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Sensor Reduction for Backing-up Control
of a Vehicle with Triple Trailers

Kazuo Tanaka, Member, IEEE, Kenji Yamauchi, Hiroshi Ohtake, Member, IEEE, and Hua O. Wang, Senior
Member, IEEE

Abstract— This paper presents a cost effective design based on
sensor reduction for backing-up control of a vehicle with triple
trailers. To realize a cost effective design, we newly derive two
linear matrix inequality (LMI) conditions for discrete Takagi-
Sugeno fuzzy system. One is an optimal dynamic output feedback
design that guarantees desired control performance. The other is
an avoidance of jackknife phenomenon for the use of the optimal
dynamic output feedback controller. Our results demonstrate that
the proposed LMI-based design effectively achieves the backing-
up control of the vehicle with triple trailers while avoiding
the jackknife phenomenon. More importantly, we demonstrate
that the designed optimal control can achieve the backing-up
control without at least two potentiometers that were employed
to measure the relative angles (of a vehicle with triple trailers)
in our previous experiments. Since the relative angles directly
relate to the jackknife phenomenon, the successful control results
without two potentiometers are very interesting and important
from the cost effective design points of view.

Index Terms— fuzzy control, linear matrix inequality, sensor
reduction, backing-up control, vehicle with triple trailers.

I. INTRODUCTION

CONTROL theory mainly provides procedures for design-
ing a controller to stabilize a system or to achieve desired

control performance. However, in real control problems, we
frequently need to consider a cost effective design in addition
to achieving desired control performance. It is obviously more
cost effective to be able to detect feedback information without
the need of additional sensors. Thus, sensorless system [1] or
at least reduction of the number of sensors (shortly, sensor
reduction) is very useful for cost effective designs in real
control problems. In this paper, we discuss sensor reduction
for backing-up control of a vehicle with triple trailers.

Backing-up control problems for a vehicle with a single
trailer or multiple trailers have been used as a testbed for
a variety of control design methods, e.g., [2]-[10], etc. In
order to successfully back up the trailer-truck, the so-called
”jackknife” phenomenon needs to be avoided. In the single
trailer case, only two jackknife positions exist. On the other
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hand, eight jackknife positions exist in the triple trailer case.
Thus, the triple trailer case is much more difficult than the
single trailer case. The studies [2]-[7] have provided only
simulation results for the single trailer case without discussing
the stability issue of the designed control systems. In [11], the
problem of asymptotic stabilization for backward motion has
been addressed. However, the paper [11] has discussed only
a single trailer case. We presented successful experimental
results for the triple trailers case [12], [13] based on a linear
matrix inequality (LMI) approach to stable fuzzy controller
design. Recently, multiple trailer cases have been also pre-
sented in [14] and [15]. However, both the works [14] and [15]
have provided no any theoretical guarantee for the stability of
control systems. To the best of our knowledge, triple-trailers
experimental results with guaranteeing the stability of the
control system have been reported only in the literature [12],
[13]. However, all the studied mentioned above were assumed
that full sensor information is available in the backing-up
control, that is, that full sensor information on relative angles
was needed to realize the control purpose. Thus, cost effective
designs for backing-up control have not been discussed in the
literature. This paper attempts to reduce some of the important
sensors to detect relative angles in the triple trailer case.
Obviously, this is a challenging attempt in the backing-up
control problem.

In this paper, we discuss a cost effective design in the triple
trailers case. To realize a cost effective design, we newly derive
two linear matrix inequality conditions for discrete Takagi-
Sugeno fuzzy system. One is an optimal dynamic output
feedback design that guarantees desired control performance
(namely, guaranteed cost control design). The other is an
avoidance of jackknife phenomenon for the use of the optimal
dynamic output feedback controller. Over the last decade the
design issues for Takagi-Sugeno fuzzy systems [16] have been
considered extensively in nonlinear control frameworks, e.g.,
[17], [20]-[39]. The main advantage of such fuzzy model-
based control methodology [17] is that it provides a natural,
simple and effective design approach to complement other
nonlinear control techniques (e.g., [18]) that require special
and rather involved knowledge. Moreover, there is no loss of
generality in adopting the Takagi-Sugeno fuzzy model based
control design framework as it has been established that any
smooth nonlinear control systems can be approximated by the
Takagi-Sugeno fuzzy models (with linear rule consequence)
[19]. Within the general framework of Takagi-Sugeno fuzzy
model-based control systems, there has been, in particular, a
flurry of research activities in the analysis and design of fuzzy
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control systems based on LMIs (e.g., [17]). This paper extends
the framework to optimal dynamic output feedback designs
while avoiding the jackknife phenomenon, where optimal
control means the guaranteed cost control throughout this
paper. To the best of our knowledge, optimal dynamic output
feedback designs under the constrains on jackknife avoidance
for discrete Takagi-Sugeno fuzzy systems have not been
considered in the literature. Our results demonstrate that the
proposed LMI-based design effectively achieves the backing-
up control of the vehicle with triple trailers while avoiding
the jackknife phenomenon. More importantly, we demonstrate
that the designed optimal control can achieve the backing-
up control without at least two potentiometers that were
employed to measure the relative angles (of a vehicle with
triple trailers) in our previous experiments [12], [13]. Since
the relative angles directly relate to the jackknife phenomenon,
the successful control results without two potentiometers are
very interesting and important from the cost effective design
points of view. Although potentiometers are inexpensive in
general, the approach discussed here can be applied to more
cost effective design problems for the systems with expensive
sensors.

All the matrices and vectors in this paper are assumed to
have appropriate dimensions.

II. BACKING-UP CONTROL OF A VEHICLE WITH TRIPLE

TRAILERS

Figure 1 shows the vehicle model with three trailers and its
coordinate system, where

x0(t) : angle of vehicle,
x1(t) : angle difference between vehicle and first trailer,
x2(t) : angle of first trailer,
x3(t) : angle difference between first trailer and second

trailer,
x4(t) : angle of second trailer,
x5(t) : angle difference between second trailer and third

trailer,
x6(t) : angle of third trailer,
x7(t) : vertical position of rear end of third trailer,
x8(t) : horizontal position of rear end of third trailer,
u(t) : steering angle.

To design a fuzzy controller, we use the original model
described in [13].

In this paper we have l = 0.087[m], L = 0.130[m], ν =
−0.10[m/sec.], ∆t = 0.5[sec.], where l is the length of the
vehicle, L is the length of the trailer, ∆t is the sampling time,
and ν is the constant speed of the backward movement.

For the relative angles x1(t), x3(t) and x5(t), 90 [deg.]
and -90 [deg.] correspond to eight jackknife positions. To
successfully back up, the eight jackknife positions should be
absolutely avoided. The control objective is to back the vehicle
into the straight line (x7 = 0) without any forward movement,
that is, x1(t) → 0, x3(t) → 0, x5(t) → 0, x6(t) →
0, x7(t) → 0.

To employ our dynamic output feedback design method, we
begin with the construction of a Takagi-Sugeno type of fuzzy
model which represents the nonlinear dynamics of the vehicle

Fig. 1. Vehicle with Triple Trailers.

with three trailers. We have the following Takagi-Sugeno fuzzy
model [13] for the original model.

Model Rule 1 : If z1(t) is “about 0 [rad.]”,

then x(t + 1) = A1x(t) + B1u(t),
(1)

Model Rule 2 : If z1(t) is “about π or − π [rad.]”,

then x(t + 1) = A2x(t) + B2u(t),

where

z1(t) = x6(t) +
ν · ∆t

2L
x5(t),

x(t) = [x1(t) x3(t) x5(t) x6(t) x7(t)]
T

.

Figure 2 shows the membership functions “about 0 [rad.]”
and “about π or −π [rad.]”. For more details of the fuzzy
model construction, see [13]. There is no loss of generality in
adopting the Takagi-Sugeno fuzzy model based control design
framework as it has been established that any smooth nonlinear
control systems can be approximated by the Takagi-Sugeno
fuzzy models (with liner rule consequence) [19]. The overall
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Fig. 2. Membership functions.

fuzzy model is inferred as

x(t + 1) =
2∑

i=1

hi(z1(t)){Aix(t) + Biu(t)}, (2)
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where

hi(z1(t)) =
wi(z1(t))∑2
i=1 wi(z1(t))

.

w1(z1(t)) and w2(z1(t)) are the grades of membership of
z1(t) in the membership functions “about 0 [rad.]” and “about
π [rad.] or −π [rad.]”, respectively.

It is assumed from experimental points of view that the
steering angle u(t) has the saturation of |u(t)| < π/3 in
the simulation. This means that the real steering angle to the
vehicle is ±π/3 if u(t) exceeds ±π/3.
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Fig. 3. Experimental setup.

Figure 3 shows our previous experimental setup in [13].
Three potentiometers are attached at the connecting parts
between the vehicle and the first trailer, between the first
trailer and the second trailer, and between the second trailer
and the third trailer. The third trailer has a black rectangular
marker for vision sensing using a charge coupled device
(CCD) camera. The relative angles x1(t), x3(t) and x5(t) are
observed (through an A/D converter) from three potentiome-
ters. The control variables x6(t) and x7(t) are successively
observed through an image processing board that receives
vision information from the CCD camera. The steering angle
u(t) is controller by a stepping motor.

In [12], [13], a full-state feedback controller stabilizing
the system was designed. The purpose of this paper is to
discuss the possibility of reducing the number of potentiome-
ters. The reduction of potentiometers directly relates to cost
effectiveness for constructing control systems. To realize a cost
effective design, we will newly derive two LMI conditions for
discrete Takagi-Sugeno fuzzy systems in Section III.

III. SENSOR REDUCTION VIA DYNAMIC OUTPUT

FEEDBACK CONTROL

Sensor reduction problems can be formulated as an output
feedback design problem. To reduce the number of sensors,
Section III provides dynamic output feedback designs based
on LMIs. After discussing a stable dynamic output feedback
design, we will newly derive an optimal dynamic output
feedback design condition that guarantees desired control
performance. By introducing some variable transformations,
the optimal dynamic output feedback design condition derived
in this section can be represented in terms of LMIs. We will
see the fact in the proofs of Theorems 1 and 2.

Consider the following discrete Takagi-Sugeno fuzzy model.

Model Rule i:
if z1(t) is M i

1 and · · · and zp(t) is M i
p

then

{
x(t + 1) = Aix(t) + Biu(t)
y(t) = Cix(t)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ R�, and i =
1, 2, · · · , r. r is the number of Model Rules. The membership
function associated with the ith Model Rule and jth premise
variable component is denoted by M i

j . zj(t) (j = 1, 2, · · · , p)
is the premise variable. Each zj(t) is a measurable time-
varying quantity that may be measurable states, measurable
external variables and/or time. In other words, each zj(t) is
needed to be independent of unmeasurable states. In Section
III, we will discuss multiple inputs case although the vehicle
with triple trailers has a single input. Hence the controller
design discussed here can be applied also to multiple inputs
case.

By using the center of gravity method for defuzzification,
the Takagi-Sugeno fuzzy model is represented as

x(t + 1) =
r∑

i=1

hi(z(t))(Aix(t) + Biu(t)), (3)

y(t) =
r∑

i=1

hi(z(t))Cix(t), (4)

where z(t) = [z1(t), z2(t), · · · zp(t)],

hi(z(t)) =
wi(z(t))∑r

i=1 wi(z(t))
,

wi(z(t)) =
p∏

j=1

M i
j(zj(t)).

Without loss of generality, we assume that wi(z(t)) ≥ 0 and∑r
i=1 wi(z(t)) > 0. The controller is constructed based on

the dynamic parallel distributed compensation (DPDC).

u(t) =
r∑

i=1

hi(z(t))Cc
ix

c(t), (5)

xc(t + 1) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

×(Ac
ijx

c(t) + Bc
jy(t)), (6)

where xc(t) ∈ Rn. A key feature of the dynamic controller
(5) and (6) is to have Ac

ij (instead of Ac
i ) in (6). The reason

will be given later.
The control law (5) and (6) feedbacks only the outputs y(t)

instead of the states x(t). In practical control, we generally
select measurable states as the outputs y(t). In other words,
the unmeasurable states caused by sensor reduction should
be removed from the outputs. In our sensor reduction case,
we will remove x1(t) and x3(t) from the outputs since these
potentiometers concerning x1(t) and x3(t) are removed as will
be seen in (46).
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By substituting the dynamic output feedback controller (5)
and (6) into the discrete fuzzy model (3) and (4), we have the
closed-loop system,

x(t + 1) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

×(Aix(t) + BiC
c
jx

c(t)), (7)

xc(t + 1) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

×(Bc
jCix(t) + Ac

ijx
c(t)). (8)

From (7) and (8), we arrive at the general form of the dynamic
output feedback system.

xcl(t + 1) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))Acl
ijx

cl(t), (9)

ŷ(t) =
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))C∗
ijx

cl(t), (10)

where

xcl(t) =
[

x(t)
xc(t)

]
, Acl

ij =
[

Ai BiC
c
j

Bc
jCi Ac

ij

]
,

ŷ(t) =
[

y(t)
u(t)

]
, C∗

ij =
[

Ci 0
0 Cc

j

]
.

We give stable and optimal dynamic output feedback designs
for the discrete Takagi-Sugeno fuzzy system (3) and (4),
respectively. As mentioned in Introduction, throughout this
paper, the optimal control means guaranteed cost control.

A. Stable Controller Design

Theorem 1 shows stable controller design conditions. Since
they are represented in terms of LMIs, Theorem 1 can be
solved numerically.

Theorem 1: A dynamic output feedback controller (5) and
(6) stabilizing (3) and (4) can be designed if there exist X ,
Y , Gj , Lj and Φij such that the following LMIs hold.[

X I
I Y

]
> 0, (11)

W ii > 0, ∀i (12)

W ij + W ji ≥ 0, i < j, (13)

where

W ij =

⎡
⎢⎢⎣

X ∗ ∗ ∗
I Y ∗ ∗

AiX + BiGj Ai X ∗
Φij Y Ai − LjCi I Y

⎤
⎥⎥⎦ . (14)

The symbol ∗ denotes the transposed element (matrix) for the
symmetric position.
(proof) From Lyapunov stability theorem, we can have the
following sufficient condition for ensuring the stability of (9)
and (10).

AclT

ii P clAcl
ii − P cl < 0, ∀i (15)

AclT

ij P clAcl
ij + AclT

ji P clAcl
ji − 2P cl ≤ 0, i < j (16)

where P cl > 0.
Multiplying both sides of (15) by P cl−1

= Xcl > 0 gives

XclAclT

ii Xcl−1
Acl

iiX
cl − Xcl < 0. (17)

It easily follows that the above inequality can be transformed
into (18) by Schur Complement.[

Xcl XclAclT

ii

Acl
iiX

cl Xcl

]
> 0 (18)

Define that Xcl =
[
X S
S S

]
> 0. Then, we have

Acl
iiX

cl =
[

Ai BiC
c
i

Bc
iCi Ac

ii

] [
X S
S S

]

=
[
AiX + BiC

c
iS (Ai + BiC

c
i )S

Bc
iCiX + Ac

iiS (Bc
iCi + Ac

ii)S

]
. (19)

Since

[
X S
S S

]
> 0, note that X > S > 0. Assume that

Y = (X − S)−1. By using T ≡
[

I 0
Y −Y

]
, we have

TXclT T =
[
X I
I Y

]
> 0. (20)

By multiplying both sides of (18) by block-diag[T T ] and
block-diag[T T T T ], respectively, (21) is obtained.[

TXclT T TXclAclT

ii T T

TAcl
iiX

clT T TXclT T

]
> 0, (21)

where

TAcl
iiX

clT T =
[
AiX + BiGi Ai

Φii Y Ai −LiCi

]
,

Gi = Cc
iS,

Li = Y Bc
i ,

Φii = Y (AiX + BiC
c
iS − Bc

iC iX − Ac
iiS).

Hence, the condition (21) becomes (12). The condition (13)
is obtained from (16) in the same way as described above.

(Q.E.D.)
The LMI variables are X , Y , Gj , Lj and Φij , where

Gj = Cc
jS,

Lj = Y Bc
j ,

Φij = Y (AiX + BiC
c
jS −Bc

iCjX −Ac
ijS),

S = X − Y −1.

S can be obtained as S = X − Y −1 from the solution X
and Y . Cc

j and Bc
i are obtained as Cc

j = GjS
−1 and Bc

j =
Y −1Lj , respectively. Ac

ij are obtained as

Ac
ij = {AiX + BiC

c
jS

−Bc
jCiX − Y −1φij}S−1 (22)
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from solutions X,Y ,S,Bc
j ,C

c
j and φij .

The important point is to use Ac
ij instead of Ac

i as shown
in (6). If Ac

i instead of Ac
ij is used, Ac

i can not be uniquely
obtained by solving the following equation (instead of (22))
since the right-hand side of (23) has not only the subscript i
but also j.

Ac
i = {AiX + BiC

c
jS

−Bc
jCiX − Y −1φij}S−1 (23)

The premise variable z1(t) in (1) is dependent of x5(t) and
x6(t) in the triple trailer case. A CCD camera is employed to
detect both x6(t) and x7(t). Therefore, it is assumed in this
design that x1(t) and x3(t) are unmeasurable. We will see in
Section V that the designed controller can realize the control
purpose without measuring the information on the relative
angles x1(t) and x3(t). This means that any sensors are not
employed to measure the relative angles x1(t) and x3(t). This
is very interesting and important from the cost effective design
points of view.

A stable dynamic output feedback controller is designed by
solving the LMIs in Theorem 1. Figures 4, 5 and 6 show the
control results of the original model by the stable controller
for the initial values x6(0) = π/6, π/2, π, respectively, where
x1(0) = x3(0) = x5(0) = 0, x7(0) = 2 and xc(0) = 0.
The simulation stops (due to jackknife) when one of the
relative angles x1(t), x3(t) or x5(t) at least exceed ±π/2.
When the vehicle-trailer system is at an ”easy” initial position,
even the stable controller works, i.e., the vehicle-trailer system
approaches the desired straight line. On the other hand, the
system starts from a ”difficulty” initial position, the stable
control occurs jackknife phenomenon as soon as control starts.
To circumvent these problems, we invoke optimal dynamic
output feedback design.
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Fig. 4. Control result for stable controller (x6(0) = π/6).

B. Optimal Controller Design

Section III-B presents the optimal controller design for the
dynamic output feedback control. The design is achieved so
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Fig. 5. Control result for stable controller (x6(0) = π/2).
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Fig. 6. Control result for stable controller (x6(0) = π).

as to minimize the upper bound of a given performance index
(24).

J =
∞∑

k=0

{yT (k)Qy(k) + uT (k)Ru(k)}, (24)

where Q > 0 and R > 0.
Theorem 2 shows optimal controller design conditions.

Since they are also represented in terms of LMIs, Theorem
2 can be solved numerically as well as in Theorem 1.

Theorem 2: Assume that m = �. By solving the following
generalized eigenvalue minimization problem (GEVP), the
optimal dynamic output feedback controller is designed. Then,
the controller realizes J < λ.

minimize
X,Y ,φij,Li,Gj

λ

subject to [
X I
I Y

]
> 0 (25)
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⎡
⎣ λ xT

k�(0)
xk�(0) X

Y (xk�(0) − xc(0)) I

(xk�(0) − xc(0))T Y
I
Y

⎤
⎦ > 0 k, � = 1, 2 (26)

Zii > 0 ∀i (27)

Zij + Zji ≥ 0 i < j (28)

where

Zij =

⎡
⎢⎢⎢⎢⎢⎢⎣

X ∗ ∗
I Y ∗

−CiX −Ci Q−1

Gj −CiX −Ci Q−1

AiX + BiGj Ai 0
Φij Y Ai − LjCi 0

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Q−1 + R−1 ∗ ∗
0 X ∗
0 I Y

⎤
⎥⎥⎥⎥⎥⎥⎦

,

xk�(0) =

⎡
⎢⎢⎢⎢⎣
x1(0) + ε1 · sgn(k − 1.5)
x3(0) + ε3 · sgn(� − 1.5)

x5(0)
x6(0)
x7(0)

⎤
⎥⎥⎥⎥⎦ k, � = 1, 2.

ε1 and ε3 are positive scalars. X , Y , Gj , Lj , Φij are LMI
variables as well as in Theorem 1.
(proof)

Consider

J =
∞∑

k=0

ŷT (k)Q∗ŷ(k) (29)

as a quadrtic performance function, where

Q∗ =
[
Q 0
0 R

]
,Q > 0,R > 0.

The proof begins with assuming that the following conditions
hold.

P cl > 0 (30)
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

×
[
AclT

ij P clAcl
ij −P cl C∗T

ij

C∗
ij −Q∗−1

]
< 0 (31)

Then, it is clear that the augmented system (9) and (10) is
asymptotically stable in the large. Note that xclT (t)P clxcl(t)
is a quadratic Lyapunov function for the augmented system.

First, we derive (26) and the relation J < λ. We have the
following relation.

xclT (t + 1)P clxcl(t + 1) − xclT (t)P clxcl(t)

=
r∑

i=1

r∑
j=1

r∑
�=1

r∑
v=1

hi(z(t))hj(z(t))h�(z(t))hv(z(t))

× xclT (t)(AclT

ij P clAcl
�v − P cl)xcl(t)

≤
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

× xclT (t)(AclT

ij P clAcl
ij − P cl)xcl(t)

< −
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))xclT (t)C∗T

ij Q∗C∗
ijx

cl(t)

= − ŷT (t)Q∗ŷ(t) (32)

Taking summation both side from 0 to ∞, we obtain

J =
∞∑

t=0

ŷT (t)Q∗ŷ(t)

<
∞∑

t=0

{xclT (t)P clxcl(t) − xclT (t + 1)P clxcl(t + 1)}

= xclT (0)P clxcl(0) − xclT (∞)P clxcl(∞). (33)

Since the augmented system is asymptotically stable in the
large, xcl(∞) → 0. Hence, we have

∞∑
t=0

ŷT (t)Q∗ŷ(t) < xclT (0)P clxcl(0). (34)

Let us introduce λ such that

J =
∞∑

t=0

ŷT (t)Q∗ŷ(t) < xclT (0)P clxcl(0) < λ. (35)

A part of the inequality (35) can be converted into

λ − xclT (0)P clxcl(0)

= λ −
[

x(0)
x(0) − Y −1Y (x(0) − xc(0))

]T

P cl

×
[

x(0)
x(0) − Y −1Y (x(0) − xc(0))

]

= λ −
[

x(0)
Y (x(0) − xc(0))

]T [
I 0
I −Y −1

]T

P cl

×
[
I 0
I −Y −1

][
x(0)

Y (x(0) − xc(0))

]
> 0. (36)

From Schur Complement, the condition (36) is represented as⎡
⎣ λ xT (0) x̂T (0)Y

x(0) X I
Y x̂(0) I Y

⎤
⎦ > 0, (37)

where x̂(0) = x(0) − xc(0).
As will be noted in Remark 1 later, if a polyhedron

consisting of all its vertex points xk�(0) can be selected so
as to contain the unknown initial states x1(0) and x3(0), the
initial state condition (37) can be replaced with the condition
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(26), where ε1 and ε3 denotes the ranges of a polyhedron for
x1(t) and x3(t), respectively.

Next, we convert (30) and (31) into the LMIs (25), (27)
and (28). From (30), (25) is obtained in the same way as in
Theorem 1. We derive (27) and (28) from (31). Multiplying
the inequality (31) on the left and right by block-diag[Xcl I ],
we rewrite the condition as

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))

[
Ωij XclC∗T

ij

C∗
ijX

cl −Q∗−1

]
< 0, (38)

where

Ωij = XclAclT

ij Xcl−1
Acl

ijX
cl − Xcl. (39)

Furthermore, multiplying the inequality (38) on the left and
right by block-diag[T T ] and block-diag[T T T T ], respec-
tively, we obtain

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))

×
[

TΩijT
T TXclC∗T

ij T T

TC∗
ijX

clT T −TQ∗−1
T T

]
, (40)

where we note that

TC∗
ijX

clT T =
[

CiX Ci

Y C iX − Y Gi Y C i

]
,

TQ∗−1
T T =

[
Q−1 Q−1Y

Y Q−1 Y Q−1Y + Y R−1Y

]
.

Multiplying the inequality (40) on the left and right by[
I 0
0 Π

]
, where Π = block-diag[I Y −1], we arrive at

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))
[
TΩijT

T UT
i

U i −V

]
< 0, (41)

where

U i =
[

CiX Ci

CiX − Gi Ci

]
,

V =
[
Q−1 Q−1

Q−1 Q−1 + R−1

]
.

We rewrite the condition as follows.
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))
([

TXclT T −UT
i

−U i V

]

−
[
TXclAclT

ij

0

]
Xcl−1

[
TXclAclT

ij

0

]T )
> 0. (42)

From Schur Complement, the condition (42) can be converted
into

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))

×
⎡
⎣ TXclT T −UT

i TXclAclT

ij

−U i V 0
Acl

ijX
clT T 0 Xcl

⎤
⎦ > 0. (43)

Finally, multiplying the inequality (43) on the left and right
by block-diag[I I T ]and block-diag[I I T T ], respectively,
we have

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))

×
⎡
⎣ TXclT T −UT

i TXclAclT

ij T T

−U i V 0
TAcl

ijX
clT T 0 TXclT T

⎤
⎦

=
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))

×

⎡
⎢⎢⎢⎢⎢⎢⎣

X ∗ ∗
I Y ∗

−CiX −Ci Q−1

Gi − CiX −Ci Q−1

AiX + BiGj Ai 0
Φij Y Ai −LjCi 0

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

Q−1 + R−1 ∗ ∗
0 X ∗
0 I Y

⎤
⎥⎥⎥⎥⎥⎥⎦

> 0. (44)

By replacing the matrices in (44) with Zij , (44) can be
rewritten as

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))Zij

=
r∑

i=1

r∑
j=1

hi(z(t))hj(z(t))Zii

+ 2
r∑

i=1

r∑
i<j

hi(z(t))hj(z(t))
(

Zij + Zji

2

)
> 0. (45)

Since hi(z(t)) ≥ 0 for all i and
∑r

i=1 hi(z(t)) = 1, we arrive
at (27) and (28) from (45).

(Q.E.D.)

[Remark 1]
As mentioned before, x1(t) and x3(t) are unmeasurable.

However, if a polyhedron consisting of all its vertex points
xk�(0) can be selected so as to contain the unknown initial
states x1(0) and x3(0), the condition (26) implies the initial
state condition (37). The reason is that the condition (26) is
convex with respect to the vertex points xk�(0) containing the
unknown initial states x1(0) and x3(0).

[Remark 2]
ε1 and ε3 denote the ranges of a polyhedron for x1(t) and

x3(t), respectively. In the simulation, ε1 = ε3 = 10 × π
180

[rad.]. This means that the margin for the initial unknown
unmeasurable states are permitted to have 10 [deg.] error
margins. For example, suppose that we want to set the initial
relative angles to zero. Then, it is difficult to set the initial
relative angles to exact zero without potentiometers. However,
even in this situation, if it is possible to set the initial relative
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angles x1(0) and x3(0) to any values on the closed interval
[−10× π

180 [rad.] 10× π
180 [rad.]], the stability is guaranteed

for the initial states. It is possible to set up these initial relative
angles within the margins (without potentiometers) in real
experiments.

[Remark 3]
The design condition in Theorem 2 minimizes the upper

bound of the quadratic performance function (24) in the worst
case for all the values of hi(z(t)) ∈ [0 1].

[Remark 4]
In the case of m 	= �, we can add dummy zero vectors to

Bi and C i so as to be matrices of appropriate dimensions.
The details will be concretely shown later.

The optimal dynamic output feedback design requires that
m = �. In this case, m 	= �. Therefore, we add dummy zero
vectors to Bi and Ci so as to be matrices of appropriate
dimensions. Hence, the output equation of the Takagi-Sugeno
fuzzy system for the controlled object is as follows.

y(t) =

2∑
i=1

wi(z1(t))Cix(t)

2∑
i=1

wi(z1(t))

, (46)

where

C1 = C2 =

⎡
⎣ 0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

⎤
⎦ .

According to the above modification of Ci, Bi is modified
so as to be a matrix of appropriate dimension.

B1 = B2 =

⎡
⎣ ν · ∆t

l
0 0

0 0 0
0 0 0

⎤
⎦ .

The optimal dynamic output feedback controller is designed
by solving the GEVP in Theorem 2. Figures 7, 8 and 9 show
the control results of the original model by the optimal con-
troller for the initial values x6(0) = π/6, π/2, π, respectively,
where x1(0) = x3(0) = x5(0) = 0, x7(0) = 2 and xc(0) = 0.
In the optimal design, we use Q = 0.001× I and R = 10× I.
Table I shows the performance index values J calculated in
the simulations. Table I also shows performance index values
in the stable control result in Fig. 4. The performance index
values of the optimal controller is better than those of the
stable controller. The optimal controller successfully realizes
the backing-up control for the second initial states, but still
not for the third initial states, although the stable controller
realizes the backing-up control only for the first initial states.

IV. LMI CONDITION FOR AVOIDING JACKKNIFE

To perfectly realize the backing-up control, we derive an
LMI condition for avoiding the jackknife phenomenon. The

TABLE I

PERFORMANCE INDEX VALUES J .

x6(0) Stable Optimal
Initial state π/6 9.7 2.4
Initial state π/2 jackknife 1.6

Initial state π jackknife jackknife

-6 -4 -2 0 2
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0

1

2

3

4

5

x8[m]

x7
[m

]

Fig. 7. Control result for optimal controller (x6(0) = π/6).

condition of avoiding the jackknife is equivalent to

||x1(t)|| ≤ β, ||x3(t)|| ≤ β, ||x5(t)|| ≤ β,

where β = π/2. The derivation begins with representing xk(t)
with a vector dk and xcl(t).

xk(t) =
[
dk 0

]
xcl(t)

= d̂kxcl(t) k = 1, 3, 5. (47)

where
d1 =

[
1 0 0 0 0

]
,

d3 =
[
0 1 0 0 0

]
,

d5 =
[
0 0 1 0 0

]
.
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5
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x7
[m

]

Fig. 8. Control result for optimal controller (x6(0) = π/2).
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Magnification

Jackknife
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]

Fig. 9. Control result for optimal controller (x6(0) = π).

Since

xT
k (t)xk(t)

=xclT (t)d̂
T

k d̂kxcl(t) ≤ β2,

we have
1
β2

xclT (t)d̂
T

k d̂kxcl(t) ≤ 1. (48)

Next, without loss of generality, we assume that the upper
bound of Lyapunov function is λ. Then, the Lyapunov function
satisfies

xclT (t)P clxcl(t) ≤ xclT (0)P clxcl(0) ≤ λ.

Therefore,
1
λ

xclT (t)P clxcl(t) ≤ 1. (49)

The condition (48) is satisfied if

1
β2

xclT (t)d̂
T

k d̂kxcl(t) ≤ 1
λ

xclT (t)P clxcl(t). (50)

Then, we have
1
λ

P cl − 1
β2

d̂
T

k d̂k ≥ 0. (51)

Multiplying (51) on the left and right by Xcl = P cl−1
gives

1
λ

Xcl − 1
β2

Xcld̂
T

k d̂kXcl ≥ 0. (52)

Multiplying (52) on the left and right by T and T T , respec-
tively, we obtain

1
λ

TXclT T − 1
β2

TXcld̂
T

k d̂kXclT T ≥ 0.

By noting that

d̂kXclT T =
[
dkX dk

]
,

the inequality can be rewritten as

1
λ

[
X I
I Y

]
−

[
XdT

k

dT
k

]
1
β2

I
[
dkX dk

] ≥ 0.

By Schur Complement, we arrive at the following LMI con-
dition. ⎡

⎢⎣ X I XdT
k

I Y dT
k

dkX dk
β2

λ
I

⎤
⎥⎦ ≥ 0 k = 1, 3, 5. (53)

The condition (49) is guaranteed if (26) holds. By solving
(53) in addition to the LMIs in Theorem 2, we can design
dynamic output feedback controller satisfying both optimality
and avoidance of jackknife.

Figures 10, 11 and 12 show the control results of the
original model by the optimal control considering avoidance
of the jackknife for x6(0) = π/6, π/2, π, respectively, where
x1(0) = x3(0) = x5(0) = 0, x7(0) = 2 and xc(0) = 0.
The optimal controller considering avoidance of jackknife
successfully realizes the backing-up control for all three initial
states.
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Fig. 10. Control result for optimal controller considering jackknife avoidance
(x6(0) = π/6).
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Fig. 11. Control result for optimal controller considering jackknife avoidance
(x6(0) = π/2).
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Fig. 12. Control result for optimal controller considering jackknife avoidance
(x6(0) = π).

V. SIMULATION RESULTS AND DISCUSSIONS

To see the utility of the optimal dynamic output feedback
design considering avoidance of jackknife, we investigate
control performances for some combinations of x6(0) and
x7(0), where x1(0) = x3(0) = x5(0) = 0. Figures 13, 14
and 15 show control performances for each combination of
x6(0) and x7(0) in the stable controller, the optimal controller
and the optimal controller considering avoidance of jackknife,
respectively. In these figures, the dark area and the white
area denote jackknife and control success (namely, success
of backing control), respectively. That is, the controls that
start from any combinations of x6(0) and x7(0) in the dark
area occurs jackknife. In the stable control (Figure 13), most
of areas are dark (jackknife) areas. Note that J can not be
calculated in the jackknife case. On the other hand, no dark
areas exist in the optimal control considering avoidance of
jackknife (Figure 15).

7
6

5
4

3
2

1
0

50

100

150

J

Control success

Jackknife

0

x6(0)[rad]
x7(0)[m]

Fig. 13. Control performance for stable controller.

7
6

5
4

3
2

1
0

50

100

150

J

0

x6(0)[rad]
x7(0)[m]
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Fig. 14. Control performance for optimal controller.
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1
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0

Control success

Jackknife

Fig. 15. Control performance for optimal controller considering jackknife
avoidance.

Next, in the case of considering the LMI condition (53)
for avoiding the jackknife, we compare control performance
difference between the optimal control and the stable control.
Figures 16, 17 and 18 show the control results of the original
model by the stable control considering the LMI condition
(53) for avoiding the jackknife. Figures 19, 20 and 21 show
the same control results as shown in Figures 16, 17 and 18,
respectively. The dotted areas in Figures 19, 20 and 21 denote
the same size as the overall areas shown in Figures 16, 17
and 18, respectively. It can be seen that the stable control
considering the LMI condition for avoiding the jackknife
realizes backing-up control. However, the control performance
is much more poor than the optimal control. Clearly, a much
wider experimental field is required for the stable control.
Conversely, the optimal control (Figures 10, 11 and 12)
realizes good speed of response in addition to stabilization.
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Our results demonstrate that the optimal dynamic output
feedback design considering avoidance of jackknife is effective
for the backing-up control problem of a three-trailer truck.
More importantly, our approach realizes the reduction of at
least two potentiometers. Thus, our approach provides a cost
effective design even for the difficult control problem.

-6 -4 -2 0 2
-5

-4

-3

-2

-1

0

1

2

3

4

5

x8[m]

x7
[m

]

Fig. 16. Control result for stable controller considering jackknife avoidances
(x6(0) = π/6, Magnification).
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Fig. 17. Control result for stable controller considering jackknife avoidance
(x6(0) = π/2, Magnification).

VI. CONCLUSIONS

This paper has presented a cost effective design based on
sensor reduction for backing-up control of a vehicle with
triple trailers. To realize a cost effective design, we have
newly derived two LMI conditions for discrete Takagi-Sugeno
fuzzy system. One is an optimal dynamic output feedback
design that guarantees desired control performance. The other
is an avoidance of jackknife phenomenon for the use of the
optimal dynamic output feedback controller. Our results have
demonstrated that the proposed LMI-based design effectively
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Fig. 18. Control result for stable controller considering jackknife avoidance
(x6(0) = π, Magnification).
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Fig. 19. Control result for stable controller considering jackknife avoidance
(x6(0) = π/6).

achieves the backing-up control of the vehicle with triple
trailers while avoiding the jackknife phenomenon. More im-
portantly, we have demonstrated that the designed optimal
control can achieve the backing-up control without at least
two potentiometers. The successful control results without two
potentiometers are very interesting and important from the cost
effective design points of view.

Our next subject is to demonstrate the utility of the cost
effective design in experiments.
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