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RÉSUMÉ 

Pour les problèmes de vision machine (CV) avancées, tels que la classification, la segmentation de 

scènes et la détection d’objets salients, il est nécessaire d’extraire le plus de caractéristiques 

possibles des images.  Un des outils les plus utilisés pour l’extraction de caractéristiques est 

l’utilisation d’un noyau de convolution, où chacun des noyaux est spécialisé pour l’extraction d’une 

caractéristique donnée. Ceci a mené au développement récent des réseaux de neurones 

convolutionnels (CNN) qui permet d’optimiser des milliers de noyaux à la fois, faisant du CNN la 

norme pour l’analyse d’images. Toutefois, une limitation importante du CNN est que les noyaux 

sont petits (généralement de taille 3x3 à 7x7), ce qui limite l’interaction longue-distance des 

caractéristiques. Une autre limitation est que la fusion des caractéristiques se fait par des additions 

pondérées et des opérations de mise en commun (moyennes et maximums locaux). En effet, ces 

opérations ne permettent pas de fusionner des caractéristiques du domaine spatial avec des 

caractéristiques puisque ces caractéristiques occupent des positions éloignées sur l’image.  

L’objectif de cette thèse est de développer des nouveaux noyaux de convolutions basés sur 

l’électromagnétisme (EM) et les fonctions de Green (GF) pour être utilisés dans des applications 

de vision machine (CV) et dans des réseaux de neurones convolutionnels (CNN). Ces nouveaux 

noyaux sont au moins aussi grands que l’image. Ils évitent donc plusieurs des limitations des CNN 

standards puisqu’ils permettent l’interaction longue-distance entre les pixels de limages. De plus, 

ils permettent de fusionner les caractéristiques du domaine spatial avec les caractéristiques du 

domaine du gradient. Aussi, étant donné tout champ vectoriel, les nouveaux noyaux permettent de 

trouver le champ vectoriel conservatif le plus rapproché du champ initial, ce qui signifie que le 

nouveau champ devient lisse, irrotationnel et conservatif (intégrable par intégrale curviligne). 

Pour répondre à cet objectif, nous avons d’abord développé des noyaux convolutionnels 

symétriques et asymétriques basés sur les propriétés des EM et des GF et résultant en des noyaux 

qui sont invariants en résolution et en rotation. Ensuite, nous avons développé la première méthode 

qui permet de déterminer la probabilité d’inclusion dans des contours partiels, permettant donc 

d’extrapoler des contours fins en des régions continues couvrant l’espace 2D. De plus, la présente 

thèse démontre que les noyaux basés sur les GF sont les solveurs optimaux du gradient et du 

Laplacien. De ce fait, même s’il n’existe pas de solution exacte au gradient et au Laplacien, les 
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noyaux développés trouvent la solution la plus rapprochée possible d’un résultat, et ce en étant au 

moins 3.2 fois plus rapide que toute autre méthode de la littérature.  

Ainsi, en utilisant notre solveur de gradient, nous avons développé la première méthode qui permet 

de combiner directement des matrices de contours avec des matrices de salience. L’amélioration 

des matrices de salience est en moyenne 6.6 fois supérieure au plus proche compétiteur sur des 

bases de données sélectionnées. Ensuite, pour améliorer notre algorithme de salience, nous avons 

développé le modèle DSS-GIS qui combine les contours et à la salience directement à l’intérieur 

d’un CNN profond. Cette combinaison a permis d’améliorer la performance du CNN, de réduire 

le surapprentissage et de réduire le temps d’apprentissage, pour une augmentation de seulement 

10% du temps d’exécution. En plus, la couche GIS a permis d’améliorer les performances du 

F-measure de 3.9% dans le cas d’images bruitées et de 2.3% dans le cas d’images à faible 

luminosité. Finalement, nous avons développé un premier prototype qui permet d’utiliser les GF à 

différentes profondeurs dans un réseau de classification de chiffres. Ce prototype fonctionne en 

transformant le champ vectoriel de caractéristiques en un champ conservatif. Les premiers résultats 

sont prometteurs, car ils montrent une réduction du temps d’entrainement d’un facteur 5.2, une 

réduction du bruit dans les courbes d’apprentissage et une réduction de 28% de l’erreur de 

classification.  

La principale retombée scientifique de la présente thèse est la création d’une nouvelle catégorie 

d’opérations pouvant être utilisés dans les CNNs. Ces opérations basées sur les GF permettent aux 

CNN de combiner l’information du domaine de l’image avec l’information du domaine du gradient, 

ce qui diffèrent entièrement des autres catégories d’opérations, soit les noyaux de convolutions, la 

réduction de taille (pooling) et les fonctions d’activations. Les GF permettent au CNN d’avoir un 

champ réceptif illimité, et ce à tout emplacement dans le réseau. De plus, ils permettent de convertir 

en un champ conservatif tout champ d’informations contenus dans les CNN. Enfin, dans le but 

d’étendre la portée du travail, ces opérations ont été codées dans différents langages, soit Matlab, 

C++ (OpenCV) et Python (Tensorflow et Pytorch).  
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ABSTRACT 

For advanced computer vision (CV) tasks such as classification, scene segmentation, and salient 

object detection, extracting features from images is mandatory. One of the most used tools for 

feature extraction is the convolutional kernel, with each kernel being specialized for specific feature 

detection. In recent years, the convolutional neural network (CNN) became the standard method 

of feature detection since it allowed to optimize thousands of kernels at the same time. However, 

a limitation of the CNN is that all the kernels are small (usually between 3x3 and 7x7), which limits 

the receptive field. Another limitation is that feature merging is done via weighted additions and 

pooling, which cannot be used to merge spatial-domain features with gradient-domain features 

since they are not located at the same pixel coordinate.  

The objective of this thesis is to develop electromagnetic (EM) convolutions and Green’s functions 

(GF) convolutions to be used in Computer Vision and convolutional neural networks (CNN). These 

new kernels do not have the limitations of the standard CNN kernels since they allow an unlimited 

receptive field and interaction between any pixel in the image by using kernels bigger than the 

image. They allow merging spatial domain features with gradient domain features by integrating 

any vector field. Additionally, they can transform any vector field of features into its least-error 

conservative field, meaning that the field of features becomes smooth, irrotational and conservative 

(line-integrable).  

At first, we developed different symmetrical and asymmetrical convolutional kernel based on EM 

and GF that are both resolution and rotation invariant. Then we developed the first method of 

determining the probability of being inside partial edges, which allow extrapolating thin edge 

features into the full 2D space. Furthermore, the current thesis proves that GF kernels are the least-

error gradient and Laplacian solvers, and they are empirically demonstrated to be faster than the 

fastest competing method and easier to implement.  

Consequently, using the fast gradient solver, we developed the first method that directly combines 

edges with saliency maps in the gradient domain, then solves the gradient to go back to the saliency 

domain. The improvement of the saliency maps over the F-measure is on average 6.6 times better 

than the nearest competing algorithm on a selected dataset. Then, to improve the saliency maps 

further, we developed the DSS-GIS model which combines edges with salient regions deep inside 

the network. This combination helped improve the performance and reduce the overfitting of the 
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model using a single GF-based kernel at the last layer of each branch. The added GIS layer allowed 

an average F-measure improvement of 3.9% for noisy images and 2.3% for low-light images with 

only 10ms of additional computation cost. Finally, we developed an early prototype that uses the 

GF convolution at different points inside a classification network for digit recognition. It acts by 

transforming the field of features into the nearest possible conservative field. Early results show 

that it helped reduce the training time by a factor 5, reduce the noise in the validation curve and 

reduce the testing error by 28%, without increasing the computational capacity of the network.   

The main outcome of the current thesis is the creation of GF-based operations, a novel category of 

operations that can be used to improve CNN’s. Standard operations used in CNN are the 

convolutions, the pooling and the activation functions. The GF-based operations do not fit in any 

of these categories as they offer completely novel properties, allowing the network to have an 

unlimited receptive field at any given layer, to operate in the gradient-domain and to convert its 

features into conservative and physically interpretable features. Furthermore, the GF-based 

operations were written into different languages: Matlab, C++ (OpenCV) and Python (Tensorflow 

and Pytorch); allowing to deliver the work to the computer vision and machine learning 

community.   
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CHAPTER 1 INTRODUCTION 

Since the year 2000, there has been an exponential rise in the sale of consumer digital cameras [1] 

followed by the bigger rise of smartphones equipped with digital cameras [2] and the exponential 

increase in the commercial robotics market [3]. Those factors led directly to an explosion in the 

computer vision (CV) and artificial intelligence (AI) market, both in robotics and in data analysis 

[4]. For example, our research lab uses CV to perform airplane topological optimization [5], 

intelligent robot control for the disabled using eye-tracking [6,7] and automated drone control.  

Then, the years 2010s have been revolutionary in terms of image understanding thanks to the rise 

of machine learning algorithms and convolutional neural networks (CNN). The CNN was initially 

able to outperform any standard algorithm for image classification purposes [8–10]. Then, they 

were used to solve the binary problems of CV, such as edge detection, skeleton extraction and 

saliency [11], and are now performing at near human level.  

Chapter 1 In the field of machine learning and CV, many successful methods were based on the 

biological observation of nature. For example, the structure of the CNN is heavily inspired by the 

way the frontal cortex analyses images [9,12]. However, there are limited uses of physically 

inspired models. For example, the usage of electromagnetic (EM) based fields is limited to 

quadrupole text orientation [13] and the gravity-based edge detection [14]. Although those methods 

were inspired by a physical model and they initially performed well, they were soon outpaced by 

competing methods. One of the reasons is that they used the potentials and fields convolutions in 

an intuitive way such as bluring filters and derivative filters. The current thesis differs since it 

thoroughly studies the mathematical behavior of EM and GF for image convolutions.  

1.1 Objectives 

The main objective of the current thesis is to develop electromagnetic (EM) convolutions and 

Green’s functions (GF) convolutions to be used in Computer Vision and convolutional neural 

networks (CNN).  

The main objective can be divided into the following sub-objectives (Obj): 

Obj - 1. Develop a mathematical and intuitive understanding of the behavior of EM and 

GF convolutions in an image.  
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This objective allows to better guide the research decisions and to better understand the 

results. It was fundamental for the next sub-objectives.  

Obj - 2. Use the GF convolutions to reduce the computation time and numerical error 

of the EM and allow fast and efficient gradient-domain image editing. 

This objective allows editing an image in a non-intuitive way by enhancing or reducing the 

gradient of the image at specified locations.  

Obj - 3. Use the GF to improve the results of CNN for salient object detection and digit 

classification.  

This objective allows improving the extracted features by using the properties of 

conservation of energy and smoothness of EM. It also allows the current work to have a 

broader impact on the CV community since an important part of the research focuses of 

CNN.  

1.2 Methodology 

To answer the objectives given previously, a total of 5 papers were written and are included as 

chapters in the current thesis. This section will present a summary of the methodology and the 

articles developed to answer each of the sub-objectives. First, an overview of the objectives of the 

thesis is presented in Figure 1-1, followed by the detailed methodology below.  
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Figure 1-1 : Overview of the objective and methodology of the thesis 

Obj - 1. The thesis first studies how Maxell’s equations of EM behave in an image using 

their numerous physical, geometrical and mathematical properties. The study is presented 

in our first paper [15] in Chapter 3. It computes the EM potential and field using numerical 

convolutions and performs a qualitative analysis of the results. Then, the second paper [16] 

presented in Chapter 4 demonstrates mathematically that dipole potentials can be used to 

compute the probability of belonging inside partial contours. For example, the paper 

showed how the resulting potential allows reconstructing the shapes when only incomplete 

contours are provided. These two papers were fundamental for answering the first objective, 

specifically to develop a mathematical and intuitive understanding of the behavior of EM 

convolutions in an image.  

Obj - 2. After demonstrating the usefulness of EM potential and fields, the GF is developed 

in the paper [17] presented in Chapter 5. The GF reduces the numerical error to almost zero 

and improves the computation time by a factor 4 compared to EM. In fact, we have proven 

mathematically that, when a non-conservative perturbation is added to a gradient, the GF 

convolution (GFC) is the least-error gradient or Laplacian solver. Plus, it is shown to 

perform well on multiple tasks of gradient domain image editing. Hence, this paper answers 

the second objective of the current thesis, specifically to reduce the computation time and 

numerical error of the EM potentials while developing a gradient domain editing method.  

• Building the theory

• Understanding the EM and GF behaviour

• Finding EM and GF properties

• Extrapolating contours into regions

• Papers # 1, 2

1

Mathematical 
understanding 

of EM / GF

• Moving from theory to applications
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• Demonstrate gradient domain image editing
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2

Improve gradient-
domain image editing

• Developing the applications

• Improve salient object detection

• Build a versatile tool for CNN

• Understand GF behaviour for deep 
neural networks

• Papers # 4, 5

3

Improve object 
detection and 
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Obj - 3. Using the efficient GFC Laplacian solver, the current objective is to improve salient 

object detection and neural network using the gradient domain. At first, the objective 

focueses on salient object detection, with the paper [18] presented in Chapter 6. In this 

work, we developed a method that combines the output of a saliency network with the 

output of an edge detection network using a novel method we called gradient domain 

merging (GDM). The GDM uses the gradient domain to merge features of different nature 

(edges vs regions), then uses a GFC to solve the perturbed gradient. It showed to be fast 

and effective at improving the saliency maps of different methods. Then, the next paper 

[19] presented in Chapter 7 shows that another GFC-based operation, called gradient 

integration and sum, can be added inside different CNN to improve the testing saliency 

maps further, to reduce the training convergence time, to reduce the model overfitting and 

to increase the robustness against parameter initialization and noise. Finally, additional 

prototypes are developed in section 8.1 to demonstrate that GFC can be added within the 

Google-net [20] to improve its training time and testing performance on the MNIST dataset 

[8]. These 3 chapters and section allowed to answer the third objective of the current thesis, 

specifically to improve the results of CNN on image analysis using GF convolutions (GFC).  

1.3 Overview of the thesis 

In the CV field, the current thesis positions itself mostly in the fields of mathematical imaging, 

feature detection via machine learning, and image processing. For the mathematical imaging, the 

current thesis developed EM and GF convolutions for image editing, demonstrated that they can 

be used to compute contour inclusion probabilities [16] and that they are the least-error gradient 

and Laplacian solver. For the feature detection, the presented work explored many different areas 

such as shape analysis [15,21], saliency detection improvement [18] and deep learning 

classification. In general, our approach was fast to compute and able to improve many state-of-the-

art methods.  For image processing, the proposed GFC showed to be faster and have less error than 

competing methods of gradient domain image editing [17].  

The work done in the current thesis allowed our team to submit 3 patents with support from 

Polytechnique Montreal and the technology transfer company Univalor. The first patent “Object 

analysis in images using electric potentials and electric fields” [21] is already accepted, but the 
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second and third have been submitted at the time of writing and are pending approval from the 

patent office.  

Chapter 2 will present a detailed literature review of the different methods related to the proposed 

approach.  

Chapters 3-7 will present each of 5 different scientific papers that are submitted to scientific 

journals, conferences or archives.  

Chapter 3  is about the general understanding of CAMERA-I since it presents Maxwell’s equations, 

it finds the potential and field equations for an n-dimension system, and it focuses on the 2D 

properties of monopoles and dipoles [15].  

Chapter 4 focuses on the mathematical demonstration of how EM potentials and fields allow to 

numerically compute the probability of inclusion inside partial edges (PIIPE), how to use it on 

images composed of edges and partial contours and how do these edges and partial contours 

interact [16].  

Chapter 5 follows by demonstrating that the EM kernels can be used to perform a Green’s function 

convolution (GFC), thus solving the Laplacian or Gradient in a fast and robust way which allows 

for fast gradient-domain image editing (GDIE) [17].  

Chapter 6 shows that GDIE can be used for saliency enhancement using edges (SEE), which allows 

using gradient domain merging (GDM) between the 1D edge information with the 2D saliency 

information. Hence, it was possible to improve the results of any high-performance saliency 

algorithm [18].  

Chapter 7 demonstrates that the proposed gradient and integration and sum (GIS) layer enhances 

standard deep saliency models since it improves the repeatability of the training, reduces the 

overfit, enhances the testing results and improves the stability to noise.  

Finally, Chapter 9 includes a critical review of the thesis results and a discussion of its limitations. 

Then, the chapter proposes future improvements and possibilities of research, including how to use 

the GFC in different types of 2D CNN.   
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CHAPTER 2 LITERATURE REVIEW 

The scope of the current thesis covers different fields of computer vision (CV), most notably 

nature-based algorithms, shape and partial contour analysis, feature detection, gradient-domain 

image editing, and convolutional neural networks (CNN). Hence, this section will present a detailed 

literature review for each of the covered CV fields.  

2.1 Nature-based algorithms 

Since the electromagnetism (EM) approach proposed research project is based on physics principle, 

this section will cover some other nature-inspired techniques in CV.  

2.1.1 Biology inspired techniques 

For the biology-inspired techniques, the most prominent one is the neural networks (NN), more 

specifically the convolution neural networks (CNN) [22–24], which mimics how the human frontal 

cortex works. Currently, the CNN are the most performant methods in classification [8,22,24], edge 

detection [11,25] and salient object detection [11,26,27]. More details are given in the section “2.5 

The convolutional neural network”.  

There are other biology inspired techniques, like those based on population evolution, but they are 

principally used for parameter optimization in CV [24], which is not relevant in the case of this 

research project.  

2.1.2 Physics-inspired techniques 

The use of physics inspired techniques in CV is not as present in literature as biology, due to the 

success of NN and NN-inspired approaches. Some examples of physics inspired techniques include 

the entropy used to analyze the information of an image [24], watershed droplets for edge detection 

[28] and force vector fields used for active contours [29]. 

The main methods related to my Ph.D. research project are the quadrupole convolution, used to 

define the orientation of contours [13] and the edge detection using gravitational fields (which is 

mathematically similar to electric fields) [14]. Although those 2 works proved to be efficient new 

ways of analyzing images, they did not see the full possibilities of using EM fields, nor did they 

use any EM potential or Green’s function (GF). This research thesis aims to go a lot further in 
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exploring a multitude of possibilities using the laws of EM as described by J.C. Maxwell [30–32] 

and the properties of GF [17,33] for shape/partial contour analysis, gradient/Laplacian solver and 

saliency improvement. 

2.2 Shape and partial contour analysis 

From the early days of computer vision, one of the early tasks was to analyze shape profiles and 

partial contours using different tools. Those tools include morphological operations [34,35], 

boundary and corner detection [36], skeleton extraction [36], elliptic Fourier transforms [37,38] 

and fractal dimensions [39]. However, most of those tools are considered early vision and are 

minimally used in most recent papers and advanced technique [23,34], especially since the rise of 

deep learning. This section will show that the proposed approach, based on electromagnetism, 

distinguishes itself from the rest of the literature by providing a fast, robust and unique way of 

analyzing a shape or partial contour. In fact, the proposed approach still performs well alongside 

deep learning algorithms.  

2.2.1 Electromagnetic convolutions 

For a great part of the shape and partial contour analysis, convolution kernels were always among 

the favored method of information extraction, with multiple usages in noise removal [40], defect 

detection [41,42], image segmentation [29,43], edge detection [14], machine learning [24,44,45], 

etc. They are known to be easy to implement, fast to compute, are translation agnostic and are 

available in most computer vision libraries such as MATLAB® (Mathworks, USA) [36] and 

OpenCV [35]. To extract the features of the shapes, each convolution uses a kernel that “slides” 

over an image to apply local arithmetic’s on neighbor pixels [23]. Usually, the convolution kernels 

are small since they only require the information of nearby pixels, with usual maximum sizes of 

5×5 [20], 7×7 [14], 9×9 [41], 11×11 [45]. However, some cases such as the EM or GF kernels 

developed in our work [15,16,21] or other physics-based methods [29,43], the kernels are bigger 

than the image.  

With such a big kernel size, fast Fourier transforms (FFT) are used to speed up the computation of 

the convolution [23]. For an image of 𝑛 pixels and a kernel of 𝑚 element, a standard convolution 

has a time complexity of 𝑂(𝑛 ⋅ 𝑚) but a FFT based algorithm has a time complexity of 

𝑂(𝑛 log(𝑛) + 𝑚 log(𝑚)) [23]. Hence, if we suppose that the kernel is the same size as the image 
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(𝑚 = 𝑛), then the time complexity is 𝑂(𝑛2) for a standard convolution and 𝑂(𝑛 log(𝑛)) for the 

FFT.  

The proposed image analysis with CAMERA-I and GF goes further than the methods reported in 

the literature by providing multiple symmetrical or asymmetrical kernels that are scale invariant 

and rotation invariant [15,21]. Hence, they give the same result, no matter the resolution of the 

image. This seems to contradict the scale-space theory of computer vision which states that 

different information is available at different scales [46]. However, many applications require scale 

invariance such as contour completion [47] and wavelet analysis [48]. Plus, the rotation invariance 

is important since many applications use the same filters in different orientations to detect rotation 

invariant features for defect detection [41] or for edge detection [49]. Furthermore, some advanced 

machine learning algorithms for edge detection forces the rotation invariance by creating a dataset 

of rotated images [25].  

2.2.2 Space probability analysis 

In the literature, multiple methods exist to generate closed regions from different partial contours 

(partial contours) [50–53], but they do not provide any spatial information about the pixels not 

belonging to a contour. They are used for contour completion whose goal is to connect different 

contour parts to obtain continuous 1D boundaries and closed regions. Hence, they cannot be used 

jointly with region-based methods since they do not generate 2D information unless binary regions 

are produced through segmentation.  

Other region-based methods allow to generate probabilistic information in 2D by analyzing the 2D 

space filled with pixels, but not its edges [23,34,54–56]. Hence, there is a discontinuity between 

the computer vision methods that detect edge-based information and those that detect spatial-based 

information.  

Therefore, we propose the mathematical innovation of the EM and GF kernels which allow 

analyzing the space probability of inclusion inside a set of thin partial contours [16,21]. It means 

that using only thin partial contours, we can analyze the space between those partial contours. This 

is innovative since no other method exists to perform such task, and that we demonstrated that the 

EM-based convolution kernels are the only possible kernels that allow such a task [16], with the 

GF kernels being an improvement over the EM kernels [17]. The reason is that the kernels act as 
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space integrators and are the only kernels that guaranty conservation of energy [31–33]. Hence, 

they are the only kernels that guaranty that the inside of a shape has a constant probability value, 

which is mandatory for inclusion probability analysis [16]. This allows the proposed method to act 

as a bridge between the edge-based methods and the region-based methods. The method is called 

“Probability of Inclusion Inside Partial Edges” (PIIPE) and is discussed in more details in Chapter 

3.  

2.3 Gradient-domain image editing 

Gradient-domain image editing (GDIE) was first founded by Perez et al. [57] when they proposed 

the first Laplacian solver (also called Poisson equation solver). By doing so, they were able to do 

image blending in the gradient domain, which allowed for seamless Poisson blending [57]. Hence, 

they opened the door to multiple applications for image editing software, such as the suite of GDIE 

applications proposed in the GradientShop [58]. However, all the applications remain for image or 

video post-processing and special effect, without any unsupervised application. This is an 

important aspect of the current thesis since we developed the first method of merging salient object 

detection with edge detection using the gradient-domain [18].  

2.3.1 Poisson solver for seamless blending 

The fundamental step of any GDIE-based algorithm is solving the Laplacian (or Poisson equation), 

which can then be used for applications such as seamless blending and gradient removal [57–59]. 

Perez et al. proposed a numerical solver for the Laplacian of an image by iteratively minimizing 

the variational problem [57]. This allowed many others to develop a more optimal method to reduce 

the computation speed and error [57,60] while others proposed an alternative solver based on the 

Jacobi method [59]. Although these methods converge with no error, they are hard to implement 

and require heavy computing since they need iterative computing to solve it. An alternative method 

of modifying the Poisson problem is proposed by Tanaka [61], but it can only be used for seamless 

blending since it cannot reconstruct an image from its Laplacian.  

2.3.2 Green’s function 

The proposed Green function convolution (GFC) method uses the GF in 2D space to solve the 

Laplacian or Gradient in a single convolution [17]. It is based on the mathematical principal of GF 
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developed in the 1830s, which are used in mathematics and physics to solve a different kind of 

inhomogeneous linear differential equation [33]. Using GFC, it becomes possible to solve any 

Laplacian in n-dimensions by convolving the differential equation with the hypersurface-

normalized GF potential [17,33]. To our knowledge, no other computer vision method uses GF for 

gradient-domain editing or feature detection.  

Hence, the method proposed in the current thesis unlocked many possibilities for gradient-domain 

editing, since it is more precise, faster and easy to implement on a central processing unit (CPU) 

or a graphics processing unit (GPU) [17]. Furthermore, it was demonstrated using a mathematical 

proof that the proposed GFC method yields always to the least-error solution [17]. Since the GFC 

method is both fast and optimal, then it positions itself as an important innovation for the subfield 

of gradient-domain image editing (GDIE), as discussed in Chapter 5. The current thesis also 

proposes the first GDIE method for machine learning applications [18,19].  

2.4 Feature detection 

To build smart systems based on computer vision, one of the most important tasks is to detect the 

features of an image [23,34,46]. Those features allow defining “interesting” parts of an image 

according to abstract concepts such as edges and saliency. Edges allow finding the boundary 

between different regions and objects [50,51], while saliency allows finding the important region 

in an image, which is often the foreground and the object of focus [26,62]. They are binary 

problems since their goal is to assign a value of true or false to every pixel, although in practice 

they assign a value in the range [0, 1] before applying a threshold. This section will present a critical 

review of the methods used to detect these features. Some of those methods are based on CNN with 

more details in section “2.5 The convolutional neural network”. 

2.4.1 Edge detection 

Solving the binary problem of edge detection has seen a great amount of progress in recent years. 

The edges are the boundaries between distinct image regions, which differ in terms of color, 

texture, contrast, etc.  

The most basic method was to compute the gradient of the image using numerical derivatives [35] 

and Gaussian derivative filters [41,49]. Then, Canny’s algorithm in 1986 proposed multi-stage 
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thresholding with edge continuity [63]. Other methods were developed to compute the edges of 

more complex or noisy images such as watershed models [28], the gravity models [14] and the gPb 

method in 2010, which combined multi-scale Gaussian derivatives with statistical K-means 

clustering [49]. To better compare different methods, datasets were created on which to perform 

rigorous benchmarking of the results, such as the BSDS500 [49], on which 7 different humans 

traced the “true” edges of the image.  

The creation of the datasets started a new revolution in the edge detection world since they could 

also be used for training machine learning algorithms. One of the first machine learning algorithms 

is proposed in 2013 and is based on a structured forest [64,65]. Then, from 2015 to 2018, multiple 

different types of convolutional neural networks (CNN) were developed which outcompeted any 

previous method both in precision and computation time, such as HED[66], RCF [25] and UCF 

[11]. Hence, since the year 2015, most edge detection methods are based on deep learning.  

2.4.2 Salient object detection 

The development of salient object detection (SOD) had similar progress as the edge detection, 

except that it started with the individual extraction of different statistical features. A salient object 

is defined as the object of importance in an image, which is often different from surrounding in 

terms of contrast, color, texture, orientation… It is easier to understand it with the example 

provided in Figure 2-1 where we observe that the salient object is the person and its clothing. We 

also observe a major performance difference between the DRFI method based on structured forest 

[67] and the DSS method based on CNN [26].  

 

Figure 2-1 : Example of saliency for a person image from the ECSSD dataset [68]; (a) Original 

image; (b) Ground-truth saliency map; (c) Saliency map produced by the DRFI method [67]; (d) 

Saliency map produced by the DSS method [26].  
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Saliency maps were generated by computing statistics based on clustering and density [69–71], 

concavity [72], contrast filtering [73], backgroundness [74]… Then, the method DRFI [67] based 

on deep forest is proposed [67]. However, just like for edge detection, it was soon outpaced by the 

arrival of CNN around 2015. Since then, many CNN-based algorithms are proposed for salient 

object detection such as DHS [75], DCL [76] and DSS [11,26]. Hence, since the year 2015, there 

is no incentive to develop any SOD method that is not based on CNN. Details on the CNN 

architecture of those methods is given in section “2.5.2 CNN architectures for feature detection”.  

Seeing how the CNN were easy to use, to train and highly versatile, a recent 2018 work by Hou et 

al. proposed to create a unified framework architecture UCF for saliency, edge detection and 

skeleton extraction [11]. This work showed that all 3 features were extracted with more precision 

than the competing algorithms. This is due to the unique architecture of the UCF, which allows a 

horizontal cascade of learned features at each scale [11].  

2.4.3 Saliency enhancement 

There have been numerous research to improve saliency and edge detection algorithms, but so far 

only a few propose using edges to improve saliency maps [77–79]. There are methods to improve 

saliency maps using background detection [74], contrast enhancement and texture smoothing [80]. 

However, Patel et Raman [77] benchmarked these methods and realized that they do not work well 

on most recent CNN-based models since the deep networks perform better at detecting those 

features. The BGOF method proposed by Patel et Raman [77] and the denseCRF method [71] were 

the only ones that demonstratively improved the performance of the newest CNN-based saliency 

detection [77]. Their work proved conclusive since they optimize the saliency inside the segmented 

boundaries and reduce it outside the boundary. However, the gain of using their method is minimal 

and slow to compute, since they minimize an energy function in segmented regions instead of using 

a real boundary for the improvement. 

The proposed approach called saliency enhancement using edges (SEE) proposes to use the 

gradient-domain (discussed in section 2.3) to merge state-of-the-art (SoA) edge detection methods 

with SoA saliency method. This kind of method is unique in the literature and proved to outperform 

any other method using a combination of gradient-domain pre-processing and post-processing. 

Also, the resulting improvement proved to be much higher than any competing method, including 

the one proposed by Patel et Raman [77]. Chapter 6 details the proposed SEE method and how it 
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outperformed competing saliency enhancement algorithms using GDM. To ensure that our method 

performs objectively better, we use standard benchmarking parameters defined in Appendix A. 

Furthermore, Chapter 7 shows how we implemented GIS (a variation of GDM) inside the DSS 

saliency network, which allowed to improve the testing results further while reducing the 

convergence time, the overfitting and the sensitivity to noise.  

2.5 The convolutional neural network 

The convolutional neural network (CNN) is today the best machine learning algorithm for machine 

vision, since it outcompetes any other algorithm for classification [9], segmentation [81], edge 

detection [11,25], saliency [11,26] and many other applications. They are biologically inspired 

since they are based on how the visual cortex works in monkeys [12]. In fact, they are able to mimic 

far better the human vision than standard neural networks (NN) with far better results in every 

machine vision category. Since NN are known for decades, they are only presented in Appendix 

A. The following sub-sections will explain how CNN improved on the previous model and present 

some of the most recent CNN architectures concerning binary feature detection.  

Right now, there is no work in the literature that proposed using GF or EM kernels inside any kind 

of neural network or at their outputs, which is one of the novel ideas brought forward by the current 

thesis.  

2.5.1 Convolutional neural networks 

To overcome the limitations of NN, the CNN was created based on the biology of the frontal cortex 

[12]. By using convolution kernels instead of scalar weights, the CNN allowed doing both the 

feature extraction and the NN architecture at the same time thus requiring minimal preprocessing 

[82]. Therefore, the CNN has only one matrix input for each image channel (meaning 3 input 

matrices for an RGB image) [9].  

The architecture of CNN is similar to the NN architecture, except that the input of each neuron is 

a matrix and that the weights perform a convolution on the input of each neuron [9]. The 

convolution kernels allow for feature extraction directly inside the CNN by eliminating all the 

unnecessary connections between far-away pixels, by increasing the bond between nearby pixels 
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and by being translation invariant. Usually, the kernels are square and odd-sized, with sizes varying 

between 1 × 1 and 7 × 7 [10,20,26], although they can be larger.  

2.5.2 CNN architectures for feature detection 

The current thesis focuses more on saliency detection, but advances in that field are closely linked 

to advances in edge detection, image segmentation, and object classification. This section will first 

discuss the CNN architectures of classification, followed by the architectures of edge detection and 

saliency.  

2.5.2.1 Architectures for classification 

For the task of image classification, one of the most successful models created in 2015 is the 

VGGnet-16, with an accuracy of 93% for top-5 classification error on the extended ILSVRC 

dataset containing 2000 classes [10]. The image and channel sizes across the network are presented 

in Figure 2-2 and the convolution sizes are presented in Figure 2-3. We can observe that the 

network has 14 convolutional layers with a max pooling at every layer to reduce the size of the 

image in the deeper parts of the network.  

 

Figure 2-2 : Image and channel sizes throughout the VGGnet-16 given by width × height × 

channels [10,83] 
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Figure 2-3 : Convolution kernel sizes given by width × height, number of neurons [10,83] 

Other deeper and more performant architectures are used for classification such as InceptionNet 

(or GoogLeNet) [20] and ResNet [84]. However, the VGGnet-16 is explained in the thesis since it 

is the standard network used as a nesting for saliency and edge detection [11,26,66,75], although 

the UFnet method demonstrated that the ResNet performs slightly better for nesting [26].  

The InceptionNet has 4 different versions with each version performing better than the previous 

one. The idea of the network is that inception modules can be created such that each module is able 

to extract a set of features [20]. Then, the InceptionNet appends multiple such modules in a 

sequence such that their combined feature extraction is further improved [20], as presented in 

Figure 2-4. Although the InceptionNet v1 performs similarly to VGGnet-16, it reduced the memory 

requirements by a factor 36, making it more popular [85].  

 

Figure 2-4 : Illustration of the InceptionNet v1 architecture, known as GoogLeNet [20,85].  

Following the success of the InceptionNet, the ResNet was developed in 2016, and is based on the 

idea that abstract image features require very, very deep networks [84]. Hence, they developed an 
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architecture of 101 and 151 layers [84] presented in Figure 2-5, which is significantly higher than 

the 16 layers of the previous VGG-net, enabling the ResNet to outperform its competitors by a high 

margin [84,85].  

 

Figure 2-5 : Architecture of the ResNet neural network [84,85] 

Modern networks architecture developed between 2016 and 2018 often combine the InceptionNet 

with the ResNet [86], with a few innovative architectures based on fractals.  

2.5.2.2 Nested feature detection 

Although feature detection is a different task than classification, the classification networks are 

heavily optimized to detect complex features in an image. Hence, some of the most successful 

methods of feature detection, such as HED [66], DHS [75], DSS [26] and UFnet [11] rely on a 

nested classification network with side outputs connected perpendicular to the classification 

network. This nesting means that the HED and DSS architectures use side-layers of CNN that are 

connected at different points inside the VGGnet-16, usually before each max pooling layer. Hence, 

the HED and DSS methods are able to use a heavily trained and optimized neural network as a nest 

and focus on training the supplementary side layers for their edge detection or saliency purpose 

[11,26,66].  

2.5.2.3 Saliency using pre-segmentation 

Instead of relying on a nested architecture with different upscaling, other methods propose to pre-

segment the image into small regions that are likely to have the same saliency values. Such an 

approach is proposed by the MDF method for saliency detection [87], while the DCL method 

proposes to use a hybrid between superpixel segmentation and nesting on the VGGnet-16 [76]. 

Although these methods have an accuracy comparable to the nested algorithms, they are slower to 

compute and produce non-smooth saliency maps.  
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2.5.3 Green’s function in neural networks 

As far as explored, there are no mentions of using either EM or GF inside any type of neural 

network or machine learning algorithm. Hence, it becomes one of the original ideas proposed by 

the current thesis.  

It seems counterintuitive to think that a GF based convolutional kernel can be used inside a neural 

network since the CNN optimizes thousands of different convolutional kernels. However,  we 

explained that the kernels usually have sizes varying between 1 × 1 and 7 × 7 [10,20,26], which 

makes it impossible to have an unlimited receptive field and a long-distance interaction between 

features unless the network is very deep or uses multiple downsizing (such as strided convolutions 

or strided pooling) [9]. In fact, it is impossible to solve a Laplacian or to project any vector field 

into its least-error conservative field since they both require a GF kernel at least as big as the image 

[17]. Hence, we proposed using EM and GF based kernels for CNN applications.  

2.6 Summary of the problematic 

In summary, there are different lacking’s in the literature regarding computer vision and deep-

learning algorithms that we try to address in the current thesis. The most important problem is the 

limitation of the receptive field at high resolution (without downscaling the image). This problem 

originates from the convolutional kernel with sizes varying between 1 × 1 and 7 × 7 [10,20,26]. 

Firstly, it means that edges cannot interact with regions since they are far away and since edge 

information cannot extrapolated into regions. Secondly, it means that far-away features cannot 

interact together to form a cohesive set of features. Finally, it means that it is impossible to make 

sure that a vector field of features is conservative, meaning that it is smooth and line-integrable.  

By developing the EM convolutional kernels and later improve them into the GF convolutional 

kernel, the current thesis hopes to address many of those problems. In fact, this thesis will propose 

the first use of GF for gradient domain image editing (GDIE), the first use of GDIE for saliency 

improvement, the first use of GDIE and GF inside a CNN, and the first use of GF to transform the 

features of a CNN into conservative features field.  
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Abstract 

Computer vision is a growing field with a lot of new applications in automation and robotics since 

it allows the analysis of images and shapes for the generation of numerical or analytical 

information. One of the most used methods of information extraction is image filtering through 

convolution kernels, with each kernel specialized for specific applications. The objective of this 

paper is to present a novel convolution kernel, based on principles of electromagnetic potentials 

and fields, for general use in computer vision and to demonstrate its use for shape and partial 

contour analysis. Such filtering possesses unique geometrical properties that can be interpreted 

using well-understood physics theorems. Therefore, this paper focuses on the development of the 

electromagnetic kernels and on their application on images for shape and partial contour analysis. 

It also presents several interesting features of electromagnetic kernels, such as resolution, size and 

orientation independence, robustness to noise and deformation, unlimited receptive field and the 

ability to work with 3D images. 

Keywords: Shape analysis; Partial contour analysis; Computer vision; Electromagnetic potential 

field; Feature extraction; Image filtering; Image convolution. 

Note to the reader: This chapter is introductory to the thesis and is mainly focused on mathematical 

introduction and qualitative analysis. Multiple statements are made without rigorous proof, with 

either a proof in later sections or simply qualitative images as demonstrations. However, the current 

chapter is still important to understand multiple concepts of the current thesis, such as the 

conservation of energy, the edges extrapolation using dipoles, the interaction between distant 

edges, the unlimited receptive field and the resolution invariance. Subsequent chapters are more 

rigorous in terms of mathematical demonstration and comparison to the state-of-the-art.  
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3.1 Introduction 

Computer vision (CV) is a challenging and interdisciplinary field, with infinite possibilities of 

images and videos to be processed. Hence, it is not trivial to find the appropriate methodology to 

extract the desired data from the image. One of the favored approaches for image analysis is 

convolution kernels, which can be used for blurring, edge detection, defect detection, machine 

learning, etc. Therefore, creating new convolution kernels could unlock new possibilities of image 

processing or improve the existing methods.  

Choosing the right convolution kernels for a task requires a mathematical understanding of each 

kernel, and may prove to be a tedious task. To avoid such problems, many methods rely on 

numerical optimization of the kernels, such as genetic algorithms [88,89] or the highly-praised 

convolutional neural networks (CNN) [23,34,45]. This usually removes the need to create new 

types of kernels, since the optimized kernel will often be more efficient than a manually chosen 

one. However, electromagnetic (EM) kernels possess interesting features that can be used for 

computer vision, but that cannot be retrieved using standard kernel optimization. The current paper 

will explain how to build EM kernels, how to apply them and how to extract the useful information 

of shapes and partial contours.  

3.1.1 Related Work 

Convolution kernels are one of the favored method for extracting information from an image, and 

they have been the subject of numerous research works in noise removal [40], defect detection 

[41,42], image segmentation [29,43], edge detection [14], machine learning [24,44,45], etc. The 

convolutions allow to quickly scan the whole image to apply local mathematics on nearby pixels, 

either to extract features or to modify the image [23]. A common characteristic of the convolution 

kernels of all these methods is that the kernels are usually small in the bi-dimensional plane, with 

a maximum size of 7×7 [14], 9×9 [41], 11×11 [45], although some physical phenomena require 

bigger kernels, twice the size of the Image [29,43].  

The current paper is not the first one to base its convolutions on natural phenomenon for the purpose 

of CV. For the biology-inspired techniques, the most prominent one is neural networks (NN) based, 

more specifically the convolutional neural networks (CNN) [22,23,45]. This technique mimics how 

the human brain works by combining multiple sequences of neurons for the sake of classification 
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or learning, and they are currently among the very best techniques for image classification 

[8,22,24,45].  

Some examples of physics inspired techniques for CV include watershed droplets for edge 

detection [28] and force vector fields used for active contours [29,43], but they are not related to 

electromagnetism which is presented in this paper. The main methods related to the work presented 

in this paper are the quadrupole convolution used to define the orientation of contours [13] and the 

edge detection using gravitational fields (which is mathematically similar to electric fields) [14]. 

Although these 2 works initially proved to be efficient new ways of analyzing images, they did not 

realize the full possibilities of using electromagnetism (EM). Therefore, these methods are now 

outranked by more recent techniques. The current paper aims to go a lot further in exploring the 

CV possibilities of electromagnetic potentials and fields (EMPF), such as oriented dipoles, 

interactive segments, and combined potential-field analysis. It aims at developing a methodology 

of image analysis that directly uses the laws of electromagnetism as described by J.C. Maxwell 

[30–32].  

Furthermore, the current paper deals extensively with the problems of shape and partial contour 

analysis, which are important in the field of CV [90]. A partial contour is defined as any curve in 

an image with a single pixel width. Some basic techniques are focused on giving general 

information about the shapes, such as the perimeter, area, centroid and mean size. These techniques 

are usually robust to deformations since they use each point of shape for computation, but they do 

not provide enough information for an advanced analysis [90] since they reduce a 2D shape into a 

0D value. Other techniques transform a shape into its contour (either polygonal or smooth) 

[29,37,38,90,91] or skeleton [90–92], hence transforming a 2D shape into a 1D partial contour. 

Those partial contours are then analyzed using their local curvatures, intersections or Fourier 

descriptors [29,37,90–94]. Those techniques provide more information than the 0D values since 

they reduce the dimensionality by a lower factor, but they still greatly reduce the information 

initially available in the shape. 

3.1.2 Proposed Approach: CAMERA-I 

The objective of the proposed approach is divided into 2 parts. The first objective is to develop the 

mathematics and the methodology required to build and use the EM convolution kernels. The 
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second objective is to explain how the kernels can be used in CV and to demonstrate their 

advantages for shape and partial contour analysis.  

To answer the first objective, the EM laws are simplified to their static and multi-dimensional 

interpretation then transformed into convolution kernels. Therefore, the EM potentials and fields 

of an image can be computed solely with convolutions. By analyzing their values and by 

determining the attraction or repulsion, it is possible to find several local or global characteristics 

of the images or shapes. The novel technique proposed in this paper is called “Convolution 

Approach of Magnetic and Electric Repulsion to Analyze an Image” (CAMERA-I).  

For the second objective, this work aims at demonstrating that there are several advantages of the 

CAMERA-I approach when compared to standard CV methods. One major advantage is the 

resolution and size independence of the kernels, which is something that is not possible with most 

other filtering methods [34,36]. Another important characteristic is the high robustness to noise 

and deformation of the images. In fact, the proposed approach will prove to be way more robust to 

local changes, since the EMPF will consider the contribution of each pixel in the image, shape or 

partial contour that is analyzed. Contrarily to standard methods, the proposed EMPF does not 

reduce the dimensionality of the shapes it analyzes and even allows to analyze 3D objects. Finally, 

the EMPF approach will show how to extract long distance information about the partial contours 

and shapes present in an image, allowing to consider the interaction between them and to build a 

2D information image from a 1D partial contour.  

3.2 Theory of Electromagnetism for Computer Vision 

In order for the paper to be self-explanatory, we use this section to remind the reader of the key 

concepts of electromagnetism (EM) that are useful to understand the paper. It will only deal with 

the classical theory of EM by J. C. Maxwell [30] and does not deal with relativity or quantum 

physics. We will then derive some simplified equations of EM, because computer vision deals with 

a virtual world, and is not subject to conform to the constants of the universe. The laws are modified 

to only consider the static terms, to remove the constants and to be used in a non-3D world, thus 

allowing to fully harness the geometrical properties of Maxwell’s equations (MEq) without any 

physical limitation.  
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3.2.1 Intuitive exercise 

For a better understanding of how electromagnetism can help determine the features of an object, 

one can consider the physics of a lightning rod. It is well known that lightning will tend to fall on 

a sharp (highly convex) and tall (far from the center of mass) area, because of the high charge 

concentration near a sharp point [31]. Consequently, we can determine which regions are concave 

or convex, and which regions are near or far from the center of mass (CM). It is to note that the 

current paper goes far beyond this first intuition and uses both mathematical and/or graphical 

evidence when required.  

3.2.2 Electric and Magnetic Monopoles and Dipoles 

Electromagnetic charges and dipoles are the key elements behind the CAMERA-I algorithm 

because parts of the images are treated as EM particles. Such particles generate scalar potentials 𝒱 

and vector fields ℰ that will vary according to the distance and the position [30–32]. For the sake 

of concision, most of the theory is given at “Appendix C.2 Monopoles and Dipoles”. We ignore 

the fact that magnetic monopoles do not exist, and we suppose that they behave identically to 

electric monopoles.  

3.2.2.1 Electric or magnetic monopoles 

The effect of electric monopoles is shown in Figure 3-1 on a normalized color-scale, where 𝒱 is 

represented by the color-scale and ℰ is represented by the vectors. We see that the positive 

monopole produces a positive potential and outgoing field, while the negative particle produces a 

negative potential and an ingoing field.  

 

Figure 3-1 : Static electric potential and field of a: (a) positive monopole. (b) negative monopole 

When multiple monopoles are put together, then the total potential is given by the scalar sum and 

the total field is given by the vector sum, as given by equation (1) [30–32].  
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3.2.2.2 Electric or magnetic dipoles 

When 2 monopoles of opposite signs are placed near each other, it produces a dipole with a 

potential and field that respect equation (1). Those dipoles can be stacked in several different ways, 

as observed in Figure 3-2. It is shown that the serial assembling of dipoles does not make it stronger, 

it only creates a bigger gap between the negative and positive pole. However, placing the poles on 

2 parallel lines will create a big dipole with higher potential and field. 

Another important characteristic is that when the distance between the poles is small, a dipole in 

any orientation 𝜃 is approximated by equation (2) [31,32] , where the superscripts x, y denote the 

horizontal and vertical orientation of the dipoles. A visual of this superposition is given at Figure 

3-2, where it is shown that a horizontal dipole with a vertical dipole is equivalent to 2 dipoles 

placed at 45°.  

𝒱𝑑𝑖𝑝
𝜃 ≈ 𝒱𝑑𝑖𝑝

x cos(𝜃) + 𝒱𝑑𝑖𝑝
y
sin(𝜃) (2) 

 

Figure 3-2 : Electric Potential and field for static monopoles placed as (a) a dipole. (b) a small chain 

of simple dipoles. (c) a horizontal and a vertical dipole, equivalent as 2 dipoles at 45°. (d) a long 

chain of simple dipoles. (e) simple dipoles in parallel. 
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3.3 Potential and Fields Equations Adapted for Computer Vision 

In order to use the laws of EM, they must first be adapted for computer vision by removing some 

of the physical constraints and by ignoring the universal constants. In the “Appendix C.3 

Mathematical Laws of EM”, Maxwell’s equations are presented and simplified using the 

assumption that all charges are static. Furthermore, the 4 Maxwell’s equations are reduced to 2 

equations, since the electric field equations are symmetric to magnetic field equations. This allows 

generalizing the potential and field equations in a universe with 𝑛 spatial dimensions, where 𝑛 is a 

real number greater than 1. The modified field is presented at equation (3).  

𝑬𝑒,𝑚 = 𝑞𝑒,𝑚
𝒓 ̂

|𝒓|𝑛−1
 , 𝑛 ∈ ℛ+ & 𝑛 ≥ 1 (3) 

By using the electromagnetic laws presented in the appendix, we can write the relation between 

the potential 𝑉 and its gradient 𝐸 at equation (4).  

𝑬𝑒,𝑚 = −∇𝑉𝑒,𝑚 

𝑉𝑒,𝑚 = −∫𝐸𝑒,𝑚 ⋅ d𝒍
𝐶

 
(4) 

It is then possible to determine the potential by calculating the line integral of equation (3). This 

leads to equation (5), where we purposely omit all the integral constants and where the product 

constant terms that depend on 𝑛.  

𝑉𝑒,𝑚 ∝ 𝑞𝑒,𝑚 ⋅ {
|𝒓| 2−𝑛    ,   n ≥ 1,   n ≠ 2
ln|𝒓|       ,        𝑛 = 2         

 (5) 

For 𝑛 = 3, 𝑉𝑒,𝑚 ∝ |𝑟|
−1, which is identical to the real electric potential in 3D [30–32]. Because the 

field is the gradient of the potential, then the vector field will always be perpendicular to the 

equipotential lines, and its value will be greater when the equipotential lines are closer to each other 

[31].  

For the current paper, the term “electric” is used when using monopoles and “magnetic” or 

“magnetize” when using dipoles, because it is more intuitive.  
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3.3.1 Geometrical Interpretation of Potentials and Fields 

The mathematical formalism of EM and MEq have been presented and simplified, but with no 

purpose for shape analysis, which will be the main focus of this section. An in-depth analysis of 

circles and corners are presented at “C.4 Geometrical Interpretation of Maxwell’s Equations” and 

can help understand the following interpretation.  

If a given shape is filled with positive electric monopoles, then the field will tend to cancel itself 

near the center of mass (CM) or in concave regions. However, the potential is scalar, which means 

that it will be higher near the CM or in concave regions. This difference in the behavior of the 

potential and the field is observed in Figure 3-3.  

 

Figure 3-3 : Potential and field with 𝑛 = 3 for positive monopoles placed on (a) A circle. (b) A 

corner. 

Using this difference, we can determine the features of the shape in a given region depending only 

on the values of 𝑉𝑒 or |𝑬𝑒|. The characteristics of the potential and the field in different regions of 

the shape are summarized at Table 3.1. Of course, a combination of those factors is possible, like 

a concave region near the center of mass (CM), which yields to a really high potential and a slightly 

low field.  
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Table 3.1 : Potential and Field Characteristics at Different Regions of a Shape Filled with 

Monopoles, for 𝑛 > 2 

Region of interest Visual 𝑽𝒆 |𝑬𝒆| Legend 

Concave 
 

↑ ↓ 

↓↓ :  really low 

↓   :  low 

~↓ :  slightly low 

~   :  average 

~↑ :  slightly high 

↑   :  high 

↑↑ :  really high 

Convex 
 

~↓ ~↓ 

Flat 
 

~ ↑ 

Near CM 
 

↑ ~ 

Far from CM 
 

↓ ↓ 

Inside 
 

↑↑ ↓↓ 

3.3.2 Convolutions, Potentials and Fields 

The equations (4) and (5) are the main equations used in this paper. The potential is first calculated 

using equation (5) because it represents a scalar, which means it is easy to sum the contribution of 

every monopole by using 2D convolutions. Then, the vector field is calculated from the gradient 

of the potential. Convolutions are used because they are fast to compute due to the optimized code 

in some specialized libraries such as Matlab® or OpenCV®.  

3.3.2.1 Creating the monopole potential kernel 

Knowing that the total image potential is calculated from a convolution, the first step is to manually 

create the potential of a single particle on a discrete grid or matrix. The matrix must be composed 

of an odd number of elements, which allows having one pixel that represents the center of the 

matrix. If the size of the image is 𝑁 ×𝑀, it is preferable to have 𝑃𝑒 as a matrix of size 

(2𝑁 + 1) × (2𝑀 + 1). This avoids having discontinuities in the potential and its gradient. 

However, it means that the width and height of the matrix can be of a few hundred elements and 

take a longer time to compute without efficient libraries. The convolution kernel matrix for 𝑃𝑒 is 

calculated in the same way as 𝑉𝑒 at equation (5), because it is the potential of a single charged 

particle, with the distance 𝑟 being the Euclidean distance between the middle of the matrix and the 

current matrix element. An example of a small 𝑃𝑒 matrix of size 7 × 7 is illustrated in Figure 3-4, 

where it is noted that 𝑃𝑒 is forced to “1” at the center for continuity purpose.  
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Figure 3-4 : Example of convolution kernel for a particle potential matrix 𝑃𝑒 of size 7 × 7; 

(a) Euclidian distance from center 𝑟. (b) Potential of a centered monopole 𝑃𝑒 = 𝑉𝑒 , 𝑛 = 3 . 

3.3.2.2 Creating the dipole potential kernel 

Convolutions with dipole potentials can be used also to create an anti-symmetric potential and find 

the specific position of a point. Therefore, it is required to create a potential convolution kernel for 

a dipole 𝑃𝑑𝑖𝑝. We have to remember that a dipole is simply 2 opposite monopoles at a small distance 

from each other. This can be expressed as a mathematical convolution where 𝑃𝑑𝑖𝑝 is given by 

equation (6), and is visually shown in Figure 3-5. If divided by a factor 2, we can notice that this 

convolution is similar to a horizontal numerical derivative (shown later at equations (8) and (9)), 

meaning that the dipole potential is twice the derivative of the monopole potential [31].  

𝑃𝑑𝑖𝑝
𝑥 = 𝑃𝑒  ∗ [−1 0 1] , 𝑃𝑑𝑖𝑝

𝑦
= −(𝑃𝑑𝑖𝑝

𝑥 )
𝑇

 

size(𝑃𝑑𝑖𝑝) = size(𝑃𝑒) 
(6) 

Using equation (2) along with equation (6), it is possible to determine equation (7), which gives 

the dipole kernel at any angle 𝜃.  

𝑃𝑑𝑖𝑝
𝜃 ≈ 𝑃𝑑𝑖𝑝

x cos(𝜃) + 𝑖 𝑃𝑑𝑖𝑝
y
sin(𝜃) (7) 
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Figure 3-5 : Steps to calculate the normalized potential kernel for a dipole (a) Positive and 

negative monopoles at 1 pixel distance. (b) Potential kernel 𝑃𝑒 . (c) Dipole potential kernel 𝑃𝑑𝑖𝑝
𝑥   

resulting from the convolution of image “a” with kernel “b”. 

3.3.2.3 Creating the derivative kernels 

Derivative kernels are important to compute the field because we know from equation (4) that the 

field 𝑬𝑒,𝑚 is the gradient of the potentials 𝑉𝑒,𝑚. To use the numerical central derivatives, we simply 

need to apply the convolution given at equation (8), with the central finite difference coefficients 

given at equation (9) for an order of accuracy (OA) of value 2 [95].  

𝑑𝑓

𝑑𝑥
≈ 𝑓 ∗ Δ𝑥  ,

𝑑𝑓

𝑑𝑦
≈ 𝑓 ∗ Δ𝑦 (8) 

Δ𝑥 = (Δ𝑦)𝑇 =
1

2
[−1 0 1]  , OA =  2 (9) 

3.3.2.4 Calculating the potential and the field of an image 

A crucial step for the CAMERA-I technique is to transform an image into charged particles, which 

will allow calculating the electric potential and field. The first step is to determine the position and 

intensity of the charge. Each pixel with value +1 is a positive monopole, each pixel with value −1 

is a negative monopole, and each pixel with value 0 is empty space. Therefore, the pixels of the 

image represent the density of charge and have values in the interval [−1,… ,1], where non-integers 

are less intense charges.  

Next, the 𝑃𝑒 matrix is constructed as seen on Figure 3-4, and applied on the image with the 

convolution shown at equation (10). Then, the horizontal and vertical derivatives are calculated 

using equation (8) and give the results for 𝐸𝑥 and 𝐸𝑦. Finally, the norm and the direction of the 

field are calculated using equation (11). It is possible to visualize these steps at Figure 3-6, where 

a quadrupole is represented.  
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𝑉𝑒 = 𝐼 ∗ 𝑃𝑒  , size(𝑉𝑒) = size(𝐼) (10) 

𝐸𝑥,𝑦 = 𝑉𝑒 ∗ Δ
𝑥,𝑦 

|𝑬| = √(𝐸𝑥)2 + (𝐸𝑦)2 

𝜃𝐸 = atan2(𝐸
𝑦, 𝐸𝑥) 

(11) 

 

Figure 3-6 : Calculation of the potential and field of an image (a) Monopoles in the image. 

(b) Potential kernel 𝑃𝑒 . (c) Total potential 𝑉𝑒 . (d) Horizontal field 𝐸𝑒
𝑥. (e) Vertical field 𝐸𝑒

𝑦
 . (f) 

Field norm |𝑬𝑒| and direction 

The same process that is used to transform each pixel into a monopole can be used to transform 

them into a magnetic dipole, by using the result presented in Figure 3-5 as the kernel. The steps 

and results are shown in Figure 3-7 where each pixel is transformed into a horizontal magnetic 

dipole with 𝜃 = 0. The formula to calculate the magnetic potential using a convolution is given at 

equation (13), with the density correction factor 𝐹 shown at equation (12). This density factor 𝐹 

allows to consider the fact that pixels placed in diagonal have a lower number of pixels per unit 

length then those placed horizontally. The angle 𝜃 depends on the image, as it is often chosen to 

be either parallel or perpendicular to the direction of the element to magnetize. Also, the matrix 

size of 𝑉𝑚 is the same as the matrix size of 𝐼. The real part is chosen in equation (13) to represent 

dipoles perpendicular to 𝜃, while the imaginary part represents dipoles parallel to it.  

𝐹 = max(|cos(𝜃)|, |sin(𝜃)|)−1   ⇒   1 ≤ 𝐹 ≤ √2 (12) 

𝑉𝑚 = ℜ((𝐼 ∘ 𝐹 ∘ e
𝑖𝜃) ∗ 𝑃dip

𝜃 ) (13) 
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Figure 3-7 : Steps to calculate the magnetic PF of an image (a) Dipoles in the image. 

(b) Horizontal dipole potential kernel 𝑃𝑚
𝑥 . (c) Total potential 𝑉𝑚 . (d) Horizontal field 𝐸𝑚

𝑥 . (e) 

Vertical field 𝐸𝑚
𝑦

 . (f) Field norm |𝑬𝑚| and direction. 

It is to note that the image (e) of Figure 3-7 is really similar to the image of quadrupole potential 

presented in Figure 3-6. This is because it represents 2 consecutive perpendicular derivatives of the 

potential of monopoles 𝜕 𝜕𝑥⁄ (𝜕 𝜕𝑦⁄ 𝑉𝑒), which is mathematically equivalent to a quadrupole potential.  

3.4 Application of EM Convolutions 

The previous section explained how to correctly build the convolution kernels, although real 

kernels are a lot bigger than the schematic demonstrations. In this section, the focus will shift on 

how to use those kernels for shape and partial contour analysis, and what are the advantages of 

using EM convolution kernels.  

3.4.1 Detecting Shape Characteristics 

This first sub-section will focus on the use of EM convolution kernels for the detection of multiple 

shape characteristics, such as the convex or concave regions, and the relative distance to the 

centroid.  

3.4.1.1 Finding the regions of interest 

It was discussed in the section “2.4 Geometrical Interpretation of Potentials and Fields” that the 

electric potential and field can be used for shape analysis, with a summary of the characteristics 

presented at Table 3.1. To demonstrate those characteristics, a special shape is created with all the 

mentioned regions of interest (RoI), with the computed potential and field shown at Figure 3-8. 
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The index “onC” means that the values were set to 0 everywhere but on the contours. It is to note 

that the PF are computed using the whole surface of the shapes and that the values are set to 0 after 

the computation of 𝑉𝑒 and |𝑬𝑒|. The contour of a full shape can be easily determined with 

morphological operations. The values of the potential 𝑉𝑒
onC and field |𝑬𝑒

onC|on the contours are 

squared to show a better contrast between the low values and the high values. They are also 

thickened using image dilation, for the purpose of showing better images.  

The value of the dimension is set to 𝑛 = 3 for these examples, as it is found experimentally to be 

ideal for such an nalysis. By choosing a value of 2 < 𝑛 < 3, a similar interpretation can be done, 

but it will increase the contribution of the pixels very far from each other, and significantly reduce 

the contribution of nearby pixels. By choosing a value of 𝑛 > 3, it will reduce the contribution of 

pixels that are far from each other, and increase the contribution of nearby pixels. Hence, the value 

of 𝑛 = 3 was found to be a good equilibrium of the contribution of nearby and far pixels, although 

each specific application could optimize its value. For a more advanced analysis, it is possible to 

use various different dimension values, such as 𝑛 = {2.3, 3, 4}, and to combine the information 

given by each value of 𝑛.  
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Figure 3-8 : (a) Special shape with the white region being a uniform density of charge, used to 

compute the following PF with 𝑛 = 3. (b) The potential 𝑉𝑒. (c) The field |𝑬𝑒|. (d) The potential 

squared only on the contour (𝑉𝑒
onC)2. (e) The field squared only on the contour |𝑬𝑒

onC|
2
. 

Using the values of 𝑉𝑒
onC and |𝑬𝑒

onC| depicted at Figure 3-8, it is possible to find the regions of 

interests, as seen at Figure 3-9. The percentile thresholds that are used are shown in Table 3.2. 

Since the shape that is used is complex, the regions are not perfectly discernable, as usually 

expected. For example, a concave region (which expects a high value of 𝑉𝑒) can also be far from 

the CM (which expects a low value for 𝑉𝑒), hence, the thresholds are contradictory. However, this 

can be used as an advantage, since it allows to use general information about an image, and make 

it more robust to noise. In fact, regular convolution kernels are small, which makes them vulnerable 

to small variations in the shapes contours, but it is not the case for EM kernels. EM kernels are also 

invariant in rotation and robust to deformations.  

It is to note that using constant thresholds might lead to problems regarding the continuity of a 

region, which could be fragmented in a few small parts. To avoid this problem, all regions are 

grown by a security factor, which is chosen as 5% of the biggest dimension of the shape (this factor 
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can be changed depending on the needs). Using such a percentage allows the growing to be robust, 

no matter the resolution or the size of the shape. The algorithm for such a region growing is 

explained in Algorithm 10-A, at the “Appendix C.5 Partial contour Manipulations”.  

 

Figure 3-9 : RoI found on a complex shape using a contour analysis by potential and field 

thresholds. (a) Concave regions. (b) Convex regions. (c) Flat regions. (d) Regions near the CM. 

(e) Regions far from the CM. (f) Regions inside the shape.  

Table 3.2 : Percentile Thresholds Used for the Discovery of the Regions of Interest 

Region of interest 
Thresholds percentile for 𝑽𝒆 Thresholds percentile for |𝑬𝒆| 

Min (%) Max (%) Min (%) Max (%) 

Concave 70 100 0 50 

Convex 15 40 15 40 

Flat 40 60 80 95 

Near CM 80 95 40 60 

Far from CM 0 25 0 25 

Inside 90 100 0 10 

 

3.4.1.2 Robustness to deformation 

To demonstrate the robustness of the technique, the shape of Figure 3-9 is modified using a 

combination of the following filtering, both on small and big scale: twirl, twist and wave. The 

shape resulting from the filtering is presented at Figure 3-10, with the RoI computed using once 

again the thresholds of Table 3.2. As observed, the discovered regions for both Figure 3-9 and 
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Figure 3-10 are almost identical, with only minor differences. From all the RoI, the only differences 

comprise of one convex region, one flat region, and one region far from the CM. All other regions 

are present on both figures at the same place. Those differences are minor and are expected since 

the shape has been greatly modified by the multiple filtering.  

Hence, we show that the proposed technique is highly robust against shape and contour 

deformation for detecting RoI. This is mainly due to the electric field that considers every pixel 

inside a shape, not only those in a small region of the contour. In fact, although the contour of the 

shapes in Figure 3-9 and Figure 3-10 are greatly different, the total pixels inside the shape area had 

a lot less variation, which means that the values of the EMPF are almost identical. Other 

convolution kernels are small, meaning that they focus only on local information. Hence, kernels 

that detect concave regions will detect any bump in the contour that is locally concave, making it 

really vulnerable to deformation.  

 

Figure 3-10 : RoI found on a complex shape (filtered with a twirl, twist and wave distortion) 

using a contour analysis by potential and field thresholds. (a) Concave regions. (b) Convex 

regions. (c) Flat regions. (d) Regions near the CM. (e) Regions far from the CM. (f) Regions 

inside the shape.  
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3.4.1.3 Analysis of 3D shapes 

In spite of being robust to deformation, an important characteristic of EMPF is that they can be 

used in 3D without any added complexity. Of course, computation time will be longer in 3D, but 

it is partly compensated by resolution which is usually lower than 2D images.  

However, since there is more information in 3D than 2D, it is easier to analyze 3D objects using 

different values of 𝑛. The same rules of Table 3.1 still apply, but a value of 𝑛 < 4 will be more 

sensible to the CM, while a value of 𝑛 > 4 will be more sensible to the local convexity. An example 

of result for a 3D mug is presented at Figure 3-11, with 𝑛 = {3, 4}. It can be observed that 

|𝐸𝑜𝑛𝐶|𝑛=3 is better at determining the inside of a cup with opposing faces, while |𝐸𝑜𝑛𝐶|𝑛=4 is better 

at finding the bottom of the cup, where the concavity is the highest. Furthermore, (𝑉𝑜𝑛𝐶)𝑛=4 is 

better than (𝑉𝑜𝑛𝐶)𝑛=3 at finding the local convexities at the border of the cup.  

 

Figure 3-11 : EM potential 𝑉 and field 𝐸 generated by a 3D mug, with different values of 𝑛. (a) 

𝑉𝑜𝑛𝐶
2  with 𝑛 = 3. (b) |𝐸|𝑜𝑛𝐶

2  with 𝑛 = 3. (c) 𝑉𝑜𝑛𝐶
2  with 𝑛 = 4. (d) |𝐸|𝑜𝑛𝐶

2  with 𝑛 = 4.  

3.4.2 Magnetic Repulsion for Partial contour Interaction 

As demonstrated in the last section, the electric potential and field allow analyzing a shape and its 

contour. In this section, a new tool will be developed to show how magnetism can be used to 

analyze thin partial contours and their interactions. A thin partial contour is defined as any curve 

or line that has only one-pixel width. Hence, each pixel of the partial contour has a maximum of 2 

neighbors, except at the intersection of multiple partial contours.  



36 

 

3.4.2.1  Choosing the Magnetic Dimension 

One major difference between analyzing full shapes and partial contours is the impact of image 

resolution. For a full shape, if the resolution is lowered, the total relative area between the shape 

and the image remains the same.  

For a thin partial contour, if the resolution is lowered, then each pixel of the partial contour is wider. 

Hence the partial contour has a bigger relative area when the resolution is low. This causes 

problems when using EM convolutions since the area represents the total charge. However, it is 

found that using 𝑛 = 2 for the EMPF makes it invariant of the thickness of the partial contour and 

the resolution of the picture. This can be observed at Figure 3-12, where 2 partial contours of 

different resolutions are magnetized perpendicular to the partial contour with dimensions 𝑛 = 2 

and 𝑛 = 3. For the value of 𝑛 = 2, presented at the subfigures (c) and (f), we can observe that the 

equipotential lines are exactly the same. However, this is not the case for subfigures (b) and (e), 

where 𝑛 = 3. The potentials of Figure 3-12 are computed using equation (13), with 𝜃 being the 

orientation perpendicular to the line. To find the orientation 𝜃 for any kind of partial contour, it is 

possible to use Algorithm 10-B in the “Appendix C.5 Partial contour Manipulations”.  

 

Figure 3-12 : Potential 𝑉𝑚 resulting of the convolution of a dipole perpendicular to the partial 

contour lines. (a) Partial contour with low resolution 64x64. (b) Dipole with 𝑛 = 3 and low 

resolution. (c) Dipole with 𝑛 = 2 and low resolution. (d) Partial contour with high resolution 

512x512. (e) Dipole with 𝑛 = 3 and high resolution. (f) Dipole with 𝑛 = 2 and high resolution. 

Another important characteristic of the potential with 𝑛 = 2 is that it is the only dimension which 

ensure a conservation of energy in the potential and field of the image, since the image is in 2D. In 

fact, the conservation of energy is the reason why a thin partial contour requires 𝑛 = 2 to be 
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invariant of the image resolution. If we chose a value of 𝑛 > 2, then some energy will be lost in 

the higher dimensions as we go further from the EM particles. Inversely, a value of 𝑛 < 2 will 

create more energy as we go further from the EM particles. Using the same principles, it is possible 

to deduct that a thin plane in a 3D image requires 𝑛 = 3 to be invariant of the resolution.  

The conservation of energy means that Gauss’s Theorem can be applied to the field produced by a 

partial contour. By using Gauss’s Theorem, we can know that any closed partial contour, which is 

magnetized perpendicular to its direction, will produce a null field both inside and outside the 

partial contour. The fact that the field is null means that the potential is constant, both inside and 

outside the partial contour, but with different values. This can be observed in Figure 3-13, where 

the closed partial contour is chosen to be a circle. The more the circle is near closing, the more the 

potential is uniform. However, this is only true for 𝑛 = 2. The value of 𝑉𝑚 is given by equation 

(13), with 𝜃 computed using Algorithm 10-B.  

In summary, the dimension value for the partial contour analysis must be 𝑛 = 2, for both purposes 

of resolution invariance and conservation of energy.  

 

Figure 3-13 : Potential 𝑉𝑚 of a circular partial contour magnetized perpendicular to their 

orientations. (a) Circle arc of 90°, with 𝑛 = 2. (b) Circle arc of 270°, with 𝑛 = 2. (c) Circle arc 

of 360°, with 𝑛 = 2. (d) Circle arc of 90°, with 𝑛 = 3. (e) Circle arc of 270°, with 𝑛 = 3. (f) 

Circle arc of 360°, with 𝑛 = 3. 

3.4.2.2 Magnetic Interaction 

As seen previously in Figure 3-13 with 𝑛 = 2, a partial contour that is almost closed will have a 

higher potential |𝑉𝑚| inside it, with a lower potential outside. This can also be applied to 2 partial 
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contours that interact with each other by magnetizing them perpendicular to the partial contours 

with equation (13). It is possible to shift the value of 𝜃 by a factor of 𝜋 on each partial contour to 

flip the positive and negative side. By choosing carefully which partial contour is flipped, it is 

possible to maximize the magnetic repulsion in an image, as shown at Figure 3-14.  

When there is a magnetic attraction, which is when the positive (green) part of a partial contour 

meets the negative (pink) part of another partial contour, nothing interesting happens in terms of 

the potential. However, when there is a repulsion (positive meets positive, or negative meets 

negative), there is a high concentration of potential |𝑉𝑚| between the partial contours, with an 

almost constant value (low field |𝐸𝑚|). Henceforth, the magnetic interaction is interesting, as it 

offers an opportunity to analyze the whole 2D space using only thin 1D partial contours in the 

initial image.  

 

Figure 3-14 : PF computed from the initial partial contour, with 𝑛 = 2 and the dipole 

perpendicular to the partial contours. (a) Initial partial contour. (b) Potential of attraction 𝑉𝑚. (c) 

Potential of repulsion 𝑉𝑚. (d) Field of attraction |𝐸𝑚|
0.5. (e) Field of repulsion |𝐸𝑚|

0.5.   

3.4.2.3 Partial contour Analysis 

Similarly to the problem of detecting shape characteristics using electric PF, presented in the 

section “3.1 Detecting Shape Characteristics”, it is possible to detect the characteristics of a partial 

contour using magnetic PF. Furthermore, the partial contour analysis will be robust to deformation, 

for the same reasons as the robustness of the shape analysis. To analyze a partial contour, one must 

simply consider the potential |𝑉𝑚| produced by dipoles placed perpendicular to the partial contour, 

using equation (13) and Algorithm 10-B. Then, as seen on Figure 3-13, a concave region will 

produce a higher value of |𝑉𝑚|, while a convex region will produce a lower value. This is also 
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analogous to the magnetic repulsion interaction presented in the section “3.2.2 Magnetic 

Interaction”. An example of this method and its robustness is presented in the Figure 3-15, where 

it is observed that the values of |𝑉𝑚|
2 are almost identical for the partial contour, the deformed 

partial contour and the heavily distorted partial contour.  

 

Figure 3-15 : Partial contours for the number “2” at the left, with the potentials 𝑉𝑚 of dipoles 

perpendicular to the partial contours, with 𝑛 = 2. (a) Clean partial contour. (b) Deformed partial 

contour. (c) Heavily distorted partial contour.  

3.4.3 Summary of The Advantages of Electromagnetic Convolution Kernels 

The focus of the current paper was mostly about the development and the appropriate usage of EM 

convolution kernels. Although many characteristics were presented, no concrete application is 

developed, making it harder to understand the real advantage of such an unusual approach. Hence, 

this section will focus on enumerating and explaining the great advantages and the uniqueness of 

EM for image analysis, when compared to other methods.  

3.4.3.1 Resolution and Size Independence 

The first clear advantage is the resolution and size independence of any EM convolution kernel. 

This characteristic is unique and is present both in shape and partial contour analysis. This means 
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that no matter the resolution of the image or the size of the shapes or partial contour in the image, 

the ideal kernel size is (2𝑁 + 1) × (2𝑀 + 1), with 𝑁 and 𝑀 being the width and height of the 

image. If the resolution of the image is doubled, the kernel size is also doubled, but it won’t change 

the results (although a super low resolution will be prone to numerical errors and might change the 

characteristics of the image). This is a characteristic that most kernels in the literature do not 

respect, since they are typically with a size between 3 × 3 and 31 × 31 [34,36]. Hence, changing 

the resolution of the image or the elements inside the image requires to change the resolution of 

the kernels [34,36]. This is problematic since the pixel width and height of a feature is unknown 

and is not necessarily dependent on the resolution of the image.  

3.4.3.2 Orientation independence 

In addition to being independent of size and resolution, the proposed EM kernels are also 

orientation independent, meaning that any rotation applied to the image will not alter the results. 

This is a feature that is usually available only with rotation symmetric kernels [34], such as 

Gaussian filters or the 𝑃𝑒 kernel presented at equation (5). However, the current method also 

presents how to use the asymmetric kernel 𝑃𝑑𝑖𝑝
𝜃  of equation (7) such that it is independent of the 

orientation. This is because the value of 𝜃 is dependent on the local orientation of a partial contour, 

which changes along with the rotation of the image. Hence, what is presented is a unique 

asymmetric kernel that is independent in size, resolution and orientation. This is in contrast with 

other kernels, such as texture algorithms, which usually require 4 to 11 scales and 2 to 8 orientations 

[34,96], for a total of 4 to 88 filters required for the same feature detection.  

3.4.3.3 Robustness to Deformation and Noise 

Another interesting feature is the robustness to heavy deformation, which was previously shown 

in Figure 3-10 and Figure 3-15. This is something that standard kernels cannot handle well due to 

their size. In fact, a small kernel will be way more affected by a local distortion, meaning that a 

standard kernel will find convex and concave regions almost everywhere in the presented distorted 

figures [96]. Furthermore, the standard techniques of contour approximation, such as the polygonal 

approximations and the Fourier descriptors, are too heavily affected by heavy variations on the 

contour [90,93]. This is because those techniques rely only on the pixel of the contours, while the 

approach considers every pixel inside the shape. Those pixels inside the shape are far less affected 
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by deformation than those on the contours. Similarly, adding noise to the pixels inside a shape will 

negligibly affect the total potential and field generated, since positive and negative noises will tend 

to even out.  

3.4.3.4 Unlimited receptive field 

An important feature of EM kernels is that they also allow taking into account the interaction 

between different partial contours or shapes, as shown in Figure 3-14. It potentially allows to group 

multiple partial contours together, or the find the total PF generated by multiple shapes. This is a 

characteristic that is only possible using big kernels since it is impossible for a small kernel to link 

2 distant partial contours. Other methods also propose an unlimited receptive field, such as the 

force vector fields for active contours [29,43], as they use vector kernel to find the force interaction 

between each part of a contour.  

3.4.3.5 Full Space Information 

Another unique feature of the EM kernels is that they allow analyzing pixels that are not in the 

shape or partial contour of interest. For example, the partial contour analysis of Figure 3-15 allows 

telling if each pixel is positioned inside the concave regions of the number “2”, or if it is in the 

convex region. This is impressive since convolution kernels usually give only local information of 

an image. However, in that case, the EM kernels are able to generate 2D information from a 1D 

partial contour.  

3.4.3.6 Does not Require Shape Approximations 

The EMPF approach has the unique capability of not reducing the dimensionality of the studied 

shapes. In fact, it was stated in the section “1.1 Related Work” that the other shape analysis 

techniques reduce the shape into a 0D value or a 1D contour/skeleton. These dimensionality 

reductions make the analysis simpler, but they tend to remove some critical information. 

Furthermore, techniques such as polygon approximation and Fourier descriptors require to 

approximate the shape of an object, which does not work well with complex shapes or shapes with 

holes [37,38,90].  

 Furthermore, EMPF even has the possibility of being used on 3D shapes, as seen in Figure 3-11, 

since the laws of EM can still be applied using equation (5). Since 3D shapes are far more complex 
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than 2D shapes, the advantage of using the proposed CAMERA-I approach is even greater, as it 

does not require any shape approximation.   

3.4.3.7 Cannot be Learned 

Since the dawn of CNN's, there is no point of creating a new convolution kernel if it can be learned 

by the network. The reason is that CNN's use dozens or hundreds of optimized kernels [45], 

meaning that any useful and “learnable” kernel will be obtained by the network optimization. 

However, the EM kernels presented in the current paper cannot be learned by such methods, and 

for several reasons. First, it was already mentioned that the kernels in a CNN are small [22,23,45], 

usually less than 11 × 11. Hence, it is impossible to learn a kernel that is twice the size of the 

image. Another important reason is the use of the magnetic potential 𝑉𝑚 that requires to convert 

the image into complex numbers using Euler’s formula exp (𝑖𝜃), convoluted with a kernel of 

complex values, as seen in equation (13), with the angle 𝜃 being related to the direction of the 

partial contour. This kind of specific feature is impossible to generate throughout the optimization 

of standard CNN, since they do not use complex numbers.  

3.4.4 Comparison with the literature 

The advantages presented in the previous section highlighted the interesting characteristics of the 

CAMERA-I approach for Computer Vision. A summary of these advantages is listed in Table 3.3, 

with a direct comparison to state-of-the-art methods of image analysis.  

Table 3.3 : Qualitative Comparison Between Different Image Analysis Methods 

Characteristics CAMERA-I 
CNN's 

[23,34,45] 

Fourier Descriptors 

[37,38] 

Resolution and size independence ✓  ✓ 

Orientation independence ✓  ✓ 

Robustness to deformation ✓  ✓ 

Unlimited receptive field ✓   

Full space information ✓ ✓  

Allows shape analysis ✓ ✓ ✓ 

Allows partial contour analysis ✓ ✓  

Can be adapted to any problem  ✓  

Can be easily used for machine 

learning 
 ✓  

Does not require heavy computing ✓  ✓ 
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From Table 3.3 one can see that the CAMERA-I approach is complementary to CNN's, but in direct 

competition with Fourier descriptors. One needs to note that the examples of results using Fourier 

descriptors with 4 or 32 harmonics are illustrated in Figure 3-16. First of all, we can clearly see 

that 4 harmonics is not enough to describe complex shapes. Using 32 harmonics, the results look 

better, but there is a lot of oscillations, which makes it difficult to accurately determine the convex 

and concave regions since this technique relies on the local curvature. In addition, we can observe 

that Fourier descriptors cannot deal with holes in the shapes, and must consider the holes as 

separate shapes, contrarily to the CAMERA-I approach (as previously shown in Figure 3-9 and 

Figure 3-10). Finally, Fourier descriptors are only good to analyze full shapes, and cannot be used 

for partial contour analysis or partial contour interactions, which is another advantage of the 

proposed approach.  

 

Figure 3-16 : Contour approximation via Fourier descriptors. (a) Fourier descriptor with 4 

harmonics. (b) Fourier descriptors with 32 harmonics. [37,38] 

3.5 Conclusion 

The objective of this paper was to develop different electromagnetic convolution kernels that can 

be used in computer vision applications and to demonstrate its effectiveness for shape and partial 

contour analysis. The paper showed how to express the images as electromagnetic particles with 

possible varying density, allowing to efficiently compute the potential 𝑉𝑒 and field |𝑬𝒆| associated 

to them, using convolutions. Using the computed values, it is possible to quickly determine some 

regions of interest, such as the convex or concave regions, and the proximity to the centroid. This 
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method was demonstrated to be robust to noise and heavy deformation, and invariant to size, 

resolution and orientation.  

Furthermore, a novel directional magnetic convolution is presented at equation (13), which allows 

computing a 𝑉𝑚 and field |𝑬𝑚| that depend on the local density and orientation of thin partial 

contours. This is a unique way of applying convolution kernels, which proved to be robust to heavy 

deformations, to allow high distance partial contour interaction and to determine local or global 

partial contour characteristics. Plus, it offers a unique way to analyze all the pixels in a 2D image 

depending on their relative position to the 1D partial contour.  

In summary, the electromagnetic kernels proved to be an efficient and robust way to analyze 

images, with unique characteristics that make it impossible to be the result of an optimized or 

learned kernel. In fact, the EM kernels proved to be independent of the image size, resolution or 

orientation, in addition to being really robust to deformation. A continuation of this work could 

focus on the development of specific applications based on those properties.  
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Abstract 

In Computer Vision, edge detection is one of the favored approaches for feature and object 

detection in images since it provides information about their objects’ boundaries. Other region-

based approaches use probabilistic analysis such as clustering and Markov random fields. In fact, 

only image segmentation can produce regions based on edges, but it requires thresholding by 

simply separating the regions into binary in-out information. Hence, there is currently a gap 

between edge-based and region-based algorithms, since edges cannot be used to study the 

properties of a region and vice versa. The objective of this paper is to present a novel spatial 

probability analysis that allows determining the probability of inclusion inside a set of partial 

contours. To answer this objective, we developed a new approach that uses electromagnetic 

convolutions and repulsion optimization to compute the required probabilities. Hence, it becomes 

possible to generate a continuous space of probability based only on the edge information, thus 

bridging the gap between the edge-based methods and the region-based methods. The developed 

method is consistent with the fundamental properties of inclusion probabilities and its results are 

validated by comparing an image with the probability-based estimation given by our algorithm. 

The method can also be generalized to take into consideration the intensity of the edges or to be 

used for 3D shapes. This is the first documented method that allows computing a space of 

probability based on interacting edges, which opens the path to broader applications such as image 

segmentation and contour completion.  

Keywords: Computer vision; Partial contour; Probability of inclusion; Edge interaction; Image 

convolution; Electromagnetic potential field.  
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Definitions and acronyms 

Path : A function of time 𝑆(𝑡) that starts at position 𝑆(𝑡𝑖) = 𝛾𝑖 and ends at position 𝑆(𝑡𝑓) = 𝛾𝑓 

Contour : A closed path with only 1 intersection at points 𝑆(𝑡𝑖) = 𝑆(𝑡𝑓)  

Partial contour : Part of a contour, for time 𝑡𝑖 ≤  𝑡 ≤  𝑡𝑓 

Edge : Weight associated with the probability that a given pixel is at the boundary of 2 regions  

CAMERA-I : Convolution Approach of Magnetic and Electric Repulsion to Analyse an Image 

PIIPE : Probability of Inclusion Inside Partial Edges 

4.1 Introduction 

 Image analysis and understanding is a challenging subject in computer vision since there is an 

infinity of different images and videos that can be processed. Hence, properly extracting 

information from an image is a difficult task that often requires heavy computation and complex 

methodologies [23,34]. One possible approach for image analysis is using probabilistic algorithms 

that allow comparing different parts of an image with their respective characteristics, which can be 

used for texture understanding [97,98], image segmentation and clustering [55,56,99] and machine 

learning [100]. They are also used by several researchers for probabilistic image construction based 

on Markov fields or deep learning [101–103], allowing to fill parts of the images that are missing 

and generate artificial images.  

One distinction between the cited algorithms is that edge-based methods generate information in a 

1D space composed of thin edges [23,28,34,64], while the region-based methods generate 

information in a 2D space composed of pixels [23,34,54–56]. Currently, multiple existing methods 

group edges to generate closed regions [50–53], but they do not provide any spatial information 

about the pixels not belonging to a contour. This implies that they cannot be used jointly with other 

region-based methods. Hence, there is a need to develop a novel probabilistic algorithm that 

generates spatial information based on the edges of an image, since it will close a gap in image 

analysis and could therefore unlock new possibilities. The approach proposed in this paper differs 

from any other existing algorithm since it provides spatial information based only on thin edges, a 

unique feature that does not exist elsewhere in the literature. This feature can then be used in 
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different computer vision algorithms, such as contour completion [50–53] and edge-based image 

segmentation [104,105] or saliency [106,107]. 

In this paper, 4 similar concepts are used, namely a path, a partial contour, a contour, and an edge. 

It is therefore important to fully understand the distinction between them. The full definitions are 

given in “Definitions and acronyms”, with the time 𝑡 used to define the progression of the 

parametric functions, where 𝑡𝑖 is the initial time and 𝑡𝑓 is the final time. In summary, a path is any 

function 𝑆(𝑡), a contour is any non-self-intersecting closed path, a partial contour is any partial 

contour, and an edge is a weight associated to a pixel present at the boundary of 2 regions. An 

example of those concepts is presented in Figure 4-1.  

 

Figure 4-1 : Definitions of different concepts. (a) Image of an elk from BSD500 dataset. (b) 

Edges computed using the Sobel algorithm. (c) The contour of the elk. (d) Partial contour (stroke) 

along with 2 possible paths that close the partial contour.  

In our previous research work [15], we reported that electromagnetic (EM) convolutions allow 

analyzing different properties of a shape or a partial contour. We demonstrated how the EM dipoles 

can be chosen to be invariant in regards to the size, the resolution and the orientation of a partial 

contour, thus allowing its analysis. Also, it was confirmed that the EM kernels are robust to 

distortions and deformation [15,21], which makes them ideal for the analysis of the general 

behavior of a complex partial contour. Furthermore, we showed that the EM approach allows 

generating information in the whole 2D space, based only on the 1D partial contour. This allowed 

us to take into consideration the interaction between different partial contours, their general 

concavity and to analyze the space between different partial contours [15]. Improving the 
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algorithms for partial contour analysis can be useful in multiple applications, such as shape analysis 

[92,108], object discovery [6,109,110] and object grasping [38,44].   

Building upon our previous research [15], the objective of the research work presented in this paper 

is to develop a new and improved method for computing the space probability of inclusion inside 

a partial contour using dipole electromagnetic convolutions [15], with the assumptions that any 

partial contour is meant to be closed and that different partial contours interact together. This paper 

will emphasis on developing the algorithm, but it will not present any application apart from the 

images used for exemplifying the mathematical concepts. Hence, it is the precursor of future 

application-focused work. The main objective is reached by completing the following steps:  

Determine an analytical representation for computing the probability of being included inside 

partial contours, using a finite set of possible curves. 

Generalize the results for a continuous space of probability using an uncountable set of circular 

curves. 

Study the characteristics of the probabilities to ensure their consistency.  

Demonstrate the equivalence between the space probabilities of step “2” and the computation of 

numerical magnetic convolutions.  

Develop the algorithm to compute the space probability on complex images, where multiple shapes 

and contours are present.  

The validation of the developed method will be carried out by showing how the partial contours 

can be used to generate an estimation of the original image which was used for edge detection 

[63,64]. The approach is based on the premise that each edge should form a closed contour and 

uses this premise to compute the probability that each point in space is contained within the given 

contours. Hence, based only on their shape and their position, it can determine the regions of 

interaction and the partial contours that do not belong together. Thus, it differs fundamentally from 

any other probabilistic method in computer vision since it does not need information about color, 

texture, intensity, motion, etc.  

The proposed technique is called PIIPE for Probability of Inclusion Inside Partial Edges, and it 

belongs to the general approach CAMERA-I [15,21] (Convolution Approach of Magnetic and 
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Electric Repulsion to Analyze an Image) developed in our laboratory at École Polytechnique de 

Montréal. Hence, the full name of the approach is CAMERA-I-PIIPE.  

4.2 Computing the inclusion probabilities with circular paths 

This section aims at understanding how to compute the probabilities that any point is enclosed 

within an open partial contour, knowing that a single path should close the partial contour. First, 

this section will justify that circular paths have the ideal characteristics for enclosing paths. 

Secondly, it will show how an infinite number of circular paths can be used to compute the 

probability of enclosure. Finally, the properties of the computed probabilities and their validity are 

analyzed.  

4.2.1 The importance of subsets regions 

This subsection presents the concept of computing the probability of inclusion for a partial contour, 

which requires to consider different possible paths that close the given partial contour. Although 

the most trivial path between 2 points at the extremities of the partial contour is a straight line, the 

developed technique requires to consider different possible paths for the computation of the space 

of probabilities. This is because a single path to close the partial contour will lead to only 2 possible 

values being “0” (outside the contour) and “1” (inside the contour). Hence, a space of probabilities 

other than “0” and “1” requires more possible paths.  

To generate simple and intuitive paths, the paths between 2 points should be non-self-intersecting, 

convex and smooth, as discussed in more details in the appendix “D.2.1Characteristics of the paths 

between 2 points”. Then, it is possible to define a path 𝑆𝑛 that passes by the extremities 𝛾𝑖,𝑓 of a 

given partial contour 𝑆. Therefore, if 𝑆 and 𝑆𝑛 do not intersect, it is then possible to define a region 

𝑅𝑛 which is bounded by 𝑆 and 𝑆𝑛. This is shown in Figure 4-2, where the region 𝑅𝑛 contains the 

point 𝛾𝑖𝑛 but excludes the point 𝛾𝑜𝑢𝑡. A more rigorous definition of 𝑅𝑛 will be given at section 

“4.2.3 Intersecting circular arcs” in equation (22).  
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Figure 4-2 : Example of a partial contour 𝑆 between points 𝛾𝑖,𝑓, closed by a path 𝑆𝑛 to generate 

the region 𝑅𝑛 containing the point 𝛾𝑖𝑛 but excluding 𝛾𝑜𝑢𝑡. 𝑆 is an existing partial contour and 

does not have restrictions. 𝑆𝑛 is the generated path used to close 𝑆,  thus 𝑆𝑛 must be non-self-

intersecting, convex and smooth.   

The probability that a given point 𝛾in is inside the region 𝑅𝑛 can be computed if we allow a finite 

number of regions 𝑁𝑅 that are partially bounded by 𝑆, where there is a smaller number 𝑁𝛾 of regions 

𝑅𝑛 that contain 𝛾in (𝛾𝑖𝑛 ⊂ 𝑅𝑛), versus the total number of regions 𝑁𝑅. Then, by assuming that each 

path 𝑆𝑛 is equiprobable, it is possible to compute the probability 𝑃𝑆 of being inside the partial 

contour 𝑆 using equation (14).  

𝑃𝑆(𝛾 ⊂ 𝑅𝑛) =
𝑁𝛾

𝑁𝑅
 (14) 

To compute the probabilities given by (14), it is required to find the values of 𝑁𝛾 and 𝑁𝑅. To 

significantly reduce the complexity of the problem, we can choose the paths 𝑆𝑛 such that it does 

not intersect any other path 𝑆𝑚≠𝑛, except at the points 𝛾𝑖 and 𝛾𝑓 (noted 𝛾𝑖,𝑓). We also define 𝑆𝑛
+ 

and 𝑆𝑛
−, with each sign representing a path on a different side of 𝑆. The numbering variable 𝑛± and 

the angle 𝛽𝑛
± are also defined according to the sign and numbering of 𝑆𝑛

±.  

Therefore, if we suppose that a path 𝑆𝑛
± does not intersect 𝑆𝑚≠𝑛

± , that it is associated to a starting 

angle 𝛽𝑛
± (refer to Figure 4-3), and that each angle 𝛽𝑛

± is smaller than the next angle 𝛽𝑛+1
± , than we 

can deduce that each region 𝑅𝑛
± will be a subset of the region 𝑅𝑛−1

± . This relation is expressed in 

equation (15), with an arbitrary example presented in Figure 4-3 using 𝑛+ = [1, … , 5] and 𝑛− =

[1, 2].  

𝑆𝑛
±(𝑡𝑛) ≠ 𝑆𝑚≠𝑛

± (𝑡𝑚) ∀ {𝑡𝑛, 𝑡𝑚}

AND
𝛽𝑛
± < 𝛽𝑛+1

±
}   ⇒ 𝑅𝑛

± ⊂ 𝑅𝑛−1
±  (15) 
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Since the angles 𝛽+ and 𝛽− have the same starting and ending points but in different directions, 

then the relationship between them is given by equation (16).   

𝛽− = 2𝜋 − 𝛽+ (16) 

For any non-infinite value of 𝑁𝑅, the value of 𝑁𝛾 depends of the value of 𝑛 that respects the 

condition 𝛾 ⊂ 𝑅𝑛. For example in Figure 4-3 where 𝑁𝑅 = 7, the probability 𝑃𝑆 of any point being 

within the region 𝑅𝑛 can be computed using equation (14), with the result shown in equation (17).  

𝑃𝑆example
(𝛾 ⊂ 𝑅𝑛

±) =
𝑁𝛾

𝑁𝑅
=
𝑛±

𝑁𝑅
=
𝑛±

7
 (17) 

 

Figure 4-3 : Example of 7 paths 𝑆𝑛 between points 𝛾𝑖 and 𝛾𝑓, with starting angles 𝛽1→5
+  and 𝛽1→2

− , 

such that 𝑅𝑛, the region between 𝑆𝑛 and 𝑆, is a subset of 𝑅𝑛+1 

It is worth noting that since every region 𝑅𝑛
± is a subset of 𝑅𝑛−1

± , it is possible to compute the 

probabilities 𝑃𝑆 of belonging to the region 𝑅𝑛in the case of a finite set of partial contours using 

equation (14). Still, it is even more important in the case of an uncountable set of partial contours, 

since it will allow generating a continuous space of probabilities. To generate such an uncountable 

set of partial contours, one can define a partial contour 𝑆(𝛽±) for any angle 𝛽± = [0, 2𝜋]. Hence, 

there will be an infinite number of regions, meaning that the ratio in equation (14) will yield an 

indetermination. However, since there is a single curve 𝑆± associated to each angle, and since the 

regions 𝑅𝑛
± are subsets of 𝑅𝑛−1

± , then the indetermination can be solved by replacing 𝑁𝑅 by the total 

span of 𝛽±, and 𝑁𝛾 by the span of 𝛽± such that 𝛾 ⊂ 𝑅𝑛
±. Therefore, the probabilities 𝑃𝑆 can be 



52 

 

computed using equation (18), where 𝛽γ
± is the biggest angle that contains the point 𝛾. Since 𝛽𝛾

± is 

bounded by 0 and 2𝜋, then the probability is also bounded by the inequality (19).  

𝑃𝑆(𝛾 ⊂ 𝑅
±) =

range(𝛽±(𝛾 ⊂ 𝑅±))

range(𝛽±)
=
𝛽𝛾
±

2𝜋
 (18) 

 0 ≤ 𝑃𝑆 ≤ 1 (19) 

4.2.2 Circular paths between 2 points 

The previous section showed that it is possible to compute 𝑃𝑆 using equation (18) for an 

uncountable set of paths, without explaining how to generate such a set. Hence, this section will 

present how to generate a set using circular paths. Circular paths are ideal since they are smooth 

𝐶∞, convex, symmetric and non-self-intersecting. Also, the set of circles passing by 2 constant 

points cover the entire 2D space, as discussed in more details in the appendix “D.2.2 Choosing the 

circle, rejecting the parabola”.  

An example of such a circular path 𝑆𝐶 is given at Figure 4-4, where the only independent variables 

are 𝛽 and 𝑥0, with 𝛽 being the starting angle and 𝑥0 being the half-distance between the points 𝛾𝑖,𝑓. 

All the other variables, such as the radius, the area and the height of the circle, are dependent 

variables with the equations given in the appendix “D.2.3Circular path parameters”. The Cartesian 

equation of the circle is given at (20), where the radius is 𝑥0 csc 𝛽, and the vertical offset is 𝑥0 cot 𝛽.  

Let us note that the circle resulting from the angle 𝛽+ is the same as the one resulting from the 

angle 𝛽− = 𝜋 − 𝛽+, with 𝑆𝐶
+(𝛽+) associated to one part of the circle, and 𝑆𝐶

−(𝛽−) associated to 

the complementary part of the same circle (see Figure 4-4). Also, 𝑆(𝛽) is a set that contains an 

uncountable number of circles, since each angle 𝛽 represents a different circle. One could argue 

that it is easy to generalize the circular equation to an ellipse equation, but it violates the laws of 

electromagnetism discussed later in section “4.3 Computing the probabilities in an image using 

EM”, as explained in more details in the appendix “Elliptical potentials and paths”.  

𝑥0
2 csc2 𝛽 = 𝑥2 + (𝑦 − 𝑥0 cot 𝛽)

2 (20) 
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Figure 4-4 : Example of a circular path between points 𝛾𝑖 and 𝛾𝑓, with a starting angle 𝛽 

4.2.3 Intersecting circular arcs 

The previous section presented the mathematical equations of a circle between 2 points, but it did 

not deal with the partial contour 𝑆 that needs to be closed. This section will explain how to take it 

into consideration, and how to deal with multiple intersections between 𝑆 and 𝑆𝐶. This will allow 

to determine the region 𝑅 for any path 𝑆𝐶 and compute the probability 𝑃𝑆 for any point.  

An example of a path 𝑆 closed by different circular paths 𝑆𝐶(𝛽𝑛
+) is shown at Figure 4-5, where the 

point 𝛾+ is at the boundary of 𝑆𝐶(𝛽2
+) and well contained into 𝑆𝐶(𝛽1

+). In that case, it is simple to 

compute the probability 𝑃𝑆 at any point along 𝑆𝐶(𝛽1,2
+ ) using equation (18).  

 

Figure 4-5 : Example of 2 regions 𝑅(𝛽1,2
+ ) formed by the closure of the path 𝑆 with the circular 

arcs 𝑆𝐶(𝛽1,2
+ )  

It becomes more complex to compute 𝑃𝑆 when there are intersections between 𝑆 and 𝑆𝐶 at the point 

𝛾× in Figure 4-6, since it is harder to determine where is the region 𝑅. Such intersections will 
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happen with any partial contour 𝑆, except if 𝑆 is a circle with the same parameters as 𝑆𝐶. Therefore, 

it is important to be able to deal with such possibilities. In Figure 4-6, we can observe that the 

region 𝑅, which contains both points 𝛾±, can be defined as the region between 𝑆 and 𝑆𝐶, with 

𝑃𝑆(𝛾
+) associated to the angle 𝛽+ and 𝑃𝑆(𝛾

−) associated to the angle 𝛽−. However, such definition 

does not hold well for non-trivial intersections.  

 

Figure 4-6 : Example of (a) a partial contour 𝑆 that intersect a circular arc 𝑆𝐶 at the point 𝛾×. (b) 

The region inside the closure of the partial contour 𝑆 with the sub-paths 𝑆𝐶
− and 𝑆𝐶

+.  

An example of a complex intersection is given in Figure 4-7, where it is not intuitively clear which 

region should be counted inside or outside the grayed region  𝑅. To solve this problem, let’s 

consider the infinite partial contour 𝑆𝑋
′ (𝑡) as the continuation of the partial contour 𝑆𝑋 along the 

line 𝛾𝑖 → 𝛾𝑓, as given by equation (21), where 𝑆𝑋 represents either 𝑆 or 𝑆𝐶. Also, to avoid 

unnecessary complications, we will assume that 𝑆𝑋
′  is not self-intersecting. In that case, 𝑆𝑋

′  separates 

the space in 2 half-spaces. Note that 𝑡 is the time used to represent the parametric equation, with 𝑡𝑖 

the time associated to 𝑆𝑋(𝑡𝑖) = 𝛾𝑖 and 𝑡𝑓 the time associated to 𝑆𝑋(𝑡𝑓) = 𝛾𝑓.  

𝑆𝑋
′ (𝑡) = {

𝑆𝑋(𝑡) 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑓
𝑡 − 𝑡𝑓

𝑡𝑖 − 𝑡𝑓
𝛾𝑖 +

𝑡 − 𝑡𝑖
𝑡𝑓 − 𝑡𝑖

𝛾𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (21) 

For the half-spaces generated by 𝑆𝐶, we will define 𝑅𝐶
± as the half-space containing 𝑦 → ±∞. For 

the half-spaces generated by 𝑆, we will define 𝑉𝑚
± as the half space containing 𝑦 → ±∞. Then, the 
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region 𝑅 will be defined by the region resulting of the logical equation (22), with an example 

depicted at Figure 4-7.  

𝑅 = (𝑉𝑚
+  ∩  𝑅𝐶

−)  ∪  (𝑉𝑚
−  ∩  𝑅𝐶

+) (22) 

 

Figure 4-7 : Example of (a) A complex intersection between 𝑆 and 𝑆𝐶. (b) The regions that do not 

respect the logical operation are eliminated. (c) The region 𝑅 is formed with a union of the 

remaining regions.  

Using the inside region definition of equation (22), it is possible to conclude that the probability 𝑃𝑆 

of any point being inside 𝑆 is given by equation (18), where 𝛽𝛾
± is the angle that generates the 

elliptical arc 𝑆𝐶
± that passes through the point 𝛾±. Hence, for any point in the region 𝑉𝑚

+, the value 

of 𝛽+ is used in equation (18), while for any point in the region 𝑉𝑚
−, the value of 𝛽− is used.  

4.2.4 Characteristics of the probabilities 

The previous sections showed how to determine which points are inside the region 𝑅, and how to 

compute the probabilities using only the starting angle 𝛽. However, they must respect some basic 

properties in order to be mathematically valid, which will be the main focus of this subsection. It 

was already demonstrated that equation (18) respects the laws of probabilities with 𝑃𝑆 = [0, 1], 

since it respects the inequality (19). This section focuses on the analysis of other properties, such 

as certainty of inclusion/exclusion and complementarity, by exploring the mathematical boundaries 

of the model. 
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One boundary condition of the proposed mathematical model is that any point 𝛾∞ infinitely far 

from 𝑆 must respect the equation (23). Since the only way for a circular path to reach a point 

infinitely far is when 𝛽 = 0, then using equation (18) with 𝛽 = 0 leads to equation (23).  

𝑃𝑆(𝛾∞) = 0 (23) 

Other characteristics can be studied at the boundary condition where 𝛾𝑆 is defined as a point 

infinitely near 𝑆. We can choose a point 𝑆𝑖 on 𝑆, with a vector �⃗� perpendicular to 𝑆 at point 𝑆𝑜, as 

depicted in Figure 4-8 (a). Then, we can define the points 𝛾± as 2 points situated at the opposite 

side of 𝑆 at a perpendicular distance, as depicted in Figure 4-8 (a) and in equation (24). The point 

𝛾𝑆𝑛
±  is defined by the mathematical limit when the distance approaches 0 in equation (25). By 

computing the probabilities of 𝛾𝑆
+ and using the equations (16) and (18), as seen in equation (26), 

we can find the property of complementarity presented at equation (27), with some visual examples 

at Figure 4-8 (b). This complementarity is required for the probabilities to make sense, since it 

means that the point 𝛾𝑆
+ is inside 𝑆 only when 𝛾𝑆

− is outside 𝑆, and vice-versa.  

𝛾± = 𝑆𝑖 ± �⃗� ⋅ 𝑡 (24) 

𝛾𝑆𝑖
± = 𝑙𝑖𝑚

𝑡→0
𝛾± (25) 

𝑃𝑆(𝛾𝑆𝑖
+) =

𝛽+

2𝜋
=
2𝜋 − 𝛽−

2𝜋
= 1 − 𝑃𝑆(𝛾𝑆𝑖

−) (26) 

𝑃𝑆(𝛾𝑆𝑖
+) + 𝑃𝑆(𝛾𝑆𝑖

−) = 1 (27) 
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Figure 4-8 : Complementarity of the enclosure probability across the path 𝑆. (a) 2 points at an 

opposed side of 𝑆. (b) Multiple complementary points, at opposed sides of 𝑆, but with an 

infinitesimal distance.  

Another important characteristic of the probabilities is that 𝑃𝑆 should have a value of 1 everywhere 

inside a closed contour, and a value 0 everywhere outside it. A closed contour can be viewed as 

any partial contour where 𝛾𝑖 and 𝛾𝑓 are coincident, meaning that all the circles 𝑆(𝛽 ≠ 𝜋) have a 

null radius. Hence, the equation (23) forces any point outside the shape to have a value of 𝑃𝑆 = 0, 

since PS(γ∞) = 0 and since there are no circular paths 𝑆(𝛽) to change its value when 𝛾 approaches 

the closed contour. Therefore, 𝑃𝑆 is constant both inside and outside the closed contour and varies 

only at its boundaries. Hence, using equation (27) with 𝑃𝑆(𝛾
−) = 0 allows to demonstrate that 

𝑃𝑆(𝛾
+) = 1.  

Finally, if we suppose that 𝑆 is the partial contour formed by multiple sub-partial contours 𝑠𝑖, then 

we need that the probability 𝑃𝑆 computed on the partial contour 𝑆 to be the same as the combined 

probabilities 𝑃𝑠𝑖  computed on each sub-partial contour.  To make the problem easily solvable, we 

need to consider that the probability 𝑃𝑆 be the sum or subtraction of all 𝑃𝑠𝑖 , as described by equation 

(28). The operator “±?” means that the sign is chosen as positive or negative such that 𝑃𝑆 respects 

the previously stated conditions, and will be discussed in section “4.3.2.1 Repulsion optimization”.  

𝑃𝑆 =∑±?𝑃𝑠𝑖

𝑛

𝑖=1

,   iff 𝑆 =⋃𝑠𝑖

𝑛

𝑖=1

 (28) 

In summary, there are 5 fundamental properties presented in Table 4.1 that must be respected for 

the probabilities to be consistent with the mathematics and the boundary conditions.  
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Table 4.1 : List of fundamental properties for the consistency of the probabilities 

# Properties Description 

1 Laws of probability Each probability is bounded by equation (19).  

2 Certainty of exclusion Any point 𝛾∞ at an infinite distance of 𝛾𝑖,𝑓 has a value of 𝑃𝑆 = 0 

(equation (23)).  

3 Complementarity 𝑃𝑆 must be complementary on 2 points at each side of a partial 

contour, when the distance between those points is infinitesimal 

(equation (27)). 

4 Combination of 

probabilities 
𝑃𝑆 is the sum or subtraction of the probabilities given by each sub-

partial contour (equation (28)), such that conditions 1 and 2 are 

respected.  

5 Certainty of inclusion 𝑃𝑆 must be 1 inside a closed partial contour, and 0 outside it. Proven 

with properties #1,2,3. 

4.3 Computing the probabilities in an image using EM 

Although we explored the theoretical possibility of computing the probabilities of inclusion, this 

section is required to present how the EM potentials of dipoles allow generating all those 

probabilities using mathematical convolutions in an image. First, it demonstrates that the 

equipotential lines are circular when the bi-dimensional dipoles are perpendicular to the partial 

contour and that they are related to the paths 𝑆𝐶. Then, it shows how multiple potentials can be 

combined to form a space of probability of belonging to any partial contour 𝑃𝑆, for any pixel in an 

image composed of multiple non-trivial partial contours.  

4.3.1 Circular paths transform using EM potential 

This subsection demonstrates that the dipole potential allows to generate the space of all possible 

circles and to directly determine the value of 𝑃𝑆 on a single partial contour 𝑆, using a magnetic 

convolution. Hence, the complexity of analyzing an infinite subset of circles and their intersections 

with 𝑆 will be greatly simplified, thanks to its mathematical equivalence with magnetic potentials.  

4.3.1.1 EM convolutions 

In order to compute EM potentials in an image, it is necessary to use convolutions to reduce 

computation time and ease the equations, as stated in previous work by Beaini et al. [15,21]. The 

electric potential 𝑃𝑒 of a single charge in any universe of dimension 𝑛 is given by equation (29), 

where 𝒓 is the Euclidean distance [15]. In a 2D image, the value of 𝑛 must be 2 to allow for 

conservation of energy and the use of Gauss theorem. Furthermore, it was shown that the potential 
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of a dipole can be written as the complex potential given by the partial derivatives in equation (30) 

[15].  

𝑃𝑒 = {
|𝒓| 2−𝑛    ,   𝑛 ≥ 1,   𝑛 ≠ 2
ln|𝒓|       ,        𝑛 = 2         

 (29) 

𝑃𝑑𝑖𝑝
𝜃 ≈

𝜕

𝜕𝑥
(𝑃𝑒) + 𝑖 

𝜕

𝜕𝑦
(𝑃𝑒) (30) 

Furthermore, these EM potentials can be easily applied to an intensity image 𝐼 by using the 

convolution in equation (13) with the correction factor 𝐹 (12) [15,21]. In the current paper, 𝐼 is the 

matrix with a value of 1 at the thin partial contour and 0 elsewhere, and 𝜃 is the direction of the 

partial contour at any point in the matrix 𝐼.  

𝐹 = max(|cos(𝜃)|, |sin(𝜃)|)−1   ⇒   1 ≤ 𝐹 ≤ √2 (31) 

𝑉𝑚 = (𝐼 ∘ 𝐹 ∘ e
𝑖𝜃) ∗ 𝑃𝑑𝑖𝑝

𝜃  (32) 

4.3.1.2 Bi-dimensional EM potential on a line 

The first step is to compute the EM potential that is generated by a line between 2 points if the line 

is composed of a uniform density of dipoles perpendicular to its direction. This is illustrated in 

Figure 4-9, with the series of dipoles pointing in the �̂� direction.  

 

Figure 4-9 : A line on the 𝑥 axis, composed of dipoles parallel to the 𝑦 axis.  

To compute the potential generated by this line, we first must consider that the potential of a single 

dipole is the directional derivative of the monopole potential, with the directional derivative in the 

same direction as the dipole. Then, the contribution of all the dipoles can be taken using a definite 

integral with the boundaries being the positions ±𝑥0, shifted by the 𝑥 position of each point [31,32].  
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The total potential 𝑉𝑚 for the line depicted in Figure 4-9 is then given by equation (33), where 𝑃𝑒 

is given by equation (29). By choosing 𝑛 = 2, the potential 𝑉𝑚 is given by equation (34), with the 

result given at equation (35), where the values of 𝑉𝑚 are bounded by inequality (37) due to the 

previous arctangent.  

𝑉𝑚 = ∫
𝜕

𝜕𝑦
𝑃𝑒

𝑥+𝑥0

𝑥−𝑥0

 𝑑𝑥 (33) 

𝑉𝑚 = ∫
𝜕

𝜕𝑦
ln (√𝑥2 + 𝑦2)

𝑥+𝑥0

𝑥−𝑥0

𝑑𝑥 (34) 

𝑉𝑚 = atan (
𝑥 + 𝑥0
𝑦

) − atan (
𝑥 − 𝑥0
𝑦

) (35) 

−2𝜋 ≤ 𝑉𝑚 ≤ 2𝜋 (36) 

4.3.1.3 Circularity of the equipotential curves 

The second step of the sub-section is to prove that the equipotential lines are circular. To prove it, 

we need to replace the inverse tangent in equation (35) by its complex form with the identity (37) 

and to define the variable 𝑣 with the expression (38), which yields to the equation (39). Then, by 

grouping the 𝑥 and 𝑦 together and by using trigonometric identities, we find the equation (40). The 

complete demonstration is presented in Appendix “D.3.3 Demonstration that equipotential lines 

are circular”.  

atan(𝑥) =
𝑖

2
ln (

1 − 𝑖𝑥

1 + 𝑖𝑥
) (37) 

𝑣 ≡ exp(−2𝑖𝑉𝑚) (38) 

(𝑣 − 1)𝑦2 + (𝑣 − 1)𝑥2 + (𝑣 + 1)2𝑥0𝑦𝑖 − (𝑣 − 1)𝑥0
2 = 0 (39) 

𝑥0
2 csc2 𝑉𝑚 = (𝑦 + 𝑥0 cot𝑉𝑚)

2 + 𝑥2, {𝑥, 𝑦, 𝑥0} ≠ 0 (40) 

Inspection of equation (40) shows that the equipotential lines are all circular, since each value of 

𝑉𝑚 gives the equation of a circle. Furthermore, it is the same equation as the one for the circular 
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path between 2 points given at (20), but with 𝑉𝑚 instead of 𝛽, which leads to equation (41), since 

the values are bounded by 𝛽 = [0, 2𝜋] and 𝑉𝑚 = [−2𝜋, 2𝜋].  

|𝑉𝑚| = 𝛽 (41) 

4.3.1.4 Circular paths transform 

The 3rd step is to be able to compute such potential on a partial contour of any shape. The result of 

equation (41) means that, for a line 𝐿, the magnetic potential 𝑉𝑚 at any point 𝛾 is equal to the 

starting angle 𝛽 of the circle that links the points 𝛾𝑖,𝑓 (both end of 𝐿) to the point 𝛾. Hence, the 

computation of the probabilities 𝑃𝑆 at equation (18) becomes a simple computation of magnetic 

potential given by equation (42). Furthermore, it is possible to compute all the characteristics of 

equations (138), (139), (140) and (141) using 𝑉𝑚 instead of 𝛽 and 𝑥0 as the half distance between 

𝛾𝑖 and 𝛾𝑓.  

𝑃𝑆(𝛾 ⊂ 𝑅) =
|𝑉𝑚|

2𝜋
 (42) 

The equation (42) is not useful if it can only be applied for a line. Hence, we need the equations 

(12) and (13) to compute the potential 𝑉𝑚 for any thin partial contour in an image, since they allow 

the superposition of 2 perpendicular dipoles to create a dipole in any direction.  

Using equations (30), (12) and (13), we can compute the circular equipotential lines for any partial 

contour 𝑆. The reason why the equipotential lines stay circular is unknown, and a mathematical 

proof is beyond the scope of this paper. Nevertheless, it is observed numerically with many 

different shapes in Figure 4-10, where we can see that the expected circular equipotential (in white) 

match closely the magnetic equipotential lines (in green and pink). There are some numerical errors 

due mainly to a small error in the angle 𝜃, since the orientation of the partial contours is estimated 

numerically. I call these equations “circular paths transform”, since it allows to transform a 1D 

partial contour into a 2D space of circular paths, with each circle passing through both ends of the 

partial contour and its potential value corresponding to the starting angle 𝛽 of the circle. However, 

this allows an alternative way to compute the circular potential is given in the appendix 

“D.3.2Convolution alternative”.  
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Figure 4-10 : Example of equipotential lines of 𝑉𝑚 (green and pink) computed on 6 different 

partial contours (dark grey), with the light grey lines being the perfectly circular equipotential 

lines of equations (40) and (41) 

4.3.2 Scalar probability superposition 

Computing the probability for a partial contour can be useful, but it is usually required to compute 

the probabilities generated by multiple partial contours in an image. Since the developed method 

relies on finding all the paths between the extremities of the partial contour, then adding multiple 

partial contours will require considering the paths between all those extremities. However, such a 

problem becomes exponentially more complex with each new partial contour that is added and 

yields to intersecting paths. This section explains how an understanding of magnetic potentials 

allows to simplify the computation and improve the results through repulsion optimization, double 

boundary detection and image splitting.  

4.3.2.1 Repulsion optimization 

There is one major problem when summing different potentials 𝑉𝑚
𝑖 , since the dipoles are aligned 

perpendicularly to the sub-partial contours 𝑠𝑖. This means that the angle 𝜃 in equations (12) and 

(13) can be shifted by 180°, which will shift the sign of 𝑉𝑚
𝑖  as seen in equation (43). Hence, there 

are 2 possible configurations for each sub-partial contour in an image. This problem was raised 

previously with equation (28), where the sign “±?” was used to mention that it is either an addition 

or a subtraction, but without certainty.  

𝜃 → (𝜃 + 𝜋)   ⇒   𝑉𝑚
𝑖 → −𝑉𝑚

𝑖  (43) 
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If there is a total of 𝑛 sub-partial contours, then there should be a total of 2𝑛 solutions, but the 

absolute value in equation (42) makes half the solutions redundant, meaning that there is a total of 

2𝑛−1 different solutions. However, there is only one solution that is consistent with equation (28), 

and it is the one where all the sides of 𝑠𝑖 are aligned according to their positive or negative sides. 

Hence, the magnetic repulsion must be maximized to be consistent with equation (28).  

When the repulsion is maximized, there will be multiple regions that form a constant potential as 

discussed in a previous paper by Beaini et al. [15]. At the boundary condition, a closed shape with 

all the dipoles aligned will generate 2 regions of constant potential with no gradient 𝑬 except at the 

boundaries where 𝑬 is high. In case the dipoles are not aligned, the value of 𝑬 will vary smoothly 

between its minimum and maximum. Therefore, the distribution of 𝑬 will be more split when the 

repulsion is maximized. Hence, we define the maximization parameter to be the variance Ω of |𝑬|2 

depicted in equation (44), meaning that Ω must be maximized to maximize the repulsion.  

𝛺 = 𝑉𝑎𝑟(|𝑬|2) (44) 

Since there are 2𝑛−1 configurations, then it is preferable to use an optimization algorithm when 𝑛 

is large to avoid long computing time. An algorithm that was developed and tested consist of 

creating a list 𝐺 which contains each individual index 𝑖, plus multiple groups of indices that are 

chosen according to their magnetic interaction. For example, the sub-partial contours 𝑠𝑖 that 

connect with each other with a potential of 𝑉𝑚 > 𝑉𝑡ℎ1 will form a group, those with a potential 

𝑉𝑚 > 𝑉𝑡ℎ2 will form another group.   

Then, the potential 𝑉𝑚
𝐺𝑘  of each element of 𝐺 are flipped and tested to see their impact on Ω. If Ω 

is increased, then the elements of 𝐺𝑘 are permanently flipped. This algorithm is described in Figure 

4-11 and was observed to work in most cases. If the number of elements are high, then the algorithm 

might end up in a local maximum. To avoid such problems, it can be used on different randomized 

initial orientations. Once each of them is optimized through the algorithm, the best solution must 

be chosen as the one with the lowest value of Ω.  
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Figure 4-11 : Algorithm used for repulsion optimization by flipping the magnetic orientation of 

each individual or group of sub-partial contours 𝐺𝑘.  

An example of such optimization is observed in Figure 4-12, where the partial contours are 

extracted via the canny algorithm [63] with a high threshold. We can see that after the repulsion 

optimization, the high potentials |𝑉𝑚| are concentrated in the regions there are shapes, and the near 

zero potentials are between those shapes. It is to note that there are small regions where |𝑉𝑚| > 2𝜋, 

which are saturated in the Figure 4-12 and Figure 4-13.  

 

Figure 4-12 : (a) Artificial image composed of different nearby shapes (b) Extracted partial 

contours using Canny [63]; (c) Resulting 𝑉𝑚 in the initial orientation; (d) resulting 𝑉𝑚 after the 

repulsion optimization.  
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The algorithm in Figure 4-11 was tested with the 28 partial contours 𝑠𝑖 of Figure 4-12, and the 

result was compared to the brute force optimization that minimized Ω by testing the 227 different 

configurations. The results were the same, but the computation time was around a 106 times faster 

using the algorithm. This test was done with different images, including Figure 4-13, and the results 

were always the same, which shows that the algorithm converges to an optimal result.  

4.3.2.2 Double boundaries 

In some cases, a partial contour will be at the boundaries of 2 different regions, which means that 

its contribution should be doubled to consider both regions. There are 2 equivalent ways of doing 

it, which are either to double the value of 𝐹 in equation (13) or to create a second partial contour 

adjacent to the first one. An example with a few adjacent shapes is presented at Figure 4-13, where 

we can see the improvement of the potential when the double boundary is considered. One 

important improvement is the reduced potential between the shapes, so the high potential is mainly 

concentrated within the shapes. Another one is that the double boundary produces 2 clearer sides 

when it is considered, as seen by the circle and the triangle at the left. Furthermore, the 2 regions 

of the top rectangle are only distinguishable when the double boundaries are considered.  

 

Figure 4-13 : (a) Artificial image composed of different adjacent shapes (b) Extracted partial 

contours using Canny [63], with the double boundaries in green; (c) Resulting 𝑉𝑚 without the 

double boundary; (d) resulting 𝑉𝑚 with the double boundary.  
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4.3.2.3 Image splitting by attraction elimination 

In the case where many different shapes are present in a single image, the repulsion optimization 

will still yield in some adjacent shapes that produce an attractive field between each other, since 

one will have a positive 𝑉𝑚, while the other will have a negative 𝑉𝑚. Since those shapes will be 

sure to not belong together, then they can be split into 2 new images that do not interact together. 

The algorithm to decide how to split them is presented at Figure 4-14, with the goal of reducing 

the initial potential image into multiple as much sub-images as possible, without loss of 

information. It is to note that this step is not mandatory since it increases the total computation 

time, although it usually improves the results. Also, some partial contours might be in different 

sub-images, since they can belong to different groups. An example of the algorithm is presented in 

Figure 4-15.  

 

Figure 4-14 : The algorithm used for the image splitting into multiple sub-images 

Split the image into sub-images 𝑣𝑚
+ and 𝑣𝑚

− according to 
the split-rule. 

Split the 𝑉𝑚

For all 𝑣𝑚
𝑖 Loop for all the initial sub-images and the newly created 

sub-images. 

Split the 𝑣𝑚 according to the split-rule to produce 
𝑣𝑚
𝑖+ and 𝑣𝑚

𝑖−Split the 𝑣𝑚
𝑖

Cancel the split?
If either 𝑣𝑚

𝑖+ or 𝑣𝑚
𝑖− are empty, cancel the splitting, 

and consider 𝑣𝑚
𝑖 as the last sub-image in its branch. 

Use the repulsion optimization on the given 𝑣𝑚Optimize repulsion

Define the split-rule as a way to split a potential 𝑉𝑚 to produce sub-
images 𝑣𝑚

+ and 𝑣𝑚
−. 

• 𝑣𝑚
+ : The potential produced by all the strokes with a neighboring 

pixel such 𝑉𝑚 > 𝜋.

• 𝑣𝑚
− : Same as 𝑣𝑚

+, but for 𝑉𝑚 < −𝜋. 

• Note : Some strokes, such as the double boundaries, can be in both
𝑣𝑚
+ and 𝑣𝑚

−. 

Define 
split-rule
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Figure 4-15 : Example of image splitting process; (a, b, e) The temporary states of the splitting; 

(c, d, f, g) The final set of split potentials 𝑣𝑚
𝑖   

4.4 Important properties 

With the knowledge of the previous sections, we know how to properly compute the probability 𝑃𝑆 

using EM convolutions, but we did not discuss the interesting properties that arise. Hence, this 

section will cover some special features such as the weight adjustments, the equipotential line 

destination, the possibility of generalizing it in 3D and the information estimation.   

4.4.1 About the probabilities 

This subsection will focus on covering the closed shapes, the invalid probabilities and the 

possibility of adjusting the weight of each probability.  
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4.4.1.1 Closed shapes 

In some cases, a partial contour may be already closed, which means that 𝑃𝑆
+ must be 1 inside 𝑆, 

and 𝑃𝑆
− must be 0 outside 𝑆, as stated in the fundamental properties at Table 4.1. To prove it, we 

first use Gauss theorem, since it was demonstrated by Beaini et al. [15] that 𝑉𝑚 is constant both 

inside and outside of 𝑆 [31,32]. Then, we know that the potential is null at a point 𝛾∞ infinitely far, 

as seen in equation (35). Finally, we know from equation (143) that crossing the partial contour 

leads to a potential variation ∆𝑉𝑚 = ±2𝜋, which means the value is 0 outside the partial contour 

and ±2𝜋 inside it. Hence, knowing from equation (42) that 𝑃𝑆 = |𝑉𝑚| 2𝜋⁄  , we demonstrate that 𝑃𝑆 

is 0 outside the shape and 1 inside it, which is consistent with the properties at Table 4.1.  

Furthermore, we know from Beaini et al. [15] that Gauss theorem will only give a constant potential 

inside a shape if and only if the potential of a charge 𝑃𝑒 is proportional to the equation (29) [31,32]. 

We also know that the probabilities are only consistent if we use dipoles that are perpendicular to 

the contour. Hence, we conclude that the potential 𝑉𝑚 = (I ∘ F ∘ e
iθ) ∗ Pdip

θ  given at equation (13) 

is the only possible potential that can be used for the computation of the probability of inclusion 

inside a partial contour 𝑆, with 𝑃𝑆 = |𝑉𝑚| 2𝜋⁄  (42).  

In summary, the developed method is believed to be the only possible way to compute 𝑃𝑆 using 

potential convolutions. This is because a valid 𝑃𝑆 requires a probability of 1 inside a closed partial 

contour and 0 outside it, which requires conservation of energy and is only possible via EM kernels.  

4.4.1.2 Invalid probabilities 

In some other cases, the probabilities computed using equation (42) will be greater than 1, which 

is invalid mathematically. Most of those times, the probability will be in the interval [1, 1.10], 

which is simply a numerical error. Most of those errors are one-off occurrences and can be solved 

by a median filter, while the rest can simply be rounded to the value 1. However, other cases will 

have a value that is in the interval [1.10, 2], which happens when the given point is inside 2 shapes 

simultaneously. This is the result of an attraction instead of repulsion or of a self-containing shape. 

Most of those problems are solved or reduced via the image splitting described in section “4.3.2.3 

Image splitting by attraction elimination”. However, the only way to permanently solve this 

problem is to saturate the values of 𝑃𝑆 for a maximum of 1, which is the approach used in this 

paper.  
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4.4.1.3 Weight adjustments 

The proposed method allows computing the probability 𝑃𝑆 using equation (42), but only if an equal 

weight is attributed to each of the circular equipotential. As it was discussed in section “4.4.1.1 

Closed shapes”, it is impossible to change the potential to add more weight for the shortest 

equipotential. However, it is possible to weight the probability 𝑃𝑆 by using a smooth-step function 

to obtain a weighted probability 𝑊𝑆 in equation (45), which is based on the Hermite polynomials 

and is valid for any value of 𝑃𝑆 = [0, 1] [111]. An example of the smooth-step function for 𝐾 = 2 

is given in equation (46).  

A weight function will only work it is bounded by [0, 1], strictly increasing and antisymmetric 

around 𝑃𝑆 = 0.5. Since the smooth-step function respects those conditions, then it respects all the 

properties required for the probabilities to stay consistent with the fundamental properties given in 

Table 4.1.  

In the case described in section “4.3.2.3 Image splitting by attraction elimination”, it was explained 

that the probabilities will be better if the potential image is split into multiple sub-images. In that 

case, the total weighted probability 𝑊𝑆 is considered as the maximum value of all the weights of 

the sub-images 𝑤𝑆
𝑖, as described in equation (47). Although equation (47) is not consistent with 

Table 4.1, it allows to determine what is the maximum probability of belonging inside a shape, 

which is still a relevant information. Otherwise, we can still access all the 𝑤𝑆
𝑖 individually.  

𝑊𝑆 = 𝑃𝑆
𝐾+1∑(

𝐾 + 𝑘
𝑘

) (
2𝐾 + 1
𝐾 − 𝑘

) (−𝑃𝑆)
𝑘

𝐾

𝑘=0

 (45) 

𝑊𝑆(𝐾=2) = 6𝑃𝑆
5 − 15𝑃𝑆

4 + 10𝑃𝑆
3  (46) 

𝑊𝑆 = 𝑚𝑎𝑥(𝑤𝑆
𝑖) (47) 

4.4.2 Additional features 

This subsection will cover other additional features that can be obtained by the 𝑃𝑆 or 𝑉𝑚, but without 

discussing them thoroughly. Those features include the equipotential line destinations, the 

possibility of computing uncertain partial contours and the possibility of analyzing 3D shapes.  
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4.4.2.1 Equipotential lines destinations 

An interesting fact to note about the equipotential lines is that they always seem to pass through 

the extremities of the partial contours, even when the image is complex, such as Figure 4-12 and 

Figure 4-13. In those images, we can see that only a few equipotential lines avoid the extremities, 

and it happens near the corners where the numerical error is higher. Also, some equipotential lines 

will cross the partial contours and will be subject to the transformation at equation (143), but they 

will eventually reach the extremities. This fact means that, by using a variable threshold value on 

the potential, it is possible to obtain different hypothetical shapes that are formed by the given 

partial contours.  

4.4.2.2 Uncertain partial contour 

In some cases, a part of a partial contour might not be certain to be an actual contour, and setting 

its partial contour value to either 0 or 1 according to equation (13) might not be the best option. In 

that case, the matrix 𝐼 which is usually composed of 0 and 1, can be changed to be any real value 

bounded by 0 and 1. This will be equivalent of reducing the weight associated to the specific partial 

contour. For example, the 𝑃𝑆 of a closed partial contour with a value of 0.7 will be 0.7 inside it, 

and 0 outside it.  

4.4.2.3 Probability analysis for 3D shapes 

The work from the current paper can also be generalized for a 3D partial surface 𝑆3, where the 

proposed method would be able to compute the probability of belonging inside the solid. To do so, 

we need to use the equation (30) with a value of 𝑛 = 3 and replace the factor 2𝜋 in equation (42) 

by the factor 4𝜋. Furthermore, the equations (12) and (13) need to be changed to consider 2 angles 

𝜃 and 𝜙 to take into account the 3D orientation, such that each voxel in 𝐼 will have an orientation 

perpendicular to the surface at this point.  

Using the equations in 3D will not produce circular shapes anymore, but complex 3D shapes. 

However, this does not impact the ability to compute the probabilities, since the results will still be 

consistent with the properties of Table 4.1 if the word “partial contour” is replaced by “surface”. 

Furthermore, in the boundary condition where the surface 𝑆3(𝑥, 𝑦, 𝑧) is independent of 𝑧, then the 

computed probability 𝑃𝑆3 in any 𝑥𝑦-plane will produce circular equipotential lines, and 𝑃𝑆3 will be 

the same as the probability 𝑃𝑆 computed with 𝑛 = 2 on a partial contour 𝑆, where 𝑆 = 𝑆3.  
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4.4.3 3D information estimation from 1D partial contours 

Another aspect of the proposed approach is that it allows estimating the original image based only 

on the information available with the partial partial contours, which is impressive since the partial 

contours are 1D information, while an image is a 3D information.  

In fact, the image 𝐼 composed of the partial contours 𝑆 represent 1D information, since the partial 

contours are thin, and their value is either 0 or 1. However, the computation of 𝑊𝑆 using equation 

(46) generates 3D information, since it fills all the pixels in the image with a value in the range 

[0, 1]. Hence, a surprising characteristic of CAMERA-I-PIIPE is that the probabilistic 

reconstruction allows estimating the original 3D image (height, width and intensity) using only the 

1D partial contours, as seen in Figure 4-16.  

Although it is impossible to obtain the same image since most information is lost by taking the 

partial contours, the estimated results are extremely similar both in shape and in intensity to the 

original image. Hence, Figure 4-16 shows that the probability computation is consistent with the 

expectations that 𝑊𝑆 allows estimating the original image using only its partial contours.  
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Figure 4-16 : Comparison of the original images with the probabilistic reconstruction. (a, c, e) 

Original synthetic image composed of different shapes with the partial contours (orange); (b, d, f) 

Probabilistic weighted reconstruction based on the partial contours (orange). 

4.5 Conclusion 

The work presented in this paper detailed the development of the CAMERA-I-PIIPE method, 

which allows computing a spatial probability of inclusion 𝑃𝑆 according to initial partial contours. 

To do so, it explained how we can use an uncountable set of subset paths to 𝑃𝑆, called and how to 

generate such a set using all the possible circular paths via a simple potential convolution. Then, it 

showed how the magnetized contours can be manipulated to compute 𝑃𝑆 on complex images with 

multiple contours. Finally, different features were studied, such as the double boundaries, the 

weight adjustment technique, the uncertain edges and the information estimation.  

This paper is a precursor to numerous possible studies for computer vision applications since it 

created a novel approach that generates a space of probabilities based only on partial contours. For 
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the first time, it is possible to directly combine contour information and region information for 

image processing. A continuation of this work could focus on developing specific applications in 

different computer vision fields such as saliency, image segmentation and contour completion. For 

now, most methods for these applications consider either the region information or the edge 

information. Hence, we expect that they will benefit from the promising results of the current work 

since it should allow combining edge-based and region-based approaches together.  
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Abstract 

In computer vision, the gradient and Laplacian of an image are used in different applications, such 

as edge detection, feature extraction, and seamless image cloning. Computing the gradient of an 

image is straightforward since numerical derivatives are available in most computer vision 

toolboxes. However, the reverse problem is more difficult, since computing an image from its 

gradient requires to solve the Laplacian equation (also called Poisson equation). Current discrete 

methods are either slow or require heavy parallel computing. The objective of this paper is to 

present a novel fast and robust method of solving the image gradient or Laplacian with minimal 

error, which can be used for gradient-domain editing. By using a single convolution based on a 

numerical Green’s function, the whole process is faster and straightforward to implement with 

different computer vision libraries. It can also be optimized on a GPU using fast Fourier transforms 

and can easily be generalized for an n-dimension image. The tests show that, for images of 

resolution 801x1200, the proposed GFC can solve 100 Laplacian in parallel in around 1.0 

milliseconds (ms). This is orders of magnitude faster than our nearest competitor which requires 

294ms for a single image. Furthermore, we prove mathematically and demonstrate empirically that 

the proposed method is the least-error solver for gradient domain editing. The developed method 

is also validated with examples of Poisson blending, gradient removal, and the proposed gradient 

domain merging (GDM). Finally, we present how the GDM can be leveraged in future works for 

convolutional neural networks (CNN).  

Keywords: Computer vision, Poisson image editing, seamless cloning, Green function convolution, 

Gradient Laplacian Solver, gradient domain editing 



75 

 

5.1 Introduction 

In computer vision and signal processing, the images can be interpreted as numerical potentials, 

especially when there is an interest in their gradient (𝑬). For example, early computer vision system 

algorithms relied a lot on numerical gradients and Laplacian [15,16,21,57,59,61] to extract 

important information about edges and image boundaries. They are computed using simple 

convolution kernel such as Sobel [34–36]. More recently, there have been growing interest in 

gradient domain image editing (GDIE) applications, which aim at editing or creating images from 

its gradient [57,59–61,112].  

Although computing the gradient or Laplacian of an image is straightforward, the reverse problem 

of computing the image from its gradient is a non-trivial task. In fact, this problem requires to solve 

a differential equation [57,59,61] without knowing if an exact solution exists. When the gradient 

is computed from an image, it always generates a conservative field, meaning that the field can be 

integrated to obtain a potential (the original image). For gradient domain image editing (GDIE), a 

non-conservative perturbation is voluntarily introduced to the gradient, meaning that the resulting 

field cannot be integrated into an exact solution.  

Nevertheless, it is still interesting to solve the non-conservative gradient since it leads to many 

gradient-domain editing applications, such as gradient erasing, seamless cloning and vectorization 

with diffusion curves [57,59–61,112]. Furthermore, Bhat et al. presented a whole framework of 

gradient-domain image editing with unique and useful applications such as color filtering and edge 

sharpening [58].  

The first method to solve the image Laplacian (also called Poisson’s equation) was presented in 

2003 by Perez et al. [57], which proposed to solve the differential equation by iteratively 

minimizing the variational problem. Other research followed by optimizing the computation speed 

and error [57,60], others used the Jacobi method [59], and McCann proposes a multi-grid solver 

[112]. These approaches converge to the approximate solution, but they are harder to implement 

since they are iterative, which also makes them slower to compute. An alternate way of solving the 

Poisson equation is proposed by Tanaka [61] by modifying the Poisson problem into a closed-form 

problem using cosine transforms.  
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More recent methods solve this problem by using methods based on multipoles and Green’s 

function [113–115]. However, they are only implemented for diffusion curves in vector graphics, 

and not for gradient domain image editing. Furthermore, the Green’s function methods [113–115] 

and the Tanaka method [61] propose analytical solutions for continuous space, but we propose a 

numerical solution developed for a discrete space. Hence, our method is more suitable for discrete 

images and is demonstrated to have a lower error than Tanaka in section 5.3.1.4.  

The objective of this paper is to present a novel fast and robust method of solving the image 

gradient or Laplacian with minimal error, which can be used for gradient-domain editing.  

In the research work presented here, a novel method is proposed called Green Function 

Convolution (GFC), which allows solving any modified gradient. In the case of a non-conservative 

field, the proposed GFC method is proven to find the best possible approximation in terms of 

gradient error. In fact, we mathematically prove in section 5.2.2 and empirically in section 5.3.1.4 

that GFC is the optimal possible solver for any perturbation added to the gradient, meaning that 

gradient domain editing can be done with minimal error.  

Our contributions are summarized below: 

Simple, fast and optimal gradient/Laplacian solver. The implementation that we propose is 

simple, requiring only a few lines of code using any library that implements the 2D fast Fourier 

transform (FFT). The implementation is also significantly faster than competing methods since we 

showed in Figure 5-2 a 170x improvement compared to Tanaka’s method [61], thanks to our 

graphics processing units (GPU) implementation. We also showed that our GFC solver can process 

100 images in 1ms using Pytorch, making it the fastest method available for discrete images. 

Finally, we demonstrated mathematically in section 5.2.2 and empirically in section 5.3.1.4 that 

GFC is optimal in the sense that it is the least-error solver for gradient domain editing.  

Gradient domain merging applications. Inspired by edge saliency sharpening techniques [58] 

and recent edge detection methods [25,64], we develop a novel method of reducing texture 

information and enhancing boundaries contrast. Our work proposes the first method to use machine 

learning edge detectors for this purpose. With our GFC solver that relies mainly on FFT, we show 

that the solver can be implemented in deep learning libraries such as Tensorflow and Pytorch and 

can be leveraged in future works for machine learning applications.  
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5.2 Computing the image from its gradient or Laplacian 

To understand how to compute the image from its gradient field or Laplacian, we first focus on the 

mathematical understanding of the Green’s function and its ability to solve any Laplacian [33]. We 

will show how to find the appropriate Green’s function and how to solve either the gradient or the 

Laplacian. Then, we will demonstrate mathematically that using Green’s function is the optimal 

tool when there is a non-conservative perturbation that is added to the gradient field.  

5.2.1 Green’s function to solve the Laplacian 

This subsection explains how the Green’s function can be used to theoretically solve a Laplacian 

(Poisson equation) on any signal.  

First, we define the gradient field 𝑬 of a signal (image) 𝐼 in equation (48), where ∇ is the nth 

dimension gradient operator. In many applications such as computer vision, computing the gradient 

is very simple to do using numerical derivatives such as the Sobel method [34,63]. However, the 

reverse problem of finding the signal (or image) 𝐼 from the field 𝑬 defined in (49) is not trivial, 

since the curvilinear integral ∫  
𝐶

 is not always defined. In fact, the integral (49) is only defined in 

the case of a conservative field. In the case of gradient domain image editing (GDIE), the field is 

modified via a non-conservative perturbation, which renders equation (49) unsolvable.  

𝑬 = 𝛻𝐼 (48) 

𝑉𝐸 = −∫ 𝑬 ⋅ 𝑑𝑙
𝐶

 (49) 

Instead of solving the gradient, most approaches focus on solving the Laplacian (also known as 

Poisson equation) defined in (50).  

𝐿 = 𝛻 ⋅ 𝑬 = 𝛻2𝐼 (50) 

Since the Laplacian is a differential equation, we propose to solve it using a Green’s function, 

which is defined as a function that solves a differential equation via convolution [33]. This 

definition is expressed in (51), where 𝑉𝑚𝑜𝑛𝑜 is the Green’s function of the Laplacian ∇2, ∇ ⋅ is the 

divergence operator and ∗ is the convolution operator. The notation 𝑉𝑚𝑜𝑛𝑜 is chosen since it is 
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based on our previous work concerning electromagnetic potentials in images [15,16], where the 

potentials are in fact the 2D Green’s function [33]. The equation (51) is at the heart of our proposed 

Green function convolution (GFC) method.  

𝐼 = (𝛻2𝐼) ∗ 𝑉mono 

𝐼 = (𝛻 ⋅ 𝑬) ∗ 𝑉𝑚𝑜𝑛𝑜 
(51) 

Other GDIE methods proposed using multipoles and Green’s function based solvers [113,115]. 

However, we differentiate ourselves from their work [113,115] by focusing on a purely numerical 

solution, instead of solving the Green’s function analytically.  

The Green’s function 𝑉mono is given in equation (52), with the constant 𝑆𝑛−1 given in equation (53) 

where Γ is the gamma function and 𝑟 is the Euclidean distance  [15,33,113,115]. For the other 

methods based on the Green’s function [113–115], 𝑉𝑚𝑜𝑛𝑜 is modified to account for the rectangular 

boundary around the image, which is not required for us since we compute 𝑉𝑚𝑜𝑛𝑜 numerically.  

𝑉mono =
−1

𝑆𝑛−1
∫𝑟(1−𝑛)𝑑𝑟 

𝑉mono =
−1

𝑆𝑛−1
⋅ {

𝑙𝑛(𝑟) , 𝑛 = 2

𝑟2−𝑛

𝑛 − 2
, 𝑛 ≠ 2

 ,   𝑛 ∈ ℕ∗ 

(52) 

𝑆𝑛−1 =
2𝜋𝑛 2⁄

𝛤(𝑛 2⁄ )
, 𝑆𝑛=2 = 2𝜋 (53) 

In our previous work [15,16], we used a physics-inspired method, which convolved 

electromagnetic dipoles in the direction of the gradient for partial contour analysis. Those dipole 

potentials 𝑉𝑑𝑖𝑝 are in fact the Green’s function of the gradient 𝑬, meaning that they directly solve 

the gradient without first computing the Laplacian. The gradient solver using 𝑉𝑑𝑖𝑝 is presented in 

equation (54), where 𝑛 is the number of dimensions (𝑛 = 2 for an image) and 𝑥𝑖 is the axis of each 

dimension. Hence, each dipole is convolved with each component of the gradient. Notice that the 

definition consists of moving the divergence operator ∇ ⋅ from 𝑬 to 𝑉𝑚𝑜𝑛𝑜 in equation (51).  
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𝐼 =∑𝐸𝑥𝑖

𝑛

𝑖=1

∗
𝜕

𝜕𝑥𝑖
(𝑉mono)

⏟      
≡𝑉𝑑𝑖𝑝

𝑖

 (54) 

 Although definitions (51) and (54) are both valid, the current paper focuses on the definition given 

by (51) since it requires a single convolution. Furthermore, 𝑉𝑑𝑖𝑝 was developed in previous work 

to account for the strong electromagnetic inspiration. However, since it is no longer important in 

our current work, we will favor solving the gradient and Laplacian using equation (51).  

5.2.2 Proof of optimal result for any perturbations in the gradient 

The above-presented mathematical equations (51) and (54) showed how to re-compute the image 

𝐼 from its gradient 𝑬 or Laplacian 𝐿 using the convolutions with the Green’s function 𝑉𝑚𝑜𝑛𝑜. 

However, there are many GDIE applications that require adding a voluntary non-conservative 

perturbation to the field, such as those presented in section 5.3.2. The perturbed field is noted 𝑬p, 

while the computed field and potentials are respectively 𝑬𝑐 and 𝐼𝑐.  

Since the perturbation can be non-conservative, the field 𝑬𝑝 does not have an associated potential 

and cannot be solved exactly. Hence, there is a need to find the conservative field 𝑬𝑐 that is the 

best possible approximation of 𝑬𝑝. This section will prove that equations (51) and (54) give the 

optimal 𝐼𝑐 and 𝑬𝑐 for any possible perturbation. Thus, it proves that the proposed GFC method is 

robust to perturbation and that it will converge to the least error solution, where the error is defined 

as 𝜖 = |𝑬p − 𝑬𝑐|. 

First, using Hilbert projection theorem, we know that the minimum-error solution is given when 𝜖 

is orthogonal to any conservative field ∇𝑈 at any point [116]. Hence, we need to prove that 𝐹 = 0 

(equation (55)), where 𝑑𝜇 is the infinitesimal hyper-volume for the integration.  

F = ∫ [[𝑬p − 𝑬𝑐]⏟      
≡𝜖

⋅ 𝛻𝑈] 𝑑𝜇
ℝ𝑛

= 0 (55) 

To prove (55), we first replace the value of 𝑬𝑐 by its correspondence 𝑬𝑝, as given in equation (56). 

Then, we substitute 𝐼𝑐 by ((∇ ⋅ 𝐄p) ∗ Vmono) according to equation (51). We also define the variable 

𝐴 as a temporary variable to make it easier to follow the proof.  
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F = ∫ [[𝑬p − 𝛻(𝐼𝑐)] ⋅ 𝛻𝑈] 𝑑𝜇
ℝ𝑛

 

𝐹 = ∫ [[𝑬p − 𝛻 ((𝛻 ⋅ 𝑬p) ∗ 𝑉mono)⏟                
≡𝐴

] ⋅ 𝛻𝑈] 𝑑𝜇
ℝ𝑛

 

𝐹 = ∫ [𝐴 ⋅ 𝛻𝑈] 𝑑𝜇
ℝ𝑛

 

(56) 

By adding and subtracting the term (∇ ⋅ A)U inside the integral, we obtain equation (57). Then, we 

use the divergence properties in equation (58) to regroup the positive terms inside an integral and 

the negative terms in another.  

F = ∫ [(A ⋅ ∇U) + (∇ ⋅ A)U − (∇ ⋅ A)U]dμ
ℝn

 (57) 

𝐹 = ∫ [𝛻 ⋅ (𝐴𝑈)]
ℝ𝑛

𝑑𝜇
⏟          

≡𝐵

−∫ (𝛻 ⋅ 𝐴)𝑈𝑑𝜇
ℝ𝑛

 (58) 

In equation (58), the term noted 𝐵 has a value of 0 and is canceled. This is due to Gauss’s theorem 

which states that the integral of a divergence is the integral of the flux outside the surface [31,33]. 

However, as it is explained later in section 5.2.3.2, since a zero padding is added around the image, 

then the flux is 0 at every point of the boundaries of the surface. Therefore, equation (59) is the 

remaining term of equation (58), where the value of 𝐴 is substituted by its definition in equation 

(55).  

𝐹 = −∫ [𝛻 ⋅ [𝑬p − 𝛻 ((𝛻 ⋅ 𝑬p) ∗ 𝑉mono)]]𝑈 𝑑𝜇
ℝ𝑛

 (59) 

Then, equation (60) distributes de derivative operators according to the properties of the sum and 

the convolutions.  
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𝐹 = −∫ [𝛻 ⋅ 𝑬p − 𝛻
2 ((𝛻 ⋅ 𝑬p) ∗ 𝑉mono)]𝑈

ℝ𝑛
 𝑑𝜇 

𝐹 = −∫ [𝛻 ⋅ 𝑬p − ((𝛻 ⋅ 𝑬p) ∗ 𝛻
2𝑉mono)]𝑈

ℝ𝑛
 𝑑𝜇 

(60) 

Finally, since 𝑉mono is the Green’s function of ∇2, then by definition ∇2𝑉mono is a Dirac’s delta 𝛿 

[33]. Knowing that for any function 𝑓 convoluted with a Dirac’s delta 𝛿, we have 𝑓 ∗ 𝛿 = 𝑓 [33], 

equation (61) gives us the final result 𝐹 = 0. Hence, 𝑬𝑝 − 𝑬𝑐 is orthogonal to any other field. 

According to Hilbert’s theorem, the conservative field 𝑬𝑐 has the least error when compared to the 

perturbed field 𝑬𝑝.  

𝐹 = −∫ [𝛻 ⋅ 𝑬p − ((𝛻 ⋅ 𝑬p) ∗ 𝛿)]𝑈 𝑑𝜇
ℝ𝑛

 

𝐹 = −∫ [𝛻 ⋅ 𝑬p − 𝛻 ⋅ 𝑬p]𝑈
ℝ𝑛

 𝑑𝜇 

𝐹 = 0  

(61) 

This completes the proof that the GFC method allows computing the field 𝑬𝑐 and the potential 𝐼𝑐 

which are the optimal conservative approximation for any perturbed field 𝑬p. Hence, the GFC 

method will always converge to the least-error possible solution, meaning that it is robust to any 

change or perturbation added to the field. This proof is also valid in the case of an n-dimension 

image or signal, not just in 2D.  

Although we prove that the proposed GFC method is a least-error solver, it does not mean that the 

cited competing methods are not also least-error solvers. However, section 5.3.1.4 demonstrates 

empirically that GFC has consistently lower error than the competing Perez [57] and Tanaka [61] 

methods, thus supporting the proof that the GFC solver is optimal in the case of added perturbation.  

5.2.3 Numerical implementation 

The mathematical proof of section 5.2.2 demonstrated that the proposed GFC method gives the 

optimal result without any iterative computation, even when a perturbation is added to the gradient. 

The current section will show how to implement the optimal GFC solver numerically using fast 

Fourier transforms (FFT).   
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5.2.3.1 Problems with the Green’s function 

Although the nth dimension Green’s function is defined in equation (52), it cannot be directly 

applied to an image. The reason is that the function is defined in a continuous infinite space, while 

images are a bounded discrete space.  

Other works propose to use boundary conditions [61,115] or to find the analytical Green’s function 

for a rectangular space [113]. In our work, we propose using a purely numerical solution, that can 

also be generalized to non-Laplacian operators.  

Advantages of our numerical method are that it is simple to implement, fast to compute and 

considers the grid structure of the space and the grid nature of the FFT.  

5.2.3.2 The numerical Green’s function  

This subsection shows how to build the numerical Green’s function using the convolution theorem 

and the numerical Fourier transform. 

First, the images, gradient, and Laplacian are defined as 2D matrices with an intensity value at each 

point. For the gradient, there are 2 matrices, one for the horizontal direction and one for the vertical 

direction. For each pixel in an image, there is an associated Laplacian and gradient.  

The numerical gradient and Laplace operators are defined as smaller kernel matrices, which are 

applied on images via convolution. The numerical Laplace operator is given by equation (62) 

[34,35].  

𝐾𝛻2 = [
0 −1 0
−1 4 −1
0 −1 0

] (62) 

We also know that, by definition, the Green’s function 𝑉𝑚𝑜𝑛𝑜 convoluted by the Laplacian operator 

𝐾∇2  should give the Dirac’s delta 𝛿 [33]. This relation is shown in equation (63) where ∗ is the 

convolution operator.  

(𝐾𝛻2 ∗ 𝑉𝑚𝑜𝑛𝑜) = 𝛿 (63) 
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We also know that the convolution is defined as the product in the Fourier domain as given in 

equation (64) [33], where ℱ is the Fourier transform, ℱ−1 is the inverse Fourier transform, and 

𝐴, 𝐵 are any function.  

𝐴 ∗ 𝐵 = F−1(F(𝐴) ∘ F(𝐵)) (64) 

Numerically, the Fourier transform is fast and easy to compute using Fast Fourier Transform (FFT) 

algorithms.  

Using equation (63) with the convolution theorem (64), we obtain equation (65). Then we isolate 

𝑉𝑚𝑜𝑛𝑜 in equation (66) to obtain a mathematical definition of the Green’s function 𝑉𝑚𝑜𝑛𝑜 in the 

Fourier domain, which we note 𝑉mono
ℱ .  

ℱ−1(ℱ(𝐾𝛻2) ∘ ℱ(𝑉mono)) = 𝛿 (65) 

𝑉mono
ℱ ≡ ℱ(𝑉mono) =

ℱ(𝛿)

ℱ(𝐾𝛻2)
 (66) 

For this definition to work in a discrete environment, we need the matrices to all be the same size 

as the image 𝐼. Hence, we define the zero-padded matrices �̌�∇2 and 𝛿 in equations (67) and (68), 

where the top left corner are the 3 × 3 Laplacian and Dirac kernels and the rest of the matrices is 

0-valued.  

�̌�𝛻2 ≡

[
 
 
 
 
 
 0 −1 0 ⋯ 0
−1 4 −1
0 −1 0
⋮ ⋱
0 0⏟              

𝑠𝑖𝑧𝑒(𝐼) ]
 
 
 
 
 
 

 (67) 

𝛿 ≡

[
 
 
 
 
 
 0 0 0 ⋯ 0
0 1 0
0 0 0
⋮ ⋱
0 0⏟            

𝑠𝑖𝑧𝑒(𝐼) ]
 
 
 
 
 
 

 (68) 
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Using the definitions (67) and (68) alongside equation (66), we find the Green’s function in the 

Fourier domain �̌�mono
ℱ  in equation (69).  

�̌�mono
ℱ =

ℱ(𝛿)

ℱ(�̌�𝛻2)
 (69) 

Finally, using the Laplacian solver of equation (51) we can solve the least-error potential 𝐼𝑐 from 

its Laplacian 𝐿. The result is given in equation (70), where ℛ is the real part of a complex number 

and ∘ is the Hadamard element-wise product. We note that 𝐼𝑐 = 𝐼 if the right integration constant 

𝑐 is used.  

𝐼𝑐 = ℛ (ℱ
−1(ℱ(𝐿) ∘ �̌�mono

ℱ )) + 𝑐 (70) 

In the cases where the boundaries need to be preserved, then it is suggested to add 3-pixel padding 

to 𝐼 before passing to the gradient domain, then retrieve the constant 𝑐 such as the padded region 

in 𝐼𝑐 has a value of 0. 

We validated numerically equation (70) by computing the Laplacian 𝐿 of the 1000 images from 

the ECSSD dataset [68], then computing 𝐼𝑐 using the Green’s function �̌�mono
ℱ . We found the root 

mean square error (RMSE) to be 0.011 on 256 levels, which is 0.004% of numerical error, which 

is negligible.  

5.2.3.3 A universal convolution reversal? 

At first sight, the equations developed in the previous section seems to reverse any convolution 

kernel 𝐾, since equation (66) finds the reverse kernel of any operator. However, the Green’s 

function is only defined for differential operators, meaning that non-differential operators do not 

necessarily have a reverse.  

For example, reversing the popular Sobel gradient operator [23,35] can be done with equation (66), 

but there will be a significant error on the regions of high gradient. This is because the Sobel 

operator is a blurred version of the gradient operator, which dissipates high frequencies and cannot 

be reversed completely. Hence, the resulting image 𝐼𝑐 from equation (70) for a Sobel gradient is a 

blurred version of 𝐼.  
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5.2.3.4 Computation complexity 

As shown previously, the Laplacian 𝐿 is solved using equation (70), where the only operations 

consist of the Fourier transforms ℱ and the element-wise product ∘. In this case, the computation 

complexity will be dominated by the FFT algorithms with a computation complexity of 𝑂(𝑛 log 𝑛) 

[23], where 𝑛 is the total number of pixels. 

Although the complexity is not linear, the logarithmic term becomes less important when the 

number of pixels is near the million, which is typical for images.  

5.3 Applications in computer vision 

There are many already-proven applications of the Laplacian solvers in computer vision, including 

seamless cloning, seamless composite, and animated diffusion curves [57,59,61], etc. Those 

applications are part of a branch called gradient-domain image editing (GDIE) [58]. 

Since they are already demonstrated, we will only focus mainly on showing the proof-of-concept 

of the GFC with some comparison to Perez [57], Jeschke [59] and Tanaka [61] methods. Using the 

development of the previous section, we know that equation (70) is a least-error solver of the 

Laplacian. We will also demonstrate that the proposed approach is significantly faster than 

competing methods and that it can be leveraged for machine learning (ML) applications.   

5.3.1 Solving the image Laplacian 

In this section, we summarize the GDIE process using our proposed GFC method. Then, we 

benchmark the solver computation time and error against competing methods.  

5.3.1.1 GDIE process summary 

Figure 5-1 shows a summary of the process used to solve the modified gradient for GDIE 

applications. All those steps are simple to implement in OpenCV and Matlab since they mostly use 

already available functions in their respective computer vision toolboxes. Some of the process 

summary steps, such as the gradient editing and color correction, will be discussed in later sections.  
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Figure 5-1 : Process summary of the gradient domain image editing.  

5.3.1.2 Pseudo-code 

In this section, we demonstrate the simplicity of GFC by providing some Python-based pseudo-

codes.  

First, Algorithm 5-A shows how to compute the Green’s function green_F for an image of size 

image_size using equation (66). Then, Algorithm 5-B shows how the previous Green’s function 

is used to solve the given Laplacian padded_L with equation (70).  

For both algorithms, we must keep in mind that the 2D FFT fft and inverse FFT ifft produce 

complex outputs, meaning that the products and division must be used accordingly.  

The code simplicity allowed us to implement the solver using Matlab, C++ (OpenCV) and Python 

(Tensorflow and Pytorch).   
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gradients

Add any perturbation, such as 
thresholding or combination
with an edge detection method
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If the application requires
to preserve the boundaries
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𝑉𝑚𝑜𝑛𝑜

Solve the 
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correction

If there is a perturbation 
added to the gradient

Merge the RGB 
channels into 1 

image

Output image

Compute the Laplacian from
the gradient, then solve it using
𝑉𝑚𝑜𝑛𝑜
ℱ

Input / output

Facultative steps

Mandatory steps

Next step

Next step with splitted
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Algorithm 5-A. Python based pseudo-code for computing Green’s function 

# Inputs:  

# image_size: The size of the image 

# pad: The padding to add around the image 

 

# Find the size of the desired matrices 

pad ← 4 

green_function_size ← image_size + 2 * pad 

 

# Create the Dirac and Laplace kernels 

dirac ← zeros(green_function_size) 

dirac[1, 1] ← 1 

laplace ← zeros(green_function_size) 

laplace[0:3, 0:3] ← [[0, 1,  0],  

                     [1, -4, 1],  

                     [0, 1,  0]] 

 

# Compute the Green’s function 

green_F ← fft(dirac) / fft(laplace) 

 

Algorithm 5-B. Python based pseudo-code for solving the padded Laplacian 

# Inputs:  

# padded_L: The Laplacian of the padded image 

# green_F: The result of Algorithm 5-A 

 

# Solving the padded Laplacian 

I ← ifft(fft(padded_L) * green_F) 

 

# Integration constant and unpadding 

I ← I – I[0, 0] 

I ← I[pad:-pad, pad:-pad] 
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5.3.1.3 Computation time benchmark 

As explained previously, the computation time of our proposed GFC method is low since FFT is 

highly optimized on CPUs and GPUs [35,36]. For example, the computation time is around 18ms 

on MATLAB® with an Intel® i7-6700K processor for a gray image (single channel) of resolution 

of 801x1200. Also, using MATLAB’s GpuArray with the GPU nvidia® GTX 1080 Ti, the 

computation time when the overhead is eliminated is around 0.8ms.  

In all the implementations, we used 32-bit floating points, since a double precision is not required.   

Our method (GFC). In Figure 5-2, the total time for the GFC is noted 1.3ms, which includes 

0.5ms for the preparation such as verifying the parameters and sending the matrices to the GPU. 

The remaining 0.8ms is used for solving the gradient.  

For the GFC method, the computation time in Figure 5-2 does not include the computation of the 

optimal Green’s function �̌�mono
ℱ  since it can be pre-computed with equation (69). The time to build 

it is 5ms on the GPU and 36ms on the CPU. Even if �̌�mono
ℱ  is not pre-computed, the method is still 

fast enough to out-perform any competing algorithm, since �̌�mono
ℱ  is computed only once for the 3 

channels of an image.  

With the logarithmic scale of Figure 5-2, we can observe that the proposed GFC method is orders 

of magnitude faster than competing algorithms, such as Perez et al. [57] or Jeschke et al. [59].  

Our method (GFC) using Pytorch batches. Since one of our objectives is to develop a method 

compatible with CNN, we decided to implement our method on the Pytorch [117] machine learning 

library. For the Pytorch implementation, we use batches of 100 different images of size 801x1200, 

since it is similar to how CNN use batches of features and can be useful for video editing. On a 

CPU, we found that the batches did not improve the computation time. However, on a GPU, the 

computation time for a single image (~0.9ms) was almost identical to the batch of 100 images 

(~1.0ms). Hence, the average time per image is 0.01ms as noted in Figure 5-2. Since 100 images 

are near the memory limits of our GPU, the 0.01ms per image is the fastest we can achieve in 

parallel.  

Perez method. The Perez [57] algorithm is downloaded from MathWorks [118], and later 

optimized to use the full capacities of MATLAB, but the matrix inversion alone takes 1770ms with 

another 1270ms to build the sparse matrix. It has no GPU implementation.  
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Tanaka method. The Tanaka [61] algorithm is written by the author and is downloaded from 

MathWorks [119]. The computation time on the CPU to perform the cosine-transforms required to 

solve the Laplacian is around 292ms with a preparation time of 2ms.  Furthermore, an additional 

time of 85ms is added to compute the cosine-transform solver, but it is not included in Figure 5-2 

since it can be pre-computed.  

McCann and Pollard multigrid method. Their method could not serve as a benchmark in its 

current form. Indeed, the provided code is implemented on older hardware and 32-bit libraries, and 

since their binaries only implement diffusion curves. According to their work [112], their proposed 

multi-grid solver requires around 10 iterations to converge, so that the process lasts ~110ms for an 

801 × 1200 image on the older GPU nvidia® GeForce 8600 GTS with a performance of 93 

GFLOPS [120]. On the nvidia® GTX 1080 Ti with 11340 GFLOPS [120], the fastest expected time 

is 0.9ms (110⋅93
11340

). This computation time is only possible if all the CUDA cores are used since the 

GPU clock is only twice the speed [120]. Hence, the method proposed in this paper, which solves 

the gradient in 0.8ms (without preparation time), is expected to be equal or faster than McCann for 

a single image. Furthermore, the proposed method is parallelizable to 100 images in 1 ms, but we 

do not know if the same is true for McCann.  

Jeschke method (diffusion curve only). The Jeschke algorithm is provided with their paper [59], 

but it is only implemented for diffusion curves. Hence, an ideal comparison with their algorithm is 

not possible and the time is not included in Figure 5-2. Their algorithm was benchmarked to 6.2 ms 

on GPU and 476.2 ms on CPU for a single channel computation. Although the comparison is not 

ideal, this is orders of magnitude slower than our implementations.  

Green’s function based methods. The methods proposed by Sun et al. [113,114] and Ilbery et al. 

[115] are both based on Green’s function diffusion. However, they are only implemented for 

diffusion curves and cannot directly work with discrete grids for image editing purposes. This is 

because they compute the Green’s function in a continuous bounded 2D space for application on 

vector curves. Therefore, a comparison is not directly possible.  

Other methods. Other methods such as the one proposed by Bhat et al. do not perform real-time 

image editing as stated in their paper [58], which means that it is definitely slower than the proposed 

approach.  
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In summary, the proposed GFC algorithm runs orders of magnitude faster for discrete images than 

competing algorithms. Compared to the Tanaka method, the improvement is 16x faster on CPU 

and 172x faster on GPU. Furthermore, our GPU Pytorch implementation shows that the 

computation time for batches of 100 images is the same as for a single image. Since the method is 

fast, we expect that a major part of the running time in a real application will be due to overheads 

and verifications.  

 

Figure 5-2 : Computation time (ms) in logarithmic scale for a single channel gradient solving of 

resolution of 801x1200, including the preparation time. The Perez [57] and Tanaka [61] methods 

have no GPU implementation. The Pytorch* implementation is tested on batches of 100 images, 

and the total time is divided by 100.  

5.3.1.4 Non-conservative solver benchmark 

We proved in section 5.2.2 that the Green’s function is the least-error solver for any non-

conservative fields 𝑬𝑝. In this section, we demonstrate empirically that our method has less error 

than the Perez [57] and Tanaka [119] methods.  

To demonstrate it, we use the 1000 images from the ECSSD dataset [68] and compute the gradients 

𝑬. We modify the gradients by setting any value below a given threshold to 0, with thresholds at 

10%, 30% and 50%, resulting in 𝑬𝑝. Then, we solve 𝑬𝑝 using the different methods and find the 

new gradient 𝑬𝑐. Finally, we compute the root mean squared error (RMSE) between the gradients 

using equation (71).  



91 

 

We observe on Figure 5-3 that the RMSE of our GFC method is consistently lower than competing 

methods. For the 10% threshold, GFC has an RMSE 16% lower than Tanaka and 76% lower than 

Perez.  

RMSE = mean ((𝑬𝑐 − 𝑬𝑝)
2
) (71) 

 

Figure 5-3 : Comparison of the RMSE between 𝑬𝑐 and 𝑬𝑝, where the thresholds are the 

perturbation used to generate 𝑬𝑝. The displayed values are the mean of the RMSE on the 1000 

images of the ECSSD dataset [68].  

5.3.2 Gradient-domain image editing 

From the mathematical proof presented in section 5.2.2, the GFC proved to be the least-error solver 

for any perturbed gradient. In the case of GDIE, the gradient perturbation is voluntary. It is mainly 

used for applications such as Poisson blending, diffusion curves [57,59,61] and edge editing [58].  

This section will show the performance of the method for Poisson blending, as well as additional 

possible gradient-domain applications such as the proposed gradient domain merging (GDM) 

based on the work of Bhat et al. [58]. Those applications can potentially be used in image/video 

editing software, as well as image pre-processing.  

5.3.2.1 Poisson blending 

Poisson blending is a type of GDIE that allows merging the gradient of 2 different images, such 

that the blending is seamless. Since the proposed GFC approach has a low computation time for 
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large images, as demonstrated in section 5.3.1.3, our implementation of the Poisson blending uses 

a blend region that is bounded by the total size of the image. This means that if the cropping region 

passes through a high gradient region, our method is better at compensating the error. This is shown 

inside the blue circle of Figure 5-4 where the GFC approach solves smoothly the cropped edge. 

Also, the GFC blending appears more natural since the left side of the stamp is more transparent.  

 

Figure 5-4 : Example of Poisson Blending application; (a) Stamp to copy, with the red-dotted 

lines being the cropping region and the blue dotted circle being a region of the stamp that is 

accidentally cropped; (b) destination image; (c) Poisson blending from Perez algorithm [57,118]; 

(d) Proposed GFC blending.  

In other cases where the cropping region does not pass through a high gradient, the results of the 

proposed GFC method is identical to the Perez method.  

5.3.2.2 Preserving the coloration 

The equation (70) presented an optimal Laplacian solver in the Fourier domain. In comparison, the 

literature proposes mostly iterative methods on the Laplacian [57,59,61], which gives an advantage 

for our method by making it faster and easier to implement. However, computing the Laplacian 

from the perturbed gradient requires an additional computing step to preserve the brightness and 

contrast.  

The problem when editing the gradient in an image is that the desired potential is not necessarily 

the result given by 𝑉𝐸 since we want to preserve the color information. Hence, we define a new 

corrected potential 𝐼𝑐,𝑐𝑜𝑟𝑟 in equation (72), where 𝜎 indicates the standard deviation and the top bar 

“̅ ” indicates the average. As stated in section 5.2.3.2, it is possible to add any constant to 𝐼𝑐 

without changing the validity of the equation, which means that the addition and subtraction of 
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equation (72) do not affect the potential. For the 𝜎 ratio, it is meant to preserve the initial contrast 

of the image, and it simply changes the norm of the gradient by a constant factor.  

𝐼𝑐,𝑐𝑜𝑟𝑟 = (𝐼𝑐 − 𝐼�̅�)
𝜎(𝐼)

𝜎(𝐼𝑐)
+ 𝐼 ̅ (72) 

In case no perturbation is added to the gradient, we have 𝐼𝑐 ≈ 𝐼. This means that almost no 

correction will be added to 𝐼𝑐, resulting in 𝐼𝑐,𝑐𝑜𝑟𝑟 ≈ 𝐼𝑐.  

5.3.3 Gradient thresholding 

Using the color preservation of equation (72), Figure 5-5 shows an of thresholding the gradient at 

10% of the highest possible gradient and computing the solving the new image with equations (70) 

and (72). We can see that most features of the initial image are preserved, but that there are less 

texture and fine elements.  

 

Figure 5-5 : Example of gradient thresholding and solver steps. (a) Original image; (b) Gradient 

|𝑬|; (c) Thresholded gradient at 10%; (d) Solved image 𝐼𝑐,𝑐𝑜𝑟𝑟.  

Figure 5-6 shows 2 more examples of GDIE with a 10% gradient thresholding. In those images, 

the castle reflection is completely erased, along with the clouds. For the leopard picture, almost all 

the background information is erased except for the leopard.  

The differences between our proposed Laplacian solver GFC and the one proposed by Perez [57] 

are negligible in the case of gradient removal. Hence, we do not present comparison images since 

the differences are imperceptible to the human eye.  
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Figure 5-6 : Examples of solved images 𝐼𝑐,𝑐𝑜𝑟𝑟 after the gradient threshold at 10%. (a) Image of a 

castle; (b) Solved castle image after 10% gradient threshold; (c) Image of a leopard; (d) Solved 

leopard image after 10% gradient threshold. 

5.3.4 Gradient domain merging (GDM) 

In this section, we present a method of editing an image by merging edges information with 

gradient information.  

A similar approach was used by Bhat et al. [58], which computed the salient gradient map to 

enhance the original gradient via cosine similarity. What we propose instead is to use the edges 

produced by ML algorithms and merge them to the gradient via a geometric average.  

The motivation of using machine learning edges prediction is that we believe future work could 

benefit from implementing the Green’s function inside ML algorithms. A simple example would 

be to enhance the contrast of the important objects via GDM, thus making it easier for the ML 

method to detect the object.  

The proposed GDM approach consists of combining the gradient with the edge information using 

a weighted geometric average defined in (73). The product enhances the gradient where edges are 

present but reduces them where edges are not present. In the equation, 𝑬𝑝 is the perturbed gradient, 

𝑬 is the original gradient, 𝐶 is the intensity of the edge detection, ∘ is the element-wise product, 

and 𝛼 = [0,1] is the weight associated to the geometric mean. Also, the orientation of the perturbed 

gradient 𝜃𝐸𝑝  is equal to the orientation of the original gradient 𝜃𝐸 . A higher 𝛼 attributes more 

weight to the edges, while a lower 𝛼 attributes more weight to the gradient.  
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|𝑬𝑝| = |𝑬|
1−𝛼 ∘ 𝐶𝛼  

𝜃𝐸𝑝 = 𝜃𝐸  
(73) 

5.3.4.1 Contrast enhancement between objects 

Figure 5-7 shows the different steps involved in the GDM method. The perturbed field 𝑬𝑝 is 

produced by equation (73) and solved by equation (72). We observe that the GDM produces a loss 

of texture, but that the contrast between the objects are enhanced.  

 

Figure 5-7 : Examples of the steps involving the GDM equation (73). (a) Original image; (b) 

|𝑬|: Gradient; (c) |𝑬𝑝|: Gradient merged with the SE method [64] and 𝛼 = 0.5; (d) Solved image. 

In Figure 5-8, we can see the effect of using different 𝛼 parameters. The higher the parameter 𝛼 is 

chosen, the stronger is the contrast between objects. However, a higher 𝛼 creates discoloration in 

the image. This is because a higher 𝛼 produces a field that is too different from the original field, 

which yields in undesired coloring and brightness artefacts.  

In Figure 5-9, we can observe more examples of GDM using 𝛼 = 0.5. We see that the deep learning 

edges RCF [25] produces higher contrast than the between objects than the random forest SE edges 

[64].  

In Figure 5-10, we can observe that Bhat [58] method of saliency sharpening enhances the folds of 

the clothing and the lines in the background. This is opposite to our method which reduces the folds 

and the background texture but enhances the colors of the foreground objects. This demonstrates 

that our method is fundamentally different than previously proposed edge enhancement methods 

and should not be used for the same purposes. 
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Figure 5-8 : Example of GDM using equation (73) with a random forest edge detector [64] and 

varying parameter 𝛼.   
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Figure 5-9 : Examples of solved images 𝐼𝑐,𝑐𝑜𝑟𝑟 with a perturbed gradient from equation (73) with 

edges information from SE method [64] and RCF method [25] and 𝛼 = 0.5. 

 

Figure 5-10 : Comparison of edge merging methods. (a) Original image; (b) Saliency sharpening 

from Bhat et al. [58]; (c) Enhancement using our GDM method with 𝛼 = 0.5 and SE edge 

detector. 
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5.3.4.2 Painting effect using thin edges 

For the GDM method, it is also possible to thin the edges before merging them with the gradient. 

This thinning is often called non-maximal suppression (NMS) and is natively implemented in some 

edge detection such as SE [64]. Applying NMS to the edges removes almost completely the texture 

information, meaning that the solved image resembles a painting, as observed in Figure 5-11.  

Since the thin edges 𝐶 do not necessarily intersect the gradient, we thicken the gradient 𝑬 by using 

a Gaussian filter with a standard deviation 𝜎 = 1.  

In Figure 5-11, we compare our GFC method and the one proposed by Perez [57,118]. First, we 

notice that the GFC approach has better color preservation than the Perez method. For example, 

we observe on the person image that the sky has a gradient of different colors. We also observe 

that the castle image has many small coloration artifacts inside the castle and at the top of the sky. 

For the leopard image, both methods yield similar results. Thus, the proposed GFC method 

produces a more natural painting effect since it is more accurate on fine details and color restoration 

than the competing Perez algorithm [57].  
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Figure 5-11 : Examples of solved images 𝐼𝑐,𝑐𝑜𝑟𝑟 with a perturbed gradient from equation (73) 

with edges information from SE method [64] with NMS and 𝛼 = 0.5.  

5.4 Future work 

In this section, we briefly discuss possible future work of our research concerning the convolutional 

neural network (CNN) applications and tensor processing unit (TPU) implementation.  

Machine learning applications. As shown in Figure 5-2, one of the advantages of our method is 

that the computation time is orders of magnitude faster than competing methods, and 100 folds 

parallelizable. Furthermore, Algorithm 5-B shows that the code is very simple to implement if a 

2D FFT is available. These advantages will allow future work to use the GFC inside CNN, thus 

allowing the networks to natively learn gradient-domain image editing. In fact, our Pytorch and 

Tensorflow implementations of GFC can be easily integrated inside a network since the backward 

propagation of the FFT is natively available.  
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TPU implementation. To further improve the computation speed and the parallel processing of 

our method, it will be interesting to implement it on TPU. These new processors allow parallelizing 

more operations by using 16 bits floating points, which can heavily benefit the computation of FFT 

[121].  

5.5 Conclusion 

This study detailed the development of the GFC method, which allows solving any field or 

Laplacian for gradient domain image editing purposes. First, we explained the theory behind the 

Green function convolution (GFC), and we mathematically proved in section 5.2.2 that it is the 

least error solver. Then, we demonstrated empirically on 1000 images that the RMSE error is 

negligible with a value of 0.004%. Moreover, Figure 5-3 also showed that the solver error on non-

conservative fields is consistently lower than competing methods. Figure 5-2 also showed that the 

method is almost instantaneous with a computation time of 1ms for the parallel processing of 100 

images with resolution 1200x801. Finally, we demonstrated different use-cases of gradient domain 

image editing and introduced GDM, the first method of merging learned edges with gradients for 

texture removal and contrast enhancement.  

In summary, this study allowed to build a robust and fast way to edit an image from its gradient 

which can be used in many applications. The code is fast enough to have a negligible impact on 

the computation time and simple enough to be implemented in any language. Future works could 

focus on more concrete applications, such as supervised image/video editing and machine learning 

applications.  
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Abstract 

In recent years, there has been rapid progress in solving the binary problems in computer vision, 

such as edge detection which finds the boundaries of an image and salient object detection which 

finds the important object in an image. This progress happened thanks to the rise of deep-learning 

and convolutional neural networks (CNN) which allow extracting complex and abstract features. 

However, edge detection and saliency are still two different fields and do not interact together, 

although it is intuitive for a human to detect salient objects based on its boundaries. Those features 

are not well merged in a CNN because edges and surfaces do not intersect since one feature 

represents a region while the other represents boundaries between different regions. In the current 

work, the main objective is to develop a method to merge the edges with the saliency maps to 

improve the performance of the saliency. Hence, we developed the gradient-domain merging 

(GDM) which can be used to quickly combine the image-domain information of salient object 

detection with the gradient-domain information of the edge detection. This leads to our proposed 

saliency enhancement using edges (SEE) with an average improvement of the F-measure of at least 

3.4 times higher on the DUT-OMRON dataset and 6.6 times higher on the ECSSD dataset when 

compared to competing algorithms such as denseCRF and BGOF. The SEE algorithm is split into 

2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.  

Keywords: Computer vision, Salient object detection, Saliency map, Gradient-domain editing, 

Edge detection.  

6.1 Introduction 

Recent years have seen great progress in solving binary problems in computer vision, such as edge 

detection [11,25,66] and saliency [11,26,76]. Saliency methods used different approaches based on 

multiple features, such as clustering and density [69–71], concavity [72], contrast filtering [73], 
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and background detection [74], but did not use edges since there exist no methods of merging edges 

with saliency. Furthermore, since the arrival of convolutional neural networks for saliency 

detection around the year 2015 [87], many highly effective algorithms were proposed such as MDF 

[87], DCL [76] and DSS [11,26]. The CNN was also used for edge detection such as RCF [25], 

with a work by Hou et al. in which they propose a unified framework to compute both saliency and 

edge detection [11], but without combining both results together. 

Although there have been much research works on both saliency and edge detection, only a few 

propose to improve the saliency using edges [77–79]. Other works propose to use background 

detection [74], contrast enhancement and texture smoothing [80] to improve the results, but as 

benchmarked by Patel et Raman [77], those algorithms do not work well on the recent CNN 

models, since CNN models are more performant at detecting those features. In fact, only the 

denseCRF [79] and the boundary-guided BGOF [78] method are proven to improve the 

performance of CNN-based saliency detection [78]. This is supported by the simple fact that the 

saliency should be low outside the boundary and high inside it, which is exactly what denseCRF 

and BGOF work try to optimize. However, they rely on an energy minimization of region 

segmentation instead of edge-based boundary conditions.  

Hence, our objective is to develop a method that merges the results of edge detection algorithms 

with the results of saliency detection algorithms to improve the performance of the saliency maps. 

For this objective, we propose saliency enhancement using edges (SEE) which allows one to merge 

the results from top saliency methods with top edge detection methods.  

Merging the region saliency maps with the edge maps is complex since they typically do not 

intersect, meaning that they cannot be combined by standard operations such as additions and 

multiplications. To solve this problem, our previous work showed that we can use the numerical 

2D Green’s function as convolutional kernels to extrapolate edges into surface information [15–

17,21]. These convolutions allowed to quickly evaluate the probability of being inside a given 

contour [16] and to smooth an image according to the edges given by an edge detection technique 

[17]. The SEE approach proposed in the current paper assumes that the gradient of the saliency 

maps is similar in nature to the edges map. Hence, it uses the gradient-domain to merge those 

features, then it solves the gradient using a numerical Green’s function convolution [17].  The SEE 

method is split into 2 parts: SEE-Pre to preprocess the image based on the edges and the SEE-Post 
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to post-process the saliency map based on its edges. The optimal results occur when those 2 parts 

are used together.  

6.2 Saliency enhancement using edges 

For the saliency enhancement using edges (SEE) method, we propose to merge edges with the 

saliency and the image using gradient-domain merging (GDM). This SEE method is separated into 

3 steps, the SEE-Pre which preprocesses the image, the SEE-Post which post-processes the image 

and the contrast enhancement.  

The SEE-Pre works by blurring the non-salient regions and enhancing the contrast of the salient 

regions. Competitive approaches with the same goal were proven to work on standard saliency 

models [77–79], but not on the newest deep-learning algorithms [78]. The SEE-Post works by 

keeping only the salient regions that are bounded by salient edges, similar to the most efficient 

available method BGOF [78].  

The following sections will first explain the SEE method and will follow by detailing each step: 

the salient edge detection, the GDM, the SEE-Pre, the SEE-Post, and the contrast enhancement.  

6.2.1 The complete SEE method 

An overview of the SEE method can be seen in Figure 6-1 where the edges and the salient edges 

𝐶0 and the image 𝐼0 serve as the 2 inputs of the method. With the regular saliency being 𝑆𝐼, we 

observe that the SEE-Pre is first applied to get the enhanced saliency 𝑆𝐼0𝑅 , followed by SEE-Post 

to obtain 𝑆𝐼0𝑅𝑅. Finally, the saliency map is normalized in the range [0, 1] and the contrast is 

enhanced to get the saliency 𝑆𝐼0𝑅𝑅𝐶.  

We can observe in Figure 6-1 that the precision/recall curve is almost perfect for the given example, 

with a precision 𝑃 near 100% at every point where the recall is 𝑅 is lower than 94%. This shows 

in the current example that the SEE method can significantly improve the resulting saliency map 

when both the preprocessing SEE-Pre and postprocessing SEE-Post methods are used together. 

More details on the precision/recall curve is given in section “6.2.5 Evaluation datasets and 

metrics”.  
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Figure 6-1 : Diagram of the complete SEE method, which allows improving the saliency via a 

combined image preprocessing and saliency map postprocessing. The images are examples of the 

results at each step based on the DRFI method with a precision/recall curve for the selected 

example where 𝑆𝐼 is the original saliency and 𝑆𝐼0𝑅𝑅𝐶 is the same saliency improved using our 

SEE method.  

6.2.2 Salient edge detection 

Before merging the edges in the gradient domain for our SEE approach, we must first understand 

which edges should be extracted from the image. Most edge detection methods focus on extracting 

all the edges from an image and its background [11,25,64] by basing their training on the BSDS500 

dataset [49]. In the case of saliency improvement, this yields to undesired edges that are not useful 

for the saliency improvement.  

For the task of salient object detection, the most used dataset for the training is MSRA10K with 

10,000 images [122] or its earlier version MSRA-B with 5000 images [67]. Those saliency-based 

datasets include a ground-truth 𝐺 image with value 1 at every pixel inside the salient object and 0 

at every pixel outside the salient object. By taking the boundaries of those 𝐺 images for the salient 

objects, we get a new ground-truth 𝐺sal for the salient edges. Using the new 𝐺sal, we can retrain the 

edge detection models to detect only the salient edges.  

We tried to use 2 different edge detection models to detect the salient edges by retraining or fine-

tuning them with the 𝐺sal. The first method, SE, uses random structured forest for learning [64,65] 
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and it was one of the best method available before the introduction of the CNN [25,65]. The second 

method, RCF [25], uses deep CNN for learning [25], and it is one of the best edge detection method 

available [11,25]. Examples of results are shown in Figure 6-2. The training models on the 

BSDS500 were already available for both methods. For the MSRA10K, we retrained the SE 

method with 10k iterations and we fine-tuned the RCF method with 1k and 5k iterations. The SE 

method had only moderate success at eliminating non-salient edges, and with many missing salient 

edges. The finetuned RCF method with 1k iterations and 256 images per iteration performed a lot 

better by eliminating the non-salient edges and enhancing the salient edges. The same method with 

5k iterations appears a lot cleaner, but also eliminates the salient edges which is undesirable.  

A full test of the SEE method with a different number of iterations of the RCF method suggest that 

1k iterations of finetuning with 256 images per iterations are near optimal results for saliency 

improvement. Hence, we used this finetuning of RCF for the rest of the paper, which we will denote 

as RCF-MSRA10k-1k. Since the dataset has 10,000 images and that we used 8000 for training, 

each image was trained an average of 32 times, which is low enough to avoid an overfit.  

 

Figure 6-2 : Comparison of SE and RCF edge detection methods trained or finetuned on the 

BSDS500 or MSRA10K datasets, with the number of iterations of retraining, using 2 example 

images from the ECSSD dataset. The salient edges will be used as inputs for the proposed SEE 

method.  
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6.2.3 Gradient-domain merging 

Our previous work demonstrated that an image can be reconstructed from its gradient using a 

simple Green’s function convolution (GFC) [16,17]. Since the convolution converges to the 

optimal solution even when a perturbation is added to the gradient, it showed that it can be used 

for robust edge-preserving blurring with any edge-detection method [17]. The blurring was done 

by gradient-domain merging (GDM) with the detected edges, followed by a Green’s function 

convolution that computes the image associated to the modified gradient.  

The current section presents the main equations that are used for gradient domain merging (GDM), 

which allows merging the results of edge detection with an image or saliency map. All the details 

for the equations can be found in previous work [15–17,21], with the most similarities to our 

previously proposed Gradient and Laplacian solver [17]. We make use of complex numbers to 

avoid redundant equations and convolution kernel by representing the 𝑥 and 𝑦 axes in the same 

equation. However, in practice, those equations can be separated into 2 different equations 

representing the real and imaginary parts.  

Since the GDM requires its inputs to be in the gradient domain, the first step is to compute the 

gradient 𝑬 of the image 𝐼0 and its orientation 𝜃 using the complex right-derivative kernel 𝐾𝐼→𝐸 in 

equation (74), where 𝑖 is the imaginary number. It is possible to use 2 real kernels instead of 𝐾𝐼→𝐸, 

which would require 2 convolutions with the real/imaginary part of the kernel [16,17]. It is 

important to note that a zero-valued padding of 3 pixels must be added to 𝐼0 to ensure continuity 

of the gradient and Laplacian at the border of the image [17].  

𝐾𝐼→𝐸 = [
0 0 0
0 𝑖 − 1 1
0 −𝑖 0

] 

𝑬 = 𝐼0 ∗ 𝐾𝐼→𝐸 

𝐸𝑥 = ℜ(𝑬)  , 𝐸𝑦 = ℑ(𝑬) 

|𝑬| = √𝐸𝑥2 + 𝐸𝑦2 , 𝜃𝐸 = atan (
𝐸𝑦

𝐸𝑥
) 

(74) 
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Using a merger function for the norm 𝑀𝐸 and another merger function for the orientation 𝑀𝜃, it is 

possible to merge the gradient 𝑬 with the modified contour 𝐶1, as seen in equation (73). This allows 

to obtain the modified gradient 𝑬𝑝 with its orientation 𝜃𝑝 in the complex domain.  

|𝑬𝑝| = 𝑀𝐸(𝐶0, 𝑬) 

𝜃𝑝 = 𝑀𝜃(𝐶0, 𝑬) 

𝑬𝑝 = |𝑬𝑝|𝑒
𝑖𝜃𝑝  

(75) 

Once the modified gradient 𝑬𝑝 is computed, it is mandatory to go back from the gradient domain 

to the potential (or image) domain. Hence, we need to solve the gradient using the GFC method 

that we developed in previous work [17]. The GFC method is used since it is fast with around 2 ms 

of computation time for an image of size 800 × 1200 and it is optimally robust against 

perturbations or modifications [17].  

Using the newly modified gradient 𝑬𝑝, we can compute the modified Laplacian 𝐿𝑝. The Laplacian 

is used since it is more straightforward to solve the Laplacian than the gradient using the GFC 

method [17]. The complex kernel 𝐾𝐸→𝐿 from equation (76) is used to compute the Laplacian 𝐿𝑝 in 

equation (77), where ℛ is the real part of the complex value.  

𝐾𝐸→𝐿 = [
0 −𝑖 0
−1 𝑖 + 1 0
0 0 0

] (76) 

𝐿𝑝 = ℛ(𝑬𝑝 ∗ 𝐾𝐸→𝐿) (77) 

The GFC method states that the Laplacian can be easily solved using the 2D Green’s function. We 

first need to implement the matrices �̌�𝛻2 and 𝛿 using equation (78), which are the zero-padded 

Laplacian and Dirac’s kernels [17]. Then, we compute the optimal Green’s function in the Fourier 

domain �̌�mono
ℱ  using equation (79), with ℱ being the Fourier transform [17]. The value of �̌�mono

ℱ  can 

be pre-computed to reduce the computation time of the Laplacian solver.  
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�̌�𝛻2 ≡

[
 
 
 
 
 
 0 −1 0 ⋯ 0
−1 4 −1
0 −1 0
⋮ ⋱
0 0⏟              

𝑠𝑖𝑧𝑒(𝐼) ]
 
 
 
 
 
 

  𝛿 ≡

[
 
 
 
 
 
 0 0 0 ⋯ 0
0 1 0
0 0 0
⋮ ⋱
0 0⏟            

size(𝐼) ]
 
 
 
 
 
 

 (78) 

�̌�mono
ℱ =

ℱ(𝛿)

ℱ(�̌�𝛻2)
 (79) 

Finally, the Laplacian can be solved with a convolution in the Fourier domain [17,33] using 

equation (80), where ℱ and ℱ−1 are the Fourier transform and its inverse, ℛ is the real part of a 

complex number and ∘ is the element-wise product. The resulting 𝐼𝑅 has a constant value of −𝑐 on 

all of its borders, which will be set to zero by defining adding the integration constant 𝑐 to 𝐼𝑅 [17]. 

Also, the resulting 𝐼𝑅 is cropped to match the initial size of 𝐼0 before the padding.  

𝐼𝑅 = ℛ (ℱ
−1(ℱ(𝐿𝑝) ∘ �̌�mono

ℱ )) + 𝑐 (80) 

A diagram representing the previous steps is presented in Figure 6-3, where 𝐶0 is the salient edges 

and 𝐼0 is either the saliency map or the RGB image. In the current work, 𝐶0 is computed via the 

method RCF-MSRA10k-1k. The gradient step is computed with (74), the Laplacian with (77) and 

the GFC with (80). The preparation steps are flexible and the merging functions 𝑀𝐸 and 𝑀𝜃 (73) 

vary according to the desired application and they will be explained in later sections.  
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Figure 6-3 : Diagram of the core GDM function, allowing to merge image/saliency information 

with edges information by passing to the gradient domain and solving the Laplacian equation to 

go back to the image domain.  

In summary, this section explained how to compute the GDM by solving the modified gradient 𝑬𝑝 

using the Laplacian 𝐿𝑝 (77), the pre-computed Fourier-domain Green’s function (79), and the 

Fourier-domain convolution (80). This allows to merge the image or saliency information with the 

salient edges by using the gradient domain, as shown in Figure 6-3. As stated in our previous work, 

this computation is fast and easy to implement [16,17], since most computer vision libraries such 

®MATLAB [36] and OpenCV [35] implement fast Fourier transform (FFT) algorithms. Also, the 

FFT algorithms are also available on the graphical processing unit (GPU) which allows for faster 

computation. The estimated computation time for a single channel 400x400 image is 1.5ms when 

eliminating overhead on the GPU ®Nvidia GTX 1080-Ti.  

6.2.4 The SEE method 

The GDM method explained in the previous sub-section can be used at different stages for the 

improvement of this saliency, with some variations outlined by the “flexible steps” in Figure 6-3. 

This section explains how GDM can be used for saliency enhancement using edges (SEE). First, 

we show how GDM is used for postprocessing of the saliency map (SEE-Post) and preprocessing 

of the image (SEE-Pre). Then, we show how to combine them into the general SEE method.  

𝑬𝑝 = 𝑀𝐸  1, 𝑬

    𝜃𝑝 = 𝑀𝜃  1, 𝑬
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6.2.4.1 The SEE-Post method 

The first part of the SEE method consists of the postprocessing of the saliency map SEE-Post, 

which tends to enhance its intensity inside the salient edges and to reduce it outside of them.  

Since the SEE-Post acts as postprocessing of the saliency result, then the input 𝐼0 of the GDM is 

replaced by the saliency 𝑆𝐼 computed on the image 𝐼. The input 𝐶0 of the GDM is the salient edge 

computed using RCF-MSRA10k-1k. The output of GDM is the reconstructed saliency 𝑆𝑅. Finally, 

the SEE-Post method averages 𝑆𝐼 and 𝑆𝑅, resulting in the final output 𝑆𝐼𝑅. The output 𝑆𝐼𝑅 combines 

the higher precision of 𝑆𝑅 with the higher recall of 𝑆𝐼 for a better overall result. The entire procedure 

is explained in the Figure 6-4, where is the example saliency 𝑆𝐼 is given by the DRFI method [67]. 

The final results are given later in the section 6.3 and the precision-recall curves are in the section 

6.4.  

Although our SEE-Post uses different saliency methods, DRFI is chosen for the examples since it 

allows to better visualize the improvement of the saliency map. In Figure 6-4, we observe how the 

intensity of the background is significantly reduced while the intensity of the salient person is 

enhanced. The improvement is shown in the precision/recall curve of Figure 6-4 where the 𝑆𝐼𝑅 

curve has better or equal precision than 𝑆𝐼 at every point and 𝑆𝐼𝑅 is shown have an almost steady 

precision for any recall value.  

 

Figure 6-4 : Diagram of the SEE-Post method, which allows to post-process a saliency map based 

on the salient edge detection. The images are examples of the results at each step based on the 

DRFI method with a precision/recall curve for the selected example. 
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Now we need to understand the preparation steps for the edges 𝑃𝐶0→1 and for the saliency 𝑃𝑆0→1that 

are used in order to obtain those results. For optimal results, we want the edges to be as thin as 

possible to avoid blurring the edges of the saliency map and to have a more accurate tracing. Hence, 

the 𝑃𝐶0→1 applies the non-maximal suppression (NMS) algorithm provided with the SE edge 

detection [64,65] on their ®GitHub [123]. However, edges too thin will not necessarily intersect 

with the gradient, which means that 𝑃𝐶0→1 adds a dilation after the thinning using the imdilate 

function in MATLAB® with a disk of 3-pixels diameter.  

Furthermore, the 𝑃𝑆0→1 adds a blurring to the saliency map to ensure the smoothness of the 

reconstruction, as proposed by our previous work for the painting effect [17]. We use a Gaussian 

blur with standard deviation 𝜎 = 3 pixels to compute 𝑆1, which helps ensure a smooth intersection 

between the gradient of 𝑆1 and the thinned edges 𝐶1.  

The next step is to define the functions 𝑀𝐸
Postand 𝑀𝜃

Post from equation (73) to determine how the 

gradient merging is done. First, we define the merger function for the norm 𝑀𝐸
Post according to 

equation (81), which is inspired by the edge contrast enhancement and painting effect from our 

previous work [17]. The element-wise product “∘”allows to eliminate every gradient that is not 

nearby a thin edge, while the square-root allows to preserve |𝑬| in case |𝑬| = 𝐶1.  

|𝑬𝑝
Post| = 𝑀𝐸

Post(𝐶1, 𝑬) = √𝐶1 ∘ |𝑬| (81) 

Then we define the merger function for the orientation 𝑀𝜃
Post according to equation (82), which 

always returns the value of 𝜃𝐶 , but shifts it by 𝜋 if the projection of 𝑬 on 𝐶1 returns a negative 

value. 𝜃𝐶  is defined as the orientation perpendicular to the thin edges. This is based on the fact that 

our previous work [16] proved that the orientation of dipoles must be perpendicular to the contour 

𝐶1 to give the probability that any pixel is inside the given 𝐶1, which is closely related to the 

saliency. Furthermore, the shift by a value of 𝜋 is due to the 2 different possible orientation of 

dipoles, which must ideally be optimized [16]. Since the optimization is computationally heavy, 

choosing the orientation in the same direction as 𝑬 yields to satisfactory results.  

𝜃𝑝
Post = 𝑀𝜃

Post(𝐶1, 𝑬) = {
𝜃𝐶 𝑐𝑜𝑠(𝜃𝐶 − 𝜃𝐸) ≥ 0

𝜃𝐶 + 𝜋 𝑐𝑜𝑠(𝜃𝐶 − 𝜃𝐸) < 0
 (82) 
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In summary, the general steps for SEE-Post method are presented in Figure 6-4, with the specific 

flexible GDM steps presented in the list below. 

• Contour preparation step 𝑃𝐶0→1 

○ Control thinning using NMS, followed by dilation with a disk of 3-pixel diameter. 

• Saliency preparation step 𝑃𝑆0→1 

○ Smoothing using a normalized kernel Gaussian kernel with 𝜎 = 3 

• Norm merging function 𝑀𝐸
Post defined in equation (81). 

• Orientation merging function Mθ
Post defined in equation (82). 

6.2.4.2 The SEE-Pre method 

In addition to the postprocessing method, the proposed SEE approach also offers a preprocessing 

method SEE-Pre for the improvement of the computed saliency map. It works by using salient 

edges to generate a new image where most of the background is eliminated, which helps the 

saliency method generate more accurate saliency maps.  

Since the SEE-Pre acts as a preprocessing of the input image, then the input 𝐼0 of the GDM is the 

original image 𝐼0 and the input 𝐶0 of the GDM is the salient edge computed using RCF-MSRA10k-

1k. The output of GDM is the reconstructed image 𝐼𝑅. Then the SEE-Post method runs twice the 

saliency algorithm to obtain 𝑆𝐼0 and 𝑆𝐼𝑅 and averages both outputs, resulting in the final saliency 

𝑆𝐼0𝑅 . The averaging allows to merge the better object recall of 𝑆𝐼𝑅 with the better boundary 

precision of 𝑆𝐼0. The entire procedure is explained in the Figure 6-5, where the example saliency 

maps 𝑆𝐼0 and 𝑆𝐼𝑅 images are given by the DRFI method [67].  

Once again, the SEE-Post works with different saliency methods, but DRFI is chosen to better 

observe the improvements generated by the SEE method. In Figure 6-5, we observe how the 

intensity of the person is significantly enhanced compared to the background. The improvement is 

shown in the precision/recall curve of Figure 6-5 where the 𝑆𝐼0𝑅  curve has better or equal precision 

than 𝑆𝐼 at every point. The curve is steady and somewhat similar to the one from SEE-Post in 

Figure 6-4, although the contrast between the salient person and the background is higher with the 

SEE-Pre than with the SEE-Post.  
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Figure 6-5 : Diagram of the SEE-Pre method, which allows preprocessing an image based on the 

salient edge detection for a more accurate saliency map. The images are examples of the results at 

each step based on the DRFI method with a precision/recall curve for the selected example. 

For the GDM step of Figure 6-5, we can first ignore the preparation steps for the input edges 𝑃𝐶0→1 

and for the input edges 𝑃𝐼0→1, meaning that 𝐶1
Pre = 𝐶0

Pre and 𝐼1
Pre = 𝐼0

Pre.  

Now we need to define the functions 𝑀𝐸
Preand 𝑀𝜃

Pre from equation (73) to determine how the 

gradient merging is done. The merger function for the norm 𝑀𝐸
Pre is defined in equation (83), which 

is similar to equation (81), but averaged with the field |𝑬| to preserve part of the texture and ensure 

the closure of the regions.  

|𝑬𝑝
Pre| = 𝑀𝐸

Pre(𝐶1, 𝑬) =
√|𝐶1| ∘ |𝑬| + |𝑬|

2
 (83) 

Then we define the merger function for the orientation 𝑀𝜃
Pre simply uses the same angle as the 

gradient in order to preserve the texture and coloring of the image, as defined in equation (84).  

𝜃𝑝
Pre = 𝑀𝜃

Pre(𝐶1, 𝑬) = 𝜃𝐸  (84) 

In summary, the general steps for SEE-Pre method are presented in Figure 6-5, with the specific 

flexible GDM steps presented in the list below. 

• Contour preparation 𝑃𝐶0→1 and image preparation 𝑃𝐼0→1 steps are ignored.   
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• Norm merging function 𝑀𝐸
Pre defined in equation (83). 

• Orientation merging function Mθ
Pre returns simply 𝜃𝐸  according to (84). 

6.2.4.3 Contrast enhancement 

Due to the use of inclusion probabilities and multiple averaging, it is preferable to enhance the 

contrast of the resulting image as suggested by our previous work on improving the probability of 

inclusion [16]. Hence, we compute the contrast-enhanced saliency 𝑆𝐶 by using the smooth-step 

provided in equation (85) and based on Hermite polynomial [16,111], where 𝑆 is any saliency map 

and 𝑆𝐶 is the contrast enhanced saliency map. This polynomial enhances the value of any 𝑆 > 0.5 

and reduce the value of any 𝑆 < 0.5. For the example of Figure 6-1, we use 𝐾 = 4, with more 

detailed explanations to follow.  

𝑆𝐶 = 𝑆
𝐾+1∑(

𝐾 + 𝑘
𝑘

) (
2𝐾 + 1
𝐾 − 𝑘

) (−𝑆)𝑘
𝐾

𝑘=0

 (85) 

In the smooth-step equation (85), 𝐾 is a parameter representing the intensity of the contrast 

enhancement, with 𝐾 = 0 representing no contrast enhancement and 𝐾 → ∞ representing a step 

function that sets to 0 any value of 𝑆 < 0.5 and to 1 any value of 𝑆 > 0.5. In our current work, we 

use 𝐾 = 4 since it helps improve the mean absolute error defined in equation (118), without any 

noticeable impact on the other parameters Examples of the polynomial (85) for 𝐾 = {2, 4} are 

presented in equation (86). Furthermore, Figure 6-6 allows to better visualize the effect of the 

smooth-step function.  

𝑆𝐶(𝐾=2) = 6 𝑆
5 − 15 𝑆4 + 10 𝑆3  

𝑆𝐶(𝐾=4) = 70 𝑆
9 − 315 𝑆8 + 540 𝑆7 − 420 𝑆6 + 126 𝑆5 

(86) 
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Figure 6-6 : Smooth-step function (85) with different values of 𝐾.  

In Figure 6-1 representing the whole SEE method, the saliency 𝑆𝐼0𝑅𝑅𝐶 is the application of the 

equation (86) on the saliency 𝑆𝐼0𝑅𝑅 resulting from the combination of SEE-Pre and SEE-Post.  

6.2.5 Evaluation datasets and metrics 

To properly evaluate our proposed SEE algorithm, we need to use standard datasets and metrics. 

For the datasets, we use the MSRA10K [122] for training purposes, which is an extension of the 

previous MSRA-B [67] dataset. The MSRA10K is used for training since it has the largest number 

of images (10,000). It is also one of the easiest in terms of performance which makes it is harder 

to discriminate between different algorithms, and it is the most used for training purposes [26].  

For evaluation purposes, we use the following 3 datasets: ECSSD with 1000 images [68,124], 

PASCAL-S [125] with 850 more complex images and DUT-OMRON with the most complex 5168 

images [126]. These datasets are used since they are among the standard in the literature for test 

evaluation purposes and they are used for the BGOF method [78].  

For the comparison with other techniques, the parameters that are evaluated are the precision 𝑃, 

the recall or true positives 𝑅 and the false positives 𝑅!  [69,127]. Those parameters are evaluated 

for 256 levels of thresholds on the saliency map 𝑆, which allows to plot the precision-recall 𝑃𝑅 

curve. At each threshold level, a binary mask 𝑀 is generated and compared to the binary ground-

truth 𝐺. From the 𝑃𝑅 curve, one can evaluate the average 𝑃𝑅, the F-measure 𝐹𝑚 and the maximum 

precision 𝑃max  . All those parameters are defined in equations (112)-(116), where 𝛽 = 0.3 is a 

constant that allows to add more weight to the precision,   
!  is the logical NOT operator, ∩ is the 

logical AND operator and ∑ is the sum over every pixel [69,127].  
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𝑃 =
∑𝑀 ∩ 𝐺

∑𝑀
 (87) 

𝑅 =
∑𝑀 ∩ 𝐺

∑𝐺
 , 𝑅 

! =
∑𝑀 ∩ 𝐺 

!

∑ 𝐺 !
  (88) 

𝑃𝑚𝑎𝑥  = 𝑚𝑎𝑥(𝑃) (89) 

𝐹𝑚 = 𝑚𝑎𝑥 (
(1 + 𝛽2)(𝑃 𝑅)

𝛽2 𝑃 𝑅
) (90) 

𝑃𝑅̅̅ ̅̅ = ∫ 𝑃 𝑑𝑅 (91) 

Other important information is the area under the curve (AUC) of the true-false-positive curve, and 

the mean absolute error (MAE) given respectively in equations (117) and (118), where 𝑆 is the 

saliency map normalized to [0, 1] and 𝑁 the total number of pixels.  

𝐴𝑈𝐶 = ∫ 𝑅 𝑑 𝑅 
!  (92) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑆 − 𝐺| (93) 

From all those parameters, the most used in the literature are the precision-recall 𝑃𝑅 curve, the 

F-measure 𝐹𝑚 and the mean absolute error 𝑀𝐴𝐸. Hence, those parameters will be used to be 

compared with other methods from the literature. Additionally, we use the maximum precision 

𝑃max  , the mean precision-recall 𝑃𝑅̅̅ ̅̅  and the area under curve AUC to show that our approach 

improves many different measures. 

6.3 Results 

The complete SEE method was presented within the last section, but with only a single image 

example for the results. This section will show how the SEE methods on different images of the 

datasets ECSSD [68,124], PASCAL-S [125] and DUT-OMRON [126]. Different image examples 

will be provided, along with a benchmarking of the computation time.  
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6.3.1 Results on different images 

The saliency methods on which the SEE is tested are DSS [11,26], DCL+ [76] (which combines 

DCL with denseCRF [79]), DRFI [67], RBD [74] and MC [128]. As we observe on the different 

examples in Figure 6-7, the SEE method significantly reduces the background values while 

enhancing the foreground values. Also, it partially fills some missing regions of the salient objects. 

Since a good saliency map is one where all the foreground values are higher than the background 

values, then we understand visually how our SEE method improves the best tested algorithms such 

as DCL [76] and DSS [26].  

 

 

Figure 6-7 : Comparison of the results from 5 different SoA methods (MC, RBD, DRFI, DCL, 

and DSS) and their improvement using our SEE algorithm highlighted in green. The examples 

are chosen as some of the most difficult images in the datasets.   
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6.3.2 Computation time 

Since our proposed SEE approach combines a SoA salient object detection with a SoA edge 

detection, then it is necessarily slower than the salient object detection alone. However, since many 

methods use denseCRF to improve their results [26,76], our method might perform faster by 

removing this layer. For our benchmarks, we use a graphics processing unit (GPU) Nvidia® GTX 

1080 Ti and a central processing unit (CPU) Intel® i7-6700K.  

For the GDM part, which is fundamental to the SEE algorithm, the computation time is around 

1.5ms per RGB channel of size 400 × 400 on the GPU [17], which means that all the required 

GDM take around 6ms per image. This is negligible in the full computation time.  

For the edge detection time, we use the RCF method, which takes around 100ms to compute a 

multiscale result [25]. For the salient object detection, the DCL method takes around 1000ms (due 

to the segmentation), while the DSS method takes around 80ms [26]. Both methods require an 

additional 400ms for using denseCRF to improve their saliency map [26]. Our method allows to 

remove the denseCRF but needs to compute the saliency twice. Hence, there is a computation time 

improvement for DSS, but not for DCL. The total computation time of the DSS-SEE method is 

less than 300ms while it is around 500ms for DSS-denseCRF. The total computation time of the 

DCL-SEE method is around 2000ms while it is around 1400ms for DCL-denseCRF. 

6.4 Literature comparison and discussion 

This section will perform a thorough benchmarking of the SEE-Post and the SEE methods on the 

datasets ECSSD [68,124], PASCAL-S [125] and DUT-OMRON [126]. The benchmarking 

includes measurements for the improvements over the saliency methods DSS [11,26], DCL+ [76], 

which combines DCL with denseCRF [79], MDF [87], DRFI [67], RBD [74] and DSR [71]. It also 

includes a comparison to state-of-the-art (SoA) methods for saliency maps improvement SO [74], 

denseCRF [79] and the most performant BGOF [78].  

6.4.1 Improvement of the saliency maps 

By using 3 different datasets and 7 SoA saliency methods, the current section shows that our 

proposed SEE approach allows to significantly improve the saliency results of many SoA 

algorithms, including the most recent CNN-based methods such as MDF, DSS, and DCL+.  
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In Figure 6-8, we can observe that both the SEE-Post and the SEE methods allow improving all 5 

metrics defined in section 6.2.5 on the ECSSD (E), PASCAL-S (P-S) and DUT-OMRON (D-O) 

datasets. In fact, the only metrics where SEE reduces the performance is the 𝑃max   for the DSS 

method.  

The improvement is high enough that some less performant methods can outperform methods that 

are significantly better. Hence, we observe that MC with SEE outperforms DRFI on many measures 

and that DRFI with SEE outperforms MDF on many measures.  

Also, we observe in Figure 6-8 that some methods receive a higher boost of performance than 

similar performing methods since they are naturally more adapted to the SEE method. For example, 

DSR is less improved than similar performing methods such as RBD, since the gradient of the RBD 

method merges better with the salient edge detection. Also, we note that the best regular method is 

DSS, but the best method is DCL+ when using the SEE algorithm. Again, this is because DCL+ 

merges better in the gradient domain, which gives it a bigger boost, especially for 𝐹𝑚, 𝑃𝑅̅̅ ̅̅  and 

𝑃max  .  
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Figure 6-8 : Comparison between the regular saliency methods, the enhanced saliency using our 

SEE-Post algorithm and the enhanced saliency using our SEE algorithm. A higher percentage is 

better for 𝐴𝑈𝐶, 𝐹𝑚, 𝑃𝑅̅̅ ̅̅  and 𝑃max  , but a lower percentage is better for 𝑀𝐴𝐸. The 3 datasets used 

are ECSSD (E), PASCAL-S (P-S) and DUT-OMRON (D-O).  

For the same methods, we can observe the precision-recall 𝑃𝑅 curves on Figure 6-9 on the same 3 

datasets. We observe that for any non-CNN based saliency method, the improvement of the SEE 

method is very high at every point of the 𝑃𝑅 curves. However, for the CNN-based methods, the 

regular method sometimes outperforms the SEE improvement at low recall (𝑅 < 0.5), but never 

at high recall (𝑅 > 0.5). Also, the 𝑃𝑅 curve is a lot flatter with the SEE method, meaning that the 

precision is almost constant for every recall that is not too high (𝑅 < 0.8). This is reflected in the 

improvement of the 𝐴𝑈𝐶 and the 𝐹𝑚 parameters in Figure 6-8. The flat curve means that the 

saliency is more robust with the SEE method and will lead to easier thresholding and more robust 

thresholding. Furthermore, we observe again that the DCL with SEE outperforms the DSS with 

SEE, although DSS outperforms DCL.  
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Figure 6-9 : Precision-recall curves comparing 6 different methods (DSR, RBD, DRFI, MC, 

DCL, and DSS) with and without our SEE method on 3 different datasets.  

6.4.2 Comparison of saliency improvement methods 

The previous section shows that our SEE method works well for its purpose of improving the 

saliency, and this section pursues by showing that it performs far better than any other algorithm 

with the same goal.  

In fact, the improvement of SEE over 𝐹𝑚 is on average 6.6 times better than the nearest competing 

algorithm BGOF [78] on ECSSD and 3.4 times on DUT-OMRON, as observed on Figure 6-10. 

Also, other methods such as SO [74] and denseCRF [79] are even further behind. Since 𝐹𝑚 is the 

most universally used measure [26,62,67,69,76,127], this is an important achievement for the SEE 

method. Furthermore, the performance is better for 𝑀𝐴𝐸, another widely used indicator [67,69,76]. 

However, MAE is not as important as 𝐹𝑚 since it can easily be improved by enhancing the contrast 

of the saliency map, while 𝐹𝑚 is non-trivial to improve and indicates a direct improvement in the 

PR curve.  

In summary, we observe that the proposed SEE method and even the proposed SEE-Post are a vast 

improvement compared to any other algorithm present in the literature. Hence for computation 

time reasons, one can choose to not use the SEE-Pre method, especially for the high-performance 

methods such as DCL and DSS where most of the improvements happen with the SEE-Post part 

of our approach.  

Regular
With SEE

Regular
With SEE

Regular
With SEE



122 

 

 

Figure 6-10 : Comparison of the improvement over 𝐹𝑚 and 𝑀𝐴𝐸 for different SoA saliency 

improvement methods.  

6.5 Conclusion 

The objective of this paper was to develop a novel method of merging the edges with the saliency 

maps to improve the performance of the salient object detection. It is the first work that allows 

combining the best advances in edge detection with the best advances in salient object detection. 

As seen in Figure 6-7, it works intuitively by reducing the values of the saliency map outside salient 

edges and enhancing it inside them, which is similar to how a human will perceive a salient object 

by its inclusion within boundaries. When compared to other methods of improving saliency maps 

with Figure 6-10, the SEE method shows an average improvement of the F-measure 𝐹𝑚 3.4 times 

more than the BGOF on the DUT-OMRON dataset and 6.6 times on the ECSSD dataset, and an 

improvement of the mean absolute error significantly better than all its competitors. We also 

showed how the SEE method improves by a high margin the precision-recall curve and some other 

measures such as the 𝐴𝑈𝐶, 𝑃𝑅̅̅ ̅̅  and 𝑃max  .  

We believe that the proposed SEE method will have an important impact for the binary problems 

of computer vision since SEE is the first method that allows merging edge detection methods with 

saliency detection methods for improved results. A limitation of the method is that it needs 2 

different neural networks trained separately which requires to optimize the parameters of both 

networks simultaneously and which increases the computation time. Future work can focus on 
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integrating the SEE method directly inside a neural network so that a single network is used, and 

all the parameters are optimized during the training process.  
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Abstract 

Current saliency methods require to learn large scale regional features using small convolutional 

kernels, which is not possible with a simple feed-forward network. Some methods solve this 

problem by using segmentation into superpixels while others downscale the image through the 

network and rescale it back to its original size. The objective of this paper is to show that saliency 

convolutional neural networks (CNN) can be improved by using a Green’s function convolution 

(GFC) to extrapolate edges features into salient regions. The GFC acts as a gradient integrator, 

allowing to produce saliency features from thin edge-like features directly inside the CNN. Hence, 

we propose the gradient integration and sum (GIS) layer that combines the edges features with the 

saliency features. Using the HED and DSS architecture, we demonstrated that adding a GIS layer 

near the network’s output allows to reduce the sensitivity to the parameter initialization, to reduce 

the overfitting and to improve the repeatability of the training. By simply adding a GIS layer to the 

state-of-the-art DSS model, there is an absolute increase of 1.6% for the F-measure on the DUT-

OMRON dataset, with only 10ms of additional computation time. The GIS layer further allows the 

network to perform significantly better in the case of highly noisy images or low-brightness images. 

In fact, we observed an F-measure improvement of 𝟓. 𝟐% when noise was added to the dataset and 

𝟐. 𝟖% when the brightness was reduced. Since the GIS layer is model agnostic, it can be 

implemented into different fully convolutional networks. Further, we showed that it outperforms 

the denseCRF post-processing method and is 40 times faster. A major contribution of the current 

work is the first implementation of Green’s function convolution inside a neural network, which 

 
1  * Corresponding author. Tel.: +1-514-340-4711 # 3345 
2  E-mail address: dbeaini.phd@outlook.com 
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allows the network, via very minor architectural changes and no additional parameters, to operate 

in the feature domain and in the gradient domain at the same time.  

Keywords: Salient object detection, Green’s function convolution, Gradient integration sum, 

Saliency improvement, Deep learning  

7.1 Introduction 

Since the year 2015, the convolutional neural networks (CNN) rose quickly to become the best 

machine learning technique used to solve the binary problems of computer vision such as edge 

detection [25,66], skeleton extraction [11] and salient object detection [26,76]. In fact, recent 

algorithms perform near human-level [25].   

At first, saliency methods were based on pre-programmed features such as clustering and density 

[69–71], concavity [72], contrast filtering [73], background detection [74], etc. Although they 

showed some success with simple images, they did not perform well on more complex dataset 

images [126]. The method DRFI [67] was the first to use machine learning, but it was soon 

outpaced by the arrival of CNN-based algorithms with methods such as MDF [87], DCL [76] and 

DSS [11,26]. The deeply supervised saliency (DSS) method was successful due to the efficient 

down-scaling and up-scaling of saliency maps.  

An important problem with current salient object detection solutions is that they focus on finding 

the salient regions with little consideration to the fact that they are often bounded within edges. To 

overcome this limitation, some methods such as MDF [87] and DCL [76] use a pre-segmentation 

of the image. Furthermore, most methods fine-tune their results using saliency enhancement 

methods such as the denseCRF [79] algorithm during the testing phase, which uses segmentation 

to clean the saliency maps and make it more accurate to the boundaries.  

Different methods of enhancing the saliency maps are proposed in the literature. WCtr [74] 

proposes to improve the saliency maps using background detection. However,  BGOF [78] showed 

that most saliency improvement algorithms based on segmentation and background detection do 

not work on recent networks since CNN are better at detecting the background and segmentation 

than traditional methods. In contrast, algorithms such as denseCRF [79] and BGOF [78] optimize 

the saliency map density via energy minimization. The DeepSets method [129] is very similar since 

it uses super-pixels to enhance the saliency maps on the boundaries and increase the density. 
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Alternatively, the RACDNN method [130] proposes to use a recurrent attention mechanism to 

recursively enhance each region of the saliency map. Although RACDNN trains with the network, 

the attention mechanism is outside it and significantly increases the architectural complexity by 

adding recurrent layers [130].  As explained in later paragraphs, the proposed method differs from 

the literature since it adds a layer directly inside the network, thus directly improving the capacity 

of the network to generate saliency maps.  

The objective of this paper is to show that a saliency CNN can be improved using a Green’s 

function convolution (GFC), which allows integrating edge-like features into salient features. 

Hence, we propose the gradient integration and sum (GIS) layer, which integrates the gradient 

domain features and adds them to the special domain features. By doing so, the GIS layer creates 

a smooth and continuous region between the high gradient boundaries, thus enhancing the saliency 

map inside boundaries and reducing it outside the boundaries. Hence, for the proposed method, the 

network directly trains the parameters used for the saliency improvement, in contrast with other 

methods which act outside of the main network.  

It is to note that the saliency improvement occurs in the uniform regions inside boundaries, not at 

the boundaries themselves. This is because the GFC extrapolates the edges into regions of smooth 

probabilities within the image, as demonstrated by Beaini et al. [16]. 

The denseCRF [79], BGOF [78], DeepSets [129] and RACDNN [130] are methods that post-

process the saliency maps outside of the neural networks, aiming to improve the boundaries and to 

increase the density of the maps. This is in contrast with the proposed method consisting of adding 

a GIS layer directly inside the network, thus allowing the network to train its inputs. Furthermore, 

GIS does not aim at improving the density or the boundaries but consists of allowing the network 

to combine features from the saliency-domain and the gradient-domain.  

The GIS is first proposed in this paper, although similar concepts of gradient-domain merging were 

previously both proposed by Beaini et al [17]. Previous work using Green’s function convolution 

(GFC) for Poisson image editing, contrast enhancements and paint-like effects [17,113,115,119]. 

To our knowledge, they are never implemented inside neural networks. However, the GFC method 

was demonstrated to solve 100 Laplacians in 1ms using machine learning libraries such as Pytorch 

and Tensorflow [17].  
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The idea of merging edges with saliency inside the network comes from the fact that edge detectors 

are fast to learn by a CNN since they require gradient-like [63] or Gabor-like kernels [9,49]. Thus 

we propose to create a network that computes saliency and edge-like features at the same time, 

then merges them using a GIS layer. Further, to better understand the importance of the edges in 

the saliency detection, we visualize the inputs and outputs of the GIS layer at different scales. The 

current paper demonstrates that the proposed GIS layer improves salient object detection for 

different network architectures, resulting in better accuracy, less overfitting and lower sensitivity 

to the network initialization.  

In our work, we propose to use the GIS layer on the HED [66] and DSS [11,26] architectures by 

adding our layers to the end of each side-layer of the original networks, without any other 

architectural changes. Both HED [66] and DSS [11] are known for their edge detection 

performance, but only DSS [26] performs well for salient object detection. However, our work 

shows that the GIS layer improves the HED network by a high margin, thus allowing it to 

outperform saliency-focused networks. We will refer to the modified models as HED-GIS and 

DSS-GIS.  

In summary, our contributions are that we are the first to implement a GFC-based layer inside a 

CNN and that such layer allows to significantly improve salient object detection by extrapolating 

edges into smooth saliency maps.  

7.2 Methodology 

The full implementation of DSS-GIS is done with Python using the TensorFlow library. The 

current section will explain how the GIS work, what are the HED and DSS architectures and how 

we modify them to create the proposed HED-GIS and DSS-GIS.  

7.2.1 Gradient integration and sum (GIS) 

The GIS method is first proposed in the current work but is inspired by the field of gradient-domain 

image editing, which mainly focuses on applying editing filters to images [58,112]. We mainly 

base our work on the GFC method proposed by Beaini et al. [17] which allows integrating any 

vector field with minimal error and low computation time (100 images in 1ms). For the current 

paper, we are interested in the ability of the GIS to combine edge-like features (object boundaries) 
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with region-like features (saliency maps). Those features cannot be combined by standard 

operations such as additions, multiplications or small-kernel convolutions since most edge pixels 

do not intersect saliency pixels. Hence, before summing the features, an integration step is required 

to transform the edge-like features into region-like features. The following subsections will explain 

how the GIS integrates the gradient and merges it with the standard features.    

7.2.1.1 Green’s function convolution (GFC) 

The current subsection focuses on the gradient-integration step and is based on work by Beaini et 

al. [17]. 

Let us denote 𝑬 as a vector field of features made of the horizontal 𝐸𝑥 and vertical 𝐸𝑦 components. 

The vector field 𝑬 cannot be integrated directly since it is not necessarily a conservative field, 

meaning that it does not have a solution.  

Hence, we use Green’s function based solver proposed by Beaini et al. [17]. We first need to 

compute the Laplacian 𝐿𝑝, then to solve it using a Green’s function convolution (GFC), as 

described in this section.  

The Laplacian 𝐿𝑝 is computed using equation (94), where 𝐸𝑥,𝑦 are the 𝑥 and 𝑦 components of the 

field 𝑬 and 𝐾𝐸→𝐿 is the convolutional kernel that represents this operation.  

𝐿𝑝 =
𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦

𝜕𝑦
= 𝐾𝐸→𝐿 ∗ 𝑬 (94) 

Now that the Laplacian is computed, we need to compute the Green’s function that solves it. The 

Green’s function is defined as a function that solves a given differential equation with a convolution 

[33]. In our case, the differential equation is the numerical Laplacian given by the convolution in 

equation (95). In this equation, 𝐼 is any image, 𝐿𝐼 is its Laplacian and 𝐾∇2 is the Laplacian kernel.  

𝐿𝐼 = 𝐼 ∗ 𝐾𝛻2  , 𝐾𝛻2 = [
0 −1 0
−1 4 −1
0 −1 0

 ] (95) 

If we denote 𝑉𝑚𝑜𝑛𝑜 as being the numerical Green’s function that solves the Laplacian, then equation 

(96) shows that the convolution K∇2 ∗ Vmono act as an identity. Since the convolution identity is 

the Dirac’s delta 𝛿 [33], then equation (97) represents this relation.  
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𝐼 = 𝐼 ∗ 𝐾𝛻2 ∗ 𝑉𝑚𝑜𝑛𝑜  (96) 

𝐾𝛻2 ∗ 𝑉𝑚𝑜𝑛𝑜 = 𝛿 (97) 

Then we define the convolution theorem [33] in equation (98) where 𝐴, 𝐵 are any function, ℱ is 

the Fourier transform, ℱ−1 is the inverse Fourier transform and ∘ is the element-wise product.  

Using equation (98) it becomes possible to solve equation (97) for  ℱ(𝑉𝑚𝑜𝑛𝑜), as given by equation 

(99). The notation Vmono
ℱ  represents the Green’s function in the Fourier domain. 

𝐴 ∗ 𝐵 = ℱ−1(ℱ(𝐴) ∘ ℱ(𝐵)) (98) 

𝑉mono
ℱ = ℱ(𝑉𝑚𝑜𝑛𝑜) =

ℱ(𝛿)

ℱ(𝐾𝛻2)
 (99) 

Equation (99) gives a solution for the Green’s function 𝑉𝑚𝑜𝑛𝑜. However, to be applied on an image 

as given by equation (96), 𝑉𝑚𝑜𝑛𝑜 must be the same size as the image.   

Hence, we define 𝛿 as the padded numerical Dirac’s delta and �̌�𝛻2 as the padded numerical 

Laplacian kernel in equation (100), where 𝐿𝐼 is the Laplacian to solve [17]. Then, the Green 

function in the Fourier domain �̌�mono
ℱ  is given by (101) [17].  

�̌�𝛻2 ≡

[
 
 
 
 
 
 0 -1 0 ⋯ 0
-1 4 -1
0 -1 0
⋮ ⋱
0 0⏟          

𝑠𝑖𝑧𝑒(𝐿𝐼) ]
 
 
 
 
 
 

  𝛿 ≡

[
 
 
 
 
 
 0 0 0 ⋯ 0
0 1 0
0 0 0
⋮ ⋱
0 0⏟          

size(𝐿𝐼) ]
 
 
 
 
 
 

 (100) 

�̌�mono
ℱ =

ℱ(𝛿)

ℱ(�̌�𝛻2)
 (101) 

In equation (101), �̌�mono
ℱ  is the Green’s function that allows to solve any Laplacian by a convolution 

[17,33]. The convolution is computed using the Fourier domain as defined in equation (102) since 

Fourier transforms are faster for large convolutions and are implemented on a graphical processing 

unit (GPU) in multiple machine vision libraries such as OpenCV [35], MATLAB® [36] and 
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Tensorflow. In equation (102), ℛ is the real part of a complex number, 𝑐 is an integration constant 

and 𝐼𝑅 is the resulting image. In practice, a 4-pixels padding of value 0 is added all around 𝐿𝑝 to 

avoid discontinuities in the numerical Laplacian [17]. The constant 𝑐 is equal to the values in the 

padded part of 𝐼𝑅.  

𝐼𝑅 = ℛ (ℱ
−1(ℱ(𝐿𝑝) ∘ �̌�mono

ℱ )) − 𝑐 (102) 

More details about the mathematical foundation of the Laplacian solver, as well as empirical 

demonstrations and pseudo-codes are provided in a previous work by Beaini et al. [17].  

7.2.1.2 Overview of the GIS layer 

To better understand the GIS layer, a graph is provided in Figure 7-1. We observe that GIS has 𝑛 

output channels for 3𝑛 input channels. The 3 input groups are 𝑆, 𝐸𝑥 and 𝐸𝑦. 𝑆 is considered in the 

spatial domain and is simply summed to the output. 𝑬 is considered in the gradient domain and is 

integrated using GFC before being summed to 𝑆.  

Note that a weighted sum is not required since the inputs are expected to be weighted by the CNN.  

 

Figure 7-1 : Graph summary of the gradient integration and sum (GIS) layer, which outputs 𝑛 

channels from 3𝑛 inputs.   

7.2.2 Implementing the models with the GIS layer 

The proposed GIS layer can only be implemented on fully convolutional networks since they 

require that the network is able to output both saliency and edges at the same time. Hence, we use 
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the DSS model, which to the best of our best knowledge, is one of the most successful saliency 

model [11,26]. We also use the HED model to demonstrate that our approach is generalizable to 

more networks.  

 It is to note that GIS implements an integration of edge-like features from the gradient 

domain. However, the network is never forced, via an intermediate loss, to learn the gradient of the 

saliency map. The gradient of the saliency is naturally learned by the fact that the GFC gradient 

integrator is used, without requiring a saliency ground-truth. Hence, the edge-like features from 

Figure 7-1(𝐸𝑥 and 𝐸𝑦) are not necessarily the gradient of the saliency, although they are expected 

to be. In addition, the saliency-like features used by GIS in Figure 7-1 (𝑆) is not forced to be similar 

to the saliency. It is simply expected to be similar to the saliency due to the merging operation. 

Hence, 𝑆 cannot be used directly as an output of the network.  

7.2.2.1 The HED and DSS models 

The HED and DSS models are an architecture nested on top of a classification network, with deep 

side layers connected before every pooling [26]. They are presented in Figure 7-2, with the 

classification network being the pre-trained VGGnet-16 [10] presented in gray in Figure 7-2. They 

have a total of 6 side outputs with 3 layers each, with the first 2 layers being followed by a ReLU 

operation [26]. The side layers are presented in blue in Figure 7-2 with the parameters defined in a 

later section in Table 7.1. The only difference between the standard model and our model are that 

the 3rd layer of each side layer has only 1 output for HED/DSS instead of 3 outputs for HED/DSS-

GIS. The weights of the side layers are initialized as a normalized uniform random distribution.  
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Figure 7-2 : The HED [66] and DSS [11,26] architectures nested upon the pre-trained VGGnet-

16 [10] network, with a total of 6 side layers. The red arrows are the short connections 

implemented by the DSS model [11,26]. Our contribution is the GIS at the end of each side-layer, 

which requires the layer sideX_3 to output 3 channels instead of 1.  

Another innovative concept introduced with DSS but lacking from HED is the short connections 

between the side outputs. These short connections take the final output of each side layer numbered 

𝑛 and concatenate it with the 3rd layer output of each side layer numbered 𝑚, where 𝑚 < 𝑛. This 

means that the results from the deeper layers, which are better at finding salient regions, are scaled 

up and sent to the shallower layers which are better at finding the fine details and edges [26]. These 

short connections are represented by the blue lines on Figure 7-2. 

7.2.2.2 Adding the GIS layer 

As stated previously, the main change to the HED/DSS model is the added GIS which allows 

merging the salient object detection with the salient edge detection. Hence, we use the same side-

layers as the HED/DSS method, except that the sideX_3 layers have 3 outputs instead of 1 output. 

These 3 outputs are then used as inputs to the GIS layer and are also used for the short connection.  
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A closer view on the integration of the GIS layer within the network is presented in Figure 7-3, 

where we observe that each side layer sideX_3 produces 3 outputs, which are then split into the 

𝑆, 𝐸𝑥 and 𝐸𝑦 inputs of the GIS layer.  

All the parameters of the DSS-GIS are summarized in Table 7.1 and the architecture is summarized 

in Figure 7-2.  

For the maximum performance of the DSS-GIS, the GIS layers are expected to have one saliency-

like input in the spatial domain and 2 inputs in the gradient domain, since it is how the GIS layer 

was designed. This is indeed what is observed in Figure 7-4 where 𝑆 distinguishes the regions and 

𝐸𝑥,𝑦 highlight the edges of the people sitting in the grass.  

 

Figure 7-3 : Closer view on the integration of the GIS layer inside the DSS architecture. For the 

HED architecture, the GIS layer is placed directly after the channel split since there are no short 

connections.  
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Table 7.1 : Side layer information of HED and DSS architectures given by (𝑛, 𝑘 × 𝑘), where 𝑛 is 

the number of output channels and 𝑘 × 𝑘 is the size of the kernel. “Layer” is the name of the layer 

from the VGGnet-16 whose output is connected to a side layer. “1”, “2” and “3” represent the 3 

layers for each side output. “1” and “2” are followed by a ReLU operation. If a GIS layer is added, 

𝑛𝑜 = 3, otherwise 𝑛𝑜 = 1.  

No. VGG layer sideX_1 sideX_2 sideX_3 

1 conv1_2 128, 3 × 3 128, 3 × 3 𝑛𝑜 , 1 × 1 

2 conv2_2 128, 3 × 3 128, 3 × 3 𝑛𝑜 , 1 × 1 

3 conv3_3 256, 5 × 5 256, 5 × 5 𝑛𝑜 , 1 × 1 

4 conv4_3 256, 5 × 5 256, 5 × 5 𝑛𝑜 , 1 × 1 

5 conv5_3 512, 5 × 5 512, 5 × 5 𝑛𝑜 , 1 × 1 

6 pool5 512, 7 × 7 512, 7 × 7 𝑛𝑜 , 1 × 1 

 

In Figure 7-4, We observe that 𝑆𝑅 is mainly driven by the 𝑆 input for the side layer #5 where the 

resolution is low, but it is mainly driven by the integration over 𝐸𝑥,𝑦 for the side layers #3, 4 where 

the resolution is high. This is because the convolutional kernels are too small to detect regions for 

the high resolution layers. However, they are able to detect edges, which can be integrated into 

regions via the GIS layer.  
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Figure 7-4 : Example of the inputs of the GIS layer coming from a fully trained HED-GIS 

network. 𝑆 is expected to be in the saliency domain; 𝐸𝑥, 𝐸𝑦 are expected to represent the 2 

components of the gradient domain.  

In summary, the GIS layers act in a similar way to an activation function at the deepest side-layers 

of the network since they perform a pre-defined operation on the input channels. However, as 

shown in Figure 7-1, GIS outputs a third of its input channels, and it performs a gradient integration 

operation with a summation. Hence, the GIS layer does not use any weight or intermediate loss.  

7.2.2.3 Training procedure 

An important modification from the DSS model is that the original code is in Caffe [26] but we 

recoded the entire architecture in Tensorflow to make use of its multi-platform capabilities, the 

integrated Fourier transforms, the improved convergence algorithms and the real-time validation 

curves.  
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For the parameters, the DSS model [26] proposes to use 10 images per mini-batch. It also uses a 

standard gradient descent with a learning rate of 10−8 for 20k iterations and 10−9 for an additional 

4k iterations.  

In contrast, we changed those parameters to 8 images per mini-batch, with an Adam optimizer 

[131] and a learning rate of 4 ⋅ 10−5 for 30k iterations. We use an early stopping method to save 

the model with the highest F-measure (defined in section 7.3) on the validation set, then fine-tune 

the new model for 2000 iterations using a learning rate of 4 ⋅ 10−6.  

Those changes are made since our loss is computed as the average loss over the pixels instead of 

the sum, and because the Adam optimizer removes the need for changing the learning rate [131].  

We also use the MSRA10K [122] for training purposes, which is an extension of the previous 

MSRA-B [67] used for DSS [26]. The MSRA10K is randomly split into 7000 training images, 

2000 validation images and 1000 test images. Furthermore, the training images are duplicated using 

horizontal reflection leading to 14000 training images, as proposed by Hou et al. [26].  

Finally, another change that is made to the model is that we use a zero-padding all-around the 

training images until they reach a resolution of 416 × 416. Since every image of the MSRA10K 

dataset has a maximum resolution of 300 × 400, this operation does not resize or crop the images. 

Furthermore, the computation of the loss, as well as the other measures presented in section 7.3, 

ignore all the padded pixels.  

7.3 Evaluation datasets and metrics 

To evaluate our proposed DSS-GIS algorithm, we need to use standard datasets and metrics. For 

the datasets, we use the MSRA10K [122] for training since it has the largest number of images 

(10,000). It is also the most used for training purposes [26]. We randomly split the MSRA10K into 

7000 images for training, 2000 images for validation and 1000 images for testing.  

For testing purposes, we use the following 3 datasets: ECSSD with 1000 images [68,124], 

PASCAL-S [125] with 850 more complex images and DUT-OMRON with the most complex 5168 

images [126].  

For the purpose of comparing the performances to other techniques, the parameters that are 

evaluated are the precision 𝑃, the recall or true positives 𝑅 and the false positives 𝑅!  [69,127]. 
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Those parameters are evaluated for 256 levels of thresholds on the saliency map 𝑆, which allows 

to plot the precision-recall 𝑃𝑅 curve. At each threshold level, a binary mask 𝑀 is generated and 

compared to the binary ground-truth 𝐺. From the 𝑃𝑅 curve, one can evaluate the average 𝑃𝑅, the 

F-measure 𝐹𝑚 and the maximum precision 𝑃max  . All those parameters are defined in equations 

(112)-(116), where 𝛽 = 0.3 is a constant that allows to add more weight to the precision,   
!  is the 

logical NOT operator, ∩ is the logical AND operator and ∑ is the sum over every pixel [69,127].  

𝑃 =
∑𝑀 ∩ 𝐺

∑𝑀
 (103) 

𝑅 =
∑𝑀 ∩ 𝐺

∑𝐺
 , 𝑅 

! =
∑𝑀 ∩ 𝐺 

!

∑ 𝐺 !
  (104) 

𝑃𝑚𝑎𝑥  = 𝑚𝑎𝑥(𝑃) (105) 

𝐹𝑚 = 𝑚𝑎𝑥 (
(1 + 𝛽2)(𝑃 𝑅)

𝛽2 𝑃 +  𝑅
) (106) 

𝑃𝑅̅̅ ̅̅ = ∫ 𝑃 𝑑𝑅 (107) 

Other important information is the area under the curve (AUC) of the true-false-positive curve 

(117), the mean absolute error (MAE) (118), the root mean square error (RMSE) (110) and the 

cross-entropy (CE) (111) [9]. In those equations, 𝑆 is the saliency map normalized to [0, 1], 𝑁 the 

total number of pixels and 𝐺 is the ground-truth with binary value 0 or 1.  

𝐴𝑈𝐶 = ∫ 𝑅 𝑑 𝑅 
!  (108) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑆 − 𝐺| (109) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑|𝑆 − 𝐺|2 (110) 

𝐶𝐸 =
−1

𝑁
∑𝐺 𝑙𝑜𝑔 𝑆 + (1 − 𝐺) 𝑙𝑜𝑔(1 − 𝑆) (111) 
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From all those parameters, the most used in the literature are the precision-recall 𝑃𝑅 curve, the 

F-measure 𝐹𝑚 and the area under the curve 𝐴𝑈𝐶 [70,71,76,87,127,132]. These metrics are used 

since they represent better the effects of thresholds on the saliency maps and they cannot be 

improved with simple methods such as contrast enhancement. Hence, those parameters will be used 

to be compared with other methods from the literature. Additionally, we use the mean precision-

recall 𝑃𝑅̅̅ ̅̅  and the mean absolute error MAE to show that our approach improves many different 

measures. 

It is worth noting that the cross-entropy 𝐶𝐸 is used as the loss function for the training of the DSS-

GIS model.  

7.4 Results 

This section presents the saliency map results and a comparison of the validation curves. The results 

show that DSS-GIS has better saliency maps then DSS, trains faster, is less prone to overfit and 

has higher accuracy.  

7.4.1 Saliency maps 

The improved performance of our HED/DSS-GIS approach compared to the standard HED/DSS 

can be observed on some test images from the ECSSD, PASCAL-S and DUT-OMRON images in 

Figure 7-5. In this image, we see that the GIS layer improves the results when there is a bright 

contrast, a complex background, a camouflaged animal or small salient objects. 

 The improvements are very notable when looking at how much the HED-GIS outperforms 

HED by providing smoother and more accurate saliency maps in all examples. This is because the 

HED model lacks the upward scale introduced by the DSS short connections required for a good 

saliency prediction. However, since HED is a good edge predictor, the HED-GIS was still able to 

produce accurate saliency maps by extrapolating the edge-like features into the image space. 

 The improvements of DSS-GIS over DSS are subtle. We notice the improvement only for 

the most difficult examples presented in Figure 7-5. DSS-GIS is better at discriminating between 

the salient object and a given background, and better at finding a camouflaged animal or small 

objects. The reason is that, in these cases, relying on the globally strong edges is more important 
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than relying on the contrast and texture, since the background has as many colors and complexity 

as the foreground.  

 Furthermore, for the incomplete saliency category, the DSS-GIS allows finding more salient 

regions than DSS. The reason is that it fills up the missing saliency regions by ensuring that all the 

areas inside edges are included in the saliency map, as explained in previous work [16]. 

 However, there are some failures cases of DSS-GIS presented in Figure 7-5. Those include 

images where the background has very strong defined edges, but the foreground does not. Also, 

DSS seems to perform better on transparent objects, since those objects are better detected by their 

glare than by their edges. It is to note that those failure cases do not apply for HED-GIS, which 

consistently outperforms HED.  

7.4.2 Validation curves 

The first difference that we notice when training the proposed DSS-GIS model is that its validation 

curves are far more similar, faster to train and less prone to overfitting than the DSS model. This 

can be observed in Figure 7-7 with 6 different training curves of the DSS in orange and 6 curves 

of the DSS-GIS in blue. Note that these curves are for a learning rate of 10−5 and different 

parameter initialization.  

The DSS curves are our implementation of the model, meaning that it uses exactly the same code 

as the DSS-GIS, but without the GIS layer.  

These curves are generated by computing the loss, the F-measure, the MAE and the RMSE at every 

50 iterations, and by randomly selecting 200 images from the validation set. To speed up the 

computation, the F-measure uses 51 different thresholds instead of the standard 256 levels. Then, 

an exponential smoothing with a factor 0.9 is applied to all the curves to reduce the noise.  

On Figure 7-7, we see that the DSS-GIS reaches a higher performance for the 4 different measures. 

Also, the DSS model has a big disparity between different validation curves, meaning that it is 

more sensible to the random initialization of the side layers and the different initialization 

algorithms. In fact, DSS does not always converge to its maximal performance if the initialization 

is not optimal. Finally, we can see that the CE loss of the DSS diverges at around 10k iterations 

but remains almost constant for DSS-GIS.  
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All those differences show that the DSS-GIS is easier and faster to train, less prone to overfit and 

leads to better results than the DSS model. Furthermore, the training is more robust to the random 

parameter initialization, leading to more similar training curves across different trainings. Since 

the only difference between the 2 models is a fast to compute GIS layer at each side output, we 

deduce that our proposed DSS-GIS outperforms the DSS model.  

After optimizing the initialization parameters and the learning rate via cross-validation, we 

obtained the curves presented in Figure 7-6. In this figure, we observe that the optimal DSS 

converges as fast as DSS-GIS and has less overfit than the models in Figure 7-7. However, it still 

converges to a lower validation performance. We also observe that the HED-GIS model strongly 

outperforms the standard HED model.  

In addition, the GIS layer seems to reduce the noise of the validation curves, meaning that the 

network converges more easily to the optimal solution. Hence, we conclude that the GIS layer 

allows to significantly improve the training process of the networks.  
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Figure 7-5 : Test results comparison between the DSS and HED methods with and without the 

proposed GIS layer.  
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Figure 7-6 : Comparison of the validation curves of different models for the optimally found 

parameters. The validation performance is computed every 500 iterations on the full validation 

set.   

 

 

Figure 7-7 : Comparison of 6 validation curves in orange of our implementation of the DSS 

model, and 6 validation curves in blue of our DSS-GIS model. The curves are smoothed using 

exponential smoothing with a factor 0.9, and the x-axis represents the number of iterations.  
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7.5 Literature comparison and discussion 

This section will compare our proposed HED/DSS-GIS models to multiple models in the literature 

using the metrics specified in section 7.3. It will show that the DSS-GIS model outperforms the 

other model on every dataset.  

7.5.1 Training the DSS, DSS-GIS 

For a fair comparison between the standard method and the same method with the GIS layer, we 

use exactly the same training procedure as the one defined previously in section 7.2.2.3. 

Furthermore, the random seed is the same for all models, meaning that the network initialization is 

identical across models and the training-validation-testing split is also identical.  

7.5.2 Testing improvement of the GIS layer 

In this section, we compare the results given by the DSS and HED models with and without the 

proposed GIS layer.  

For the DSS method, our implementation performs better than the original implementation in their 

paper [132]. For a fair comparison, we thus use our implementation of DSS for all reported test 

results.  

The compared results are shown in Table 7.2 for HED and Table 7.3 for DSS, where the * symbol 

means that a denseCRF layer is added. We observe that the proposed DSS-GIS is always better 

than DSS, and that the proposed HED-GIS is always better than HED.   

Table 7.2 shows that GIS always outperforms denseCRF for all metrics for the HED model. Table 

7.3 shows that GIS always outperforms denseCRF for the DSS model, except for MAE. However, 

the difference in MAE can be explained by the fact that denseCRF enhances the contrast.   

Since the only differences between DSS-GIS and DSS are the added GIS layer from Figure 7-2, 

the testing results show that it is fully justified to use the GIS layer instead of denseCRF since most 

improvements are due to it. However, using both together usually yields the best results.  
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Table 7.2 : Comparison between the percentage testing results of HED and our HED-GIS. The * 

means that a denseCRF layer is added at the output. The best value in each category is highlighted 

in bold (ignoring GIS*). The values are in percentages.  

Method          𝑬   ̅̅ ̅̅  Dataset 

HED-GIS* +1.5 +3.6 -7.5 +3.2 

ECSSD 
HED* +0.1 +1.2 -4.2 +0.5 

HED-GIS +1.5 +3.1 -6.0 +2.9 

HED 96.2 85.2 16.4 88.9 

HED-GIS* +3.5 +8.7 -9.0 +8.7 

DUT-OMRON 
HED* +0.2 +2.0 -3.7 +1.0 

HED-GIS +3.5 +7.6 -7.3 +8.3 

HED 90.7 66.6 17.8 66.2 

HED-GIS* +1.3 +3.0 -7.2 +2.6 

PASCAL-S 
HED* +0.1 +1.1 -4.1 +0.5 

HED-GIS +1.3 +2.4 -5.3 +2.5 

HED 92.4 77.1 20.5 79.7 
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Table 7.3 : Comparison between the testing results of DSS and our DSS-GIS. The * means that a 

denseCRF layer is added at the output. The best value in each category is highlighted in bold 

(ignoring GIS*). The values are in percentages.  

Method          𝑬 (  )̅̅ ̅̅ ̅̅ ̅ Dataset 

DSS-GIS* +0.1 +0.7 -0.7 +0.6 

ECSSD 

 

DSS* -0.1 +0.3 -0.6 +0.0 

DSS-GIS +0.3 +0.3 -0.1 +0.6 

DSS 98.3 91.5 6.1 95.5 

DSS-GIS* +0.3 +1.8 -0.8 +2.1 

DUT-OMRON 

 

DSS* -3.3 +0.3 -1.0 -2.6 

DSS-GIS +0.5 +1.6 -0.2 +2.0 

DSS 95.8 76.6 8.0 78.8 

DSS-GIS* +0.4 +0.4 -0.6 +0.6 

PASCAL-S 

 

DSS* -0.2 +0.3 -0.7 0.0 

DSS-GIS +0.6 +0.3 +0.2 +0.6 

DSS 94.8 83.3 11.0 86.6 

7.5.3 Literature benchmarking 

In this section, we aim at demonstrating that the proposed DSS-GIS algorithm outperforms other 

state-of-the-art (SoA) algorithms.  

In Table 7.4, we show that our DSS-GIS algorithm outperforms all the other tested methods in 

terms of 𝐹𝑚 and 𝐴𝑈𝐶. The improvements are mostly notable on the DUT-OMRON dataset since 

it is the most difficult one, with the most complex backgrounds. We also note that HED performs 

badly compared to other algorithms, while HED-GIS is very close to the high performance DCL 

method.  

We also observe on Figure 7-8 that the precision/recall curves and the true-positive/false-positive 

curves of the DSS-GIS consistently outperforms the other methods. Again, HED-GIS outperforms 

HED by a high margin.  
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Table 7.4 : Comparison of the proposed DSS-GIS and HED-GIS approaches (grey rows) with other 

saliency algorithms proposed in the literature. The best result of each column is highlighted in bold. 

The values are in percentages.  

Dataset ECSSD DUT-OMRON PASCAL-S 

Method 𝐹𝑚 𝐴𝑈𝐶 𝐹𝑚 𝐴𝑈𝐶 𝐹𝑚 𝐴𝑈𝐶 

DSR [71] 73.5 91.6 62.7 89.9 65.3 86.5 

RBD [74] 71.6 89.6 62.9 89.2 65.9 85.8 

DRFI [67] 78.5 94.5 66.5 93.2 70.0 89.9 

MDF [87] 83.2 94.7 69.4 91.9 76.8 89.7 

DCL [76] 90.1 97.1 75.6 93.4 81.5 94.5 

HED [66] 85.2 96.2 66.6 90.7 77.1 92.4 

HED-GIS 88.3 97.7 74.1 94.3 79.5 93.7 

DSS [26] 91.5 98.3 76.6 95.8 83.3 94.8 

DSS-GIS 91.9 98.6 78.2 96.4 83.6 95.4 

 

 

Figure 7-8 : Precision-Recall curves (top row) and true-positive/false-positive curves (bottom 

row) for the 3 test datasets 
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7.5.4 Resistance to noise and low-light 

In the current section, we show that the proposed GIS layer allows the network to perform 

significantly better on the tests set when a high amount of noise is added, or when the brightness 

is significantly reduced. 

To demonstrate it, we modify all images from the 3 testing sets by adding a 30% salt-and-pepper 

noise. We show in Table 7.5 that the GIS layer significantly improves the 𝐹𝑚 and 𝐴𝑈𝐶 metrics. 

Furthermore, Figure 7-5 allows to observe this major difference, with the GIS layer allowing the 

model to find objects that were almost invisible to the standard method.  

On standard images, the GIS layer only improved the ECSSD 𝐹𝑚 by 0.4%. However, on the noisy 

images, the improvement is 4.5%. On average for the DSS model, the GIS improves the 𝐹𝑚 by 

3.9% and the 𝐴𝑈𝐶 by 3.0%. For the HED model, the average improvement is 8.1% on the 𝐹𝑚 and 

10.7% on the 𝐴𝑈𝐶.  

Additionally, we can observe in Figure 7-10 how the F-measure of proposed DSS-GIS is more 

stable than the DSS method for different levels of noise. The stronger the noise, the greater the 

margin between DSS-GIS and DSS.  

The margin of improvement of the proposed GIS layer in a noisy setting is highly significant. This 

shows again the better generalizability of the saliency models since GIS allows the network to 

focus on the general features instead of very local noise and texture.  

We believe that the major improvement is due to textures being more affected by the noise then 

edges, which plays in favor of the models implementing the GIS layer.  
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Table 7.5 : Comparison of the DSS and HED approaches with and without the proposed GIS layer 

when a 30% salt-and-pepper noise is added to the test set. The best result of each column is 

highlighted in bold. The values are in percentages.  

Dataset ECSSD DUT-OMRON PASCAL-S 

Method 𝐹𝑚 𝐴𝑈𝐶 𝐹𝑚 𝐴𝑈𝐶 𝐹𝑚 𝐴𝑈𝐶 

HED [66] 40.1 62.3 27.3 57.4 43.2 66.3 

HED-GIS 50.6 73.0 39.0 71.6 45.3 73.4 

DSS [26] 67.8 85.8 54.2 84.2 65.0 84.3 

DSS-GIS 72.3 89.6 59.4 88.2 67.0 85.6 

 

 

Figure 7-9 : Test results comparison between the DSS and HED methods with and without the 

proposed GIS layer, when the test set is modified with noise or reduced brightness.  
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Figure 7-10 : Performance impact of adding noise to the testing set for the DSS and the proposed 

DSS-GIS methods.  

Additionally to the added robustness to noise, the proposed GIS layer allows the network to be 

more robust to other environmental changes, such as reduction in brightness. This is demonstrated 

in Table 7.6 where DSS-GIS consistently outperforms DSS when the brightness is reduced by 80%, 

thus simulating an image taken at low light. Examples of such images are provided in Figure 7-9. 

This improvement is due to the ability of the GIS-based networks to operate in the gradient-domain 

and to extrapolate edge information.  

Table 7.6 : Comparison of the DSS and HED approaches with and without the proposed GIS layer 

when a the brightness is reduced by 80% to simulate low-light pictures. The best result of each 

column is highlighted in bold. The values are in percentages.  

Dataset ECSSD DUT-OMRON PASCAL-S 

Method 𝐹𝑚 𝐴𝑈𝐶 𝐹𝑚 𝐴𝑈𝐶 𝐹𝑚 𝐴𝑈𝐶 

HED [66] 68.2 87.4 53.2 83.6 60.9 84.2 

HED-GIS 74.5 91.1 60.7 88.3 60.5 86.1 

DSS [26] 83.0 93.3 69.8 91.1 74.4 88.2 

DSS-GIS 84.5 95.8 72.6 94.4 76.9 91.4 

 

7.5.5 Computation time 

When using an image of the ECSSD dataset, the computation time for the DSS model is around 

0.08s and the DSS-GIS is around 0.09s. Therefore, we see that the GIS layer has a low effect in 
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terms of computation cost. Moreover, it was shown in Figure 7-7 that it improves the training 

repeatability and in Table 7.3 and Figure 7-8 that it improves the F-measure on the testing results.  

Other methods such as MDF [87] and DCL [76] require around 1s of computing due to the pre-

segmentation, which is 10 times longer than the proposed DSS-GIS. Furthermore, the denseCRF 

layer takes around 0.4s to compute, which is 40 times longer than the added GIS layer. Hence, we 

suggest completely removing the denseCRF since it slows down the computation and leads to 

poorer performances than the GIS layer.  

7.5.6 Future improvements 

With the new GIS layer added at the end of the DSS network, the testing results are improved but 

by a moderate margin. One of the fundamental next steps is to take the same GIS layer, or other 

GFC-based layers, and to implement it deeper within the network, such as before the side layers or 

inside the VGGnet-16. Furthermore, the GIS layer should be tested for more applications such as 

classification, segmentation, and edge detection.  

In fact, the GIS layers can be added to any other fully convolutional saliency architecture, not only 

the HED and DSS architecture as done in the current paper. Therefore, it adds good longevity to 

the GIS layer developed in this paper since newer architectures are also expected to benefit from 

the additional layer.  

Finally, one of the most important contributions was showing that it is possible to add a Green’s 

function convolution to a convolutional network to improve the results. This is surprising since 

CNN's usually have thousands of different and optimized convolutional kernels [9]. However, our 

work showed that a carefully engineered 𝑉mono convolutional kernel can still contribute to 

improving the results. This is because 𝑉mono adds a long-distance interaction between the pixel in 

the images, meaning that the receptive field is the whole image space. Also, since CNN are better 

at detecting edges than regions, integrating them into smooth and continuous regions naturally 

leads to better results.  

For future work, we recommend using the same GIS network for segmentation purposes and for 

generative adversarial networks (GAN). In fact, we believe that the GIS layer would allow the 

GAN to generate image features in the gradient domain and the image domain at the same time. 

Since the GIS layer reduces noise sensitivity and gives the network an unlimited receptive field, 



151 

 

we strongly believe that it can help generate better images. Such gradient-domain image drawing 

is already adopted by numerous software to allow drawing smoother images [17,58,112,113].  

7.6 Conclusion 

Our objective was to show that saliency convolutional networks can be improved by using a 

Green’s function convolution (GFC) based layer to extrapolate edges features into salient regions. 

To answer this objective, we developed the gradient integration and sum (GIS) layer. We showed 

that using a GIS layer, inside both HED and DSS neural networks, improves the stability and 

repeatability of the training and enhances the performance of the model on the test set, with only 

10 ms of added computation time. The GIS layer is fast to compute and does not require any weight 

or learned parameter. Moreover, the GIS layer reduces the training time, the overfitting, and makes 

the model significantly more resistant to noise. The performance was generally better than other 

saliency enhancement methods such as denseCRF, 40 times faster to compute and directly 

integrated inside the network. Hence, our DSS-GIS network outperformed all the tested state-of-

the-art algorithms on all tested metrics such as the F-measure, the 𝐴𝑈𝐶 and the 𝑀𝐴𝐸. The increased 

performance was due to the ability of the network to extrapolate edges into regions, thus enhancing 

the saliency maps inside boundaries, reducing the sensitivity to noisy backgrounds and improving 

the behaviour in low-light settings. Further, an advantage of the proposed GIS is that it is model 

agnostic, meaning that it can be implemented in any other fully convolutional network for saliency. 

A limitation of the current method is that it can only be used in the latest layers of a fully 

convolutional network for saliency purposes. Future work should experiment with implementing 

the GIS layer or other GFC-based layers deeper inside the network to try to further improve the 

results.   
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CHAPTER 8 ADDITIONAL WORK 

The current section will present additional work that is done in order to provide prototype and proof 

of concepts for the future works. These concepts include the creation of the GID2 and GID3 layers, 

which can be added into any CNN with limited computational cost. The early results show that the 

added layer allows the networks to learn faster and with higher accuracy than an identical network 

without the given layers.  

8.1 Prototype and early results for the classification CNN 

Due to the improvement of saliency results and the enabling of an unlimited receptive field, one of 

the hypotheses for future work is that the GFC will allow improving many different kinds of CNN 

for image analysis. To explore this idea, it is easier to start with the task of image classification 

since it is one of the most studied problems with the most straightforward CNN architectures [9].  

Hence, we started by studying the effect of the GFC on a Google-net architecture applied on the 

MNIST [8,133] dataset. The MNIST dataset has 70,000 images of handwritten digits with a total 

of 10 classes (one per digit) [8,133]. It is one of the simplest classification datasets since digits are 

easier to classify than real images with an accuracy of 99.3% in 1998 [133]. The Google-net 

contains 6 consecutive inception layers and is usually used for more complex image classification 

[20]. For the simpler task of digits recognition, we only used 2 inception layers with 16 channels 

(also called neurons) per layer in the first inception module and 32 channels per layer in the second 

module. The networks are coded using Tensorflow® with an Adam optimizer [131], a learning rate 

of 10−4 and a batch size of 50 images.  

To try to improve the results of the Google-net with the GFC, we developed the GID2 (Gradient 

Integration Derivative with 2-inputs) and the GID3 (Gradient Integration Derivative with 3-inputs). 

Then, we added a GID2 layer to each of the inception modules as shown by Figure 8-1. The GDI2 

and GDI3 layers are explained in Figure 8-2. They both use a Conv-layer after their input without 

an activation function or bias, meaning that the layer is simply a linear combination of the previous 

layer. It is meant to allow negative values since the input is strictly positive due to the Relu 

activation.  

The GID2 and GID3 are based on the idea that the features are a vector field similar to a gradient 

[9] or to Gabor functions which are mostly similar to Gaussian derivatives [9,41]. Hence, the 
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GID2-3 compute the derivatives 𝑑𝑥 and 𝑑𝑦 of the features to obtain a Laplacian. For the 

integration, the GID2 uses the GFC developed in section  to solve the Laplacian, while the GID3 

uses the GDM or GIS developed in section 6.2 to merge the gradient with the other features and 

then compute and solve the Laplacian. This is followed by the derivative step of the GID2-3 to 

compute a new vector field similar to the input one.  

 

Figure 8-1 : Inception module of the Google-net [20] with an added GDI2 or GDI3 layer. The 

Conv + R indicate a convolutional layer with a Relu activation function, the 𝑛 × 𝑛 means that the 

kernel size is 𝑛 and the 𝑚(S) means that the stride is 𝑚.  
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Figure 8-2 : Internal structure of the GDI2 which splits the data into 2 inputs for the GFC; and 

GDI3 which splits the data into 3 inputs for the GDM or GIS layers. The 𝑑𝑥 and 𝑑𝑦 represent 

numerical derivatives and the Conv-layer does not use an activation function or bias; the 𝑛 × 𝑛 

means that the kernel size is 𝑛 and the 𝑚(S) means that the stride is 𝑚.  

When testing the smaller Google-net composed of 2 inception modules on the MNIST dataset, we 

observe that the added GID2 significantly improves the results compared to the standard network, 

with all other parameters being exactly the same. The convergence to a 97% validation success rate 

is around 5.1 times faster with GID2. Furthermore, after 20,000 iterations, the model with the GID2 

maxed to a smoothed validation accuracy of 98.80%, compared to 98.35% without the GID2, which 

is a 27% decrease in the error rate. These results are observed in Figure 8-3 where the orange line 

is strictly better (higher accuracy) than the blue line, especially for a low number of iterations. 

Furthermore, the orange line appears smoother than the blue line, meaning that it was easier for the 

gradient descent to converge to a minimum when using GID2. A downside of the added GID2 is 

that the training time is 2.0 times longer, but this still means that the convergence to 97% is 2.5 

times faster than the standard network.  
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However, the GID3 did not improve the results, which can be due to the fact that handwritten digits 

do not have regional features such as saliency and the fact that regional features are only detected 

in deeper layers.  

 

Figure 8-3 : Validation accuracy on the MNIST dataset for a smaller Google-net with 2 inception 

layers. The blue line is the standard network and the orange line is the same network with the 

added GID2 in each inception layer.  

Before having a final verdict on the performance of the GID2, it is necessary to perform varied 

tests with deeper CNN and more complex images. However, we believe that GID2 will still be able 

to improve the results for many reasons.  First, the integration with a Green’s function followed by 

a derivative allows transforming the initial vector field of features into a conservative field, as 

demonstrated in Chapter 5. This conservative field has more continuous and smoother features with 

an unlimited receptive field between the given features.  

We also believe that the conservative field features “make more physical sense”: for example, if 

we take a human picture and ask to identify the head, a non-conservative field could select an open 

shape, such as a ¾ of a circle. This does not make physical sense since the head feature should be 

a closed shape. For the conservative field, such open shape will be forced to close by a smooth 

gradient such as demonstrated in Chapter 4. Hence, the conservative feature field means that the 

features can be integrated into an existing potential solution.  

Moreover, we know that detecting features in every possible orientation requires at least 2 kernels 

with non-colinear features, the same way that we need at least 2 vectors to generate the full 2D 

space. In that sense, the GID2 is very useful since it regularizes the features by encouraging half 
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of the features to be perpendicular to the other half to allow a proper integration with the GFC. All 

those reasons put together are believed to accelerate the optimization of the CNN by encouraging 

the gradient descent to follow a better optimization path.  

In summary, we developed the GID2-3 which integrates the CNN features using a Green’s function 

and derivates them back to give features represented by a conservative field. The GID2 was tested 

using a 2 inception layers Google-net on the MNIST handwritten digits dataset. The GID2 proved 

to reduce the final convergence error of 27%, requires 5.1 times fewer iterations to converge and 

has a smoother validation curve. However, more tests of the GID2 are required to verify if it helps 

improve the results with more complex networks and images.  

8.2 Generative networks 

In addition to using the GF for classification networks, we also believe the GF can be used for 

generative networks (GN) such as the popular generative adversarial networks (GAN) [134,135]. 

We expect the GF to have many advantages such as the regularization of the GN, the generation of 

a gradient, and the unlimited receptive field.  

Regularizing the GN. Since the GF was shown to regularize a CNN by making it learn only 

features that are physically possible, we believe that it will help the GN focus on physically possible 

images. For example, a standard GN could generate a shape, but without properly closing its 

boundaries. However, using the GF, we believe that such an option will be avoided, thus improving 

the training of the GN.  

Generating the gradient. Another aspect is that the GN could be used to generate the gradient of 

the image instead of generating the image. Then, the GF will be used to integrate the gradient into 

the desired image. This will mimic how humans generate images by drawing the contours of an 

object before filling it up. By using the same GIS layer as Chapter 7, the GN will be able to combine 

both gradient-domain and image-domain information for the generation.  

Unlimited receptive field. Finally, the GF will enable unlimited receptive field between the pixels 

of the generated image, which is fundamental in ensuring that the pixels are generated based on 

global information.  
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CHAPTER 9 GENERAL DISCUSSION AND FUTURE WORK 

This section will present a general discussion on how the proposed thesis answers the objectives 

given in section 1.1. Then, it will explain how the work distinguishes itself from the literature, the 

impact it has on the computation tools for machine vision, the improvement that it brings to deep 

neural networks and the future possible improvements. Finally, the section demonstrates the set of 

tools and deliverables that were done within the scope of the thesis.  

9.1 Achieving the research objectives 

The main objective of the current thesis is to develop electromagnetic (EM) convolutions and 

Green’s functions (GF) convolutions to be used in Computer Vision and convolutional neural 

networks (CNN).  

To understand how our thesis achieves the main objective, we will first explain how each of the 

sub-objectives is achieved.  

Obj - 1. Develop a mathematical and intuitive understanding of the behavior of EM and 

GF convolutions in an image.  

First, we developed the novel EM-based convolutional kernels in Chapter 3 where we 

studied the behavior of different dipole and monopole kernels in an image. In section 3.4.1, 

we studied how the EM potential and field behave when applied to different kind of 2D or 

3D shapes. In section 3.4.2, we also explained how the dipoles can be used to fill-up a 

closed shape with a constant potential. Furthermore, the same technique was used to 

partially fill-up partial contours and make them interact with each other. Hence, Chapter 3 

answered the objective by allowing to understand some geometrical properties of the EMPF 

and by developing an intuition on how to use them in an image.  

This property of the dipoles was the main motivation for Chapter 4, where we demonstrated 

mathematically in section 4.3 that the dipole potential allows computing the space 

probability that any point is included inside a partial contour. This is very innovative in the 

CV field since it is the first work that allows such a transition from a 1D contour information 

to a 2D spatial information. In addition, some basic applications where shown in Figure 

4-16 where one could approximate a simple image by using only the partial contours 
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corresponding to the highest gradients. Hence, Chapter 4 was important for the sub-

objective by allowing to understand a new mathematical property of the EM potentials.  

 Finally, in Chapter 5 we realize that the EM potentials are a Green function (GF) which 

allows solving the Laplacian via a convolution. In section 5.2.2, we decided to study how 

the GF behaves when applied to a nonconservative field, meaning that the Laplacian does 

not have a solution. Hence, we prove mathematically that the GF convolution is the least-

error solver for any nonconservative field. Therefore, Chapter 5 answers to the objective 

by mathematically demonstrating that the EM and GF based convolutions are optimal 

gradient and Laplacian solvers. Additionally, we show that the developed GFC method is 

orders of magnitude faster than competing approaches.  

Obj - 2. Use the GF convolutions to reduce the computation time and numerical error 

of the EM and allow fast and efficient gradient-domain image editing (GDIE). 

With the previous mathematical knowledge, we realize that the previous EM potential has 

a numerical error due to the discrete nature of an image. Hence, the section 5.2.3 develops 

a new ideal GF that reduces to almost zero the numerical error by using the Fourier domain 

to compute the convolutional kernel. This convolution is also faster to compute since the 

EM kernels need to be twice the size of the image, but the GF requires a kernel the same 

size as the image. In fact, our method was demonstrated in Figure 5-2 to be 16 times faster 

on a CPU and 3.1 times faster on a GPU than the fastest competing methods. In addition, 

the improved GF kernel keeps all the mathematical and geometrical properties developed 

in Chapter 3 and Chapter 4, but with better accuracy. For example, Figure 4-10 showed that 

the EM kernels did not produce perfect circular paths due to numerical error, but this 

problem is not present when using GF instead of EM. Therefore, the new GFC achieves the 

objective by reducing the computation time and the numerical error associated with the EM 

convolutions.  

With these new mathematical properties, section 5.3.2 shows how to use the GFC for GDIE, 

with some applications such as Poisson blending, gradient thresholding, and edge contrast 

and blurring (known in later chapters as gradient domain merging). The performance was 

shown in Figure 5-4 to be slightly better than the competing Perez algorithm by being 

smoother on the edges of the blended image [57]. Hence, our work was again able to answer 
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the objective by developing a fast and efficient method of doing GDIE using the proposed 

GFC.  

Obj - 3. Use the GF to improve the results of CNN for salient object detection and digit 

classification.  

Using the previously developed GFC and the gradient domain merging (GDM) method, the 

proposed thesis was able to improve the image saliency maps using edges. At first, Chapter 

6 presented the SEE method which allowed to merge the results of different saliency 

methods with the results of an edge detection CNN via a combination of image 

preprocessing and saliency postprocessing. The SEE method increased the saliency values 

inside the edges and reduced them outside the edges, thus improving F-measure on average 

6.6 times more than competing methods on the ECSSD dataset and 3.4 times on the DUT-

OMRON dataset as shown in Figure 6-10.  

Although those results answered the objective, the computation time and the complexity of 

the algorithm were high. Also, the improvement over DSS, the best-tested method, were 

limited. Hence, we developed the GIS layer in Chapter 7 which is integrated directly inside 

the DSS and HED networks. As shown in Table 7.3, this increased the F-measure by a 

similar margin as the SEE method, but with a simpler algorithm consisting of an added GIS 

layer with a low computation cost (0.01s per image). Furthermore, the GIS layer showed in 

Figure 7-7 to improve the convergence time, improve the robustness to parameter 

initialization and reduce the overfitting of the model. Also, Figure 7-9 and Figure 7-10 

showed that the GIS layer allowed to significantly improve the robustness to noise and to 

brightness reduction.  All these improvements answer to the current objective by improving 

the performance of CNN for salient object detection. 

Finally, the current thesis proposes future work on how the GFC can be used for different 

CNN. In fact, the later section 8.1 explains how we built such a prototype based on the 

architecture of the GoogLeNet [20] for the task of digits classification. The curves in Figure 

8-3 show how our proposed approach reduced the convergence time and improved the 

accuracy of the network. Hence, the proposed prototype allows answering the current 

objective by improving the task of digit classification using GFC.  
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9.2 New computation tools for machine vision 

The presented work is amongst the first ones to use electromagnetism (EM) and Green’s functions 

(GF) for image analysis. As discussed in the literature review at section 2.1.2, the previous work 

involving EM-like fields were used for feature detection such as partial contour orientation [13] 

and gradient-based edge detection [14]. Furthermore, section 2.3.2 explained that, to our 

knowledge, GF are only used for solving the Laplacian for image filtering and gradient domain 

image editing. Hence, no other method uses GF for contour filling and machine learning purposes. 

In contrast, the presented work shows how EM and GF can be used for 2D or 3D shape analysis, 

for computing the space probability of inclusion, for faster gradient-domain image editing, for 

saliency/edges merging, and for improvement of the saliency accuracy and training convergence 

in deep neural networks.  

Therefore, this work is original in its methodology and presented successful algorithms in different 

CV categories. In fact, it presented a new set of tools that can be used to analyze images in ways 

that were not previously possible. Chapter 3 showed how to build resolution invariant symmetrical 

and anti-symmetrical convolution kernels based on EM, thus allowing to analyze 2D and 3D shapes 

and the interaction between them.  Using those anti-symmetrical kernels, Chapter 4 mathematically 

demonstrated the first method of computing the space of probability of inclusion within partial 

contours. This method allows to take a set of 1D thin edges or partial contours and to transform 

them into 2D regional information. Then, the work of Chapter 5 showed that these same kernels 

can be improved by computing the GF, which then allows to solve the gradient or Laplacian of an 

image with no error and, as shown in Figure 5-2, it is 16 times faster than the Tanaka method [119] 

on a CPU and 29,000 times faster when using a parallel solver on a GPU. The GFC was also 

demonstrated mathematically, then empirically at Figure 5-3, that it is the least-error solver for 

perturbation added on the gradient. Furthermore, the work of Chapter 5 showed that the EM kernels 

of the previous chapters should be replaced completely by the GF since they are more precise and 

faster to compute, although all the mathematical and geometrical properties of the EM-based 

kernels still hold true for the GF-based kernels.  

In summary, the developed GF-based kernels have multiple mathematical and geometrical 

properties that can be used to analyze different shapes with resolution invariance, to extrapolate 

1D partial contours into a 2D space and to solve Laplacian and gradients. Those properties are then 
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used to improve the results of deep neural networks for salient object discovery as discussed in the 

section below.  

9.3 Improving deep networks 

Using the rigorously developed mathematical and geometrical properties of GF, the current thesis 

then focused on improving the results of deep neural networks for saliency purposes. Moreover, 

the future work section 8.1 will show how GF can be used in different types of deep neural 

networks.  

9.3.1 Improvement of the saliency network 

With the work presented in Chapter 6, the main idea is that salient object detection methods can 

benefit from edge detection methods by enhancing the saliency maps inside boundaries and 

decreasing it outside the boundaries. Therefore, the RCF[25] edge detection method was used 

alongside different saliency methods such as DRFI[67], DCL[76] and DSS[26], and those methods 

were merged in the gradient domain using our proposed GF. The method proved successful and 

outperformed any other saliency improvement method in terms of F-measure. However, a 

limitation is that 2 different deep networks are required and need to be trained separately, which 

makes the parameter optimization more difficult and increases the computation time. 

These limitations were the main motives to develop the DSS-GIS model proposed in Chapter 7. 

This model is heavily based on the DSS[26] saliency model, but instead of finding only region-like 

salient features, the model would also find gradient-like features and merge them together in the 

gradient domain using the proposed GF. Hence, a gradient integration and sum (GIS) layer is added 

at the end of each parallel branch of the DSS model. It is the first time that a custom convolutional 

kernel based on EM or GF is proposed to be used within any kind of neural network, which again 

highlights the originality of the current thesis. The proposed DSS-GIS model showed that it is more 

stable in training, less prone to overfitting, performs better on the test set and is more stable to 

noise. The reduction in overfitting is thought to be caused by the increase in the number of detected 

features, as well as the way those features are linked together. Furthermore, an improvement of 

performance is thought to be caused by a saliency map that has greater fidelity to the edges of the 

objects. 
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In summary, the GF convolutions (GFC) were demonstrated to improve the performance of a 

saliency-purposed deep neural network, first by post-processing the outputs of the networks but 

later by being directly integrated into the last layers of the networks.  

9.3.2 Enabling unlimited receptive field 

Another major reason that the GF improves feature recognition is that it enables an unlimited 

receptive field, thus allowing a long-distance interaction between different features. This 

interaction is possible via a convolutional neural network (CNN) by introducing a pooling to reduce 

the matrix size or by using very deep networks. For the pooling, a problem is the decreased image 

resolution, which reduces the details of the detected features. For the increased depth, if the features 

are separated by 100 pixels and the kernel sizes are 3x3, then the CNN will need at least 
100

3−1
= 50 

layers (if no pooling is used) [9]. This is a problem since a deeper network is harder to optimize 

[9]. For the proposed GF, the goal is not to replace those methods but to complement them by 

enabling an unlimited receptive field without increasing the depth or reducing the resolution. An 

intuition of this interaction was given in Figure 3-13 and Figure 4-12 where edges far away are still 

able to produce a region of interest between them. 

A more concrete example of this unlimited receptive field is presented in Figure 9-1 where we 

observe how the GFC allows to fill up the salient region by simply finding the salient contours of 

the objects. The regular feature detection is unable to find the salient region since the receptive 

field is too small with a kernel size usually varying between 3x3 and 7x7 pixels [9,10,20,26]. The 

results are drawn using an image editing software meaning that they are not real results, but the 

image of Figure 3-13 and Figure 4-12 are useful in explaining how the unlimited receptive field is 

useful. Furthermore, this kind of feature filling was previously demonstrated with the bird image 

in Figure 7-5 and the statue image in Figure 6-7.  
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Figure 9-1 : Example of saliency maps produced with a single layer of convolution network 

which is able to perfectly detect the salient edges, but not the regions within the edges. The 

images are not real results, they are produced by an image editing software. (a1) Original image; 

(a2) True saliency value; (b1) Detected normalized saliency features with the small receptive 

field; (b2) Final saliency after thresholding; (c1) Detected normalized directional gradient of 

saliency features with the small receptive field; (c2) extended features using the GFC; (c3) Final 

saliency after GFC and thresholding.  

9.4 Industrial applications and patents 

As stated in Chapter 1, the current work is subject to 3 patents. The first one is published [21] and 

the second one planned for submission in March 2019. These 3 patents are created since the work 

of the current thesis is very innovative and has a lot of potential in industrial applications. Although 

industrial applications are not a necessity for academic research, they are still very important in 

engineering since they help the inventions reach the market and have an impact on the world.  

The most developed aspect of the current thesis is the salient object detection described in Chapter 

7, which can lead to many applications for smart cameras for auto-focus, selfie filters, and image 
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enhancement. In fact, some Huawei phones already use the DSS [26]  model of salient object 

detection [132] on which our proposed DSS-GIS is based. Other applications could be for the 

automated removal of the background, such as proposed by the company 36Pix [136].  

Another aspect described in Chapter 5 is the ability to do gradient-domain image editing (GDIE) 

(or Poisson image editing) for manual image/video editing purposes. Right now, the main method 

used is the Poisson solver proposed by Perez [57] which is available in standard computer vision 

libraries such as OpenCV. Some advanced gradient-domain libraries such as GradientShop [58] 

make extensive use of GDIE, which shows that many applications are available for manual image 

editing purposes. Our method proved to be 166 times faster than Perez on a CPU, and an additional 

9 times faster on a GPU. This vast improvement will be very beneficial for real applications since 

high-resolution editing becomes instantaneous for an image and real-time for video applications.  

Finally, the invention can be used to improve different kinds of neural networks in various fields. 

However, such application is only possible if the GFC is able to improve any kind of CNN, not 

just the saliency-purposed CNN, as discussed in section “9.5 Future work”.  

9.5 Future work 

With the major improvements brought by the added GFC in our DSS-GIS model, it is believable 

that the GFC can be implemented in different kind of deep network, not just the saliency-purposed. 

In fact, as discussed in section 9.3, the reasons that the GFC improves the network is that it enables 

the network to learn features and tasks in the image domain and the gradient domain at the same 

time, it enables unlimited receptive field at any layer, and it enables to transform any vector field 

of features into its nearest possible conservative field. Those properties can be beneficial in 

different kinds of CNN. 

Therefore, a logical next step would be to test the GFC methods inside CNN with the purpose of 

edge detection, image segmentation or classification. An example is to implement the UFnet [11] 

which is a slightly modified version of the DSS [26] but with the added ability to do skeleton 

extraction and edge detection [11]. Furthermore, another important step would be to add the GFC 

at different depths within the network and verify if it helps to improve the network by forcing each 

step to merge region-like features with gradient-like features. For example, using the Google-net 

[20], one could try to implement the GFC inside each of the inception modules to verify if there is 
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an improvement as discussed in section 8.1. If the new approach proves to improve the results of 

standard classification networks, then the work developed in the current thesis could become an 

important part of the machine learning community. However, even if it fails, the GFC developed 

in this thesis will still be very useful for resolution invariant shape analysis, gradient-domain image 

editing, salient object detection and segmentation.  

Furthermore, since we believe that the GFC layers allow the networks to better generalize to unseen 

data, we recommend to test them in a meta-learning or few-shot learning setting, where it is 

required to transfer knowledge from one task to others.   

Other important work to be done is to package the whole code into libraries that can be easily 

implemented by industries for practical applications. Furthermore, the training set can be expanded 

to include a fraction of all the available saliency sets. For example, adding the HKU-IS dataset [87] 

proved to improve the results by up to 3% [11,132]. This work is fundamental to the success of the 

patents and to ensure their licensing, although it does not directly affect the academic results.  

9.6  Limitations 

The current thesis presented a novel way of using EM and GF for image analysis purposes. 

However, this section will present different mathematical limitations as well as practical limitations 

to the current work.  

9.6.1 Mathematical limitations 

The mathematical limitation concerns the type of neural network that can be used, the space on 

which the data is present and the computation complexity which limits the computation time.  

9.6.1.1 Strictly convolutional networks 

The first mathematical limitation is that the network must absolutely be convolutional to implement 

the GFC. This is because the methods that we develop assume that the features are similar to a 

gradient, which is translation invariant. Hence, a CNN is required since they are designed 

specifically to be translation invariant, contrarily to other methods such as standard NN and random 

forests [9]. Furthermore, since GFC is a convolution, it intuitively fits within a CNN since it has 

the same properties as the convolutional layers.  
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9.6.1.2 Euclidean space at least 2D 

The second mathematical limitation is that the Laplacian and the Green’s function are well defined 

in Euclidean space or a grid space such as a 1D vector, 2D image or 3D scan. However, although 

there are definitions of Fourier transforms and Laplacian on a graph [137], the computation changes 

if the graph is different [137]. This means that for graphs such as molecules which are different 

from each other, one cannot find a single Green’s function. 

Moreover, if the data is a 1D vector, the Green’s function is useless since the integration is a 

straightforward cumulative sum of the vector. Hence, the developed method is not useful for music 

analysis or other 1D representation. This means that the method requires at least 2D to be useful.  

Furthermore, the concept of a conservative feature field is not expected to work well in the case of 

sparse representation, where most values in a matrix are 0.  

9.6.1.3 Computation complexity 

Another mathematical limitation is the non-linear time complexity of the Fourier transform. For a 

fixed convolutional kernel size and an image of 𝑛 pixels, the time complexity of a convolution is 

𝑂(𝑛) but the time complexity of the Fourier transform is 𝑂(𝑛 log 𝑛) [23]. This means that for 

bigger images, the Fourier transform will slow down faster than the rest of the CNN. However, 

since an image has already a high number of pixels, the logarithm term is not too significant for 

the scaling. For example, if we scale a small image of 64 × 64 pixels to 128 × 128 pixels, a 

standard CNN requires 4 times more computation while a Fourier transform requires 4.67 times 

more computation, which is not too significant 17% increase.  

Hence, the limitation is not too expensive computationally, but one should know about it when 

implementing a CNN with a GFC, GDM, GIS or GDI2-3 layer. In the case of the SEE algorithm 

implemented in Chapter 7, this is not a limitation since the GIS is applied on the layers with the 

least number of channels which keeps the computation time very low compared to the rest of the 

CNN. However, in the case of the GID2 layer applied inside a Google-net at section 8.1, the GID2 

is applied on the layers with the highest number of channels. Therefore, time complexity becomes 

an important limitation and should be considered in the design of the network.  
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9.6.2 Practical limitations 

The practical limitations consider the drawbacks of the method that is due to the way it is applied 

for image understanding: how it should not work well without gradient-like features, how it can 

produce undesired artifacts and how the performance of the method is not well understood.  

9.6.2.1 Non-gradient-like features 

The method was mainly developed to deal with gradient-like features such as the thin partial 

contours in Chapter 4, the gradient in Chapter 5, the salient edges in Chapter 6, the salient gradient 

in Chapter 7 and the gradient integration derivative in section 8.1. Therefore, the GFC is not 

expected to work when the features are not similar in nature to gradients. Although there is no 

demonstration that this statement is true, there is no indication that the GFC can be useful in other 

cases. Fortunately for the project, Goodfellow et al. [9] argue that the extracted visual features of 

both the visual cortex and inside the CNN are similar to the Gabor’s function. Since most types of 

numerical Gabor’s function are similar to the nth derivative of a Gaussian function, it counters well 

the current limitation.  

9.6.2.2 Undesired artifacts 

Although it was shown in section 5.2.2 that the Green’s function is optimal at solving a perturbed 

gradient, Figure 5-8 shows that there can be some undesired artifacts when the gradient is too 

perturbed (or too far from being a conservative field). These kinds of artifacts were observed in the 

corner of the saliency maps during the first 2000 iterations of training the DSS-GIS model of 

Chapter 7. Fortunately, the artifacts disappear by themselves after more iterations. However, it is 

not clear if their effect is completely eliminated. Also, it is not clear if other networks such as the 

Google-net with GID2 developed in section 8.1 are affected internally by those artifacts since we 

do not directly observe the inner layers.  

Adding a padding before the GFC was described in Chapter 5 as a mean to reduce the effect of 

those artifacts, but they do not eliminate them completely.  

9.6.2.3 Unknown performance 

Another practical limitation of the method is that the performance of the GF-based kernels in CNN 

is not well known. Should the GID2-3 layers developed in section 8.1 be used in deeper layers? In 
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shallower layers? In every inception layer? Should it skip some inception layers? Should it be used 

on all the inputs, or should there be some inputs not affected by the GID2-3? Does it work with 

complex images or only simpler images such as the MNIST digits? Does it work in another kind 

of networks or only in inception layers? 

There are so many questions left unanswered as to when and how the current work performs well, 

and it is a major limitation for anyone that tries to implement GFC in another project. All those 

questions will require a few more years of practical research before they can be answered with 

confidence.    

9.7 Thesis outcomes 

For the current thesis work, we developed different tools and functionalities to close the contours 

and to use GFC within images or neural networks. To broaden the reach of our work, we decided 

to develop the tools in multiple languages/libraries, including Matlab, C++ (OpenCV) and Python 

(Pytorch and Tensorflow). This section summarizes briefly the tools and deliverables of the current 

thesis, followed by the scientific outcome.  

9.7.1 Tools 

In Table 9.1, we can see the list of tools developed in each language and library. We observe that 

the older EM-based solvers were developed only in Matlab and OpenCV. However, the newer GF-

based solvers are implemented in all languages. The GDM, GI, GIS and GID layers, useful for 

CNNs, are implemented in Matlab, as well as Tensorflow and PyTorch (2 of the most popular deep 

learning libraries).  
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Table 9.1 : Tools developed during the thesis in different languages and libraries  

Tool Matlab 
OpenCV 

(C++) 

Tensorflow 

(Python) 

Pytorch 

(Python) 

EM monopole  

(Laplacian solver) 
✓ ✓   

EM dipole 

(partial contour filling) 
✓ ✓   

GF monopole 

(Laplacian solver) 
✓ ✓ ✓ ✓ 

GF dipole 

(partial contour filling) 
✓ ✓   

GDM 

(gradient domain merging) 
✓  ✓ ✓ 

GI 

(Gradient integration) 
✓  ✓ ✓ 

GIS 

(Gradient integration and sum) 
 ✓ ✓ ✓ 

GID 

(Gradient integration derivative) 
✓ ✓ ✓ ✓ 

 

We also observe in Figure 9-2 that time and effort were put into building a comprehensive 

documentation of the developed tools, classes and functions, thus enabling the project and tools to 

be used by other students, collaborators or researchers. The documentation was build using the 

Sphinx python package [138]. Additionally, each repository has its documentation, how-to section, 

and recommendations. For confidentiality reasons, the code is not yet publicly available, but could 

become publicly available in the future.  
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Figure 9-2 : Example of documentation used for our green_function_torch module.  

9.7.2 Deliverables 

An important part of the current thesis was to develop a tool that can work in real time on an 

embedded system for salient object detection. This tool can then be used on autonomous robots 

and cameras for better focus and better scene understanding.  

For this purpose, there is an on-going project financed by NSERC-INNOV (National sciences and 

engineering research council of Canada, Idea to innovation grant). Using the Nvidia Jetson TX2, 
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an embedded GPU with CUDA support, we installed the Tensorflow library and were able to 

remotely compute the saliency maps in real-time using the DSS-GIS developed in Chapter 7. 

Future progress of this project is to develop real-time background removal and object detection for 

industrial applications such as assistive robotics and waste sorting.  

9.7.3 Scientific outcomes 

The current thesis has multiple scientific outcomes on mathematical and theoretical aspects, 

practical tools, concrete applications and scientific publications. In fact, the first 2 papers and first 

patent were about building a strong mathematical and theoretical background. The 3rd paper and 

2nd patent were about building practical tools from the theory. Then, the last 2 papers, the last patent 

and the additional works were about building concrete applications of object discovery. Finally, 

the on-going Innov project is about delivering the academic technology to real-world applications.  

Scientific publications. Firstly, there are a total of 8 scientific publications linked to the current 

paper, including 3 papers published on Arxiv, 2 papers in revision for scientific journals, 1 patent 

and 2 provisional patents. These publications demonstrate the originality and innovation brought 

by the current thesis.  

Mathematical and theoretical aspects. In the first 2 papers and the first patent, we were able to 

innovate by finding new methods of extrapolating edges and contours to regions, bridging the gap 

between 2 fundamental computer vision approaches. We demonstrated mathematically that EM 

and GF-based kernels allow to determine the probability that any point is located inside a partial 

contour, which to our knowledge, was never done previously. We showed prototypes and simple 

examples to demonstrate how they can be used for object detection when incomplete information 

is given.  

Practical tools. We showed in the 3rd paper and 2nd patent that we were able to solve Laplacian 

and non-conservative fields simply, with few lines of code with different computation libraries. In 

fact, we showed that 100 Laplacian can be solved in 1ms, which was orders of magnitude faster 

than competing approaches. For this work, we implemented the GF in Matlab, OpenCV and 

PyTorch, broadening reach of the developed tools.  

Concrete applications. In the 4th and 5th paper, the 3rd patent and the additional work, we focused 

on bringing concrete and useful applications to the set of tools that we developed. With the DSS-
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GIS method, major improvement of saliency detection were reported, especially for complex or 

noisy images, showing that the networks were able to better generalize outside the training data. 

Furthermore, the additional works showed that the GF-based tools can be used to improve an CNN 

with minimal architectural changes, simply by transforming the set of learned features into 

conservative features.  

From academia to industry. As explained in section 9.7.2, important deliverables of the project 

is to make it ready for real-world and industrial applications. At the time of writing, there is a 

prototype of an embedded system that is able to detect salient objects in real-time, thus enabling 

future robotic applications.  

Machine learning (A new CNN operation).  The greatest contribution to the machine learning 

community is probably the creation of the GF-based operations, a new category of operations that 

can be implemented directly inside CNNs. These new operations enable completely novel 

properties, such as enabling the network to regularize the features by making them conservative 

(thus physically interpretable) or enabling the network to work simultaneously in the image and 

gradient-domain. An overview of this contribution is presented in Figure 9-3. It this to note that 

GF-based operations are convolutions, yet they are more similar to activation functions in how they 

behave. However, contrarily to activation functions, they perform non-trivial operations with the 

purpose of modifying or integrating a field of features.   

 

Figure 9-3 Our contribution, in terms of categories of possible operations inside CNN.  
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CHAPTER 10 CONCLUSION AND RECOMMENDATIONS 

The main objective was to develop electromagnetic (EM) convolutions and Green’s functions (GF) 

convolutions to be used in Computer Vision and convolutional neural networks (CNN). We believe 

to have successfully reached this objective, with a total of 2 theoretical computer vision papers, 1 

practical paper in the field of image editing, and 2 practical papers in the field of salient object 

detection. In addition, one of the most important scientific outcomes of the thesis is the creation of 

a novel category of GF-based operations to be used in CNNs, which improves the training, the 

accuracy and the generalizability of the networks.   

The first sub-objective was to develop a mathematical and intuitive understanding of the behavior 

of EM and GF convolutions in an image. This sub-objective was achieved in different aspects. 

First, Chapter 3 established how to create the EM kernels to generate resolution and rotation 

invariant convolutional kernel. It was later shown in Chapter 4 to be the only possible convolutional 

kernel that allows determining the probability of inclusion within open partial contours, thus 

allowing to extend edge information into spatial information. Chapter 5 followed by showing that 

GF-based kernels are an improved version of the EM-based kernels and by proving that GF kernels 

are the least-error gradient solver.  

The second sub-objective was to use the GF convolutions to reduce the computation time and 

numerical error of the EM and allow fast and efficient gradient-domain image editing. The 

negligible error was demonstrated by testing on 1000 images and showing that GF has an average 

RMSE error of 0.011 on 256 grey levels, which is negligible. Furthermore, Figure 5-2 shows that 

the GF solves the Laplacian 16 times faster than competing methods on a CPU and 29,000 times 

faster when using multi-thread on a GPU. The implementation is also simpler since the algorithm 

is described entirely by the short pseudo-codes given in Algorithm 5-A and in Algorithm 5-B. In 

fact, the code uses the fast Fourier transform (FFT) without any loop or optimization.  

The third sub-objective was to use the GF to improve the results of CNN for salient object detection 

and digit classification. This sub-objective was first solved with the SEE method proposed in 

Chapter 6, which uses the GF-based gradient domain merging (GDM) to merge saliency maps with 

edge detection. In  Figure 6-10, it showed an improvement of the F-measure in average 6.6 times 

more than the nearest competing method on the ECSSD dataset. Then, Chapter 7 followed by 

developing the DSS-GIS method, which integrates the GIS layer directly inside the DSS. The added 
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GIS layer was demonstrated in Figure 7-7 to improve the convergence time, improve the robustness 

to parameter initialization and reduce the overfitting of the model. Finally, section 8.1 showed a 

promising prototype that enables using GF convolution inside image classification networks, thus 

reducing the convergence epochs by a factor 5.1, reducing the error by 27% and thus extending the 

reach of the current thesis. The GF-based layers, created in the present thesis, represent a new 

category of CNN operation which greatly differ from any other standard operation (weighted 

convolution, activation function and pooling). Hence, they are a major contribution of the thesis, 

especially since they improve the CNN training, accuracy and generalizability.  

Consequently, the thesis contributes to the computer vision field by developing a new and 

performant computational tool based on GF that are fast to compute and proven to perform well in 

different applications such as gradient-domain image editing, salient object detection, and image 

classification. A major contribution is adding the category of GF-based operations to the neural 

network, thus enabling the network to work in the image and gradient-domain concurrently and 

enabling to transform any set of features into conservative and physically interpretable features. 

With these added GF-based layers, we observed significant reduction in the training time with a 

reduction of the hyperparameter sensitivity. Furthermore, the models were demonstrated to better 

generalize by improving the training accuracy for different architectures and by reducing the noise 

sensitivity.  

However, there are some limitations to our work since GF can only be used in 2D+ convolutional 

networks, it has 𝑂(𝑛 log(𝑛)) time complexity and it was only shown to work on gradient-like 

features. Future work could focus on implementing the GF inside classification networks with more 

complex tasks and architectures. Also, a quantitative analysis of different GF-based layers should 

be done to optimize its usage. Moreover, we recommend doing a thorough analysis of how the GF 

affect the weights and the validation loss of different CNN architectures and for different datasets. 

For future work, we recommend exploring the use of GF for generative networks, since the GF 

regularizes the networks for physically possible solutions and allows to generate images in the 

gradient domain. We also recommend making better use of the improved network generalization 

by exploring the use of GF for few-shot learning and meta-learning applications.   
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APPENDICES 

APPENDIX A BENCHMARKING PARAMETERS 

To properly compare and evaluate different saliency algorithms, the literature defined different 

standard datasets and metrics. For the datasets, MSRA10K [122], an extension of the previous 

MSRA-B [67] dataset, is the most widely used for training purposes. It is used for training since it 

has the largest number of images (10,000) and it is one of the easiest which makes it less appropriate 

for benchmarking [26].  

For evaluation purposes, 3 other datasets are used: ECSSD with 1000 images [68,124], 

PASCAL-S [125] with 850 more complex images and DUT-OMRON with the most complex 5168 

images [126].  

For the benchmarking, the standard parameters that are evaluated are the precision 𝑃, the recall or 

true positives 𝑅 and the false positives 𝑅!  [69,127]. Those parameters are evaluated for 256 levels 

of thresholds on the saliency map 𝑆, which allows to plot the precision-recall 𝑃𝑅 curve. At each 

threshold level, a binary mask 𝑀 is generated and compared to the binary ground-truth 𝐺. From 

the 𝑃𝑅 curve, one can evaluate the average 𝑃𝑅, the F-measure 𝐹𝑚 and the maximum precision 

𝑃max  . All those parameters are defined in equations (112)-(116), where 𝛽 = 0.3 is a constant that 

allows to add more weight to the precision,   
!  is the logical NOT operator, ∩ is the logical AND 

operator and ∑ is the sum over every pixel [69,127].  

𝑃 =
∑𝑀 ∩ 𝐺

∑𝑀
 (112) 

𝑅 =
∑𝑀 ∩ 𝐺

∑𝐺
 , 𝑅 

! =
∑𝑀 ∩ 𝐺 

!

∑ 𝐺 !
  (113) 

𝑃𝑚𝑎𝑥  = 𝑚𝑎𝑥(𝑃) (114) 

𝐹𝑚 = 𝑚𝑎𝑥 (
(1 + 𝛽2)(𝑃 𝑅)

𝛽2 𝑃 + 𝑅
) (115) 

𝑃𝑅̅̅ ̅̅ = ∫ 𝑃 𝑑𝑅 (116) 
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Other important information is the area under the curve (AUC) of the true-false-positive curve, and 

the mean absolute error (MAE) given respectively in equations (117) and (118), where 𝑆 is the 

saliency map normalized to [0, 1] and 𝑁 the total number of pixels.  

𝐴𝑈𝐶 = ∫ 𝑅 𝑑 𝑅 
!  (117) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑆 − 𝐺| (118) 

From all those parameters, the most used in the literature are the precision-recall 𝑃𝑅 curve, the 

F-measure 𝐹𝑚 and the mean absolute error 𝑀𝐴𝐸. However, a problem with 𝑃𝑅 curves is that it is 

can be difficult to compare different curves together when the results are close and rank the 

different algorithms. Also, the 𝑀𝐴𝐸 is easy to alter by changing the contrast of the saliency map.  

Hence, 𝐹𝑚 is the most important measure and it is usually the one used for ranking the algorithms. 
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APPENDIX B STANDARD NEURAL NETWORKS 

Neural networks are strongly inspired by how the brain works by connecting each neuron to a set 

of previous neurons and subsequent neurons. Each of the neurons performs simple operations, 

composed of the weighted sum and an activation function, based on their respective inputs from 

the previous neuron layer. Then, each neuron outputs the result to the next neuron layer [9]. This 

is explained visually in Figure 10-1 where the neurons are the yellow circles and are connected to 

the previous and subsequent layers.  

The first operation is done by the neuron 𝑛𝑖 is to compute 𝑊𝑖, the sum of the weighted input  given 

in equation (119), where each input 𝑥𝑖,𝑗 is multiplied by a weight 𝑤𝑖,𝑗 [9]. The second operation 

adds a bias and uses an activation function 𝛼 to compute the output 𝑦 of the given neuron, as given 

by equation (120).  The parameters 𝑤𝑖,𝑗 and 𝑏𝑖 are optimized by the neural network during the 

learning phase. The activation function is pre-determined before the learning and are biologically 

inspired to allow the NN to learn non-linear features [139]. Examples of the RELU and sigmoid 

activation functions are given in equations (121) and (122) [9].  

𝑊𝑖 =∑𝑤𝑖,𝑗𝑥𝑖,𝑗
𝑗

 (119) 

𝑦 = 𝛼(𝑊𝑖 + 𝑏𝑖) (120) 

𝛼𝑅𝐸𝐿𝑈(𝑥) = {
0 , 𝑥 < 0
𝑥 , 𝑥 ≥ 0

 (121) 

𝛼𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒−𝑥
 (122) 
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Figure 10-1 : Neural network architecture with the neurons being the yellow circles, with a view 

inside the neurons 

In the NN of Figure 10-1, we can see that there is a variable number of neurons in each layer. 

However, the numbers of inputs and outputs are dependant on the application. For the example of 

classification, the output is the class of the object. The inputs can be raw data or extracted features. 

The depth of an NN is measured as the number of hidden layers, and deep NN is those with a depth 

higher than 1. 

In the case of image understanding applications, the NN did not perform well on complex images 

since the raw data of each pixel would create a neural network too big and difficult to optimize. 

Hence, a human was often required to manually extract the features before feeding them to the NN.  

  

Input layer

Hidden layers

Output layer

𝑏𝑖 𝛼

𝑊𝑖 = ∑ 𝑤𝑖, 𝑥𝑖,  

𝑤𝑖,1

𝑤𝑖,2

𝑤𝑖,𝑛

𝑥𝑖,1

𝑥𝑖,2

𝑥𝑖,𝑛

𝑦

𝛼: activation function

𝑦 = 𝛼 𝑊𝑖 + 𝑏𝑖

Neural network architecture Inside a neuron   
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APPENDIX C GENERAL ELECTROMAGNETISM 

C.1 Supplementary Nomenclature 

The following nomenclature is useful for the appendices, in addition to the nomenclature presented 

at the beginning of the paper.  

𝓆𝑒,𝑚 Charge [C]𝑒 , [A m]𝑚     

𝓭𝑒,𝑚 Dipole charge separation [m] 

𝓻 Distance from an electric charge [m] 

휀0 Permittivity of free space [F m−1] 

µ0 Permeability of free space [N A−2] 

𝜌𝑒,𝑚 Density of charge [C m−3]𝑒 , [A m
−2]𝑚 

𝐽 Electric current [C s−1] 

∇ ⋅ Divergence operator 

∇ × Curl operator 

C.2 Monopoles and Dipoles  

C.2.1 Electric monopoles 

Static electric monopoles are the most primitive elements that generate an electrical field, and they 

can be positive or negative. The positive charges generate an outgoing electric field and a positive 

potential, while the negative charges generate an ingoing electric field and a negative potential. 

This is shown in Figure 10-2, where the color scale is the normalized value of the electric potential 

𝒱𝑒 and the arrows represent the electric field ℰ𝑒. In our 3D universe, the values of the potentials 

and fields of static charges are given by equation (14) [30–32]. However, the current paper will not 

limit itself to the 3D equations of electromagnetism, and more general equations will be developed.  

𝒱𝑒 =
𝓆𝑒

4𝜋휀0‖𝒓‖
  

𝓔𝑒 =
𝓆𝑒

4𝜋휀0‖𝒓‖2
 𝒓 ̂ 

(123) 
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Figure 10-2 : Static electric potential and field of a: (a) positive monopole. (b) negative monopole   

The color-bar used for the potential is shown in Figure 3-1 but will be omitted in many other images 

for concision. It is normalized so that the value “1” is associated with the maximum potential and 

“−1” is associated with the maximum negative potential.  

When we deal with more than one particle, then the total potential and field is the sum of all the 

individual potentials and fields, as given by equation (16) [30–32]. It should be noted that the total 

potential is a simple scalar sum, while the total field is a vector sum. 

𝒱𝑒
𝑡𝑜𝑡 =∑𝒱𝑒

𝑖

𝑛

𝑖

 , 𝓔𝑒
𝑡𝑜𝑡 =∑𝓔𝑒

𝑖

𝑛

𝑖

 (124) 

C.2.2 Electric dipoles 

An electric dipole is created by placing a positive charge near a negative charge. This generates an 

electric potential that is positive on one side (positive pole), negative on the other side (negative 

pole) and null in the middle. The charge separation 𝓭𝑒 a vector corresponding to the displacement 

from the positive charge to the negative charge, and is mathematically defined at equation (16) 

[32].  

𝓭𝑒 = 𝒓𝑒+ − 𝒓𝑒− (125) 

The electric field will then have a preferential direction along the vector 𝓭𝑒 by moving away from 

the positive charge, but it will loop back on the sides to reach the negative charge. Many examples 

of electric dipoles are presented at Figure 10-3, with the simplest form being composed of 2 

opposite charges. On this figure, we notice that staking multiple dipoles in a chain will not result 

in a stronger dipole, because all the positive and negative charges in the middle will cancel each 

other. Therefore, stacking the dipoles in series will only place the poles further away from each 

other. However, stacking the dipoles in parallel will result in a stronger potential and field on each 
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side of the dipole. It is also possible to see that the field will be almost perpendicular to the line of 

parallel dipoles, but it is an outgoing field on one side and an ingoing field on the other.  

 

Figure 10-3 : Electric Potential and field for static monopoles placed as (a) A simple dipole. (b) A 

small chain of simple dipoles. (c) A horizontal and a vertical dipole, equivalent as 2 dipoles at 

45°. (d) A long chain of simple dipoles in series. (e) A long chain of simple dipoles in parallel.  

To calculate the total electric potential and field of any kind of dipole, it is possible to use the 

equation (14), without forgetting to change the sign of 𝓆𝑒 accordingly. This sign change leads to a 

potential that diminishes a lot faster for dipoles at Figure 10-3 when compared to the monopoles at 

Figure 10-2. In a 3D world, with 𝜃 = 0 alongside vector 𝓭𝑒, the dipole potential will vary 

according to 𝒱𝑑𝑖𝑝 ∝̃ cos(𝜃) /‖𝒓‖
2, compared to the monopole potential which varies in proportion 

to 𝒱𝑒 ∝ 1/‖𝒓‖ [31,32].  

Another important aspect of dipoles is that when 𝓭𝑒 is small, the potential of a diagonal dipole is 

calculated by the linear combination of a horizontal and a vertical dipole. The potential of a dipole 

at angle 𝜃 (𝒱𝑑𝑖𝑝
𝜃 ) is approximated by equation (17) [31,32]. This is easy to prove by using the 

previous statement that 𝒱𝑑𝑖𝑝 ∝ cos(𝜃). 

𝒱𝑑𝑖𝑝
𝜃 ≈ 𝒱𝑑𝑖𝑝

x cos(𝜃) + 𝒱𝑑𝑖𝑝
y
sin(𝜃) (126) 

C.2.3 Magnetic charges and dipoles 

Electricity and magnetism are 2 concepts with an almost perfect symmetry between them and will 

lead to similar mathematical equations. First, a magnetic dipole is what is commonly called a 

“magnet”, and is composed of a north pole (N) and a south pole (S). When compared to the 

electrical dipole, the north pole is mathematically identical to the positive pole and the south pole 
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is identical to the negative pole.  Therefore, the potentials and fields of magnetic dipoles are 

identical to those of Figure 3-2, and the equations are the same as those defined by equations (14), 

except for the constants. 

One can also mathematically define a magnetic monopole the same way as the electric monopole 

was defined. Although magnetic monopoles are not found in nature, nothing prevents us from using 

their mathematical concepts for computer vision.  

C.3 Mathematical Laws of EM 

C.3.1 Maxwell’s Equations 

The development of traditional electromagnetism was completed by J.C. Maxwell and allows to 

explain all the EM phenomenon using 4 mathematical equations, known as Maxwell’s equations 

(MEq), which can be written with integrals or differential form. The first MEq is the Gauss law 

presented at equation (18) [30,32]. It means that the electric field that leaves a certain volume is 

directly proportional to the total charge inside it. The second MEq is Gauss law of magnetism and 

is presented at equation (19) [30,32]. It is identical to equation (18), except that the charge density 

is zero due to the inexistence of magnetic charges. 

∇ ⋅ 𝓔𝑒 =
𝜌𝑒
휀0

 (127) 

∇ ⋅ 𝓔𝑚 = 0 (128) 

The following MEq are known as Faraday’s law (20) and Ampere’s law (21). They allow 

understanding the behavior of EM when there are time variations of the fields [30,32].  

∇ × 𝓔𝑒 = −
𝜕𝓔𝑚
𝜕𝑡

 (129) 

∇ × 𝓔𝑚 = 𝜇0 (𝐽 + 휀0
𝜕𝓔𝑒
𝜕𝑡
) (130) 

Another important concept in EM is the electrostatic potential 𝒱𝑒,𝑚, which is a scalar defined as 

the line integral of the field 𝓔𝑒,𝑚, given by equation (22) [32].  
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𝒱𝑒,𝑚 = −∫𝓔𝑒,𝑚 ⋅ d𝒍
𝐶

 (131) 

C.3.2 Adaptation of Maxwell’s equations for Computer Vision 

The important equations of EM were developed in the previous section, but their current form is 

not adapted for computer vision. First, the presence of the constants 휀0 and 𝜇0 are not useful for 

the current application. It is also possible to ignore the fact that magnetic charges cannot exist and 

regroup equations (18) and (19) to generate equation (20). Furthermore, the time variation and the 

current from equations (20) and (21) are ignored to generate equation (24). Thus, the 4 MEq are 

simplified into 2 new equations for static electromagnetism given by (23) and (24). These equations 

are the same for Electricity and Magnetism. Also, there is no interaction between a static electric 

field and a static magnetic field [30,31]. For these reasons, the current paper will often use the term 

“electric” when using monopoles and “magnetic” or “magnetize” when using dipoles, because it is 

more intuitive.  

Equation (23) means that the total virtual field going out of a surface is directly proportional to the 

number of virtual charges contained inside. For dipoles, the total virtual field is null because the 

sum of charges is always zero. Equation (24) means that there is no curl to the field. By using 

equation (24) with equation (22), it is possible to demonstrate equation (25) [32], which states that 

the field is given by the gradient of the potential.  

∇ ⋅ 𝑬𝑒,𝑚 = 𝜌𝑒,𝑚 (132) 

∇ × 𝑬𝑒,𝑚 = 0 (133) 

𝑬𝑒,𝑚 = −∇𝑉𝑒,𝑚 (134) 

With these equations demonstrated, the next step is to determine the potential and the fields that 

are generated by charged particles. By using equation (23) and by knowing that, at a certain radius, 

the field around a single particle is uniformly spread, it is possible to show that equation (3) holds. 

The variable “𝑛” denotes the dimension of the universe where the potentials and fields are used. 

This means that for a 3D universe we have 𝑬𝑒,𝑚 ∝ 1/|𝑟|
2, for a 2D universe, we have 𝑬𝑒,𝑚 ∝

1/|𝑟|1, while for a 1D universe, 𝑬𝑒,𝑚 is constant. This is in concordance with the real laws of 
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electromagnetism, if we acknowledge that a 2D universe is when the infinite wire approximation 

is used, and that a 1D universe is when an infinite plate approximation is used. However, the current 

paper will not limit equation (3) to a finite universe by choosing non-integer values for 𝑛. 

Therefore, we have that  𝑬𝑒,𝑚 ∝ 1/|𝑟|
𝑛−1, for a universe of 𝑛 spatial dimensions.  

C.4 Geometrical Interpretation of Maxwell’s Equations 

C.4.1 Closed shapes with particles on the contour 

If we have a closed circle composed of charged particles on the contour, then equation (23) allow 

to see that the field will be almost null inside the circle, but really high as soon as we are outside 

the circle. The potential is strong and constant in the middle of the circle, but diminishes rapidly 

outside the circle [31,32], as observed at Figure 10-4. This is because the potential is scalar, 

therefore the contribution of each particle will be summed. However, the field requires a vector 

sum, which means that they will cancel each other in the middle as the vectors will be of opposite 

direction, but they will add themselves outside of the circle. This holds true for any kind of closed 

shape, although the perfect symmetry of a circle makes the cancelation of the field more effective.  

By using a circle of dipoles instead of monopoles, with the  radii being 𝑅− and 𝑅+ > 𝑅−, then the 

field will be null and the potential almost constant everywhere, except for a position 𝑅 that respects 

the inequality 𝑅− < 𝑅 < 𝑅+. This is due to the gauss law (23) and is observed at Figure 10-4. It 

also holds true for any kind of closed shape with dipoles on all of its contour.  

 

Figure 10-4 : Potential and field for circles, with 𝑛 = 3, for (a) positive monopoles. (b) parallel 

dipoles. The green part is the positive charges/potential, and the purple part is the negative 

charges/potential.  
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C.4.2 Corners with particles on the contour 

If we have a corner composed of charged particles as presented in Figure 10-5, then it is possible 

to analyze the potential and field and to see that it somewhat resembles the closed circle. The 

concave part of the corner will have a low field due to the vector sum of opposite vectors, but it 

will be the point with the highest potential, just like the inside of the circle. The convex part of the 

corner will have a slightly higher field because the vectors are less destructive, but the potential 

will be a lot lower because it is further away from the other charges, similarly to the exterior of the 

circle. Finally, the flat parts of the corner will have the highest field, but average potential.  

In Figure 10-5, it is possible to see that the field on the corners will have a diagonal direction due 

to the contribution of both sides of the corner. For the dipole corner, the behavior is really similar 

than the monopole corner, except that the concave part has an ongoing field with a negative 

potential, while the convex part has an outgoing field with positive potential. It should be noted 

that the field will tend to be at an angle of 45° when it is far at the top-left or bottom-right of the 

corner.  

 

Figure 10-5 : Potential and field for corners of (a) positive monopoles. (b) parallel dipoles. 

C.5 Partial contour Manipulations 

This section presents algorithms on how to manipulate the partial contours or contours of an image 

and how to grow/shorten specific regions from the contour. The pseudocodes make use of some 

Matlab® functions for computer vision, but they all have their equivalent in other image processing 

libraries such as OpenCV®.  
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C.5.1 Grow and unite contour regions 

A contour region is defined as a group of pixels that are part of the contour. For example, the high 

potential region will be everywhere on the contour with a high value of 𝑉𝑒. However, due to 

discretization, the regions might have discontinuities. Also, it could be required to simply grow the 

desired regions by a specific number of pixels at each side of the region, but by keeping it on the 

contour.  

In the current paper, the regions are always grown by a percentage of the biggest dimension of an 

image (%BL). This allows to always be consistent no matter the resolution or the scale of the image. 

The regions are expended using a loop of image dilation. The dilations will expand the region one 

pixel in all directions, and then be multiplied by the contours to remove the undesired growth. This 

process is detailed in Algorithm 10-A.  

Algorithm 10-A. Pseudocode for the growth of a region on the contour 

// growthPercentage: Desired %BL for the growth 

// regionOnContour: Matrix with value 1 on parts of the contour to grow 

// contour: Matrix with value 1 on the contour 

Function GROW_REGION(growthPercentage, regionOnCoutour, contour) 

// Find the number of pixels to grow 

numberPixelToGrow = round(growthPercentage * max(size(image))); 

// Compute the geodesic distance between each point on the contour and 

the region 

// “bwdistgeodesic” is a MATLAB function that computes the geodesic distance 

geodesicDistance = bwdistgeodesic(contour, regionOnContour); 

// Define the grown region as the region with distance lower than the 

threshold 

grownRegion = (geodesicDistance <= numberPixelToGrow); 

RETURN grownRegion; 

An important application for this region growth is to be able to unite pixels that are near each other 

into a single region. Due to the discretization, some regions of high potential will be broken into 

multiple but nearby pixels. By using the growth technique that was presented, the pixels will unite 

to form a solid region on the contour.  
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C.5.2 Finding Partial contour Orientation 

Finding the orientation of a partial contour is crucial to the use of directional magnetic 

convolutions. The way to do it is to start from the extremity of the partial contour and loop every 

pixel from this point to find the angle for the next point, as depicted in Algorithm 10-B. Since the 

image is in a matrix, each pixel has 8 possible neighbors, meaning the angles will always be 𝜃 =

𝑛 ⋅
𝜋

4
, with the value of 𝑛 = [1,2, … ,8]. However, the Algorithm 10-B applies multiple consecutive 

smoothing on the delta values, meaning the angle will have a lot more than 8 possible values.  

Algorithm 10-B. Pseudocode for finding the orientation of a partial contour 

// pc: Matrix with value 1 on a partial contour, and 0 elsewhere 

Function PC_ORIENTATION(pc) 

// Make sure the region is thin, with only 2 neighbors everywhere, except 

on intersections 

pcThin = MorphologicalThinning(pc); 

 

// Remove the intersections from the partial contour, which creates more 

partial contours 

kernel = [1,1,1; 1,0,1; 1,1,1]; 

convol2D = convolution2D(pcThin, kernel); 

hasLessThan3Neighbours = convol2D < 3; 

pcThinNoIntersect = pcThin ∘ hasLessThan3Neighbours;  

 

FOR EACH sub_pc IN pcThinNoIntersect 

   // If the sub_pc is open, start from the Extremety  

   // Else, choose a random point as the Extremety, and remove one of its 

neighbour 

   isOpen = any(convol2D < 2) 

   IF sub_pc IS isOpen 

      isExtremety = convol2D == 1; 

      Extremety = chooseRandomPoint(isExtremety);  

   ELSE 

      Extremety = chooseRandomPoint(sub_pc); 

      Sub_pc = removeOnePointNearAfromB(Extremety, sub_pc);  
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   ENDIF 

    

   // Initialize loop parameters 

   numPixelsRemaining = count(sub_pc > 0); 

   sub_pcRemaining = sub_pc; 

   currentPoint = Extremety;  

   allDeltaX = MatrixOfNAN; 

   allDeltaY = MatrixOfNAN; 

 

   // Loop all the points of the pc from the Extremity 

   WHILE numPixelsRemaining > 0 

      nextPoint = findNearestPointFromPointOnPC(currentPoint,              

sub_pcRemaining); 

      allDeltaX (currentPoint) = XDistanceBetween(currentPoint, 

nextPoint);  

      allDeltaY (currentPoint) = YDistanceBetween(currentPoint, 

nextPoint);  

      numPixelsRemaining = count(sub_pc > 0); 

   ENDWHILE 

ENDFOR 

allAngles = ATAN2(allDeltaY, allDeltaX); 

RETURN allAngles; 
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APPENDIX D GENERAL ELECTROMAGNETISM 

D.1 Supplementary nomenclature 

This appendix presents the nomenclature that is used exclusively in the following appendices.  

𝐿 Length of 𝑆 

𝐴 Area of the circle 𝑆𝐶 

𝜌 Radius of the circle 𝑆𝐶 

𝑌max   Height of the circle 𝑆𝐶 

𝑇𝐴𝐶 Total absolute curvature of 𝑆 

𝜅 Local curvature of 𝑆 

𝑥, 𝑦 Horizontal and vertical position 

D.2 Paths characteristics 

D.2.1 Characteristics of the paths between 2 points 

This appendix will focus on the desired characteristics of a path that links two points together. 

Although the trivial path between those points is a simple straight line, the developed technique 

requires an infinite number of paths to compute the space of probabilities, not only the most optimal 

one.  

For a path between 2 points noted 𝛾𝑖 and 𝛾𝑓, it is preferable to have a symmetrical path, since it is 

invariant to the swapping of 𝛾𝑖 and 𝛾𝑓. Examples of 4 different symmetric paths 𝑆1−4 are shown at 

Figure 10-6, with a starting angle of 𝛽 at points 𝛾𝑖,𝑓 and a distance of 2 ⋅ 𝑥0.  

 

Figure 10-6 : Example of different symmetric paths between points 𝛾𝑖 and 𝛾𝑓, with a starting 

angle 𝛽  
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For optimal paths, it is better to have a shorter length 𝐿 and a smaller total absolute curvature 

(TAC). The length measures the total distance, as given in equation (135) and the TAC is the 

integral of the curvature 𝜅 in equation (136), with d𝒔 is given at equation (137). For any closed 

curve, the following inequality is respected TAC ≥ 2𝜋, where it is only equal to 2𝜋 for the case of 

a convex curve. 

𝐿 = ∫ 𝑑𝒔
𝑆

 (135) 

𝑇𝐴𝐶 = ∫ 𝜅(𝒔) 𝑑𝒔
𝑆

 , 𝜅(𝒔) =
|�̇��̈� − �̇��̈�|

(�̇�2 + �̇�2)3/2  
 (136) 

𝑑𝒔 = √�̇�2 + �̇�2𝑑𝑡 (137) 

Another important characteristic of a path is its smoothness, noted 𝐶𝑘, where 𝑘 is the number of 

derivatives of the path that are continuous. The higher is the value of 𝑘, the smoother is the path.  

With a quick inspection of Figure 10-6, it is easy to determine that an optimal path should not be 

self-intersecting since it will pass by the same point more than once. Hence, the loop present in 𝑆4 

could simply be removed for a shorter path with a lower total absolute curvature. Also, the curve 

𝑆1 is concave, meaning that the TAC is not minimized. Finally, the curve 𝑆2 is not smooth since its 

first derivative is not continuous. Therefore, the only curve in Figure 10-6 that respects all the 

criteria is 𝑆3, as seen at Table 3.3.  

Table 10.1 : Qualitative Comparison Between the Partial contours Presented in Figure 10-6 

Partial 

contour 𝑺  
Non-self-intersecting Convex Smooth 

𝑺𝟏 ✓   
𝑺𝟐 ✓ ✓  
𝑺𝟑 ✓ ✓ ✓ 

𝑺𝟒    

D.2.2 Choosing the circle, rejecting the parabola 

The current appendix will explain why circular paths form optimal sets for this problem, which 

requires to create paths that pass through 2 points, with 2 defined starting angles 𝛽. This gives a 
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total of 4 conditions on any non-symmetric path, but only 3 conditions on a symmetrical path (since 

the angle 𝛽 is symmetric).  

If the path is chosen as a polynomial, then there would be an infinite number of possibilities for 

any polynomial of degree higher than 2 at any angle 𝛽. However, the equation (18) requires that 

there should be a single possible path per angle 𝛽, meaning that the only possible polynomial path 

is a parabola. The problem with parabolas is that the angle 𝛽+ should be greater than 𝜋/2 for a 

path to exist between 𝛾𝑖 and 𝛾𝑓, otherwise they would diverge. Also, there is no path in the whole 

space where 𝛽± < 𝜋/2, meaning that 𝑃𝑆 will be zero, which is not desired.  

To solve those problems with the parabolas, we are forced to consider the non-polynomial paths 

which can respect the given criteria. One of the possibilities is the circle since there is only a single 

circle that passes through 2 points with a given angle 𝛽, it is symmetric, non-self-intersecting, 

convex, and smooth 𝐶∞. Also, given 3 points, it is always possible to draw a circle that passes 

through all of them. If the 3 points are aligned, then it is possible to draw a circle of infinite radius. 

Therefore, the whole space will be covered, and there will be a circle for every angle 𝛽 = [0, 2𝜋].  

In summary, the parabola does not fit the required conditions well, while the circle fits them 

perfectly.  

D.2.3 Circular path parameters 

The cartesian equation of the circular path 𝑆𝐶 is given at (20), with an illustration of all its 

parameters at Figure 10-7. From this equation, we can easily find the radius 𝜌 given at (138). Also, 

since the focus is only on the arc 𝑆𝐶(𝛽) seen at Figure 4-4, we can define the height between the 𝑥 

axis and the top of 𝑆𝐶 as 𝑌max given at equation (139). Furthermore, the length 𝐿 of 𝑆𝐶 is given by 

equation (140), and the area 𝐴 between the 𝑥 axis and the path 𝑆𝐶 is given by equation (141). No 

proof of these equations is provided since they can be demonstrated with basic trigonometry, and 

they can be tested for the boundary conditions at 𝛽 = {0, 𝜋} and for the half circle at 𝛽 = 𝜋/2. 
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Figure 10-7 : Example of a circular path between points 𝛾𝑖 and 𝛾𝑓, with a starting angle 𝛽 

𝜌 = 𝑥0 csc𝛽 (138) 

𝑌𝑚𝑎𝑥 = 𝑥0 cot
𝛽

2
 (139) 

𝐿 =
2𝑥0(𝜋 − 𝛽)

sin𝛽
 (140) 

𝐴 = 𝑥0
2 (
𝜋 − 𝛽

sin2 𝛽
+ cot𝛽) (141) 

D.3 Electromagnetic potential 

D.3.1 Elliptical potentials and paths 

It was previously discussed with equation (20) that each equipotential curve forms a perfect circle. 

It is easy to generalize it to any ellipse passing from the same points by using the transformation 

(142), where 𝑏 is the semi minor axis. However, this changes the values of the equations (138) to 

(141), which are outside the scope of the current paper.  

Furthermore, such transformations do not obey Gauss law, the conservation of energy, or the 

diagonal superposition of dipoles of equation (30), meaning that the potential will not be constant 

inside a closed shape. Hence, they cannot be used for the computation of probabilities. Also, the 

equipotential lines will not be elliptical, unless the partial contour where the potential is computed 

is a line, or unless we use the convolution alternative given in appendix “Convolution alternative”.  
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𝑦 →
𝑦

𝑏
 (142) 

D.3.2 Convolution alternative 

Another way to compute the circular potential without the convolution given in equation (13) is to 

use the equation (35) directly, with the coordinate system placed at the middle of the line between 

𝛾𝑖 and 𝛾𝑓, and the 𝑥 axis pointing towards 𝛾𝑓. Then, using the same definitions of 𝑉𝑚
± given at 

equation (22), we transform the value of 𝑉𝑚 with equation (143). This allows to make sure that 𝑉𝑚 

is positive in the region 𝑉𝑚
+, and negative otherwise.  

Furthermore, using equations (35) along with the transformation (143) might be faster to compute 

than equation (13) since it does not require the use of convolutions, but it requires additional time 

to correctly identify the regions 𝑉𝑚
± and additional time to process multiple partial contours in the 

same image individually.  

𝑉𝑚 → {

 𝑉𝑚 − 2𝜋 , 𝑉𝑚
+  ∩  (𝑉𝑚 < 0)

2𝜋 − 𝑉𝑚 , 𝑉𝑚
+  ∩  (𝑉𝑚 > 0)

𝑉𝑚 , otherwise

  (143) 

D.3.3 Demonstration that equipotential lines are circular 

Starting from 𝑉𝑚 given in equation (35) and using definition (38) and identity (37), the goal of this 

appendix is to demonstrate that the potential 𝑉𝑚 has circular equipotential lines. The demonstration 

is done by finding transforming equation (35) into the parametric equation of the circle given in 

(40). The full demonstration is given in Figure 10-8 below.  
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Figure 10-8 : Demonstration that the potential 𝑉𝑚 has circular equipotentials 
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