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RÉSUMÉ

À ce jour, il est possible d’utiliser les téléphones intelligents comme des relais afin de créer des
réseaux sans infrastructure. Humanitas, notre partenaire industriel spécialisé dans la concep-
tion de solutions sur les technologies de l’informations et de la communication (TIC), propose
de s’en servir pour rétablir les communications dans des zones sinistrées où les moyens de
communication seraient coupés. Leur objectif est de permettre la création de ce type de
réseau en utilisant des micro-ordinateurs installés sur des drones, ainsi que des téléphones
personnels roulant sous iOS ou Android.
S’il est aujourd’hui possible de recréer ce type de réseau entre ordinateurs et iPhone du fait
de la disponibilité de technologies faites pour sur ces plateformes, Android ne bénéficie pas
du même traitement. L’état de l’art montre que les moyens présents sur Android permettent
effectivement de lier les téléphones entre eux, mais de nombreux problèmes restent encore à
résoudre. Il faut permettre une automatisation complète du processus, prendre en compte
des limites des technologies utilisées ou bien offrir une compatibilité avec les téléphones intel-
ligents iPhone, systèmes n’ayant que très peu de technologies compatibles avec les téléphones
Android.
Nous proposons dans ce mémoire, plusieurs méthodes afin de répondre à ces problématiques
pour obtenir une solution de création et jonction automatique d’un réseau sans infrastructure
à environnement hétérogène pour téléphones Android.
Nous présenterons également des expériences sur les technologies de communications sans
fil employées, de façon isolée ainsi qu’ en concurrence. Ceci nous permettra de connaitre
les interférences qu’elles induisent, leurs performances de communication, ainsi que l’impact
énergétique sur la batterie de nos téléphones. Nous évaluerons également les algorithmes mis
en place pour la gestion du réseau, cela afin de valider leur comportement et de quantifier
les performances de notre solution.
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ABSTRACT

Using smartphones as relays could be a solution to create ad hoc networks and temporarily
replace out of order traditional telecommunications infrastructure.
Humanitas, our industrial partner specialized in ICT solutions for humanitarian operations,
develops a software to recreate networks in disastrous areas by leveraging low-cost computers
like Raspberry pi or mobile devices, on either iOS or Android.
While it is possible to establish ad hoc networks with computers or iOS devices, thanks
to their made-for technologies, Google public API greatly restrict capabilities of devices to
create such network with Android devices. Most of literature implementations rely on uncon-
ventional usage of the API. While they manage to reach their objective, the result is not as
flexible or efficient, compatibility with other environments are eluded, and device limitations
are not considered.
In this thesis, we propose a solution to create or join an ad hoc network on the model of Hu-
manitas software Heterogeneous Embedded Ad hoc Virtual Emergency Network (HEAVEN),
by ensuring the compatibility with iOS devices, and by managing the capabilities of our de-
vices.
We discuss also multiple experiments designed to evaluate the performances and power usage
of the wireless technologies we used, on both, stand-alone and mixed usage. This allow to
know what their capabilities are and their influence. We test and validate our solution and
conclude on its global performances.
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CHAPTER 1 INTRODUCTION

This chapter presents the context, the objectives and the contributions of the research project.

1.1 Context

When a disaster occurs, somewhere in the world, it is possible for telecommunication infras-
tructure to be destroyed or damaged, leading to a communication blackout. This situation
makes the catastrophe harder to bear both for the citizen and for the troop deployed by
humanitarian organizations.
Without the ability to exchange data over distance, it becomes difficult, or worse even impos-
sible, to communicate, organize, report a situation, request for resources or any other critical
operation. While it could be possible to repair the current infrastructure or to establish a
temporary network, both solutions are costly. They require time, knowledge, equipment, and
sometimes, it is not enough or even possible to set them on time.

Humanitas, our industrial partner, proposes a set of solutions to help the population and
rescue teams during such situations. Figure 1.1 depicts some of these with the inclusion
of the off-the-grid network called HEAVEN for Heterogeneous Embedded Ad Hoc Virtual
Network. It allows mobile devices as iOS smartphones or drones with Raspberry Pi on board,
to communicate together. Android devices are not yet made compatible with HEAVEN.

In an Ad Hoc network, devices have the same capability to connect each other without
requiring to be connected to a middle device like a server or a modem. The main challenge
is then to establish a routing protocol. Devices must know what are the available peers in
the whole network, and which path a packet must follow for reaching a distant target. This
type of protocol is already provided in HEAVEN.

HEAVEN provides also heterogeneity. It allows using multiple kinds of devices, iOS smart-
phones or micro-computers inside of drone. The hardware will then be different and not all
technologies will be available or compatible. Consequently, one of our challenges will be to
find a new approach allowing communications between Android and other equipment, espe-
cially iOS devices. We will use Bluetooth Low Energy and Wi-Fi communications, as they
are the only compatible technologies we have with iOS devices.

Finally, allowing ad hoc communications between Android smartphones will also be a chal-
lenge as they are not equipped with a technology designed for this specific type of communi-
cation. This problematic has led the academic community to propose multiple contributions
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Figure 1.1 Humanitas Ecosystem With Off-the-Grid Network Illustration

but to this date, and to our knowledge, none of them fits keys requirements for an efficient
heterogenous ad hoc network dedicated to our situation:

- No modifications of the devices must be done, as it would require specific knowledge
to the user,

- For the same reason, the solution must be fully autonomous, no user interaction must
be requested,

- Other HEAVEN devices must be able to communicate with Android devices directly,
including iOS devices,

- The power usage of the solution must be known and be reduced as much as possible,

- Wi-Fi high-speed communication must be possible.

1.2 Research Question, Objective and contributions

Given the presented context, we are now able to formulate the research questions and the
objectives of our contribution.



3

1.2.1 Research Question

Our thesis answer the following research question:

How to allow Android mobile devices to automatically create and join a
heterogeneous ad hoc network?

1.2.2 Main Objective

The main objective of this thesis is to develop methods allowing Android mobile devices to
create or join a mobile ad hoc network. This enables the establishment of a heterogenous
network based on Wi-Fi communication between Android, iOS and Humanitas IoT computer
environment. The objective is also to define a solution fully autonomous, while conserving
Android mobile devices from any modifications.

1.2.3 Specific Objectives

The specific objectives defined for this project are:

- Provide HEAVEN for Android mobile devices and allow them to be compatible with
the telecommunication ad hoc network as clients,

- Address the challenge of the heterogenous communication network between iOS and
Android device.

1.2.4 Contributions

The proposed contributions are:

- Definition and implementation of a middleware architecture integrating Android in
heterogeneous ad hoc networks,

- Adaptation of HEAVEN to enable Android device to create and manage their telecom-
munication ad hoc network

- Testing and validation our solution.
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CHAPTER 2 LITERATURE REVIEW

In this chapter, we review the state of the art on the creation of mobile ad hoc networks
(MANET) with handheld devices. We discuss then these solutions and possible improvements
before proposing our own implementation.
In the first section we present the methodology followed to select the related works. In the
second section we present the iOS and Android wireless compatibility. In the third section,
we give the types of ad hoc networks. In section 4, we address the methods for ad hoc
networking. In section five, we discuss the existing solutions, then in section 6, we announce
our solutions. Finally, in section 7, we give the conclusion of the chapter.

2.1 Methodology

In order to find relevant articles related to our subject, we choose to look for papers based
on mobile devices based wireless networks. We also explored papers for computer-based
MANET, but the challenges for Android and computer implementations are different. Com-
puter solutions heavily focus on routing while Android solutions are challenged on establishing
device to device connections. Since our industrial partner provides us a routing algorithm,
HEAVEN, we will focus on articles that address wireless communication with handled devices
in MANETs.

We did our first research on Compendex, which provides us with a large database as IEEE
explore, ACM or Elsevier, and we used the keywords as in Table 2.1.
We also looked for articles on wireless technologies power usage for reference.
Finally, we searched for industry solutions which would provide use real-world situation. All
listed solutions were already cited by other articles or provided by Humanitas from their
market study.

Theses searches resulted with 25 relevant scientific articles and 5 industry solutions on the

Table 2.1 Keywords used for MANET literature review

Theme Phones Network Wireless
Keywords Android Ad Hoc Wireless

iOS MANET Wi-Fi
Cellphone* SPAN Bluetooth
Smartphone*
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creation of ad hoc networks for Android. We also gathered two additional articles for power
usage. And we include information from Android source code, documentation and technology
standards. Table 2.2 lists the selected scientific articles on the creation of MANET and Table
2.3 lists industrial solutions. Table 2.4 gives the additional scientific articles on power usage,
which is a metric considered in our evaluations.

2.2 Android and iOS Wireless Capabilities

Android implements various technologies for wireless communications that are summarized
in Table 2.5. All technologies are compatible with computers, with the exception of the Wi-Fi
Aware1.

iOS also implements various technologies for wireless communication and we listed a few of
them in Table 2.6.
It is not possible for iOS to connect to an Android device using Bluetooth Basic Rate (BR).
This is induced by an Apple restriction to which iOS device can only connect to device
complying with the "Made For iPhone" (MFi) certification [1].
The multipeer connectivity is a technology that allows the creation of mobile ad hoc networks.
It is unknown what technologies are actually used for it since Apple advertises it as being a
mix between peer-to-peer Wi-Fi, infrastructure Wi-Fi and Bluetooth personal area network.
We assume that the existence of such technology is the reason why, aside from Humanitas
technology, we dit not find other iOS mobile ad hoc network implementations in scientific
papers.

2.3 Type of Networks

Since our solution is oriented for mobile devices, it is expected for devices to appear or
disappear frequently. To manage this, previous authors used different approaches that we
choose to classify according to the strategy used by a device to manage its connections with
other peers.

- Fixed network. We expect devices to create and keep links alive as long as possible.
These solutions will have a higher throughput and will benefit from wireless technology
power management, while inducing a network management cost.

- Opportunistic network. Without a specific role in this network, connections, if they
happen, are ephemeral. This kind of network benefit from a higher flexibility but will

1See Section 2.5.3
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Table 2.2 Wireless Ad Hoc Network Scientific Articles

Author Year Network type Technology kind Require root
Yang 2017 Opportunist AP Switching No
Trifunovic 2015 Opportunist AP Switching No
Sikora 2018 Opportunist Broadcasting No
Bhojan 2015 Opportunist Broadcasting No
Mao 2014 Opportunist Broadcasting No
Engelhart 2017 Opportunist Broadcasting No
Kumar 2018 Opportunist Broadcasting No
Liu 2016 Opportunist Direct Switching No
Soares 2017 Fixed Wi-Fi IBSS Yes
Zhuang 2013 Fixed Wi-Fi IBSS Yes
Glenstrup 2009 Fixed Scatternet No
Gohs 2011 Fixed Scatternet No
Fujimoto 2016 Fixed Scatternet No
Wong 2014 Fixed Wi-Fi Direct No
Zhang 2014 Fixed Wi-Fi Direct No
Aloi 2017 Fixed Wi-Fi Hybrid or Direct Switching No
Funai 2017 Fixed Wi-Fi Hybrid Yes
Casetti 2014 Fixed Wi-Fi Hybrid No
Oide 2018 Fixed Wi-Fi Hybrid No
Wang 2015 Fixed Wi-Fi Hybrid No
Baresi 2017 Fixed Wi-Fi Hybrid No
Lombera 2013 DTN Wi-Fi IBSS Yes
Lu 2017 DTN Cellular, Wi-Fi IBSS Yes
Takasuka 2018 DTN Google Connection No
Nishiyama 2015 DTN Wi-Fi Direct No

AP: Access Point
IBSS: Independent Basic Service Set
DTN: Delay Tolerant Network
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Table 2.3 Network Industry Solution

Solution Year Technologies Require iOS
root compatible

Firechat 2014 Cellular No Yes
Wi-Fi STA / AP

Scatternet
Open Garden 2011 Cellular No Yes

Wi-Fi STA / AP
Scatternet

Thali Project 2015 Scatternet No Yes
Right Mesh 2017 Wi-Fi STA / AP Unknown No

Wi-Fi Direct
Scatternet

Google Connection API 2017 Wi-Fi STA / AP No No
Wi-Fi Direct
Scatternet

Table 2.4 Scientific Articles on Power Usage

Author Year Technologies
Balani 2007 BR, Wi-Fi, Cellular
Tosi 2017 BLE

Table 2.5 Android wireless technologies

Technology Android Max LOS iOS Discovery
Version Bit Rate Range Compatible

BLE 4.4 1 mbps 100 m Yes Yes
BR 2.0 3 mbps 100 m Discovery only Yes
Wi-Fi STA 1.0 6930 mbps 200 m Yes Yes
Wi-Fi Direct 4.0 600 mbps 200 m As LC only Yes
Wi-Fi Aware 8.0 6930 mbps 200 m No Yes
Wi-Fi AP 8.0* 6930 mbps 200 m Yes No
Wi-Fi Ad Hoc n/a 6930 mbps 200 m No No
Range is outdoor with a line of sight Bluetooth Standard: 4.0
Wi-Fi standard: IEEE 802.11 ac Wi-Fi Direct standard: IEEE 802.11n
Wi-Fi AP available prior Android 8.0 through Java reflection (unofficial)



8

Table 2.6 iOS wireless capabilities and Android compatibility

Technology Based on Android Compatible
Wi-Fi STA Wi-Fi STA Yes
Wi-Fi AP Wi-Fi AP Yes
BR BR Discovery only
BLE BLE Yes
Multipeer BR or BLE No
connectivity Wi-Fi IBSS or Direct

often have a lower throughput and a higher power usage than persistent connection
network using the same technology.

- Delay Tolerant Network (DTN). Similar to opportunistic networks, but devices are
expected to hold information and spread it once another group is reached. This kind of
network is more suited for data dissemination rather than one-to-one communication.

2.4 Methods for Smartphone Ad Hoc Networking

2.4.1 Connection-less Broadcasting

Some technologies like BR, BLE and Wi-Fi Direct allow to broadcast small amount of data
without requiring a connection.

Name Broadcasting

When a device broadcasts its presence, it can include its name. By changing it, it is possible
to share data to other devices without requiring a connection. BeaconNet [2] and PASA [3]
used this method on multiple technologies, including the usage of Wi-Fi Direct advertising,
which is not available on iOS. Experiments show that while it is possible to share data this
way, throughput is very low. BeaconNet report a maximum of tens of bytes when sending,
and hundreds of bytes when receiving. These values drop when multiple devices try to scan at
the same time, leading to network congestion. PASA implementation solves this congestion
by analyzing the density and changing the scanning window accordingly. Results show that
the network performances stay the same even if the number of devices increases. On the
other hand, it takes between 500 and 600 seconds for 5 to 50 devices to share 10 messages of
256 bytes.
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Service Broadcasting

Bonjour [4] is a protocol developed by Apple that allows to advertise services which can
contain a txtRecord that can technically store up to 255 bytes. Its typical application is for
discovering nearby device capabilities like printers or Wireless Speakers. It can be used on a
local network, and also over the air. The protocol is also available on Android with the Near
Service Discovery (NSD), which requires Wi-Fi Direct.
Mumble [5] is a single hop proposition which gives us the limitation of the Android imple-
mentation. Android services can hold up to 85 bytes and there can be up to 13 services for
a total of 1105 bytes. They do not provide information on how the services can be refreshed.
AssistDirect [6] implemented a routing protocol on top of mumble, allowing multi-hop com-
munication. Since Android implementation of Bonjour allows fewer services and less data
per service, we can safely assume that this network performance will provide less than 10
kbps.

BLE Broadcasting

Unlike BR, discovery and advertising can be done separately with BLE. With Bluetooth 4.0,
when advertising, a BLE device can broadcast up to 37 bytes on one of the three available
channels. Version 5.0 added 37 secondary channels on which it is possible to store up to 255
bytes per channel.

Sikora [7] used this method in various terrains and visibility. Experiments show a high rate
of missed messages, especially when discovery happens less frequently. No experiment on
throughput is given, but we extrapolate a maximum of 930 bps. BLE advertising can refresh
every 10 milliseconds at most and allows up to 3 advertising messages of 31 bytes. If the
advertising messages change after each refresh, we could obtain a throughput of 930 bps but
when we apply the maximum 15% hit measured from article, this throughput drop to 140
bps.
Their experiments also give us data on Bluetooth, BR and BLE, range. When having a line
of sight, they manage to reach a range of up to 90 m, and 40 m in heavy foliage jungle.

2.4.2 Wi-Fi IBSS

Like most computer solutions, it is possible with Android to enable the Independent Basic
Service Set (IBSS), or Ad Hoc mode, of a device. Ad hoc mode always requires to root the
device in order to unlock the ability to configure the network interface. Zhuang [8] developed
a framework that does not require kernel modification. However the cost is that all packets
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have to be rerouted from the application layer, decreasing the bandwidth.
Soares [9] provided an experimentation to evaluate the capabilities of ad hoc on Android, by
changing the kernel. It shows similar performances of a regular STA/AP connection, both
on throughput and battery consumption on multi-hop communications and an increased
throughput for an increased battery consumption on single hop.
Lu [10] proposes to use IBSS as a fallback for cellular networks. Once leaving the cellular
network, the device will communicate using IBSS and store every data it receives. When
joining again the cellular network, it spreads the data gathered from the blackout area.

2.4.3 Scatternet

To establish communication between two Bluetooth devices, one of them must be master
and the other devices must be slaves. When connected, this network is called a piconet.
With BR, and BLE starting version 4.1, a device can assume both roles at the same time,
allowing to link piconets together, creating a Scatternet. One point to take into account is
that Android devices can have up to 7 active connections as it can be read in the Android
source code [11].

For BR, Scatternet implementation has been done with BEDnet [12] for java on computer
using JSR-83 Bluetooth API. Authors manage to reach a maximum throughput of 160 kbps
in single hop, which is 15% if the maximum throughput BR 2.0 can provide. This throughput
is reached when the master device has only one slave. If we add more slaves, the throughput
is evenly decreased even if there is no communication with other slaves. This throughput
degradation is also present for a slave that is connected to multiple masters, but not as much
as in the previous case. Another point is that BR cannot discover devices when exchanging
data to others, but it can listen for discovery messages. In order to stay visible to other
devices, they alternate between data transfer and advertising.
Beddernet [13] is a port of BEDnet. It uses Android Bluetooth API Instead of the JSR-
83 Bluetooth API in BEDnet. The solution manages to reach 700 kbps in a single hop
communication but they discover that this throughput level drops depending on the single
hop topology. A device with a connection link to multiple devices will have a lower throughput
than a device with a single connection link. This decrease of throughput also depends on the
role of the device. A master will have its throughput equally divided among its clients. This
division does not occur with client devices, but they will still receive a throughput reduction
for having multiple masters. Authors assume that it is linked with the sniffing of its master,
reducing the communication windows and thus, reducing the throughput.
BLE implementations have one additional constraint. Not all devices can become a peripheral
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device, which is required to forms scatternet. Fujimoto [14] proposes a framework that deals
with this limitation by prioritizing the device with peripheral capabilities. Their experiments
also show the maximum device restriction. When reaching the 7 devices limit, connections
between masters and slaves become unstable.

2.4.4 Wi-Fi Direct

Wi-Fi Direct (WFD) is a technology that allows to create star-based networks, like piconet.
When triggered between two devices, it will automatically choose which device is the best
suited to become the AP. The protocol does not take into account, the rest of the possible
devices that will join the network.
Zhang [8] proposes a protocol in order to manage the network creation instead of using the
default one. Their results show a 45% throughput improvement and a formation time re-
duced by 250%.
Also, when using default connection protocol, Android will require both master and slave
device owners, to confirm the connection with a user prompt. This action makes the pure
Wi-Fi direct connection impossible to automate by using Android API.
Wong [15] proposes to connect clients as legacy clients. When a device becomes a Wi-Fi
Direct hotspot, it actually creates a hotspot with a specific SSID and Passkey. By broad-
casting it through Service discovery, it is possible for other devices to connect to this hotspot
without any user prompt.
But using only Wi-Fi Direct does not allow to make inter-group connections without discon-
necting a device. In order to permit multi-group communications, device will have to switch
from group to group which will lead to bandwidth degradation but could also increase power
consumption and perturbate routing.

2.4.5 Peer Switching

We call peer switching, methods where a peer will connect to only one peer at a time, and
then switch to another in order to establish a multi-hop communication.

BLE Switching

With BLE, devices can operate in two modes: (1) central, which allows to scan for other
devices and (2) peripheral, which allows to advertise its presence to others. With Android
4.0, it is not possible to be both a central and a peripheral at the same time. Thus, usage of
scatternet is not possible.
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To avoid that, Yang [16] proposes a peer switching application based on BLE, called BlueNet.
Even if it is possible to have up to 7 active connections with BLE, only one is allowed to
be actually connected and transmitting. Thus, a device trying to connect to an already
transmitting device will be blocked leading to connection failure and thus decreasing the
throughput. To solve this issue, the authors propose four communication modes:

- Aggressive, where all devices try to transmit without supervision,

- Windowed transmission, where a device will not be allowed to communicate with a
peer before a set of time when it has disconnected,

- Priority, where devices will prioritize connections to peers they have not been connected
to for a while,

- Priority-Windowed based mode mixing both previous modes.

Priority mode show best result for a network with fewer than 50 devices while priority
windowed is more suited for networks with more devices.

Wi-Fi AP Switching

With Android 8.0, it is officially possible to create a local hotspot on which an STA device
can connect. With prior version, developers had to use Java Reflection for invoking hidden
function from the Android Source code.
While it provides a higher throughput than BR and BLE, it is not possible for an Android
STA to be connected to two different APs.
In order to create a multi-hop communication, Trifunovic [17] propose their solution, WLAN-
opp. Devices without AP on sight will themselves become an AP and then shut down after
a time, based on the presence or absence of clients on this AP, but also on the time without
having clients. This method allows to avoid draining only one device battery, since being an
AP drains more power than an STA.
The author claims that this method allows to reduce by 90% of the energy Wi-Fi ad hoc use.

Wi-Fi Direct Switching

In order to create a multi-hop implementation, Nishiyama [18] proposes a DTN implementa-
tion that monitors group activity. When the network activity goes below a threshold, groups
disband and restart their network creation. With the movement, the chance that devices
reach a group with new devices is high, allowing the data to spread.



13

Lombera [19] proposes to share metadata telling what data a device hold to a set of peers
on reach. Once a device requires this data, it will randomly ask the location of the data,
spreading the research to others until it finds the final location and directly connect to it.
Another implementation by Aloi [20] proposes to switch between group like the AP switching
methods. But this method shows high latency because Android mobile devices take at least
5 seconds to connect to an AP, and 5 more when reconnecting to the previous one.
Liu [21] proposes to make every device a hotspot. When one requires to exchange data, it
will then switch off its hotspot and connect to the desired peer until data are transmitted.

Hybrid Wi-Fi Direct

To enable direct communication between Wi-Fi Direct groups, Wang [22] proposes to use
both Wi-Fi Direct and Bluetooth. They remark that, since both Wi-Fi Direct and Bluetooth
operate in the same frequency, additional interferences are introduced.

Another solution is to use both Wi-Fi Direct and Wi-Fi STA at the same time since they are
two different interfaces. This way, it is possible to have a full Wi-Fi speed between groups.
Unfortunately, this method has various issues. As explained by Baresi [23], All Wi-Fi Direct
Hotspot has a hard-coded IP which makes TCP communication impossible between the
hotspot and its clients if they also are a hotspot or they are connected to another hotspot.
Also, every unicast packet is redirected to the Wi-Fi interface, which means Wi-Fi direct
client cannot use unicast communications with their master. Finally, since the clients IP
attribution is automatic and cannot be changed, it is possible to have clients with the same
IP in different neighboring groups.
In order to overcome these issues, Funai [24] experiments various connections combination
and finally decided to rewrite the Android code in order to allow broadcast communication
from clients to master, allowing a role switch.
Baresi [23], Casetti [25] chose to keep one Wi-Fi Direct client as a retransmission unit between
Group Owners. The former proposes to use clients as bridges between groups, and the latter
connect groups by having clients having their own group.
Oide [26] proposes to automate Casetti implementation by sending hotspot credentials over
P2P connections and making the clients reconnect as a Wi-Fi legacy clients.

2.5 Solutions for Heterogeneous Ad Hoc Networks

In this section, we discuss the solutions for heterogeneous ad hoc networks. We will present
shortly the industry solutions are and what issues they encountered. We will discuss Wi-Fi
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Aware, a new technology that has the potential to make mobile ad hoc networks more viable.

2.5.1 Delay Tolerant Network

In [18] and [10], the authors proposed solutions using both Delay Tolerant Networks (DTN)
and Mobile Ad hoc Networks (MANET) to increase the reach of the network. While we also
believe this kind of association would provide good results, we choose not to implement DTN
in our solution.
Current HEAVEN implementation only permit communication with peers existing in the
current network. To parry this situation, Humanitas developed a shared database solution
to be added to HEAVEN which will allows to retain information and propage it when peer
migrate from network to others, effectively creating a DTN.

2.5.2 Industry Solutions

Thali project [27], sponsored by Microsoft, is a single hop content sharing implementation
compatible with Android and iOS. It uses Bluetooth and BLE for Android, and Multipeer
Connectivity for iOS. The authors attempted to use Wi-Fi Direct for Android discovery, but
they encountered multiple issues with it. It was randomly turning off and not working with
devices from different manufacturers. They also propose to use Wi-Fi Direct as hotspots and
send SSID and passkey over Bluetooth; however they did not use the Wi-Fi Direct technology
due to the unreliability of the discovery and advertising. They choose to only use the BLE
approach. The application is available for both Android and iOS. The solution allows a
throughput of up to 8 kB/s

Firechat [28], is a messaging app that relies on mesh networks and delay tolerant networks.
It can use Bluetooth, Wi-Fi, and internet connections if available, to send messages to its
peers. It has been used in 2014 for both manifestations in Iraq and Hong Kong to protest
against their government.

Right Mesh [29] application claims to allow the creation of a mesh network with Android, iOS
and computer devices. This project uses multiple of previously shown protocols: Bluetooth,
Wi-Fi Direct hotspot and Wi-Fi hotspot. Their main feature is a fast switching client that
claims to be able to switch between two Wi-Fi networks in less than 200 milliseconds instead
of the regular 10 seconds. We assume that solution requires a rooted device in order to
achieve this feature.

Nearby [30] and its Connection API allow to create point-to-point, star and mesh networks.
Point-to-point and star networks will use both Wi-Fi Direct and Bluetooth Low Energy to
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establish a network, but mesh networks will be restricted to Bluetooth low energy. The API
is only available for Android devices. Takasuka [31] tested the protocol by doing message
and file passing, considering different distances and hops counts. Their tests will show that
establishing a connection with other devices takes between 150 and 500 seconds depending
on the hop count and the distance. These slow results are explained by the fact that in order
to connect to a peer, the API requires devices to see each other, but the discovery can be
triggered only once every 30 seconds. Throughput tests show a bitrate depending on the
kind of data being sent. When sending a 1 MB packet, they achieve a maximum throughput
of 13.1 KB/s (105Kb/s) when sending over 1 hop, for a distance of 25 m. But sending a 55
bytes string for the same configuration take 33 seconds (13b/s).

2.5.3 Wi-Fi Aware

Wi-Fi Aware [32] is a Neighbor Awareness Networking (NAN) protocol. It allows to make
the discovery and connection between multiple devices by using both, Wi-Fi and BLE for a
battery optimized use cases. Hence, Wi-Fi aware is another solution for creating a MANET,
as Multipeer connectivity is.
Unfortunately, this solution has two major issues:

1. Unlike Wi-Fi Direct, which was retro-compatible with existing chips, Wi-Fi Aware
requires specific hardware. To this date, there are only few compatible smartphones
[33], the Google Pixel 3 (G013A), Google Pixel 3 XL (G013C) and very recently, ten
undisclosed Samsung devices.

2. As for Wi-Fi Direct, no iOS device is compatible with this standard and we cannot
expect Apple to allow iOS and Android environments to merge.

2.5.4 Power Usage

In [34], [35], [36] and [17], the authors analyzed the power usage of different wireless technolo-
gies. From their papers, we conclude that communications with Bluetooth require less energy
than with Wi-Fi. Also, using a device as an access point will drain more power than when
setting it as a client. For Wi-Fi, an AP or IBSS will have a power consumption 4 times higher
than an STA. Scanning and broadcasting avoid triggering technology idle modes, leading to
higher consumption as well. Finally, it is more power efficient to send large amounts of data.
From this information, we conclude that we can save power by using BLE for discovery and
small data exchange, Wi-Fi for large data transmissions.
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2.5.5 Review Summary

In our review, we firstly presented the wireless technologies that are available with Android,
their theoretical performances are as well as their compatibility with iOS devices. Table 2.7
gives an overview comparing the discussed technologies. We can see that only BLE, Wi-Fi
STA Wi-Fi AP and Wi-Fi direct as AP are the only compatible mode with iOS.

We also presented the solutions for ad hoc networking with Android and iOS devices and
we found several approaches listed in Table 2.8. From these solutions, we can see a trade-
off between connection time and throughput. Broadcasting methods provide no connection
time for a very low throughput, scatternet allows a low connection time for a low throughput
and Wi-Fi Direct hybrid provides a high connection time for a high throughput. The only
exception is the ad hoc method which allows low connection time for high to very high
throughput; however it requires to root the device. Only a few solutions are compatible with
iOS devices. We can only use BLE or Wi-Fi as STA or AP, including Wi-Fi Direct AP.

2.6 Proposed Solution

Our goal is to develop a solution that allows to create and join ad hoc network with Android,
iOS and IoT computers. We also aim for high throughput communications. Only the Wi-Fi
Direct Hybridation approaches these criteria, but no contribution allows compatibility with
iOS devices as they only use Wi-Fi Direct advertising.
Our approach is then to use both Wi-Fi Hybridation and BLE for a full iOS compatibility.
BLE will provide us a low power means of communication while Wi-Fi Hybridation will allow
high-speed communications.
We also propose a network management with AP capability considerations. Our review
shows that there is no solutions dealing with the limitations of the mobile devices used in
the network. For instance, we cannot expect a device to host an unlimited number of clients.
We address this aspect in our research project.
Finally, we propose a benchmark for our wireless technologies. Some previous works already
considered the usage of BLE with Wi-Fi Hybridation, but none actually did used them
together. Their reason was that BLE and Wi-Fi are usually on the same chip and use
the same frequency, thus using them together could create interference however, there is no
evidence of their claims. We finally propose a full report on various device performances and
limitations.
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Table 2.7 Wireless Technology Comparison

Technology Root UP SD&C Range iOS C TMDR
BR No Yes Yes 100 m No 3 mbps
BLE No No Yes 100 m Yes 1 mbps
Wi-Fi Ad Hoc Yes No Yes 200 m No 6930 mbps
Wi-Fi STA No No No 200 m Yes 6930 mbps
Wi-Fi AP No No No 200 m Yes 6930 mbps
Wi-Fi Direct No Yes Yes 200 m As AP 600 mbps
Wi-Fi Aware No No Yes 200 m No 6930 mbps

UP: User Prompt TMDR: Theoretical Max Data Rate
iOS C: iOS Compatible SD&C Simultaneous Discovery and Connection
Bluetooth Standard: 4.0 Range when outdoor with a line of sight
Wi-Fi standard: IEEE 802.11 ac Wi-Fi Direct standard: IEEE 802.11n

Table 2.8 Ad Hoc network communication methods summary

Method Technologies Range Throughput Connection
Time

Scatternet BR Small Low Low
Scatternet BLE Small Low Low

BLE Broadcasting BLE Small Very Low None
Name Broadcasting BLE Small Very Low None
Name Broadcasting Wi-Fi Direct High Very low None
Service Broadcasting Wi-Fi Direct High Low None

Ad Hoc Wi-Fi IBSS High Very High Low
AP Switching Wi-Fi AP/STA High Medium High

Wi-Fi Direct Switch Wi-Fi Direct High Medium High
Wi-Fi Direct Hybrid Wi-Fi Direct/STA High High High

Method Technologies Power iOS Root
Usage Compatible Required

Scatternet BR Medium No No
Scatternet BLE Low Yes No

BLE Broadcasting BLE Medium Yes No
Name Broadcasting BLE Medium Yes No
Name Broadcasting Wi-Fi Direct High No No
Service Broadcasting Wi-Fi Direct High No No

Ad Hoc Wi-Fi IBSS High No Yes
AP Switching Wi-Fi AP/STA High Yes No

Wi-Fi Direct Switch Wi-Fi Direct High No No
Wi-Fi Hybridation Wi-Fi Direct/STA High Depend Depend
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2.7 Conclusion

In this chapter, we reviewed the state of the art in the domain of ad hoc networking for
smartphones, wireless technologies available with Android and iOS devices and their capa-
bilities.
We discussed the existing academic and industry solutions. We decided to propose a solution
with two communications means, BLE and Wi-Fi Hybridation, allowing high flexibility and
power efficiency. We propose also a network management mechanism with device capabilities
awareness.



19

CHAPTER 3 MIDDLEWARE ARCHITECTURE FOR INTEGRATING
ANDROID IN HETEROGENOUS AD HOC NETWORK

In this chapter, we present our middleware for Android. Its role is to allow multiple Android
devices to be able to connect and exchange with other devices compatible with HEAVEN,
the Humanitas mobile ad hoc network software. The middleware must enable a seamless
network management, leading to no degradation of the user experience.

3.1 HEAVEN and Application Examples

HEAVEN allows users to join a network to communicate with other devices with multi-hop
capabilities.

Devices in HEAVEN networks are identified by a unique four characters address. They can
communicate with all the peers in their network, regardless of the number of hops. HEAVEN
proposes 4 protocols: TCP, TCP Socket, UDP and UDP Socket. TCP and UDP protocol
allows to exchange messages over Bluetooth, Wi-Fi, Li-Fi or any another kind of interface.
The drawback is that packet has to go up to the user space before being redirected, which
induces major degradation of the bandwidth. On the other hand, TCP socket and UDP
socket allow to use regular communications sockets and allow to reach the maximum speed
that can be expected over a Wi-Fi connection. The latter require devices to be in the same
IP network, which will not be the case for Android devices using the Wi-Fi hybridization
methods.

The proposed middleware can be added to any kind of application to send command and
get response through the HEAVEN middleware. Figure 3.1 provides two simple examples of
application that we run on top of our middleware:

• Figure 3.1.a) shows a command-line application for HEAVEN. The user can input the
command to send the HEAVEN server and receive its replies.

• Figure 3.1.b) is a messaging application with a user-friendly interface. The user selects
the peer they want to communicate with and sends their messages seamlessly.
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(a) (b)

Figure 3.1 Application examples
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3.2 Proposed Architecture

HEAVEN middleware follows a layered architecture which is depicted in Figure 3.2. Figure
3.2.a) shows the basic architecture of HEAVEN. This version is used by Humanitas IoT
computers. It can be used as is by Android devices when connected to one of Humanitas IoT
computers.
In order to enable ad hoc network between Android devices, we proposed the architecture
seen in Figure 3.2.b). We modified the Link Layer and added our own communications layers,
one for the BLE and one for the Wi-Fi which handle both Wi-Fi and Wi-Fi direct (WFD)
interfaces.

a) Original Architecture b) Proposed Architecture

Figure 3.2 HEAVEN Middleware architectures

Application Layer

The Application Layer can be any kind of software that requires the communication with
other devices. It is able to send commands to, or receive replies from, the HEAVEN layers.
For example, this layer could be a messaging client or a remote controller for drones.

HEAVEN Layers

HEAVEN software is developed by our industrial partner, Humanitas. It manages the Trans-
port and Routing layers. It will allow devices to send messages over multi-hop.
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Link Layer

The Link Layer hold multiple roles in the middleware. The first one is to handle the network
management algorithms that will allow the connection between devices. Once devices are
connected, its second role is to allow the HEAVEN layers to use the communications layers
of Android. Our proposed implementation only allows the usage of the Wi-Fi Layer for
HEAVEN communications, but future iteration could use the BLE Layer as well.

BLE Layer

The BLE Layer allows to use the device BLE features. Its role is to allow both emission and
reception of messages over BLE, as well to advertise and scan for other devices.

Wi-Fi Layer

Like the BLE Layer, the Wi-Fi Layer allows the control of the device Wi-Fi features. It
allows the emission and reception of messages over Wi-Fi, to connect to an AP or become
one.

3.3 Bluetooth Low Energy Layer

Bluetooth Low Energy (BLE) is a wireless technology introduced in the 4.0 version of Blue-
tooth standard. It is specialized for power efficiency by sending messages through short
intermittent bursts rather that stream as with Bluetooth sockets.
This BLE Layer manages the technology-related features: emission, reception, advertising
and scanning. For our middleware, the BLE Layer will be essential for neighborhood aware-
ness and message passing for network management.

In this section, we will start by providing basic information on how BLE works. Then, we will
explain how we perform our neighborhood awareness and what benefits it provides. Next,
we present our message passing methods. Finally, we validate the compatibility between
Android and iOS devices over BLE.

3.3.1 BLE Notions

This section will present the basic concepts of BLEs. the information are from the Bluetooth
standards [37] [38] [39] [40] and Android documentation and guides for BLE [41]. The
concepts that are needed to be understood are how BLE devices connect to each other, and
how messages can be exchanged.
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Advertising and Discovery

BLE devices can operate in central or peripheral mode. A device in central mode can discover
and connect to devices operating in peripheral mode. A device in peripheral mode advertises
its presence. Central mode is available since Android 4.3 (2012) and Peripheral mode starting
with Android 5 (2014). Devices with Bluetooth 4.0 cannot be both, central and peripheral
at the same time. It means that once connected, a device will not be able to advertise itself,
and thus be connected to, until it disconnects. It was then made possible with Bluetooth 4.1
and later versions. Peripheral support is optional. Table 3.1 shows the capabilities of all the
devices we could use during our project. We can see that the nVidia and Dell devices, even
though fitting the Android version requirements, are not capable of becoming peripheral.

When a device must be seen by other devices, it must broadcast an advertising packet.
A BLE advertising packet is 37 bytes long, with 6 bytes of MAC address and up to 31 bytes
of user defined data. These packets are advertised over channels 37, 38 and 39 as depicted
in Figure 3.3. It is worth pointing out that these advertising channels are designed not to be
in the frequency range of usual Wi-Fi 2.4 GHz channels: 1, 6 and 11. Bluetooth 5.0 allows
to use data channels as secondary advertising channels that allow packets to hold up to 255
bytes, each. By using multiple advertising, a BLE device can broadcast up to 9.3 KB. Since
both, Bluetooth 5.0 and multiple advertising are only available on higher-end smartphones,
we will not use them.

Table 3.1 BLE Device Capabilities

Model Manufacturer Android Bluetooth Central Peripheral Released
Nexus 6 Motorola 7.1 4.1 Yes Yes 2014
Zenfone 2 Asus 6.0 4.0 Yes Yes 2015
Phab2 pro Lenovo 6.0 4.0 Yes Yes 2016
Fire 7 Amazon 5.1 4.0 Yes Yes 2015
Fire 10 Amazon 7.1 4.0 Yes Yes 2015

Galaxy s4 Mini Samsung 4.4 4.0 Yes No 2013
Venue 8 7000 Dell 5.0 4.0 Yes No 2015
Shield (Tablet) Nvidia 7.0 4.0 Yes No 2015
Galaxy Note 8 Samsung 9.0 5.0 Yes Yes 2017

Pixel 3 Google 9.0 5.0 Yes Yes 2018
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Figure 3.3 Bluetooth channels

GATT Server

In order to exchange data between devices, one device must host a GATT1 server that hold:
service, characteristic and descriptor. All of these elements are defined by a unique identifier
called Universal Unique Identifier (UUID).
A service is a container of data for a specific use, such as temperature monitoring.
Characteristics are the data related to this service. For example, for the temperature moni-
toring, there would be only one characteristic, the temperature value.
Descriptors provide more information on its attached characteristic. With our temperature
example, a descriptor could hold the unit used, Celsius, Fahrenheit or Kelvin.
Figure 3.4 provides another example of a GATT server.

1GATT: Generic Attribute Profile

Figure 3.4 GATT Server Example
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Connections

Android source code specifies in [11] that a device can have up to 7 active connections at the
same time. Our tests show that further connection attempt will fail after a few seconds.
Establishing a connection with a peer will trigger a callback related to the device role. For
devices with BLE 4.0 chips, both callbacks will be triggered. The same goes for the discon-
nection, but only the central will receive the callback immediately. The peripheral will be
informed of the client disconnection only after the connection timer run out. This mean it is
impossible to accurately know how many devices are connected to a peripheral.

3.3.2 Neighborhood Awareness

One major aspect of our middleware is to make devices able to know what their neighbors are.
This step is required to perform our network management and we call it the neighborhood
awareness. For these purposes, devices use the BLE advertising and discovery features. This
requires to set up the advertising packet, and to handle the peers discovered.

Advertisement Packet

Each device must to be identifiable. Since Android 6.0, the advertising MAC address of a
device is periodically randomized, making it impossible to recognize devices from it. Thus,
devices will include their HEAVEN address in their advertisement. Devices must also notify
that they have a connectable GATT server for message passing. The discovery mechanism
must be able to look for HEAVEN devices only. Finally, devices must include their trans-
mission power, as it has been requested by Humanitas for future localization purposes.

A BLE advertising packet is split in multiple fields, each of them includes one byte for the
field length, another for the field type and a various sized field by the data it carries.
Figure 3.5 shows our advertisement messages. The first field is the connectable flag, which
tells if devices can connect to this GATT server. The second field is the TX Power flag which
will be used by Humanitas for their own uses. The third field is a Service UUID that will be
used for discovery filtering, allowing devices to only detect HEAVEN devices. The final field
will allow to get HEAVEN address. The message in Figure 3.5.a) hold a Service Data field
and the message in Figure 3.5.b) has a Device name field.
We would prefer to use a Service Data field instead of a Device name field to carry the
HEAVEN address. As it requires not to change the Bluetooth name of a device, which would
confuse a user. Unfortunately, we do not have enough space to include it. Both, Connectable
and TX Power Flag fields use 3 bytes, Service UUID field uses 18 bytes which leaves only
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7 remaining bytes. A Service Data field requires 2 flag bytes, UUID requires 2 bytes and
the HEAVEN Address requires 4 bytes, for a total of 8 bytes. It gives a final advertising
packet of a length of 32 bytes, which is one byte too long. By using device name instead,
we can shorten the field by 2 bytes which make it short enough for advertising at the cost of
decreased user experience as it changes its device Bluetooth name.

Discovery and Peer Management

Android Bluetooth discovery is made periodically once triggered. Four parameters are used
to set this period:

- SCAN_MODE_LOW_LATENCY,

- SCAN_MODE_BALANCED,

- SCAN_MODE_LOW_POWER,

- SCAN_MODE_OPPORTUNISTIC.

In the Opportunistic mode, the Bluetooth controller does not request for a scan for this
application but instead is waiting for other applications to do so. Then, it gets the results of
their scans. Low Latency is the mode with the highest refresh rate, Low Power the smallest
and Balance is a trade-off between the last two. In [7], the author reported that scanning
frequency has a notable impact on the battery. Since devices will have to scan permanently,
we choose the Low Power mode.

Every time the Bluetooth controller triggers a discovery, it reports each sensed device. In
order to avoid spamming the Link Layer by discovery reports, we implemented a simple peer

Figure 3.5 BLE advertisement messages
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management that will only notify new and lost peers. Peer names are stored in a list with
the timestamp of when they were last seen. When a device is seen and is not in the peer list,
it is reported as a new peer. When a device has not been seen for 2 minutes, we remove it
from the peer list and report it as lost peers. To detect which device cannot be seen anymore,
we perform a presence check every 15 seconds that will compare the last seen timestamp of
peers with the current time. Figure 3.6 provides an example of the management.
Figure 3.6.a) shows a scan update with a device that is already in the peer list, then only its
timestamp value is updated.
Figure 3.6.b) shows a scan update with a device that was not previously saved in the peer
list, a callback is then called notifying that a new peer has been spotted.
Figure 3.6.c) shows a presence check where all devices have been seen in the last ten minutes,
thus no device is removed from the peer list.
Figure 3.6.d) shows a presence check where one device has not been seen in the last ten
minutes. It then gets removed from the peer list and is reported as lost.

3.3.3 Message Passing

Devices communicate over BLE by updating the GATT server characteristic of the peer they
are connected to. Each device has its own GATT server with one characteristic only. When
a device must send a message to a peer, it will connect to it and update that characteristic
to pass its message. In order to avoid reaching the 7 simultaneous connection restrictions,
devices immediately disconnect once they have passed their messages. But this connection
operation has a cost. We measured that the average time to establish a connection were
between 0.5 and 2 seconds. The worst connection time was around 10 seconds.
To reduce this connection cost, devices buffer the sending of their messages. Figure 3.7
shows the proposed buffer queues. The blue queue represents the list of peers with the stored
messages that must be sent to them. Messages are shown in the green queues. The current
target value represents the peer that this device is trying to exchange with.

Message Insertion

When a new message has to be inserted in the sending queue, we check the target and the
message type. If the message is meant for a target that is currently not in the target queue, a
new entry is created. The current target is not considered as being in the target queue. Thus,
it is not possible to add new messages to the message queue of the current target, it will
instead be added to the sending queue. Message type allows to avoid duplicate messages in
a queue. It is mostly used for network maintenance messages where information needs to be
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Figure 3.6 BLE peers management example

Figure 3.7 BLE messages buffer
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updated frequently. New messages and new targets are added at the end of their respective
queue. If a message is typed and there is already another message with the same type in the
message queue, the new message will overwrite the old one.

Message Sending

Algorithm 1 shows how the sending protocol works. Each time a new message is inserted, it
triggers a sending request. The request is granted if the device is not currently sending or if
it was forced. If granted, all remaining messages of the current target are stored back in the
buffer following the message insertion protocol. The first inserted target of the target queue
become then the new current target and a connection attempt are initiated to it. Once the
connection has succeeded, the first message of the message queue is sent to the target and
removed from the queue. This operation repeats until all the messages have been sent. A send
operation allows up to three send attempts, otherwise the message is considered as dropped,
an error is thrown and a forced send request is issued. This can happen when a device is
no longer visible and the disconnection event has not yet been triggered by the Bluetooth
controller. Target can also disconnect during the sending. The current implementation does
not ensure the good transmission of messages. Even when Android triggers a send success
event, the recipient device might have not received the full message. The current sending rate
is an issue with some devices, with a sending success rate being lower than 25%. Improving
this issue is a high-priority requirement for future works.

Algorithm 1: BLE Sending Protocol
1 insert message in the buffer queue;
2 if Ble is not sending or sending is forced then
3 while has next peer do
4 store remaining current peer message at the back of the buffer queue;
5 store next peer in current peers;
6 connect to current peers;
7 while have next message and no error occurred do
8 send;
9 end

10 disconnect.;
11 end
12 end
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3.3.4 Validation for BLE Compatibility between Android and iOS

In order to confirm that Android and iOS can communicate using BLE, we chose to manually
perform the operation of a message sending by using the application nRF Connect created
by the Bluetooth chip manufacturer, Nordic Semiconductor2.

With this application, it was possible to perform the following actions:

• Set iOS device advertisement packet. One difference is that we could not set a custom
UUID for the service and we do not know if changing the name of an iPhone require a
user interaction,

• Scan for devices with the same service filter as Android,

• Make the iOS device connect to the Android device and update the value of its char-
acteristic,

• Make the Android device connect to the iOS device and update the value of its char-
acteristic.

This experiment shows that iOS devices are able to perform every action with Android devices
that we need for our middleware.

3.3.5 Summary

In this section, we presented our BLE Layer which allows the usage of BLE features. This
layer enable devices to discover each other and communicate without authentification. This
layer will be used by the Link Layer for the Network Management.

3.4 Wi-Fi Layer

The Wi-Fi Layer allows High-Speed communications between devices. It will be used to
convey messages for the HEAVEN upper layers with other devices. This layer is inspired by
the Wi-Fi Hybridation methods used in [24] [23] [25] [15], which use both WFD and Wi-Fi,
allowing devices to establish multiple Wi-Fi connections simultaneously.
We will begin by explaining how connections between devices are managed. Then, we will
explain how devices keep track of their active connections within our peer management mod-
ule. Next, we will present how we handle AP limitations with the client control management.
Finally, we explain how we decided to allow communication between peers.

2nRF Connect Play Store: https://play.google.com/store/apps/details?id=no.nordicsemi.android.mcp
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3.4.1 Connection Management

Wi-Fi requires devices to connect to each other before they can communicate together. Si-
multaneous connection capability is required for all devices in order to be able to create a
multiple-group network. Also, the connection must require no user interactions.
To qualify to these requirements, we use the Wi-Fi hybridization methods. The WFD inter-
face is used as AP and the Wi-Fi interface as STA. Depending on the connection state, the
capabilities of devices change. We use the adjectives: Master, Client and Bridge to classify
device connection states. In Figure 3.8, the device AAAA is a master because its WFD
interface is set as an AP, device CCCC is a client because its Wi-Fi interface is set as a STA
and device BBBB is a bridge because the two types of interfaces, Wi-Fi and WFD are used.
To allow a device to connect automatically to an AP, it programmatically adds the AP net-
work name (SSID) and security key (Passkey) to its networks configuration. When running
Link Layer network management, the SSID and Passkey will be shared over BLE.
Finally, when a client connects to a master, the master internal DHCP server, a system that
manages the assignment of IP address in a network, will provide an IP address to the client
but will not report it to the master. Thus, once a client connect, it must send its IP and
HEAVEN address to its master who will recognize it as a client. We noticed that the first
exchange between two devices must always be an unicast message. All broadcasts are dis-
carded before that first unicast exchange. Due to this, master will not be able to join other
AP. Once connected, master role evolves to bridge, and we will see that bridges cannot send
unicast messages to their master.

3.4.2 Peers Management

Once the connection succeeds, and the IP message has been shared, a device has to manage
this new peer. As with the BLE Layer, the Wi-Fi Layer must track to what peers are
connected. We classify peers as:

• Master, the AP a device is connected to,

• Clients, the STA that are connected to this device AP,

• Neighbors, the STA connected to the same master as this device.

Figure 3.8 provide an example from device BBBB perspective. Different methods are required
in order to track each kind of peer.

Master presence can be tracked from the device Wi-Fi connection status. After sending the
IP message of the connection management, the master responds to that message to confirm
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Figure 3.8 Wi-Fi roles

its presence. The peer is thus added to the peer list as a master.
When the Wi-Fi disconnects, it means that the master is no longer reachable and it is then
removed from the list.

A device cannot natively track the presence of its client with Android API. WFD API allows
to track WFD clients but not WFD Legacy clients. WFD clients connect using the WFD
interface while Legacy clients use their Wi-Fi interface. Then, a master can detect the
presence of a new client with its IP message from the connection management and then add
it to the peer list.
To detect client disconnections, we propose a heartbeat protocol close to the BLE peers
tracking method. Clients have to periodically, every 15 seconds, send an empty heartbeat
message to their master who will, on reception, save the current time as a last-seen value.
Masters then periodically check the last-seen value of each of their clients. If a device has
not been seen in the last 45 seconds, it is removed from the client list.

Our initial approach of neighbor tracking was to broadcast each client list update of the mas-
ter to its clients. We finally chose to forbid communications between neighbors, which made
the tracking pointless. Each AP and their clients have the same network, 192.168.49.0/24.
From this, a bridge will have its client in a network that is different from its neighbors but
both networks have the same IP range. It is then possible to have an IP conflicts between
theses two networks. Thus we choose to forbid direct communications with neighbors for the
current version of the project. It will still be possible to communicate with them when using
HEAVEN multi-hop capabilities.
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3.4.3 Controlled Client Population

Google support page specifies that a hotspot can host up to 10 clients simultaneously [42].
To avoid reaching the limit, we propose a crowd control protocol. Each connection has to be
requested. The AP will provide a response that depends on the number of clients it already
has.
Each master can have up to 10 clients, but we reduced the number of recommended clients
to 5. A client sending a request to a master that has fewer than 5 clients will always be
approved. If there are between 5 and 9 clients, the request will only be accepted if it was
marked as a forced request by the sender. If a master has 10 clients, it will always be rejected.
We choose to set this recommended size value to reduce the strain on master nodes, both for
energy and bandwidth usage. We also suspect that not all devices will be able to hold the
same number of clients. Thus we decided to allow the customization of both the maximum
and the recommended number of clients. Hence, our related protocol messages will hold each
device-specific value.
We allow to exceed the number of recommended clients in case a device has no other choice
but to connect to a specific master that is or will be overcrowded once connected. When
this situation happens, it will trigger a network mutation protocol that will issue a solution
to modify the network topology, and reach a state where the considered master is no longer
overcrowded.

3.4.4 Communication Management

With the Wi-Fi Hybridation method, the type of communication mean will depend on the
device roles. Android allows TCP communication with its Socket class, and UDP with
DatagramSocket. In [23] [24] and [25], a master (or bridges) cannot communicate with a
client having a bridge role. Authors explain that the implementation of Android induced
this limitation.

In order to confirm their result, we did a set of experiments reported in Figure 3.9, while

Table 3.2 Wi-Fi Communication Capabilities

Master to Client Client to Master
Master Client TCP U UDP U UDP B TCP U UDP U UDP B
Master Client Yes Yes No Yes Yes Yes
Bridge Client Yes Yes No Yes Yes Yes
Master Bridge No Yes No No No Yes
Bridge Bridge No Yes No No No Yes
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Figure 3.9 Wi-Fi communication capabilities experiments

results are summarized in Table 3.2. The considered devices are a Motorola Nexus 6, a
Lenovo Phab2 Pro and an Asus Zenfone 2. We can observe that, unlike previous work, we
do are able to communicate from a Master device to a Bridge by using UDP unicast. This
means that devices will be able to communicate directly if they choose the right means of
communication. We chose then to consider only UDP for communications between devices,
with the priority to UDP unicast. If a master has to send a message to one bridge client, it
will then use a UDP broadcast.

Since UDP does not implement flow control, we propose a simple reliable UDP for single
packet messages. Each packet is encapsulated in a frame that allows to determine which
device sent the packet, the target and the ID of the message. ID field allows the recipient to
send back an acknowledgement to the sender. While sender and target fields are mandatory,
ID field is optional and is only used for network maintenance messages. HEAVEN already has
its own TCP protocol over UDP, thus HEAVEN messages do not require to be acknowledged
by the Wi-Fi Layer.

3.4.5 Summary

In this section, we presented the Wi-Fi Layer. Its role is to connect multiple devices to-
gether using both Wi-Fi and WFD interfaces. Once connected, the layer must track what
peers are connected and handle communications with them. The main challenge is to allow
communications between devices depending on their role, master, client or bridge.

This layer will mainly be used by the HEAVEN layers as it will grant high-speed device to
device communication required by top layer application running HEAVEN as telecommuni-
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cation middleware.

3.5 Link Layer

The Link Layer role is to operate the network management, as for the initiation of the network
and its maintenance. To this purpose, it has access to the message passing functions of both
BLE and Wi-Fi, the discovery of BLE and the relay control of the Wi-Fi. It will then serve
as a bridge between the HEAVEN and Wi-Fi layers, to allow message transmission between
neighbors and consequently achieve multi-hop communications.

This section will describe in detail the role of the Link Layer, as well as the algorithm we
proposed for the management of the ad hoc network.

3.5.1 Bridge between HEAVEN and Communication Layers

The Link Layer (layer 2) offers the Routing Layer (layer 3) multiple functions related to
the communications with the direct neighbors: send a message to a peer, report a message
received from a peer and notify the peers that can be reached. The communication layer
could be either BLE or Wi-Fi, as both of them fulfill the requested actions. For the current
implementation, we only use the Wi-Fi Layer as physical layer. HEAVEN Routing and
Transport layers layers) protocols require a sending rate that is currently too high for our
current implementation of the BLE physical layer.

3.5.2 Network Management

One key responsibility of the Link Layer is the management of D2D link on the mobile ad
hoc network. This includes the creation, the joining and the evolution of the D2D links. To
this purpose, multiple algorithms will be triggered depending on the state of the device. The
Link Layer will then use the BLE and Wi-Fi features to discover other devices, communicate
with them and finally set up connections.

The algorithms we propose for the network management are the following:

- One-hop Propagation: by forwarding the received messages, we are able to spread faster
and further information, allowing a better management of the network,

- Netpower: it allows the appraisal of devices and their networks,

- Relay Election: it allows to choose which device will become the first master of a
network. This algorithm is triggered only when a device detects no network in its



36

proximity,

- Master Selection: it allows the device to choose to which master it should connect to,

- Network Mutation: it allows the proper repartition of clients among masters, avoiding
contention and secluded devices due to lack of available connection choices.

One-Hop Propagation

Some messages in our network management are shared following a One-Hop propagation.
When receiving a message tagged for one-hop propagation, device will forward it to all its
peers with the exception of the original sender. As it can be seen in Figure 3.10, it allows to
propagate information further and sometime faster but it also introduces redundant messages
in the network.

Netpower

In order to select the network to merge or the master to connect to, we must be able to
evaluate the strength of a network and its devices. To accomplish that, we use the following
metrics:

- Population: number of devices in the same network,

- Children: number of peers a device has,

- Descendant: sum of children of a device, including children of its own children and so
on,

- Level: number of hops required to send a message to the root master of the network.

Figure 3.11 provides an example of a network. All devices have a population of 6 for the 6
devices in the network. Device AFSD has 2 children (WJLA, QSLF), 5 descendants (WLJA,
JKTI, QSLF, PQIW, MKAW) and a level of 0 since it is the root master. Device QSLF has
2 children (PQIW, MKAW), 2 descendants (PQIW, MKAW), and its level is 1 as it requires
one communication hop to reach AFSD. Device JKTI has 0 child, 0 descendant and a level
of 2.

To share and update the netpower of devices, we use three different kinds of messages: Share
Netpower, Network Update and Branch Update. They will not all hold the same values as it
can be seen in Table 3.3. Network Update and Branch Update allow in-network computation
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Figure 3.10 One-hop propagation

Figure 3.11 Netpower Example
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updates. They are shared between master and clients using Wi-Fi Layer only. Share Network
is used for network awareness and is sent over BLE, using the One-Hop propagation, to devices
that are not in the peer list of the Wi-Fi Layer. Share Network carries the version of the
netpower in order to be discarded in case that the information is outdated.

Algorithm 2: Branch Update routine algorithm
1 update descendants values of children;
2 wait 30 seconds;
3 if we received no branch update during the wait then
4 compute new children and descendants values;
5 if descendant value has changed then
6 if Device is network root then
7 compute new network population;
8 update network version;
9 send network update to all clients;

10 else
11 send branch update to master;
12 end
13 end
14 end

Netpower updates are triggered when a device joins or leaves the network. Netpower update
begins with a Branch Update which rises from clients to master until it reaches the root
master. Once the information reaches the root master, the latter computes the new netpower
version and spreads it to all its clients with Network Update messages that will be propagated
by clients to their own clients until it reaches all the devices of the network.

When a master detects a change in its peers, it triggers a branch update routine, its procedure
is shown in the Algorithm 2.
The routine starts by updating the descendant values of the device. It is increased by one
if a peer joined, or decreased by one plus the number of descendants that the lost peer had.

Table 3.3 Netpower messages

Address NID Version Population Children Descendant Level
Share Yes Yes Yes Yes Yes Yes Yes

Netpower
Network No Yes Yes Yes No No Yes
update
Branch No No No No No Yes No
update
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Then, we wait for 30 seconds and if an update occurs we restart the procedure to avoid
running multiple updates at the same time. Once the network is stable, we compare the old
and new values of descendants. If the values are the same, the update is ignored, otherwise
we carry out the procedure. If the device is not the root of the network, it sends a branch
update message to its master. If the device is the root of the network, then it triggers the
Network Update procedure. It will update the population of the network and issue a new
version of the netpower. Finally, it sends a network update message to all of its clients.

When a device receives a Network Update message, it will update its network population and
the version of the netpower. Then, it propagates the update to all its clients. The message
will be then shared until it reaches all the devices of the tree.

After sending a Network Update message, devices will also send a Share Netpower message to
all non-Wi-Fi peers they have in their peer list. Since BLE is a slow means of communication,
Share Netpower carry the version number of the update which will allow to discard older
versions remaining in the BLE buffer queue of various peers.

Relay Election

When the middleware is started, or after a disconnection while not being an AP, devices will
enter a state where they have no networks. Depending of the presence, or not, of peers being
in a network, the device will trigger different algorithms.
If no device belonging to a network is sensed, it will trigger the Relay Election. The role of
the Relay Election is to find the device to be elected as the root master.

When entering a state with no network, a device triggers the Relay Election algorithm. To
evaluate the ability of devices to become the root master, it uses a score called Intent Value
(IV). The considered parameters are:

- The battery state of the device, if it is currently charging or not, charging is better,

- The maximum capacity of the battery, higher is better,

- The current level of the battery, higher is better,

- The number of peers seen, higher is better,

- Device ability to use WFD, not being compatible lead to a failing score.

The IV value is computed each time the BLE device list is updated during the Mater Election
procedure. This computation is delayed in order to avoid a duplication of messages if the list
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is updated again. Also, messages are typed in order to erase any older version remaining in
the send buffer. Once computed, the result is shared by all BLE peers.

IV values are one hop propagated, this allows to reduce the risk of having the case depicted
in Figure 3.12. Only device B can see both A and C, but both A and C have a higher score
than B, which means that both are considered as fit to become the root master while only
C should be. By propagating the IV score of A and C. A become aware of the existence of
C and score, forfeiting thus the root master role to C.

Master Selection

When a device enters the no-network state but can sensed peers belonging to networks, it
will instead trigger the Master Selection algorithm. The role of this algorithm is to find the
available choices and which is the best. It then repeats the underlying procedure until the
device succeeds to connect to a master.

To the purpose of appraising of devices, we use their netpower and their available slots as
metrics. Devices aim to connect to a master that: is in the highest population network, has
the lowest level possible and has available recommended slots. In order to avoid creating
multiple networks, only devices from the highest population network are considered in the
Master Selection algorithm.

The selection protocol is described with Algorithm 3 ; it is triggered for every IV or Netpower
message received when the device is not in a network.
Lines 1 to 3 allow to cancel the procedure if not all peers have shared their status. However,
the selection will be forced if the procedure started too long ago and avoid being blocked
unresponsive peers.
Lines 4 to 24 are responsible for the selection of the best master we can connect to. It begins
by sorting all seen peers of the highest population network. Peers are then lexicographically
sorted by level and available slots ; the best peer will be the one with the lowest level and
highest number of available slots. If the current best device is available to become this device
master, the connection is then initiated and the procedure ended. If it is not available, we
update the peer list, sort it again and repeat the procedure until a suitable master is found
or no masters are available.
If there are no available masters but there are available clients, an order is sent to the lower
level client to start its AP and the procedure is restarted. Once the device has reached the
master selection procedure, this client will have started its AP, adding a suitable master in
the candidate list.
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Algorithm 3: Master selection algorithm
1 if Not all masters responded and timer for selection has not ended then
2 return;
3 end
4 sort peers from the highest population network;
5 while master not chosen and masters available do
6 if best master has available recommended slots then
7 request connection master;
8 if connection accepted then
9 connect to master;

10 return;
11 else
12 set master as not having recommended slots;
13 end
14 else if best master has available slots then
15 request connection to master;
16 if connection accepted then
17 connect to master;
18 return;
19 else
20 set master as not having available slots;
21 end
22 end
23 sort peers from highest population network;
24 end
25 request hotspot creation to best peers;
26 reset network negotiation;
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Figure 3.12 IV propagation example

Network Mutation

If a master has too many clients, there is a risk to seclude a device that could not join the
network due to a lack of masters with available slots. It will also increase the bandwidth
and power usage. To avoid this, the Master Selection protocol favors masters with available
recommended slots. Still, it is possible for a client to force a connection to a master who
will enter an overcrowded state. In order to return to a stable state, the Network Mutation
analyzes the current topology of the network and provide a solution that will move excessive
clients to other masters.

When too many clients connect to a master, its Wi-Fi Layer notifies that it is overcrowded.
This event triggers the Network Mutation procedure described in Algorithm 4.
The master sends a Mutation request to all its clients that are not master themselves. It
will then wait for them to answer. A timer is also started and will force the procedure to
continue in case not all devices will have responded.

Each client Mutation Capabilities are then sorted in a single list. A Mutation Capability is
a translation of each entry of the client peers list. An entry contains the name of the client,
the name of one of its peers, its role, level and available slots if it is a master. For example,
in Figure 3.13, device C can see master B, then this one Mutation would be : Client C can
see the device B, which is a master with X available slots and has a level of 1. Each of these
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capabilities are then sorted following the same rules of the Master Selection algorithm, with
the exception that we only consider targets that are in the same network of this master.
Then, devices are sorted by roles, next by levels and finally by available slots. It is better
for a device to join an already existing master as it reduces the general power usage of the
network. It is better to join a lower level device as it reduces the maximal number of hops and
thus avoids throughput degradation. Figure 3.13 provides a simplified example of Mutation
Capabilities and how they are sorted.

Then, the algorithm uses the Mutation Capabilities to issue a Mutation order to reduce the
number of clients for this master. An order list is created and to save all the operations
required once the solution for leaving the overcrowding states will have been found. While
there are still slots to be freed and the list of Mutation Capabilities is not empty, the algorithm
will repeat. If the current entry allows to move a client to an existing master, a Join order
is added to the order list and all Mutation Capabilities involving this client is removed. If
there are not enough join order, the algorithm will then allow the creation of new masters
to welcome the clients. If the current entry report a client seeing another peer that is not a
master, then a Create order is issued for this peer and all Mutation Capabilities from these
two peers are removed for the Mutation list. Once enough slots are freed, Join orders which
do not require to create a new master are sent, followed by Create orders. If no Create
orders are required, the Mutation is considered as successful. If Create orders are required,
the Mutation will wait for the new masters to notify their creation and will then send their
related Join orders. The sequence diagram is provided in Figure 3.14. Figure 3.14.a) provide
a network example from which Figure 3.14.b) provide the Mutation Capabilities of the device
C before and after being sorted.

3.5.3 Summary of the Link Layer

The Link Layer has the role to manage the device in its network and control the BLE and
Wi-Fi layers. Once the network has been established and Wi-Fi communications are possible,
it allows the HEAVEN Layer 3, the Routing Layer, to use the Wi-Fi Layer capabilities for
discovering devices and exchange messages with them. The network management procedure
requires to elect the best device to become the main master of the network, the challenge
being to avoid multiple devices to believe they are that master. Then, devices must be able to
find and connect to the best masters and networks. Networks created have the fewer possible
masters to improve the global power usage and reduce maximum hop count. Finally, each
master must be able to adapt its client list in order to avoid contention and isolation of their
clients.
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Algorithm 4: Mutation Algorithm
1 Request Mutation Capabilities from not-bridge clients;
2 Wait for all responses or timers to run out;
3 Sort Mutation Capabilities;
4 while Master still needs to free slots and Mutation list is not empty do
5 if best Mutation does not require to create a master then
6 increment Mutation master used slots;
7 if mutation master reach recommended slots usage limit then
8 remove all mutations with Mutation master as client or master;
9 end

10 add join order for Mutation clients;
11 remove all mutations with Mutation client as Mutation client;
12 else
13 if do not already have created order for Mutation master then
14 Add order to create relay for Mutation master;
15 remove all mutation where future master is a client;
16 end
17 Increase Mutation master used slots;
18 Add join order for Mutation clients;
19 Remove all Mutation with the same Mutation client;
20 end
21 decrement used slots for this device;
22 end
23 Send Join order to clients that can join an existing master;
24 Send Create order to clients that need to become master;
25 Send Join order to clients that the master has been created;
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a) Network example
initial C Mutation list sorted C Mutation list

Master Role Level Client Master Role Level Client
E Client 2 C B Master 1 C
D Master 3 C D Master 3 C
B Master 1 C F Client 1 C
F Client 1 C E Client 2 C

b) Device C Mutations Capabilities before and after sorting

Figure 3.13 Mutation sort example for device C in network with A as root master

a) Mutation from
master to master

b) Mutation from
master to client

Figure 3.14 Mutation Sequence
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3.6 Conclusion

In this chapter, we presented our architecture and how its modules work. Its role is to allow
Android devices to establish the right links with surrounding devices. BLE and Wi-Fi layers
allows communications between mobile device and then join heterogenous ad hoc networks
including Android, iOS and computer devices. The BLE Layer provides communication with
BLE and allows devices to be aware of their surroundings. The Wi-Fi Layer allows devices to
connect and permit communication depending on their role. Finally, the Link Layer establish
a network for the HEAVEN upper layers.
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CHAPTER 4 RESULTS

In this chapter, we present the experimented results obtained for our middleware. The
experiments aim to answer the following questions:

1. Do BLE and Wi-Fi, when used together, lead to interferences as stated by [26] and [43].
If yes, can we quantify it?

2. Does the proposed network maintenance algorithm behave as expected?

3. What is the power consumption of the middleware?

4.1 Methodology and Test Conditions

For the first question related to the BLE and Wi-Fi synergy, we first measured their perfor-
mances, throughput, range and density when used separately. Then we performed the same
experiment while using the two technologies simultaneously before comparing results.
For the second question, we ran multiple use case scenarios. Each algorithm was tested in
order to ensure that they behave properly and we measured how long it takes for the net-
work to reach a stable state. We consider the network as stable when each device engages
the connection to their final master.
Finally, in order to respond to the third question, we monitored the power consumption of
our middleware through multiple use cases.

In order to get the most accurate measurements, experiments are done in an interference-free
environment, the CEPSUM football field at Montreal, where the highest ambiant Wi-Fi and
BLE signals we measured had a -82 dB attenuation. Also, since all the devices have their
unique capabilities specific to their hardware, we ran our tests on several phones which we
listed for each experiment. For each test, only one parameter is varied at a time and the
context of the experiment is provided.

We chose not to use a simulator to perform our tests. Wireless ad hoc network simulations
are known to be untrustworthy [12] due to variety of variables. Also, our middleware allows
communication previously considered as impossible, therefore there is no implementation in
simulators. Also, the major issue that Android developers face, is the plurality of hardware
and then, the variety of performances. By performing our tests on physical machines, we are
more likely to encounter real world issues that our solution will have to face.
On the other hand, this approach impacted our experiments. We did not have a large
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number of devices which means we were not able to perform our experiments on a large
scale. Also, theses experiments took more time to perform than it would when done with
simulation software. We also experienced weather conditions since experiments were done
outside during summer, some of our devices experienced thermal throttle or shutdown.

4.2 BLE Discovery

The BLE discovery functions allow phones to detect their neighbors. The middleware checks
every 4 seconds if a device is still being detected during scans. If a device is not seen after
45 seconds, it is marked as unreachable and removed from the BLE peer list.
Figure 4.1 summarizes the tests done using Amazon Fire Tablet 10 (Fire 10) with devices
positioned close to each other.
The gray bars show refresh rate of an environment with only 2 interconnected devices. There
are no notable differences depending on the role. The refresh rate is 4 seconds, which is our
aimed refresh rate. When the environment is increased to 9 BLE devices, as seen in the
purple bars, we can see a 50% increase of the average refresh rate, 14 seconds being the worst
refresh rate. This experiment has an expected result. All devices are broadcasting on the
same frequency channels, 47, 48 and 49. Thus, the more devices use the same channel, the
more collisions occur, leading to a degradation of the discovery refresh rates.
On the other hand, green bars show an unexpected result. In this experiment, we added
exterior APs next to our testing devices. BLE discovery operates on different frequencies
that Wi-Fi AP use, thus we would have expected to observe no degradations. We assume
that this result is caused by the Wi-Fi chip that takes more time when doing its own relay
scanning depending on the presence of relays.
The blue bars show the discovery evolution when the scanning device is a relay and has
clients (C). Results show no major difference with other regular tests.

Another relevant aspect for the discovery process is the maximum range a device can be seen
and can see. We performed multiple experiments where one device is advertising its presence
and all other devices are scanning. We noted the maximum range for a device to see its peers.
Table 4.1 provides the results of this experiment, where the columns report the advertising
devices and the rows the scanning ones. Results show mixed performances where the ability
for a device to be seen can be significantly different with respect to its ability to see, as it is
for the Lenovo Phab Pro 2 (Lenovo) that, except with the Fire 10, cannot see other devices
in less than 10 yards but can be seen from at least 20 yards. This shows that the risk of
having hidden terminals is high and should be addressed.
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Figure 4.1 BLE Discovery Refresh Rate

Table 4.1 BLE Discovery range (yards)

Pixel 3 Nexus 6 Lenovo Fire 7 Fire 10
Pixel 3 - 20 34 28 55
Nexus 6 15 - 23 18 43
Lenovo 10 10 - 10 39
Fire 7 18 13 20 - 44
Fire 10 20 17 24 17 -
iPhone C 13 16 32 40 50
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4.3 Throughput

4.3.1 BLE

For our BLE throughput tests, except for our range tests, devices are placed next to each
other. We use the same models for both transmission and reception of messages.

Figure 4.2 shows the difference of throughput for a 5ko packet depending on the selected
Maximum Transmit Unit (MTU). We can clearly see that having a higher MTU grants a
much higher throughput. On the other hand, in the initial test, we used a 210 bytes packet
as for the following experiments, and we noticed that the MTU does not impact the bitrate.
For our middleware and the others experiment, we kept the default 23 MTU values.

Figure 4.3 shows the throughput difference depending on the range between devices. The
experiments provide uneven results. For the Fire 7, the bitrate decreases as distance is
increased. For the Pixel 3, the bitrate is stable, while for the Fire 10, seems randomized. We
noticed that the bitrate drops to 6 kbps when a device performs a scan. From the result of
the Fire 10 and the Pixel 3, we extrapolate that the bitrate of the BLE does not degrade
over distance until the max range is reached.

Figure 4.4 shows the degradation of the BLE bitrate when a device enables the AP and has
clients. Purple bars show bitrate when we modify the peripheral (reception) parameters,
and the green line shows the bitrate when we modify the central (emission). As expected,
enabling the AP degrades the throughput, since the chip needs to advertise its presence,
and thus taking more window time over BLE. The degradation increases with the number of
connection clients to the AP. This is mainly because it introduced handshakes and HEAVEN
maintenance messages. It is worth noting that for this experiment, devices were having a
low Wi-Fi usage. On IDLE, HEAVEN exchanges one message every 15 seconds. We expect
the bitrate to drop more when devices are frequently exchanging data.

Finally, we performed a test between our initial naïve implementation for sending messages
and our buffered version. The results are given in Figure 4.5 and the buffered sending largely
outclasses the naïve implementation where we disconnect from the device after sending each
message. This test has been done with Fire 10 and Nexus 6 devices.

These experiments have shown that using Wi-Fi will have an impact on BLE throughput.
Our worst result was the 50% reduction for an AP with 5 devices. The performances are
acceptable for our network management bandwidth requirements as we only need to send at
most 240 byte-sized messages. Our main bottleneck is the connection cost. On the other
hand, it can become an issue if we start using the BLE layer with the HEAVEN upper layers.
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Figure 4.2 BLE throughput on controlled MTU

Figure 4.3 BLE Throughput on Controlled Range
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Figure 4.4 BLE Throughput on Controlled Devices Wi-Fi State

Figure 4.5 BLE Sending Method Comparison
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4.3.2 Wi-Fi

We assessed the Wi-Fi throughput performance over the range, BLE state and hops. To
generate traffic, we sent 5 Mo files using HEAVEN TCP. We also compared the throughput
between Iperf31 and HEAVEN TCP. Iperf3 is a famous Linux network benchmarking tool
which uses regular Wi-Fi communication sockets. We used it to measure the throughput of
a TCP unicast single hop communication.

In Figure 4.6, we measure the throughput depending on the range between two devices. We
can see that the throughput slightly decreases as the distance increases, before plummeting
at the limit of the Wi-Fi range. This experiment also shows that 60 yards is the maximum
range for most devices, which is twice than BLE.

Figure 4.7 provides the results of our experiment dedicated to observe if BLE has an impact
on Wi-Fi performances. We considered the following cases:

1. We enabled or disabled the Bluetooth on each phone; the results are illustrated by the
gray bars,

2. We performed the test when the client had BLE clients; the results are illustrated by
the blue bars,

3. We performed the test when the master had BLE clients; the results are illustrated by
the red bars.

BLE clients, in this experiment, are only connected to their master and are not ordered
to exchange data together. In this context, we can see that BLE has no impact on Wi-Fi
performances. One exception is the Fire 10 case, where the master is having 7 clients. With
the client case having no decrease of throughput, we assume this result has been affected by
external unknown reasons.

Next, we performed multi-hop communication tests. The results are presented in Figure
4.8. We can see that for the first retransmission, the bitrate is divided by 3 and then get
divided by 2 for each additional hop. We explain the division by three by the introduction
of broadcast communication between bridge and master.

Finally, we perform single hop communication tests using Iperf3 software. It allows to run a
TCP/IP communications between a server and a client to measure their throughput. Results
are provided in Table 4.2. We can see that the throughput is much higher than HEAVEN
TCP communication. The reason is that HEAVEN TCP communication is managed in the

1Iperf3 official website: https://iperf.fr/
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Figure 4.6 Wi-Fi throughput on controlled range

Figure 4.7 Wi-Fi throughput on controlled device BLE state
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Figure 4.8 Wi-Fi throughput over multi-hop

Application Layer, while Iperf3 stay on the kernel layer which then operate faster. For
this reason, Humanitas proposes a TCP Socket communication which provides the same
throughput as Iperf3. The trade-off is that TCP Socket communication can only be used
between devices sharing the same IP network. The Wi-Fi Hybridation prohibit Android
devices to use the TCP Socket communication due to the usage of multiple IP networks.

From these experiments, we can conclude that the Wi-Fi has a bigger impact on BLE while
the opposite does not. We also note that the BLE performances will greatly vary from device
to device. The most significant difference between BLE and Wi-Fi is the maximum range,
which can be up to 5 times higher in the case of Wi-Fi.

Table 4.2 WiFi throughput in kb/s using Iperf3

Client Master
Avg Min Max Avg Min Max

Fire 7 11.4 8.5 12.7 18.5 17.3 19.2
Fire 10 15.2 13.8 16.6 16.9 14.4 19.1
Pixel 3 484.3 409.0 516.0 643.3 621.0 672.0



56

4.4 Devices Limitations

In our solution, we made several assumptions about devices capabilities. They are the max-
imum simultaneous connections, for BLE, explained in Section 3.3.1, and for the WFD in
Section 3.4.3, and finally the communications between master devices in Section 3.4.4. The
experimented results revealed that these assumptions are not always true, and we explain
why in the following subsections.

4.4.1 Wi-Fi Direct Client Limitation

In Android support page, it is stated that an Android device allows up to 10 clients while
being in hotspot mode [42]. Based on this information, and since there is no other information
available on WFD hotspot capabilities, we assumed that this limitation would be the same
for WFD group owners. Table 4.3 shows the maximum number of connected devices per
model. Most devices cannot reach the expected values of 10 connected clients. The worst
case was with Nexus 6 enabling up to 4 peers. For Pixel 3 and Zenfone 2 devices, we could
not reach the maximum number of peers, since we had only 16 devices available at that time.
Connected devices were kept idle when connected to the AP.

4.4.2 BLE Clients Limitation

In Android source code, we can see that the maximum number of GATT connections is
7 [11]. Table 4.4 shows that the maximum BLE connections for the devices used in our
experiments. Theses results show that not all the tested devices are able to handle the
expected 7 simultaneous connections. The worst case is given by Fire 7, which will also
disable its advertising once connected. It is also surprising to see the Pixel 3, a high-end
device, not being able to allow more than 3 simultaneous connections. It also means that
we will probably not be able to create a scatternet with Android devices and that we will

Table 4.3 Maximum simultaneous connected client to a WFD Group Owner

Model Maximum clients
Nexus 6 4
Pixel 3 15+

Phab pro 2 9
Fire 10 8
Fire 7 8

Zenfone 2 15+
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have to keep our method of cutting the connection when data has been transmitted. Once
a device reaches its maximum peers, it stops being discoverable and resume a few seconds
after one device disconnect.

4.4.3 Master to Master Communication

We assumed that it was possible for bridges and masters to communicate in both directions.
Since this is true with our initial devices, Nexus 6, Zenfone 2 and Phab pro 2, as we were able
to send unicast messages from a master to its bridge device when applying our connection
method as a client and then evolving as a master. However, when doing our experiments for
this chapter, and after purchasing more models, we discovered that not all devices are able
to support the same functionality. Their capabilities for master and bridge communication
are shown in Table 4.5.
Only the bridge will have an impact on the communication. It will be possible, for a Pixel
3 set up as a master, to communicate with a Nexus 6 connected as its client. On the other
hand, when using the Pixel 3 as a client of the Nexus 6, the Nexus 6 will not be able to send
data to the Pixel 3.
Only the model of the bridge is important, we can use any master and the result will not
change. When the Nexus 6 is used as a master for a Pixel 3 and a Fire 7, both being in
bridge mode, the Nexus 6 will be able to communicate with the Fire 7 but not with the Pixel
3. On the other hand, when using the Pixel 3 as the master of the Nexus 6 and Fire 7, both
being in bridge mode, the Pixel 3 is able to communicate with both devices.

We currently have no explanations for this behavior as this discovery happened too late in the
frame of our research project. We will investigate this issue in our future research activities.

Table 4.4 Maximum BLE Connections

Model Maximum
peers

Nexus 6 4
Pixel 3 3

Phab pro 2 1
Fire 10 6
Fire 7 1

Zenfone 2 4
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Table 4.5 Wi-Fi bridges communication capabilities over role

Device To Master To Bridge
Nexus 6 Yes Yes

Zenfone 2 Yes Yes
Phab pro 2 Yes Yes

Fire 7 Yes Yes
Fire 10 Yes No
Pixel 3 Yes No
Note 8 Yes No

4.5 Network Maintenance

We tested our network creation algorithm by following a set of scenarios which can be seen
in Figure 4.9.

For each scenario, we create the right network topology and then introduce a new device. As
an example Figure 4.9.A1 show the initial state of scenario A and Figure 4.9.A2 is the final
state.

• Scenario A shows that a new device will join its master if it has available slots.

• Scenario B shows that a new device will connect to the lowest level master with available
seat it sees.

• Scenario D shows the same Scenario B, but with the lowest level master having no
recommended seats available.

• Scenario C shows that a new device that sees clients but no masters will ask the best
client to become a master to later join it when available.

• Scenario E, if a soon fully crowded master is the only choice, the device will force the
connection.

All scenarios have been tested and validated. The average time is shown by the green bars
in Figure 4.12.

We tested our network mutation algorithm, by following another set of scenarios which can
be seen in Figure 4.10.

For each scenario, we show their state before introducing a new device, then the overcrowding
state and finally the stable state. As an example, for scenario F, Figure 4.10.F1 shows the
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Figure 4.9 Network creation cases
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Figure 4.10 Network mutation cases
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initial state, Figure 4.10.F2 shows the overcrowded state and Figure 4.10.F3 shows the stable
state.

• Scenario F shows an overcrowded network where the new device could join an already
existing client who will become its new master.

• Scenario G shows an overcrowded network reached by a new device that does not see
other peers. One client will become a master while the other connects to it.

• Scenario H shows the same Scenario as G with one of the oldest clients already being
a master. The result is the same but the operation should be faster since no creation
order will be issued.

• Scenario I show the merging of two networks, the weakest network will gradually join
the strongest. This scenario will not be tested since we have disabled the merging of
networks for now.

All scenarios have been tested and validated. The average time to complete the operation is
represented by the blue bars of Figure 4.12.

We measured the required time for a network to reach a stable state when adding multiple
devices. The results of this test are shown in Figure 4.11. If we attempt to join more than
4 devices at the same time, all the devices end up restarting their network creation task.
The reason is that the algorithm is not robust enough to manage the asynchronous reception
of messages over BLE. Moreover, the current implementation of message passing is highly
unreliable. We were unable to exchange messages with Fire 7 devices, more than 4 messages
out of 5 being discarded even when only two devices are present. With other devices, like
the Pixel 3 or Note 8, we were not able to receive any messages in our application for reasons
that we currently do not know. Only communication between Nexus 6 and Fire 10 devices
are reliable, but unfortunately the Fire 10 devices are not capable of becoming bridges.

Due to these issues with BLE, we could not perform a topology experiment. Table 4.6 shows
what network formation we expect when all devices can see each other. The network topology
is determined by using Formula 4.1 for master, Formula 4.2 for bridges and Formula 4.3 for
clients. We will perform this experiments in future research once the BLE Layer will have
been improved.
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Figure 4.11 Time to reach a stable network depending on the number of new devices

Figure 4.12 Average time required for network operation
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Table 4.6 Average network topology with controlled network density and relay recommended
value

Network Recommended Expected Expected Expected
density Value Master Bridge Client

2 2 1 0 1
5 2 1 1 3
11 2 1 5 5
2 3 1 0 1
5 3 1 1 3
11 3 1 3 7
2 5 1 0 1
5 5 1 0 3
11 5 1 1 9

m(d) =

0 d < 1

1 d ≥ 1
(4.1)

b(d) =

0 d ≤ 1

dd−m(d)
rv
e − 1 d > 1

(4.2)

c(d) = d−m(d)− b(d) (4.3)

Where:

• d is the number of devices in the network, we assume that all devices can see each
other,

• rv is the recommended value of clients for a relay, we assume this value is the same for
all devices,

• m(d) return the number of masters in the network, this value should always be equal
to 1 since we aim our device to join the same big network. b(d) returns the number of
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Bridges in the network while c(d) is the number of clients.

4.6 Power Usage

To evaluate the power usage of our middleware, we had to evaluate different settings. The
issue of power measurement with Android is that we have no way to know the consumption of
each application. We can only know the global power usage of the device. To do so, Android
API provide a Battery Manager class that allows to get the current consumption of a device.
This API is supposed to return the current power usage of the device and an averaged value.
Unfortunately, not all devices embark the required hardware, which means that the average
value or even the current power usage may not be available. This hardware diversity also
induced differences in the return results, and we have no control on the average period.
We could not use Fire tablets, like in our previous tests. Thus, we used a Nexus 6 (Nexus),
a Lenovo phab pro 2 (Leno), and a Pixel 3.
Our method to measure the power usage is the following: we store the current measure by
Android every second and save it to an array. Once the measurement is done, we return the
mean, min and max values measured.
The HEAVEN implementation used in this experiment is our new implementation.

Our test cases are:

• Idle, the device is not running any software and the screen brightness is set as maximum.
This is the base value for the device power consumption,

• Idle with BLE enabled but with no connections

• Idle with BLE and Wi-Fi enabled but with no connections,

• Idle with BLE, Wi-Fi enabled and HEAVEN running,

• Only BLE enabled with one active connection, device is receiving data,

• Only BLE enabled with one active connection, device is sending data,

• Only Wi-Fi enabled, device is in STA mode,

• Only Wi-Fi enabled, device is in AP mode with 1 client,

• Only Wi-Fi enabled, device is in AP mode with 4 clients,

• Only Wi-Fi enabled, device is in AP mode with 8 clients,
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• BLE, Wi-Fi and HEAVEN enabled, device is in STA mode and is receiving data using
HEAVEN,

• BLE, Wi-Fi and HEAVEN enabled, device is in STA mode and is sending data using
HEAVEN,

• BLE, Wi-Fi and HEAVEN enabled, device is in AP mode and is receiving data using
HEAVEN,

• BLE, Wi-Fi and HEAVEN enabled, device is in AP mode and is sending data using
HEAVEN.

The results of the experiment are reported in Figure 4.13.

Gray shaded bars show the progressive activation of BLE, Wi-Fi and HEAVEN. As we can
see, each of these technologies will increase the power consumption, with a great impact when
activating HEAVEN.

Blue shaded bars shows the power usage of BLE when sending or receiving messages in our
application. In this case, Wi-Fi and HEAVEN are disabled. We can see that the power
drainage is mainly the same whether the device is sending or receiving.

Red shaded bars shows the power usage of an idle device being either a slave or a master
with clients. Results are widely different over devices. Lenovo device seems to have a stable
power consumption, while the Nexus and Pixel 3 show larger variance which prohibits us to
conclude on power usage for idle AP devices.

Finally, the green and yellow shaded bars show the power usage of the device when com-
munication as a slave and a master respectively. We can see that this use case drastically
increases the power usage of a device, up to 4 times higher than a BLE communication for
the nexus device.

We conclude, from this observation of the power usages, that Wi-Fi has a major impact on
power consumption while the BLE, even when active, has low observable impact. While we
cannot conclude on the power consumption of idle APs, results tend to show a consumption
that is close to active BLE connection. The peak of power consumption is reached when
devices exchange data using Wi-Fi. Thus, we believe that using BLE as our maintenance
network was the right choice in terms of power consumption.
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Figure 4.13 Application Power Usage per Use Case
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4.7 Discussion

This chapter presented the experimental results allowing us to provide answers to three
questions related to our solution:

1. Do BLE and Wi-Fi, when used together, lead to interferences as stated by [26] and [43].
If yes, can we quantify it?

2. Do the proposed network maintenance algorithm behave as expected?

3. What is the power consumption of the middleware?

For our first question, we observed that while using Wi-Fi does impact the bitrate of BLE,
the reverse situation was not true. Also, experiments related to this question allowed us to
evaluate the diversity of performance in relation with the hardware used.

For our next question, experiments showed promising results as devices were able to behave
as expected. On the other hand, experiments with a large number of devices were not possible
to do due to the lack of devices and poor BLE performances.

And for our final question, we reported the power consumption induced by our middleware
and the usage of wireless technologies. We could conclude on the reduction of power that
BLE could provide for the discovery and network maintenance, but we also observed the
negative impact that the Wi-Fi and HEAVEN middleware.

Performing our experiments with real devices allowed us to challenge our supposition. From
this, we discovered that some of them were not always true: the maximummultiple connection
for BLE is not always 7, 10 for the Wi-Fi, and the communications between masters are not
always possible.
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CHAPTER 5 CONCLUSIONS

5.1 Summary of Contributions

The lack of reliable telecommunication means makes most humanitarian operations ardu-
ous and inefficient. To recreate a network in post-disaster situations require resources that
might not be available. Humanitas project proposed to use low-cost equipment such as IoT
computers, and personal mobile devices. However, most of the literature contributions for
MANET do not permit such heterogenous environment and do not consider Android devices
limitations.
In this context, our thesis contribution is a Link Layer (Layer 2) modification of HEAVEN,
Humanitas mobile ad hoc telecommunication middleware, capable of building a MANET
for Android with its own limitations and compatibility to other environments. Our network
management algorithm is able to generate a formation from scratch, but is also aware of
its surroundings, paving the way for a network merge algorithms in the future. We also
suggested a connection method in order to avoid the necessity to have a pure client on relay
nodes to increase the flexibility of the Wi-Fi Hybridation methods.
In our experiments, we provided multiple measures for both Wi-Fi and BLE in order to assess
their actual performances when used alone, but also in our application fashion. Moreover,
these experiments allowed to test the network management algorithms which leads to new
discoveries on Android devices limitations.

The proposed solution was applied to HEAVEN, the telecommunication ad hoc network
deployed by our industrial partner, Humanitas Solutions.

5.2 Limitations

• Our solution excludes devices without BLE Peripheral capabilities. While most smart-
phones do have peripheral mode support, it seems not to be the case for tablets.

• While BLE provides compatibility with iOS devices, it also reduces the discovery range
compared with Wi-Fi direct.

• Using our solution, two masters cannot communicate if one of them has not sent a
unicast message to the other. This forbid two existing networks to merge together
without progressively destroying one of them. This induces an overhead and can re-
sult in communication losses. Consequently, we choose not to implement the network
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merging.

5.3 Future Research

With the democratization of Bluetooth 5.0, we would like to make profit of the extended
advertising, by using it to exchange our network maintenance messages. Benefit would be
that the data would be broadcast and shared in connection-less way, which would speed up
the information diffusion and then induce a faster network establishment time. We would
keep compatibility with devices that do not support the extended advertising by keeping
the connection method. Another advantage of Bluetooth 5.0 is that it allows to use the LE
CODED Phy which has an increased range (up to 4 times) comparing the range provided
by the regular 1M Phy. This increased range is obtained with a cost in bitrate decreasing.
Since we do not require a high throughput, we could benefit from this technology, but the
compatibility with Bluetooth version 4 devices will be an issue.
We would like to use BLE for HEAVEN maintenance message and only establish a Wi-Fi
connection for high bitrate data exchanged. This would reduce the energy usage and provide
a higher flexibility for our network. Such solution would require to rethink our BLE imple-
mentation. On dense network, we would not be able to cope with the connection cost and
the HEAVEN maintenance messaging frequency.
We would like to experiment with Wi-Fi Aware, compare its performances with our imple-
mentation. By using this technology, in addition to our BLE and Wi-Fi layers, we hope to
enhance our solution performances and resolve the network merging issues we face. Also,
since Wi-Fi Aware use both Wi-Fi, WFD and BLE, we hope to find a way to provide com-
patibility with devices that do not have a Wi-Fi Aware enabled chips.
The current implementation does not have security in mind. For instance, it would be easy
for an attacker to infiltrate the network and then tamper or spy on it. Adding security to
the design is a highly recommended future research.
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APPENDIX A BRIDGE TOPOLOGY EQUATION

Figure A.1 Network equivalence Figure A.2 Equation formulation

For our implementation, each new client will be added to the first available bridge. If there
are no bridge available, one of the existing clients become one, creating a balanced tree.
From Figure A.1, we see that the previous tree can also be represented as a tower of width
rv where the next bridge is always a client of the lowest level of the tower. In both networks,
we have the same number of masters, bridges and clients.

In Figure A.2, we can see 5 different colored shapes to each we associate a formula fn that
progress to the final extension.
Square 1 contain our network of d devices (circles).

f1(d) = d

For square 2, we remove masters and end-up with a rectangle of horizontal length rv.

f2(d) = d−m(d)
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With square 3, we can see that there is only one bridge per rows at most, so we count them.

f3(d, rv) = d−m(d)
rv

In shape 4, we can see that f3 will not always provide us a round number because the last
row is not always full, so we use the ceiling function and obtain the same result as if we had
a full width of devices in each row.

f4(d, rv) = dd−m(d)
rv

e

Finally, we can compute square 5 by removing the additional row, and we obtain our final
equation.

b(d, v) = f5(d, v) = dd−m(d)
rv

e − 1
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