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1. Introduction  
 

College Basketball is one of the most popular sports in the country. A college basketball star, 

like Zion Williamson, can single-handedly affect the stock price of a company like Nike, by 

wearing one of their shoes. At the end of every year, a tournament is played called “March 

Madness”. The top college basketball teams around the country play each other and millions of 

fans create forecasted brackets of the tournament and follow along.  

The tournament is called “March Madness” for a reason. It is incredibly hard to predict 

the outcome of a game. Predictive analytics within college basketball has significantly grown 

over the years. Everyone wants to create a bracket with the highest accuracy. Fans all over the 

world are looking for ways to improve their brackets and stay involved as the tournament 

progresses.  

In 2017, ESPN.com had 17.3 million March Madness brackets submitted to their website 

(Ota, 2018). A March Madness bracket with perfect accuracy has never been created before. In 

fact, ESPN.com has a free contest every year that awards one million dollars to an individual if 

they submit a perfect bracket. Last year alone, college basketball topped $1 billion in revenue 

(Rovell, 2018). It is no secret college basketball is vastly growing in popularity across the 

country every year.  

The two primary research objectives in this thesis are: 

1. Create a model that can help predict the winning team of a college basketball game 

given the historic performance metrics of the two teams. 

2. Identify the performance metrics that are statistically significant in predicting the 

outcome of the game. 
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We build one separate model for each college basketball team using logistic regression 

methodology in R. We used historical data of division one basketball teams retrieved from 

Kaggle.com, to fit our model. The accuracy of our model in predicting the outcome of historic 

games varies from one team to another but ranges from 56% to 84% on training data, and from 

21% to 97% on test data. 

2. Literature Review 
 

The outcome of a college basketball game is dichotomous: A team either wins or loses. The 

problem of predicting a categorical (in this case, binary) outcome is called classification, and 

there are several methodologies available in the literature for this purpose.  

Shanahan (1984) built a logistic regression model to predict the probability of a win for a 

college basketball game. Shanahan used data from the University of Iowa men’s and women’s 

basketball teams from 1981-1983 and built a model for each team. Within those seasons, the 

men’s team played 59 games and the women’s team played 51. She started her model with 13 

independent variables for the Women’s model and 15 independent variables for the Men’s 

model. Some of the variables in both models include: Assists, Personal Fouls, Field Goal 

Percentage, Defensive Rebounds, Total Rebounds, and Blocked Shots. Using backwards 

elimination, Shanahan then reduced the size of the two models to eight and six variables in the 

men’s and women’s team models, respectively. She interestingly found that the significant 

variables included in the women’s model were more offensive-based, while the variables in the 

men’s model was more defensive-based. Overall, her women’s model had 90% accuracy in 

predicting the outcome of a game for that given season, and her men’s model had 88% accuracy.  

Magel and Unruh (2013) used Logistic Regression and least squares regression models 

with several explanatory variables such as home court advantage, difference in offensive 
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rebounds, difference in defensive rebounds, difference in assists and difference in blocks to 

determine different outcomes pertaining to a college basketball game. The logistic regression 

model was used to determine a binary output (win or lose). The least squares regression model 

was used to determine the point spread of the final score between two teams of a specific game. 

The final logistic regression model 68% accuracy and the least squares final model had 64% 

accuracy.  

 Among classification methodologies, logistic regression particularly allows us to realize 

the relative importance of input variables in the prediction outcome and identify the significant 

variables. For example, Clark et al. (2013), from the Massachusetts Institute of Technology, used 

logistic regression to identify which factors have a significant impact on the success of a made 

field goal in the National Football League. In their research, they note how traditional analyses 

assume the main factor is the distance of the field goal, whereas after fitting a regression model, 

they find that Distance, Cold temperature, Field surface, Altitude, Precipitation, and Wind were 

all significant in determining the success of a made field goal in the NFL. 

Aside from the National Football League, logistic regression has also been used in the 

Canadian Football League (CFL). Willoughby (2002), used win or lose as his dependent 

variable, and difference in passing yards, rushing yards, interceptions, fumbles and sacks as his 

independent variables. Willoughby specifically wanted to know which of these variables were 

most significant in predicting the outcome of a game for a winning or losing team. Willoughby 

analyzed three different teams, Calgary (a very good team), Saskatchewan (an average team), 

and Ottawa (a bad performing team). After fitting his model, Willoughby found that the 

difference in passing and rushing yards, along with interceptions, were most significant in 

predicting a win for a good team (Calgary and Saskatchewan), and less significant for bad teams 
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(Ottawa). Willoughby was able to conclude that a winning team in the CFL should be built 

around rushing, passing and trying to intercept the ball as much as possible. 

Kvam and Sokol (2006) use Logistic Regression to estimate the probability that a team 

with a given margin of victory at home is better than its opponent. Their model specifically 

compares pairs of teams. For example, when team A beats team B at home by a certain margin of 

victory, the authors want to determine the probability that team A will then beat team B when 

they play at team B’s home court. The probabilities of winning at both teams’ locations with 

different margins of victory, helps determine which team will win if the two teams play a neutral 

game (neither home or away, which most March Madness games are). They used these results to 

create a ranking system of the teams in the March Madness tournament, then compared their 

ranking system to the five most commonly used NCAA ranking systems for predicting outcomes 

of games in the tournament. They found that their ranking system performed well (i.e., predicted 

a significant number of game outcomes) compared to the others. 

Logistic Regression is not the only method for classification problems. Levandoski et al. 

(2017), used random forests methodology specifically for March Madness bracketing. According 

to Levandoski et al. (2017), random forests methodology works by creating a plethora of 

decision tree classifiers, and the final prediction is based on the mode of the results of those 

decision trees. Levandoski et al. (2017) trained their random forest classifier using 300 decision 

trees, each with a randomly selected subset of features, equal to the square root of the input 

dimensionality. Each decision tree in their model used 8 random features from a total of 57 

features. They achieved a 68.9% accuracy using this method. They also compared their model 

against other classification methods such as: Neural Network (79.4%), Logistic Regression 

(76.2%), Bayes (69.8%), SVM (68.3%), Adaptive Boosting (66.7%), and K-nearest neighbors 
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(61.9%). The Logistic Regression method, which we use in this paper, outperformed all other 

methods by a noticeable margin, except the Neural Network technique. 

 Forsyth and Wilde (2014) used the K-nearest neighbors (kNN) classification method to 

predict the outcome of a college basketball game. This method compares new data to instances 

of similar data in the past to determine an outcome. For example, if a quicker team plays a taller 

team, the method will search through other match-ups where quicker teams played taller teams to 

determine the likelihood of a win for each team. This method is useful when past data is 

comprehensive and diverse enough to include a similar match-up (in every respect) to the game 

we are trying to predict. Forsyth and Wilde (2014) reported a 73% accuracy. 

 Along with finding the optimal method to use for predicting the outcome of a game, 

choosing the correct variables (attributes, statistics, metrics) to include in the model is just as 

important. Shi et al. (2013) fit a model using the “four Factors” (variables), that sports analyst 

Dean Oliver considers the most relevant in determining the outcome of a game. They are: Field 

Goal Percentage, Turnover Percentage, Offensive Rebound Percentage, and Free throw rate. Shi 

et al. (2013) also tested several different sets of variables as well as various other machine 

learning techniques such as decision trees, neural networks, and random forests. They received 

significantly different results when applying feature selection and learned that “the variables 

used to run the methods are ultimately what makes or breaks success.” They experienced poor 

results when using very complex methods with a lot of variables and received better results when 

using simpler methods with fewer variables. This shows that a tremendous amount of due 

diligence is needed when determining which variables should be included in the model.   
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3. Dataset 
 

For the purpose of training and testing our logistic regression model, we used the dataset from 

NCAA 2018 machine learning competition on Kaggle.com. The dataset includes historical 

performance metrics (statistics) observed across 82,041 basketball games from 364 different 

division one college basketball teams, between 2003 and 2018. For each game, the data includes 

the performance metrics for both opposing teams. 

The specific performance metrics included in this dataset include: 

• Season (Year) 

• Win (Win:1, Loss:0) 

• Score 

• Number of Field Goals Made (FGM) 

• Number of Field Goals Attempted (FGA) 

• Number of Field Goals Made 3 (FGM3) 

• Number of Field Goals Attempted 3 (FGA3) 

• Number of Free Throws Made (FTM) 

• Number of Free Throws Attempted (FTA) 

• Number of Offensive Rebound (OR) 

• Number of Defensive Rebound (DR) 

• Number of Assists (AST) 

• Number of Turnovers (TO) 

• Number of Steals (STL) 

• Number of Blocks (BLK) 

• Number of Personal Fouls (PF) 

Specifically, we used the data file called RegularSeasonDetailedResults.csv from 

Stage2UpdatedDataFiles.zip archive posted on the Kaggle competition site. We imported this 

data into R for the rest of our analysis.  
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4. Methodology  
 

In this section we will elaborate on our logistic regression model, how we used R to transform 

raw data into an appropriate format for fitting logistic regression and discuss how we performed 

feature selection and data partitioning together to simplify our model and alleviate 

multicollinearity and overfit concerns. 

4.1 Logistic Regression 
 

In this research, we want to predict a categorical outcome of a college basketball game (0: lose, 

1: win) for a specific college basketball team. This is considered a classification problem because 

the dependent output variable is binary (0/1) and not continuous (e.g., as demand or sales or 

market value of a car would be). Logistic regression is one of the powerful methodologies for 

binary classification problems.  

 Logistic regression works by using independent variables (also known as predictors, or 

features) to assess the probability of a dependent binary variable taking the success value (in our 

case, 1, representing a win). The mathematical formula for calculating the probability is as 

follows: 

Prob[Win] =
1

1 + 𝑒−𝑈
 

where 

U = 𝛽0 + 𝛽1x1  +  𝛽2x2 + 𝛽3x3 + ⋯ 

and variables ( x1, x2, x3 , …) are the input (predictor) variables. For our input variables, we use 

cumulative and moving averages of the historical performance metrics listed in the dataset 
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section, as well as some nonlinear transformations of these metrics which we will further explain 

in the following sections. 

The regression coefficients (  𝛽0, 𝛽1, 𝛽2, 𝛽3, … ) are fitted using Maximum Likelihood 

Estimation (MLE) on historical data. The regression coefficients should be interpreted as 

follows: each additional 1 unit increase (decrease) in a predictor variable (performance metric) 

xi, multiplies (divides) the odds of winning, meaning Prob[Win]/Prob[Loss], by 𝑒𝛽𝑖 .    

There are several different ways we could use logistic regression. We could build a 

separate model for each pair of teams; A separate model for each team (against all others), or one 

single model to predict all games. Each college basketball team has different and unique 

historical performance metrics that may be significant in determining that particular team’s 

success, therefore one single model may not perform well for every team. On the other hand, 

creating a separate model for each pair of teams, even though more customized, is not practically 

achievable due to the scarcity of data to support estimating the model coefficients and then 

validating the model. This is because most pairs of teams do not play against each other that 

often over the course of a decade. Therefore, we create a model for each team to strike a balance 

between customizing the model to each team, while having enough data to support a proper 

regression analysis.  

A fitted regression model can further give significance values to each predictor variable 

known as p-values, that show how significant that variable is in the prediction of the dependent 

variable. The lower the p-value, the stronger the significance of that variable. A reader looking 

for more information regarding logistic regression may refer to Best Practices in Logistic 

Regression by Osborne (2015).   
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There are several important steps to consider when fitting a logistic regression model 

such as: data preparation, feature generation, variable selection, and data partitioning for model 

validation. We will discuss these steps in the next sections.  

4.2 Data Preparation 
 

The classification model should not use the performance result of a game after it has happened to 

predict the outcome of the same game. The input variables to the model on any game should only 

be based on the performance of the two teams as observed up to and prior to that game. 

Therefore, raw data as it appears in the dataset is not useful for fitting the model. 

In our work, we calculated a 5-game moving average (MA) and a cumulative average 

(CA) of each performance metric for each team. For example, if teams 1 and 2 are playing on 

April 1st, 2018, the 5-game moving average would be the average of each performance metric for 

each team across the most recent 5 games preceding April 1st, 2018. The cumulative average 

would be the average of each performance metric for each team across all games played by that 

team prior to April 1st, 2018. The very first 4 games played by each team in history consequently 

had to be eliminated from the analysis due to not having a 5-game MA metric yet. We then used 

these MA and CA variables in place of the raw data to fit our model.  

4.3 Feature Generation 
 

Feature generation is a common idea in building strong predictive models where nonlinear 

transformations of original variables are added as additional variables in the model, hoping that 

some of these transformed variables would be significant and could improve the overall 

prediction accuracy.  
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In our work, we used the following nonlinear transformations of the moving and 

cumulative average performance statistics: Squared, Square root, Logarithm, Pairwise Ratios, 

and Pairwise Products. We added these variables to our dataset as new columns and after doing 

so ended up with a total of 282 input variables. These transformations were not possible on every 

performance metric, e.g., some leading to frequent division by zeros, and such cases were not 

generated in this process. Interestingly, and as we will describe in our results section, several of 

the most significant variables happen to be from these transformed variables that we generated.  

4.4 Feature Selection 
 

When fitting a logistic regression model the simpler model is always preferred to a more 

complex model, if they both yield a similar prediction accuracy. Generally speaking, there are 

three advantages in performing variable selection: 1) having a simpler model to work with, 2) 

correcting multicollinearity issues, and 3) alleviating overfit issues.  

Having a simpler model to work with if the results are similar is preferred because it 

makes the model easier to use, explain, and interpret. Furthermore, fewer input metrics, meaning 

less data, needs to be collected for the purpose of prediction. Multicollinearity exists when 

independent (predictor) variables are highly correlated to one another. This causes inaccurate 

model, often with counter-intuitive coefficient signs (see Zainodin et al. 2011 for an example). 

Variable selection resolves multicollinearity issues by dropping one of the variables that are 

highly correlated. In our model, we particularly observed a strong multicollinearity issue 

involving variables FTM and FTA. Overfit occurs when the regression model is fitted extremely 

well to the historical data (e.g., high prediction accuracy) but is unable to predict similarly on 

brand new data. Overfitting can be caused by an abundance of predictor variables (Babyak, 

2004). Within our model, we strive to resolve overfit issues using variable selection. 
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There are several methods for performing variable selection including: Backward 

elimination, forward selection, sequential replacement, and best subsets. Backward elimination 

starts with all predictor variables and then drops variables, one at a time, based on their (lack of) 

significance. Forward selection starts with no predictor variables and adds them, one a time, 

based on their significance. Sequential replacement is a method that combines the forward and 

backward ideas (Grisoni et al, 2014). The best subsets method works by exploring all possible 

subsets of predictor variables given a set number (constraint). This method is impractical to 

models with too many variables, since the number of subsets to try becomes prohibitively large 

(Hastie et al, 2008).  

 The best subset method is optimal but impractical for models beyond 15-20 variables. 

Among forward and backward, we found that backward leads to a model with higher accuracy in 

our application. We also found that having about 15 variables in the model is the sweet spot for 

simplicity of the model, yet giving a high accuracy, and having resolved most overfit concerns. 

4.5 Data partitioning  
 

Data partitioning is a standard practice for model validation. We specifically want to resolve any 

overfit issues. “Overfitting a model is a condition where a statistical model begins to describe the 

random error in the data rather than the relationship between variables” (Frost, 2019). An overfit 

model is so precisely fit to the original data that it is unable to replicate results on new data 

(Babyak, 2004). It is important to check for overfit issues to be sure that the model will work 

well when exposed to new data. Data partitioning allows us to check for overfit issues by 

splitting our data into a training set, which we use to fit our model, and a test set, which we use 

to confirm that the model (fitted on training data) gives a similar rate of correct predictions on a 

new but similar data which was not a part of fitting the model.  
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In our work, we used the games played by a team during 2003-2017 for training/fitting 

the model and held the data for games played during the 2018 season for validation. This left us 

with an average of 430 observations per team for the training set and 30 observations per team 

for the test set. As we will show in the following section, we found that our feature selection step 

and reducing the number of variables down to 15 resolved the overfit issue for most teams. 

5. Results 
 

In this section we show the results of our model and answer the two research objectives stated in 

the introduction. We fitted the logistic regression model and created an accuracy table presented 

in the table below. Along with the accuracy table, we identified the top 20 variables that were 

most often (that is, for many teams) deemed statistically significant in predicting the outcome of 

a game. 

5.1 Prediction Accuracy on Twenty Well-Known Teams 
 

The table below shows the prediction accuracy of our model, i.e., the percentage of times our 

model could correctly predict the winner of a game, for 20 of the most popular basketball teams. 

The complete table for 351 teams appears in the Appendix A, along with coefficients and p-value 

information. Teams that did not play in the 2018 season (which we considered to be our test data 

period) were not considered in the analysis. 

The “Full model” is our logistic regression fitted with all variables. It is evident that with 

all variables the model is overfit. For example, the model build for Michigan State shows a 92% 

accuracy on the 2003-2017 data on which it was fitted, while showing only 18% accuracy when 

used to predict new games from the 2018 season. This shows that the model is unable to predict 

accurately when applied to brand new data. 
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The “Sub Model” is our model after performing a backward elimination of variables 

down to fifteen variables. It is evident that the overfit issues across most teams are resolved 

when variable selection is applied. Looking back at Michigan State, the training set accuracy is 

now 72%, which is lower than before. However, the test data accuracy of 76% gives us 

confidence that the model will deliver consistent accuracy when applied to brand new data.  

 Full Model Sub Model 

Team Train Test Train Test 

Virginia 94% 85% 69% 91% 

Gonzaga 95% 82% 84% 88% 

Villanova 94% 38% 74% 88% 

Purdue 92% 53% 69% 82% 

Arizona 94% 74% 74% 79% 

Kansas 94% 53% 84% 79% 

Duke 94% 64% 82% 79% 

Michigan St 92% 18% 72% 76% 

Miami FL 93% 71% 66% 74% 

Nevada 92% 74% 67% 74% 

North Carolina 96% 66% 76% 71% 

Kentucky 93% 71% 79% 71% 

Houston 94% 45% 68% 70% 

Texas Tech 94% 47% 69% 66% 

Louisville 94% 58% 76% 61% 

Florida 93% 41% 72% 59% 

Tennessee 91% 45% 66% 58% 

Marquette 93% 50% 68% 53% 

Michigan  92% 50% 64% 47% 

Auburn 92% 19% 62% 38% 

 

Along with analyzing the best sub-model to use. We were able to identify which teams 

were most predictable (win or lose) against any given team. From our results, Virginia is the 

team with the highest accuracy. It can be inferred that Virginia plays more consistently than the 

19 other college basketball teams in the table. Auburn, on the other hand, appears to be an 

unpredictable team.  
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To find the winner of one specific basketball game. For example, Virginia vs. Michigan. 

We would first use the Virginia model and fill in the opposing team’s variables with Michigan’s 

(MA, CA, and their transformed) statistics to assess the likelihood of Virginia winning. We 

could also use the Michigan model and fill in the opposing team’s variables with Virginia’s 

statistics to assess the likelihood of Michigan winning. If both models predict the same outcome, 

we could be fairly confident in the winner of the game. If the two models give different 

predictions, then we would probably trust the model that has shown higher accuracy on historical 

train and test data. If both models have low accuracy, then we would not be too confident in 

either one of the predictions. 

5.2 Statistically Significant Performance Metrics 
 

We identified which variables were most often deemed significant in predicting the outcome of a 

game by sorting the variables by the number of times they showed up as a significant variable 

across all the sub-models that we developed for the 351 different teams. The top 5 variables 

include: Square root of the cumulative average of field goals made, square root of the moving 

average of steals, cumulative average of score, moving average of personal fouls, and square root 

of the moving average of turnovers, all measured for the team of interest (and not the opposing 

team). The complete list of common variables appears below: 

1. Square Root of the Cumulative Average of FMG1 

2. Square Root of the Moving Average of STL1 

3. Cumulative Average of the Score1 

4. Moving Average of PF1 

5. Square Root of the Moving Average of TO1 

6. Square Root of the Cumulative Average of AST1 

7. Cumulative Average of STL1 

8. Square Root of the Moving Average of TO2 

9. Cumulative Average of FGA1 

10. Cumulative Average of DR1 

11. Square Root of the Moving Average of PF1 
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12. Square Root of the Cumulative Average of FGA1 

13. Square Root of the Cumulative Average of FTA1 

14. Square Root of the Moving Average of BLK1 

15. Square Root of the Cumulative Average of Score1 

16. Cumulative Average of FGA31 

17. Cumulative Average of FGM1 

18. Square Root of the Moving Average of STL1 

19. Square Root of the Cumulative Average of FTM1 

20. Cumulative Average of FTA1 

 

Variable acronyms were introduced before in our Dataset section 3. The numbers 1 & 2 

after each variable are denoting the team of interest (for which the model is built) and the 

opposing team, respectively. An interesting discovery is that several of the top variables include 

the “square root” function. This proves that using feature generation in our research benefitted 

our model considering it provided most of the common significant variables. Furthermore, we 

observe that all top variables (except the 8th item in the list) pertain to the team of interest (for 

which the model is built) and not the opposing team. Appendix B provides a detail list of 

variables and coefficients for the 20 well-known basketball teams. Even though a few 

performance metrics from the opposing team do show up in most models, none of them is 

consistently a significant across multiple model to make our top-20 variable list, except for the 

square root of the moving average of turnovers.   

6. Future Work 
 

In our work, we built a logistic regression model to predict the winner of a college basketball 

game for 351 different teams. We transformed raw data into moving and cumulative averages, 

and created nonlinear transformations of these metrics to create even more features. We used 

backward elimination down to 15 variables to create a sub-model for each team to alleviate 

multicollinearity and overfit issues. We partitioned our data into a training and test for model 
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validation. Our training set included data from 2003-2017, and we used data from 2018 as our 

test data. We were able to produce accuracy results for each team. We specifically found success 

in creating accurate models for some prominent teams. We were also able to identify which 

historical performance metrics were most commonly significant in the prediction of the outcome 

of a game.  

 There were a few key limitations that future research in this area may explore. First, we 

have accuracy results for each team against all teams. It would be interesting to see how accurate 

the predictions can be if we create a model for each pair of teams. For example, fitting a model 

specifically for Virginia vs. Michigan. The problem we faced was that most teams did not play 

each other enough times to have sufficient data for us to successfully fit and validate a model. 

This specific approach would be practical only for popular teams who play each other often. For 

example, the rivalry of Duke vs. North Carolina. This method could provide fans with a more 

customized tool to use when predicting the winner of a game. 

 Secondly, our model does not account for player injuries. Often times, a star player on a 

team can be the main producer for some of the performance metrics. If that player does not play 

in a certain game, the performance metrics could be completely different. One heuristic approach 

to bypass this limitation of the model could be to assess how much, on average, each individual 

player contributes to each of the team’s overall performance metric (such as field goals made), to 

be able to determine how those metrics should be adjusted/scaled, if that player does not play, 

before inputting them in the logistic regression model. 

 Thirdly, our training and test data all pertained to regular season games only, and not 

from the end of the year tournament (i.e., the March Madness). Games played in the March 

Madness tournament are normally much more intense than a given regular season game and so 
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the performance metrics for each team in the tournament could be drastically and 

characteristically different from those collected during the regular season. It would be interesting 

to see how performance metrics increase/decrease for each team during a game of higher 

intensity. Of course, only a few teams play in the tournament consistently and often (e.g., Duke, 

Virginia, or North Carolina); therefore, such analysis would not be an option for most NCAA 

basketball teams.  

Finally, our work was limited to exploring the logistic regression methodology. It would 

be interesting to see how other classification methods such as: k-Nearest Neighbors, Support 

Vector Machine, Neural Networks, etc. would perform on the same data and using the same 

variables. The performance of different classification techniques is highly dependent on the data, 

therefore one of these alternative methods may very well lead to much more accurate 

predictions. 

Moving forward, the same methods in this paper could be applied to other sports. 

Football and baseball are historically very analytical. There is a large amount of data available 

for both sports. It would be captivating to see if following the same steps we followed to develop 

and refine our logistic regression models could produce similar, or even better results, for some 

prominent football or baseball teams.   
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Appendix 
 

A. Prediction Accuracy for All Teams  
 

The table below is the accuracy table for all 351 teams. For each team, the full model contains all 

282 variables, whereas the sub-model contains only 15 variables, identified using backward 

elimination. Each model is trained on 2003-2017 data and tested on 2018 data. The table is 

sorted by the accuracy of sub-model on test data, from highest to lowest.  

 

 

Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

Chicago St 97% 77% 75% 97% 

Delaware St 92% 67% 74% 93% 

Virginia 94% 85% 69% 91% 

Bryant 100% 6% 72% 90% 

Maine 96% 73% 69% 90% 

Houston Bap 100% 14% 73% 89% 

Cincinnati 93% 68% 68% 88% 

Gonzaga 95% 82% 84% 88% 

Villanova 94% 38% 74% 88% 

Pittsburgh 91% 59% 76% 88% 

Alabama A&M 97% 19% 70% 87% 

Longwood 98% 63% 78% 87% 

Alcorn St 95% 54% 77% 86% 

CS Northridge 94% 25% 64% 86% 

San Jose St 96% 89% 74% 86% 

Xavier 91% 42% 71% 85% 

MS Valley St 94% 81% 67% 84% 

St Mary's CA 95% 75% 73% 84% 

Coppin St 95% 40% 71% 83% 

MD E Shore 96% 33% 76% 83% 

Northern Arizona 93% 17% 63% 83% 

Savannah St 97% 43% 73% 83% 

Purdue 92% 53% 69% 82% 

SC Upstate 100% 50% 69% 82% 

Buffalo 92% 50% 63% 81% 

Marist 93% 61% 64% 81% 

Detroit 93% 50% 68% 80% 

MTSU 93% 37% 71% 80% 

SF Austin 95% 40% 69% 80% 

Arizona 94% 74% 74% 79% 

Kansas 94% 53% 84% 79% 

Missouri KC 96% 48% 68% 79% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

UC Riverside 96% 72% 70% 79% 

BYU 92% 48% 72% 79% 

Duke 94% 64% 82% 79% 

Prairie View 93% 52% 71% 79% 

Vermont 95% 67% 72% 79% 

Charlotte 94% 71% 60% 79% 

Wichita St 94% 50% 73% 78% 

Fordham 96% 61% 68% 77% 

Old Dominion 93% 32% 67% 77% 

Dartmouth 95% 81% 73% 77% 

Albany NY 91% 63% 66% 77% 

Norfolk St 93% 57% 67% 77% 

Arkansas 90% 59% 70% 76% 

Bucknell 92% 30% 67% 76% 

Florida A&M 95% 67% 72% 76% 

Michigan St 92% 18% 72% 76% 

Air Force 95% 32% 73% 75% 

Belmont 93% 38% 71% 75% 

IPFW 95% 61% 67% 75% 

Rice 93% 25% 66% 75% 

St Bonaventure 95% 69% 65% 75% 

VMI 95% 57% 68% 75% 

Howard 95% 81% 75% 74% 

James Madison 92% 52% 61% 74% 

Miami FL 93% 71% 66% 74% 

ULL 92% 77% 61% 74% 

UMBC 96% 61% 73% 74% 

Portland 93% 63% 65% 74% 

Stetson 94% 52% 68% 74% 

Nevada 92% 74% 67% 74% 

TX Southern 96% 68% 73% 74% 

Georgetown 93% 40% 73% 73% 

New Mexico St 92% 70% 70% 73% 

G Washington 93% 45% 69% 73% 

Murray St 95% 72% 70% 72% 

Presbyterian 100% 55% 76% 72% 

ETSU 90% 69% 65% 72% 

Rhode Island 93% 66% 67% 72% 

Citadel 97% 32% 78% 71% 

New Hampshire 93% 36% 66% 71% 

North Carolina 96% 66% 76% 71% 

Oral Roberts 91% 57% 65% 71% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

Illinois 90% 42% 71% 71% 

Mississippi St 92% 52% 66% 71% 

Pacific 94% 58% 66% 71% 

Brown 94% 63% 64% 71% 

Kentucky 93% 71% 79% 71% 

Kennesaw 99% 63% 77% 70% 

Creighton 91% 53% 71% 70% 

Edwardsville 100% 60% 76% 70% 

Fresno St 90% 43% 65% 70% 

S Carolina St 93% 67% 68% 70% 

Seattle 100% 43% 67% 70% 

Houston 94% 45% 68% 70% 

Stanford 95% 61% 67% 70% 

Jackson St 93% 38% 56% 69% 

Morgan St 93% 55% 68% 69% 

S Dakota St 97% 21% 70% 69% 

TN Martin 98% 48% 70% 69% 

Utah Valley 98% 31% 62% 69% 

Youngstown St 93% 31% 73% 69% 

La Salle 94% 63% 67% 69% 

South Florida 94% 59% 66% 69% 

Syracuse 94% 66% 75% 69% 

UC Irvine 90% 69% 59% 69% 

Ark Pine Bluff 94% 54% 76% 69% 

McNeese St 96% 68% 62% 68% 

Denver 90% 61% 57% 68% 

E Kentucky 93% 57% 63% 68% 

FL Atlantic 94% 68% 67% 68% 

IUPUI 94% 57% 64% 68% 

Santa Barbara 92% 46% 62% 68% 

Colorado 92% 58% 69% 68% 

DePaul 93% 61% 69% 68% 

Holy Cross 91% 42% 63% 68% 

UNC Greensboro 96% 77% 67% 68% 

Wright St 90% 65% 63% 68% 

West Virginia 92% 65% 67% 68% 

CS Bakersfield 100% 63% 69% 67% 

Hofstra 96% 57% 66% 67% 

Kansas St 93% 58% 67% 67% 

Montana St 94% 47% 63% 67% 

Quinnipiac 91% 33% 61% 67% 

Samford 93% 26% 67% 67% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

UNLV 93% 52% 66% 67% 

Grand Canyon 100% 50% 81% 66% 

Rutgers 95% 59% 69% 66% 

Texas Tech 94% 47% 69% 66% 

UCLA 91% 50% 73% 66% 

Army 97% 69% 66% 66% 

Bethune-Cookman 95% 34% 68% 66% 

Binghamton 94% 41% 70% 66% 

Bowling Green 91% 59% 64% 66% 

CS Sacramento 95% 62% 67% 66% 

E Illinois 94% 62% 65% 66% 

Idaho 90% 52% 63% 66% 

St Francis NY 94% 62% 61% 66% 

Winthrop 93% 62% 69% 65% 

Oregon 93% 62% 70% 65% 

Providence 94% 47% 68% 65% 

Alabama St 95% 77% 69% 65% 

Arizona St 90% 52% 66% 65% 

Delaware 91% 58% 65% 65% 

Florida St 92% 45% 68% 65% 

Ga Southern 93% 55% 62% 65% 

St John's 93% 68% 67% 65% 

Washington St 94% 58% 66% 65% 

ULM 96% 43% 71% 64% 

Weber St 94% 36% 67% 64% 

Oakland 92% 70% 69% 64% 

Lafayette 95% 60% 66% 63% 

N Illinois 94% 63% 70% 63% 

North Florida 98% 63% 73% 63% 

South Dakota 100% 60% 68% 63% 

Southern Utah 95% 43% 71% 63% 

UTRGV 97% 57% 75% 63% 

Gardner Webb 89% 56% 64% 63% 

Lamar 92% 59% 64% 63% 

New Orleans 97% 48% 64% 63% 

NJIT 100% 44% 73% 63% 

Connecticut 92% 72% 70% 63% 

Duquesne 94% 47% 70% 63% 

George Mason 92% 53% 65% 63% 

Iona 90% 47% 65% 63% 

Minnesota 92% 78% 66% 63% 

Seton Hall 94% 50% 70% 63% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

Siena 90% 56% 63% 63% 

F Dickinson 96% 69% 67% 62% 

Florida Intl 93% 45% 70% 62% 

N Kentucky 100% 69% 69% 62% 

Sam Houston St 95% 55% 68% 62% 

Memphis 94% 44% 77% 62% 

Penn St 95% 47% 69% 62% 

Cornell 94% 73% 71% 62% 

Baylor 95% 55% 67% 61% 

Davidson 95% 39% 72% 61% 

Liberty 96% 42% 66% 61% 

Maryland 93% 65% 70% 61% 

Montana 93% 23% 66% 61% 

Oklahoma 95% 55% 69% 61% 

San Diego St 93% 71% 71% 61% 

Tulane 94% 45% 69% 61% 

UNC Asheville 93% 39% 63% 61% 

Arkansas St 94% 39% 64% 61% 

Campbell 92% 64% 69% 61% 

Charleston So 96% 50% 67% 61% 

Georgia 91% 42% 68% 61% 

Louisville 94% 58% 76% 61% 

Notre Dame 93% 67% 69% 61% 

UT Arlington 92% 52% 59% 61% 

Boise St 91% 60% 66% 60% 

East Carolina 95% 53% 68% 60% 

Elon 94% 43% 69% 60% 

Hampton 90% 67% 68% 60% 

Harvard 96% 47% 66% 60% 

Sacred Heart 91% 33% 63% 60% 

South Alabama 93% 60% 65% 60% 

W Carolina 92% 63% 66% 60% 

Wagner 89% 47% 60% 60% 

Butler 95% 53% 71% 59% 

Clemson 90% 41% 65% 59% 

Florida 93% 41% 72% 59% 

Georgia St 92% 69% 65% 59% 

Georgia Tech 89% 72% 63% 59% 

Marshall 93% 66% 67% 59% 

Massachusetts 91% 56% 61% 59% 

S Illinois 93% 56% 62% 59% 

Texas A&M 93% 53% 69% 59% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

Toledo 91% 69% 66% 59% 

UCF 91% 53% 67% 59% 

Abilene Chr 100% 52% 79% 59% 

Cleveland St 95% 68% 68% 59% 

Cal Poly SLO 92% 66% 66% 59% 

Lehigh 91% 38% 65% 59% 

SE Missouri St 94% 41% 69% 59% 

Southern Miss 96% 52% 68% 59% 

W Illinois 98% 71% 74% 58% 

California 89% 81% 65% 58% 

Drexel 95% 35% 63% 58% 

FL Gulf Coast 100% 45% 66% 58% 

Louisiana Tech 94% 45% 72% 58% 

Manhattan 91% 58% 64% 58% 

NC Central 100% 58% 78% 58% 

Tulsa 91% 39% 66% 58% 

Long Island 93% 52% 62% 58% 

Robert Morris 93% 39% 65% 58% 

Tennessee 91% 45% 66% 58% 

Boston Univ 94% 50% 64% 57% 

Hawaii 91% 43% 65% 57% 

Idaho St 95% 54% 71% 57% 

Santa Clara 93% 46% 62% 57% 

St Francis PA 94% 68% 69% 57% 

Evansville 94% 47% 66% 57% 

Loyola MD 89% 67% 67% 57% 

LSU 92% 47% 65% 57% 

Mercer 94% 47% 70% 57% 

Mt St Mary's 90% 37% 66% 57% 

North Texas 93% 70% 64% 57% 

Portland St 96% 53% 66% 57% 

Towson 94% 57% 69% 57% 

UAB 94% 50% 70% 57% 

E Washington 93% 50% 64% 56% 

NC State 91% 38% 70% 56% 

Ohio St 94% 38% 75% 56% 

San Francisco 94% 50% 65% 56% 

Temple 92% 66% 67% 56% 

Vanderbilt 92% 50% 67% 56% 

USC 93% 56% 60% 56% 

Morehead St 96% 33% 66% 56% 

Coastal Car 94% 69% 60% 55% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

Indiana St 94% 59% 61% 55% 

Ohio 89% 59% 63% 55% 

W Michigan 91% 48% 60% 55% 

Central Conn 92% 48% 67% 55% 

Iowa St 93% 39% 68% 55% 

Pepperdine 93% 58% 62% 55% 

Radford 92% 35% 68% 55% 

Tennessee Tech 91% 58% 63% 55% 

Troy 91% 52% 62% 55% 

WI Milwaukee 91% 42% 63% 55% 

Iowa 92% 61% 65% 55% 

Kent 92% 58% 69% 55% 

New Mexico 93% 61% 68% 55% 

VA Commonwealth 93% 58% 73% 55% 

Incarnate Word 100% 21% 77% 54% 

High Point 93% 42% 66% 54% 

MA Lowell 100% 50% 71% 54% 

Ball St 95% 67% 64% 53% 

Miami OH 92% 60% 67% 53% 

Yale 93% 67% 68% 53% 

Illinois St 94% 59% 62% 53% 

Marquette 93% 50% 68% 53% 

Richmond 92% 44% 61% 53% 

St Joseph's PA 92% 47% 65% 53% 

St Louis 96% 56% 65% 53% 

Nicholls St 98% 32% 74% 52% 

E Michigan 92% 48% 66% 52% 

Jacksonville 95% 52% 68% 52% 

Southern Univ 94% 45% 65% 52% 

Drake 94% 55% 63% 52% 

Indiana 91% 58% 65% 52% 

Long Beach St 94% 65% 61% 52% 

Rider 91% 55% 68% 52% 

Fairfield 91% 58% 66% 52% 

Texas 91% 55% 71% 52% 

Alabama 91% 44% 67% 50% 

American Univ 94% 77% 63% 50% 

Appalachian St 92% 53% 63% 50% 

Cent Arkansas 100% 50% 77% 50% 

IL Chicago 95% 50% 67% 50% 

Loy Marymount 94% 63% 64% 50% 

Missouri St 89% 50% 62% 50% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

Northwestern 92% 57% 63% 50% 

Oregon St 91% 56% 61% 50% 

SMU 94% 59% 68% 50% 

South Carolina 90% 72% 65% 50% 

St Peter's 94% 53% 66% 50% 

TCU 95% 63% 72% 50% 

Washington 94% 38% 67% 50% 

Oklahoma St 92% 58% 71% 48% 

Furman 96% 74% 67% 48% 

Missouri 93% 55% 71% 48% 

Texas St 96% 42% 64% 48% 

Utah St 94% 52% 71% 48% 

UC Davis 96% 38% 63% 48% 

UT San Antonio 94% 62% 63% 48% 

Wofford 93% 41% 69% 48% 

Michigan 92% 50% 64% 47% 

Nebraska 93% 56% 71% 47% 

Virginia Tech 92% 53% 59% 47% 

Austin Peay 92% 53% 65% 47% 

C Michigan 90% 57% 63% 47% 

Grambling 97% 40% 75% 47% 

SE Louisiana 96% 60% 68% 47% 

WI Green Bay 91% 43% 68% 47% 

Princeton 94% 57% 63% 46% 

Wisconsin 94% 45% 76% 45% 

Akron 91% 39% 68% 45% 

Dayton 92% 52% 67% 45% 

Hartford 93% 77% 66% 45% 

Jacksonville St 94% 52% 66% 45% 

Penn 95% 65% 68% 45% 

Stony Brook 93% 52% 70% 45% 

NE Omaha 100% 45% 74% 45% 

William & Mary 95% 69% 64% 45% 

Boston College 93% 47% 68% 44% 

Northwestern LA 95% 32% 65% 44% 

Canisius 93% 50% 64% 44% 

Niagara 90% 44% 70% 44% 

Wyoming 90% 44% 62% 44% 

Northern Iowa 90% 57% 65% 43% 

San Diego 92% 53% 67% 43% 

Chattanooga 93% 71% 64% 43% 

CS Fullerton 92% 43% 64% 43% 
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Team Name 
Full Model 

Train 
Full Model 

Test 
Sub Model 

Train 
Sub Model 

Test 

Tennessee St 94% 46% 68% 43% 

WKU 92% 30% 66% 42% 

Mississippi 90% 65% 69% 42% 

NC A&T 95% 45% 72% 42% 

N Dakota St 99% 41% 67% 41% 

Bradley 92% 50% 63% 41% 

Col Charleston 92% 77% 65% 40% 

Monmouth NJ 94% 43% 66% 40% 

N Colorado 96% 61% 69% 39% 

Navy 95% 61% 64% 39% 

Wake Forest 93% 48% 68% 39% 

Valparaiso 95% 34% 64% 38% 

Auburn 92% 19% 62% 38% 

Colgate 93% 50% 65% 37% 

Utah 93% 47% 63% 37% 

Columbia 91% 72% 63% 36% 

Colorado St 92% 32% 64% 35% 

UNC Wilmington 93% 31% 68% 34% 

Loyola-Chicago 94% 34% 64% 34% 

Northeastern 94% 66% 63% 34% 

UTEP 92% 57% 65% 33% 

North Dakota 100% 47% 66% 30% 

TAM C. Christi 95% 42% 71% 27% 

Lipscomb 93% 76% 66% 24% 

Ark Little Rock 90% 72% 60% 21% 
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B. Coefficient and P-Value Information for Individual Teams 
 

In this section, we provide the exact list of 15 variables that remained in the sub-model of the 20 

well-known teams listed in the results section, along with the corresponding standard errors, t-

scores, and p-value information. The variable names are composed of the performance metric 

acronyms defined in the Data section 3, followed by either “MA” meaning Moving Average or 

“CA” meaning Cumulative Average. A number “1” in the variable name means the variable 

pertains to the performance of the team for which the model is constructed, whereas “2” refers to 

a performance metric of the opposing team. A prefix denotes a nonlinear transformation 

performed on the variable before it is used in the model, as introduced in the Feature Generation 

section 4.3. “Sq” means Squared, “sqrt” means Square Root, “log” means logarithm, “rat” means 

Ratio of that metric for team 1 over team 2, and “mult” means Product of that metric for teams 1 

and 2. 

 

 

Arizona: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)  2.661e+02  5.542e+02   0.480   0.6313   
sqrtTO1cs    2.319e-02  5.250e-01   0.044   0.9648   
OR1cs       -2.812e-02  4.808e-02  -0.585   0.5590   
sqFTM1cs    -1.405e-03  4.154e-03  -0.338   0.7353   
sqBlk1ma     7.258e-04  2.520e-03   0.288   0.7735   
ratFTA1ma   -1.676e-04  2.021e-04  -0.829   0.4074   
sqrtFTM1ma  -8.330e-01  9.959e-01  -0.836   0.4034   
DR1ma        1.709e-02  9.564e-03   1.787   0.0745 . 
logFTM1ma    1.640e+00  1.974e+00   0.831   0.4063   
sqrtFTA2cs  -6.992e+02  1.328e+03  -0.527   0.5987   
logFTA2cs    6.057e+02  1.123e+03   0.539   0.5899   
FTA2cs       5.636e+01  1.101e+02   0.512   0.6089   
sqFTA2cs    -2.119e-01  4.459e-01  -0.475   0.6349   
ratFTA1cs   -7.744e-04  1.078e-02  -0.072   0.9427   
sqrtFTA1cs   9.130e-01  2.395e+00   0.381   0.7032   
Score1cs    -4.430e-04  1.713e-02  -0.026   0.9794   

 

Auburn: 

 
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  5.0716546  3.6367623   1.395  0.16385    
FTM2cs       0.0354486  0.0575406   0.616  0.53817    
FTM2ma      -0.0229371  0.0075792  -3.026  0.00262 ** 
sqBlk1ma    -0.0065885  0.0055998  -1.177  0.24000    
multFTM1cs   0.9489960  0.7470078   1.270  0.20461    
logTO1ma    -5.7249536  3.3401213  -1.714  0.08723 .  
sqrtTO1ma    2.9456455  1.7834339   1.652  0.09931 .  
FGM1cs       0.1362618  0.1341509   1.016  0.31031    
sqrtBlk1ma   0.3391414  0.1850435   1.833  0.06751 .  
sqrtStl1ma  -0.3833006  2.7673917  -0.139  0.88990    
logStl1ma    0.6930677  2.6728551   0.259  0.79553    
Score1cs    -0.0630628  0.0746461  -0.845  0.39866    
PF1ma        0.0242419  0.0121925   1.988  0.04740 *  
logFTA1ma   -1.7072218  1.8406528  -0.928  0.35417    
sqrtFTA1ma   0.6883877  0.8154833   0.844  0.39904    
sqStl1ma     0.0008908  0.0093372   0.095  0.92403  
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Duke: 

 
      Estimate Std. Error t value Pr(>|t|)   
(Intercept)  2.413e+00  2.640e+00   0.914   0.3611   
logOR2cs    -2.424e-01  1.664e-01  -1.457   0.1457   
sqTO1cs     -1.346e-03  2.379e-03  -0.566   0.5718   
multDR1cs    4.303e-01  3.600e-01   1.195   0.2326   
Blk1ma       9.537e-03  1.508e-02   0.632   0.5275   
multTO1cs    3.564e-01  6.512e-01   0.547   0.5845   
ratDR1ma    -2.846e-04  3.694e-04  -0.770   0.4414   
sqrtAst2ma  -1.439e-02  6.254e-02  -0.230   0.8181   
logDR2ma    -1.217e-02  2.974e-01  -0.041   0.9674   
FTA1cs       1.464e-02  2.275e-02   0.643   0.5204   
FGM31cs      6.748e-02  1.391e-01   0.485   0.6279   
sqFGA2ma     3.326e-05  4.123e-05   0.807   0.4202   
sqTO2cs      1.861e-03  1.776e-03   1.048   0.2954   
sqPF1cs     -1.283e-03  1.395e-03  -0.920   0.3582   
multFGM1ma   3.565e-01  1.521e-01   2.344   0.0195 * 
DR1cs       -1.096e-01  9.125e-02  -1.201   0.2305   

 

Florida: 

 
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  -3.943e+05  3.471e+05  -1.136   0.2566   
DR2cs        -4.342e-02  1.790e-02  -2.426   0.0156 * 
Score2cs     -3.217e-02  2.067e-01  -0.156   0.8764   
sqrtScore2cs  1.422e-01  3.453e+00   0.041   0.9672   
FTM2cs       -1.489e+00  1.603e+00  -0.929   0.3534   
sqFTM2cs      2.012e-02  2.311e-02   0.871   0.3844   
sqrtFTM2cs    7.070e+00  7.151e+00   0.989   0.3233   
sqrtAst2ma   -1.321e-01  5.934e-02  -2.226   0.0265 * 
sqScore1cs   -1.174e+01  1.046e+01  -1.122   0.2624   
sqrtScore1cs -2.679e+05  2.374e+05  -1.128   0.2597   
Score1cs      1.125e+04  9.987e+03   1.126   0.2606   
sqrtStl1ma   -2.275e-01  2.540e-01  -0.896   0.3708   
sqStl1ma      3.781e-03  3.273e-03   1.155   0.2487   
sqrtAst1cs    7.068e-01  5.972e-01   1.183   0.2373   
logScore1cs   4.486e+05  3.968e+05   1.131   0.2588   
FGM1cs       -1.391e-02  1.147e-01  -0.121   0.9035  

 

Gonzaga: 

 
   Estimate Std. Error t value Pr(>|t|)   
(Intercept) -2.744e+01  3.101e+01  -0.885   0.3767   
FTM2cs       7.626e-02  4.551e-02   1.675   0.0945 . 
FTA2cs      -4.594e-02  2.869e-02  -1.601   0.1100   
sqrtFGM1cs   8.079e+00  8.560e+00   0.944   0.3458   
sqrtOR1ma    1.008e-01  7.820e-02   1.289   0.1982   
ratFTA1ma   -3.183e-05  1.516e-04  -0.210   0.8339   
sqrtOR2ma   -5.172e-02  5.452e-02  -0.949   0.3433   
sqFGM2cs     6.538e-04  9.574e-04   0.683   0.4950   
logStl1ma    7.606e-02  7.655e-02   0.994   0.3210   
sqrtBlk1ma   1.292e-02  6.127e-02   0.211   0.8331   
ratScore1cs -3.943e-04  2.669e-04  -1.477   0.1403   
OR1cs        2.353e-02  9.936e-02   0.237   0.8129   
sqrtFTM1cs   3.282e+00  3.988e+00   0.823   0.4109   
logFGM31cs   3.279e+00  3.221e+00   1.018   0.3091   
sqrtFGA31cs -2.003e-01  5.662e-01  -0.354   0.7237   
Score1cs    -4.061e-01  4.485e-01  -0.905   0.3657   
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Houston: 

 
     Estimate Std. Error t value Pr(>|t|)     
(Intercept) -2.670e+00  8.989e+00  -0.297 0.766559     
Stl2ma      -5.325e-02  1.428e-02  -3.728 0.000218 *** 
sqStl2cs    -2.726e-03  6.729e-03  -0.405 0.685580     
sqPF2cs      4.589e-03  4.635e-03   0.990 0.322731     
TO2cs        4.416e-02  1.256e-01   0.352 0.725380     
sqrtFGM1ma  -1.246e+00  2.351e+00  -0.530 0.596379     
sqrtPF2cs   -1.388e+00  1.542e+00  -0.900 0.368603     
sqTO2cs      1.023e-03  3.989e-03   0.256 0.797759     
logFGM1ma    3.755e+00  5.909e+00   0.635 0.525448     
sqrtStl2cs   8.015e-02  6.087e-01   0.132 0.895291     
ratFTA1ma   -2.144e-04  2.068e-04  -1.037 0.300383     
Ast1ma      -7.208e-03  1.315e-02  -0.548 0.584033     
DR2ma       -1.742e-02  8.172e-03  -2.132 0.033586 *   
ratFGA31ma   7.832e-05  1.872e-04   0.418 0.675879     
sqBlk1cs     5.188e-03  9.746e-03   0.532 0.594758     
PF1cs        8.534e-02  4.047e-02   2.109 0.035546 *   

 

Kansas: 

 
       Estimate Std. Error t value Pr(>|t|)    
(Intercept)   5.278e+00  1.158e+02   0.046  0.96365    
sqTO2ma       6.822e-04  2.765e-04   2.467  0.01398 *  
sqrtFGM1cs   -9.913e+01  7.626e+01  -1.300  0.19431    
sqrtScore1cs  6.746e+01  3.749e+01   1.799  0.07259 .  
Score1cs      8.324e-01  1.847e+00   0.451  0.65236    
logTO1ma      6.045e-03  1.540e-01   0.039  0.96871    
sqrtFGM31cs  -6.782e+01  5.585e+01  -1.214  0.22523    
FTM1cs       -4.592e+00  3.532e+00  -1.300  0.19416    
logFGM31cs    4.687e+01  4.226e+01   1.109  0.26797    
sqFGM31cs     1.409e-01  2.849e-01   0.495  0.62109    
sqrtTO1cs     2.393e+00  8.709e-01   2.748  0.00623 ** 
Blk1cs        1.814e-01  1.170e-01   1.551  0.12161    
logAst1cs     2.397e-04  1.901e+00   0.000  0.99990    
sqrtFGA31ma  -1.399e-01  3.870e-01  -0.361  0.71792    
OR1ma         1.179e-02  1.051e-02   1.122  0.26235    
sqFGA31ma     6.783e-04  1.357e-03   0.500  0.61748  

 

Kentucky: 

 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -1.7945680 34.8603512  -0.051 0.958966     
sqTO2ma       0.0001764  0.0003395   0.520 0.603589     
sqPF1ma      -0.0002319  0.0002459  -0.943 0.346099     
Stl1ma        0.0060502  0.0124325   0.487 0.626738     
multBlk1cs   -0.0361203  0.0376203  -0.960 0.337483     
sqTO2cs      -0.0035723  0.0034686  -1.030 0.303599     
logBlk2cs    -0.2585461  0.1194601  -2.164 0.030944 *   
sqFGM1ma     -0.0047595  0.0147192  -0.323 0.746573     
FGM1ma        0.6890265  2.4913900   0.277 0.782237     
sqrtTO2cs     1.0651404  0.7865275   1.354 0.176312     
sqrtFGM1ma   -4.4205071 17.5738686  -0.252 0.801507     
logBlk1cs     0.8341037  0.1970961   4.232 2.79e-05 *** 
sqrtPF1cs     1.7313175  0.6025184   2.873 0.004243 **  
sqrtScore2ma -0.1643967  0.0493351  -3.332 0.000929 *** 
FGA2ma       -0.0002112  0.0052496  -0.040 0.967923     
logPF2cs      0.1368484  0.2866445   0.477 0.633288   
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Louisville: 

 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -6.159e+02  3.905e+02  -1.577    0.115     
sqrtStl2ma   6.869e-02  5.454e-02   1.260    0.208     
sqrtFTA2ma  -6.273e-02  4.209e-02  -1.490    0.137     
sqrtBlk1ma   8.192e-02  6.747e-02   1.214    0.225     
FGM1cs       7.635e+01  4.960e+01   1.539    0.124     
sqrtTO1ma   -1.336e+00  1.401e+00  -0.954    0.341     
logTO1ma     2.085e+00  2.455e+00   0.849    0.396     
sqrtFTM1ma  -4.362e-02  5.438e-02  -0.802    0.423     
logBlk2cs   -2.872e-01  6.285e-02  -4.570 6.26e-06 *** 
sqrtAst1cs   4.816e-01  7.576e-01   0.636    0.525     
sqrtOR1cs   -5.755e-01  6.949e-01  -0.828    0.408     
sqrtFGM1cs  -1.589e+03  1.029e+03  -1.544    0.123     
logFGM1cs    2.067e+03  1.334e+03   1.549    0.122     
sqrtPF1ma   -6.917e-01  1.808e+00  -0.383    0.702     
Score1cs    -1.951e-02  2.623e-02  -0.744    0.457     
logPF1ma     1.431e+00  3.941e+00   0.363    0.717   

 

Marquette: 

 
          Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.120e+02  6.566e+01   1.706 0.088638 .   
Blk1cs        6.507e-02  1.305e-01   0.498 0.618386     
FGA32cs      -2.970e-02  1.027e-01  -0.289 0.772606     
sqFGA32cs     7.884e-05  2.716e-03   0.029 0.976854     
FGM2cs       -5.315e-02  1.376e-02  -3.862 0.000129 *** 
PF2ma         1.111e-02  9.374e-03   1.185 0.236608     
multTO1cs    -8.777e-01  2.400e-01  -3.657 0.000286 *** 
sqrtScore1ma  1.488e+00  6.637e-01   2.243 0.025411 *   
FGA31ma       1.548e-02  1.186e-02   1.304 0.192778     
sqScore1ma   -5.455e-04  2.578e-04  -2.116 0.034865 *   
PF2cs         1.193e+01  6.891e+00   1.731 0.084066 .   
FGM31ma      -2.519e-02  2.435e-02  -1.034 0.301485     
sqPF2cs      -9.873e-02  5.975e-02  -1.652 0.099172 .   
sqrtPF2cs    -7.113e+01  4.019e+01  -1.770 0.077428 .   
sqFTA1ma     -8.333e-06  1.461e-04  -0.057 0.954550     
sqBlk2ma     -2.681e-03  1.559e-03  -1.720 0.086088 .   

 

 

Miami FL 

 
           Estimate Std. Error t value Pr(>|t|)     
(Intercept)   1.460e+02  1.748e+02   0.835   0.4039     
sqTO2ma       1.231e-03  2.977e-04   4.136 4.22e-05 *** 
sqrtPF1ma     6.322e+00  6.337e+01   0.100   0.9206     
logFTA2cs    -9.040e-01  2.298e-01  -3.933 9.70e-05 *** 
logPF1ma     -8.120e+00  6.531e+01  -0.124   0.9011     
Ast2ma       -1.653e-02  8.647e-03  -1.912   0.0566 .   
sqrtDR1cs    -6.223e+00  4.278e+00  -1.454   0.1465     
TO1cs        -3.564e-02  3.913e-02  -0.911   0.3630     
sqDR1cs       1.273e-02  8.540e-03   1.490   0.1369     
sqrtScore1cs  1.077e+01  1.790e+01   0.602   0.5478     
logScore1cs  -4.889e+01  7.804e+01  -0.626   0.5313     
sqrtTO1ma     6.625e-01  1.070e+00   0.619   0.5362     
PF1ma        -2.975e-01  3.831e+00  -0.078   0.9381     
FGM31cs       2.595e-01  1.399e-01   1.855   0.0642 .   
FGA1cs       -1.834e-02  3.863e-02  -0.475   0.6352     
logTO1ma     -9.630e-01  1.866e+00  -0.516   0.6062     
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Michigan: 

 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.021e+01  2.009e+01   1.006  0.31486     
Stl2ma       5.992e-03  1.323e-02   0.453  0.65081     
sqFTA2ma    -3.773e-04  1.354e-04  -2.786  0.00556 **  
logFGM31cs   1.628e+01  1.066e+01   1.528  0.12726     
sqrtFGM31cs -1.319e+01  8.733e+00  -1.511  0.13152     
FTM1cs      -2.525e-01  2.461e-01  -1.026  0.30541     
sqrtFTA1cs   8.232e+00  8.040e+00   1.024  0.30644     
logFTA1cs   -1.787e+01  1.837e+01  -0.973  0.33116     
DR1cs       -2.418e-02  1.211e-01  -0.200  0.84185     
PF2ma        1.594e-02  8.981e-03   1.774  0.07665 .   
Blk1cs      -4.918e-01  1.604e-01  -3.066  0.00230 **  
multOR1cs   -5.595e-02  1.280e+00  -0.044  0.96517     
sqrtOR1cs    2.402e+00  1.402e+00   1.713  0.08739 .   
ratTO1ma     3.081e-03  5.827e-04   5.288 1.92e-07 *** 
logOR2cs    -5.344e+00  4.851e+00  -1.102  0.27124     
sqrtOR2cs    3.140e+00  2.440e+00   1.287  0.19865   

 

Michigan State: 

 
        Estimate Std. Error t value Pr(>|t|)     
(Intercept) -3.120e+00  4.103e+01  -0.076   0.9394     
sqrtStl2ma  -1.742e-02  6.129e-02  -0.284   0.7763     
multAst1cs   7.575e-01  1.699e-01   4.460 1.03e-05 *** 
sqrtFGA31cs  2.004e+01  1.955e+02   0.103   0.9184     
logBlk1ma   -4.880e-02  4.352e-01  -0.112   0.9108     
sqBlk1cs    -5.042e-03  1.979e-02  -0.255   0.7990     
logOR1cs    -6.305e-01  9.343e-01  -0.675   0.5001     
FTA1cs      -4.524e-02  4.982e-02  -0.908   0.3644     
sqFGA31cs   -3.414e-02  2.275e-01  -0.150   0.8808     
logFGA31cs  -2.423e+01  2.754e+02  -0.088   0.9299     
sqrtBlk1ma  -2.036e-03  4.676e-01  -0.004   0.9965     
logFTA2ma    1.536e-01  2.578e-01   0.596   0.5515     
multFTA1ma   1.811e-01  2.123e-01   0.853   0.3941     
sqFTM1ma    -1.763e-04  5.757e-04  -0.306   0.7596     
DR1ma        3.425e-03  1.109e-02   0.309   0.7576     
FGA1ma       1.131e-02  6.151e-03   1.839   0.0665 .   

 

 

Nevada: 

 
        Estimate Std. Error t value Pr(>|t|)     
(Intercept)  2.105e+01  1.771e+01   1.188  0.23536     
ratDR1ma    -5.034e-05  2.363e-04  -0.213  0.83141     
sqStl2cs     5.158e-02  6.857e-02   0.752  0.45232     
logScore1cs -1.333e+01  5.194e+00  -2.566  0.01060 *   
sqrtFGA1cs   7.324e-01  4.513e-01   1.623  0.10531     
FGM1ma       2.631e-02  9.050e-03   2.907  0.00383 **  
sqrtStl2cs   1.102e+01  9.912e+00   1.112  0.26675     
Stl2cs      -2.869e+00  2.836e+00  -1.012  0.31220     
ratFTM1cs   -2.736e-03  9.718e-04  -2.816  0.00508 **  
OR2cs        3.954e-03  1.968e-02   0.201  0.84086     
logFTM1cs    4.473e+00  1.094e+00   4.091 5.11e-05 *** 
sqrtBlk1ma   5.078e-01  2.784e-01   1.824  0.06882 .   
FGM1cs       2.509e-01  1.379e-01   1.819  0.06951 .   
sqBlk1ma    -9.212e-03  6.929e-03  -1.330  0.18436     
sqrtFTA2ma  -3.013e-02  5.328e-02  -0.566  0.57201     
OR2ma       -6.743e-03  1.057e-02  -0.638  0.52371     
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North Carolina: 

 
        Estimate Std. Error t value Pr(>|t|)   
(Intercept) -1.051e+03  4.568e+02  -2.301   0.0218 * 
logStl2ma   -2.016e-01  1.109e-01  -1.818   0.0698 . 
sqrtPF2ma    1.062e+00  1.441e+00   0.737   0.4614   
logScore2ma -3.544e-01  2.067e-01  -1.715   0.0870 . 
sqFGM2cs     1.713e-03  2.625e-03   0.653   0.5143   
logTO2ma     5.247e-01  5.818e-01   0.902   0.3676   
sqFGA2cs     1.098e-01  4.663e-02   2.355   0.0189 * 
FGA2cs      -3.738e+01  1.600e+01  -2.336   0.0199 * 
ratTO1ma    -1.327e-03  1.617e-03  -0.821   0.4123   
ratStl1ma    1.276e-03  1.510e-03   0.846   0.3983   
Score1cs     1.617e-02  6.917e-03   2.338   0.0198 * 
logPF2ma    -2.140e+00  3.040e+00  -0.704   0.4819   
PF1ma        5.578e-03  8.878e-03   0.628   0.5301   
sqrtFGM2cs  -1.619e+00  1.385e+00  -1.169   0.2431   
sqrtFGA2cs   3.753e+02  1.613e+02   2.327   0.0204 * 
multTO1ma    1.488e-01  2.806e-01   0.530   0.5962   

 

Purdue: 

 
          Estimate Std. Error t value Pr(>|t|)    
(Intercept)  -3.4713184 12.6259199  -0.275  0.78349    
multFTM1ma    0.2228893  0.0781163   2.853  0.00452 ** 
sqrtScore1cs  0.8693863  2.3458348   0.371  0.71110    
sqrtFTA1ma   -0.1184437  0.0758785  -1.561  0.11923    
sqrtFGM2ma    0.1521799  1.5745549   0.097  0.92305    
Stl1cs        0.1241166  0.1070993   1.159  0.24711    
sqrtFTM1cs   -0.7030423  0.9042747  -0.777  0.43729    
PF1ma        -0.0594312  0.1444324  -0.411  0.68091    
sqFGM1cs     -0.0010159  0.0068014  -0.149  0.88133    
sqPF1ma       0.0019967  0.0039344   0.507  0.61205    
sqrtStl1ma    0.0867230  0.0906297   0.957  0.33913    
FGM31ma       0.0432452  0.0158680   2.725  0.00667 ** 
FGM2ma       -0.0343154  0.1590658  -0.216  0.82929    
sqPF1cs       0.0007669  0.0019614   0.391  0.69598    
logBlk2cs    -0.1902090  0.0878800  -2.164  0.03095 *  
FGA32cs      -0.0203165  0.0099688  -2.038  0.04213 *  
 
 

Tennessee: 

 
           Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -2.171e+01  2.354e+01  -0.922   0.3569     
logFTA2cs    -2.080e+00  1.242e+00  -1.675   0.0946 .   
sqrtFGA32ma  -1.128e+00  7.020e-01  -1.607   0.1088     
sqrtScore1cs  6.121e-01  5.372e-01   1.139   0.2552     
Ast1ma       -1.457e-04  9.838e-03  -0.015   0.9882     
logFGA31cs    1.265e+00  7.207e-01   1.755   0.0799 .   
sqrtFTA1ma    2.785e-01  2.345e-01   1.188   0.2356     
sqFTA1ma     -6.175e-04  5.871e-04  -1.052   0.2934     
logFGA32ma    2.627e+00  1.521e+00   1.728   0.0848 .   
FTM2ma       -5.142e-02  4.286e-02  -1.200   0.2309     
ratFGM1cs    -2.849e-03  6.526e-04  -4.366 1.57e-05 *** 
multFTA1cs   -1.873e+00  1.178e+00  -1.589   0.1127     
Ast1cs        3.747e-02  3.570e-02   1.050   0.2945     
sqrtOR1cs     7.221e+00  9.281e+00   0.778   0.4370     
sqOR1cs      -4.812e-02  5.514e-02  -0.873   0.3833     
logFTM2ma     6.827e-01  6.025e-01   1.133   0.2578     
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Texas Tech: 

 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  49.600606  25.047640   1.980 0.048277 *   
FTA2cs       -0.005087   0.014965  -0.340 0.734081     
Stl2ma       -0.024513   0.013161  -1.863 0.063164 .   
sqStl2cs     -0.001119   0.002099  -0.533 0.594161     
sqrtFGA31cs   0.018367   0.375884   0.049 0.961050     
logPF2ma      6.537602   3.597485   1.817 0.069833 .   
sqrtPF2ma    -2.965789   1.667049  -1.779 0.075897 .   
Score2cs     -0.041122   0.007196  -5.714    2e-08 *** 
DR2ma         0.003655   0.007671   0.476 0.634004     
FTA1cs       -0.063102   0.057956  -1.089 0.276824     
logDR1cs    -20.311146  23.258787  -0.873 0.382978     
sqrtDR1cs     8.518887  10.374189   0.821 0.411984     
TO1cs        -0.129426   0.099296  -1.303 0.193087     
logPF1cs      0.699927   1.079115   0.649 0.516916     
logPF2cs    -11.925671   3.526571  -3.382 0.000783 *** 
sqPF2cs       0.018399   0.005015   3.669 0.000272 *** 

 

Villanova: 

 
        Estimate Std. Error t value Pr(>|t|)     
(Intercept)   48.940238 827.425995   0.059 0.952860     
FTM2cs        -0.022521   0.041624  -0.541 0.588736     
logFGA1cs     -1.795465   5.198508  -0.345 0.729967     
sqrtFGM31cs  -86.887864  27.539301  -3.155 0.001711 **  
sqrtFGM1cs     4.504492   2.909627   1.548 0.122282     
logScore1cs   38.469142 376.655805   0.102 0.918696     
DR1cs         -0.175013   0.119591  -1.463 0.144038     
sqrtFTA1cs     1.199401   7.914126   0.152 0.879607     
sqFTA1cs       0.002097   0.017555   0.119 0.904970     
sqrtFTA2cs     0.219740   0.320054   0.687 0.492701     
sqrtBlk1cs     0.744851   0.649592   1.147 0.252128     
DR2cs         -0.066947   0.017357  -3.857 0.000131 *** 
sqrtScore1cs -12.610631  87.251140  -0.145 0.885144     
FGM31cs       16.231975   5.088688   3.190 0.001522 **  
sqrtOR1cs     -2.010114   1.032692  -1.946 0.052210 .   
ratOR1cs      -0.001124   0.001349  -0.833 0.405039     

 

 

Virginia: 

 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)  4.786e+01  1.710e+01   2.798 0.005369 **  
sqrtTO2ma    1.134e-01  7.333e-02   1.546 0.122781     
multPF1cs   -1.778e-01  3.308e-01  -0.537 0.591232     
Stl1cs       3.075e-02  1.417e-01   0.217 0.828350     
logStl2ma   -5.530e-02  9.497e-02  -0.582 0.560630     
sqrtDR2cs   -2.630e-01  1.624e-01  -1.619 0.106204     
sqAst1cs     4.450e-02  3.439e-02   1.294 0.196375     
sqrtAst1cs  -9.131e+00  7.090e+00  -1.288 0.198474     
sqrtFGA1cs  -2.975e+00  7.280e-01  -4.087 5.19e-05 *** 
FTA1cs       1.051e+00  7.201e-01   1.460 0.145007     
sqFTA1cs    -2.087e-02  1.616e-02  -1.292 0.197173     
sqrtStl1ma   6.632e-04  8.723e-02   0.008 0.993937     
FGM1ma       4.595e-02  1.297e-02   3.544 0.000435 *** 
sqStl2cs    -9.948e-04  1.429e-03  -0.696 0.486816     
ratScore1ma -2.044e-04  3.985e-05  -5.130 4.34e-07 *** 
logDR1cs    -3.505e+00  2.007e+00  -1.747 0.081397 . 
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