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Polynomial Fuzzy Observer Designs:A Sum of

Squares Approach
Kazuo Tanaka, Senior Member, IEEE, Hiroshi Ohtake, Member, IEEE, Toshiaki Seo, Motoyasu Tanaka,

and Hua O. Wang, Senior Member, IEEE

Abstract—This paper presents a sum of squares (SOS, for
brevity) approach to polynomial fuzzy observer designs for three
classes of polynomial fuzzy systems. The proposed SOS-based
framework provides a number of innovations and improvements
over the existing LMI-based approaches to Takagi-Sugeno (T-S)
fuzzy controller and observer designs. First, we briefly summarize
previous results with respect to a polynomial fuzzy system that is
more general representation of the well-known T-S fuzzy system.
Next, we propose polynomial fuzzy observers to estimate states
in three classes of polynomial fuzzy systems and derive SOS
conditions to design polynomial fuzzy controllers and observers.
A remarkable feature of the SOS design conditions for the
first two classes (Classes I and II) is that they realize the so-
called separation principle, that is, that a polynomial fuzzy
controller and observer for each class can be separately designed
without lack of guaranteeing the stability of the overall control
system in addition to converging state estimation error (via the
observer) to zero. Although, for the last class (Class III), the
separation principle does not hold, we propose an algorithm to
design a polynomial fuzzy controller and observer satisfying the
stability of the overall control system in addition to converging
state estimation error (via the observer) to zero. All the design
conditions in the proposed approach can be represented in terms
of SOS and is symbolically and numerically solved via the recent
developed SOSTOOLS and a semidefinite program (SDP) solver,
respectively. To illustrate the validity and applicability of the
proposed approach, three design examples are provided. The
examples demonstrate advantages of the SOS-based approaches
for the existing LMI approaches to T-S fuzzy observer designs.

Index Terms—polynomial fuzzy system, polynomial fuzzy ob-
server, separation principle, stability, sum of squares.

I. INTRODUCTION

THE Takagi-Sugeno (T-S) fuzzy model-based control

methodology [1], [2] has received a great deal of attention

after LMI-based designs have been discussed in [3]-[4]. The

fuzzy model-based control methodology provides a natural,

simple and effective design approach to complement other

nonlinear control techniques (e.g., [5]) that require special and

rather involved knowledge.
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Recently, the authors have first presented a sum of squares

(SOS, for brevity) approach [6]-[11] to polynomial fuzzy

control system designs. This is a completely different approach

from the existing LMI approaches [2], [12]-[27]. Our SOS ap-

proach [6]-[11] provided more extensive results for the existing

LMI approaches to T-S fuzzy model and control. However, to

the best of our knowledge, there exists no literature on SOS-

based observer designs for polynomial fuzzy systems.

This paper presents SOS-based observer designs to estimate

the states of polynomial fuzzy systems. The proposed SOS-

based framework for polynomial fuzzy systems provides a

number of innovations and improvements over the existing

LMI approaches to T-S fuzzy observer-based control, e.g., [2],

[12], [13]. First, it is known that nonlinear systems with poly-

nomial terms can not be generally converted to globally exact

T-S fuzzy models. Only local or semi-global T-S fuzzy models

can be constructed for such nonlinear systems [2]. Thus, re-

sulting control design conditions guarantee global stabilization

and global state-estimation convergence only for local or semi-

global models, but not always guarantee global stabilization

and global state-estimation convergence for original nonlinear

systems. On the other hand, it is possible to convert even

nonlinear systems with polynomial terms to globally exact

polynomial fuzzy models. Hence all the conditions derived

here guarantee global stabilization and global state-estimation

convergence for original nonlinear systems that are perfectly

equivalent to polynomial fuzzy models. Secondly, even if

local or semi-global T-S fuzzy models are permitted to use

in practical sense, variables in polynomial terms appear in

premise (part) variables of T-S fuzzy models. In polynomial

fuzzy models, variables in polynomial terms do not appear in

their premise parts and remain in system polynomial matrices

Ai and Bi in consequence parts of polynomial fuzzy models.

The difference is quite large from fuzzy observer design

points of view. In general, fuzzy observer designs are not

permitted to have premise variables depending on the states to

be estimated. Therefore, T-S fuzzy observer designs can not be

generally applied to nonlinear systems with polynomial terms.

Conversely, the polynomial fuzzy observer designs proposed

in this paper can be applied to even such systems. We will see

these facts in the design examples later.

This paper presents three types of SOS-based observer de-

signs according to three classes of polynomial fuzzy systems.

First, we present an observer-based design for the polynomial

fuzzy systems with the polynomial matrices Ai and Bi being

independent of the states x to be estimated (shortly name it as

Class I). Secondly, we discuss an observer-based design for a
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wider class of polynomial fuzzy systems with the polynomial

matrices Ai that are permitted to be dependent of the states

x to be estimated (shortly name it as Class II). It should be

emphasized that this paper realizes the so-called separation

design for both of the classes. This paper also presents a

polynomial fuzzy observer design for a more complicated

class of polynomial fuzzy systems, i.e., the polynomial fuzzy

systems with the polynomial matrices Ai and Bi that are

permitted to be dependent of the states x to be estimated

(shortly name it as Class III). All the design conditions

discussed here are represented in terms of SOS.

It is well known that stability conditions for the T-S

fuzzy system reduce to LMIs, e.g., [2]. Hence, the stability

conditions can be solved numerically and efficiently by in-

terior point algorithms, e.g., by LMI solvers. On the other

hand, some kinds of control design conditions [6]-[11] for

polynomial fuzzy systems reduce to SOS problems. Clearly,

the problems are never directly solved by LMI solvers and

can be solved via the SOSTOOLS [28] and an SDP solver.

Thus, SOS can be regarded as an extensive representation of

LMIs. The computational method used in this paper relies

on the SOS decomposition of multivariate polynomials. A

multivariate polynomial f(x(t)) (where x(t) ∈ Rn) is an SOS

if there exist polynomials f1(x(t)), · · · , fk(x(t)) such that

f(x(t)) =
∑k

i=1
f2

i (x(t)). It is clear that f(x(t)) being an

SOS naturally implies f(x(t)) ≥ 0 for all x(t) ∈ Rn. For

more details of SOS, see [28].

The rest of the paper is organized as follows. Section II

recalls a polynomial fuzzy system defined in [6]-[11]. Sections

III, IV and V discuss SOS-based polynomial fuzzy controller

and observer designs for Classes I, II and III, respectively. In

addition, each section entails a design example to demonstrate

the viability of our SOS design approach.

In this paper, to save the space, we employ the following

short notations with respect to matrix representation.

L{M} = MT +M ,

E1 = diag[ǫ11 ǫ12 · · · ǫ1s],
E2i(x) = diag[ǫ2i1(x) ǫ2i2(x) · · · ǫ2is(x)],

where M is an arbitrary square matrix. ǫ1k (k = 1, 2, · · · , s)

are positive values and ǫ2ik(x) (i = 1, 2, · · · , r, k =
1, 2, · · · , s) are nonnegative polynomials such that ǫ2ik(x) > 0
for x 6= 0. ǫ1k and ǫ2ik(x) (E1 and E2i(x)) will be used as

slack variables (matrices) to keep positivity of SOS conditions

derived in this paper. s is the matrix size of E1 and E2i(x) that

are assumed to have appropriate dimensions. r is the number

of fuzzy model rules.

II. TAKAGI-SUGENO FUZZY MODEL AND POLYNOMIAL

FUZZY MODEL

In this section, we recall the Takagi-Sugeno fuzzy model.

The Takagi-Sugeno fuzzy model is described by fuzzy IF-

THEN rules which represent local linear input-output relations

of a nonlinear system. The main feature of this model is to

express the local dynamics of each fuzzy implication (rule) by

a linear system model. The overall fuzzy model of the system

is achieved by fuzzy blending of the linear system models.

Consider the following nonlinear system:

ẋ(t) = f(x(t),u(t)), (1)

where f is a smooth nonlinear function such that f(0,0) =
0. x(t) = [x1(t) x2(t) · · · xn(t)]

T is the state vector and

u(t) = [u1(t) u2(t) · · · um(t)]T is the input vector. Based

on the sector nonlinearity concept [2], we can exactly represent

(1) with the following Takagi-Sugeno fuzzy model (globally

or at least semi-globally).

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Aix(t) +Biu(t) i = 1, 2, · · · , r, (2)

where zj(t) (j = 1, 2, · · · , p) is the premise variable. The

membership function associated with the ith Model Rule and

jth premise variable component is denoted by Mij . r denotes

the number of Model Rules. Note that zj(t) is assumed

to be independent of the states x to be estimated. In other

words, each zj(t) is a measurable time-varying quantity that

may be states, measurable external variables and/or time. The

defuzzification process of the model (2) can be represented as

ẋ(t) =

r
∑

i=1

wi(z(t)){Aix(t) +Biu(t)}

r
∑

i=1

wi(z(t))

=

r
∑

i=1

hi(z(t)){Aix(t) +Biu(t)}, (3)

where

z(t) = [z1(t) · · · zp(t)]

and

wi(z(t)) =

p
∏

j=1

Mij(zj(t)).

It should be noted from the properties of membership functions

that the following relations hold.

r
∑

i=1

wi(z(t)) > 0, wi(z(t)) ≥ 0 i = 1, 2, · · · , r

Hence,

hi(z(t)) =
wi(z(t))
r

∑

i=1

wi(z(t))

≥ 0,

r
∑

i=1

hi(z(t)) = 1.

In [6] and [9], we proposed a new type of fuzzy model with

polynomial model consequence, i.e., fuzzy model whose con-

sequent parts are represented by polynomials. Using the sector

nonlinearity concept [2], we exactly represent (1) with the

following polynomial fuzzy model (4). The main difference

between the T-S fuzzy model [29] and the polynomial fuzzy

model is consequent part representation. The fuzzy model (4)

has a polynomial model consequence.

Model Rule i:

If z1(t) is Mi1 and · · · and zp(t) is Mip

then ẋ(t) = Ai(x(t))x(t) +Bi(x(t))u(t), (4)
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where i = 1, 2, · · · , r. r denotes the number of Model Rules.

Ai(x(t)) ∈ Rn×n and Bi(x(t)) ∈ Rn×m are polynomial

matrices in x(t). Therefore, Ai(x(t))x(t) +Bi(x(t))u(t) is

a polynomial vector. Thus, the polynomial fuzzy model (4)

has a polynomial in each consequent part.

The defuzzification process of the model (4) can be repre-

sented as

ẋ(t) =

r
∑

i=1

hi(z(t)){Ai(x(t))x(t) +Bi(x(t))u(t)}. (5)

Thus, the overall fuzzy model is achieved by fuzzy blending

of the polynomial system models.

Remark 1. The polynomial fuzzy model is an extension of

the T-S fuzzy model. Hence the SOS conditions derived in this

paper may be regarded as an extension of the previous LMI

conditions for the T-S fuzzy model. However, it will be seen

through the design examples in this paper that the polynomial

fuzzy models are exact global models for the original nonlinear

systems although the T-S fuzzy models are not global models

for the original nonlinear systems. In addition, the previous T-

S fuzzy observer technique dose not work completely for both

of Classes II and III due to a premise variable restriction. For

more details, we will mention again in the design examples

later.

As will be mentioned later, it is in general difficult to

separately design a polynomial controller and a polynomial

observer for (5) since Ai(x(t)) and Bi(x(t)) are dependent

of the states x(t) to be estimated. Hence, as a first step, we

introduce the following representation of polynomial fuzzy

systems.

ẋ(t) =

r
∑

i=1

hi(z(t)){Ai(ρA(t))x(t) +Bi(ρB(t))u(t)}, (6)

where (6) reduces to (5) when ρA(t) = ρB(t) = x(t). In

this paper, we discuss three types of polynomial observer-

based control according to three classes of polynomial fuzzy

systems:

Class I: ρA(t) = ζ(t) and ρB(t) = ζ(t).
Class II: ρA(t) = x(t) and ρB(t) = ζ(t).
Class III: ρA(t) = ρB(t) = x(t).

ζ(t) is a measurable time-varying vector that may be measur-

able external variables, outputs and/or time. In other words,

ζ(t) is assumed to be independent of the states x(t) to be

estimated. As we can see, Class III is the most complicated

class.

From now, to lighten the notation, we will drop the notation

with respect to time t. For instance, we will employ x and x̂

instead of x(t) and x̂(t), respectively, where x̂(t) denotes

the state estimated by a polynomial fuzzy observer as will be

discussed later. Thus, we drop the notation with respect to

time t, but it should be kept in mind that x and x̂ means x(t)
and x̂(t), respectively.

Next, we define the outputs for the polynomial fuzzy model

as

y =

r
∑

i=1

hi(z)Cix, (7)

where y ∈ R
q is the output.

III. POLYNOMIAL CONTROLLER AND OBSERVER DESIGN

(CLASS I)

Consider the following polynomial fuzzy system. The sys-

tem matrices Ai and Bi depend on the vector ζ,



















ẋ =

r
∑

i=1

hi(z){Ai(ζ)x+Bi(ζ)u}

y =

r
∑

i=1

hi(z)Cix,

(8)

where y ∈ R
q denotes the output.

We design a polynomial fuzzy observer to estimate the states

of (8).



















˙̂x =
r

∑

i=1

hi(z){Ai(ζ)x̂+Bi(ζ)u+Li(ζ)(y − ŷ)}

ŷ =

r
∑

i=1

hi(z)Cix̂,

(9)

where x̂ ∈ R
n is the sate vector estimated by the fuzzy

observer and ŷ ∈ R
q is estimated output calculated from

ŷ =

r
∑

i=1

hi(z)Cix̂.

To stabilize the system (8) and (9), we design a polynomial

fuzzy controller with the state-feedback estimated by the

polynomial fuzzy observer.

u = −
r

∑

i=1

hi(z)Fi(ζ)x̂ (10)

Theorem 1 provides SOS conditions to separately design

the polynomial fuzzy controller (10) and the polynomial fuzzy

observer (9).

Theorem 1. If there exist positive definite matrices X1 ∈
R

n×n, X2 ∈ R
n×n and polynomial matrices Mi(ζ) ∈ R

p×n,

Ni(ζ) ∈ R
n×q such that (11)∼(16) are satisfied, the poly-

nomial fuzzy controller (10) stabilizes the system (8) and the

estimation error via the polynomial observer (9) tends to zero.

vT
1
(X1 −E1)v1 is SOS (11)

vT
2
(X2 −E2)v2 is SOS (12)

− vT
3

(

L{Ai(ζ)X1 −Bi(ζ)Mi(ζ)}+E3i(ζ)

)

v3

is SOS (13)

− vT
4

(

L{X2Ai(ζ)−Ni(ζ)Ci}+E4i(ζ)

)

v4

is SOS (14)
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− vT
5

(

L{Ai(ζ)X1 −Bi(ζ)Mj(ζ)}

+ L{Aj(ζ)X1 −Bj(ζ)Mi(ζ)}

)

v5

is SOS (15)

− vT
6

(

L{X2Ai(ζ)−Ni(ζ)Cj}

+ L{X2Aj(ζ)−Nj(ζ)Ci}

)

v6

is SOS (16)

where v1, v2, v3, v4 v5 and v6 ∈ R
n denote vectors that are

independent of x, x̂ and ζ. From the solutions X1 and Mi(ζ),
we obtain polynomial feedback gains Fi(ζ) as Fi(ζ) =
Mi(ζ)X

−1

1
. From the solutions X2 and Ni(ζ), we obtain

polynomial observer gains Li(ζ) as Li(ζ) = X−1

2
Ni(ζ) as

well.

Proof: We define the estimation error vector e as e =
x− x̂. Then, the error dynamics can be described as

ė =
r

∑

i=1

r
∑

j=1

hi(z)hj(z){Ai(ζ)−Li(ζ)Cj}e.

Next, using the augmented vector xv =
[

x̂T eT
]T

, the

augmented system consisting of the system, the polynomial

fuzzy controller and observer can be represented as

ẋv =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)Gij(ζ)xv

=

r
∑

i=1

h2

i (z)Gii(ζ)xv

+

r
∑

i=1

r
∑

i<j

hi(z)hj(z) (Gij(ζ) +Gji(ζ))xv, (17)

where

Gij(ζ) =

[

G11ij
(ζ) G12ij

(ζ)
0 G22ij

(ζ)

]

,

G11ij
(ζ) = Ai(ζ)−Bi(ζ)Fj(ζ),

G12ij
(ζ) = Li(ζ)Cj ,

G22ij
(ζ) = Ai(ζ)−Li(ζ)Cj .

Next, consider a candidate Lyapunov function

V (xv) = xT
v X̃xv, (18)

where

X̃ =

[

αX−1

1
0

0 X2

]

. (19)

α is a positive value, X−1

1
∈ R

n×n and X2 ∈ R
n×n are

positive definite matrices. Note that V (xv) > 0 at xv 6= 0. It

is clear from Lyapunov theory that the overall control system

(17) is stable if it is proved that V̇ (xv) < 0 at xv 6= 0.

The time derivative of V (xv) along the trajectory of the

system is obtained as

V̇ (xv) =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)x
T
v L{X̃Gij(ζ)}xv

=
r

∑

i=1

h2

i (z)x
T
v L{X̃Gii(ζ)}xv

+

r
∑

i=1

r
∑

i<j

hi(z)hj(z)×

xT
v L{X̃ (Gij(ζ) +Gji(ζ))}xv.

If the following conditions are satisfied, V̇ (xv) < 0 at xv 6= 0.

L{X̃Gii(ζ)} < 0 (20)

L{X̃ (Gij(ζ) +Gji(ζ))} ≤ 0 i < j ≤ r (21)

(20) can be rewritten as

L{X̃Gii(ζ)} =

[

αΩ11ii
(ζ)

αΩT
12ii

(ζ)
αΩ12ii

(ζ)
Ω22ii

(ζ)

]

< 0, (22)

where

Ω11ii
(ζ) = L{X−1

1
G11ii

(ζ)},

Ω12ii
(ζ) = X−1

1
G12ii

(ζ),

Ω22ii
(ζ) = L{X2G22ii

(ζ)}.

From Schur complement, (22) can be converted into

Ω22ii
(ζ) < 0, (23)

Ω11ii
(ζ)− αΩ12ii

(ζ)(Ω22ii
(ζ))−1

Ω
T
12ii

(ζ) < 0. (24)

From (23) and (24), we have

Ω11ii
(ζ) < αΩ12ii

(ζ)(Ω22ii
(ζ))−1

Ω
T
12ii

(ζ) ≤ 0.

Hence, if (25) and (26) hold, then (20) is satisfied.

L{X−1

1
(Ai(ζ)−Bi(ζ)Fi(ζ))} < 0 (25)

L{X2(Ai(ζ)−Li(ζ)Ci)} < 0 (26)

Multiplying both side of (25) by X1 and defining a new vari-

able Mi(ζ) = Fi(ζ)X1, we obtain the following conditions.

L{Ai(ζ)X1 −Bi(ζ)Mi(ζ)} < 0 (27)

Defining another new variable Ni(ζ) = X2Li(ζ), (26) can

be described as

L{X2Ai(ζ)−Ni(ζ)Ci} < 0. (28)

In the same way as above, (21) can be also represented as

L{Ai(ζ)X1 −Bi(ζ)Mj(ζ)

+Aj(ζ)X1 −Bj(ζ)Mi(ζ)} ≤ 0, (29)

L{X2Ai(ζ)−Ni(ζ)Cj

+X2Aj(ζ)−Nj(ζ)Ci} ≤ 0, (30)

for i < j ≤ r. It is clear from the inequality conditions (27)-

(30) that V̇ (xv) < 0 at xv 6= 0 if the SOS conditions (11)-(16)

hold.
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Remark 2. The conditions (11), (13) and (15) are for SOS

conditions of polynomial fuzzy controller design. The condi-

tions (12), (14) and (16) are for SOS conditions of polynomial

fuzzy observer design. Thus, Theorem 1 provides SOS design

conditions to separately design polynomial fuzzy controllers

and observers.

Remark 3. If Ai(ζ), Bi(ζ), Li(ζ) and Fi(ζ) reduce to

constant matrices in (8), (9) and (10), they reduce to the

ordinary T-S fuzzy model, the T-S fuzzy controller and observer,

respectively. In addition, Theorem 1 reduces to the existing

LMI design conditions, e.g., [13], for the T-S fuzzy controller

and observer. Hence, Theorem 1 provides more general results.

Remark 4. Currently, sum of squares programs (SOSPs)

are solved by reformulating them as semidefinite programs

(SDPs), which in turn are solved efficiently, e.g., using interior

point methods. Several commercial as well as non-commercial

software packages are available for solving SDPs. While the

conversion from SOSPs to SDPs can be manually performed

for small size instances or tailored for specific problem classes,

such a conversion can be quite cumbersome to perform in

general. It is therefore desirable to have a computational

aid that automatically performs this conversion for general

SOSPs. This is exactly where SOSTOOLS comes to play.

SOSTOOLS automates the conversion from SOSP to SDP, calls

the SDP solver, and converts the SDP solution back to the

solution of the original SOSP. At present, it uses other free

MATLAB add-ons such as SeDuMi [30] or SDPT3 [31] as

the SDP solver. It should be noted that we can numerically

find the SOS variables (matrices) X1, X2, Mi(ζ) and Ni(ζ)
satisfying the SOS conditions in Theorem 1 via SeDuMi in

addition to SOSTOOLS. Because Theorem 1 provides the SOS

conditions that are convex with respect to the SOS variables

(matrices) X1, X2, Mi(ζ) and Ni(ζ). If non-convex terms

exist in SOS conditions, they can not be numerically solved

in general even via SOSTOOLS and SeDuMi. All the SOS

conditions derived in this paper are convex with respect to SOS

variables. Thus, our SOS-based designs proposed in this paper

become numerically feasibility problems. For more details of

how to solve the SDPs using SeDuMi, see [28] and [30].

Remark 5. To obtain more reliable solutions for SOS con-

ditions, we perform the following double checking throughout

this paper. We first carefully check whether the command ‘sos-

solve’ find a solution without any error messages, i.e., pinf=0,

dinf=0 and numerr=0, or not. If any error messages exist, we

judge ‘infeasible’. After getting the feasible solutions using

the command ‘sossolve’, the ‘findsos’ command is employed to

check the feasibility of SOS conditions by substituting solutions

into SOS conditions. We also carefully check whether the

command ‘findsos’ provides a feasibility solution or not. If

the command ‘findsos’ returns an infeasible result, we also

judge ‘infeasible’. This double checking is important to have

reliable solutions in the use of SOSTOOLS [28] and SeDuMi

[30].

Remark 6. The conditions ǫ1k > 0, ǫ2k > 0, ǫ3ik(ζ) > 0
and ǫ4ik(ζ) > 0 for ζ 6= 0 can be accommodated by sum of

squares optimization in a similar way as in [32].

A. Design Example I

Consider the following nonlinear system.

{

ẋ1 = 0.1x3

1
− x2 + u

ẋ2 = sinx1 − x2

1
x2

(31)

This system has polynomial terms 0.1x3

1
and x2

1
x2. To obtain a

T-S fuzzy model using the well-known sector nonlinearity [2],

we need to assume the range of x1, i.e., x1 ∈ [−d d], where

d is a positive value. For outside the range, i.e., x1 < −d

or x1 > d, the T-S fuzzy model dynamics never agree with

the original system dynamics. Thus, the T-S fuzzy model

constructed for (31) is a local model. This means that the T-

S fuzzy model stabilization and state-estimation convergence

are not guaranteed for outside the range. Conversely, the

polynomial fuzzy model constructed in this example can

exactly and globally represent the dynamics of the original

system.

Assume that x1 is measurable and y = x1. Fig.1 shows the

behavior of this system without input. It can be seen that the

system is unstable.

-10 -5 0 5 10
-10

-5

0

5

10

x
1

x 2

Fig. 1. System behavior without input.

1) Existing LMI design approach based on Takagi-Sugeno

fuzzy systems: The existing LMI design approach for Takagi-

Sugeno fuzzy models can be applied only to Class I. First

we construct the Takagi-Sugeno fuzzy model (32) for the

nonlinear dynamics using the sector nonlinearity idea [2].



















ẋ =

r
∑

i=1

hi(z){Aix+Biu},

y =

r
∑

i=1

hi(z)Cix,

(32)
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where

A1 =

[

0.1d2

1
−1
−d2

]

,A2 =

[

0.1d2

−0.217
−1
−d2

]

,

A3 =

[

0
1

−1
0

]

,A4 =

[

0
−0.217

−1
0

]

,

B1 = B2 = B3 = B4 =

[

1
0

]

,

C1 = C2 = C3 = C4 =
[

1 0
]

,

h1(z) =
x2

1

d2
sinx1 + 0.217x1

1.217x1

,

h2(z) =
x2

1

d2
x1 − sinx1

1.217x1

,

h3(z) =
d2 − x2

1

d2
sinx1 + 0.217x1

1.217x1

,

h4(z) =
d2 − x2

1

d2
x1 − sinx1

1.217x1

.

As mentioned just before, to obtain the Takagi-Sugeno fuzzy

model, we need to assume the modeling range of x1, i.e.,

−d < x1 < d, where d > 0, since the original nonlinear

system has polynomial terms. This means that the constructed

fuzzy model is a semi-global model even if we select a larger

value of d. We can see in Section III-A2 that the polynomial

fuzzy model becomes a global model that is equivalent to the

nonlinear dynamics of (31) for any x1. This is an advantage

point using the polynomial fuzzy model and our SOS based

designs. In addition, it should be noted that the existing LMI

design approach for Takagi-Sugeno fuzzy models can not be

applied to more complicated classes, i.e., Classes II and III.

The LMI design conditions [2], [13] based on Takagi-

Sugeno fuzzy systems are derived as

P1,P2 > 0 (33)

P1A
T
i −MT

1iB
T
i +AiP1 −BiM1i < 0 (34)

AT
i P2 −CT

i N
T
2i + P2Ai −N2iCi < 0 (35)

P1A
T
i −MT

1jB
T
i +AiP1 −BiM1j

+P1A
T
j −MT

1iB
T
j +AjP1 −BjM1i < 0, i < j,(36)

AT
i P2 −CT

j N
T
2i + P2Ai −N2iCj

+AT
j P2 −CT

i N
T
2j + P2Aj −N2jCi < 0, i < j.(37)

For all the ranges from a smaller d (d = 10−3) to a larger

d (d = 109), the LMI conditions (33)-(37) are infeasible. This

means that the Takagi-Sugeno fuzzy controller and observer

for the nonlinear system can not be designed using the existing

approach. Conversely, we will see in Section III-A2 that the

SOS design approach based on the polynomial fuzzy systems

realizes that the polynomial fuzzy controller stabilizes the

system and the estimation error via the polynomial fuzzy

observer tends to zero.

2) SOS design approach based on polynomial fuzzy sys-

tems: The dynamics of the nonlinear system (31) can be

exactly represented as the polynomial fuzzy system (8), where

r = 2, z = ζ = y,

A1(ζ) =

[

0.1y2 −1
1 −y2

]

, A2(ζ) =

[

0.1y2 −1
−0.2172 −y2

]

B1(ζ) = B2(ζ) =

[

1
0

]

, C1 = C2 =
[

1 0
]

,

h1(z) =
siny + 0.2172y

1.2172y
, h2(z) =

y − siny

1.2172y
.

By solving the SOS conditions in Theorem 1, we have X1,

X2, Mi(ζ) and Ni(ζ), where the orders of Mi(ζ) and Ni(ζ)
are two. e−10 and e−2 mean 10−10 and 10−2, respectively.

X1 =

[

0.61825
−0.5326e−10

−0.5326e−10

0.42137

]

X2 =

[

0.68214
0.27426

0.27426
0.46738

]

M1(ζ) =
[

0.14778 + 0.41613y2

0.19687− 0.53405e−2y2
]

M2(ζ) =
[

0.44549 + 0.41613y2

−0.55566− 0.53404e−2y2
]

N1(ζ) =

[

0.61756 + 0.42283y2

−0.20621− 0.21828y2

]

N2(ζ) =

[

0.30425 + 0.42283y2

−0.72299− 0.21828y2

]

From the solutions X1, X2, Mi(ζ) and Ni(ζ), the polyno-

mial feedback gains Fi(ζ) and observer gains Li(ζ) are given

as

F1(ζ) =
[

0.23903 + 0.67308y2

0.46721− 0.12674e−1y2
]

,

F2(ζ) =
[

0.72057 + 0.67308y2

−1.31870− 0.12674e−1y2
]

,

L1(ζ) =

[

1.41704 + 1.05701y2

−1.27273− 1.08729y2

]

,

L2(ζ) =

[

1.39773 + 1.05701y2

−2.36709− 1.08729y2

]

.

Fig. 2 shows the control and estimation result by the designed

polynomial fuzzy controller and observer with their gains

Fi(ζ) and Li(ζ), where the initial states are x(0) = [5 5] and

x̂(0) = [−5 − 5]. Fig.3 shows phase plots of control results

for the same initial states as in Fig 1. It can be seen from

these figures that the polynomial fuzzy controller stabilizes the

system and the estimation error via the polynomial observer

tends to zero.

IV. POLYNOMIAL CONTROLLER AND OBSERVER DESIGN

(CLASS II)

In Section III, we discussed an observer design for the

polynomial fuzzy system (8) with Ai(ζ) and Bi(ζ) matrices.

This section presents a more complicated class, i.e., Ai

depends on the state x instead of the vector ζ. Although

the separation design for Class II is difficult, we derive SOS

conditions to achieve it in this section. The reason will be
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Fig. 2. Control and estimation result.
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Fig. 3. Control trajectory for same initial states as in Fig 1.

mentioned in Remark 7. Consider the following polynomial

fuzzy system.


















ẋ =
r

∑

i=1

hi(z){Ai(x)x+Bi(ζ)u}

y =
r

∑

i=1

hi(z)Cix

(38)

We design a polynomial fuzzy observer to estimate the states

of (38).


















˙̂x =

r
∑

i=1

hi(z){Ai(x̂)x̂+Bi(ζ)u+Li(x̂)(y − ŷ)}

ŷ =

r
∑

i=1

hi(z)Cix̂

(39)

To stabilize the system, we design a polynomial fuzzy con-

troller with the state-feedback estimated by the polynomial

observer.

u = −

r
∑

i=1

hi(z)Fi(x̂)x̂ (40)

The difference between (40) and (10) is that (40) has the

polynomial feedback gains in x̂ instead of those in ζ in (10).

Theorem 2 provides SOS conditions to separately design the

polynomial fuzzy controller (40) and the polynomial fuzzy

observer (39).

Theorem 2. If there exist positive definite matrices X1 ∈
R

n×n, X2 ∈ R
n×n and polynomial matrices Mi(x̂) ∈ R

p×n,

Ni(x̂) ∈ R
n×q satisfying (41)∼(46), the polynomial fuzzy

controller (40) stabilizes the system (38) and the estimation

error via the polynomial fuzzy observer (39) tends to zero.

vT
1
(X1 −E1)v1 is SOS (41)

vT
2
(X2 −E2)v2 is SOS (42)

−vT
3

(

L{Ai(x̂)X1 −Bi(ζ)Mi(x̂)}+E3i(ζ, x̂)

)

v3

is SOS (43)

−vT
4

(

L{X2Āi(x, x̂)−Ni(x̂)Ci}+E4i(x, x̂)

)

v4

is SOS (44)

−vT
5

(

L{Ai(x̂)X1 −Bi(ζ)Mj(x̂)}

+L{Aj(x̂)X1 −Bj(ζ)Mi(x̂)}

)

v5

is SOS i < j ≤ r (45)

−vT
6

(

L{X2Āi(x, x̂)−Ni(x̂)Cj}

+L{X2Āj(x, x̂)−Nj(x̂)Ci}

)

v6

is SOS i < j ≤ r (46)

where Āi(x, x̂)e = Ai(x)x−Ai(x̂)x̂. v1, v2, v3, v4, v5, v6

∈ R
n denote vectors that are independent of x, x̂ and ζ. From

the solutions X1 and Mi(x̂), we obtain polynomial feedback

gains Fi(x̂) as Fi(x̂) = Mi(x̂)X
−1

1
. From the solutions X2

and Ni(x̂), we obtain polynomial observer gains Li(x̂) as

Li(x̂) = X−1

2
Ni(x̂) as well.

Proof: Consider the estimation error, e = x − x̂, by

the observer. Then, the error system with respect to e can

be represented as

ė =

r
∑

i=1

r
∑

j=1

hi(z)hj(z){Ai(x)x−Ai(x̂)x̂−Li(x̂)Cje}

=

r
∑

i=1

r
∑

j=1

hi(z)hj(z){Āi(x, x̂)−Li(x̂)Cj}e,

where Ā(x, x̂)e = A(x)x−A(x̂)x̂. The augmented system

with the augmented vector xv =
[

x̂T eT
]T

is given as

ẋv =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)

×

[

Ai(x̂)−Bi(ζ)Fj(x̂) Li(x̂)Cj

0 Āi(x, x̂)−Li(x̂)Cj

]

xv

=

r
∑

i=1

h2

i (z)Gii(x, ζ, x̂)xv

+

r
∑

i=1

r
∑

i<j

hi(z)hj(z) (Gij(x, ζ, x̂) +Gji(x, ζ, x̂))xv

(47)
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where

Gij(x, ζ, x̂) =

[

G11ij
(ζ, x̂) G12ij

(x̂)
0 G22ij

(x, x̂)

]

,

G11ij
(ζ, x̂) = Ai(x̂)−Bi(ζ)Fj(x̂),

G12ij
(x̂) = Li(x̂)Cj ,

G22ij
(x, x̂) = Āi(x, x̂)−Li(x̂)Cj .

Now, consider a candidate of Lyapunov function.

V (xv) = xT
v X̃xv, (48)

where

X̃ =

[

αX−1

1
0

0 X2

]

, (49)

α is a positive value, X−1

1
∈ R

n×n and X2 ∈ R
n×n are

positive definite matrices. Note that V (xv) > 0 at xv 6= 0. It

is clear from Lyapunov theory that the overall control system

(47) is stable if it is proved that V̇ (xv) < 0 at xv 6= 0.

The time derivative of V (xv) along the trajectory of the

system is obtained as

V̇ (xv) =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)x
T
v L{X̃Gij(x, ζ, x̂)}xv

=

r
∑

i=1

h2

i (z)x
T
v L{X̃Gii(x, ζ, x̂)}xv

+
r

∑

i=1

r
∑

i<j

hi(z)hj(z)×

xT
v L{X̃ (Gij(x, ζ, x̂) +Gji(x, ζ, x̂))}xv.

If the following conditions are satisfied, V̇ (xv) < 0 at xv 6= 0.

L{X̃Gii(x, ζ, x̂)} < 0 (50)

L{X̃ (Gij(x, ζ, x̂) +Gji(x, ζ, x̂))} ≤ 0 i < j ≤ r (51)

As well as in Theorem 1, (50) can be separately rewritten as

L{X−1

1
(Ai(x̂)−Bi(ζ)Fi(x̂))} < 0, (52)

L{X2(Āi(x, x̂)−Li(x̂)Ci)} < 0. (53)

Multiplying both side of (52) by X1 and defining a new vari-

able Mi(x̂) = Fi(x̂)X1, we obtain the following conditions.

L{Ai(x̂)X1 −Bi(ζ)Mi(x̂)} < 0 (54)

Defining another new variable Ni(x̂) = X2Li(x̂), the in-

equality (53) can be described as

L{X2Āi(x, x̂)−Ni(x̂)Ci} < 0. (55)

In the same way as above, (51) can be also represented as

L{Ai(x̂)X1 −Bi(ζ)Mj(x̂)}

+ L{Aj(x̂)X1 −Bj(ζ)Mi(x̂)} ≤ 0, (56)

L{X2Āi(x, x̂)−Ni(x̂)Cj}

+ L{X2Āj(x, x̂)−Nj(x̂)Ci} ≤ 0 (57)

for i < j ≤ r. It is clear from the inequality conditions

(54)-(57) that V̇ (xv) < 0 at xv 6= 0 if the SOS conditions

(41)∼(46) hold.

Remark 7. As we can see, Theorems 1 and 2 show that the

so-called separation principle is realized, i.e., that the fuzzy

polynomial controller and observer can be separately designed

without lack of guaranteeing the stability of the overall control

system in addition to converging state estimation error (via

the observer) to zero. This is a very important point in our

fuzzy polynomial controller and observer design. In particu-

lar, in Theorem 2, a key feature of realizing the separation

design is that, by introducing the transformation Ā(x, x̂)e =
A(x)x−A(x̂)x̂, the (2,1) element in Gij(x, ζ, x̂) becomes

zero element (matrix). This transformation idea leads to the

successful separation design.

A. Design Example II

Consider the following nonlinear system, where x1 is mea-

surable and y = x1.
{

ẋ1 = sinx1 − 0.3x2 + (x2

1
+ 1)u

ẋ2 = −1.5x1 − 2x2 − x3

2

(58)

This system has polynomial terms (x2

1
+ 1)u and x3

2
. To

obtain a T-S fuzzy model, we need to assume the ranges of

x1 and x2. Thus, as well as in Example I, the T-S fuzzy

model is a local model. This means that the T-S fuzzy

model stabilization and state-estimation convergence are not

guaranteed for outside the ranges. The polynomial fuzzy model

constructed in this example can exactly and globally represent

the dynamics of the original system. Even if a local or semi-

global T-S fuzzy model is permitted to use in practical sense,

the premise variable vector z contain x2 to be estimated.

Hence, the previous LMI conditions mentioned in Section

III-A1 can not be applied to the nonlinear system. On the other

hand, the premise variable vector z in polynomial fuzzy model

does not contain x2 and x2 appears in polynomial system

matrices Ai in consequent parts of polynomial fuzzy models.

Since the Class II design permits to have unmeasurable states

in Ai matrices, it is possible to design a polynomial fuzzy

observer in this example.

The dynamics of the nonlinear system can be exactly

represented as the polynomial fuzzy system (38), where r = 2,

z = ζ = y,

A1(x) =

[

1 −0.3x2

−1.5 −2− x2

2

]

,

A2(x) =

[

−0.2172 −0.3x2

−1.5 −2− x2

2

]

,

B1(ζ) = B2(ζ) =

[

y2 + 1
0

]

, C1 = C2 =
[

1 0
]

,

h1(z) =
siny + 0.2172y

1.2172y
, h2(z) =

y − siny

1.2172y
.

In this example, note that

Ā1(x, x̂)e = A1(x)x−A1(x̂)x̂

=

[

1
−1.5

−0.3(x2 + x̂2)
−2− x2

2
− x2x̂2 − x̂2

2

] [

e1
e2

]

, (59)
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Ā2(x, x̂)e = A2(x)x−A2(x̂)x̂

=

[

−0.2172
−1.5

−0.3(x2 + x̂2)
−2− x2

2
− x2x̂2 − x̂2

2

] [

e1
e2

]

. (60)

By solving the SOS conditions in Theorem 2, we obtain the

following polynomial feedback and observer gains, where the

orders of Mi(x̂) and Ni(x̂) are two.

F1(x̂) =
[

2.17028 + 0.31476e−17x̂2

2

0.35016e−5 − 0.37934e−11x̂2

2

]

F2(x̂) =
[

1.38495 + 0.31482e−17x̂2

2

0.34413e−5 − 0.37942e−11x̂2

2

]

L1(y, x̂) =

[

1.75626 + 0.650097e−11x̂2

2

−1.46221− 0.52724e−5x̂2

2

]

L2(y, x̂) =

[

0.64328 + 0.65012e−11x̂2

2

−1.41280− 0.52725e−5x̂2

2

]

Fig. 4 shows the control and estimation result by the designed

polynomial fuzzy controller and observer, where the initial

states are x(0) = [1 1] and x̂(0) = [0 0]. It can be seen that

the designed controller stabilizes the nonlinear system and the

estimation error via the polynomial fuzzy observer tends to

zero.

0 2 4 6 8 10

-0.5

0

0.5

1

Time (sec.)

y

 

 
y
Estimated y

Fig. 4. Control and estimation result.

Remark 8. Since A1(x) and A2(x) have unmeasurable

x2 in this design example, the Class I SOS-based observer

design (Theorem 1) can not be applied to this design example.

The previous LMI conditions mentioned in Section III-A1 can

not be also applied to the nonlinear system. On the other

hand, since the Class II design (Theorem 2) permits to have

unmeasurable states in Ai matrices, it is possible to design a

polynomial fuzzy observer in this example.

V. POLYNOMIAL CONTROLLER AND OBSERVER DESIGN

(CLASS III)

In this section, we consider a more complicated class,

i.e., Ai(x) and Bi(x) case. Class III design deals with the

polynomial fuzzy system (61) and (7).

ẋ =

r
∑

i=1

hi(z){Ai(x)x+Bi(x)u} (61)

For the system (61) and (7), we design the following

polynomial fuzzy observer.

˙̂x =

r
∑

i=1

hi(z){Ai(x̂)x̂+Bi(x̂)u+Li(x̂)(y − ŷ) (62)

ŷ =

r
∑

i=1

hi(z)Cix̂, (63)

where Li(x̂) for all i are the polynomial observer gain

matrices in x̂.

It is known that it is extremely difficult to separately design

a polynomial fuzzy controller and observer in Class III. In

fact, to the best of our knowledge, there exist no literatures on

achieving the separation design in this class of polynomial

fuzzy systems. To overcome the difficulty, we propose a

practical algorithm to design a polynomial fuzzy controller

and observer satisfying the stability of the overall augmented

system in addition to converging state estimation error (via the

observer) to zero.

The algorithm mainly consists of three steps.

Step 1 By assuming that all the states are measurable, we

design the following controller.

u = −
r

∑

i=1

hi(z)Fi(x)x (64)

The SOS conditions (see Theorem 3 below) derived

in [7], [9] are applied to determine the polynomial

feedback gains Fi(x).
Step 2 We replace the controller designed in Step 1 with

u = −

r
∑

i=1

hi(z)Fi(x̂)x̂, (65)

where x is replaced with x̂.

Step 3 Note that Fi(x̂) and X1 (see Theorem 3 below)

obtained in Step 2 are known polynomial matrices

in x̂ and a positive definite matrix, respectively. We

determine the polynomial observer gains Li(x̂) by

solving new SOS design conditions (see Theorem 4

below).

We present the previous SOS conditions [7], [9] (Theorem 3

below) to determine the polynomial feedback gains Fi(x) and

new SOS design conditions (Theorem 4 below) to determine

the polynomial observer gains that are newly derived in this

paper.

Theorem 3. [7], [9] The system (61) and (7) can be stabilized

by the controller (64) if there exist a positive definite matrix

X1 ∈ R
n×n and polynomial matrices Mi(x) ∈ R

p×n
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satisfying the following SOS conditions.

vT
1
(X1 −E

reg
1

)v1 is SOS (66)

− vT
2

(

L{Ai(x)X1 −Bi(x)Mi(x)}+E
reg
2i (x)

)

v2

is SOS (67)

− vT
3

(

L{Ai(x)X1 −Bi(x)Mj(x)}

+ L{Aj(x)X1 −Bj(x)Mi(x)}

)

v3

is SOS i < j ≤ r (68)

where v1, v2, v3 ∈ R
n denote vectors that are independent of

x. From the solutions X1 and Mi(x), the feedback gain can

be obtained as Fi(x) = Mi(x)X
−1

1
.

Theorem 4. The system (61) and (7) can be stabilized by

the polynomial fuzzy controller (65) and the estimation error

via the polynomial fuzzy observer (62) and (63) tends to zero

if there exist a positive definite matrix X2 ∈ R
n×n and

polynomial matrices Ni(x̂) ∈ R
n×q satisfying the following

SOS conditions, where X1 and Fj(x̂) are solutions satisfying

the SOS conditions in Theorem 3 and are given (known)

matrices in Theorem 4.

xT
v

([

X−1

1
X2 0

0 X2

]

−Eobs
1

)

xv is SOS (69)

− xT
v

(

Ωii(x, x̂) +Eobs
2i (x, x̂)

)

xv is SOS (70)

− xT
v

(

Ωij(x, x̂) +Ωji(x, x̂)

)

xv is SOS i < j ≤ r

(71)

where

Ωij(x, x̂) =

[

Ω
11

ij (x̂) Ω
12

ij (x̂)
Ω

21

ij (x, x̂) Ω
22

ij (x, x̂)

]

,

Ω
11

ij (x̂) = X−1

1
X2(Ai(x̂)−Bi(x̂)Fj(x̂)),

Ω
12

ij (x̂) = X−1

1
Ni(x̂)Cj ,

Ω
21

ij (x, x̂) = X2(Ai(x)−Ai(x̂)

− (Bi(x)−Bi(x̂))Fj(x̂)),

Ω
22

ij (x, x̂) = X2Ai(x)−Ni(x̂)Cj ,

xv = [x̂T eT ]T and e = x− x̂. From the solutions X2 and

Ni(x̂), we can obtain observer gain matrices as Li(x̂) =
X−1

2
Ni(x̂).

Proof: Define the estimation error via the observer as

e = x− x̂. Then, the error dynamics are represented as

ė =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)×

{(Ai(x)−Ai(x̂)− (Bi(x)−Bi(x̂))Fj(x̂))x̂

+ (Ai(x)−Li(x̂)Cj)e}.

We obtain the following augmented system:

ẋv =
r

∑

i=1

r
∑

j=1

hi(z)hj(z)Gij(x, x̂)xv,

where

xv =
[

x̂T eT
]T

,

Gij(x, x̂) =

[

G11

ij (x̂) G12

ij (x̂)
G21

ij (x, x̂) G22

ij (x, x̂)

]

,

G11

ij (x̂) = Ai(x̂)−Bi(x̂)Fj(x̂),

G12

ij (x̂) = Li(x̂)Cj ,

G21

ij (x, x̂) = Ai(x)−Ai(x̂)− (Bi(x)−Bi(x̂))Fj(x̂),

G22

ij (x, x̂) = Ai(x)−Li(x̂)Cj .

Now, consider the following candidate of Lyapunov func-

tions.

V (xv) = xT
v X̃xv, (72)

where

X̃ =

[

X−1

1
X2 0

0 X2

]

> 0. (73)

The time derivative of V (xv) along the system trajectories is

V̇ (xv) =

r
∑

i=1

r
∑

j=1

hi(z)hj(z)x
T
v (G

T
ij(x, x̂)X̃

+ X̃Gij(x, x̂))xv.

Since xT
v Hxv = xT

v H
Txv for any square matrix H , we

have

V̇ (xv) =2

r
∑

i=1

r
∑

j=1

hi(z)hj(z)x
T
v X̃Gij(x, x̂)xv

=2
r

∑

i=1

h2

i (z)x
T
v X̃Gii(x, x̂)xv

+ 2

r
∑

i=1

r
∑

i<j

hi(z)hj(z)×

xT
v X̃(Gij(x, x̂) +Gji(x, x̂))xv. (74)

V̇ (xv) < 0 at xv 6= 0 if (75) and (76) hold.

− xT
v X̃Gii(x, x̂)xv > 0, (75)

− xT
v X̃(Gij(x, x̂) +Gji(x, x̂))xv ≥ 0 i < j ≤ r. (76)

By defining as Ni(x̂) = X2Li(x̂), (75) can be rewritten as

−xT
v X̃Gii(x, x̂)xv = −xT

v

[

Ω
11

ii (x̂) Ω
12

ii (x̂)
Ω

21

ii (x, x̂) Ω
22

ii (x, x̂)

]

xv

= −xT
v Ωii(x, x̂)xv > 0, (77)

where

Ω
11

ii (x̂) = X−1

1
X2(Ai(x̂)−Bi(x̂)Fi(x̂)),

Ω
12

ii (x̂) = X−1

1
Ni(x̂)Ci,

Ω
21

ii (x, x̂) = X2(Ai(x)−Ai(x̂)

− (Bi(x)−Bi(x̂))Fi(x̂)),

Ω
22

ii (x, x̂) = X2Ai(x)−Ni(x̂)Ci.

Also, (76) can be rewritten as

− xT
v (Ωij(x, x̂) +Ωji(x, x̂))xv ≥ 0, i < j ≤ r (78)
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where

Ω
11

ij (x̂) = X−1

1
X2(Ai(x̂)−Bi(x̂)Fj(x̂)),

Ω
12

ij (x̂) = X−1

1
Ni(x̂)Cj ,

Ω
21

ij (x, x̂) = X2(Ai(x)−Ai(x̂)

− (Bi(x)−Bi(x̂))Fj(x̂)),

Ω
22

ij (x, x̂) = X2Ai(x)−Ni(x̂)Cj .

Now, we arrive at the SOSPs (69)-(71).

Clearly, the overall control system consisting of (61), (7),

(65), (62) and (63) is asymptotically and globally stable and

the estimation error tends to zero.

Remark 9. Note that (73) is different from (19) and (49). (73)

is needed to have SOS conditions with respect to variables X2

and Ni(x̂). If we use (19) or (49) instead of (73), the derived

conditions have X2, Ni(x̂) and Li(x̂). In this case, due to

the constraint Ni(x̂) = X2Li(x̂), they can not be generally

solved by SOSTOOLS and SeDuMi.

A. Design Example III

Consider the following nonlinear system.
{

ẋ1 = sinx1 − 5x2 + (x2

2
+ 5)u

ẋ2 = −x1 − x3

2

(79)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1

x 2

Fig. 5. System behavior without input.

This system has polynomial terms (x2

2
+ 5)u and x3

2
. As

well as in Examples I and II, the polynomial fuzzy model

constructed in this example can exactly and globally represent

the dynamics of the original system although the T-S fuzzy

model for (79) is a local model. In addition, the previous LMI

conditions in Section III-A1 can not be applied to the nonlinear

system. Conversely, the Class III design can be applied to

designing a polynomial fuzzy observer in this example.

Assume that x1 is measurable and y = x1. Fig. 5 shows

the behavior of the nonlinear system without input for several

initial states. It is found from the figure that this system is

unstable.

The system (79) can be exactly converted into the polyno-

mial fuzzy system (61) and (7) using the sector nonlinearity

[2], where r = 2, z = y,

A1(x) =

[

1 5
−1 −x2

2

]

, A2(x) =

[

−0.2172 5
−1 −x2

2

]

,

B1(x) =

[

x2

2
+ 5
0

]

, B2(x) =

[

x2

2
+ 5
0

]

,

C1 = C2 =
[

1 0
]

,

h1(z) =
siny + 0.2172y

1.2172y
, h2(z) =

y − siny

1.2172y
.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1

x 2

Fig. 6. Control trajectories for same initial states as in Fig. 5.

Fig. 6 shows control result (for the same initial states as Fig.

5) by the polynomial fuzzy controller and observer designed

using Theorem 3 and Theorem 4, where the order of Mi(x̂)
and Ni(x̂) are two. Fig. 7 shows the control and estimation

result starting from one of the initial states, where x(0) =
[0.3 0.3] and x̂(0) = [−0.3 − 0.3]. The polynomial feedback

and observer gains are obtained as follows.

F1(x̂) =
[

0.29008 + 0.20778x̂2

2

0.63772− 0.22047e−1x̂2

2

]

F2(x̂) =
[

0.46829e−1 + 0.22751x̂2

2

0.64532− 0.24141e−1x̂2

2

]

L1(x̂) =

[

2.65691 + 17.71908x̂2

2

1.08259 + 1.76675x̂2

2

]

L2(x̂) =

[

3.68595 + 18.01543x̂2

2

1.52432 + 1.70592x̂2

2

]

It can be found from the control results that the designed

polynomial fuzzy controller stabilizes the system and the

estimation error via the polynomial fuzzy observer tends to

zero.
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Fig. 7. Control and estimation result.

.

Remark 10. Since A1(x), A2(x), B1(x) and B2(x) have

unmeasurable x2 in this design example, the previous SOS-

based observer designs (Classes I and II) can not be applied

to this design example. Even if the sector nonlinearity concept

is applied to construct a T-S fuzzy model for the nonlinear sys-

tem, the premise variables z contain x2. Hence, the previous

LMI conditions mentioned in Section III-A1 can not be applied

to the nonlinear system. On the other hand, since the Class

III design permits to have unmeasurable states in both of Ai

and Bi matrices, it is possible to design a polynomial fuzzy

observer in this example.

VI. CONCLUSIONS

This paper has presented a sum of squares (SOS) approach

for three classes of polynomial fuzzy controllers and observers.

To illustrate the validity and applicability of the proposed

approach, three design examples have been provided. The

examples have demonstrated advantages of the SOS-based

approaches for the existing LMI approaches to T-S fuzzy

observer designs.

Our next subjects are to derive SOS observer design condi-

tions to realize the sepration design even for Class III and to

apply our observer designs to helicopter control [11].
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