

BJA British Journal of Anaesthesia

Who should perform an emergency surgical front of neck airway: Head & Neck Surgeon, General Surgeon or Anaesthetist?

Journal:	British Journal of Anaesthesia
Manuscript ID	BJA-2019-00721-TAKA030.R3
Article Type:	Clinical Investigation
Date Submitted by the Author:	n/a
Complete List of Authors:	Groom, Peter; Aintree University Hospitals NHS Foundation Trust, Anaesthesia Schofield, Louise; Aintree University Hospitals NHS Foundation Trust, Anaesthesia Hettiarachchi, Natasha; Aintree University Hospitals NHS Foundation Trust, Anaesthesia PICKARD, SAMUEL ; Aintree University Hospitals NHS Foundation Trust, Anaesthesia Brown, Jeremy; Edge Hill University, Faculty of Health & Social Care Sandars, John; Edge Hill University, Postgraduate Medical Institute, Faculty of Health & Social Care, Morton, Ben; Aintree University Hospitals NHS Foundation Trust, Anaesthesia; Liverpool School of Tropical Medicine, Clinical Sciences
Keywords:	Airway Obstruction, Surgical training, High Fidelity Simulation training, Surgical Cricothyroidotomy, Tracheostomy

SCHOLARONE[™] Manuscripts

1
ᆂ

1		-
2 3	1	Who should perform an emergency surgical front of neck airway: Head & Neck Surgeon, General
4 5	2	Surgeon or Anaesthetist?
6 7	3	
8	4	Peter Groom ¹ , Louise Schofield ² , Natasha Hettiarachchi ² , Samuel Pickard ³ , Jeremy Brown ⁴ , John
9 10	5	Sandars ⁵ and Ben Morton ⁶
11 12	6	
13	7	Correspondence to: Dr. P. Groom (peter.groom@aintree.nhs.uk)
14	8	
16 17	9	
18 19	10	¹ Consultant Anaesthetist, Aintree University Hospital NHS Foundation Trust, Liverpool, UK.
20	11	² Anaesthesia Year 7 Specialty Trainee, Aintree University Hospital NHS Foundation Trust,
21 22	12	Liverpool, UK.
23 24	13	³ Anaesthesia Year 3 Core Trainee, Aintree University Hospital NHS Foundation Trust, Liverpool,
24 25 26 27 28 29 30 31	14	UK.
	15	⁴ Professor of Clinical Education, Postgraduate Medical Institute, Faculty of Health & Social Care,
	16	Edge Hill University, Ormskirk, UK.
	17	⁵ Professor of Medical Education, Postgraduate Medical Institute, Faculty of Health & Social Care,
32	18	Edge Hill University, Ormskirk, UK.
33 34	19	⁶ Senior Clinical Lecturer, Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke
35 36	20	Place, Liverpool, UK. Honorary consultant Critical Care Medicine, Aintree University Hospital NHS
37	21	Foundation Trust, Liverpool, UK.
38 39	22	
40 41	23	Running Title
42	24	Who is best to perform a surgical cricothyroidotomy?
43 44	25	
45 46	26	Keywords
47 48	27	Airway obstruction
48 49	28	Surgical Training
50 51	29	High-fidelity simulation training
52 53	30	Surgical cricothyroidotmy
54	31	Tracheostomy
55 56	32	
57 58	33	
59		
00		

 BACKGROUND The "Can't Intubate Can't Oxygenate" (CICO) emergency requires urgent front of neck airway access to prevent death. In cases reported to the 4th National Audit Project, the most successful front of neck airway (FONA) was a surgical technique, almost all of which were performed by surgeons. Subsequently, UK guidelines adopted surgical cricothyroidotomy as the preferred emergency surgical FONA technique. Despite regular skills-based training, anaesthetists may still be unwilling to perform an emergency surgical FONA. AIM To compare consultant anaesthetists, head and neck surgeons and general surgeons in a high-fidelity simulated emergency. We hypothesised that head and neck surgeons would successfully execute emergency surgical FONA faster than anaesthetists and general surgeons. METHODS We recruited 15 consultants from each specialty (total 45). All agreed to participate in an in-situ hi-fidelity simulation of an 'anaesthetic emergency'. Participants were not told in advance that this would be a CICO scenario.

- 48 RESULTS There was no significant difference in total time to successful ventilation between the three
 49 groups (median 86 vs. 98 vs. 126.5 seconds, p=0.078). However, anaesthetists completed the
 50 emergency surgical FONA procedure significantly faster than general surgeons (median 50 vs. 86
 51 seconds, p=0.018). Despite this strong performance, qualitative data suggested some anaesthetists
 52 still believed 'surgeons' best placed to perform emergency surgical FONA in a genuine CICO
 53 situation.

CONCLUSION Anaesthetists regularly trained in emergency emergency surgical FONA function at
levels comparable to head and neck surgeons and should feel empowered to lead this procedure in
the event of a CICO emergency.

2		
3 4	60	Introduction:
5	61	
7	62	The "Can't Intubate Can't Oxygenate" (CICO) emergency is an acute life-threatening event. An
8 9	63	emergency front of neck airway (FONA) is employed as a life-saving procedure in this situation with
10	64	multiple methods described. The 4 th National Audit Project (NAP4) ¹ demonstrated low success rates
11 12	65	for needle cricothyroidotomy (4/11) compared to emergency surgical FONA, which were all
13 14	66	successful when performed by a surgeon (44/44) ² . that emergency surgical FONA had higher
15	67	success rates (44/44) compared to needle cricothyroidotomy techniques (4/11) for patients in
16 17	68	recorded CICO events ² . Subsequently, surgical cricothyroidotomy was recommended as the optimal
18 10	69	emergency surgical FONA procedure for CICO events by the Difficult Airway Society (DAS) ³ . However,
20	70	in NAP4 almost all emergency surgical FONA's were performed by surgeons rather than
21 22	71	anaesthetists ² such that it is currently unclear if the improved procedural success is related to the
23 24	72	procedure or the operator.
24 25	73	However, in NAP4 all 44 emergency surgical FONA's were performed by surgeons rather than
26 27	74	anaesthetists ² such that it is currently unclear if the improved outcome is related to the procedure
28	75	or the operator.
29 30 31 32	76	
33 24	77	In 2016, UK anaesthetists and head and neck surgeons adopted a unified approach to the CICO
35	78	emergency, advocating surgical cricothyroidotomy as the optimal FONA technique ^{4, 5} . This
36 37	79	recommendation emphasises a structured multidisciplinary approach, inclusive of anaesthetists,
38 30	80	operating department practitioner's, theatre nurses and surgeons to prevent cerebral hypoxia and
40	81	death ^{4, 5} . Subsequently, a survey of anaesthetists and surgeons demonstrated superior knowledge
41 42	82	and training in surgical cricothyroidotomy amongst anaesthetists compared to their surgical
43	83	colleagues ⁶ . Success of emergency surgical cricothyroidotomy depends on both procedure simplicity
44 45	84	and regular rehearsal 7-9. Anaesthetists are encouraged to undertake regular CICO and surgical
46 47	85	cricothyroidotomy training ideally as part of multidisciplinary team simulation training ^{1, 3-5} . Regular
48 40	86	training may improve anaesthetists performance compared to surgeons who may not have access to
49 50 51	87	these courses, but this is not yet supported by evidence ¹⁰ .
52 53	88	
54 55	89	Our aim was to compare the performance and knowledge of anaesthetists, specialist head and neck
56 57	90	surgeons and general surgeons in an in-situ, high-fidelity simulated emergency CICO scenario. We
58 59 60	91	hypothesised that head and neck surgeons, some of whom regularly perform surgical

92 tracheostomies, would demonstrate superior performance compared to both anaesthetists and

for per peries

93 general surgeons.

1		
2 3 4 5 6 7	95	METHODS
	96	Participants
8	97	This study was conducted at Aintree University Hospital National Health Service Foundation Trust, a
9 10	98	tertiary referral centre for head and neck surgery and a regional trauma centre. Aintree University
11 12	99	Hospital has implemented biannual surgical cricothyroidotomy skills and multidisciplinary team
13	100	CICO training for anaesthetic consultants and trainees in line with recommendations ^{1, 3-5} . Three
14 15 16 17 18 19 20 21 22	101	groups of participants were recruited; anaesthetists, specialist head and neck surgeons (inclusive of
	102	both ear, nose and throat and maxillofacial surgeons) and general surgeons. All participants were
	103	employed as consultants at Aintree University Hospital -with active General Medical Council
	104	specialist registration. To avoid selection bias, we employed a random sampling method by listing
	105	alphabetically all consultants for each specialty. We then employed GraphPad Prism
23	106	(https://www.graphpad.com/scientific-software/prism/) to randomize these potential participants
24 25	107	who were then approached in list order by email. The only exclusion criterion was participant
26 27	108	refusal. The study was reviewed and approved by National Health Service's Health Research
28	109	Authority (18/HRA/0122) and Health Education England Research Governance (North West Office).
30	110	
31 32 33 34 35	111	All participants were consented to participate in an 'anaesthetic' emergency simulation. Full
	112	disclosure about the nature of the emergency was not offered at enrollment to avoid potential
	113	confounders (e.g. preparation or discussion) that could affect performance in the CICO simulation.
36 37	114	We used a robust standardised high-fidelity scenario to simulate a CICO emergency (Figure 1). This
38 30	115	scenario had been developed in a previous study that investigated surgical cricothyroidotomy
40	116	performance ¹¹ and focused on the induction of anaesthesia in an obese but otherwise healthy
41 42	117	simulated adult patient with a normal airway assessment. Full details of the standardised simulation
43 44	118	and debrief are provided in the supplemental data (Figures S1 and S2).
45	119	
46 47 48 49	120	[FIGURE 1]
	121	
50	122	The scenario was performed in situ (operational anaesthetic room) with an operating department
51 52 53 54 55 56 57 58 59	123	practitioner. The scenario facilitators (L.S, N.H & S.P) used a standardised approved script to ensure
	124	identical conditions across each simulation. The same scenario facilitator controlled and filmed the
	125	scenarios. A TruCorp [®] TruMan Trauma X (TruCorp [®] Ltd, Belfast) manikin was used with
	126	incorporation of a prosthetic bleeding neck to mimic a patient with an impalpable cricothyroid
	127	membrane ¹² . DAS guidelines recommend a midline vertical incision in this situation ³ . Monitoring
60	128	was displayed on a tablet device (iPad) and controlled remotely with SimMon (Castle+Andersen

Page 6 of 25

ApS). Figure 2 demonstrates the orientation of the monitoring relative to the manikin and thebleeding neck prosthesis.

132 [FIGURE 2]

133

All participants consented to take part between cases on one of their normal working days in theatre. Participants were called from the theatre coffee room or office by either L.S, N.H or S.P and briefed on the nature of the scenario: A senior anaesthetist, P.G, was struggling to intubate the trachea of a patient and had called for help. P.G is the Aintree University Hospital -trust airway lead and senior head and neck anaesthetist. P.G. assumed the simulated consultant anaesthetic role to improve the credibility that DAS algorithm plans A-C were performed competently and to discourage participants from 'taking over' these steps. The simulation was filmed (with consent) to facilitate quantitative assessment. Participants were directed not to discuss the nature of the simulation with colleagues. All participants were sent an email request to contact J.B. (qualitative researcher) by telephone and arrange a mutually convenient time for a semi-structured telephone interview.

29 144

The primary outcome was time to achieve ventilation of the mannikin's lungs after declaration of the CICO emergency. We hypothesized that anaesthetists and general surgeons would be significantly slower compared to head and neck surgeons. The secondary outcomes included the method of emergency surgical FONA, prior knowledge of guidelines for CICO management and qualitative enquiry to determine attitudes toward the simulation and perceptions of who is best placed to perform an emergency surgical FONA. We employed data from published work that investigated emergency surgical FONA performance on the same manikin, neck prothesis and simulation scenario to power this study ¹¹. We used a baseline hypothetical 'gold standard' time of 150 seconds to detect a 30 second difference between specialties from declaration of CICO to completion of the emergency surgical FONA. Based on three groups, significance at a p value of 0.05 and power of 80%, we calculated that 15 subjects per group would be required to demonstrate this difference. For each simulation we timed three phases of emergency surgical FONA performance:

 1. Deliberation time: Time from declaration of a CICO scenario to initiation of the emergency surgical FONA

2. Surgical time: Time from initiation of the emergency surgical FONA to completion

3. Total time: Time from declaration of a CICO scenario to completion of the emergency surgical FONA

1 2		
3	163	
4 5	164	'CICO' deliberation time commenced when P.G declared his inability to oxygenate the patient, via
6 7	165	intubation, supraglottic airway device or bag-mask technique with the standardised phrase "you
8	166	have to do emergency front of neck access" (Figure 1). Completion of emergency surgical FONA was
9 10	167	defined as confirmation of chest expansion following manikin intubation via the neck incision. Time
11 12	168	to completion was calculated from the video recording for all participants. As a confirmatory
13	169	measure, correct tracheal placement was also confirmed after the scenario before the model was
14 15	170	dis-assembled. All data were analysed using STATA 13.1 (Statacorp. USA). Data were tested for
16 17	171	normality (Shapiro-Wilk test) and appropriate statistical tests employed to determine differences
18	172	between consultant groups. Specifically, we identified here non-parametric data distributions were
19 20	173	identified weso used the Kruskall-Wallis test to test differences across the three groups and used
21	174	Dupn's test to correct for multiple comparisons. For categorical data we used Chi-squared tests to
22	175	examine for differences. We considered that a pivalue of <0.05 demonstrated a significant
24 25	176	difference between comparison groups as is convention
26	177	
27 28	178	
29 30	170	
31	180	After the simulation, study participants were asked to take part in an audio recorded telephone
32 33	101	somi structured interview with a member of the research team (IP, a pen clinician with expertise in
34 35 36 37 38 39 40 41	101	semi-structured interview with a member of the research team (JB, a non-chinician with expertise in
	102	postgraduate medical education). Full details of the telephone interview are provided in the
	104	supplemental data (Figure 53). Verbal consent was confirmed prior to the start of each
	184	Interview. Each audio recording was transcribed for analysis. A thematic framework was devised by
	185	JB after Initial reading of the transcripts and deliberations with the research team ¹³ . Construction of
42 43	186	codes and thematic categories was cross checked by two independent raters (JB and JS) for inter-
44 45 46 47 48 49 50	187	rater reliability ¹⁴ . This process identified areas of agreement to minimize any potential for bias in
	188	interpretation. Data analysis activities were recorded so the interpretation of qualitative data could
	189	be tracked, ensuring auditability. A number was allocated to each interviewee in order of
	190	participation. This number appears after each quotation in the results section along with the
50 51	191	participant's specialty.
52 53	192	
54	193	
55 56	194	
57 58	195	
59	196	
60		

197 RESULTS

Forty-five consultants were recruited to this study, 15 anaesthetists, 15 head & neck surgeons (10 oral maxillofacial surgeons and 5 ear, nose and throat surgeons) and 15 general surgeons and median number of years since completion of clinical training was 5 years (IQR: 1-14) for anaesthetists, 12 years (IQR: 2-18) for head and neck surgeons and 11 years (IQR: 7-15) for general surgeons. All anaesthetists (15/15), 10/15 head and neck and 11/15 general surgeons had previously been trained in emergency surgical FONA. 15 (100%) of -anaesthetic consultants had participated in local departmental training and one -had also performed surgical cricothyroidotomy on a porcine cadaveric model. Eleven general surgeons (73%) had previously been trained in the performance of emergency FONA: one during a Royal College of Surgeons course, seven during Advanced Trauma Life Support courses and three did not specify. Ten head and neck surgeons (67%) had previously received emergency FONA training: one during a Royal College of Surgeons course, seven during Advanced Trauma Life Support courses and two on a human cadaveric course. The time elapsed since emergency surgical FONA training differed between specialties: all anaesthetic consultants had participated in training in the previous six months while the median time since training for head and neck surgeons was 2.5 years (IQR: 1-10) and 14 years (IQR: 4-20) for general surgeons, p<0.001. Anaesthetic participants were more likely to be aware of Difficult Airway Society Guidelines for CICO compared (15/15) to head and neck surgeons (5/15) and general surgeons ($\frac{0}{15}$, χ^2 [2, n=45] = 31.5, p<0.001).

Forty-four participants successfully completed an emergency surgical FONA. One participant (general surgeon) declined to attempt an emergency surgical FONA in the emergency scenario stating that this was outside of their training expertise. There was no significant difference in total time to complete a successful emergency surgical FONA across the three groups: anaesthetists (median 86s, IQR 69-135s), head and neck surgeons (median 98s, IQR 67-151s), and general surgeons (n=14, median 126.5s, IQR 93-187s), p=0.078 (Kruskal Wallis). Figure 3 displays box and whisker plots for deliberation time, surgical time and total time for each specialty. There were no significant differences in deliberation time between the groups: median 30s (IQR: 24-43) anaesthetists vs 31s (IQR: 16-38) head and neck vs. 23s (IQR: 14-45) general surgeons, p = 0.665 (Kruskall-Wallis). However, surgical time was significantly different between the three groups: median 50s (IQR 45-80) anaesthetists vs.74s (IQR: 42-127) head and neck vs. vs. 86s (IQR: 76-163) general surgeons, p = 0.018 (Kruskall Wallis). When compared directly, anaesthetists completed the procedure significantly quicker than general surgeons, p = 0.0144 (Dunn's test) but not head and neck surgeons, p=0.4022 (Dunn's test).

2 3	231	
4 5	232	[FIGURE 3]
6		
7 8	233	Different techniques were used to complete the emergency surgical FONA between specialties
9	234	(Table 1). The time taken to successfully complete an emergency surgical FONA was significantly
11	235	impacted by procedural choice: vertical incision cricothyroidotomy (median 87.5s, IQR: 68-135),
12 13	236	transverse stab incision cricothyroidotomy (median 115s, IQR: 90-161) and classical tracheostomy
14	237	(median 131.5s, IQR: 113-185), p=0.05. All anaesthetists (15/15), 10/15 head and neck and 11/15
15 16	238	general surgeons had previously been trained in emergency surgical FONA. 15 (100%) of anaesthetic
17 18	239	consultants had participated in local departmental training and one had also performed surgical
19	240	cricothyroidotomy on a porcine cadaveric model. Eleven general surgeons (73%) had previously
20 21	241	been trained in the performance of emergency FONA: one during a Royal College of Surgeons
22 23	242	course, seven during Advanced Trauma Life Support courses and three did not specify. Ten head
24	243	and neck surgeons (67%) had previously received emergency FONA training: one during a Royal
25 26	244	College of Surgeons course, seven during Advanced Trauma Life Support courses and two on a
27 28	245	human cadaveric course. The time elapsed since emergency surgical FONA training differed
29	246	between specialties: all anaesthetic consultants had participated in training in the previous six
30 31	247	months while the median time since training for head and neck surgeons was 2.5 years (IQR: 1-10)
32 33	248	and 14 years (IQR: 4-20) for general surgeons, p<0.001. Anaesthetic participants were more likely to
34 35	249	be aware of Difficult Airway Society Guidelines for CICO compared (15/15) to head and neck
36 37	250	surgeons (5/15) and general surgeons (0/15, χ^2 [2, n=45] = 31.5, p<0.001).
38 39	251	
40 41	252	[TABLE 1]
42 43	253	
44 45	254	Qualitative Findings
45 46	255	Twenty (44%) participants volunteered to be interviewed and were included in the analysis. Ten
47 48	256	anaesthetists and 10 head & neck surgeons. Nine (45%) interviewees had real life experience of \underline{a}
49 50	257	<u>can't intubate can't oxygenate scenarioemergency FONA</u> (1 <u>aAnaesthetist and</u> -8 <u>hHead and neck</u>
50 51	258	surgeons &N). Five of these had performed an emergency surgical FONA (1 anaesthetist, 4 head and
52 53	259	neck surgeons). Fourteen (70%) had previously experienced high-fidelity simulated emergency
54	260	procedures. Six (30%) had participated in an emergency procedure on a cadaveric course (or on
56	261	animals).
57 58 59 60	262	

1 2		
3	263	We found that the simulated scenario acted as a trigger for consultants to reflect on how they would
4 5	264	perform when faced with this emergency situation:
6 7	265	
8	266	So, I think the most useful aspect for anybody is actually just making people think about
9 10	267	what they would do in that situation. (5, Head and neck surgeon)
11 12	268	
13	269	During the interviews, participants considered who should perform emergency surgical FONA in real
14 15	270	life. A number of influential factors were listed including confidence levels, skillsets, clinical setting,
16 17	271	experience, seniority of consultants, specialty and willingness to take the lead:
18	272	
19 20	273	And so, depending on who the surgeon was, their seniority and their specialty versus who the
21 22	274	anaesthetist was, their seniority and which areas they practiced in, it would determine who
23	275	would be the best person in any one given circumstance. (14, Anaesthetist)
24 25 26 27 28 29 30 31 32	276	
	277	There comes a point that the airway is actually lost and anaesthetists have a tendency to
	278	want to keep control, to want to keep trying- (5, Head and neck surgeon)
	279	
	280	
33	281	Head and neck surgeons perceived themselves to be the most appropriate person to lead on the
34 35 36 37	282	basis that they operate on the neck regularly but suggested that the anaesthetist may be best if
	283	other surgical specialties were present:
38	284	
40	285	I am one of the specialties that performs surgery in the head and neck so I feel that in that
41 42	286	particular scenario, that I would probably be the best person to do that. I think if I was a
43 44	287	surgeon who didn't practice in the head and neck, I think an anaesthetist or a surgeon would
44 45	288	be equally placed, possibly the anaesthetist would be better placed because of the familiarity
46 47	289	of airway anatomy- (4, Head and neck surgeon)
48 ⊿q	290	
50	291	I know the anaesthetists are good at subcutaneous access, but I don't think, well, I would be
51 52	292	surprised if they had the confidence to make an incision in the neck. (20, Head and neck
53 54	293	surgeon)
55	294	
56 57	295	Anaesthetists had varied views on who should take the lead. One anaesthetist explained why they
58 59 60	296	thought a surgeon was best placed to take the lead.

Page 11 of 25

It may be that the surgeon is the best person to do it if they're an experienced surgeon in the field because with the best will in the world, I'm not a surgeon and I feel even though I've done tracheostomies and cricothyroidotomies on manikins and I've done tracheostomies on patients, in a controlled situation I still don't have the confidence to be able to say with certainty yes, I'm doing the right thing, I know what I'm doing surgically whereas a surgeon *would have that benefit.* (6, Anaesthetiitst) Other anaesthetists felt that a head and neck surgeon may be more appropriate to take the lead but if other surgical specialties were present it should be a member of the Anaesthetic team: I think if you're up in B theatres with maxillofacial surgeons and ear, nose and throat surgeons, they're probably best equipped 'cause they're more familiar with performing practical procedures and surgical procedures. I think in other areas of the hospital, you know, general surgeons, orthopaedic surgeons, although they do surgery, they're maybe not that familiar with -1'm not sure that they'd be familiar with the guidelines, and it may be that the anaesthetist would be best placed. (7, Anaesthetist) If it is an ear nose and throat surgeon who does trachies [sic] then I think they're best equipped. If it was just a non-ear nose and throat or head and neck surgeon, then I think it would be the anaesthetist. (10, Anaesthetist) Other anaesthetists explained why they saw themselves as the Consultant Lead: I think the person who's best practiced at doing it. It seems that we, I think anaesthetists are more familiar with emergency scenarios like that and I get the impression that surgeons don't regularly do drills like that so whilst they have the, in theory, the better technical skills, I think in a scenario like that where it's very time-sensitive, I think at the moment anaesthetists are probably better equipped. But that's not to say that if surgeons had regular front of neck access training, that they, I would imagine they would become the most appropriate person to do it. (13, Anaesthetist)

Some of the head and neck surgeons explained the challenges they faced during the emergency
 surgical FONA emergency scenario when they were effectively forced to only use the equipment
 they had in front of them.

I'm an ear nose and throat surgeon, but I specialize in airway difficulty, so I would have got
my rigid laryngoscope and done an assessment from the top, because I know I have that
equipment there. It was in the theatre next door, but no one would go and get it for me. I
kind of went along with it. So that's what I found difficult. I know it's kind of high fidelity, but
it's also not exactly the way I would have done it in that setting, if that makes sense. (3,
Head and neck surgeon)

They said this is all encompassing, and you should do it with a scalpel with a bougie and a fixed tube and nothing else, were as in my previous experience I have done a lot of surgical airway management in emergency and non-emergency and I've had a much bigger range of equipment. So, my first thought on the sim was I know what I'm doing here so can I have a dish tray, a trachea tray open blah and I was looking for instruments and they said no you only have this and I was flummoxed by that, so I was confident to do it my way and I wasn't confident to do it their way obviously. (4, Head and neck surgeon)

review

1		15
2 3	349	DISCUSSION
4 5	350	
6	851	We found that anaesthetists performed the procedural component of an emergency surgical
7 8	352	(initiation to completion) FONA significantly faster than general surgeons in a high-fidelity simulated
9 10	353	emergency can't intubate can't oxygenate scenario. There was no significant difference in
11	354	nerformance between anaestheticts and head and neck surgeons. Qualitative data suggests that
12 13	355	despite this strong performance, some anaestheticts still perceived that 'surgeons' would be best
14 15	256	placed to perform amorganey surgical EONA in a gonuing can't intubate, can't avygonate situation
16	250	This study demonstrates that appact atists regularly trained and drilled to perform surgical
17 18	357	This study demonstrates that anaestnetists regularly trained and drilled to perform surgical
19	358	cricothyroidotomy function at comparable levels to head and neck surgeons and should feel
20 21	359	confident to lead this procedure in the event of a CICO emergency.
22 23	360	
24	361	The CICO situation is a rare but acutely life-threatening event estimated to occur, on average, once
25 26	362	in an anaesthetic career ¹¹ . This frequency is likely to be increased for anaesthetists working in high
27 20	363	risk areas such as head and neck cancer, trauma and critical care. Evidence from NAP4 suggests that
28 29	364	emergency surgical FONA was more successful than needle-based techniques but all of these
30 31	365	procedures were performed by surgeons ^{1, 2} . Following on from the NAP4 audit, the Royal College of
32	366	Anaesthetists, Association of Anaesthetists of Great Britain and Ireland, the Difficult Airway Society
33 34	367	and the UK's ear nose and throat and oral maxillofacial surgeons adopted surgical cricothyroidotomy
35 36	368	as the most simple and expedient method for emergency front of neck airway access ³⁻⁵ . Both
37	369	surgeons and anaesthetists may lack the skills and confidence to perform an emergency surgical
38 39 40 41	370	FONA ^{11, 15-18} . Robust training on emergency front of neck airway access is vital to improve
	371	competence and confidence ^{8-11, 16-19} . In this study, all anaesthetists we aware of guidelines new and
42	372	regularly practiced in the managementing the a CICO emergency and y and performing an
43 44 45 46	373	emergency surgical FONA according to current guidelines. This is reflected in our results, where
	374	anaesthetists more often correctly performed a vertical incision which was associated with improved
40 47	375	speed. There is increasing evidence that structured training programmes for surgical
48 49	376	cricothyroidotomy improve clinical performance for emergency FONA in both military deployment ^{8,}
50	377	^{18, 20} and civilian environments ^{7, 9} . As a tertiary healthcare centre, we compared anaesthetists with
51 52	378	expert head and neck surgeons (some of whom regularly perform elective tracheostomies) and
53 54	379	general surgeons. Our results, demonstrating superior performance in anaesthetists compared to
55	380	general surgeons, indicate that for general hospitals, without tertiary head and neck expertise, the
56 57	381	trained anaesthetist may be best placed to perform the emergency surgical cricothyroidotomy
58 59 60	382	procedure.

Our qualitative investigation identified variations in perception of roles amongst the anaesthetists and surgeons during FONA emergencies. These differing perceptions also related to the equipment available at the emergency; head and neck surgeons often requested a specialized laryngoscope or a tray of tracheostomy instruments. Anaesthetists may be in a more advantageous position compared to surgeons as they have more regular specific training on a single surgical cricothyroidotmy technique. Surgeons with a higher skill base may exercise greater procedural autonomy but this may increase complexity and time to successful tracheal cannulation in an emergency 'situation/event' scenario. However, this potential advantage should be offset against the sense of personal failure that anaesthetists may experience if their conventional airway management techniques have failed (9). As one of the head and Neck surgeons said at interview; "There comes a point that the airway is actually lost and anaesthetists have a tendency to want to keep control, to want to keep trying". Surgeons may be less likely to carry the emotional baggage of airway failure that may increase deliberation times (see above quote: "5, Head and neck surgeon"). However, no difference in deliberation time between specialties was observed in this study. As there are multiple factors that can influence performance, we recommend that roles should be agreed within theatre teams at the WHO team briefing. We also recommend multidisciplinary team training to facilitate the rehearsal of guidelines and prospective assignment of roles and responsibilities. We choose to use in situ, high-fidelity simulation as a pragmatic tool to measure emergency surgical FONA performance. Our simulation was developed and refined during a previous study that examined optimal training tools to teach surgical cricothyroidotmy for anaesthetic trainees ¹¹. We incorporated a neck prosthesis within our manikin that made palpation of the laryngeal and cricoid cartilages impossible. In this circumstance, DAS guidelines recommend a vertical incision surgical cricothyroidotomy³. We observed that 13/15 anaesthetists, 7/15 head and neck and 6/14 general surgeons adopted this approach and successfully completed the procedure significantly faster than alternative techniques (horizontal incision or tracheostomy). Limited surgical training in a defined procedure may have been advantageous for anaesthetists in this respect. We deliberately did not inform clinicians of scenario specifics prior to their involvement and qualitative data suggests that participants did not discuss their experiences with one another. Our qualitative data demonstrates that clinicians strongly engaged with the scenario and that simulation information was not shared during the study. Participants were requested not to discuss the scenario with colleagues as part of the consent procedure. A potential limitation of the study is that different levels of exposure to simulation training between anaesthetists and surgeons may have impacted on performance ²¹. The

Page 15 of 25

duration between last training episode and the emergency simulation was longer for surgeons. We noted that deliberation times were short in our investigation this is likely because participants were exposed to protocolised airway management and then instructed to perform emergency FONA. Potentially, participants may have had prior knowledge of the scenario, however, our methodology was designed to prevent this eventuality and our post-procedural qualitative data suggests that inter-participant communication did not occur. Another limitation to the study is the lack of qualitative data from general surgeons. In addition, surgeons were less likely to be aware of recommendations and guidelines for the management of CICO situations compared to anaesthetists. These factors may have impacted on performance for general surgeons who rarely perform tracheostomy during routine clinical practice compared to head and neck surgeons. Further, subspecialisation of head and neck surgeons and resultant deskilling in the ability to perform an emergency surgical FONA has been previously described²². From a qualitative methodological point of view some participant opinions may have been better measured by asking some key closed questions at the start of each interview. In conclusion, we have demonstrated that anaesthetists perform an emergency surgical FONA comparably to expert head and neck surgeons in an emergency simulated CICO situation. In addition, anaesthetists successfully completed an emergency surgical FONA faster than general surgeons. This study demonstrates that, in a unit with regular multidisciplinary CICO training and rehearsal, anaesthetists are well placed to perform an emergency emergency surgical FONA. However, there were varied perceptions on who should perform an emergency surgical FONA amongst the study participants if a genuine CICO event were to arise. We recommend regular multidisciplinary CICO training and drills for anaesthetists and surgeons. We also recommend prospective discussion between individual anaesthetists, surgeons and the multidisciplinary team to assign roles, responsibilities and planned procedures in the event of a CICO <u>'situation/event'</u> scenario.

2		
3 4	447	Authors' Contributions and Authorship:
5	448	P.G.: Study Design and Concept; Design of Data Collection Method; Participant Recruitment;
6 7	449	Simulation design and running; Data Collection; Data Analysis; Writing First Draft of Manuscript,
8 9	450	Revising the Manuscript
10	451	L.S.: Simulation design and running; Data Collection; Data Analysis; Writing Manuscript, Revising the
12	452	Manuscript
13 14	453	N.H: Simulation design and running; Data Collection; Data analysis; Writing Manuscript, Revising the
15	454	manuscript
16 17	455	S.P.: Simulation design and running; Data Collection; Data analysis; Writing Manuscript, Revising the
18 19	456	manuscript
20	457	J.B.: Design of Data Collection Method; Data Collection; Data Analysis; Revising the Manuscript
21 22	458	J.S.: Design of Data Collection Method; Data Analysis; Revising the Manuscript
23 24	459	B.M.: Study Design and concept; Design of Data Collection Method; Statistical Analysis, Revising the
25	460	Manuscript
26 27	461	
28 29	462	Acknowledgements
30	463	Our thanks to Professor Chris Frerk, NAP4 editor, for providing clarity on emergency FONA
31 32 33 34 35 36	464	procedures and their operators in the NAP4 Study. We also would like to thank Professor Simon
	465	Rogers and Professor Terry Jones for reviewing and commenting on an early version of this
	466	manuscript. B.M. thanks the NIHR Global Health Research Unit on Lung Health and TB in Africa at
36 37	467	LSTM - "IMPALA" for helping to make this work possible by part funding Dr. Morton's academic
38 39	468	salary during the conduct of this study. In relation to IMPALA (grant number 16/136/35) specifically:
40	469	IMPALA was commissioned by the National Institute of Health Research using Official Development
41 42	470	Assistance (ODA) funding. The views expressed in this publication are those of the author(s) and not
43 44	471	necessarily those of the NHS, the National Institute for Health Research or the Department of
45	472	Health.
40 47	473	
48 49	474	Declaration of Interests
50	475	P.G.: None Declared
52	476	L.S.: None Declared
53 54	477	N.H.: None Declared
55 56	478	S.P.: None Declared
57	479	J.B.: None Declared
58 59 60	480	J.S.: None Declared

2		
3 4	481	B.M.: None Declared
5	482	
7	483	Funding
8 9	484	This work was supported by a grant from the Mersey School of Anaesthesia Charity.
10 11	485	
12	486	
13 14	487	
15 16 17 18 19 20 21	488	
	489	
	490	
	491	
22	492	
23 24	493	
25 26	494	
27	495	
28 29	496	
30 31	497	
32	498	
33 34	499	
35 36	500	
37	501	
39	502	
40 41	503	
42 43	504	
44	505	
45 46	506	
47 48	507	
49	508	
50 51	509	
52 53	510	
54		
55 56		
57 58		
59		
60		

1		10
2 3	511	REFERENCES:
4 5	512	
6 7	513	1 Cook TM, Woodall N, Frerk C. Major complications of airway management in the UK: results of the
, 8 9 10 11 12	514	Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society.
	515	Part 1: anaesthesia. British journal of anaesthesia 2011; 106: 617-31
	516	2 Frerk C. Personal Communication 24 th May 2019: Major complications of airway management in
13	517	the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the
15 16 17 18 19 20 21 22 23 24	518	Difficult Airway Society. In: Groom P, ed, 2019
	519	3 Frerk C, Mitchell VS, McNarry AF, et al. Difficult Airway Society 2015 guidelines for management of
	520	unanticipated difficult intubation in adults. British journal of anaesthesia 2015; 115: 827-48
	521	4 Pracy JP, Brennan L, Cook TM, et al. Surgical intervention during a Can't intubate Can't Oxygenate
	522	(CICO) Event: Emergency Front-of-neck Airway (FONA)? British journal of anaesthesia 2016; 117:
	523	426-8
25	524	5 Pracy JP, Brennan L, Cook TM, et al. Surgical intervention during a Can't Intubate Can't Oxygenate
26 27	525	(CICO) event: Emergency Front-of-neck Airway (FONA)? Clinical otolaryngology 2016; 41: 624-6
28 29	526	6 Mendonca C, Ahmad I, Sajayan A, et al. Front of neck access: A survey among anesthetists and
30 31 32 33 34 35 36 37 38 39	527	surgeons. Journal of anaesthesiology, clinical pharmacology 2017; 33 : 462-6
	528	7 Lockey D, Crewdson K, Weaver A, <u>Davies Get al</u> . Observational study of the success rates of
	529	intubation and failed intubation airway rescue techniques in 7256 attempted intubations of trauma
	530	patients by pre-hospital physicians. British journal of anaesthesia 2014; 113: 220-5
	531	8 Kyle T, le Clerc S, Thomas A, <u>Greaves I, Whittaker V, Smith JEet al</u> . The success of battlefield
	532	surgical airway insertion in severely injured military patients: a UK perspective. Journal of the Royal
40 41	533	Army Medical Corps 2016; 162: 460-4
42	534	9 Baker PA, O'Sullivan EP, Kristensen MS <u>, Lockey D</u> et al. The great airway debate: is the scalpel
43 44	535	mightier than the cannula? British journal of anaesthesia 2016; 117 Suppl 1 : i17-i9
45 46	536	10 Hogg ES, Kinshuck AJ, Littley N, <u>Lau A, Tandon S, Lancaster Jet al</u> . A high-fidelity, fully immersive
47	537	simulation course to replicate ENT and head and neck emergencies. J Laryngol Otol 2019; 133: 115-8
40 49	538	11 Berwick RG, Gauntlett W, Silverio, SA <u>et al. et al.</u> A mixed-methods pilot study to evaluate a
50 51	539	collaborative anaesthetic and surgical training package for emergency surgical cricothyroidotomy
52 53	540	Anaesthesia and Intensive Care 2019; IN PRESS
53 54 55 56	541	12 Berwick RM, Mercer SJ and Groom P. Evaluating the fidelity of a novel part-task trainer for
	542	emergency front of neck access training BMJ Simulation & Technology Enhanced Learning 2018:
57 58	543	101-2
59 60		

Page 19 of 25

1		19
2 3	544	13 Ritchie J, Lewis J, Nicholls CM, Ormston R-et al. <i>Qualitative Research Practice: A Guide for Social</i>
4 5 6	545	Science Students and Researchers, 2nd Edn. London: Sage Publications, 2014
	546	14 Cohen LM. Manion L and Morrison K. <i>Research Methods in Education</i> . 8th Edn. London:
8	547	Routledge, 2018
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	548	15 Riley RH. Strang T. Rao S. Survey of airway skills of surgeons in Western Australia. <i>Angesth</i>
	549	Intensive Care 2009: 37 : 630-3
	550	16 Greenland KB. Acott C. Segal R. Goulding G. Riley RH. Merry AF. et al. Emergency surgical airway
	551	in life-threatening acute airway emergencieswhy are we so reluctant to do it? Angesth Intensive
	552	<i>Care</i> 2011: 39 : 578-84
	553	17 Malekzadeh S, Mallov KM, Chu EE, Tompkins J, Battista A, Deutsch ES-et al. ORL emergencies boot
	554	camp: using simulation to onboard residents. <i>The Laryngoscope</i> 2011; 121 : 2114-21
	555	18 Timmermann A, Chrimes N, Hagberg CA. Need to consider human factors when determining first-
	556	line technique for emergency front-of-neck access. <i>British journal of anaesthesia</i> 2016; 117 : 5-7
24 25	557	19 Awad Z, Pothier DD. Management of surgical airway emergencies by junior ENT staff: a telephone
26 27	558	survey. J Laryngol Otol 2007; 121 : 57-60
28	559	20 Mabry RL. An analysis of battlefield cricothyrotomy in Iraq and Afghanistan. Journal of special
30	560	operations medicine : a peer reviewed journal for SOF medical professionals 2012; 12 : 17-23
31 32 33	561	21 Fraser K, Wright B, Girard L, et al. Simulation training improves diagnostic performance on a real
	562	patient with similar clinical findings. Chest 2011; 139 : 376-81
35	563	22 Rouhani MJ. In the face of increasing subspecialisation, how does the specialty ensure that the
36 37	564	management of ENT emergencies is timely, appropriate and safe? J Laryngol Otol 2016; 130: 516-20
38 39 40	565	
	566	
41 42	567	
43 44	568	
45 46	569	
40 47	570	
48 49	571	
50 51	572	
52	573	
53 54 55 56	574	
	575	
57	576	
58 59 60	577	

2	n
2	U

1						20
2	_					
3 4	578					
5	579	TABLES:				
0 7	580					
8 0	581	[TABLE 1]				
10	582					
11 12						
13			Front of Neck Airway	lechnique Employe	d	
14 15			Vertical euroical	Transversa		Defined
16			vertical surgical	Transverse		Refused
17			cricothyroidotomy	surgical	Tracheostomy	
19 20				cricothyroidotom	У	
20 21						
22 23		Head & Neck	7	5	3	0
23 24		Surgeon				
25 26						
20		General	6	3	5	1
28 29		Surgeon				
30						
31 32		Anaesthetist	13	2	0	0
33						
34 35	583	Table 1: Emergency	y surgical front of neck airw	ay technique by specialty	. Table describes the	surgical technique used
36	584	according to specia	lty. Techniques include verti	ical incision surgical cricot	thyroidotomy, transve	rse incision surgical
37 38	585	cricothyroidotmy, o	classical tracheostomy and re	efused to perform proced	lure. Chi ² analysis dem	onstrated no significant
39	586	difference in techn	ique between specialties: χ^2	(6, n=45) = 11.46, p=0.07	/5.	
40 41	587					
42	588					
43 44	589					
45 46	590					
46 47	550					
48	291					
49 50	592					
51 52	593					
52 53	594					
54 55	595					
55 56	596					
57 59	597					
58 59	598					
60						

1		21
2 3	599	
4 5	600	LEGENDS TO HULLISTRATIONS:
6	601	
7 8	602	
9 10	602	Figure 1. Chandendierd and introducts and any seconds high fidelity simulation associate any second of
11	005	Figure 1: Standardised can't intubate can't oxygenate high-indenty simulation scenario sequence of
12 13	604	events. This simulation scenario was delivered in an operational theatre anaesthetic room by a
14	605	consultant anaestnetist and regular operating department staff. Each participant was exposed to an
15 16 17 18 19 20 21 22	606	identical scripted scenario during this study. <u>SAD: supraglottic airway device; ODP: operating</u>
	607	department practitioner; LMA: laryngeal mask airway.
	608	
	609	
22 23	610	Figure 2: Figure shows the orientation of the tablet (iPad) monitor relative to the manikin in the
24 25 26 27 28 29 30 31 32 33 34 25	611	anaesthetic room (2a). The close up shows how the manikin's neck prosthesis was adapted to bleed
	612	when incised (2b).
	613	
	614	
	615	Figure 3: Deliberation, surgical and total time to successful emergency surgical front of neck
	616	airway according to specialty. Figure demonstrates box and whisker plots (median, interquartile and
	617	range) of deliberation, surgical and total time to an emergency surgical FONA by clinician specialty.
36	618	The Kruskall-Wallis test was used to determine if there was a difference across the three groups. The
37 38	619	Dunn's correction Mann-Whitney U test was used to determine difference between anaesthetists
39 40	620	and general surgeons.
40	621	
42 43	622	
44	623	LEGENDS TO SUPPLEMENTAL FIGURES FOR ON LINE PUBLICATION ONLY:
45 46	624	
47 48	625	Supplemental Figure S1: Can't Intubate Can't Oxygenate Scenario Simulation
49 50	626	
51 52	627	Supplemental Figure S2: Structure of Post Simulation Debrief
53 54 55 56 57 58	628	
	629	Supplemental Figure S3: Semi-structured interview schedule
	630	
59 60	631	

Figure 2

495x111mm (72 x 72 DPI)

