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RÉSUMÉ

L’entreprise PREDICT qui est notre partenaire sur ce projet est entre autres spécialisé dans
la surveillance d’installations industrielles. Cela consiste à surveiller certains paramètres
mesurés sur un équipement (comme par exemple des mesures de température, pression,
vibrations etc...) au cours du temps de manière à détecter d’éventuels signes précurseurs
d’une panne. Cette tâche nécessite très souvent de détecter au préalable les instants auxquels
des opérations de maintenance ont été effectuées, ou encore où l’usage fait de l’équipement
change. De plus, la détection doit être faite simplement à l’aide des mesures surveillées, sans
accès à de l’information supplémentaires à propos des événements à détecter. Ce problème
peut être formulé comme un problème de détection de ruptures, qui consiste à estimer les
instants où les propriétés statistiques d’une série temporelle changent de manière abrupte.

La détection de ruptures a énormément été étudié en traitement du signal, et a des appli-
cations dans de nombreux domaines tels qu’en bioinformatique, en analyse du climat, en
finance, en traitement de la parole, ainsi qu’en maintenance conditionnelle. Dans la littéra-
ture, de nombreuse méthodes fréquentistes existent qui consistent à associer un coût à toute
configuration possible des positions des ruptures à l’aide d’un modèle statistique de la série
temporelle. Le nombre de ruptures et leur positions sont ensuite estimés en maximisant ce
coût sur toutes les configurations possibles. En général, le coût est conçu pour représenter
l’ajustement du modèle constant par morceaux associé à la configuration.

Dans ce mémoire, nous proposons une nouvelle approche du problème de détection de rup-
tures qui consiste à maximiser la différence des propriétés statistiques entre segments consé-
cutifs séparés par les points de ruptures. Pour cela, nous développons un nouveau type de
fonction objectif basé sur la différence de propriétés statistiques, par opposition aux fonctions
objectif basées sur l’ajustement utilisées dans la littérature. Étant donné que ce nouveau type
de fonction objectif n’est pas compatible avec les algorithmes existants, nous introduisons
également deux algorithmes permettant la résolution du problème d’optimisation correspon-
dant à cette nouvelle fonction objectif.

Nous comparons les performances de cette nouvelle approche avec trois méthodes issues de
la littérature. Deux d’entre elles, appelées Pruned Exact Linear Time and Segment Neigh-
bourhood sont exacte, tandis que la troisième, Sliding Adjacent Windows est une méthode
approximative basée sur une fonction objectif similaire à celle que nous proposons. Nous
effectuons cette comparaison à l’aide de deux jeux de données empiriques, dont l’un nous a
été fourni par PREDICT et correspond à un cas d’application qui les intéresse. Nous mon-
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trons que sur ces deux jeux de données montrent que notre méthode est capable d’estimer
la position des ruptures de manière plus précise que les trois méthodes concurrentes. Notre
approche peut être appliquée à de nombreux types de séries temporelles différentes, grâce
au fait qu’elle peut être combinée avec de nombreux modèles différents pour décrire la série
temporelle. De plus, cette approche se révèle efficaces dans des cas d’application concrets de
notre partenaire PREDICT.
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ABSTRACT

Our partner PREDICT is specialized in condition monitoring of industrial systems, which
consists in monitoring certain parameters measured on an equipment (such as temperature,
pressure, vibration) through time in order to detect signs indicative of a developing fault.
For performing this task, they often need to detect events such as the occurrence of main-
tenance operations or changes of the conditions in which the equipment is being operated.
This detection task needs to be performed using only the monitored measurements, with no
additional external information available about the events. This problem can be formulated
as a change point detection problem, which consists in detecting and finding the positions of
abrupt changes of the statistical properties of a time-series.

Change point detection has been extensively studied in signal processing, and has applications
in a wide range of fields such as bioinformatics, climate analysis, finance, speech processing
and condition based maintenance. In the literature, many frequentist methods have been
developed, where a statistical model of the time-series is used to assign a cost to any possible
configuration of the change points. The estimated number and positions of the change points
is then obtained by minimizing this cost over the set of all possible configurations. The cost
is typically a measure of the goodness of fit of a piecewise constant model that changes at
each change point.

In this work, we propose a new approach to change point detection that consists in maximizing
the discrepancy of the statistical properties between consecutive segments delimited by the
change points. We do this by developing a new type of discrepancy-based objective function
different from the goodness of fit-based cost functions from the literature. We also propose
an appropriate algorithm for solving the associated optimization problem, since our new type
of objective function is not compatible with the existing algorithms.

We compare the performance of this new approach against two exact methods called Pruned
Exact Linear Time and Segment Neighbourhood, as well as an approximate method based
on a similar objective function called Sliding Adjacent Windows. This comparison is per-
formed on two real-world datasets, one of them being supplied by our partner PREDICT,
and corresponding to a use case they would be interested in. On both of these datasets, we
show that our approach is able to estimate the positions of the change points more accu-
rately than the three competitors. Our approach can be applied on a wide range of different
types time-series, since it can accommodate many different models for the data. Moreover,
it proves to be useful to our partner PREDICT on concrete use cases.
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CHAPTER 1 INTRODUCTION

1.1 Maintenance for industrial equipments

Maintenance is an important component of running industrial equipments. Indeed, any
industrial equipment is subject to degradations over time, and it is essential to perform
maintenance on it, in order to keep it in a state where it is able to fulfill its function. The
most simple scheme consists in scheduling the maintenance actions a priori, without any
knowledge of the present state of the equipment. This is called planned maintenance.

1.1.1 Maintenance scheduling problem

However the degradation process is stochastic, making the time before failure vary from one
maintenance cycle to the next. The planned maintenance will thus necessarily not be able
to happen right on time. If a failure happens before the scheduled maintenance, urgent
corrective maintenance is required, increasing costs. Some costs are also associated to the
unexpected failure of the equipment and the additional downtime induced. On the other
hand, if a maintenance action is scheduled before the occurrence of a failure, some parts and
workforce could have been spared by performing the maintenance later.

When scheduling the maintenance at regular time intervals, the duration of the interval has
to be set according to the mean time before failure, as well as the trade off between failure
rate and maintenance cost the practitioner is willing to make. For example in aviation,
maintenance and checks are scheduled at intervals much shorter than the expected time
before failure, because failures are considered highly unacceptable and their rate must be
kept low despite higher maintenance costs.

1.1.2 Condition based maintenance (CBM)

The problem with planned maintenance is that it is not able to reach optimality, in the sense
that maintenance can never be performed right when need arise. Moreover, it’s not very
efficient in applications where the failure rate needs to be extremely low such as nuclear power
plants or aviation, because parts are changed before all their useful life has been consumed.
These are the reasons that sparked the development of Condition-Based Maintenance (CBM).
CBM aims at reducing those inefficiencies by using sensors to monitor the condition of an
equipment, and perform maintenance right when needed. This information acquired about
the condition of equipments can also help optimizing maintenance scheduling, by knowing
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in advance where and when maintenance is required. Moreover, it helps the operator to
locate more accurately which part of the system needs maintenance. At the heart of CBM
is condition monitoring, which consist in monitoring certain parameters measured on an
industrial equipment (such as temperature, pressure, vibration) through time in order to
detect signs indicative of a fault arising.

1.2 Our industrial partner

Our partner for this research project is the French company PREDICT, who develops tech-
nologies for optimizing the operating performance of factories, vehicles, aircrafts and ships.
They are involved in many industrial sectors such as machine tools, industrial vehicles, the
steel industry, energy production (hydroelectricity, nuclear, marine current, wind, gas tur-
bine), naval (defense, offshore, maritime), aeronautics, and space. PREDICT designs, devel-
ops and implements two lines of software products :

• CASIP : a real-time and embedded solution for proactive maintenance,

• KASEM : a collaborative platform for massive data analysis for early detection, antici-
pation, predictive diagnostics, real-time health check-ups, prognosis, investigation and
proactive therapy.

1.2.1 Condition monitoring

Condition monitoring is an expertise of our partner PREDICT. Depending on the application,
they either perform this task in an online setting, or offline in a periodical manner. They
have custom monitoring algorithms already developed for identifying signs of a developing
fault. However, these algorithms need to be calibrated for the specific operating mode the
monitored equipment is in. Different operating modes can correspond to different usage of
the equipment (whether a machining tool is used for cutting metal or plastic for instance), or
to different conditions of the equipment (whether some significant amount of wear has already
been experienced by the equipment, or it has just undergone maintenance). Unfortunately,
external information is often missing about the operating mode an equipment is in at any
given time. This is often due to the maintenance or usage information of the equipment not
being logged. It can also happen that it is considered sensitive information by the operator,
who is thus not willing to share it. This sparks the need for automatically detecting changes
of the operating mode of an equipment, from the data being monitored only.
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1.3 Change point detection

Change point detection is the task of finding the times at which the underlying model of a
time-series changes abruptly. It has been extensively studied starting as early as 1954, and
is still a very active subfield of signal processing, with many new methods being developed,
spanning both Bayesian and frequentist approaches. It has applications in a wide range
of fields such as bioinformatics (gait analysis, physiological data, genomics, ECG data), cli-
mate analysis and prediction, oceanography, finance, maintenance, human activities analysis,
image analysis (security with CCTV images analysis, remote sensing), and speech processing.

1.3.1 Link with the detection of changes of operating mode

We can reasonably assume that changes in operating mode translate into changes of the statis-
tical properties of the time-series representing the measurement being monitored. Moreover,
we assume that the changes between operating modes are abrupt. Indeed they correspond
either to maintenance events or to changes in type of usage being made of the equipment.
Both of these changes usually occur while the equipment is not in use, which should mean
that no measurements are being made during the change, thus leading to an abrupt change
in the measurement time-series. For these reasons, we can formulate the problem of detecting
changes of operating modes as a change point detection problem.

1.4 Objective

The objective of our work is to propose a solution for automatically detecting changes of
operating mode of an industrial equipment. Since this detection task is used in situations
where external information about the changes is missing, our solution must be unsupervised,
meaning it must only use the information contained in the time-series of the monitored
parameters, without any additional information. Moreover, the solution must be able to
adapt to a wide variety of time-series, without making assumptions about its statistical
properties. We are interested here in the case where condition monitoring is performed in an
offline manner.

We propose to formulate this problem as a change point detection problem. Our solution
consist in developing a new approach for offline unsupervised change point detection. This
approach will be based on an underlying model for describing the time-series of monitored
measurement, in order to accommodate for a wide variety of time-series. Note that while our
goal is to detect changes of operating mode, change point detection (CPD) might be able to
detect changes associated to the actual faults as well, despite them usually being of lower
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magnitude. However this is not a problem here, since in the work flow of PREDICT a human
will check the results of the detection before applying the monitoring algorithms, and it can
even be considered as an added bonus.

1.5 Outline

We will begin this work with a review of the literature on change point detection (CPD) in
Chapter 2. Since quite an extensive body of literature is available on the subject, our review
will be selective, and mainly focus on frequentist optimization-based approaches. Chapter 3
will be dedicated to the description of the new approach to CPD that we are proposing.
We will start by exposing our new objective function and some time-series models it can
accommodate. Then we will expose two algorithms for solving the optimization problem
used for estimating the positions of the change points, propose methods for estimating the
number of change points, and study the computational cost of the global method proposed.
In Chapter 4, we will compare our approach to other methods from the literature. For this
purpose, we will use two real-world datasets with annotations. One of these datasets is
provided by our partner PREDICT, and corresponds to an actual case where they could use
CPD for detecting changes of operating mode in the context of condition monitoring. We will
conclude with Chapter 5, where we first summarize our work, then expose how PREDICT
benefited from the partnership, and finally discuss the limitations of our work as well as
further research directions.
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CHAPTER 2 LITERATURE REVIEW

2.1 Introduction to change point detection

Change point detection is the task of finding the times at which the underlying model of
a time-series changes abruptly [1]. More generally, change point detection can be applied
not only to time-series, but to any sequence of data that is ordered based on some covariate
information. For example, change point detection can be performed on measurements of tem-
peratures through time, or on data characterizing genes along a chromosome. For simplicity,
we will assume time-series data in this work, but everything said can be applied seamlessly
on any kind of sequential data.

Many time-series data represent measurements performed on complex systems such as in-
dustrial equipments, an economic system, human activities, or natural phenomena. These
systems can be in different states throughout time, exhibiting different behaviors. We can rea-
sonably assume that the transitions between states are reflected by changes of some statistical
properties in the corresponding time-series. If these transitions are abrupt, the corresponding
time-series can be modeled as a piecewise stationary time-series. Change point detection is
useful in those cases when the transitions are known to be abrupt, as it is the problem of
detecting and finding the positions of abrupt changes of the statistical properties of a time-
series [2]. It can thus be used for inferring such piecewise stationary models of time-series, by
determining the segments within which specific stationary models describe the data. Some
change point detection methods in the literature can even be seen as a mere model selection
problems for the considered time-series. They can indeed be formulated as maximizing the
fitness of a segmented model over every possible segmentations of the time-series [1, 3].

Change point detection has been used in a wide spectrum of different fields, such as bioin-
formatics (gait analysis [4], physiological data [5–7], genomics [8], ECG data [9]), climate
analysis and prediction [10], oceanography [11], finance [9, 12], maintenance [13], human ac-
tivities analysis, image analysis (security with CCTV images analysis [14], remote sensing),
and speech processing [15]. It is closely related to the problem of change point estimation,
where the goal is to characterize and interpret known changes in the time-series, that are not
necessarily assumed to be abrupt [2].

Change point detection methods can be further separated into two groups :

• Online methods, where samples are received in real time, and the goal is to detect a
change as soon as possible (often called event or anomaly detection); or
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• Offline methods, where the goal is to detect changes retrospectively, once every samples
are available (often called segmentation or edge detection).

This work will focus on the offline problem. Additionally, supervised and unsupervised
methods can be differentiated, where supervised methods require some example time-series
with the change points annotated, in order to be trained, while unsupervised methods don’t
require any example. We will focus on unsupervised methods here, since in most of the
applications of our partner PREDICT, no such annotated example time-series are available
because of the lack of external information about the changes of operating mode. Finally,
in the literature the difference is made between single and multiple change point detection,
since single change point detection usually correspond to much simpler algorithms. This
work focuses on multiple change point detection, since in general more than one change of
operating mode is to be detected.

In most applications of change point detection, the end goal is to find the position of change
points, or to model and predict time-series. But it can also be applied as a preprocessing step,
to determine homogeneous segments within a time-series that we want to study individually.
For example, this is used in gait analysis, where recordings of accelerometer measurements
are increasingly used, in which subjects perform different activities throughout the period
of recording [4]. It can also be used as a way to compress the information contained in a
time-series, by only recording the positions of the segments and the parameters describing
the data within them. Provided the number of segments is much smaller than the number of
samples, and the model for the data within segments is relatively simple, the compression can
be very efficient. This can then support other applications, such as fast similarity measures
for search, matching or clustering of time-series [9].

The rest of this chapter will start with some notations and assumptions that will be used
throughout this work. We will then expose some existing methods through a framework that
enables us to classify a good portion of them. Finally, we will discuss some other methods
from the literature, that do not fit in the framework.

2.2 Notations and assumptions

In this work, we denote x = (xt)Tt=1 a T samples long time-series, where xt ∈ Rd;∀1 ≤
t ≤ T, d ∈ N∗. If d = 1, the time-series is univariate. The (j − i)−samples long segment
made of the samples of x between indices i and j − 1, (1 ≤ i < j ≤ T + 1) is denoted
xi:j = (xt)j−1

t=i . Finally, any possible segmentation of the time-series x can be referred to as
the set of indices of its m change points, that we will denote T = {tk}mk=1 ⊆ {2, . . . , T − 1},
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where 1 < t1 < t2 < · · · < tm < T . Having a change point at index ti means that there is
an abrupt change of some statistical properties of the time-series between samples xti−1 and
xti . The cardinality of the segmentation T is |T | = m, and we will use in our notations the
dummy indices t0 = 1 and tm+1 = T . We will denote Sm,x = {T s.t. |T | = m} the set of all
segmentations of the time-series x with m change points, and Sx = ⋃T−2

m=1 Sm,x the set of all
possible segmentations of the time-series x. Note that all possible segmentations are all the
subsets T ⊆ {2, . . . , T − 1}. So Sx is the power set of {2, . . . , T − 1}.

We assume that the time-series x on which we are performing change point detection follows
a piecewise stationary model. This ensures that there are abrupt changes of some statistical
properties to be detected by the change point detection method. We will denote by t∗1 < t∗2 <

· · · < t∗m the indices of these abrupt changes, and T ∗ = {t∗1, t∗2, . . . , t∗m} the corresponding
true segmentation. The change point detection problem consists in estimating this true
segmentation T ∗.

2.3 Framework encompassing many change point detection methods

In the literature, both Bayesian and frequentist approaches to change point detection have
been developed. In this work, we will only focus on frequentist methods. The review [1]
proposes a structured classification that encompasses many of the frequentist change point
detection methods developed in the recent literature. This classification is based on the idea
of breaking down change point detection methods into multiple interchangeable components.

2.3.1 Problem formulation

Some assumptions need to be made about the methods that this classification will encompass.
First we assume that a change point detection method can be formulated as the problem
of finding among the set of all possible segmentations Sx of the given time-series x, one
that minimizes a criterion V (T ,x). We also assume that this criterion function V (T ,x) is
additive, meaning that it is a sum of the costs associated to each segments in the global
segmentation. More formally, this means that the criterion is written as

V (T ,x) =
m∑
k=0

c(xtk:tk+1), (2.1)

where c(·) is a function associating a cost to a segment. Usually, the cost function measures
the goodness of fit of the data contained within a segment to a specific model. The estimated
segmentation is one that minimizes the criterion V (T ,x). It is found by solving a discrete
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optimization problem of the form
min
T ∈Sx

V (T ,x). (2.2)

However, an important challenge lies in estimating the number of change points in a given
time-series. It has been observed that many cost functions tend to largely overestimate the
number of change points [16]. This can be interpreted by the fact that adding a change
point can only improve the goodness of fit within segments. To avoid such overfitting, some
modifications have to be made to the problem (2.2). Two different variants of the problem
can be used, depending on the prior information available about the true segmentation and
the strategy used for estimating the number of change points :

• Constrained problem : if the true number of change points is known a priori, we
can use the constrained version of the optimization problem (2.2), in which the number
of change points is constrained

min
T ∈Sx

V (T ,x) (2.3)

s.t. |T | = m;

• Penalized problem : if the true number of change points is unknown, we can use the
penalized version of the optimization problem (2.2), where a penalty term is introduced
in the objective function

min
T ∈Sx

V (T ,x) + pen(T ). (2.4)

The role of this penalty term is to penalize the segmentations with high numbers of
change points, in order to counteract the overfitting effect. So usually, the penalty
function pen(T ) is designed to be monotonically increasing with respect to the number
of change points in T , in the case of a minimization problem. Thanks to the addition
of the penalty term and the removal of the constraint on the number of change points,
both the number of change points and their positions are jointly estimated when solving
the problem (2.4).

2.3.2 Framework

Thanks to the formulation of the change point detection problem as the minimization of a
criterion, any method that fall into it can be seen as a combination of the following compo-
nents [1] :

• An appropriate cost function over the segments of a time-series x, used in the criterion;
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• An algorithm for solving the optimization problem consisting of minimizing the seg-
mentation cost over the set of possible segmentations Sx;

• A strategy for estimating the number of change points.

The cost function is chosen according to prior knowledge we have about the time-series.
Indeed, it is generally based on a model representing the time-series, and thus depends on
the type of model appropriate for the data considered. The choice of the cost function can
also depend on constraints on the computational cost of the final algorithm, as different costs
can have different computational complexities. Regarding the solving method to be used,
the most important choice is between exact and approximate methods. It thus depends
mostly on the constraints on the computational cost of the final algorithms, as well as the
requirements in terms of precision of the estimated segmentation. Moreover, the penalty
function and the solving method are very dependent, as many solving methods can only be
used with restricted types of penalty function.

2.4 Cost function

The criterion (2.1) that is optimized can be interpreted as the overall cost of the segmentation
T . Its formulation is based on a cost function c : Px 7→ R, where Px is the set of all possible
segments within the time-series x. This cost function associates a segment specific cost c(xi:j)
to any segment xi:j ∈ Px, and is usually derived from an appropriate model representing the
time-series x. It measures the goodness of fit of the data within the segment xi:j to this
model.

The intuition is that in a good segmentation T , the data within each segment xtk:tk+1 , k =
0, . . . ,m should be homogeneous, leaving the abrupt changes at the boundaries between
segments. In this case, the segment specific costs c(xtk:tk+1) should be minimal, as the
model fits well to homogeneous data, in turn minimizing the overall cost of the segmentation
V (T ,x).

In the following, we will list different models for describing the time-series, with their asso-
ciated cost function.

2.4.1 Piecewise i.i.d. signal

In many cases, the samples of the time-series x can be modeled as independent random vari-
ables following a piecewise constant distribution. In general, both the family of distribution
and its parameters can change between segments. In most cases however, we assume that
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the family of the distribution doesn’t change, and that only the parameters do. This means
that the samples Xt of the time-series are independent random variables such that

Xt ∼
m∗+1∑
k=1

f(·|θk(t)), (2.5)

where T ∗ = {t∗k}m
∗

k=1 is the true segmentation, k(t) = min{k s.t. 1 ≤ k ≤ m∗ and t∗k > t} is
the index of the segment containing the sampleXt, and f(·|θ) is the given probability density
functions parametrized by θ. In such a case, the parameter θ is the statistical property that
is changing at the times t∗k that we want to estimate.

For any given segment xi:j of x, the segment specific parameters θk of the distribution can
be estimated through maximum-likelihood, and the associated cost is minus the maximum
log-likelihood,

ci.i.d.(xi:j) = − sup
θ

j−1∑
t=i

log f(xt|θ) ≡ − log L̂(xi:j), (2.6)

where L̂(xi:j) is the maximum likelihood of the model on data xi:j. Note that when using the
cost function ci.i.d., change point detection is equivalent to maximum likelihood estimation.
Indeed, as the criterion V (T ,x) is the sum of the segment specific costs, its value is the
negative maximum log-likelihood of the piecewise i.i.d. model,

V (T ,x) =
m∑
k=0

c(xtk:tk+1) =
m∑
k=0
− log L̂(xtk:tk+1) = − log L̂(x1:T , T ), (2.7)

where L̂(x1:T , T ) is the maximum likelihood of the piecewise i.i.d. model associated with the
segmentation T on the whole time-series x1:T . Solving the problem (2.3) is then equivalent
to maximum likelihood estimation of the piecewise stationary model under constraint on the
number of change points. Solving (2.4) on the other hand would be equivalent to maximizing
what we could call a penalized log-likelihood.

The choice of the probability distribution f is often guided by prior knowledge about the
time-series. Here is a list of different distributions often used in the literature.

Normal distribution The Gaussian distribution has been the first one introduced in the
change point detection literature, and is one of the most studied. It can be used for detecting
different types of changes, depending on the parameters that are considered to be segment
specific or shared across all the samples of the time-series.

• Used with the assumption of a fixed variance and a mean changing between segments,
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the normal distribution is useful for detecting changes in the mean of the time-series.
In this case, once removing the terms that sum to a constant for all segmentations,
hence not influencing the optimal solution (additive constant in the criterion), the cost
function ci.i.d. becomes

cL2(xi:j) =
j−1∑
t=i
‖xt − µ̂ij‖2

2, (2.8)

where µ̂ij is the sample mean within the segment xi:j, and ‖·‖2 is the Euclidean norm.

This model is often called mean-shift. It has been introduced in the initial paper from
E.S. Page [13] for an application in industrial quality control. It has been further
studied in [17–21]. It has also been used with simulated data in [16].

• On the contrary, the mean can be assumed to be shared across all the samples of the
time-series, while the variance changes between segments. This model for detecting
changes in variance is often used in finance [12]. The cost function ci.i.d. is rewritten as

cΣ(xi:j) = (j − i) log |Σ̂i:j|+
j−1∑
t=i

(xt − µ)T Σ̂−1
i:j (xt − µ), (2.9)

where µ is the constant mean value, and Σ̂i:j is the sample covariance matrix of the
data within the segment xi:j. In cases where the mean value µ is not known a priori, it
can be considered as an additional parameter and estimated via maximum likelihood,
i.e. by replacing µ by the sample mean over the whole time-series µ̂1T = 1

T

∑T
t=1 xt in

the cost (2.9).

This model is used in [11] to detect changes in variance within univariate time-series
with constant unknown mean. It is applied to oceanographic and financial data as well
as simulated data.

• We can go further and let both the variance and the mean change abruptly, in order
to detect changes in both of these parameters. The cost function ci.i.d. then becomes

cµΣ(xi:j) = (j − i) log |Σ̂i:j|+
j−1∑
t=i

(xt − µ̂ij)T Σ̂−1
i:j (xt − µ̂ij), (2.10)

where µ̂ij is the sample mean and Σ̂i:j is the sample covariance matrix of the data
within the segment xi:j.

This model is applied to geological data in [22], to financial data in [23] and to simulated
data in [12,16]. It is also studied more theoretically in [24].
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It is explained in [23,25] that this model is able to detect change in the first two moments
of random variables not necessarily following a normal distribution, even thought the
model is based on the Gaussian distribution.

Poisson distribution Change point detection can be applied to time-series representing
count numbers. If the time-series can be modeled as independent Poisson distributed samples
with piecewise constant rate parameter, the cost function ci.i.d. can be used with the Poisson
distribution in order to detect abrupt changes in the rate parameter. Once removing the
terms that sum to a constant for all segmentations, the cost function ci.i.d. becomes

cPoisson(xi:j) = −(j − i)µ̂ij log µ̂ij, (2.11)

where µ̂ij is the sample mean within the segment xi:j.

Change point detection with the cost function cPoisson has been applied to real data in [21,26].
Both of these papers consider a dataset reporting the number of coal-mining disasters by year
in Britain between 1851 and 1962.

2.4.2 Piecewise autoregressive model

The autoregressive model is a popular model for time-series analysis, where each sample is
represented as a linear combination of the p previous values. Some time-series can be modeled
by a piecewise autoregressive model. Let T ∗ = {t∗k}m

∗
k=0 be the true segmentation, with t∗k

being the times at which the underlying autoregressive model changes abruptly. In the case
of a univariate time-series, the piecewise autoregressive model of order p models the samples
as random variables that verify

Xt = ck +
p∑
i=1

ϕikXt−i + εt, ∀t, t∗k ≤ t < t∗k+1, k = 0, . . . ,m∗, (2.12)

where the vector of regression coefficients ϕk = (ϕ1k, . . . , ϕpk)T ∈ Rp and the intercept
ck ∈ R are unknown parameters of a model specific to segment Xtk:tk+1 , and εt is an error
term. Change point detection can be performed on such time-series in order to detect changes
in the autoregressive structure of a time-series. To that end, we can estimate the parameters
ϕ̂ij and ĉij of the autoregressive models specific to each segment xi:j of any given candidate
segmentation. The estimation can be performed for instance via ordinary least squares (OLS),
generalized least squares (GLS), Lasso or Ridge regression. The segment specific cost can
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then be defined as the sum of the squared residuals

cAR(xi:j) =
j−1∑
t=i
‖xt − ĉij −

p∑
l=1

ϕ̂lkxt−l‖2
2, (2.13)

where ‖·‖2 is the Euclidean norm.

Piecewise autoregressive models are used in [21,27–30]. They are also applied on fMRI data
in [31]. [11] uses it on simulated data, with in addition letting the order parameter p change
between segments as well. The autoregressive model of order 1 is studied in [24,32].

We presented here the case of a univariate time-series x, in order to keep the notations
simple. However this model can be extended to the case of multivariate time-series as well,
using a vector autoregressive (VAR) model. In this case, each component is described as a
linear combination of the lagged values of every components. This type of model is studied
in [33,34].

Piecewise linear models Note that the piecewise autoregressive model is a special case
of the piecewise linear model, which is used to model the time-series with respect to other
covariate time-series. For a univariate time-series, this model is formulated as

Xt = uTk yt + vTzt + εt, ∀t, t∗k ≤ t < t∗k+1, k = 0, . . . ,m∗, (2.14)

where uk ∈ Rp and v ∈ Rq are unknown regression parameters, εt is an error term, and y =
(yt)Tt=1 and z = (zt)Tt=1 are covariate time-series with values in Rp and Rq. The autoregressive
model is the special case where the covariate time-series y is such that ∀t = p + 1..T, yt =
[xt−1, xt−2, . . . , xt−p]. If segment specific models are estimated via OLS, the corresponding
segment specific costs are

cLR(xi:j) = min
uk∈Rp,v∈Rq

j−1∑
t=i

(xt − uTk yt − vTzt)2. (2.15)

This model is widely used in the literature, especially in econometrics where it is referred
to as partial structural change model. A pure structural change model can be obtained by
simply removing the term vTzt.

The piecewise linear model is studied for example in [33,35]. It is used in [5] with physiological
data and in [9] with the time directly as the covariate variable yt = t. It has also been studied
from a more theoretical standpoint in [36–38]. The multivariate version is exposed in [33].

In some cases where the noise distribution has a heavy tail, it can be interesting to use the
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absolute residuals instead in the definition of the cost cLR [25]. This has been used with
econometrics data in [39].

2.4.3 Kernel models

Kernel-based cost functions work by mapping a sample xt ∈ Rd of the time-series x into
a space of functions called a reproducing kernel Hilbert space, that we will note H. The
definition of the mapping is based on a kernel k : Rd × Rd 7→ R, and the mapping function
is φ : Rd 7→ H, which maps the sample xt to φ(xt) = k(xt, ·). The inner-product of H is
〈φ(xs), φ(xt)〉H = k(xs,xt), and the norm is such as ‖φ(xt)‖2

H = k(xt,xt). The cost function
is then defined as

ckernel(xi:j) =
j−1∑
t=i
‖φ(xt)− µi:j‖2

H, (2.16)

where µi:j ∈ H is the empirical mean of φ(xt) on segment xi:j. In practice, when computing
ckernel(xi:j), we don’t need to compute the embedding. Indeed, thanks to the "kernel trick",
the cost function can be rewritten as

ckernel(xi:j) =
j−1∑
t=i

k(xt,xt)−
1

j − i

j−1∑
s=i

j−1∑
t=i

k(xs,xt). (2.17)

The intuition behind this cost function is that, with a kernel k(·, ·) well suited to the time-
series considered, samples that follow the same probability distribution should have similar
embeddings. The cost ckernel(xi:j) defined at (2.16) is actually similar to the cost cL2(xi:j)
for detecting changes in mean, but can be seen as detecting mean shift in the embedded
time-series {φ(xt)}Tt=1. And detecting mean shift in the embedding space H can be seen as
detecting changes in the underlying probability distribution of the original samples.

The kernel-based cost function is different from the other cost functions described previously,
is the sense that it is a non-parametric approach to change point detection. This means that
no estimation of segment specific parameters of an underlying model is needed for computing
the cost function. This has the advantage of usually being more computationally efficient than
parametric model. Also, non-parametric methods have the advantage of being compatible
with time-series modeled as random processes following piecewise constant distributions, but
for which the distribution is either non parametric, or unknown.

Kernel models have been used with empirical data for the problem of emotion recognition
in [40], and on Brain-Computer Interface data in [41]. The use of the kernel model (2.16) is
also discussed for the task of video segmentation in [42], though no experiments on real data
are performed. It has also been studied for application on DNA sequences through simulated
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data in [43].

2.5 Optimization

Once the cost function V (T ,x) is defined, we need a method for searching the set of ad-
missible segmentations. In the case of the penalized version of the problem (2.4), this set
is the power set Sx1:T = {T ⊆ {2, . . . , T − 1}}, of cardinality |Sx1:T | = 2T−2. In the
case of the constrained version of the problem (2.3), the set of admissible segmentations
Sm,x1:T = {T ⊆ {2, . . . , T − 1} s.t. |T | = m} is smaller, but still contains |Sm,x1:T | =

(
T−2
m

)
elements. In any case, exhaustive enumeration is intractable. In this section we describe
different solutions for efficiently solving either the penalized or the constrained optimization
problem. They are classified in two groups : exact and approximate methods.

2.5.1 Exact methods

Let us first introduce a proposition that will be used in the algorithms we are about to
introduce.

Proposition 2.1. Consider an optimization problem minT V (T ,x) with an additive crite-
rion as defined in (2.1), which can be written as minT

∑m
k=0 c(xtk:tk+1). Let T ∗ = {t∗k}mk=1 ∈

Sx1:T be the optimal segmentation of a time-series x1:T , that is satisfying V (T ∗,x1:T ) ≤
V (T ,x1:T ), ∀T ∈ Sx1:T . Then any sub-segmentation T ′ = {t∗k}

j
k=i ⊆ T ∗, 1 ≤ i < j ≤ m of T ∗

is an optimal segmentation of the segment xt∗i−1:t∗j+1
, i.e. V (T ′,xt∗i−1:t∗j+1

) ≤ V (T ,xt∗i−1:t∗j+1
), ∀T ∈

Sxt∗
i−1:t∗

j+1
.

This proposition is demonstrated in an even more general case in [3] as Proof 1. Intuitively,
it states that if a segmentation is optimal on a given time-series, then any sub-segmentation
(subset of its segments which are consecutive) is optimal for the portion of the time-series it
covers.

Segment Neighborhood The Segment Neighbourhood (SN) method, introduced in [44],
proposes a way of solving the constrained problem (2.3). It is based on dynamic programming
[45], and uses Proposition 2.1 to recursively decompose the optimization problem into smaller
sub-problems. Let M be the user specified number of change points to be detected, and
x1:T the T samples long time-series considered. Thanks to Proposition 2.1, the constrained
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problem can be rewritten as

min
T ∈SM,x1:T

V (T ,x1:T ) = min
0=t0<t1<···<tM+1=T

M∑
k=0

c(xtk:tk+1) (2.18)

= min
t≤T−M

[
c(x1:t) + min

t=t0<t1<···<tM =T

M−1∑
k=0

c(xtk:tk+1)
]

(2.19)

= min
t≤T−M

[
c(x1:t) + min

T ∈SM−1,xt:T

V (T ,xt:T )
]
. (2.20)

Intuitively, Equation 2.20 shows that the optimal segmentation withM change points of data
x1:T can be easily computed if the optimal segmentations with M − 1 change points of all
segments of the form xt:T , ∀1 < t ≤ T −M are known. The SN algorithms then consist
of recursively applying this observation (with decreasing values of the number of change
points), in order to solve the original constrained problem. Thanks to this recursion over the
number of change points, the algorithm actually computes all the optimal segmentations with
m = 1, . . . ,M change points. It can thus be used with the maximum number of change points
to be detected M = Mmax, in order to then solve the penalized problem (2.4). Assuming
the costs c(xi:j) can be computed or accessed in O(1), the computational complexity of this
method is O(MT 2). For applications where the number of change points is linear in the
length of the time-series considered, the complexity is thus O(T 3).

Optimal Partitioning Optimal Partitioning (OP) is a method for solving the penalized
problem (2.4) with a penalty term of the form pen(T ) = β|T |, where β is a smoothing
parameter to be chosen by the user. This type of penalty function linear in the number of
change points is very common in the literature. It has interesting statistical properties, and
also allows for fast algorithms such as OP. More details will be given about it in Section 2.6.1.

The OP algorithm has been introduced in [3], and is also based on dynamic programming [45].
First, we transform the penalized criterion such that it is additive. Thanks to property (2.1)
of the unpenalized criterion and the linearity of the penalty function, we can conveniently
rewrite the penalized problem (2.4) by distributing the penalty term into the segment specific
costs

min
T ∈Sx

V (T ,x1:T ) + pen(T ) = min
T ∈Sx

|T |∑
k=0

[
c(xtk:tk+1)

]
+ β|T | (2.21)

= −β + min
T ∈Sx

|T |∑
k=0

[
c(xtk:tk+1) + β

]
. (2.22)



17

We can now use Proposition 2.1 to condition the value of the optimal segmentation of x1:T on
the position of its last change point. Let us denote F (s) the cost of the optimal segmentation
on data x1:s, and Ss = Sx1:s the set of all possible segmentations of that data. We can rewrite

F (s) = −β + min
T ∈Ss

|T |∑
k=0

[
c(xtk:tk+1) + β

]
(2.23)

= −β + min
1≤t<s

{
min
T ∈St

|T |∑
k=0

[
c(xtk:tk+1) + β

]
+ c(xt:s) + β

}
(2.24)

= min
1≤t<s

{
F (t) + c(xt:s) + β

}
. (2.25)

Intuitively, Equation 2.25 shows that the optimal segmentation on the segment x1:s can be
easily computed if the optimal segmentations on the segments x1:t, 1 ≤ t < s are known. The
dynamic programming approach of OP then consists in setting F (1) = −β, and successively
computing F (s) for s = 2, . . . , T , in order to obtain the cost F (T ) of the optimal segmentation
on the full time-series x1:T .

Assuming the costs c(xi:j) can be computed or accessed in O(1), the cost of solving the
recursion for index s is linear O(s). It follows that the computational cost of finding F (T )
and the optimal segmentation of x1:T is O(T 2). Optimal Partitioning is thus better suited
than SN for solving the penalized problem with a linear penalty term.

Note that OP can actually be used to solve any problem with an additive criterion as defined
in (2.1). However, it is not recommended to perform change point detection with no penalty.
The penalty term linear in the number of change points is the simplest option and is very
easily incorporated into an additive criterion as in (2.22), which is the reason why OP is
mostly used with a linear penalty term.

Pruned Exact Linear Time The Pruned Exact Linear Time (PELT) algorithm, intro-
duced in [11], improves on the OP algorithm by adding a pruning rule. This rule discards
values of t that can never be solutions of the problem (2.25) to be solved at each iteration.
It is based on the assumption about the cost function c(·) that the cost associated to a given
segment is reduced when a change point is introduced into it. More formally this is expressed
as

∃K such that ∀i < j < k, c(xi:j) + c(xj:k) +K ≤ c(xi:k). (2.26)

It is then proved in Section 5 of [12] that if

F (i) + c(xi:j) +K ≥ F (j), (2.27)



18

for i < j, then for any future k > j, i can never be the optimal last change point. We
can thus add a pruning step at each iteration of the OP algorithm, that looks for past time
indices i that verify (2.27) with the current time index j = s. This time index can then be
ignored when solving the minimization (2.25) in future iterations.

The hypothesis (2.26) is not very restrictive, as it holds for a wide range of classic cost
functions, such as penalized likelihood or sum of squares. It is proved that in cases where the
number of change points increases linearly with the number of samples T , the computational
cost of PELT is O(T ). Some other conditions are required, but they are not very restrictive.
See Section 3.1 of [11] for more details. The worst-case complexity is when no time indices
can be pruned. The complexity is then equivalent to the basic OP algorithm O(T 2).

Other methods A recent body of literature, of which PELT is a part, focuses on improving
the complexity of the exact algorithms presented above. We can cite the pDPA algorithms,
proposed in [46], which introduces a pruning rule in the SN algorithm. The type of pruning
rule, that they call functional pruning, is very different from the inequality-based rule of
PELT, and sees the cost of a segment as a function of its specific model parameter. It
imposes some restrictions on the type of cost functions compatible, and can only detect
changes in one parameter. It has an empirical complexity of O(n log n), and the worst-case
complexity is the one of the SN algorithm. In some cases, it has been shown to be faster
than PELT on datasets with few change points. Some work in that direction is also proposed
in [47], where the authors develop new pruning techniques by combining the ideas of PELT
and pDPA, that result in the new algorithms FPOP and SNIP.

2.5.2 Approximate methods

Binary Segmentation Binary Segmentation (BS) is an approximate method originally
introduced in [48] and often used in the literature as a substitute for exact methods. It is a
greedy algorithm, that sequentially adds to the current estimate of the segmentation the one
change point that reduces the most the global cost. It can be seen as a way to adapt a single
change point detection method for the problem of multiple change point detection. Consider
the segmentation of the time-series x = {xt}Tt=1. Let us first define the problem P (xi:j) of
finding the change point within xi:j that will reduce the most the global segmentation cost
on segment xi:j,

P (xi:j) : zxi:j = min
i<t<j−1

c(xi:t) + c(xt:j). (2.28)

Denote t∗xi:j
the position of this optimal change point, and T k the current segmentation at

iteration k. At the first iteration, the current segmentation consists of the single segment x1:T
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(T 1 = ∅). The first iteration consists of dividing the single segment x1:T in two. This is done
by estimating the position t∗x1:T

of the best change point to introduce by solving P (x1:T ), and
adding it to the current segmentation for the next iteration (T 2 = T 1∪{t∗x1:T

}). At iteration
k > 1, the best change point to introduce is estimated within every segment of the current
segmentation by solving P (xti:ti+1), ∀ i = 0, . . . , |T k|. Among all the segments, we divide
the one for which the addition of the corresponding new change point reduces the most the
global cost. This is done by solving

max
i=0,...,|T k|

c(xti:ti+1)− zxti:ti+1
. (2.29)

Finally, the corresponding change point t∗xt∗
i

:t∗
i+1

is added to the current segmentation for the
next iteration, T k+1 = T k ∪ {t∗xt∗

i
:t∗

i+1
}. The algorithm iterates until a criterion is met.

Assuming the costs can be computed or accessed in O(1), the complexity of this method is
O(T log T ). This gain in computational complexity is at the expense of optimality. The two
main drawbacks of this method is that change points are estimated from non-homogeneous
segments, and that the position of the estimated change points depend on the positions of the
previous ones. Change points that are close to each other are especially imprecisely detected.

This method can be used for solving both the penalized (2.4) and the constrained (2.3)
version of the problem, depending on the stopping criterion. For the constrained problem,
the algorithm is stopped when the right number of change points is reached. In case the true
number of change points is unknown, the criterion can be designed to be equivalent to the
penalty term, or other strategies can be used.

Sliding adjacent windows Like BS, the Sliding Adjacent Windows (SAW) method can
be seen as an adaptation of a single change point detection method to the problem of multiple
change point detection. It is based on a measure of the discrepancy between two consecutive
segments. The definition of this discrepancy measure relies on the cost function c : Px 7→ R
defined in Section 2.4. This cost function can itself use any appropriate underlying model
for the time-series. The discrepancy function is defined as

d(xi:t,xt:j) = c(xi:j)− [c(xi:t) + c(xt:j)]. (2.30)

The intuition is that, when the index t is close to the position of a true change point, the two
segments xi:t and xt:j are dissimilar. In this case, the segment xi:j is not homogeneous, which
should lead to a high cost c(xi:j). On the other hand, the two segments taken individually
should each be rather homogeneous, meaning low values of their costs c(xi:t) and c(xt:j).
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These two effects combined ensure that the discrepancy value d(xi:t,xt:j) is high when the
index t is close to a true change point.

The SAW method consists of computing the discrepancy function for pairs of segments of
constant length L, that are sliding along the time-series. Once these discrepancies are com-
puted, we can plot the curve d(xt−L:t,xt:t+L) as a function of t = L, . . . , T − L. We expect
this curve to exhibit peaks centered around the true change points. The estimated change
points can then be computed by performing a peak search procedure or applying a threshold.

The choice of the length L of the windows is important in order to obtain good results. It
should be chosen smaller than the length of the shortest segment in the true segmentation,
so that the two segments are homogeneous when located around change points. However, it
should not be chosen too small, so that each window contain enough samples to be statistically
significant when computing their associated costs.

The advantage of this approximate method is again its low computational cost. Its complexity
is linear in the number of samples, assuming the discrepancy values can be computed or
accessed in O(1).

Bottom-up approach The bottom-up approach is the counterpart of the Binary Segmen-
tation method. Instead of starting with an empty segmentation and sequentially adding one
optimal change point at a time, the initial segmentation is one with more candidate change
point than true change point. A classical approach is to start with a segmentation consisting
of a given percentage of the points in the time-series, equally spaced. Then change points
are sequentially eliminated until a criterion is met. At each iteration, the change point elim-
inated is the one with the lowest value of discrepancy between the two segments it separates.
The measure of discrepancy is the one defined for the SAW method (2.30).

Assuming the discrepancy values can be computed or accessed in O(1), the computational
cost of this method is linear in the number of candidates. However, this gain in computational
complexity is a the expense of optimality, as this method suffers form a few drawbacks. First,
if a true change point is not among the candidate change points selected at the beginning,
it will never be estimated precisely. Moreover, the first iterations usually tends to be unsta-
ble, as the segments on which the discrepancies are computed are rather small, impacting
statistical significance.

Other methods As mentioned in the introduction of [46], another common idea for ap-
proximate fast algorithms is to develop a fast heuristic for identifying a restricted set of
candidates change points, on which to run an exact algorithms.
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2.5.3 Reducing the search space

In order for the algorithms presented above to run in shorter times, some strategies are
commonly used in the literature to reduce the space of admissible segmentations. These
strategies use prior knowledge on the time-series and the performance requirement of the
application. We present here two simple strategies that can be used with any of the exact
or approximate algorithms presented above, and are implemented in the Python package for
change point detection proposed in [49].

Minimum segment length In many application, prior knowledge is available about the
minimum time separating two consecutive change points. Let S be the value of this minimum
spacing between change points in number of samples. The strategy simply consist in adding
the constraint tk+1 − tk ≥ S, ∀k = 0, . . . ,m to the optimization problem being solved. All
the algorithms presented above can be modified in a simple way in order to account for this
new constraint.

Resolution Depending on the application, we might not need to estimate the position of
the change points with a resolution of one sample. In such cases, it is possible to only consider
a fraction of the time indices of the time-series as potential change point candidates. For
example, one can choose to consider as candidates only the indices that are multiples of a
given integer R, called the resolution parameter. An admissible segmentation is then defined
as T = {tk}mk=1 ⊆ {R ∗ i | i = 1, . . . , bT

R
c}. All the algorithms presented above can also be

easily modified in order to take this restriction on the candidate change points into account.
Note that all the samples of the time-series are still used for computing the costs, and only
the set of candidate change points have been reduced.

2.6 Estimating the number of change points

In cases where the number of change points m∗ is known a priori, change point detection is
simply performed by solving the constrained problem (2.3). However, in most practical ap-
plications, no prior knowledge about the number of change points is available. Two strategies
exist for estimating that number :

• jointly estimating the number of change points and their positions by solving the pe-
nalized problem (2.4); or

• computing the optimal segmentation with different numbers of change points by solving
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the constrained problem (2.3) multiple times, and then selecting one of these segmen-
tations using an appropriate criterion.

The distinction between these two strategies is not perfectly clear. Indeed when the penalty
term only depends on the number of change points, solving the penalized problem can al-
ways be done using the second strategy, with the criterion being the penalized cost in (2.4).
For some complex penalty functions, it actually is the only way to solve (2.4). On the con-
trary, depending on the criterion used, the second strategy cannot always be expressed as a
penalized problem.

In the following, we discuss different methods for estimating the number of change points,
organized by the type of penalty they correspond to. We also discuss methods for computing
optimal segmentations with different numbers of change points. We finish with a peculiar
method, not based on penalty.

2.6.1 Linear penalty

The use of a penalty term linear in the number of change points is very common in the
literature. This is more formally written as

penlin(T ) = β|T |, (2.31)

where β is a smoothing parameter. Thanks to the additive property (2.1) of the criterion
V (T ,x), the penalty term can be distributed into to segment specific costs as in (2.22),
usually allowing for fast algorithms such as Optimal Partitioning.

The choice of the smoothing parameter is very important, as it controls the number of change
points that will be estimated. A low value will favor segmentations with many change points,
whereas a high value will favor segmentations with few change points. In the following, we
describe different methods for choosing this parameter.

Model selection One of the reasons why the linear penalty is so widespread in the liter-
ature is that it generalizes some classic model selection methods, the most notable of which
is the Bayesian information criterion (also known as the Schwarz Information Criterion).

The Bayesian information criterion (BIC), originally introduced in [50], is a criterion for
selecting among a finite set of models of some data D, the one that will best generalize to
other data drawn from the same distribution. The preferred model is the one with the lowest
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BIC value, which is defined as

BIC = log(n)k − 2 log L̂, (2.32)

where L̂ is the maximum of the likelihood of the model on the data D, k is the number of
parameters of that model, and n is the number of observations contained in D. It is designed
to reach a trade-off between the goodness of fit of the model on data D, represented by
the log-likelihood log L̂, and its complexity, represented by the number of its parameters k.
The value of the coefficient log n is justified by a Bayesian argument, hence the name of the
criterion.

Estimating the number of change points within a given time-series can be framed as a selection
problem between different piecewise stationary models with different numbers of segments.
A compromise has to be achieved between the goodness of fit and the complexity of the
model. When using the model (2.5), the criterion V (T ,x) represents the negative log-
likelihood − log L̂ of the piecewise model associated to T on the data x1:T . The number of
parameters of the model is simply the number of its segments m = |T | multiplied by the
number of parameters of each segment specific model p. Hence using the BIC for estimating
the number of change points is equivalent to setting the smoothing parameter as

β = p

2 log T, (2.33)

where T is the number of samples in the time-series, and p is the number of parameters of
each segment specific model. This idea of using the BIC to estimate the number of change
points has first been introduced in [18] for the detection of changes in mean within samples
normally distributed with constant variance.

Other model selection criteria can be used for estimating the number of change points. For
instance the Akaike information criterion (AIC), introduced in [51], is defined as

AIC = 2k − 2 log L̂, (2.34)

where L̂ is the maximum of the likelihood of the model on the data D, and k is the number
of parameters of that model. The corresponding value for the smoothing parameter is

β = p. (2.35)

The Hannan–Quinn information criterion (HQC), introduced in [52] is an other option. It is
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defined as
HQC = 2k log(log n)− 2 log L̂, (2.36)

where L̂ is the maximum of the likelihood of the model on the data D, k is the number
of parameters of that model, and n is the number of observations contained in D. The
corresponding value for the smoothing parameter is

β = p log(log T ). (2.37)

Other methods for choosing the smoothing parameter In Section 5 of [22], the
authors observe that using the BIC largely overestimates the number of change points on a
real-world time-series. They argue that the inadequacy of the BIC is due to the fact that the
model used is over-simplistic for the data considered. This intuition seems to make sense.
Indeed, if the model is over-simplistic for the data, the value of the goodness of fit measure
to be minimized will be rather high, requiring in turn a higher penalty value to counteract
the overfitting effect. The authors of [53] also argue in the introduction that the violation of
assumptions such as Gaussianity or independence often lead to poor performances of methods
based on the classic model selection criteria for estimating the number of change points on
real data. Moreover the methods based on BIC and AIC only work with the model (2.5),
where the criterion being optimized represent the likelihood of the piecewise model on the
time-series. This shows that the classic model selection approaches have a limited range
of applications, and it can be interesting to explore other means of tuning the smoothing
parameter β.

A first alternative is to use a procedure based on cross-validation [54], for example using the
reconstruction error. In the limited cases where some annotated time-series are available for
testing, supervised approaches can also be used such as [53,55].

These methods usually require the computation of all the optimal segmentations (with dif-
ferent numbers of change points) for a range of smoothing parameter β ∈ [β0, β1]. Arbitrarily
sampling some values of β and solving the penalized problem for all of them is not efficient
and can get very expensive in terms of computation. A much better approach, called the
Changepoints for a Range Of PenaltieS (CROPS) algorithm, is proposed in [16]. This algo-
rithm yields all the segmentations that are optimal for any value of the parameter β ∈ [β0, β1],
while requiring to solve the linearly penalized problem (2.4) a limited amount of times (which
is linear in the difference between the number of change points corresponding to β0 and β1).
It uses the linear relationship between the penalty value and the penalized cost of a given seg-
mentation, as well as the link between the penalized and constrained problems, to efficiently
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explore to penalty range.

2.6.2 Other types of penalties

Complex penalty terms We describe here two complex penalty terms that have been
derived from theoretical considerations. They both assume the univariate mean-shift model
for the time-series (corresponding to the cost function cL2).

• In [56], a modified BIC criterion is introduced, that is supposed to be more robust to
irregularities in the likelihood function. It is derived by asymptotic approximation of
the Bayes factor. It is similar to the classic BIC as the term representing the goodness
of fit is still the log-likelihood, but the term for penalizing model complexity is different.

It can be formulated as the penalized problem (2.4) with the penalty term

penmBIC(T ) = 3|T | log T +
m+1∑
k=0

log
(tk+1 − tk

T

)
, (2.38)

where T is the number of samples in the time-series. This penalty term depends on the
number of change points as well as their positions, and can be intuitively interpreted
as favoring the segmentations with evenly spaced change points.

• In [57], the following penalty term is derived from a model selection procedure

penLeb(T ) = |T |+ 1
T

σ2
[
a1 log

( |T |+ 1
T

)
+ a2

]
, (2.39)

where a1 > 0 and a2 > 0 are parameters, and σ2 is the noise variance. The strength
of this procedure is that, contrary to every other model selection procedures presented
here, its theoretical justification does not rely on the asymptotic setting, where the
number of samples is assumed to tend to infinity. It should thus perform well in
practical cases.

The drawback of these complex penalty terms is that directly solving the penalized problem
(2.4) is intractable. In practice, the optimal segmentations with m change points are com-
puted using (2.3) for m = 1, . . . ,MMAX , where MMAX is an upper bound on the number of
change points, and the one that minimizes the penalized cost is selected.

Adaptive choice of penalization parameter A method for estimating the number of
change points is proposed in [58] for cases where the penalty term is of the form pen(T ) =
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βf(|T |), where β is a penalization parameter and f(|T |) is a function that increases with
the number of change points in T , and only depends on this number.

Let ck the optimal value of the constrained problem with k change points, pk = f(|T | = k)
the penalty value for a segmentation with k change points, and k(β) the number of change
points in the optimal segmentation with penalization coefficient β. The following proposition
is proved in [58].

Proposition 2.2. There exists a sequence 1 = k1 < k2 < . . . and a sequence ∞ = β0 > β1 >

. . . with
βi = cki

− cki+1

pki+1 − pki

, i ≥ 1, (2.40)

such that k(β) = ki, ∀β ∈ (βi, βi−1).

The authors argue that the selected segmentation should be the most stable one, in the
sense that it should not strongly depend on the penalization coefficient β. However, directly
choosing the number of change points ki corresponding to the interval [βi, βi−1] of greatest
length li = βi−1−βi tend to underestimate the number of change points, therefore the solution
they propose is to choose the greatest ki such as li � lj, ∀j > i.

This criterion has a more visual interpretation when plotting the evolution of the unpenalized
cost ck as a function of the penalty value pk. Equation 2.40 tells us that the slope between
points (pki

, cki
) and (pki+1 , cki+1) is −βi. The heuristic thus consist in selecting the point on

this plot where the values ck cease to decrease significantly. Indeed, the length li is loosely
equivalent to the second derivative, and we are looking for the point of maximum curvature
or in other words a break in the slope of the curve.

Note that the linear penalty is a special case, where f(|T |) = |T |. We have pk = k, and the
graphical interpretation is performed on the plot of the unpenalized cost ck as a function of
the number of change points k.

2.6.3 Efficiently computing optimal segmentations with different numbers of
change points

One of the strategies for estimating the number of change points is to first compute multiple
optimal segmentations with different number of change points, and then discriminate among
them using a given criterion. To that end, it is useful to have efficient algorithms for com-
puting those multiple optimal segmentations. The next two sections discuss such algorithms
in the cases of approximate and optimal methods.
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Approximate methods For the iterative algorithms, such as top-down or bottom-up al-
gorithms, it is fairly cheap to compute segmentations with different number of change points.
Indeed, at each iteration, change points are added or remove to the current estimated segmen-
tation until a stopping criterion is met. It is thus enough to just store those segmentations
at each iteration. For the SAW method, computing the estimated segmentations with differ-
ent numbers of change points is a matter of running the peak search method with different
parameters. The computational cost of the peak search procedure is usually rather cheap, so
running it multiple times is not a problem, at least for offline methods.

Exact methods When using the constrained problem (2.3), the SN algorithm itself is able
to compute all the optimal segmentations with m = 1, . . . ,Mmax number of change points.
Its computational complexity is O(MmaxT

2), linear in the upper bound on the number of
change points Mmax, and quadratic in the length of the time-series T .

Another alternative is to use the CROPS algorithm discussed on page 24 and introduced
in [16], combined with the penalized problem (2.4) with linear penalty (2.31). This algorithm
yields all the segmentations that are optimal for any value of β within a given range [β0, β1].
Let m(β) be the number of change points in the optimal segmentation with smoothing
parameter β. CROPS requires to solve the penalized problem (2.4) a number of times linear
in the difference ∆β0β1 = m(β0)−m(β1). Moreover, provided the number of change points is
linear in the length of the time-series T , the PELT algorithm is able to solve the penalized
problem in an amount of time linear in the number of samples T . Under these conditions, the
CROPS algorithm has a computational complexity O(∆β0β1T ), and is thus a computationally
efficient way of computing segmentations with different numbers of change points. Note that
it does not in general yield all the segmentations with all number of change points between
m(β1) and m(β0). Indeed, a given optimal segmentation for the constrained problem with
m change points, m(β1) ≤ m ≤ m(β0), might never be optimal for the penalized problem
for any value of the smoothing parameter β ∈ [β0, β1]. However, a good portion of those
segmentations are usually recovered.

2.6.4 Method not based on penalty

In [59], a generalization of the SN method of [44] is derived, which computes the N most
probable segmentations (i.e. with lowest sum of costs). The computational complexity of
this algorithm is O(NKT 2), where N ≥ 1 is the number of segmentations computed, K is
the number of change points in the segmentations and T is the number of samples in the
time-series. This algorithm is interesting to compare the N "near-optimal" segmentations
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among themselves. These N segmentations can be aggregated into one, by only keeping the
most likely change points, where a change point is deemed likely if it is present in many of the
top segmentations. When using this method, the number of change points is automatically
estimated, without the intervention of a penalty term.

2.7 Other methods

2.7.1 Cumulative Sum (CUSUM)

Theoretical justification The Cumulative Sum (CUSUM) algorithm is one of the first
methods developed to tackle the problem of change point detection. It is a simple algorithm,
making it very useful in online applications. It has first been proposed by E.S. Page in [13],
and a more rigorous interpretation has then been made in [60] and [61]. We will use it to
detect an abrupt change in the mean of the signal.

Let x = (xn)kn=0 be a time-series with independent and identically distributed (i.i.d.) samples
xn modeled as random variables Xn following a given probability distribution p(xn, θ) where
θ is a parameter. We want to decide whether or not the signal contains an abrupt change of
the parameter θ, and if so, at what time nc this change occurs. Let θ0 be the value of the
parameter before change, and θ1 it’s value after nc, if there is a change. We denote H0 the
hypothesis of no change occurring, and H1 the hypothesis of a change occurring at time nc.
Under H0, the likelihood of the signal from the first sample x0 to the current sample xk is

L(x|H0) =
k∏

n=0
p(xn, θ0).

Under H1, the likelihood becomes

L(x|H1) =
nc−1∏
n=0

p(xn, θ0)
k∏

n=nc

p(xn, θ1).

The idea of Page was to sequentially apply a likelihood ratio test, in order to decide between
H0 and H1 after each sample. Once H1 has been decided, we also want to define an estimator
for the time of change nc. We define the log-likelihood ratio Lx as

Lx = log L(x|H1)
L(x|H0) .

Note that the log-likelihood ratio Lx is negative as long as H0 is true. If H1 becomes true,
then Lx becomes positive. Therefore we will decide H1 once Lx > h, where h is a threshold
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to be set by the user. At current sample xk, the expression becomes

Lx(k, nc) =
k∑

n=nc

log p(xn, θ1)
p(xn, θ0) .

However, this expression depends on the unknown change time nc. The solution is to replace
nc by it’s maximum likelihood estimate. Therefore we define what is called the generalized
log-likelihood ratio Gx as

Gx(k) = max
1≤nc≤k

Lx(k, nc) = max
1≤nc≤k

k∑
n=nc

log p(xn, θ1)
p(xn, θ0) .

And the maximum likelihood estimate of the change time is

n̂c = argmax
1≤nc≤k

k∑
n=nc

log p(xn, θ1)
p(xn, θ0) .

In the final algorithm, we want to compute Gx at each new sample. For that, let us define
the instantaneous log-likelihood ratio at sample xn,

sn = log p(xn, θ1)
p(xn, θ0) .

In practice, we will be able to compute the generalized log-likelihood Gx through the cu-
mulative sum of the instantaneous log-likelihood from the first sample x0 to the current one
xk,

Sk =
k∑

n=0
sn.

Indeed, we have Lx(k, nc) = Sk − Snc−1, which gives

Gx(k) = Sk − min
1≤nc≤k

Snc−1,

n̂c = argmin
1≤nc≤k

Snc−1.

Notice that the decision function Gx(k) only depends on the current value of Sk and its
current minimum value. Moreover, in the algorithm, we can compute Sk through

Sk = Sk−1 + sk.
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As the decision function Gx is compared to a positive value h, we can rewrite it as

Gx(k) = max(0, Gx(k − 1) + sk).

This yields the CUSUM algorithm, which consists of computing sk at each new sample, and
using it to compute Gx(k). This quantity should stay close to 0 as long as no change occurs.
If its value cross the limit h set by the user, a change is detected, and the estimated time of
the change is the timestep right after the last one where Gx(k) = 0.

Application for detection of a change in mean in an i.i.d. Gaussian signal CUSUM
is very often used to detect a change in the mean of a signal. We assume the samples of
our signal to be i.i.d. and to follow a Gaussian distribution with mean µ and variance σ2.
Moreover, the signal possibly undergoes a change in mean from µ0 to µ1 at time nc. The
probability density of each sample Xn is written as p(xn, µ) = 1

σ
√

(2π)
exp(− (xn−µ)2

2σ2 ), where µ
takes the value µ0 or µ1 depending of whether the sample is before or after the change. The
instantaneous log-likelihood ratio can then be computed for any sample xn by

sn = µ1 − µ0

σ2

(
xn −

µ0 + µ1

2

)
.

Practical considerations To further simplify the algorithm, we can remove the multi-
plicative constant in front of sn. This doesn’t change the behavior of the algorithm, provided
we modify the value chosen for h accordingly. The accumulated value sn then becomes
sn = xn − µ0+µ1

2 .

Another problem is that the computation of sn requires prior knowledge of the mean of the
signal before (µ0) and after (µ1) the change. One way to solve this problem is by replacing
those values by their maximum likelihood estimates [62]. However, this make it impossible
to use the recursive form of the algorithm, and make the complexity of the algorithm grow
with the number of samples. Another solution often used in practice and that allow us to
use the recursive form of the algorithm is to ask the user to set a priori the value of the
parameter after change relative to the value before change. Indeed, if we define δ = µ1 − µ0,
then the instantaneous log-likelihood can be rewritten as sn = xn− µ0− δ

2 . The user can set
the value for δ by think of it as the minimal shift that one wants to be able to detect. The
problem of setting µ0 remains, although this is less concerning, as it can be estimated from
the samples from x0 to xk, and if using recursive estimators the impact on the complexity is
minimal.

In order to choose the value of the threshold h, one can consider a performance criteria called
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Avergage Run Length (ARL). This is defined as the expected number of samples before a
change is detected by the algorithm

ARL = E
θ
[Nd],

where Nd = nd − nc, nd being the time when the change has been detected. The values of
the ARL in two different cases are especially interesting :

• when θ = θ0, ARL0 = Eθ0 [Nd] is the expected time before the algorithm detects
a change, under the assumption that no change has actually occurred. It can be
interpreted as the time before the algorithm produces a false positive.

• when θ = θ1, ARL1 = Eθ1 [Nd] is the expected time before the algorithm detects a
change, under the assumption that a change has actually occurred. It can be interpreted
as the delay in the detection of an actual change.

In [13, 60], a relationship between the threshold value h and the ARL is given. The goal for
the user is to set h low enough so that the algorithm detects a change quickly (short ARL1),
but high enough to limit the frequency of false positive (long ARL0). In the offline case,
having a short ARL1 is less important, and we can afford having a high value for h.

It is also important to notice that the algorithm exposed above only works for an increase
in the mean of the signal. It is therefore called a one-sided algorithm. To be able to detect
both increases and decreases, a very common solution is to use two one-sided algorithms :
one for detecting a change in each direction. The only difference between the two algorithms
is the expression of the instantaneous log-likelihood. If we call the one corresponding to an
increase sin and the one corresponding to a decrease sdn, their expression are :

sin = xn − µ0 −
δ

2 and sdn = xn − µ0 + δ

2

The expression of the ARL as a function of the threshold h (which can take different values
for each direction) is modified in the case of the two-sided CUSUM, but it is once again given
in [13,60].

As a final remark, the algorithm as defined by [13] stops once a change has been detected.
In his article, the author had in mind an application to a production line, where an action
had to be taken immediately after a change is detected. In the case where the goal is to
do multiple change point detection, it is very common in the literature to just restart the
algorithm once a change has been detected, in order to detect the future ones.
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CHAPTER 3 METHODOLOGY

In this work, we propose a new approach to change point detection that consists in maximizing
the discrepancy of the statistical properties between consecutive segments of a segmentation
T . This is by opposition to the methods from the literature, which are designed to maximize
the homogeneity within individual segments. In the previous chapter we have seen that
such methods usually consist in minimizing an objective function over a set Sx of feasible
segmentations of the time-series x

min
T ∈Sx

V (T ,x). (3.1)

The objective function V associates to a segmentation T ∈ Sx a global cost that consist of a
sum over the segments xtk:tk+1 of segment specific costs c(xtk:tk+1). This is formally expressed
as

V (T ,x) =
m∑
k=0

c(xtk:tk+1). (3.2)

The function c(·) associates a cost c(xi:j) to any segment xi:j, and is derived from a model
representing the time-series x. It measures the goodness of fit of the data within the segment
xi:j to this model, usually through prediction error or likelihood.

We propose instead to replace this function c(·) representing goodness of fit within individual
segments by a score function s(·) representing the difference in statistical properties between
two segments, defined for pairs of consecutive segments of the form (xti:tj ,xtj :tk) with i <

j < k. It is derived from a predictive model of the time-series x, by taking the prediction
error on the right segment xtj :tk of the model that has been estimated on the left segment
xti:tj . The new objective function we propose then associates to a segmentation T ∈ Sx a
global score that consist of a sum, over the pairs of consecutive segments (xtk−1:tk ,xtk:tk+1)
of T , of the scores s(xtk−1:tk ,xtk:tk+1). This is formally expressed as

V (T ,x) =
m∑
k=1

s(xtk−1:tk ,xtk:tk+1). (3.3)

Estimating the segmentation of the time-series x then consist in maximizing this objective
function over a set Sx of feasible segmentations of the time-series x

max
T ∈Sx

V (T ,x). (3.4)

The intuition is that a model estimated on a segment xtk−1:tk will capture the statistical
properties of the data within that segment. Then, if the statistical properties of the data
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in the next segment xtk:tk+1 are different, we expect the predictive error of this model to
be high. This means that the value of the score s(xtk−1:tk ,xtk:tk+1) is high as well. By
maximizing the global score (3.3) over the set of all possible segmentations Sx, we should
obtain a segmentation T̂ = {t̂k}m̂k=1 in which the statistical properties of the time-series are
different from one segment to the next. By definition of a change point, the indices t̂k should
thus be good estimates of the locations of the change points to be detected. In short, the
best segmentation is the one that maximizes the sum of errors.

We call this new approach to CPD that we are proposing OTAWA for Optimal Two Adjacent
Windows Algorithm. Note that we use the word score instead of costs, as the objective
function is maximized rather than minimized. Moreover, because the scores depend on pairs
of segments instead of individual segments, the algorithms from the literature are not able
to handle this new objective function, and we will have to develop new ones.

In this chapter, we first expose different models for describing the time-series with their
associated score function, then we detail two exact algorithms for solving both the linearly
penalized and the constrained versions of the optimization problem (3.4). After that, we
expose strategies for estimating the number of change points, and finally we analyze the
computational complexity of the overall method.

3.1 Score function

The objective function (3.3) can be interpreted as the overall score of the segmentation
T . Its formulation is based on a score function s : Px 7→ R, defined on the set Px =
{(xti:tj ,xtj :tk) | 1 ≤ ti < tj < tk ≤ T} of all the pairs of consecutive segments of a time-
series x. This score function characterizes the difference in statistical properties between two
consecutive segments, and its definition is derived from a predictive model M of the time-
series. Let M(xti:tj ) be the model estimated on segment xti:tj . Let x̂M be the time-series
of the prediction of modelM, meaning that x̂Mt is the prediction of the modelM at time
1 ≤ t ≤ T . The score associated to the pair of segments (xti:tj ,xtj :tk) is

s(xti:tj ,xtj :tk) = D(xtj :tk , x̂
M(xti:tj )
tj :tk ), (3.5)

where D(·, ·) is a distance function on time-series, that is used as a measure of the prediction
error.

In plain English, this definition means that the score s(xti:tj ,xtj :tk) associated to the pair
(xti:tj ,xtj :tk) of consecutive segments it the prediction error on the right segment xtj :tk of
the model M, once it has been trained in the left segment xti:tj . The choice of the model
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M depends on prior knowledge about the time-series. In the following, we list different
predictive models with their associated cost function.

3.1.1 Mean change in independent normally distributed samples

With this model, the samples of the time-series are assumed to be independent and to follow
a multivariate normal distribution, with constant covariance matrix and piecewise constant
mean. More formally, the modelMiid,µ assumes that the samples are i.i.d. random variables
and follow the distribution

Xt ∼
m∗+1∑
k=1
N (µk(t),Σ), (3.6)

where T ∗ = {t∗k}m
∗

k=1 is the true segmentation, k(t) = min{k s.t. 1 ≤ k ≤ m∗ and t∗k > t} is
the index of the segment containing the sample Xt, Σ is the constant covariance matrix and
µk is the mean that changes abruptly at the time t∗k.

For computing the score associated to the pair of segments (xtk−1:tk ,xtk:tk+1) we first need to
infer the model on the first segment xtk−1:tk . This simply consists in computing the sample
mean within the segment xtk−1:tk as µ̂k = 1

tk−tk−1

∑tk−1
t=tk−1 xt. Once inferred on xtk−1:tk the

prediction of the model is simply x̂Miid,µ(xtk−1:tk
)

t = µ̂k ∀t = 1, . . . , T and the score value is
the error evaluated in terms of mean square error (MSE) of this prediction on the second
segment xtk:tk+1

siid,µ(xtk−1:tk ,xtk:tk+1) = 1
tk+1 − tk

tk+1−1∑
t=tk
‖xt − µ̂k‖2

2, (3.7)

where ‖·‖2 is the Euclidean norm.

3.1.2 Mean change in independent normally distributed samples with margin

In most of the literature, the statistical properties of the time-series are assumed to be piece-
wise stationary, with abrupt changes at change points. However in practice, the transition of
the statistical properties between two stationary segments might happen gradually over the
course of multiple samples. The score function that we will detail here is similar to (3.7),
but allows for transition periods between segments.

First we introduce a margin parameterM , that represent the length (in number of samples) of
the transition periods between segments. The time-series is modeled as independent samples
following a multivariate normal distribution with a constant covariance matrix. The mean
however is assumed to be constant within segments except for the M first samples of every
segment, where it can take arbitrary values. More formally, the samples are modeled as



35

random variables such that :

Xt ∼
m∗+1∑
k=1

[
N (µk,Σ)1(t∗k−1 +M ≤ t < t∗k) +N (µt,Σ)1(t∗k−1 ≤ t < t∗k−1 +M)

]
(3.8)

where T ∗ = {t∗k}m
∗

k=1 is the true segmentation, Σ is the constant covariance matrix, µk is the
segment or sample specific empirical mean and

k(t) =

t if ∃k s.t. 0 ≤ t− tk < M

min{k s.t. 1 ≤ k ≤ m∗ and t∗k > t} otherwise
. (3.9)

For computing the score associated to the pair of segments (xtk−1:tk ,xtk:tk+1), we first compute
the sample mean within the segment xtk−1+M :tk as µ̂Mk = 1

tk−tk−1−M
∑tk−1
t=tk−1+M xt. Similarly

to the case with no margin (3.7), the score is defined as

siid,µ,M(xtk−1:tk ,xtk:tk+1) = 1
tk+1 − tk

tk+1−1∑
t=tk
‖xt − µ̂Mk ‖2

2, (3.10)

where ‖·‖2 is the Euclidean norm.

3.1.3 Vector Autoregressive (VAR) model

With this model, we assume that the time-series can be modeled as a piecewise VAR model
with constant order p. The VAR modelMV AR is a generalization of an autoregressive model
to the case of a multivariate time-series. Formally, the samples are modeled as random
variables such that

Xt = ck +
p∑
i=1

AikXt−i + εt, ∀t, t∗k + p ≤ t < t∗k+1, k = 0, . . . ,m∗ (3.11)

where Aik ∈ Rd×d is the segment specific matrix of the regression coefficients between xt and
it’s i-th lag xt−i, ck ∈ Rd is the segment specific intercept and εt is an error term.

In order to compute the value of the score associated to a pair of segments (xtk−1:tk ,xtk:tk+1),
we first estimate the VAR model on the segment xtk−1:tk . Let us denote ĉk and Âik the
parameters estimated on this segment. They can be estimated be any method, such as OLS,
GLS, Lasso or Ridge. For any time-index t, the prediction of this model is

x̂
MV AR(xtk−1:tk

)
t = ĉk +

p∑
i=1

Âikxt−i. (3.12)
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The score associated to the pair of segments is then the error evaluated in terms of MSE of
this VAR model on the second segment xtk:tk+1

sV AR(xtk−1:tk ,xtk:tk+1) = 1
tk+1 − tk

tk+1−1∑
t=tk+p

‖xt − ĉk −
p∑
i=1

Âikxt−i‖2
2, (3.13)

where ‖·‖2 is the Euclidean norm.

Note that it is very important to avoid overfitting, as it leads to noisy score values, hindering
correct estimation of the positions of the change points. Unfortunately, overfitting occurs
very often with this model. Indeed, on a segment xti:tj , the number of samples available for
estimating the model is (tj−ti)−p, where p is the order of the model. Each component of the
time-series is described as a linear combination of the p lagged values of the d components,
meaning that there are p×d regression coefficients to estimate. In order to avoid overfitting,
we thus need (tj − ti)− p � dp. In practice this condition is very often violated, especially
in cases where the dimension d of the time-series is high. To mitigate this problem, a first
solution is to set a high minimum distance between change points S � (d + 1)p. In most
applications however this is not a realistic constraint. Therefore, the solution that should be
preferred is to introduce regularization in the estimation of the parameters, for example by
using Lasso or Ridge regression.

3.2 Optimization

Like all optimization-based methods in the literature, the method that consists in directly
solving the optimization problem (3.4) is not able to estimate the correct number of change
points. However, similarly to the solution proposed in the literature, we can derive both a
penalized and a constrained version of the problem (3.4), that each give us control over the
number of change points estimated

• The constrained problem forces the number of change points to a value m given a
priori

max
T ∈Sx

V (T ,x) (3.14)

s.t. |T | = m;

• The penalized problem introduces a penalty term pen(T ) into the objective function,
whose role is to penalize segmentations with high numbers of change points. This
penalty term usually include a parameter that can be tuned in order to give it more or



37

less importance, thereby giving control over the number of change points estimated.

max
T ∈Sx

V (T ,x) + pen(T ). (3.15)

In this section, we propose two exact algorithms for solving both the constrained (3.14)
and the penalized (3.15) versions of the problem. They are adaptations of the SN and OP
algorithms respectively that have been presented in Section 2.5.1. In Section 3.3, we will
discuss methods for estimating the number of change points.

First let us introduce a proposition that will be used in both algorithms.

Proposition 3.1. Consider an optimization problem maxT V (T ,x) with an additive objec-
tive function as defined in (3.3), which can be written as maxT

∑m
k=1 s(xtk−1:tk ,xtk:tk+1). Let

T ∗t = {t∗k}m
∗

k=1 ∈ Sx1:t be an optimal segmentation on x1:t, that is satisfying V (T ∗t ,x1:t) ≥
V (T ,x1:t), ∀T ∈ Sx1:t, and assume that it includes the segment xr:s, 1 ≤ r < s ≤ t (i.e.
∃l | t∗l = r and t∗l+1 = s). Then the sub-segmentation Tr,s = {t∗k}l+1

k=1 = {t1, . . . , r, s} ⊆ T ∗t
of T ∗t is an optimal segmentation of x1:s with xr:s as the last segment, i.e. V (Tr,s,x1:s) ≥
V (T ,x1:s), ∀T ∈ {T ∈ Sx1:s | tm = r}.

Proof. If s = t, meaning that xr:s is the last segment of T ∗t , the result is trivial as T ∗t is
optimal on x1:t. Otherwise, let T2 = {t∗k}m

∗
k=l+1 ∈ T ∗t be the sub-segmentation of T ∗t on data

xs:t. Note that T2 might only contain one segment if xr:s is the second to last segment in
T ∗t . In this case, its corresponding scores is null (V (T2) = 0). We have Tr,s ∪ T2 = T ∗t .
Let T1 ∈ {T ∈ Sx1:s | tm = r} be any segmentation of the time-series x1:s with xr:s as last
segment. T1 ∪ T2 is a segmentation on x1:t, and as T ∗t is optimal on x1:t we have :

V (T ∗t ,x1:t) ≥ V (T1 ∪ T2,x1:t)

V (Tr,s ∪ T2,x1:t) ≥ V (T1 ∪ T2,x1:t)

V (Tr,s,x1:s) + s(xr:s, xs:t∗
l+2

) + V (T2,xs:t) ≥ V (T1,x1:s) + s(xr:s, xs:t∗
l+2

) + V (T2,xs:t)

V (Tr,s,x1:s) ≥ V (T1,x1:s)

Hence Tr,s is an optimal segmentation of x1:s with xr:s as the last segment.

Intuitively, this proposition states that if a segmentation of some time-series x1:t is optimal,
then any sub-segmentation with xr:s as last segment is optimal among the segmentations of
x1:s with xr:s as last segment.
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3.2.1 Penalized optimization problem

In this section we are interested in solving the penalized problem (3.15). More specifically,
we only consider the case of a linear penalty term pen(T ) = β|T |. The objective function
then becomes

V (T ,x) =
m∑
k=1

s(xtk−1:tk ,xtk:tk+1)− β|T |, (3.16)

where β is a smoothing parameter to be chosen by the user. In order to keep the additive
property of the objective function, the linear penalty term can be distributed into the sum
of scores

V (T ,x) =
m∑
k=1

[
s(xtk−1:tk ,xtk:tk+1)− β

]
. (3.17)

The algorithm we expose here is an adaptation of the OP algorithm exposed in Section 2.5.1
to our case where a score s(xti:tj ,xtj :tk) is associated to a pair of segments rather than to a
single segment xti:tj . Its goal is to compute the estimated segmentation of the time-series x,

T̂ = argmax
T ∈Sx

V (T ,x), (3.18)

that maximizes the objective function V (T ,x). Like OP, it uses dynamic programming to
efficiently explore the space of possible segmentations Sx.

The algorithm Let us denote F (t) the score of the optimal segmentation of the time-series
x1:t and G(r, s) the score of the optimal segmentation of x1:s with xr:s as last segment. By
definition,

F (T ) = max
1<t<T

G(t, T ). (3.19)

Moreover, thanks to Proposition 3.1, we have

G(s, t) = max
1≤r<s

{G(r, s) + s(xr:s,xs:t)− β}. (3.20)

Intuitively, Equation 3.20 shows that the optimal segmentation with xs:t as last segment
is easily computed if all optimal segmentation with xr:s as last segment are known for all
r = 1, . . . , s. The dynamic programming approach then consists in successively computing
G(r, s) for all (r, s) such that 1 < r < s ≤ T . We can then simply apply (3.19) to get
F (T ). Provided the optimal segmentation with xs:t as last segment is stored at each step,
the estimated segmentation on the whole time-series x1:T is easily retrieved. The complete
algorithm is detailed in Algorithm 1. It has a computational complexity O(T 3) cubic in the
number of samples T in the time-series.
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Algorithm 1 Penalized OTAWA
Input: time-series x1:T , score function s(·), penalty value β
Init G and S two (T − 2) by (T − 2) 2D-array
for u = 2, . . . , T − 1 do
Init G[1, u] = 0
Init S[1, u] = {1, u}

end for
for s = 2, . . . , T − 1 do
for t = s+ 1, . . . , T do
r∗ = argmax1≤r<s{G[r, s] + s(xr:s,xs:t)− β}
G[s, t] = G[r∗, s] + s(xr∗:s,xs:t)− β
S[s, t] = S[r∗, s] ∪ t

end for
end for
t∗ = argmax1<t<T G[t, T ]

Output: S[t∗, T ]

Shortest path point of view This algorithm can also be seen as a shortest path problem
on a carefully designed graph. We define a directed acyclic graph (DAG) G = (V,E), with
one vertex Vti,tj for every possible segment xti:tj in the time-series. A directed edge connects
a vertex Vti,tj to an other vertex Vtk,tl if and only if xti:tj and xtk:tl are two consecutive
segments (i.e. ti < tj = tk < tl). The cost associated to this edge is the score s(xti:tj ,xtj :tl)
associated to the corresponding pair of segments. Finally, we define a source vertex, with
edges of weight 0 connecting it to all the vertices of the form V1,tj , as well as a target vertex,
with edges of weight 0 connecting every vertices of the form Vti,T to it. An toy example of
such a graph is shown in Figure 3.1 corresponding to a time-series of length 5.

Solving the optimization problem is done by searching for the longest path from the source
to the target. However, as the graph G is directed and acyclic, the graph −G constructed by
changing every weights in G by its opposite does not contain any negative cycle as it also is
a DAG. The longest path problem on G is thus equivalent to the shortest path problem on
−G, and it can by solved by classical shortest path algorithms. The corresponding optimal
segmentation is the one made of the segments corresponding to every vertex on this optimal
path.

When computing the shortest path on −G, we can capitalize on the fact that we have a
DAG. Indeed, the shortest path problem on a DAG is a simpler problem than in the general
case. For example, when using the Bellman-Ford algorithm we can perform a single iteration,
provided we consider the vertices in topological order, instead of |V | − 1 in the general case.
We can even simply process the edges in the order 1 ≤ i < j < k ≤ T . Indeed, if we consider
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(1, 2)

(2, 3)

(2, 4)

(2, 5)

(1, 3)

(3, 4)

(3, 5)

(1, 4)

(4, 5)

source

target

Figure 3.1 Toy example of a DAG associated to the problem of penalized CPD on a time-
series x1:5 of length 5. Computing the optimal segmentation is done by computing a longest
path from source to target.

the edges (i, j)− > (j, k) in the order 1 ≤ i < j < k ≤ T , all the edges going into a given
node (m,n) will be processed before the ones going out of that node (m,n). In the end, this
is equivalent to Algorithm 1.

3.2.2 Constrained optimization problem

In this section we are interested in solving the constrained problem (3.14). The algorithm we
expose here is an adaptation of the SN algorithm exposed in Section 2.5.1 to our case where a
score s(xti:tj ,xtj :tk) is associated to a pair of segments rather than to a single segment xti:tj .
Its goal is to compute the estimated segmentation of the time-series x with M change points

T̂ = argmax
T ∈Sx

V (T ,x) (3.21)

s.t. |T | = M ;

that maximizes the objective function V (T ,x). Like SN, it uses dynamic programming to
efficiently explore the space of possible segmentations.

LetM be the user specified number of change points to be detected. Let us denote FM(t) the
score of the optimal segmentation with M change points of the time-series x1:t and GM(r, s)
the score of the optimal segmentation withM change points of x1:s, with xr:s as last segment.
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By definition,
FM(T ) = max

1<t<T
GM(t, T ). (3.22)

Moreover, thanks to Proposition 3.1, we have

GM(s, t) = max
M≤r<s

{GM−1(r, s) + s(xr:s,xs:t)} (3.23)

Intuitively, Equation 3.23 shows that the optimal segmentation with M change points with
xs:t as last segment is easily computed provided all optimal segmentations withM−1 change
points with xr:s as last segment are known for all r such that M ≤ r < s. The dynamic
programming approach then consists in successively computing Gm(s, t) for all (s, t) such
that 1 < s < t ≤ T and for m = 1, . . . ,M . The optimal segmentations with m change points
of the time-series x1:T can then simply be computed for m = 1, . . . ,M using (3.22). The
complete algorithm is detailed in Algorithm 2. It has a computational complexity O(MT 3),
linear in the number of change points to be detected M , and cubic in the number of samples
T in the time-series considered.

Algorithm 2 Constrained OTAWA
Input: time-series x1:T , score function s(·), number of change points M
Init G and S two (T − 2) by (T − 2) 2D-array
for all (u, v), 2 ≤ u < v ≤ T do
G1[u, v] = s(x1:u,xu:v)
S1[u, v] = {1, u, v}

end for
for m = 2, . . . ,M do
for s = 1 +m, . . . , T − 1 do
for t = s+ 1, . . . , T do
r∗ = argmaxm≤r<s{Gm−1[r, s] + s(xr:s,xs:t)}
Gm[s, t] = Gm−1[r∗, s] + s(xr∗:s,xs:t)
Sm[s, t] = S[r∗, s] ∪ t

end for
end for

end for
t∗ = argmax1<t<T GM [t, T ]

Output: SM [t∗, T ]

3.3 Estimating the number of change points

In the previous chapter, we have exposed two algorithms for solving both the penalized
and the constrained versions of the optimization problem (3.4). Both of these algorithms
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provide control over to number of change points estimated, either through the penalty term
or directly by specifying the desired number of change points. However, we still need a
strategy for estimating the correct number of change points. In this section, we present two
such strategies. The first one is based on the classical BIC criterion and can be used with
both the penalized and the constrained versions of the problem. The second one on the other
hand uses the adaptive choice method of penalization parameter described on page 25, and
can only be applied with the penalized problem.

Both strategies consist in first computing a set of candidate segmentations with different
number of change points. Each such candidate segmentation with m change points must be
optimal among the set of segmentations with m change points. A criterion is then applied
to discriminate among those candidate segmentations, and the one selected is considered
the segmentation with the correct number of change points. In this section, we start by
explaining how to compute such a set of candidate segmentations with the penalized or
constrained problem, and then expose two different criteria.

3.3.1 Computing multiple candidate segmentations

Penalized problem Our Algorithm 1 for solving the linearly penalized problem is com-
patible with the CROPS algorithm exposed on page 24. This algorithm is able to efficiently
compute all the optimal segmentations obtained for any value of the smoothing parameter
β ∈ [β0, β1]. The set of candidate segmentations can be computed by first defining a lower
and upper bound on the number of change points to be estimated, and explore the penalty
range in order to to chose the values β0 and β1 corresponding to those bounds. A simple
solution, if the chosen lower bound is 1 and upper bound is the maximum possible number
of change points is to choose an extremely wide range [β0, β1], as this does not affect the per-
formance of the CROPS algorithm. The CROPS requires Algorithm 1 to be run a number of
times linear in the difference between the number of change points corresponding to β0 and
β1. The overall computational complexity is thus of the order of O(MmaxT

3), where Mmax

is the maximum number of change points for a candidate segmentation.

Constrained problem Our Algorithm 2 for solving the constrained problem is directly
able to compute all segmentations with m = 1, . . . ,Mmax. The computational complexity
O(MmaxT

3) is similar to the one when using CROPS.

Difference between the two ways of computing the candidate segmentations Note
that in the case of the linear penalty, the penalty term only depends on the number of
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change points. In such cases, a given segmentation that is optimal for the penalized problem
and contains m change points is also optimal for the constrained problem with m change
points. This means that any segmentation within the set Cpen of candidates computed using
the penalized problem and CROPS also belongs to the set Cconst of candidates computed
using the constrained algorithm, and the only difference between these two sets is that some
segmentations might be missing from Cpen, as not all segmentations with all numbers of
change points are optimal for a value of the smoothing parameter β, and we have Cpen ⊆
Cconst. In the end, we can say that using the constrained algorithm or the penalized algorithm
in conjunction with CROPS for computing the set of candidate segmentations are very similar
strategies, but using CROPS first filters out some segmentations that are never optimal for
any value β.

3.3.2 Criteria for estimating the number of change points

Bayesian information criterion The BIC is defined as

BIC = log(T )p− 2 log L̂, (3.24)

where in the context of a time-series segmentation L̂ is the maximum of the likelihood of
the piecewise constant model corresponding to a segmentation T on the time-series, p is
the number of parameters of that piecewise model, and T is the number of samples of the
time-series. In the literature, this criterion is often used to directly chose the penalty value
β in cases where the objective function represents the maximum likelihood of the piecewise
model. However with our method, the score-based objective function does not represent
the maximum likelihood of this model. This is the reason why instead of directly choosing
the penalty value β, the strategy when using the BIC criterion with Optimal Two Adjacent
Windows Algorithm (OTAWA) consists in computing the BIC value associated to every
candidate segmentation and choose the one with the lowest BIC value.

For a candidate segmentation T , letMk be the segment specific model estimated on xtk:tk+1 ,
and pk its number of parameters. Note that while usually being the same for all segment
xtk:tk+1 , the number of parameter pk can depend on k. Indeed for example with the VAR
model (3.11), it is defined as the number of non-zero parameters of Mk. The number of
parameters of the global piecewise model is the sum p = ∑m

k=0 pk. Similarly, its log-likelihood
log L̂ is the sum over the modelsMk of the log-likelihood they associate to the segment xtk:tk+1

on which it has been estimated. These are used for computing the BIC values associated to
every candidate segmentation T , and the one which minimizes it is selected.
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Adaptive choice of penalization parameter Contrary to the previous strategy with
the BIC, this one can only be used in conjunction with Algorithm 1 for solving the penalized
problem. The adaptive choice of penalization parameter method introduced in [58] and
described on page 25 is compatible with Algorithm 1. For this reason, estimating the correct
number of change points can be as simple as applying this method.

3.4 Computational complexity

In this section, we analyze the computational complexity of the proposed algorithm. Let us
consider the estimation of the segmentation of a T samples long time-series x. In order to
solve either the penalized or the constrained version of the problem (3.4), we need to compute
the scores associated to every element in the set Px = {(xti:tj ,xtj :tk) | 1 ≤ ti < tj < tk ≤ T}
of all the pairs of consecutive segments within x1:T . The number of scores to be computed
is then the cardinality of this set

Nscores = |Px| =
1
6T

3 − 1
2T

2 + 1
3T. (3.25)

So we can say that the number of scores is of the order O(T 3). Let us consider that the
algorithm is run in two phases

• Phase 1 : computing all the scores;

• Phase 2 : solving the discrete optimization problem (3.4).

As we have seen in Section 3.2, the complexity of Phase 2 is O(T 3) when solving the penalize
version of the problem, and O(MT 3), when solving the constrained problem, where M is the
number of scores to be computed. By looking closely at the two algorithms exposed, we can
see that they both consist in considering all scores at least once. Algorithm 1 considers each
score once, while Algorithm 2 considers scores a number of times of the order of M . This
means that the complexity of Phase 2 will always depend linearly in the number of scores
Nscores (of the order O(T 3)).

The complexity of Phase 1 depends on the complexity of computing a score. In the most
advantageous case, when the complexity of computing a score is constant, the complexity
of Phase 1 is O(Nscores ∗ 1) = O(T 3). However, computing a score involves estimating
the parameters of a model and computing its prediction, and this will in general depend
on the length of the segments considered, meaning the global complexity of the algorithm is
O(Nscores) multiplied by the mean complexity of computing scores. Hence the computational
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complexity of Phase 1 is at least as high as the one of Phase 2, meaning that the global
complexity of the whole algorithm is equivalent to the complexity of Phase 1. For this
reason, we can consider only the complexity of Phase 1.

Another strategy for running the algorithm would be to compute the scores on the fly while
solving the optimization problem. This doesn’t change the global complexity of the algorithm
which is still at least O(Nscores) = O(T 3) since each score is used at least once. Nevertheless,
it spares some spacial complexity, which was O(T 3) with the two phases algorithm, as no
scores need to be stored.

Reducing the complexity of the algorithm for solving the optimization problem is non-trivial.
When computing all costs in one phase, model estimation can be shared between all scores
that have their first segment xti:tj in common, but error evaluation cannot. In any case, the
complexity of computing a score depends on the choice of the predictive model used, which
should be chosen according to prior knowledge about the time-series. So the best strategy
for reducing the global complexity of the algorithm is to reduce the number of scores Nscores

to be computed. The two methods for reducing the space of possible segmentations exposed
in Section 2.5.3 can be used with our method as well, and can help reducing the number of
scores Nscores to be computed. In the following, we will analyze how these two methods can
reduce the number of scores to compute Nscores with minimal impact on the quality of the
estimated segmentation.

3.4.1 Minimum length of a segment

A solution for reducing the global complexity of our algorithm is to add a constraint on the
minimum length of a segment. Adding this constraint greatly reduces the cardinal |Sx| of
the set of all possible segmentations, in turn reducing the number of scores to be computed.
Let S ∈ N be the minimum length of a segment. An admissible segmentation T is now

T = {tk}mk=1 ⊂ {1, . . . , T} (3.26)

s.t. tk+1 − tk ≥ S, ∀k = 0, . . . ,m. (3.27)

Thanks to the new constraint added, we can now omit the computation of s(xti:tj ,xtj :tk) if
tj − tj < S or tk − tj < S. Moreover, the new constraint also implies that no change point
can exist at indices 1 < i < S, because the segment x1:i would violate it. For the same
reason, no change point can exist at indices T − S < i < T . This means we can also omit
the computation of s(xti:tj ,xtj :tk) if 0 < ti < S or T − S < tk < T . The remaining number
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of scores to compute is now

Nscores = 1
6T

3 + T 2(3
2 − 2S) + T (7

3 + 8S2 − 10S) + (−32
3 S

3 + 17S2 − 19
3 S). (3.28)

This does not change the order of the number of scores to be computed, but in practice, it
still reduces it significantly, as we always try to keep T from being too high.

Adding this constraint on the minimum length of segments makes sense in practical settings.
Indeed, the predictive model requires a minimum number of samples in each segment, in
order to be significant from a statistical standpoint. Moreover, in most applications, prior
knowledge about the phenomenon generating the abrupt changes give a rough value for the
minimum time between two change points. For example, if change point detection is used
to detect maintenance events on a system, prior knowledge of the frequency of maintenance
cycles can help setting the value of S.

3.4.2 Resolution

Another solution for reducing the computational cost of our algorithm is to reduce the set of
indices considered as candidates change points. For example we can introduce a parameter
R ∈ N, that we call the resolution, and decide to consider as candidate change point only
one in R points in the time-series. Let MR = {R ∗ i | i = 1, . . . ,

⌊
T
R

⌋
} the set of multiples

of R inferior to T . The set of candidate change points is MR, meaning that an admissible
segmentation is now defined as T = {tk}mk=1 ⊆ MR. It can be interpreted as considering as
candidate change point one in R points in the time-series. The number of candidate change
points has changed from T to |MR| =

⌊
T
R

⌋
. The number of scores to compute can be obtained

by replacing T by
⌊
T
R

⌋
in (3.25) :

Nscores = 1
6

⌊
T

R

⌋3
− 1

2

⌊
T

R

⌋2
+ 1

3

⌊
T

R

⌋
(3.29)

The order of the number of scores to compute is O(Nscores) = O((T
R

)3), so we can say that
the order of the number of scores to compute is divided by R3.

The resolution parameter and the minimal length constraint can be used together, to further
reduce the amount of scores to be computed. This amount can be computed in cases where
S is a multiple of R, by replacing T by

⌊
T
R

⌋
and S by S

R
in (3.28).

The effect of the resolution parameter is to reduce the precision of the positions of the change
points estimated. All the information in the time-series x is still used in the sense that all
the samples are considered for computing the scores. However, we can intuitively understand
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that the position of a true change point will now be estimated with a precision of only R
2 , as

its position should be set as the closest point with an index multiple of R.
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CHAPTER 4 EVALUATION AND COMPARISON ON REAL DATA

In this chapter, we evaluate the performance of OTAWA on real data, and compare it to
the state-of-the-art methods PELT and SN, as well as the approximate method SAW. To
perform the comparison we use two different datasets for which the positions of the true
change points are known. Note that the methods compared are all unsupervised methods,
and we only use the annotations in order to quantify the performances achieved by each
of them. The first dataset contains data acquired by a portable three-axis accelerometer
placed on the body of a person. The goal of the segmentation is to identify the different
activities the person was performing sequentially through time. The times of transition
between different activities have been annotated by hand. The second dataset has been
supplied by our partner PREDICT. It consists of in-flight measurements performed on an
hydraulic system of an aircraft throughout its life-span. The dataset is annotated with
the dates at which maintenance has been performed on the system, and the goal of the
segmentation is to retrieve the dates of those maintenance events.

In the following, we first present the comparison methodology by listing the metrics used
for performance evaluation and detailing the different algorithms against which OTAWA is
compared. We then expose the comparison results for each of the two datasets separately.

4.1 Comparison methodology

4.1.1 Metrics

In order to quantify the performance of a given method, we will use different metrics listed
in Section 3.2 of [1] measuring how similar the estimated and true segmentations are. The
closest a segmentation is from the true segmentation, the better the method which produced
it is. Different metrics emphasis different aspects of a good segmentation. We will use these
different metrics to discuss performances and discriminate between the change point methods
compared. Let us denote T ∗ = {t∗k}m

∗
k=1 the true segmentation and T̂ = {t̂k}m̂k=1 the estimated

segmentation. Note that the number of change points is not necessarily the same in both
segmentations.

Annotation Error The AnnotationError is a simple metric used in order to assess
whether or not the right number of change points has been estimated. It is simply the
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difference between the number of change points estimated m̂ and the true number m∗,

AnnotationError = |m∗ − m̂|. (4.1)

This metric is relevant to evaluate methods in which the number of change points estimated
is not constrained.

F1-Score A simple way to quantify the quality of a segmentation is to use the widely used
binary classification metric called F1-Score. Let’s define a detection radius R > 0, and
consider a true change point as being detected if a change point has been estimated within
R samples of its location. We call true positive the set Tp of actual change points that have
been detected,

Tp(T ∗, T̂ ) = {t∗ ∈ T ∗|∃t̂ ∈ T̂ s.t. |t∗ − t̂| < R}. (4.2)

We can then define the classical precision and recall measures as

Prec(T ∗, T̂ ) = |Tp(T ∗, T̂ )|
m̂

, (4.3)

Rec(T ∗, T̂ ) = |Tp(T ∗, T̂ )|
m∗

. (4.4)

and the F1-Score is the harmonic mean of the two,

F1-Score(T ∗, T̂ ) = 2× Prec(T ∗, T̂ )×Rec(T ∗, T̂ )
Prec(T ∗, T̂ ) + Rec(T ∗, T̂ )

. (4.5)

The best value is 1 and the worst value is 0. Over-segmentation is penalized as it makes the
precision tend to zero. Under-segmentation is penalized as well, as it makes the recall small.

Since Prec and Rec are classically defined as percentages, their values must lie within [0, 1].
Note that with definition (4.3), to ensure Prec(T ∗, T̂ ) ≤ 1 we need the detection radius R
to be smaller that half the minimal spacing between two consecutive true change points (R <
t∗k+1−t

∗
k

2 ,∀k s.t. 0 ≤ k ≤ m∗). Indeed, if this is not the case (∃k ∈ [0,m∗] s.t. R ≥ t∗k+1−t
∗
k

2 ), one
estimated change point could lie within the detection radius of two true change points, thus
potentially allowing the number of detected change points to be higher than the number of
estimated change points.

Hausdorff The Hausdorff metric is based on the Hausdorff distance, which is a distance
defined on the set of subsets of a metric space. Here the metric space is the set of indices of
the time-series I = {1, . . . , T} with the `1–distance, d : (x, y) 7→ |y − x|. The Hausdorff
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distance is used to measure the distance between the subsets of I corresponding to the true
(T ∗ ⊂ I) and estimated (T̂ ⊂ I) segmentations. Formally it is the largest distance between
a true change point and its estimate or between an estimate and the true change point it is
estimating :

Hausdorff(T ∗, T̂ ) = max{max
t̂∈T̂

min
t∗∈T ∗

|t̂− t∗|, max
t∗∈T ∗

min
t̂∈T̂
|t∗ − t̂|} (4.6)

If it is null, the two segmentations are equal,

Hausdorff(T ∗, T̂ ) = 0 ⇒ T̂ = T ∗.

It takes a large value if a change point is estimated far from any true change point, or if no
change point is estimated close from a true change point. This means that both over- and
under-segmentation are penalized.

RandIndex RandIndex is a similarity metric between partitions of a set very well suited
to our case of time-series segmentation. It has initially been introduced in [63] as a metric
for evaluating clustering methods. It is defined as the proportion of agreements, where an
agreement is a pair of indices in the time-series which are either in the same segment according
to both T ∗ and T̂ or in different segments according to both T ∗ and T̂ . More formally, for a
given segmentation T , let gr(T ) be the set of pairs of indices which are in the same segment
(grouped) :

gr(T ) = {(i, j), 1 ≤ i < j ≤ T s.t. @tk ∈ T | i < tk ≤ j} (4.7)

and ngr(T ) be the set of pairs of indices which are not in the same segment (not grouped) :

ngr(T ) = {(i, j), 1 ≤ i < j ≤ T s.t. ∃tk ∈ T | i < tk ≤ j} (4.8)

The RandIndex is :

RandIndex(T ∗, T̂ ) = |gr(T̂ ) ∩ gr(T ∗)|+ |ngr(T̂ ) ∩ ngr(T ∗)|
T (T − 1)/2 (4.9)

Note that T (T − 1)/2 is the total number of pairs of different indices in the time-series,
or also the sum of the cardinals of the sets gr(T ) and ngr(T ) for any T (T (T − 1)/2 =
|gr(T )| + |ngr(T )|, ∀T ⊂ {1, . . . , T}). Hence the maximum value of this metric is 1.
Note that the RandIndex has the tendency to get close to 1 when the number of segments
increases. Indeed, the more segments there are in the two segmentations compared, the
higher the chances are of a pair of points far apart to be in different segments in both of
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them. This doesn’t affect the discrimination power of the metric, but makes it harder to
understand how significant a given difference of RandIndex is.

Mean Distance The MeanDistance metric is the mean over every true change points
of the distance to the closest estimated change point :

MeanDistance(T ∗, T̂ ) =
∑
t∗∈T ∗ min

t̂∈T̂ |t̂− t
∗|

|T ∗|
(4.10)

The MeanDistance is a positive value, and the lower it is, the better the estimated seg-
mentation is. It is a good measure of the precision with which the estimated change points
are positioned. However, it does not penalize over-segmentation.

4.1.2 Algorithms compared against OTAWA

Since the OTAWA algorithm we developed is an exact method, we want to compare it to
other exact methods from the literature. We decide to mainly compare the penalized version
of OTAWA against the PELT method. As both approaches are exact, this should enable us
to analyze the value added by the new score-based objective function we propose. Moreover,
PELT is considered a state-of-the-art method for optimization-based change point detection,
making it a good candidate for evaluating the value of our method. We also want to compare
the constrained version of OTAWA, in order to evaluate how different the performance is from
the penalized version. To that end, the constrained version of OTAWA will be compared to
the SN algorithm. Finally, we are interested in comparing OTAWA against the SAW method,
as it uses a discrepancy-based scoring function as well, but the segmentation is estimated by
an approximate peak detection algorithm. This comparison should thus give us information
about the benefit of spending the computational power to solve the optimization problem
exactly.

4.2 Human activity dataset

This dataset is provided online by the Human Activity Sensing Consortium and is part of a
challenge held in 2011 [64]. It contains measurements made by a device such as a smart-phone
fixed on the waist of a person. The device measures accelerations with an accelerometer,
rotational rate with a gyroscope, and the local magnetic field with a magnetometer. Each of
these three quantities is a vector of the physical space with values in R3, giving a time-series
containing a total of nine variables. Measurements are recorded at a frequency of 100Hz, for
about seven minutes. The different activities are performed sequentially and include walking,
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staying, going up or down some stairs, escalators or in an elevator. The goal is to detect
the times at which the activity performed changes, so that every segment in the inferred
segmentation corresponds to a single activity.

4.2.1 Data preprocessing

Most of the activities performed in the dataset involve repetitive movements, such as walking,
or going up some stairs. It is thus insightful to analyze the spectral information of the
time-series, as it can enable us to pick up the frequencies associated with these repetitive
movements. For these reasons, we perform a preprocessing of the dataset by computing the
Short-time Fourier transform (STFT) of the signal, and keeping only the frequency bins that
correspond to the frequencies relevant for the walking motion (between 0.5Hz and 5Hz).
This preprocessing method is inspired by the one performed in [4], where the interest is also
analysis of accelerometer data measured on people while walking or running.

In practice, we performed the STFT with a window of size 512 samples (approximately 5s),
and an overlapping between windows of 75%.

The raw local magnetic field measurements mostly gives information about the orientation
of the person. However, changes in orientation don’t necessarily correspond to changes of
activity, even if they might some times coincide. The local magnetic measurements might also
hold some information about the repetitive walking movements of the person in the frequency
domain, but applying a STFT to that signal is not practical, as the sampling frequency is
highly variable through time. For these reasons, we decided to discard the local magnetic
field information, and only consider the acceleration and rotational rate information for a
total of six variables.

The signals measured by the portable accelerometer and gyroscope are very noisy. The STFT
preprocessing has the advantage of filtering out this noise, as we are not keeping the frequency
bins above 5Hz, where most of the noise lies. Figure 4.1 shows the time-series corresponding
to the acceleration along the x-axis before and after preprocessing. We can clearly see that
the STFT preprocessing has the effect of smoothing the signal. Note that for visibility, only
3 of the 23 variables are displayed, for the time-series after preprocessing.

The STFT preprocessing also greatly reduces the number of samples of the time-series on
which to perform CPD, while still using all the available information. With a window size
of 512 samples and 75% overlapping, Fourier transforms are computed on local segments
centered around one in every 512(1− 0.75) = 128 observations. This means that the number
of samples is divided by 128 through the STFT process. For instance, on the acceleration
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Figure 4.1 (top) signal corresponding to the acceleration measurements along the x-axis
(bottom) same signal after STFT preprocessing, only 3 of the 23 variables are displayed for
visibility

measurements, the number of samples goes from 39397 down to 308. However, it increases the
number of variables of the time-series. With our signal sampled at 100Hz, when computing
the Fourier transform on a window of 512 samples and keeping the frequencies between 0.5Hz
and 5Hz, the number of variables is multiplied by 23. To compensate this increase in the
number of variables, we only consider values of one quantity along one axis, resulting in
only 23 variables. This doesn’t seem to affect the performance of the methods. This can be
interpreted by the fact that the measurements of the different quantities are correlated. We
thus don’t lose much information by considering a subset of the available variables.

The measurement dates are not included in the time-series fed to the CPD algorithms.
Instead, the observations are assumed to be evenly spaced through time. Also, the time-
series is rescaled to the [0, 1] range using min-max scaling.

The different activities performed are labeled as periods, with a start- and end-time, associ-
ated with the corresponding name of the activity. These period don’t overlap, meaning that
no two activities can be performed simultaneously. There are little gaps between periods,
where no activity is associated. These gaps are rather short in comparison to the duration of
the activities. They make up 17% of the duration of the times-series and there are 24 of them.
For this reason, we consider them as transitions, rather than an additional type of activity
on their own. We define the position of the true change points as the middle point of those
transition segments. In the dataset are also included some one-time events, such as pushing
the button of an elevator. These are useful to understand what was happening around the
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person during the recording, and why the person changed activities. However, these events
don’t correspond to actual changes in the activities that are not already recorded through
the periods, so we ignore them.

4.2.2 Experimental methodology

The performances of all methods are evaluated on the preprocessed data presented above.
During a given type of activity, for instance walking or going up some stairs, we can rea-
sonably assume that the repetitive walking motion does not change. This means that the
spectral information is stationary within each segment. We will use the scoring function
(3.10) associated to the model (3.8) for detecting a change in mean within i.i.d. samples fol-
lowing a normal distribution. This choice is motivated by the fact that it is a simple model,
and the normally distributed with piecewise constant mean hypothesis is suited to the data
considered.

As we are dealing with real data, the transitions might not be perfectly abrupt. Moreover,
the STFT preprocessing tends to smooth the signal. Assuming there exist an abrupt change
of a statistical property in the initial signal, as the spectral information is aggregated over
segments with 75% overlapping during the STFT process, the transition will happen over
at least three samples. With all methods, we use the model (3.8) with a margin parameter
of M = 3, as it is the minimum values that enables us to account for the smoothing of the
STFT preprocessing.

As we decided to only consider the measurements of one quantity along one axis for perform-
ing change point detection, we can repeat the experiment using each of the six time-series
representing the measures of acceleration and rotational rate along each axis, and average
the performances in order to get a more significant comparison of the different methods.

With all the methods compared we use a resolution parameter of R = 2 and a minimal
space between change points of S = 8 samples. For OTAWA and PELT, the number of
change points is estimated using the BIC. For SAW, we fix the length of both windows at
L = 10 samples. We do not use the approximation with our method (A = 1). The F1-
Score is computed with a detection radius of R = 6, meaning that a true change point is
considered detected if an estimated change point lies at a distance strictly lower than R = 6
samples. After STFT, the acceleration time-series are 308 samples long, and the rotational
rate time-series are 306 samples long.
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4.2.3 Results

Figures 4.2 and 4.3 compare the performances of the penalized version of OTAWA with the
PELT and SAW methods using five metrics that quantify how close the estimated segmenta-
tions are to the true segmentation. For each method, the values are averaged across the six
different segmentations obtained using the accelerometer and gyroscope measurements along
each spacial axis. The standard deviation is also displayed with error bars. Figure 4.2 shows
the F1-Score and RandIndex, and Figure 4.3 shows the AnnotationError MeanDis-
tance and Hausdorff. More detailed results for every individual segmentations are given
in Table 4.1.

A first observation is that OTAWA outperforms both SAW and PELT according to all of
the five metrics. The performance of SAW is particularly poor according to every metrics
except for AnnotationError. This means that SAW is almost as good as OTAWA for
estimating the number of change points. However the corresponding segmentations are much
worse than the ones estimated by PELT or OTAWA. This observation emphasizes the value
of using an exact algorithm for solving the optimization problem.

Focusing more on the comparison between our method and PELT, the AnnotationError
graph is particularly interesting. It clearly shows that our method is much better at estimat-
ing the right number of change points than PELT. Having a closer look at the individual
results of every experiments in Table 4.1, all three methods under-estimate the number of
change points in every cases. The conclusion we can draw from the AnnotationError
graph in Figure 4.3 is that our OTAWA algorithm has less of a tendency to under-estimate
the number of change points than PELT. This is the reason for the quite large difference
in terms of F1-Score as well. Under-estimating the number of change points does indeed
decreases Recall and increases Precision in general. But as the Recall values are closer
to zero than the Precision values, they have more impact on the harmonic mean used to
compute the F1-Score.

The standard deviation values of the F1-Score, RandIndex and AnnotationError are
lower for PELT than for our method. This means that even though the results of PELT
are worse than OTAWA on average, the F1-Score and RandIndex values it achieves are
more consistent, in the sense that they vary less from one dataset to the other. This effect is
especially important for AnnotationError. Looking at the detailed results at Table 4.1,
the values range from 6 to 13 for our method, and only from 16 to 17 for PELT. This higher
variability of performance might be a drawback in certain circumstances where consistency
is important. Nevertheless despite the lower variability, PELT only achieves a higher F1-
Score on gyro-z, and a higher RandIndex on gyro-x and gyro-z, and always by a quite



56

small margin. For MeanDistance and Hausdorff, the standard deviation values are
similar between OTAWA and PELT, with even a slight advantage for our method.

Figure 4.4 shows the actual segmentations that have been estimated by both PELT and
OTAWA on the time-series corresponding to the acceleration measurements along the x-
axis. We observe that in general, OTAWA estimates more change points than PELT. While
all change points estimated by PELT correspond to actual change points (Precision = 1),
OTAWA places some that do not correspond to true change points. However, overall OTAWA
is able to detect more of the true change points (higher Recall), especially between indices
190 and 214 and towards the end.

We can conclude that on this dataset, OTAWA achieves overall better results.This might be a
sign that the new type of score-based objective function helps achieving better segmentations
on real-world time-series.

In Appendix A, graphs similar to Figures 4.2 and 4.3 are shown for the comparison between
the constrained version of OTAWA and the SN algorithm. The number of change points
is here again estimated via the BIC. The same result as before are reported for the SAW
method. We can observe that overall, the results are very similar to those obtained for PELT
and the penalized version of OTAWA. This shows that the choice between the penalized
and the constrained versions of the problem does not very much influence the nature of
the results. However, if we study the values in more detail, we can note that the gap closes
slightly between OTAWA and SN, with OTAWA performing a little worse. It gets even bitten
by SAW in terms of AnnotationError. Since the only difference between the penalized
and constrained versions of OTAWA is that the penalized version filters out some of the
candidate segmentations before selection using the BIC, we can interpret that this filtering
is useful in this case in order to filter out a segmentation that would be optimal in terms
on BIC, but achieving slightly worse performance. Also, the standard deviations of OTAWA
tends to increase.

4.3 Hydraulic system dataset

This dataset has been supplied by our partner PREDICT. It contains pressure and tem-
perature values measured on an hydraulic system of an aircraft over a period of 716 days
(approximately two years). Each data point corresponds to values averaged over a short
period that can vary in length. Those periods are called flight phases, and are defined as
a portion of a flight during which the speed and altitude of the aircraft are constant. On
this particular instance, the company PREDICT knows the dates of the eight maintenance



57

Table 4.1 Detailed performance measures for OTAWA, PELT and SAW on each of the six
available signals of acceleration and rotational rate.

method signal randindex f1 precision recall meandist hausdorff annotation nbcps
PELT acc-x 0.919 0.514 1 0.346 13.6 62 17 9
OTAWA acc-x 0.968 0.739 0.85 0.654 2.69 11 6 20
SAW acc-x 0.733 0.238 0.312 0.192 54.4 148 10 16
PELT acc-y 0.924 0.514 1 0.346 13.4 62 17 9
OTAWA acc-y 0.942 0.622 0.737 0.538 4.92 31 7 19
SAW acc-y 0.646 0.238 0.312 0.192 75.1 175 10 16
PELT acc-z 0.933 0.514 1 0.346 8.92 27 17 9
OTAWA acc-z 0.937 0.6 0.857 0.462 7.08 31 12 14
SAW acc-z 0.734 0.255 0.286 0.231 53.9 148 5 21
PELT gyro-x 0.934 0.556 1 0.385 8.04 27 16 10
OTAWA gyro-x 0.93 0.564 0.846 0.423 7.58 31 13 13
SAW gyro-x 0.733 0.244 0.333 0.192 53.5 147 11 15
PELT gyro-y 0.925 0.457 0.889 0.308 8.42 27 17 9
OTAWA gyro-y 0.96 0.636 0.778 0.538 3.04 11 8 18
SAW gyro-y 0.73 0.195 0.267 0.154 54.2 148 11 15
PELT gyro-z 0.936 0.556 1 0.385 8.35 27 16 10
OTAWA gyro-z 0.918 0.55 0.786 0.423 8.04 37 12 14
SAW gyro-z 0.708 0.2 0.286 0.154 60.3 156 12 14

events that occurred on the system during the considered period. However this is not always
the case. Since in many applications they don’t have access to additional information about
maintenance, the engineers at PREDICT often need to retrieve the dates of maintenance
events from raw measurement data, without any other prior knowledge. Moreover, they are
interested in automating this task as much as possible. Our goal here is to use our OTAWA
algorithm as well as exact and approximate methods from the literature in order to perform
this task of retrieving the maintenance events. This is a good exercise to assess how well
the CPD method we developed is able to perform this task, and thus how useful it can be
to our partner PREDICT in order to automate it. We make here the assumption that the
maintenance events will modify the behavior of the system, and that these modifications
should be detectable from the measurements recorded. PREDICT can tell from experience
that this is usually a reasonable assumption, provided the measurement of the right physical
quantities are available.

4.3.1 Data preprocessing

The dataset initially contains 10399 observations. In order for the change point detection
methods to run in a reasonable amount of time, we first need to reduce the number of samples
of the time-series they will analyze. To do so, we perform a sub-sampling by averaging
the measurement values over the period of one day. Out of the 716 days, 302 have not
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measurements. They are distributed across 123 periods, 2.46 days long on average. For those
days, we set the values of the measurements equal to the previous valid measurement values.
Thanks to this preprocessing, we reduce the number of samples of the time-series to 716. We
still retain temporal information in the sens that all the samples are evenly spaced. Also, the
time-series is rescaled to the [0, 1] range using min-max scaling.

4.3.2 Experimental methodology

The maintenance events are on average separated by three month. Over such a time-scale of
the order of the month, we expect the behavior of the hydraulic system to slowly drift due
to normal degradations. Contrary to this slow drift, the maintenance events will translate
into abrupt changes in the measurements, as they are performed between two observations.
The slow drift of the behavior of the system can correspond to a smooth change of the
mean value of the measurements over time. For this reason, the models (3.6) and (3.8) that
assume normally distributed samples with piecewise constant mean are not suited. They
might indeed detect a change in mean within segments where there only is a drift of the
mean values of the measurement. We decide to use a VAR model (3.11) instead, as we hope
that the linear relationship between a sample and its lagged values will be able to capture
the drift of the mean value. If this assumption holds, the model should not be surprised
by a slow drift. This means that the prediction error of the model should not increase at
locations where there only is a drift with not abrupt change, thus preventing the detection
of a false change point. This is corroborated by our experiments, as we observed that the
VAR model (3.11) indeed performed better than both (3.6) and (3.8) models with piecewise
constant mean. With all methods, we thus use a VAR model of order p = 3 estimated via
Lasso with a regularization parameter of α = 10−2.

With all the methods compared we use a resolution parameter of R = 5 and a minimal space
between change points of S = 50 samples. For SAW, we fix the length of both windows at
L = 20 samples. With OTAWA, we do not use the approximation (A = 1). The F1-Score is
computed with a detection radius of R = 10, meaning that a true change point is considered
detected if an estimated change point lies at a distance strictly lower than R = 10 samples.

4.3.3 Results

Figures 4.5 and 4.6 compare the performances of the OTAWA, PELT and SAW methods
by showing the values of different metrics. For PELT and OTAWA, the number of change
points is estimated via BIC. Figure 4.5 shows the RandIndex, F1-Score, Prec and Rec
metrics, while Figure 4.6 show the AnnotationError MeanDistance and Hausdorff
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metrics.

First of all we observe that OTAWA outperforms both PELT and SAW according to all
metrics except for AnnotationError. OTAWA estimates 13 change points, while PELT
estimates 6, and SAW is able to estimate the correct number of 8 change points. However
despite over-estimating the number of change points, OTAWA still achieves the best Preci-
sion value among the three methods. This means that despite having estimated five more
change points than necessary, the percentage of them actually corresponding to true change
points is higher than with PELT and SAW.

When using CPD in scenarios where humans will manually analyze the results of the CPD al-
gorithm – which is the case for the detection of maintenance events performed by PREDICT –
over-estimating the number of change points might actually be preferred to under-estimation,
as we give more importance to Recall rather than Precision. Indeed, it is significantly
more efficient for a human to assess whether or not a maintenance event occurred at a given
time, rather than to detect the times at which such events occurred. We thus can afford
to trigger false alarms (false positive) that a human will be able to dismiss, as long as we
minimize the omission of potential change points. CPD can then be a tool helping the hu-
man to pick potential change point candidates. Here, we observe that Recall is four times
higher with OTAWA in comparison to the other two methods, making it well suited for this
scenario.

On top of a higher F1-Score, OTAWA also achieves a significantly higher RandIndex
value than the PELT and SAW. Finally, OTAWA is the best method according to the
distance metrics Hausdorff and MeanDistance, which is expected when over-estimating
the number of change points. Another interesting thing to note is that there is a very big
gap between the performances of OTAWA and SAW. The sliding adjacent windows method
achieve indeed very low performance in comparison to OTAWA, suggesting once again that it
is very valuable to solve the optimization problem exactly, despite the higher computational
cost.

In Appendix B, graphs similar to Figures 4.5 and 4.6 are shown for the comparison between
the constrained version of OTAWA and the SN algorithm. The number of change points is
also estimated via the BIC. The same result as before are reported for the SAW method.
The overall results are relatively similar, with OTAWA still performing the best. Actually
the exact same segmentation is estimated with both the penalized and constrained versions
of the OTAWA method, and this is the reason why the results are identical in both cases. On
the other hand, the segmentation estimated by SN is quite better than with PELT, enabling
the gap with OTAWA to close significantly.
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Adaptive choice of penalization parameter Figures 4.7 and 4.8 compare the perfor-
mances of OTAWA and PELT when the number of change points is estimated via the adaptive
choice of penalization parameter method presented in Section 2.6.2. For the the SAWmethod,
the same results as before are reported for comparison. We observe that with this other way
of estimating the number of change points, PELT performs better according to all metrics.
The performance of OTAWA also increases in terms of Precision (and thus F1-Score), as
well as for AnnotationError. The number of change points is indeed overestimated by
only 2, instead of 5 with the BIC, while the Recall is unchanged. The performance slightly
decreases in terms of MeanDistance and Hausdorff, and the RandIndex stays almost
the same. Despite the changes in performances, the ranking of the methods is still the same
as when using the BIC, with OTAWA still being the best out of the three methods.

Figure 4.9 shows the segmentations estimated by both PELT and OTAWA using the adaptive
choice of penalization parameter method. First we can observe that both methods position
change points at indices 465 and 665, even though they do not correspond to maintenance
events. But these locations for change points are not surprising, as we visually see a big
change in the time-series. Other than that, we can see that contrary to PELT, OTAWA is
able to detect the first and third true change points. The change point estimated at index
415 is not counted as detected, since the true change point is 12 samples later at index 427.
Overall, both segmentations are similar in the second half of the time-series, while

In conclusion, on this dataset, OTAWA appears the best method for accurately detecting
the maintenance events according to every metrics except for AnnotationError. The
performances of both PELT and OTAWA improve when using the adaptive choice of penal-
ization parameter method for estimating the number of change points. However, this does
not changes the advantage OTAWA has over PELT in terms of performance. This can be
interpreted as OTAWA being able to more accurately detect change points than its com-
petitors, only at the expense of a higher tendency to overestimate the number of change
points. Finally, the importance of solving the optimization problem is highlighted, as the
approximate method SAW clearly underperforms in comparison to both exact methods.
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Figure 4.2 F1-Score and RandIndex for the OTAWA, PELT and SAW methods (higher
the better). Number of change points estimated via BIC. Center value is the mean, error
bars represent the standard deviation.
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Figure 4.3 AnnotationError, MeanDistance and Hausdorff for the OTAWA, PELT
and SAW methods (lower the better). Number of change points estimated via BIC. Center
value is the mean, error bars represent the standard deviation.
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Figure 4.4 Segmentations estimated by both PELT and OTAWA on the time-series corre-
sponding to the acceleration measurements along the x-axis. Color changes in the background
indicate the true segmentation, vertical dotted lines indicate the estimated segmentation.
Only one component of the time-series is shown for visibility.
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Figure 4.5 RandIndex, F1-Score, Prec and Rec for the OTAWA, PELT and SAW
methods (higher the better). Number of change points estimated via BIC.
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methods (higher the better). Number of change points estimated via the adaptive choice of
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Figure 4.9 Segmentations estimated by both PELT and OTAWA on the hydraulic system
dataset. Color changes in the background indicate the true segmentation, vertical dotted
lines indicate the estimated segmentation.
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CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Summary

In this work we addressed the problem of detecting changes in the operating mode of an
equipment being monitored, with the constraint of only using the information contained
within the time-series representing the quantities measured on the equipment. We framed this
problem as a change point detection problem, and propose a novel approach to this problem
called OTAWA. This approach is offline, as it assume that all measurement data has been
collected before analysis. It is also unsupervised in the sense that no dataset is required where
the true change points annotated. We tested OTAWA on two real-world datasets. The first
dataset contains accelerations and rotation rates data from an inertial measurement unit
(IMU) fixed on the body of a person while performing different activities. Change point
detection is used for the task of segmenting the time-series into periods corresponding to the
different activities, that can be considered as "operating modes" of the human being monitored
by the inertial unit. The second dataset contains temperature and pressure measurements
acquired on an hydraulic system of an aircraft over a period of two years. The task of change
point detection here is to detect the maintenance events that happened on the system during
that period. This dataset has been supplied by our partner PREDICT, and corresponds to
an actual case where they could use change point detection in order to retrieve the dates
of the maintenances, that are considered as operating mode changes. We used these two
dataset in order to compare the performance of OTAWA against three other methods form
the literature

• Pruned Exact Linear Time and Segment Neighbourhood, two popular exact optimization-
based change point detection method using an objective function characterizing good-
ness of fit; and

• Sliding Adjacent Windows, an approximate method using an objective function char-
acterizing discrepancies in statistical properties.

The results clearly show that OTAWA outperforms the approximate method SAW by a good
margin in terms of RandIndex, F1-Score, MeanDistance and Hausdorff distance,
emphasizing the value of solving the optimization problem exactly. Moreover, OTAWA also
outperforms both exact methods PELT and SN by a significant margin according to those
same metrics. We can interpret that as showing the value of the discrepancy-based objective
function we proposed.
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5.1.1 Value for our partner PREDICT

Here is a quote from the company PREDICT, about how they benefited form the collabora-
tion and the conclusions they draw from this project.

“Les travaux menés nous ont permis de prendre connaissance de la probléma-
tique de change point detection qui permet une approche multivarié basé sur le
machine learning pour la détection de rupture sur un ensemble séries temporelles
représentant des mesures effectuées sur un équipement alors que jusqu’à présent
nous travaillions des méthodes de détection monovarié issue du traitement du
signal.

Les travaux qui ont été menés montrent la complexité du problème et permettent
d’avoir des résultats intéressants et prometteurs sur un jeu de données réels com-
paré à des méthodes existantes. Ces résultats sont notamment intéressant pour
de une application à la fouille d’historiques de données.

En terme de perspectives d’amélioration, le temps de calcul augmente rapidement
avec le nombre de point. Il peut dans certains cas être réduit, mais celà nécessite
des connaissance a priori sur les données afin de régler des paramètres supplé-
mentaires. Cela rend difficile l’utilisation en l’absence de telles connaissances.
Idéalement, nous souhaiterions n’avoir aucun paramètre à régler pour l’usage.”

5.2 Limitations

One of the main limitations of our OTAWA method lies in the estimation of the number of
change points. It is done by selecting among a set of candidate optimal segmentations with
different numbers of change points using a criterion, and we propose two different criteria.
Now, on the annotated datasets we used for comparison we can evaluate the performance of
every candidate segmentations, and when comparing the performance of the segmentation
selected by either criteria to some other candidate segmentations that we picked by hand,
we observe a clear gap, meaning that there is room for a new type of criterion to select a
better segmentation. This would improve the overall performance of the method without
requiring any modification to the objective function or the optimization algorithm. However,
developing a better criterion seems hard, as all methods from the literature suffer of the same
problem. For instance, for the PELT and SN methods we compared against, we observed
this performance gap between the best segmentation a posteriori and the selected one as
well. Coming up with new and better criteria is actually one of the main focus of the recent
literature in the field.
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An other drawback that is this time specific to our approach is the computational cost of
the OTAWA algorithm. It is indeed O(T 3) cubic in the number of samples T in the time-
series considered, compared to a quadratic complexity O(T 2) with exact methods from the
literature. Moreover, this complexity can even get worse when using complex models for the
time-series, as it must be multiplied by the computational complexity of the algorithm for
model estimation.

5.3 Future Research Directions

As mentioned in the limitations above, some interesting research directions lie in improving
on the computational cost of the OTAWA algorithm, as well as developing a criterion that is
able to better estimate the number of change points. Improving on the computational cost
could be done by developing an approximate algorithm, or by adapting pruning techniques
to our approach, such as the one used in PELT.

On top of that, we can think of two potential ways of improving OTAWA. First, the
discrepancy-based objective function has an intrinsic notion of direction. Indeed, for any
pair of consecutive segments, it consists in estimating a model on the left segment, and mea-
suring its prediction error on the right segment, imposing a "forward" direction. However,
in the offline case where all samples of the considered time-series are available, there is no
reason in general not to define the objective function the other way around in a "backward"
manner. An interesting direction might then lie toward modifying the objective function
into a "bidirectional" objective function that would take into account both "forward" and
"backward" directions, similarly to bidirectional recurrent neural networks, or bidirectional
inference networks. We note that while this is perfectly grounded for prediction of the
future, autoregressive models have such an intrinsic directional bias as well. A second po-
tential research direction could be interested in developing an hybrid method between the
discrepancy-based objective function of OTAWA and the one based on goodness of fit such
as used in PELT or SN. Indeed, while our approach seems promising in the sense that it out-
performed the existing methods we compared it to, it does not discard the approaches based
on goodness of fit. A wide body of literature has proven that they achieve good performance
on a wide variety of datasets, and with a wide variety of underlying models. It might thus be
interesting to study the combination of the two approaches into a hybrid method that wood
optimize both goodness of fit and discrepancy at the same time.

Finally, it could be interesting to adapt our approach to models with latent or hidden variables
by looking for changes of this variable. This could allow to relax the independence hypothesis
being made with piecewise i.i.d. models, which can often be to restrictive.
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APPENDIX A COMPARISON OF CONSTRAINED ALGORITHMS ON
THE HUMAN ACTIVITY DATASET
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Figure A.1 F1-Score and RandIndex for the OTAWA, SN and SAW methods (higher the
better). Center value is the mean, error bars represent the standard deviation.
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and SAW methods (lower the better). Center value is the mean, error bars represent the
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APPENDIX B COMPARISON OF CONSTRAINED ALGORITHMS ON
THE HYDRAULIC SYSTEM DATASET
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Figure B.1 RandIndex, F1-Score, Prec and Rec for the OTAWA, SN and SAW methods
(higher the better).
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and SAW methods (lower the better).
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