃). (30)

Multiplying both side of (26) by X−1(x̃) gives
r∑

i=1

r∑
j=1

hi(z)hj(z)U ij(x)

+
( r∑

i=1

hi(z)
[

C i(x)
−F i(x)

])T

×
[
Q 0
0 R

]( r∑
i=1

hi(z)
[

Ci(x)
−F i(x)

])
< 0. (31)

Thus (17) holds if the SOS conditions (12) and (13) are
satisfied.

(Q.E.D.)

Remark 2: Currently, sum of squares programs (SOSPs)
are solved by reformulating them as semidefinite programs
(SDPs). SOSTOOLS automates the conversion from SOSP
to SDP and the SDP can be solved by a SDP solver [12].
At present, SOOSTOOLS uses other free MATLAB add-ons
such as SeDuMi [14] or SDPT3 [15] as the SDP solver. In
this paper, we numerically find X(x̃) and Mi(x) satisfying
the SOS condition in Theorem 1 via SeDuMi in addition to
SOSTOOLS. For more details of how to solve the SDPs using
SeDuMi, see [12], [14].

Remark 3: Note that v1, v2, v3 and v4 are vectors that are
independent of x, because L(x) is not always a positive semi-
definite matrix for all x even if x̂T L(x)x̂ is an SOS, where
L(x) is a symmetric polynomial matrix in x. However, it is
guaranteed from Proposition 2 in [11] that if vT L(x)v is an
SOS, then L(x) ≥ 0 for all x.

Remark 4: To avoid introducing non-convex condition, we
assume that X(x̃) only depends on states x̃ whose dynamics is
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not directly affected by the control input, namely states whose
corresponding rows in Bi(x) are zero. In relation to this, it
may be advantageous to employ an initial state transformation
to introduce as many zero rows as possible in Bi(x).

III. DESIGN EXAMPLES

To illustrate the validity of the design approach, this section
provides two design examples. The first example deals with a
complicated nonlinear system. For this nonlinear system, any
globally stabilizing T-S fuzzy controllers can not be designed
via the existing LMI approach. The second example presents
micro helicopter control from the application points of view.
Even for the helicopter dynamics represented by a Takagi-
Sugeno fuzzy model, we will show that the SOS control
approach is better than the existing LMI approach.

A. Complicated Nonlinear System

Consider the following nonlinear system [11]:

ẋ1 = − x1 + x2
1 + x3

1 + x2
1x2 − x1x

2
2 + x2 + x1u,

ẋ2 = − sinx1 − x2. (32)

The nonlinear system is unstable. Based on the concept
of sector nonlinearity [1], the nonlinear system can be ex-
actly represented by a Takagi-Sugeno fuzzy model for x1 ∈
[−d1 d1] and x2 ∈ [−d2 d2], where d1 and d2 are constants
satisfying 0 < d1 <∞ and 0 < d2 <∞.

The Takagi-Sugeno fuzzy model is obtained as

ẋ =
8∑

i=1

hi(z){Aix + Biu}, (33)

where x = [x1 x2]T and z = [x1 x2]T . Ai, Bi matrices and
the membership functions hi(z) (i = 1, · · · , 8) are given in
[11].

For a large d1, e.g., d1 > 0.9, the following LMI stable
design conditions [1] are unsolvable for the feedback system
consisting of the Takagi-Sugeno fuzzy model (33) and the
corresponding Takagi-Sugeno fuzzy controller.

X > 0 (34)

−XAT
i −AiX + MT

i BT
i + BiM i > 0 (35)

−XAT
i −AiX − XAT

j − AjX

+MT
j BT

i + BiM j + MT
i BT

j + BjM i ≥ 0

i < j (36)

where M i = F iX. This means that LMI conditions (44) -
(46) [1] for guaranteed cost control are also infeasible for the
same large d1. In addition, the Takagi-Sugeno fuzzy model
has eight rules since the nonlinear system is complicated. We
will see that the polynomial fuzzy system (that can exactly and
globally represent the nonlinear system) has only two rules.
On the other hand, we can have the following polynomial
fuzzy system that can exactly represent the dynamics of the

nonlinear system for x1 ∈ (−∞ ∞) and x2 ∈ (−∞ ∞).

ẋ =
2∑

i=1

hi(z){Ai(x)x̂ + Bi(x)u} (37)

y =
2∑

i=1

hi(z)Ci(x)x̂ (38)

where x = x̂ =
[
x1 x2

]
and z = x1,

A1(x) =
[−1 + x1 + x2

1 + x1x2 − x2
2 1

−1 −1

]
,

A2(x) =
[−1 + x1 + x2

1 + x1x2 − x2
2 1

0.2172 −1

]
,

B1(x) =
[
x1

0

]
,B2(x) =

[
x1

0

]
,

C1(x) =
[
1 0

]
,C2(x) =

[
1 0

]
.

The membership functions are given as

h1(z) =
sinx1 + 0.2172x1

1.2172x1
, h2(z) =

x1 − sin x1

1.2172x1
.
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Fig. 1. Guaranteed cost control result.

The SOS design condition in Theorem 1 is feasible when
the orders of both X(x̃) and M i(x) are not zero. Conversely,
when the orders of both X(x̃) and M i(x) are zero, that is,
when both X(x̃) and M i(x) are constant matrices instead of
polynomial matrices in x, the design condition in Theorem 1
reduces to the existing LMI design condition. In other words,
when X(x̃) and M i(x) are constant matrices, the polynomial
fuzzy controller reduces to the Takagi-Sugeno fuzzy controller.
Only in this case, the SOS design condition in Theorem 1 is
infeasible. This means that the polynomial fuzzy controller
stabilizes globally and asymptotically the polynomial fuzzy
system (37) although it may be difficult to stabilize globally
and asymptotically the nonlinear system via Takagi-Sugeno
fuzzy controllers.

The guaranteed cost controllers for Q = I, R = 1
and x(0) =

[
10 10

]T
gives J = 183.3 when the orders

of X(x̃) and M i(x) are 0 and 1. The stable polynomial
fuzzy controller designed in [11] gives J = 297.7. Thus,
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the performance index value of the guaranteed cost control
is better than that of the stable control. In addition, if the
orders of X(x̃) and M i(x) are increased, the performance
index value can be improved. For example, the guaranteed
cost control gives J = 144.0 when the order of M i(x) are
2. Furthermore, the guaranteed cost control gives J = 131.0
when the orders of X(x̃) and M i(x) are 2 and 3, respectively.

A main difference between the Takagi-Sugeno fuzzy model
and the polynomial fuzzy model is that (37) can have x1

and x2 in the Ai and Bi matrices, i.e., that Ai and Bi

are permitted to be polynomial matrices in x. Furthermore,
our approach deals with a more general Lyapunov function
(polynomial Lyapunov function). Thus, our approach provides
more relaxed design results than the existing LMI approach. In
addition, the polynomial fuzzy model (37) is an exact global
model for the nonlinear system though the Takagi-Sugeno
fuzzy model (33) is an (exact) semi-global model for the
nonlinear system.

B. Micro Helicopter Control

A co-axial counter rotating helicopter dynamics can be
written as

u̇(t) =− a

Iz
ψ(t)v(t) +

1
m
UX(t), (39)

v̇(t) =
a

Iz
ψ(t)u(t) +

1
m
UY (t), (40)

ẇ(t) =
1
m
UZ(t), (41)

under some assumptions [17], where a = 1.5, m = 0.2 and
Iz = 0.2857. u, v and w denote velocities of x, y and z
axis directions, respectively. ψ is angle around z axis. UX(t),
UY (t) and UZ(t) denote control input variables.

Based on the concept of sector nonlinearity [1], the non-
linear system can be exactly represented by a Takagi-Sugeno
fuzzy model for ψ(t) ∈ [−π π]. The Takagi-Sugeno fuzzy
model is obtained as

ẋ(t) =
2∑

i=1

hi(z(t)){Aix(t) + Biu(t)}, (42)

y(t) =
2∑

i=1

hi(z(t))Cix(t), (43)

where z(t) = ψ(t) and

x(t) = [u(t) v(t) w(t) ex(t) ey(t) ez(t)]T ,
u(t) = [UX(t) UY (t) UZ(t)]T .

The elements ex(t), ey(t) and ez(t) are defined as ex(t) =
x(t) − xref , ey(t) = y(t) − yref , ez(t) = z(t) − zref , where
xref , yref and zref are constant target positions. Ai, Bi

and Ci matrices and the membership functions are given as

follows.

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −aπ
IZ

0 0 0 0
aπ
IZ

0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 aπ
IZ

0 0 0 0
−aπ

IZ
0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

B1 = B2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
m 0 0
0 1

m 0
0 0 1

m
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C1 = C2 =

⎡
⎣ 0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ ,

h1(ψ(t)) =
ψ(t) + π

2π
, h2(ψ(t)) =

π − ψ(t)
2π

.

Note that the Takagi-Sugeno fuzzy model exactly represents
the dynamics (39) - (41) for the range ψ(t) ∈ [−π π].

Consider the performance index (8) again. We can find
feedback gains that minimizes the upper bound of (8) by
solving the following LMIs [1]. From the solutions X and
Mi, the feedback gains can be obtained as Fi = MiX

−1.
Then, the controller satisfies J < xT (0)Xx(0) < λ.

minimize
X,Mi,

λ

subject to

X > 0,
[

λ xT (0)
x(0) X

]
>0, (44)

Û ii <0 (45)

V̂ ij <0 i < j, (46)

where

Ûii =

⎡
⎣ Hii XCT

i −MT
i

CiX −Q−1 0
−Mi 0 −R−1

⎤
⎦ ,

V̂ij =

⎡
⎢⎢⎢⎢⎣

Hij + Hji XCT
i −MT

j XCT
j −MT

i

CiX −Q−1 0 0 0
−Mj 0 −R−1 0 0
CjX 0 0 −Q−1 0
−Mi 0 0 0 −R−1

⎤
⎥⎥⎥⎥⎦ ,

Hij = XAT
i + AiX −BiM j − MT

j BT
i .

The above LMI condition is feasible for this fuzzy model.
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On the other hand, the SOS design condition in Theorem 1
is also feasible when the orders of X(x̃) and M i(x) are zero
and two, respectively. We compare the LMI-based guaranteed
cost controller (designed by solving the (44) - (46)) with the
controller (designed by the SOS condition in Theorem 1),
that is, with the SOS-based guaranteed cost controller. Table
I shows comparison results of performance function values
J for the LMI controllers and the SOS controllers, where
the initial positions are u(0) = 0, v(0) = 0, w(0) = 0
ex(0) = −0.6, ey(0) = −0.4 and ez(0) = −1. In Table
I, Cases I, II and III denote three cases of selecting the
weighting matrices (Q,R) = (I, 0.1I), (Q,R) = (I, I), and
(Q,R) = (I, 10I), respectively.

TABLE I
COMPARISON OF PERFORMANCE FUNCTION VALUES J

Case I Case II Case III
LMI controller 0.67286 1.5522 3.8873
SOS controller 0.57539 1.0388 2.3350
Reduction rate of J [%] 14.4859 33.0756 39.9326

It is found from Table I that the performance index values of
the SOS based guaranteed cost control (Theorem 1) are better
than those of the LMI based guaranteed cost control ((44) -
(46)) in all the cases.

IV. CONCLUSIONS

This paper has presented guaranteed cost control of poly-
nomial fuzzy systems via a sum of squares (SOS) approach.
First, we have presented a polynomial fuzzy model and con-
troller that are more general representation of the well-known
Takagi-Sugeno (T-S) fuzzy model and controller, respectively.
Secondly, we have derived a guaranteed cost control design
condition based on polynomial Lyapunov functions. Hence,
the design approach discussed in this paper is more general
than the existing LMI approaches (to T-S fuzzy control system
designs) based on quadratic Lyapunov functions. The design
condition realizes guaranteed cost control by minimizing the
upper bound of a given performance function. In addition, the
design condition in the proposed approach can be represented
in terms of SOS and is numerically (partially symbolically)
solved via the recent developed SOSTOOLS. To illustrate
the validity of the design approach, two design examples
have been provided. Both the examples have shown that
our approach provides more extensive design results for the
existing LMI approach.

Our future works are to apply this approach to a real micro
helicopter and to extend this approach to a variety of control
techniques.
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