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RÉSUMÉ

Le développement de nouvelles technologies de fabrication ouvre de nouvelles possibilités
au niveau du développement de matériaux possédant des anisotropies complexes. Les carac-
téristiques anisotropes, comparativement aux caractéristiques isotropes, permettent de con-
trôler aisément aux ondes électromagnétiques. Ces propriétés pourraient s’avérer intéressantes
pour la conception de futurs dispositifs faisant partie de systèmes de communication sans-fil.
Jusqu’à maintenant, les méthodes de simulations intégrées dans les logiciels commerciaux se
basent sur la discrétisation volumétrique comme la méthode des éléments finis (FEM) et la
méthode des différences finies dans le domaine temporel (FDTD). Ces méthodes permettent
de traiter la plupart des cas généraux de matériaux anisotropes, mais elles nécessitent une
discrétisation de l’entièreté du volume de l’objet. Cela représente un fardeau de calcul im-
portant lorsqu’un matériau plus volumineux est traité. La méthode des moments basée sur
les équations intégrales de surface (SIE-MoM) peut simplifier le problème en restreignant le
problème à la surface du volume. Cette méthode se heurte toutefois aux problèmes de singu-
larités. Pour surmonter ceux-ci et dans le but de fournir un outil de simulation efficace, nous
présenterons une méthode d’équivalence de source (ESM) qui est une solution par moments
permettant l’évaluation électromagnétique de matériaux anisotropes. Les fonctions de Green
tensorielles en deux et trois dimensions des matériaux analysés seront abordées en détails et
appliquées dans la formulation de la ESM qui permet d’analyser les diffuseurs anisotropes.
Le placement de sources filamentaires et des points de test qui jouent un grand rôle dans la
méthode ESM seront détaillés car il favorise l’obtention de solutions stables. Le problème des
singularités, un problème majeur de la SIE-MoM, peut facilement être résolu par la ESM. De
plus, les conditions frontières anisotropes, plus spécifiquement les conditions aux frontières
d’impédance tensorielle (TIBC) utilisées dans la représentation de matériaux composites en
fibre de carbone multicouche et la condition des feuilles de transition généralisée (GSTC)
utilisée dans la caractérisation de métasurfaces cylindriques sont aussi intégrées dans la ESM
pour analyser les évaluations électromagnétiques. Comparativement aux logiciels commerci-
aux et aux recherches déjà publiées, la ESM possède clairement l’avantage au niveau de la
performance de la simulation. En outre, dans cette thèse, on s’intéressera aux limitations de
la ESM dans les cas en trois dimensions. Même si la simulation par ESM d’objets en trois
dimensions possédant des géométries complexes engendrent un coût de calcul important, la
ESM demeure un outil de simulation puissant dans les cas de géométries en deux et trois
dimensions possédant des frontières lisses.
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ABSTRACT

The development of manufacturing technology provides possibility to build artificial materials
possessing complex anisotropy. The anisotropic characteristic, compared with the isotropic
one, provides additional freedom to control electromagnetic waves. This property makes the
anisotropic material a competitive alternative in the design of devices for future wireless
communication systems. So far, the simulation methods integrated in commercial software
packages for anisotropic materials are volumetric discretization-based, such as Finite-Element
Method (FEM) and Finite-Difference Time-Domain (FDTD). These methods can handle the
most general case of anisotropic materials whereas they require to discretize the entire volume
of an object, therefore it generates computational burden when a larger scatterer is encoun-
tered. The surface integral equations-based method of moment (SIE-MoM) can simplify the
problem by formulating the problem only on the physical surface. Yet the complexities, es-
pecially on the singularity issue, are still there. To overcome mentioned problems and to
provide an efficient simulation tool, this thesis presents the equivalent source method (ESM),
a moment solution, to analyze anisotropic materials. The dyadic Green’s functions in two-
dimensional and three-dimensional cases of investigated anisotropic materials are discussed
in detail, and subsequently deployed in the formulation of the ESM to analyze electromag-
netic phenomena involving anisotropic scatterers. The placements of filamentary sources and
the testing points, playing the key role in the ESM, are discussed and specified in detail to
provide a stable solution. The singularity issue, usually a tough problem in SIE-MoM, can
be solved easily by using the ESM. In addition, the anisotropic boundary conditions, specifi-
cally the tensorial impedance boundary condition (TIBC) used for representing multilayered
carbon-fiber composite materials and the generalized sheet transition condition (GSTC) used
for characterizing cylindrical metasurfaces, are also incorporated in the ESM. In comparison
to commercial software packages and published researches, the ESM has a clear advantage on
the simulation performance. For example, the CPU time and required memory are 611 s/7.50
GB for the FEM (CST) whereas only 1.58 s/0.00037 GB for the ESM when computing the
field on the surface of an elliptical cylinder in two-dimensional (2D) case under the illumi-
nation of a TM plane wave, and in three-dimensional (3D) case, the CPU time and required
memory are 82980 s/170.2 GB for the FEM (HFSS) whereas only 4421.52 s/2.40 GB for the
ESM when computing scattering from an uniaxial sphere with a 2λ radius. In addition, the
limitations of the ESM in three-dimensional scenario are investigated in this thesis. Although
the ESM on simulations of objects with complex geometries in three-dimensional case suffers
from a highly computational cost, the ESM can be a powerful simulation tool in 2D situation
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and 3D situation when objects with a smooth boundary are considered.
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CHAPTER 1 INTRODUCTION

Electromagnetic (EM) scattering theory is fundamental to modelling the interaction of EM
waves with matter. It is a wide topic that has been researched for over a century. The study of
EM scattering is not solely of academic interest, but of practical importance in many applica-
tion areas, such as modern radar and remote sensing. These efforts have led to a development
of a large number of analysis tools and modeling techniques for quantitative evaluation of
EM scattering by various objects. Many computational techniques, such as analytical solu-
tions reported in [5–7], MoM [8–11], Finite Difference (FD) methods [12], FEM [13] and so
on, have been developed to evaluate the scattering from a scatterer with arbitrary shapes
in 2D and 3D scenarios. Most reported research work focuses on the scattering from objects
made of isotropic materials. Artificial materials, such as uniaxial wire medium, carbon-fiber
composite material, ferromagnetic nanowire metamaterial, behaves as anisotropic materials
and have found growing applications in practice. By considering the potential applications
of anisotropic materials, an accurate and efficient solution to study the EM interactions with
anisotropic materials should be addressed.

The ESM is a variant of MoM featuring a simple implementation, simple meshes, avoidance of
a singularity extraction, and a fast computation by avoiding the integration of surface currents
when calculating the fields. It has found many applications not only on electromagnetic
problems but also in acoustic [14–16] and light scattering problems [17–20]. From the EM
point of view, the ESM is also known as generalized multipole techniques (GMT) [17]. A
common basic concept of ESM is that the scattered fields inside and outside of a scatterer are
respectively simulated by a set of equivalent sources located outside and inside of the scatterer
with a certain distance away from the physical boundary, rather than being formulated in
terms of equivalent surface currents flowing on the physical surface. In this case, no integrals
have to be computed numerically, which reduces the computation time and simplifies the
problem formulation. Also, the solution features no singularity since testing points and sources
never coincide. Although the ESM has found many applications on the scattering evolutions of
isotropic objects, there is a a need for its implementation in anisotropic materials, considering
the wide applications of such materials in the future. In this thesis, we will explore applications
of the ESM on EM estimations with respect to the anisotropic materials in both 2D and 3D
scenarios.

In addition, an object could be accurately represented by a specific boundary condition with-
out considering the inside details in some scenarios. The boundary conditions, such as the sur-
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face impedance boundary condition [21] and generalized impedance boundary condition [22],
are commonly used to characterize isotropic materials, and they have been deployed in many
numerical techniques [23–27]. Yet there is little work about EM evaluations of anisotropic
materials by exploiting its correspond impedance boundary conditions. In this thesis, we
will consider two types of anisotropic boundary conditions. One is the tensorial impedance
boundary condition (TIBC), which is used to represent multilayered carbon-fiber composite
(CFC) material, and the other is the generalized sheet transition condition (GSTC), which is
used to represent a metasurface possessing anisotropic characteristics. They are subsequently
employed in the ESM to do the calculation of interested EM evaluations.

1.1 Literature review and motivations

A literature review regarding to the applications of various numerical methods on EM esti-
mations of anisotropic materials is conducted in both 2D and 3D situations and introduced
below.

In the 2D situation, several remarkable research contributions about scattering evaluations
of anisotropic materials have been generated and presented in [28–41]. A volumetric integral
equation (VIE) method was developed in [28, 29] to deal with scattering performances from
a linear, lossy, and anisotropic material. This approach can handle the most general case of
material whereas it requires to mesh the entire volume of an object. Combined field integral
equation (CFIE) formulated in [30–32] was exploited to overcome the size restriction of the
VIE. Appropriate electromagnetic potentials were derived and utilized to represent the fields
inside an anisotropic medium. Subsequently, a set of coupled surface integral equations were
constructed and solved with the help of the equivalence principle. A SIE was formulated
in [33] by mapping the anisotropic object into a complex isotropic space. Integral equations
for the scattering analysis of an homogeneous circular anisotropic rod under normal [34] and
oblique [35] incidences were introduced based on the plane wave representation of the field.
The integral equations based on the Mathieu functions and Fourier series were proposed
in [36] and a formal series solution was introduced in [37] to analyze the scattering perfor-
mance from an elliptical anisotropic cylinder. The method presented in [36] was also deployed
to analyze the scattering from an anisotropic shell coated elliptic conducting cylinder [38]. A
variational reaction theory was formulated in [39] and further employed in a FEM to solve the
scattering problems from an anisotropic LiNbO3 cylinder illuminated with an oblique plane
wave incidence. Those proposed techniques provide an accurate and more simplified approach
compared to VIE, yet the complexity of the formulation is still there. The integral equations-
based methods have the necessity of integrating surface currents when computing fields.
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Figure 1.1 Material used in Boeing 787 body. [1]

In addition, the solutions presented in [34–37] are highly restricted to the cylinder geome-
try. Hybrid numerical techniques, like finite-element method-multifilament current method
(FEM-MFCM) in [40] and finite difference-measured equation of invariance (FD-MEI) in [41],
are alternative approaches to analyze the scattering from anisotropic objects in 2D.

In the 3D situation, several remarkable research contributions have been made and pre-
sented in [42–52]. The VIE-based methods were introduced in [42–47] to solve scattering
performances from an arbitrarily shaped object made of a linear, lossy, and anisotropic ma-
terial. The VIE-based approaches can handle the most general cases of materials whereas
they require to discretize the entire volume of an object, therefore becoming computationally
challenging with large scatterers. The same issue rises in the FDTD [50] and finite element-
boundary integral (FE-BI) [51] methods. The SIE is a good candidate to overcome the compu-
tational burden of the methods based on volumetric discretization. A SIE-based MoM scheme
combined with uniaxial dyadic Green’s functions [53,54] was proposed in [48,49] for scattering
evaluation from arbitrarily shaped objects filled with uniaxial materials. The SIE-based so-
lutions provide an accurate and more simplified approach compared to the VIE-based ones,
yet the complexity of formulations is still there. In addition, the integral equations-based
methods have the necessity of integrating surface or volumetric currents when computing
fields.

From the EM point of view, the ESM is also called GMT. The GMT is a generic name
of several similar numerical methods [55–58] developed independently by several research
groups. In the GMT, the scattered fields are usually expanded in terms of a set of multipole
sources. However, not only the multipoles can be used for fields expansion, but other equiv-
alent sources are also possible. Therefore, other names for similar methodologies have been
given like multiple multipole method (MMP) [55], discrete sources method (DSM) [56], mul-
tifilament current method (MFCM) [58], method of fictitious sources (MFS) [59], method of
auxiliary sources (MAS) [57], fundamental solutions [60], random auxiliary sources (RAS) [3],
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or multiple infinitesimal dipole method (MIDM) [61]. In this thesis, we will use the name,
MFCM, to represent the ESM in the 2D scenario whereas the name, MIDM, is used for the
3D case. In the 2D case, various applications of the MFCM-like techniques were introduced
in [18, 27, 62–69] regarding isotropic materials, and in [18, 70–72] regarding anisotropic ma-
terials. The tensor permittivity and permeability of the anisotropic material considered in
published works are restricted to specific forms, yet the anisotropic material considered in
this thesis has no restrictions. In addition, the behavior of filament currents in the MFCM
regarding scattered fields’ singularities is investigated for the first time. In the 3D case, the
MIDM was extended to anisotropic scatterers by introducing the plane wave representation
of an anisotropic material into Bessel multipoles [73], but it resulted in integrals which can-
not be evaluated analytically to represent the scattered fields. The DSM was extended to 3D
anisotropic scatterers in [74], but the entire body of the scatterer needed to be discretized. As
a result, DSM also suffers from a high computational burden as in the case of the VIE-based
method when larger objects are involved.

Anisotropic materials have found a variety of applications in the design of antennas [75–81],
integrated-circuit structures [82], reduction of RCS of scatterers [83], optical signal processing
[84] and so on. The uniaxial characteristic seems to be the most widely used type of anisotropic
materials. This is because the uniaxial material can be either easily found in many natural
crystals [82, 85], or artificially made by a stacked dielectric sheet structure consisting of
alternative layers of two isotropic materials [78,79,86], or obtained by homogenizing a mixture
of several different materials via effective medium theory [87, 88]. The CFC material is a
kind of uniaxial material, and it has been widely used in modern spacecraft and aircraft
industries as a replacement for metal due to its properties such as low-weight, high strength,
high stiffness, etc. [1, 89]. Fig. 1.1 shows different materials used in Boeing 787 fuselage.
Fifty percent of all the materials used in the 787 fuselage are CFC material. CFC materials
usually appear in a laminated multilayered form, and each layer is typically composed of
a resin matrix reinforced by carbon fiber inclusions having different shapes as indicated in
Fig. 1.2. The EM characterization of CFC materials have been well studied in [90–94]. The
effective medium theory (EMT) is known as an accurate and effective approach to characterize
CFC materials by a tensor permittivity. Based on this tensor model, an effective boundary
condition and a matrix surface impedance for flat CFC material are introduced in [95–99],
and further applied to time domain analyses of EM performances.

Considering the aspects introduced above and potential applications of anisotropic materials
in the future, the motivation of this thesis is to bring applications of ESM from isotropic
materials to anisotropic materials and therefore to implement an effective computational
tool with respect to anisotropic materials in both 2D and 3D scenarios. Although scattering
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phenomena are investigated in details in this thesis, the proposed technique can be extended
to consider more practical aspects, especially in the dielectric antenna designs and 2D light
scattering problems.

1.2 Objectives

The main objective of this thesis is to extend the application of ESM from isotropic materials
to anisotropic materials in 2D and 3D scenarios. Several issues should be addressed according
to the main object, and they are:

1. In the 2D scenario, the radiation fields generated by a filamentary source placed in un-
bounded anisotropic region should be derived in order to apply the equivalent principle in
the ESM;

2. The constructions of an effective and accurate anisotropic impedance boundary condition
for multilayered CFC material and artificial surface should be introduced and discussed in
detail; The formulation with respect to different boundary conditions should be investigated
in the ESM;

3. In the 3D scenario, the dyadic Green’s functions, the placements of sources and the testing
strategy in the formulation of the ESM are required to be discussed in detail;

4. When a relatively large scatterer is considered, the construction of the impedance matrix
and the solution for a dense linear system require more considerations in the ESM in order
to have a fast simulation time;

5. The advantages and limitations of the ESM in comparison to other numerical techniques
should be addressed.

The above five objectives will be presented throughout this thesis. In general, an efficient,
concise and accurate simulation tool will be proposed, formulated and utilized in 2D and 3D
scenarios for the EM evaluations of anisotropic objects.

1.3 Outline of the thesis

The thesis is arranged in six chapters. In Chapter 2, the 2D scattering problems of an
anisotropic cylinder are considered. The 2D anisotropic Green’s functions are derived and
deployed in the proposed numerical technique. Instead of considering a whole anisotropic
region, an anisotropic shell is considered in Chapter 3. The tensorial impedance boundary
condition (TIBC) for a multilayered carbon fiber composites-based shell is constructed and
subsequently employed in the proposed numerical technique to evaluate the EM performances
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Figure 1.2 Basic description of CFC material

under various situations. The generalized sheet transition condition (GSTC), which is used
to characterize a metasurface, is also exploited in the proposed method to study the EM
phenomena of a cylindrical metasurface. In Chapter 4, we address the 3D case. We only
focus on the uniaxial material, yet the proposed technique can also be applied to other kinds
of anisotropic materials as long as the corresponding dyadic Green’s functions are available.
The derivation of uniaxial dyadic Green’s functions is briefly introduced and further deployed
in the formulation. The placements of testing points and sources with respect to the shape of
a structure are discussed in detail. In addition, we also propose a double-layered distribution
scheme of sources which can handle the scattering from a relatively larger object efficiently
and with a good stability in comparison to the traditional single-layered distribution scheme.
Finally, we bring the ESM to the application on large scatterers in Chapter 5. The construc-
tion of the impedance matrix in the ESM is accelerated by considering the symmetry of an
investigated object. Chapter 6 presents the thesis conclusions, contributions, limitations, and
expected future work.
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CHAPTER 2 TWO-DIMENSIONAL SCATTERING FROM
ANISOTROPIC HOMOGENEOUS CYLINDERS

The 2D scattering from homogeneous anisotropic cylinders will be discussed in detail in this
chapter. The multifilament current method (MFCM) is a commonly used name to designate
the ESM in the 2D scenario. Therefore the MFCM is used throughout this chapter. We start
with a derivation of 2D Green’s functions of anisotropic materials. This derivation is presented
in Section 2.1. Subsequently, the formulation procedure of the MFCM is introduced in Section
2.2. Several numerical examples, under different scenarios such as incident wave polarizations
and cylinder geometries as well as permittivity and permeability tensors, are investigated
in Section 2.3. To complete the analysis of the proposed MFCM on anisotropic materials,
the oscillation phenomenon of the filament currents with respect to the singularities of the
analytic continuation of scattered field within an elliptical scatterer and the ill-conditioning
issue of the constructed matrix in terms of the number of matching points and sources are
also studied and discussed, and presented in Section 2.4. Computed results are compared with
published ones and results obtained with commercial software packages. Good agreements
are achieved. Possible applications are introduced in Section 2.5.

2.1 2D dyadic Green’s functions of anisotropic materials

Let us consider a z-directed filamentary electric line source placed in an unbounded space
filled with an anisotropic material characterized by

ε “ ε0εr “ ε0

¨

˚

˝

εxx εxy 0
εyx εyy 0
0 0 εzz

˛

‹

‚

(2.1a)

µ “ µ0µr “ µ0

¨

˚

˝

µxx µxy 0
µyx µyy 0
0 0 µzz

˛

‹

‚

(2.1b)

where εr and µr are the relative permittivity and permeability tensors, respectively. The
expression of a z-directed electric line source is J “ I0δpx ´ xsqδpy ´ ysqẑ, where pxs, ysq is
the location of the line source and I0 is a complex coefficient. We will focus on the solution
of radiation fields from an electric line source firstly, while the solution of a magnetic line
source is straightforwardly obtained through duality.
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Figure 2.1 Geometry of the problem.

The first two Maxwell’s equations with an electric line source placed in the anisotropic region
read

∇ˆE “ ´jωµ0µrH (2.2a)

∇ˆH “ jωε0εrE ` J (2.2b)

where ε0 and µ0 are the permittivity and permeability of vacuum, respectively. The time
dependence ejωt has been assumed and suppressed.

The wave equation obtained from (2.2a) and (2.2b) reads

∇ˆ pµr´1∇ˆEq ´ k2
0εrE “ ´jωµ0J (2.3)

where k0 “ ω
?
ε0µ0 is the wavenumber of free space. On substituting B{Bz “ 0 in (2.2), it

is known that the electromagnetic field is separable into TM and TE modes [34] which are
excited, respectively, by electric and magnetic line sources. Equation (2.3) is then expanded
into the following matrix form

¨

˚

˝

A11 A12 0
A21 A22 0
0 0 A33

˛

‹

‚

¨

˚

˝

Ex

Ey

Ez

˛

‹

‚

“ ´jωµ0I0

¨

˚

˝

0
0

δpρ´ ρsq

˛

‹

‚

(2.4)
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with

A11 “ ´p33
B2

By2 ´ k
2
0εxx, A12 “ p33

B2

BxBy
´ k2

0εxy,

A21 “ p33
B2

BxBy
´ k2

0εyx, A22 “ ´p33
B2

Bx2 ´ k
2
0εyy,

A33 “ ´p22
B2

Bx2 ´ p11
B2

By2 ` pp12 ` p21q
B2

BxBy
´ k2

0εzz,

µr
´1
“

¨

˚

˝

p11 p12 0
p21 p22 0
0 0 p33

˛

‹

‚

where ρ “ xx̂ ` yŷ and ρs “ xsx̂ ` ysŷ. Since only the electric line source is present, only
the TM mode is excited, and therefore, Ex “ Ey “ Hz “ 0. Ez, reads from the last equation
in (2.4) as

pµxx
B2

Bx2 ` µyy
B2

By2 ` pµxy ` µyxq
B2

BxBy
` k2

0εzzγqEz

“ jωµ0I0γδpρ´ ρsq

(2.5)

with
γ fi µxxµyy ´ µxyµyx

In order to convert (2.5) into the standard Helmholtz equation form, a linear coordinate
transformation is proposed by letting:

ξ “ t3y

ζ “ t1x` t2y
(2.6)

with
t1 “ ´µyy; t2 “ pµxy ` µyxq{2; t3 “ ´

b

µxxµyy ´ t22

We then substitute (2.6) into (2.5) to obtain the standard Helmholtz equation form as

p∇2
ξζ `

k2
0εzzγ

M
qEzpξ, ζq “ j

ωµ0I0γ

M
δpξ ´ ξsqδpζ ´ ζsq (2.7)
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with
M “ t1pt1µxx ` t

2
2q

A similar coordinate transformation was derived in [30] but restricted to the condition µxy`
µyx “ 0. The proposed coordinate transformation in (2.6) is general and has no restrictions
on the parameters in (2.1). It is noteworthy that the linear relationship between pξ, ζq and
px, yq expressed in (2.6) is not unique. As long as the two coefficients in the term ∇2

ξζ are
equal and the coefficient of the term B2{BξBζ is zero after a transformation, the constructed
linear coordinate relationship is applicable to solve (2.7). The proposed transformation will
not be applicable when M “ 0, i.e., the situation pµxy ` µyxq

2 “ 4µxxµyy. In this case, (2.7)
becomes singular. The solution for (2.7) is known [100] to be

Ezpξ, ζq “ ´
k0η0

4M γI0H
p2q
0 pkRmq (2.8)

with
k2 “

k2
0εzzγ

M

Rm “
a

pξ ´ ξsq2 ` pζ ´ ζsq2

“

b

t21px´ xsq
2 ` pt22 ` t

2
3qpy ´ ysq

2 ` 2t1t2px´ xsqpy ´ ysq.

The transformation of (2.8) back to the original coordinates can be accomplished via the
following relation

Ezpx, yq “
Ezpξ, ζq

Jpξ, ζ;x, yq “
k0η0

4t1t3M
γI0H

p2q
0 pkRmq (2.9)

where Jpξ, ζ;x, yq is the Jacobian determinant of the coordinate transformation. Equation
(2.9) is the radiation electric field of an electric line source placed in an unbounded anisotropic
region.

Through equation (2.2a), the other two remaining field components Hx and Hy are obtained
as:

Hx “
j

ωµ0γ
pµyy

BEz
By

` µxy
BEz
Bx
q

Hy “ ´
j

ωµ0γ
pµyx

BEz
By

` µxx
BEz
Bx
q

(2.10)



11

where

BEz
Bx

“ ´
k0η0

4Mt1t3
γI0kH

p2q
1 pkRmqRe1

BEz
By

“ ´
k0η0

4Mt1t3
γI0kH

p2q
1 pkRmqRe2

Re1 “
t21px´ xsq ` t1t2py ´ ysq

Rm

Re2 “
pt22 ` t

2
3qpy ´ ysq ` t1t2px´ xsq

Rm

.

The three field components, Ez, Hx and Hy, generated by the electric line source belong
to the TM mode. In the case of the TE mode, when a magnetic line source expressed as
K “ K0δpx´xsqδpy´ ysqẑ is placed in an unbounded space constituted of the homogeneous
anisotropic material defined in (2.1), the radiation field expressions are straightforwardly
obtained via duality, that is [34]

εÑ µ k0 Ñ k0 H Ñ ´E

µÑ ε η0 Ñ 1{η0 E ÑH
(2.11)

According to (2.11), three field components, Hz, Ex and Ey, constitute the TE mode. It is
important to mention is that our proposed method is not valid in the case of γ “ 0. Since µr
(or εr for the TE case) would be not invertible under γ “ 0, therefore equation (2.3) would
not be applicable. The frequency-domain solver using a finite-element method (FEM) in the
commercial software package CST [101] also fails when γ “ 0 for the scattering evaluation of
an infinite anisotropic cylinder. The physical restriction behind this phenomenon needs more
investigations and is not addressed in this thesis.

Although the handling of anisotropic material by MFCM-like techniques is reported in
[18, 70–72], there are still many differences between our work and these references. The
anisotropic materials investigated in [18, 70, 71] are limited to the cases of diagonal ε or
µ, and in [72], they have to satisfy the conditions εxy ` εyx “ 0 and µxy ` µyx “ 0. The
proposed method can handle the anisotropic material with arbitrary ten parameters defined
in (2.1). Indeed, many anisotropic materials have a diagonal ε or µ such as the natural crys-
tals, and most of the anisotropic material with non-zero εxy, εyx, µxy and µyx satisfy the
conditions εxy ` εyx “ 0 and µxy ` µyx “ 0, such as the gyrotropic materials. However, as
discussed in [102], the nonreciprocal characteristic of an anisotropic material can be tuned
by varying the values of εxy and εyx. This phenomenon provides an attracting motivation to
design an artificial material with tunable non-diagonal elements in ε or µ. In addition, the
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isotropic but noncentrosymmetric materials, such as cadmium telluride (CdTe), cadmium
sulfide (CDS), gallium arsenide (GaAs), and zinc telluride (ZnTe) as introduced in [103], act
like an anisotropic material with εxy “ εyx when a dc electric field is applied. In this case, our
proposed method can conduct the electromagnetic evaluations of the anisotropic materials
introduced in [102] [103] whereas the MFCM-like techniques introduced in [18,70–72] are not
applicable.

The fields derived in this section play a key role in the MFCM when dealing with anisotropic
scatterers since they are the basis of field representations in the anisotropic medium filled
region.

2.2 Problem formulation

Based on the findings of the previous section, it is possible to introduce the formulation of
the MFCM in an anisotropic case. The problem is depicted in Fig. 2.1. The outer region
1 is considered as vacuum and the inner region 2 is occupied by the anisotropic material
characterized by (2.1). Regions 1 and 2 are separated by the boundary of the cylinder.

The concept of the MFCM is the same as described in [58] for the isotropic case and is
illustrated in Fig. 2.2 for reference. We place a set of z-directed filamentary currents with
unknown complex coefficients in regions 1 and 2. The electric line source is used for the TM
polarization scenario whereas the magnetic line source answers for the TE situation. The
formulation of the MFCM is conducted through two equivalences. Firstly, the scattered fields
in region 1 are generated by equivalent line sources placed in region 2, and those line sources
are treated as source currents radiating in an unbounded vacuum. Secondly, the internal
fields in region 2 are generated by equivalent line sources placed in region 1, and those line
sources are radiating in an unbounded space filled with a homogeneous anisotropic material
identical to that constituting the cylinder.

2.2.1 Fields Expressions

Only TM polarization is considered herein, the formulation of TE case can be obtained
straightforwardly via duality theorem and will not be presented in this Section. Region 1
contains the incident and scattered fields. The incident wave propagates in a direction per-
pendicular to the z-axis, therefore a 2D problem is considered. The incident fields can be
written as:

Einc “ ejk0px cosφinc`y sinφincqẑ (2.12a)
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Figure 2.2 Problem description for the MFCM.

Hinc “
´ sinφincx̂` cosφincŷ

η0
ejk0px cosφinc`y sinφincq (2.12b)

for the TM case, where k0 and η0 are the free space wavenumber and intrinsic impedance,
respectively. Although only plane wave incidence is considered in our numerical examples, the
proposed method has no restriction of the external field excitation as long as it is invariable
along the z-axis.

The scattered fields in region 1 are due to all z-directed current filaments in region 2, radiating
in the unbounded free space. The field expressions are given by

Es
1 “ ´

k0η0

4

N1
ÿ

i“1
I1iH

p2q
0 pk0R1iqẑ (2.13a)

Hs
1 “

k0

4j

N1
ÿ

i“1
I1i
py1is ´ yqx̂` px´ x1isqŷ

R1i
H
p2q
1 pk0R1iq (2.13b)

for the TM case. The term I1i is the unknown complex coefficient of ith electric current
source placed in region 2. N1 is the number of line sources in region 2, couple (x1is, y1is) is
the coordinate of the ith filament source position in region 2 and (x, y) is the observation
point. The term R1i is the distance between the ith filament source in region 2 and the
observation point, and it is calculated with:

R1i “
a

px´ x1isq2 ` py ´ y1isq2 (2.14)

The fields in region 2 are due to z-directed current filaments in region 1, radiating in the
unbounded space occupied by homogeneous anisotropic material. In light of the derived
radiation fields studied in Section 2.1, the total fields in region 2 could be expressed as
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E2 “

N2
ÿ

i“1
Eizẑ (2.15a)

H2 “

N2
ÿ

i“1
pHixx̂`Hiyŷq (2.15b)

for the TM case, where Eiz, Hix and Hiy are found in (2.9)-(2.10). N2 is the number of line
sources in region 1. The coefficient I0 in (2.9) should be replaced by I2i, representing unknown
complex coefficient of ith electric filament placed in region 1, in (2.15), and couple (x2is, y2is)
expresses the ith filament source position in region 1.

2.2.2 Boundary Conditions

The connection between the fields in regions 1 and 2 is dictated by the boundary conditions
at the cross section surface C of the cylinder indicated in Fig. 2.1. Specifically, the tangential
components of electric and magnetic fields must be continuous along the physical boundary
C, which leads to

n̂ˆ pEinc `E
s
1q “ n̂ˆE2

n̂ˆ pHinc `H
s
1q “ n̂ˆH2

(2.16)

where n̂ is a unit vector normal to the cylinder surface C as shown in Fig. 2.1. A linear system
is then created by imposing the boundary condition over a number of matching points on C,
as suggested in Fig. 2.2. The number of matching points (Nm) must satisfy the inequality

Nm ě N1; Nm ě N2 (2.17)

in order to determine the total unknown current coefficients (N1 in region 2 and N2 in region
1).

Upon the application of a point-matching procedure, we will finally obtain a matrix expression
of the type

rQsX “ B (2.18)

where X is a column vector containing the unknown current coefficients (K1 and K2, or I1

and I2), and B is another column vector containing samples of the incident tangential fields
at the matching points. rQs is a matrix whose entries are obtained from the tangential fields
of filaments at matching points, and it could be rectangular or square depending whether
oversampling is used or not. If it is in a square form, a unique solution can be found, otherwise
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the smallest least-square error solution is pursued [58] and will be (4.25) in Sec. 4.4.1. In the
numerical examples of Section 2.3, we will always adopt the square matrix rQs by letting
N1 “ N2 “ Nm “ N .

2.2.3 Source Location

The source location is dependent on the shape of the cylinder. The ad hoc R{2´2R rule used
in [58, 104] is effective for a circular boundary. In Fig. 2.3(a), a smooth circular boundary
is presented, the ad hoc R{2 ´ 2R rule is performed by uniformly placing filament currents
with a radius 2r in region 1 whereas with a radius r{2 in region 2, where r is the radius
of the circular cylinder. The location of the matching point is also uniformly placed on the
physical boundary C. For an unsmooth boundary as suggested in Fig. 2.3(b) which contains
sharp edges, the ad hoc R{2 ´ 2R rule is not applicable. Previous work have shown that
better results are obtained by locating sources closer to the edges and then gradually place
the others a distance away in order to better approximate the singular field behavior near
the edges [27,105]. The inner and outer source locations are symmetrical with respect to the
boundary, as shown in Fig. 2.3(b). The location of matching points on the physical boundary
also obey the same rule, that is, the matching points density increases near the edges. It is
noteworthy that the singularity problem appears in [30–33] when the distance between source
and field points vanishes, therefore a special treatment on Hankel function with argument
approaching zero should be considered. However, this singularity is avoided in the MFCM by
placing sources at a prescribed distance away from the matching points. A useful empirical
formula [105] for the source and matching point locations is given below. Taking the upper
side boundary in Fig. 2.3(b) as an example, the ith source position (ρs2, φs2) (the cylindrical
coordinate system is exploited herein for the convenience) in region 1 is given by

ρs2piq “ ρmax ´ pρmax ´ ρminq sinpπpi´ 1q
Nv ´ 1 q, 1 ď i ď Nv (2.19a)

φs2piq “ π{2´ pπ{2´ β ´∆φsq cospπpi´ 1q
Nv ´ 1 q, 1 ď i ď Nv (2.19b)

where ρmax “ c1r, ρmin “ c2r, r “
?
a2 ` b2 and β “ arctanpb{aq as Fig. 2.4 shows. c1 and

c2 are two coefficients yet to be determined with a convergence study. Nv is the number
of sources associated with the upper side boundary of the rectangular cylinder. For the ith
matching point (ρb, φb) on the upper side boundary is given by

φbpiq “ π{2´ pπ{2´ β ´∆φsq cospπpi´ 1q
Nv ´ 1 q, 1 ď i ď Nv (2.20a)
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(a) (b)

Figure 2.3 Source location strategies for (a) circular and (b) rectangular cross sections.

Figure 2.4 Configuration of a rectangular cylinder.
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ρbpiq “
b

| sinpφbpiqq|
, 1 ď i ď Nv (2.20b)

where ∆φs denotes a suitably chosen angular shift in the azimuthal direction relative to each
edge position as shown in Fig. 2.4. A small section of the boundary Ce in terms of the 2∆φs is
defined at each edge of the rectangular cylinder as depicted in Fig. 2.4. The Ce at each edge is
untouched in the MFCM, which means no matching points are placed on it. In our numerical
examples which involve rectangular cylinders, the ∆φs is chosen as πr{p360λq, which makes
the length of the Ce is very small compared with the incident wavelength and therefore the
scattered far-field is not expected to be greatly affected.

So far, all information has been presented for setting up the linear system. Once the current
magnitudes are determined, the fields and related parameters of interest can be evaluated in
a straightforward manner.

2.3 Scattering analyses of cylinders with different shapes

Based on the numerical scheme described in previous sections, a computer program has been
implemented. The program computes the 2D scattering width (σ) normalized to the incident
wavelength (λ), defined as

σe
λ
“ lim

rÑ8
p2πr |E

s
z |

2

λ |Ei
z|

2 q (2.21a)

for the TM case, and
σh
λ
“ lim

rÑ8
p2πr |H

s
z |

2

λ |H i
z|

2 q (2.21b)

for the TE case. It is noteworthy that εxx, εxy, εyx, εyy, and µzz are presented in the field
expressions for the TE case whereas µxx, µxy, µyx, µyy, and εzz are used for the field expressions
of the TM case. The parameters of ε and µ in our numerical examples are referred to existing
publications to allow comparisons with previously computed results.

The first example is a circular anisotropic cylinder under a TE polarized incident wave.
Fig. 2.5 shows the normalized scattering width response of a circular cylinder under three
different cases. The first case is a cylinder with k0r “ π{2, where r is the radius of the
cylinder, characterized by εxx “ 4εyy “ 4, εxy “ εyx “ 0, and µzz “ 2. The incident wave
is assumed to propagate normally along the negative x-direction (φinc “ 0˝). The bistatic
normalized scattering width response versus φ is presented in Fig. 2.5. Case 2 corresponds to
a gyrotropic-type cylinder characterized by the following medium parameters: εxx “ εyy “ 4,
εxy “ ´εyx “ 2, and µzz “ 2. The size of the cylinder and the incident wave are the same as in
the previous example. The bistatic normalized scattering width computation is also depicted
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Figure 2.5 Normalized scattering width response of a circular cylinder under the TE polarization.
(case 1: bistatic scattering width response with k0r “ π{2, εxx “ 4εyy “ 4, εxy “ εyx “ 0, µzz “ 2,
φinc “ 0˝; case 2: bistatic scattering width response with k0r “ π{2, εxx “ εyy “ 4, εxy “ ´εyx “ 2,
µzz “ 2, φinc “ 0˝; case 3: monostatic scattering width response versus φinc with k0r “ π{2,
εxx “ 4´ j, εxy “ 3´ j, εyx “ 1` j, εyy “ 2´ j, µzz “ p23´ 37jq{26).

in Fig. 2.5. Case 3 is the monostatic normalized scattering width response of an arbitrary
anisotropic cylinder with the same size as the previous two cases, while characterized by the
medium parameters: εxx “ 4´j, εxy “ 3´j, εyx “ 1`j, εyy “ 2´j, and µzz “ p23´37jq{26.
The monostatic normalized scattering width response is plotted in Fig. 2.5. The results for
the three cases are compared with those presented in [34]. An excellent agreement can be
observed in all cases.

In order to study the convergence of the results, we make use of the error on the imposed
tangential E-field and H-field boundary condition as metrics, whose definition read

∆Ebc “
|n̂ˆ pEs

1 `Einc ´E2q|

|Einc|
(2.22a)

∆Hbc “
|n̂ˆ pHs

1 `Hinc ´H2q|

|Hinc|
(2.22b)

∆Ebc and ∆Hbc are evaluated on contour C, between the matching points used to solve (2.18).
The necessary numbers of sources and matching points in MFCM-based numerical calculation
are increased until ∆Ebc and ∆Hbc reach the desired level of accuracy. Convergence for the
case of a circular anisotropic cylinder is easy to achieve, and therefore the convergence study
is omitted herein. The numbers of matching points and the sources in each region are selected
to be equal (N1 “ N2 “ Nm) in the above three examples. Placing 16 filamentary currents
per region (N1 “ N2 “ 16) and 16 matching points on the boundary has led to a stable
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(a) (b)

Figure 2.6 (a) E-field and (b) H-field boundary condition error of an anisotropic square cylinder
under the TM polarization. (k0a “ 2.5, µxx “ 2, µyy “ 4, µxy “ µyx “ 0, εzz “ 2, φinc “ 270˝).
Variable s is a parameter controlling the position around the cylinder, as illustrated in the inset.

result.

We will now consider an anisotropic square cylinder (a “ b) with k0a “ 2.5 under the TM
scenario, characterized by µxx “ 2, µyy “ 4, µxy “ µyx “ 0, and εzz “ 2. The incident plane
wave is assumed to propagate along the positive y-direction (φinc “ 270˝). The result of the
convergence study is depicted in Fig. 2.6. The reason why ∆Ebc has a larger value than the
∆Hbc is not clear and requires more investigations in the future work. Nv is the number of
sources associated with each side boundary per region and defined in (2.19). Constants c1

and c2 in (2.19) are found to be 0.99 and 0.8, respectively. Using (2.22), the field discontinuity
is calculated at 160 sampling points uniformly selected on the square boundary C. Plots of
∆Ebc and ∆Hbc for different values of Nv are presented in Fig. 2.6. If we take p∆Ebc and
∆Hbcq ă 2% as a criteria to determine the necessary number of sources, Nv “ 16 would be
sufficient, which amounts to 64 sources per region and a total of 128 unknowns for the square
cylinder computation. The determined number of sources under the p∆Ebc and ∆Hbcq ă 2%
criterion is valid for the cases with k0a ď 2.5, the p∆Ebc and the criterion should be retested
when k0a ą 2.5. It can be seen in Fig. 2.6 that the largest errors occur near the corners
or the cylinders, i.e. in the Ce interval where the MFCM applies no point matching. The
normalized bistatic scattering width versus the scattering angle under the TM polarization
computed with the MFCM is presented in Fig. 2.7. The general trends of the three curves are
similar but large differences occur near the maximums, especially with the results of [41]. The
expected symmetry of the results with respect to φ “ 90˝ is clearly observed in the MFCM
solution, but the solution of [41] has obviously asymmetry, as for example between results
at φ “ 60˝ and φ “ 120˝. It is reasonable to have small differences between our results and
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Figure 2.7 Bistatic normalized scattering width response of an anisotropic square cylinder under
the TM polarization. (k0a “ 2.5, µxx “ 2, µyy “ 4, µxy “ µyx “ 0, εzz “ 2, φinc “ 270˝).

published ones because the treatments on the problem differ. It is hard to say with absolute
certainty which one of these methods gives the best result.

The next example is a gyrotropic-type square cylinder with three different k0a values, char-
acterized by µxx “ µyy “ 4, µxy “ ´µyx “ 2, and εzz “ 2. The incident wave is TM
polarized with φinc “ 180˝. The boundary condition error is also tested and the criterion
∆Ebcp∆Hbcq ă 2% is taken to determine the necessary number of sources as well as pa-
rameters c1 and c2. Using c1 “ 0.995 and c2 “ 0.85, this convergence criterion is obtained
with Nv “ 17 for the three simulated k0a values. The bistatic normalized scattering width
responses of the gyrotropic-type square cylinder are presented in Fig. 2.8. It indicates the
scattering responses at different frequencies differ, and an asymmetric response with respect
to φ “ 180˝ is obtained due to the gyrotropic anisotropy.

The next example is the monostatic normalized scattering width responses of an anisotropic
rectangular cylinder with k0b “ 5 and various k0a values under the TM situation. The medium
parameters are µxx “ 4, µxy “ ´µyx “ 2 ´ j, µyy “ 2 and εzz “ 2. We assume that Nv is
the number of sources associated with upper or lower side boundaries, whereas Nh is the
number of sources associated with left or right side boundaries. Nv was equal to Nh for the
computation of a square cylinder, whereas in the case of a rectangular cylinder, the Nv and
Nh are distinct. Once again, a convergence criterion p∆Ebc and ∆Hbcq ă 2% is considered.
The calculated scattering widths are shown in Fig. 2.9. To obtain the three curves, Nv was
found to be 19 whereas Nh was 44 for k0a “ 2, 39 for k0a “ 3 and 31 for k0a “ 4, along with
c1=0.995 and c2 “ 0.85. The different width ratios of the rectangular geometry will lead to
similar scattering responses yet with dissimilar details, as Fig. 2.9 indicates.
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Figure 2.8 Bistatic scattering width response of a gyrotropic-type square cylinder under the TM
polarization. (µ11 “ µ22 “ 4, µ12 “ ´µ21 “ 2, ε33 “ 2, φinc “ 180˝).

Figure 2.9 Monostatic scattering width response of an anisotropic rectangular cylinder under the
TM polarization. (k0b “ 5, µxx “ 4, µxy “ ´µyx “ 2´ j, µyy “ 2, εzz “ 2).
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(a)

(b)

Figure 2.10 The PEC cylinder coated with an anisotropic material scenario. (a)Geometry and (b)
locations of matching points and sources
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The scattering from a PEC cylinder coated with an anisotropic shell, as depicted in Fig.
2.10(a), also can be handled straightforwardly without more modifications in the formula-
tion. Compared to the previous examples, three regions instead of two are presented in this
scenario. The outermost region 1 is free space, the region 2 is a shell with two physical
boundaries C1 and C2 occupied with the anisotropic material, and the innermost region 3
is a PEC rod with a radius ra. The locations of matching points and sources are shown in
Fig. 2.10(b). The formulation is similar to that of circular anisotropic cylinders. The only
difference is that two sets of filamentary sources, associated to the two physical boundaries
of the region 2, are required to simulate the fields inside of the anisotropic shell. The ad hoc
R{2 ´ 2R rule is also adopted for the source location. The anisotropic shell and PEC rod
have dimensions of k0ra “ 1 and k0rb “ 2, and the medium parameters of the anisotropic
material are µxx “ 1.5, µyy “ 2.5, µxy “ ´µyx “ 3, and εzz “ 1.5. The normalized scattering
width responses are presented in Fig. 2.11 under the TM polarization with different incident
angles. Our calculated result for the scenario of φinc “ 0˝ has an excellent agreement with
that of [38]. Scattering responses with another three different incident angles are also shown
in Fig. 2.11, the scattering widths are the same between φinc “ 0˝ and φinc “ 180˝ cases, or
φinc “ 90˝ and φinc “ 270˝ cases except for a π angle shift, whereas the scattering widths
between φinc “ 0˝ and φinc “ 90˝ differ due to the gyrotropic anisotropy of the shell. Al-
though only the circular shape is considered in this example, the proposed technique has no
restrictions on the geometry of the cross section.

2.4 The behaviors of filament currents in terms of scattered fields singularities
and matrix ill-conditioning

The singularities of the analytic continuation of the scattered field in the interior of scatterers
with circular and noncircular shapes have been discussed in [2,106–110] under a plane wave or
line source illumination. Yet only PEC and isotropic dielectric scatterers have been considered
so far. To complete the analysis of the proposed MFCM on ansiotropic materials, we conduct
the study of scattered fields singularties for an anisotropic elliptical cylinder with a TM
incident plane wave. The configuration of the anisotropic elliptical cylinder is depicted in
Fig. 2.12. The dimensions of the cylinder are k0a “ 2π and k0b “ 1.6π with a “ 1λ and
b “ 0.8λ, and the material in region 2 is characterized by µyy “ 4µxx “ 4, µxy “ µyx “ 0, and
εzz “ 2. The incident TM wave is assumed to propagate normally in the negative x-direction
(φinc “ 0˝). The eccentricity of the elliptical contour is e “ 0.6. The locations of matching
points and sources are displayed in Fig. 2.12(b). Two virtual curves where sources are placed,
C1 and C2, are similar ellipses inside and outside C with the same eccentricity e but different
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Figure 2.11 Bistatic scattering width response of an anisotropic shell coated PEC cylinder with
various incident angles under the TM polarization. (k0ra “ 1, k0rb “ 2, µxx “ 1.5, µyy “ 2.5,
µxy “ ´µyx “ 3, εzz “ 1.5).

(a)

(b)

Figure 2.12 (a) Configuration of an anisotropic elliptical cylinder, and (b) locations of matching
points and sources. (The two crosses represent the position of singular points).
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semiaxes lengths. We define the semiaxes lengths of C1 as ain “ ξina and bin “ ξinb, while
aout “ ξouta and bout “ ξoutb are the semiaxes lengths for C2. The singularities of the analytic
continuation of the scattered field inside the elliptical boundary C, as described in Fig. 2.12(a)
with two crosses, lie at two focal points [2], i.e. px, yq “ p˘c, 0q where c “ 0.6 in this scenario.
Two numerical examples are conducted herein. Sixty matching points and sixty sources per
region are enough to satisfy the imposed boundary condition criteria and are used to do the
simulation in each example. The strategy for the placements of matching points and sources
refers to [2], and a bit more sources and matching points are placed around φ “ 0˝ and
φ “ 180˝ areas.

The first example contains two scenarios: 1) ξin “ 0.75 and ξout “ 1.25, and 2) ξin “ 0.75 and
ξout “ 1.55. Therefore the two internal singularities are enclosed by C1 in both case of the
first example. The investigation for behaviors of filament currents lying in the interior of the
scatterer is conducted by considering different placements of outside filament currents, i.e.,
ξout “ 1.25 and ξout “ 1.55. The second example also contains two scenarios: 1) ξin “ 0.45
and ξout “ 1.25, and 2) ξin “ 0.45 and ξout “ 1.55. Therefore the singularities inside C
are not enclosed by C1 in both cases this time. Also, the investigation is conducted with
different placements of outside filament currents. The real and imaginary parts of normalized
currents inside and outside the scatterer are computed. The computed results for the first
and second examples are shown in Fig. 2.13 and Fig. 2.14, respectively. From Fig. 2.13(a)
and 2.13(b), we can see that the normalized currents placed on C1 are relatively smooth and
have relatively small values when inside singularities are enclosed, and the behaviors of inside
filament currents are not affected by the placement of outside currents. It is noteworthy that
the variation of currents in Fig. Fig. 2.13(a) and 2.13(b) is not very smooth. This phenomenon
slightly violates with the observation from [2] where a PEC elliptical cylinder is considered.
The reason is due to the anisotropy of the material since a smooth oscillation was observed if
we change the value of µxx from 1 to 4 in our code. In this case the material is isotropic with
εr “ 2 and µr “ 4. The calculations of scattered fields on the physical boundary using the
two sets of currents are almost the same, which coincides with that observed in [2,108,110],
and they have a good agreement with that obtained from commercial software package CST,
as Fig, 2.13(c) shows.

On the other hand, the normalized inside currents present rapid oscillations and reach large
values, as Figs. 2.14(a) and 2.14(b) indicate, when the inside singularities are not enclosed,
and this phenomenon is also not affected by the currents placed outside. However, an inter-
esting thing is that the calculated scattered fields on the physical boundary using the two
sets of currents, as shown in Fig. 2.14(c), are different in this example. The fields generated
in case 2 are not as accurate as case 1, but the accuracy can be improved to as good as case
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(a) (b)

(c)

Figure 2.13 The computed real and imaginary parts of normalized inside currents on virtual internal
surface C1 using ξin “ 0.75, (a) ξout “ 1.25 and (b) ξout “ 1.55 versus filament index l. (E is the
complete elliptic integral of the second kind, and the normalization method of currents is referred
to [2]). (c) The comparison between the calculated electric field on the boundary using FEM (CST)
and proposed MFCM. In all cases, the first filament current is located at φ “ 0˝.
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(a) (b)

(c)

Figure 2.14 The computed real and imaginary parts of normalized filament currents on virtual
surfaces C1 (internal region) with ξin “ 0.45, (a) ξout “ 1.55 and (b) ξout “ 1.25 versus filament
current index l. (c) The comparison between the calculated electric field on the boundary using
FEM (CST) and proposed MFCM.
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1 by increasing the numbers of matching points and sources.

Based on the two examples, we can draw the following conclusions:

a. Only when the inside two singularities are enclosed by the virtual curve C1, the currents
placed within the scatterer are relatively smooth and have relatively small values, otherwise
they will be divergent and have big values. This phenomenon is not affected by the placement
of outside currents. In addition, the placement of the outside sources would not affect the
calculated results if it is not placed too close to the physical surface.

b. The calculation of scattered fields on the physical boundary is taken as a reference standard.
The accuracy and efficiency of the two cases in the first example are almost the same. The
calculated results have a good agreement with that obtained from the FEM (CST), but the
efficiency of the proposed MFCM has a clear advantage over FEM (CST). The CPU time
and required memory are 611 s/7.50 GB for the FEM (CST) whereas only 1.58 s/0.00037 GB
for the proposed MFCM. These phenomena coincide with that reported in [2] where PEC
cylinders are considered. Yet in the second example, the accuracy of the scenario 2 is not as
good as scenario 1 or the scenarios in the first example. The performance in scenario 2 can
be improved by increasing the numbers of matching points and sources, which means the
efficiency of scenario 2 is also affected when the placements of sources are wrongly selected.

The matrix ill-conditioning issue is another important aspect of the proposed MFCM. The
condition number of a constructed linear system matrix will increase as the numbers of
matching points and sources increase. It has been shown in [107, 109, 111] that there is a
tradeoff between the attained boundary condition error and matrix condition number in
terms of the numbers of matching points and sources in the case of isotropic materials,
and the same phenomenon occurs in the anisotropic scenario. The condition number of the
constructed matrix rQs and the average E-field boundary condition error ∆Ẽbc versus the
parameter ξin under different number of matching points are shown in Fig. 2.15. The ∆Ẽbc
is defined as:

∆Ẽbc “
1
Nt

Nt
ÿ

i“1
∆Ei

bc (2.23)

where ∆Ei
bc is ∆Ebc response defined in (2.22a) at the ith testing point selected on the

physical boundary. The strategy to place the test points is the same with that to place
matching points, but more testing points (Nt “ 2N) were selected in our programme to
obtain Fig. 2.15. When ξin becomes very small, rQs becomes high and unstable in all cases.
In addition, the logpcondprQsqq decreases more rapidly with a smallerN value when increasing
the ξin. On the other hand, placing the inside sources too close to or too far from the physical
boundary leads to a bad ∆Ẽbc response as shown in Fig. 2.15 for N “ 60 and N “ 80. It
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is interesting to see that the ∆Ẽbc increases sharply as the sources approach the physical
boundary whereas is not accompanied with an increase of logpcondprQsqq. This increase of
error is therefore due to the fast variations of the Hankel functions with small arguments, and
is not related to numerical errors in matrix operations. The N “ 40 scenario, which means 40
matching points and sources per region, is insufficient to obtain a solution with an acceptable
accuracy though a smaller condition number of rQs is attained. The observations in Fig. 2.15
are consistent with results shown in [106,107,111]. The rapid oscillation of filament currents
observed in Fig. 2.14(a) is not caused by round-off errors or matrix ill-conditioning since the
choices of ξin “ 0.45 and ξin “ 0.75 with N “ 60 and ξout “ 1.5 lead to a solution with an
acceptable ∆Ẽbc and a reasonable condition number as indicated in Fig. 2.15.

2.5 Possible applications and conclusion

The artificial material, such as uniaxial wire medium, carbon-fiber composite material, fer-
romagnetic nanowire metamaterials, behaves as anisotropic materials and has found growing
applications in practice. The systematically proposed MFCM could be a good candidate to
handle the EM simulation in a set of scenarios where anisotropic materials are involved. For
example:

a. The contents presented in this chapter can be applied directly to analyze periodic anisotropic
cylinders, as shown in Fig. 2.16. The formulation is similar to that discussed in [68] by
plugging-in the 2D Green’s function which derived in this paper. The slab embedded with
periodic anisotropic cylinders inside is expected to have more freedom to control the scattered
waves in comparison to that embedded with isotropic cylinders, and it also could be used to
construct novel optical waveguides. Our proposed MFCM could be used to do the simulation
of this kind of slabs.

b. As shown in [112], an array of dielectric cylinders could be used to build a flat lens.
Therefore, it is possible for a flat lens to have extra performances if the inside isotropic
cylinders are replaced by anisotropic ones. The proposed MFCM combined with the periodic
boundary consideration [112] could be exploited to simulate the EM performance of a flat
lens built with periodic anisotropic cylinders in an efficient manner.

c. The proposed MFCM could be used to simulate the EM performance of a wire medium.
The description of a wire medium is shown in Fig. 2.17 [113]. As discussed in [113], the wire
medium can be treated as a homogeneous uniaxial material. By using the proposed MFCM,
it is possible to study the wave propagation of a uniaxial wire medium illuminated by line
sources or plane waves in an efficient way.
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Figure 2.15 The responses of condition number of matrix rQs and average E-field boundary condi-
tion error ∆Ẽbc versus the parameter ξin with different N values. (ξout “ 1.5.)

Figure 2.16 The description of a slab embedded with periodic anisotropic cylinders which could be
made by stacking two distinct dielectric slabs periodically.

Figure 2.17 The geometry of the wire medium: a rectangular lattice of parallel ideally conducting
thin wires.
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A method to estimate 2D electromagnetic scattering from a homogeneous anisotropic cylin-
der has been proposed in this chapter. The radiation fields of a line source placed in an
unbounded region occupied with the anisotropic material has been derived. The formulation
of the MFCM which employs derived radiation fields is systematically presented to deal with
anisotropic materials for the first time. Several numerical examples are provided. Monostatic
and bistatic normalized scattering widths are computed with reference to different scenar-
ios such as incident wave polarizations, material characteristics, and cross section shapes. A
boundary condition error is proposed and tested in order to determine the necessary num-
bers of sources and matching points. The analyses of the oscillation of filament currents
associated with the singularities of the scattered fields’ analytic continuation and the ma-
trix ill-conditioning are also presented and discussed in detail. Our computed responses are
in good agreement with results already published, which prove that we have succeeded in
extending the application of the MFCM to anisotropic materials. Moreover, our proposed
method has its merits on simplicity and conciseness in the formulation. The CPU time and
required memory are 611 s/7.50 GB for the FEM (CST) whereas only 1.58 s/0.00037 GB
for the ESM when computing the field on the surface of an elliptical cylinder under the
illumination of a TM plane wave. The necessity of integrating surface currents and the sin-
gularity issue (the filament current and the physical boundary coincide) are also avoided in
the MFCM. Some potential applications are also briefly introduced.



32

CHAPTER 3 ELECTROMAGNETIC SIMULATIONS USING
ANISOTROPIC BOUNDARY CONDITIONS

In this chapter, we will explore the application of the MFCM (therefore 2D scenario) on
anisotropic shells by deploying correspond boundary conditions into the formulation. Specif-
ically, we will focus on the carbon-fiber composites (CFC) material, which has been widely
used in modern spacecraft and aircraft industries to realize lightweight aircraft fuselage, tail
or wings, as seen for instance in the Boeing-787 and Airbus-220 jetliner. The CFC material
is usually characterized by a tensor permittivity according the effective medium theory [93],
and based on this tensor model, we will formulate a tensorial impedance boundary condi-
tion (TIBC) to represent multilayered CFC-based slabs, as will be introduced in Sec. 3.1.
Subsequently, in Sec. 3.2, the scattering and shielding analyses of CFC-based cylindrical
shells using the MFCM are introduced by deploying the formulated TIBC. The slot shell is
discussed in Sec. 3.3 by using a hybrid boundary condition. In Sec. 3.4, we will study the
scattering from a shell characterized by the generalized sheet transition condition (GSTC),
which has been used to represent a metasurface. Finally, the induced currents on the surface
of a CFC-based shell under the illumination of line sources are analyzed in Sec. 3.5 using the
proposed MFCM.

3.1 Formulation of the TIBC of the multilayered CFC material

3.1.1 Generalized impedance boundary condition (GIBC)

Before considering the CFC material, we firstly discuss an isotropic lossy material filled slab,
as shown in Fig. 3.1. The GIBC is commonly used to relate the tangential E and H field
components on the two sides of a dielectric slab. The proposed GIBC in [22, 114] is able
to consider an isotropic dielectric slab with arbitrary thickness and arbitrary losses, and it
reads:

»

—

—

—

—

–

E1x

E2x

E1y

E2y

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

zs ´zt 0 0
zt ´zs 0 0
0 0 ´zs zt

0 0 ´zt zs

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

H1y

H2y

H1x

Hp2x

fi

ffi

ffi

ffi

ffi

fl

(3.1)

with

zs “ ´jc cotpkzdq; zt “ ´jc cscpkzdq

c “ ωµ0{kz; kz “
a

ω2µ0ε´ k2
t
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Figure 3.1 The description of a dielectric slab with notation of fields.

where kt is the tangential component of the wave number. Variable d is the thickness of
dielectric slab panel and k0 is the wave number in the incident air region.

3.1.2 Propagation modes in unbounded CFC-filled region

Fig. 3.2 shows the layout of a single planar CFC-based slab. It consists of a binding matrix re-
inforced by carbon fiber inclusions. The effective medium theory (EMT) provides an accurate
and concise solution to represent the CFC material as a homogeneous uniaxial nonmagnetic
(µ “ µ0) material. D is the diameter of inside carbon fiber rod, and P is the distance be-
tween two adjacent fiber rods. Two coordinates are shown in Fig. 3.2, one is global coordinates
(represented with xyz), the other is local coordinates (represented with x1y1z1). z and z1 are
overlapped in the two coordinate systems. The local coordinates are used to characterize the
directions along the fiber orientation (x1) and perpendicular to the fiber orientation (y1). The
relationship between these two coordinates depends on the fiber orientation ξ and will be
discussed later.

According to the EMT method, if we use εa and εb to represent the complex permittivity of
directions along and perpendicular to the fiber orientation, the complex permittivity tensor
[93] in local cylindrical coordinates is defined as
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Figure 3.2 Layout of the single CFC-based planar layer.

ε “

»

—

–

εa 0 0
0 εb 0
0 0 εa

fi

ffi

fl

x1y1z1

(3.2)

This bulk tensor permittivity is accurate enough to represent the electromagnetic character-
istics of a single CFC-based layer as long as the condition P {λ ăă 1 is satisfied according to
the EMT, where P is the distance between two fiber rods as shown in Fig. 3.2. This condition
is generally met in practical composites used aerospace applications. The range of validity
of the EMT as well as its limitation are beyond the scope of this thesis. We will assume
the condition P {λ ăă 1 is always satisfied and the bulk tensor permittivity will be used to
represent the CFC material in all the following discussions and numerical examples.

The complex permittivity in the z1 direction, in this case, is chosen to be the same as that
in the x1 direction as referred from [93]. While the complex permittivity also can be chosen
to equal to that in the y1 direction as used in [115], [116]. Both choices have no influence
on the numerical results due to the prorogation modes of unbounded CFC material are only
related to the complex permittivities in x1 and y1 directions. The two propagation modes are
discussed in Appendix A in detail, and read:

k12za “ ω2µ0εa ´ k
12
x ´ k

12
y (3.3a)

for the TM1 case, and
k12zb “ ω2µ0εb ´ k

12
x ´

εb
εa
k12y (3.3b)

for the TE1 case. Where k1x and k1y are the tangential components of the wave number in the
unbounded CFC material. Notice that the z and z1 are overlapped in two coordinate systems.
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In practice, the CFC materials are lossy. The conductivities of commonly used CFC materials
in the aircraft industry are around 104 S{m and 101 S{m in the directions parallel and per-
pendicular to the fiber orientation, respectively. In our scattering and shielding effectiveness
(SE) analyses, the conductivity involved in the imaginary part of εa is around 40000 S{m,
as suggested in [117], [115] and [116]. The conductivity contributing to the imaginary part
εb is around 50 S{m [115], and in this case, the propagation modes derived in (A.4) will
degenerate as

k12za “ ω2µ0εa (3.4a)

for the TM1 case, and
k12zb “ ω2µ0εb (3.4b)

for the TE1 case in our investigated frequency range (10Hz„10GHz). (3.4) indicates that
the two prorogation modes can be independent to the tangential components k1x and k1y,
relating to the incident waves from exterior region due to the continuity of tangential fields
at the interface of two mediums, under certain conditions of CFC materials containing high
conductivities. Since the TIBC is constructed on the base of the prorogation modes in (3.4)
as will be shown later, the incident angle independent propagation modes will finally result
in an incident angle independent TIBC. This type of impedance boundary condition would
be much more useful in 3D electromagnetic field solvers since in practical problems, the
incident field is not a plane wave with a well-defined polarization and angle of incidence, but
it could be a non-uniform spherical wave coming from a nearby source such as an antenna.
In Appendix B, we provide a condition when the incident angel could be omitted in terms
of the conductivities of the CFC material, and this condition is satisfied in all CFC material
related numerical examples presented in this chapter.

Observe that there exists distinct propagation constants for the TE1 and TM1 cases in the
unbounded CFC material filled region. The field components in global system are easily ob-
tained through coordinate rotation matrix (R) which defined with respect to fiber orientation
ξ and will be introduced later.

3.1.3 TIBC of a multilayered CFC-based shell

The CFC-based cylindrical shell model is obtained by rolling the planar slab so as to form
a one-layer cylinder of radius ra parallel to the z-axis. It is convenient to assume that this
cylinder is centered on the z-axis. By doing so, the carbon fibers inside of the rolled slab
will form helices, as shown in Fig. 3.3(a). The distance P between two fibers in Fig. 3.2
is the pitch length in Fig. 3.3(a), and the fiber orientation ξ in Fig. 3.2 is the pitch angle
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(a) (b)

Figure 3.3 (a)Carbon fiber path of the single CFC-based cylindrical layer. (b) Homogenized cylinder
discretization approach.

indicated in Fig. 3.3(a). The EMT approach used in the case of the planar shape is also
applicable to the cylindrical scenario. For the convenience, the cylindrical coordinate system
is utilized as shown in Fig. 3.3(a). Two coordinate systems are shown in Fig. 3.3(a), one is the
global coordinates (represented with ρφz), the other is the local coordinates (represented with
ρ1φ1z1). ρ and ρ1 are overlapped in the two coordinate systems. The fiber orientation in the
cylindrical shell is parallel to φ1 and perpendicular to z1 directions. The relationship between
these two coordinates also depends on the fiber orientation ξ. The tensor permittivity which
defined in (3.2) should be modified in the cylindrical coordinate system as

ε “

»

—

–

εa 0 0
0 εa 0
0 0 εb

fi

ffi

fl

ρ1φ1z1

(3.5)

and the two propagation modes in the cylindrical coordinate system read

k12ρa “ ω2µ0εa (3.6a)

for the TM1 case, and
k12ρb “ ω2µ0εb (3.6b)

for the TE1 case. The plane wave in free space will be refracted into the ρ-direction when it
enters the highly conductive shell as shown in Fig. 3.3(b) due to
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k0 sin γ
kρa

ăă 1 (3.7a)

k0 sin γ
kρb

ăă 1 (3.7b)

are always well satisfied in our investigated frequency range (10 Hz„10 GHz). Here γ is the
incident angle shown in Fig. 3.3(b). The tangential part of the wave vector k0 sin γ is small
compared with the radial part kρ. Therefore it is reasonable to assume that waves propagate
along the radial direction in the CFC-based shell.

As discussed in Sec. 3.1.1, for isotropic material which only contains one propagation mode,
the tangential field components at the two interfaces of a slab can be related by the GIBC
[114, 118]. However, as seen in the previous discussion, two different propagation constants
kρ are present under the TE1 and TM1 cases. Therefore, the GIBC needs to be modified as
a tensorial impedance boundary condition (TIBC) to represent the physics of the problem.
With the help of GIBC, the TIBC for a planar CFC-based slab as shown in Fig. 3.2 is
easily obtained by introducing two propagation modes in the impedance matrix. On the
other hand, for a CFC-based shell, the circular boundary is discretized by a set of matching
point pairs in our proposed numerical technique, as shown in Fig. 3.3(b). In our scattering
and SE analyses, the thickness of a single layer CFC-based shell is d=0.127 mm, and it
is much smaller than the radius of the shell (around 1 m). Based on these conditions, the
curved boundary can be locally approximated by a set of planar boundaries. Moreover, it
also has been shown in [119] that the differences between those thin shell examples with or
without considering the curvature effect were not significant. Therefore the TIBC for a planar
CFC-based slab can be directly exploited at each matching point pair without considering
the curvature effect. The number of matching points is increased until a convergence of the
solution is achieved. A useful rule to determine the numbers of matching points and sources
for structure with a smooth boundary is using SPW “ 5 which means placing 5 points
in each λ, where SPW means samples per wavelength. The relationship of tangential field
components in local coordinates for the ith CFC-based layer at each matching point pair
reads

»

—

—

—

—

–

E 1iφ

E 1pi`1qφ

E 1iz

E 1pi`1qz

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

zsE ´ztE 0 0
ztE ´zsE 0 0
0 0 ´zsM ztM

0 0 ´ztM zsM

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

H 1
iz

H 1
pi`1qz

H 1
iφ

H 1
pi`1qφ

fi

ffi

ffi

ffi

ffi

fl

(3.8)
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with
zsE “ ´jc1 cotpkiρadq; zsM “ ´jc2 cotpkiρbdq
ztE “ ´jc1 cscpkiρadq; ztM “ ´jc2 cscpkiρbdq

(3.9)

where c1 “ ωµ0{kiρa, c2 “ ωµ0{kiρb, and d is the layer thickness, which will be assumed
constant for all layers for the simplicity. For an arbitrary cross section as depicted in Fig. 3.4,
a local orthogonal coordinate system represented by ζτϑ with respect to the planar boundary
obtained after discretizing should be constructed, and a relationship between local orthogonal
and main coordinate systems must be carefully established. For the multilayered situation,
as shown in Fig. 3.5, the chain matrix (ABCD-matrix) relationship of tangential fields should
be exploited. It is easy to obtain the chain matrix via (3.8), and it can be written as

»

—

—

—

—

–

E 1iφ

H 1
iz

E 1iz

H 1
iφ

fi

ffi

ffi

ffi

ffi

fl

“ rAis

»

—

—

—

—

–

E 1pi`1qφ

H 1
pi`1qz

E 1pi`1qz

H 1
pi`1qφ

fi

ffi

ffi

ffi

ffi

fl

(3.10)

where rAis is the ABCD-matrix for the arbitrary ith layer in local coordinates. In global
coordinates, the coordinate rotation matrix (R) in terms of the fiber orientation (ξ) in the
ith layer needs to be introduced:

rRs “

»

—

—

—

—

–

cos ξ 0 sin ξ 0
0 cos ξ 0 ´ sin ξ

´ sin ξ 0 cos ξ 0
0 sin ξ 0 cos ξ

fi

ffi

ffi

ffi

ffi

fl

(3.11)

With this rotation matrix, the chain matrix relationship for a single CFC-based layer in global
coordinates is then constructed as R´1 ¨A¨R. For multilayered CFC-based shell, sayM layers,
the chain matrix is straightforwardly perceived by continually multiplying the coefficient of
each layer:

»

—

—

—

—

–

E1φ

H1z

E1z

H1φ

fi

ffi

ffi

ffi

ffi

fl

“

M
ź

i“1
prRis

´1
rAis rRisq

»

—

—

—

—

–

E2φ

H2z

E2z

H2φ

fi

ffi

ffi

ffi

ffi

fl

“ rAs

»

—

—

—

—

–

E2φ

H2z

E2z

H2φ

fi

ffi

ffi

ffi

ffi

fl

(3.12)

The interfaces 1 and 2 shown in Fig. 3.5 are defined as cylindrical surfaces with radiuses
ra `Md and ra, respectively. The TIBC for a multilayered CFC-based cylindrical shell is
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Figure 3.4 An arbitrary cross section with local orthogonal coordinates.

Figure 3.5 The multilayered CFC-based cylindrical shell.



40

then derived from (3.12) through a mathematical transformation:
»

—

—

—

—

–

E1φ

E2φ

E1z

E2z

fi

ffi

ffi

ffi

ffi

fl

“ rZs

»

—

—

—

—

–

H1z

H2z

H1φ

H2φ

fi

ffi

ffi

ffi

ffi

fl

(3.13)

Equation (3.13) is the TIBC for a multilayered CFC-based shell at each matching point pair.
The mathematical transformation from rAs to rZs is given below as:

«

Z11 Z13

Z31 Z33

ff

“ prP s´1
´ rQsq´1

«

B12 B14

B32 B34

ff

«

Z21 Z23

Z41 Z43

ff

“ prEs ´ rQs rP sq´1

«

B12 B14

B32 B34

ff

«

Z24 Z22

Z44 Z42

ff

“ prQs´1
´ rP sq´1

«

A14 A12

A34 A32

ff

«

Z14 Z12

Z34 Z32

ff

“ prEs ´ rP s rQsq´1

«

A14 A12

A34 A32

ff

rP s “

«

A11 A13

A31 A32

ff

; rQs “
«

B11 B13

B31 B32

ff

; rBs “ rAs´1

where rAs is defined in (3.12).

The derived TIBC is powerful in the numerical calculations of scattering and shielding per-
formances. The multilayered CFC-based shell will be accurately represented by a 4ˆ4 matrix
which can significantly reduce the complexity of problem formulation as well as the simulation
time.

3.2 EM evaluations of multilayered CFC-based shells

3.2.1 Problem formulation

The TIBC of a multilayered CFC-based shell has been introduced in the previous section. The
MFCM based on this TIBC to solve scattering and shielding problems will be developed in
this section. The problem is depicted in Fig. 3.6. There are three regions in our situation, the
outer region 1, the inner region 2, both considered as vacuum or filled with isotropic materials,
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Figure 3.6 Problem description for the MFCM.

and region 3 filled with the multilayered CFC material. Regions 1 and 2 are separated by
the smooth boundaries of the region 3, and the tangential fields on those two boundaries
are connected through the TIBC. The concept of the MFCM is illustrated in Fig. 3.7. It is
worthwhile to mention that only one type of filament current is placed in inner and outer
regions for TM or TE cases in the MFCM formulation for an anisotropic cylinders discussed
in Chap. 2. However the TE and TM cases are coupled in the presence of a shell constituted
by multilayered CFC materials since the four tangential field components are required in
the formulated TIBC. In order to consider co- and cross-polarized fields under TE and/or
TM incidences simultaneously, we uniformly place doublet current units in regions 1 and 2,
each doublet current unit contains two z-directed filament currents, one is an electric current
and the other is a magnetic current. Within a doublet, the two types of currents overlap.
The formulation of the MFCM is conducted through two equivalences. Firstly, the scattered
fields in the region 1 are generated by the equivalent doublet sources placed in region 2, and
secondly, the scattered fields in the region 2 are generated by all doublet sources placed in
region 1.

Region 1 contains the incident and scattered fields. Only the plane wave incidence is consid-
ered in this chapter, however, the proposed method has no restriction of the external field
excitation as long as it is homogeneous along the z-axis.

The scattered fields in region 1 are produced by all z-directed doublet current in the region 2,
and vice versa. They can be directly written in terms of the Green’s function in unbounded
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Figure 3.7 Formulation of the MFCM.

free space as:

Es
1p2qφ “

k0

4j

N1pN2q
ÿ

i“1
K1p2qi

r1p2qis cospφ´ φ1p2qisq ´ r

R1p2qi
H2

1 pk0R1p2qiq
(3.14)

Es
1p2qz “ ´

k0η0

4

N1pN2q
ÿ

i“1
I1p2qiH

2
0 pk0R1p2qiq (3.15)

Hs
1p2qφ “

k0

4j

N1pN2q
ÿ

i“1
I1p2qi

r ´ r1p2qis cospφ´ φ1p2qisq

R1p2qi
H2

1 pk0R1p2qiq
(3.16)

Hs
1p2qz “ ´

k0

4η0

N1pN2q
ÿ

i“1
K1p2qiH

2
0 pk0R1p2qiq (3.17)

with
R1p2qi “

b

r2 ` r2
1p2qis ´ 2rr1p2qis cospφ´ φ1p2qisq (3.18)

where 1 and 2 stand for regions 1 and 2. The cylindrical coordinates are used in all our
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derivations for convenience in circular cylinder examples. The I1p2qi and K1p2qi are the un-
known complex magnitudes of electric and magnetic current sources yet to be determined
in regions 2 and 1, respectively. N1 and N2 are the numbers of doublet current units in re-
gions 2 and 1, respectively. The (r1is, φ1is) is the ith filament source position in the region 2,
whereas (r2is, φ2is) gives the source position in the region 1 and the (r, φ) is the observation
point. The R1p2qi is the distance between the ith doublet current unit and the observation
point. Since the TIBC defines the relationship between tangential fields, only tangential field
components are expressed herein.

The total tangential fields in region 1 are

E1tan “ Einc ` E
s
1z ẑ ` E

s
1φφ̂ (3.19)

H1tan “Hinc `H
s
1z ẑ `H

s
1φφ̂ (3.20)

and the total tangential fields in the region 2 are

E2tan “ Es
2z ẑ ` E

s
2φφ̂ (3.21)

H2tan “ Hs
2z ẑ `H

s
2φφ̂ (3.22)

The differences between TE and TM cases appear in the incident field components presented
in (3.19) and (3.20).

The bridge to connect the tangential fields in regions 1 and 2 is the TIBC which we have
formulated and expressed in (3.13). By imposing the TIBC at a number of matching points on
the region 3, a linear system is then created and used to determine the unknown coefficients
of currents. As indicated in Fig. 3.7, the two boundaries limit the cylindrical surfaces of the
region 3. Each boundary is imposed an equal number of matching points (Nm), and the total
number of matching points (2Nm) must satisfy the inequality

2Nm ě N1 `N2 (3.23)

in order to have a solution for the total current coefficients (2N1 in region 2 and 2N2 in region
1).

Upon the application of a point-matching procedure, we will finally obtain a matrix expression
of the type

rQsX “ B (3.24)

where X is a column vector contains the unknown current coefficients (K1, K2, I1 and I2),
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and B is another column vector containing samples of the incident tangential fields at the
matching points on the physical boundaries. rQs is a matrix whose entries are obtained from
the tangential fields of filaments at matching points, and it could be rectangular or square
depending on whether oversampling is used or not. If it is in a square form, a unique solution
can be found, otherwise the smallest least-square error solution should be pursued.

As for the source location, we will adopt the ad hoc R{2´2R rule which was used in [119–121].
This rule consists in uniformly placing the doublet current units in regions 1 and 2 with radii
2ra and rb/2, respectively, where ra and rb are the radii of the inner and outer boundaries
of the region 3. The matching point location is also uniformly placed on the outer and
inner boundaries of region 3, and each boundary has the same number of matching points.
Moreover, each matching point on the outer boundary has a corresponding matching point
on the inner boundary as Fig. 3.7 suggests, which means the two points have the same φ
angle. It is convenient to neglect the thickness of a thin shell in the numerical computation,
like the thin CFC-based shell used in this chapter. This is a reasonable assumption because
Md ! λ in the case of practical interests. By merging the inner and outer surfaces of the
region 3, the computed results are found to be almost the same. So far, all information for
the linear system has been provided, and once it is solved, the fields and related parameters
of interests (e.g. scattering and shielding) can be evaluated in a straightforward manner.

A convergence criterion ∆C, based on the continuity of the tangential fields halfway between
the matching points along the boundaries of the region 3, is defined as follows:

∆C “ | rEs ´ rZs rHs |

maxt|E|, | rZs rHs |u
(3.25)

where the division should be done in a term-by-term manner, and rEs, rZs and rHs are
three matrices defined in (3.13) tested on the physical boundary. The numbers of sources
and matching points (N1 “ N2 “ Nm) are augmented iteratively until a good convergence is
achieved. In the following examples, ∆C ă 1% is used to determine N1 “ N2 “ Nm.

3.2.2 Scattering analysis

The proposed MFCM combined with the TIBC is now used to estimate the scattering per-
formance of a multilayered CFC-based cylindrical shell. In this study, the echo widths are
defined as

MWe “ lim
rÑ8

p2πr |E
s
z |

2

|Ei
z|

2 q (3.26)
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Figure 3.8 Two different fiber patterns, (a) [0/45/90/-45] and (b) [0/90].

MWm “ lim
rÑ8

p2πr |η0H
s
z |

2

|Ei
z|

2 q (3.27)

for the TM case, and

EWe “ lim
rÑ8

p2πr |E
s
z |

2

|η0H i
z|

2 q (3.28)

EWm “ lim
rÑ8

p2πr |H
s
z |

2

|H i
z|

2 q (3.29)

for the TE case. The subscripts “e ”and “m ”are associated with the electric and magnetic
fields, respectively. The Es

z and Hs
z fields with respect to a specific φ in (3.26)-(3.29) are

generated by the doublet sources which placed in the interior region of the cylindrical shell.

Considering a composite shell with M layers and the interior radius ra=2 m, each layer has
the same εa “ 5.0ε0´ j40000{ω and εb “ 5.0ε0´ j50{ω as well as the thickness d “ 0.127mm,
as in [117], [115]. The configurations of the composites used in current and next examples are
similar to those found in the aerospace applications. For all the computations in this section,
an incident plane wave propagating along the x-direction (φinc “ 180˝, θ “ 90˝) is assumed.
The two fiber orientation patterns with M layers shown in Fig. 3.8 are investigated in our
examples. One is a periodic repetition of four layers with fiber orientations [0/45/90/-45],
and the other is a periodic repetition of two layers with fiber orientations [0/90]. The angles
in these patterns correspond to the fiber orientation ξ defined in Fig. 3.3(a). In both cases,
the arrangement of M layers in total is obtained by concatenating these 4-layer or 2-layer
basic patterns several times in the radial direction.

Fig. 3.9 shows the monostatic scattering response versus k0ra of a CFC-based shell. Differ-
ent fiber orientation patterns, layer numbers as well as polarizations are investigated. It is
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(a)

(b)

(c)

Figure 3.9 Monostatic co- and cross-polarization echo widths of a cylindrical shell in various situ-
ations, φinc “ 180˝. The multilayered CFC-based shell situations under (a) TM and (b) TE cases,
and (c) the single layered CFC-based shell with fiber orientation as 30˝. (εa “ 5.0ε0 ´ j40000{ω,
εb “ 5.0ε0 ´ j50{ω and d=0.127 mm for each single CFC-based layer, ra=2 m).



47

(a) (b)

(c) (d)

Figure 3.10 Bistatic echo widths of a cylindrical multilayered CFC-based shell under (a) TM and
(b) TE polarizations. (c) Co- and (d) cross-polarization bistatic echo widths of a single CFC-based
shell with fiber orientation as 30˝, φinc “ 180˝. (εa “ 5.0ε0 ´ j40000{ω, εb “ 5.0ε0 ´ j50{ω and
d=0.127 mm for each single CFC-based layer, ra=2 m).
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interesting to note that the monostatic echo widths MWe and EWm versus k0ra are almost
not sensitive to the number of layers or the fiber orientation patterns under TE or TM cases.
This suggests that the reflection of the incident wave occurs in the first outer layers of the
multilayered CFC-based shell. Moreover, the magnitudes of cross-polarized scattering terms
MWm and EWe presented for the [0/45/90/-45] fiber pattern are quite small whereas they
are null (not shown) for the pattern [0/90]. Although the TIBC for the multilayered CFC
material is a 4ˆ 4 full matrix, if we symmetrically divide it into four 2ˆ 2 submatrices, the
off-diagonal submatrices have quite small values for the [0/45/90/-45] pattern and are zero
for the [0/90] pattern. This explains why a small cross-polarization scattering is observed in
Fig. 3.9(a) and 3.9(b). To show an evidence of the anisotropic property of the CFC material,
a single layer case is examined with the fiber orientation ξ “ 30˝. Fig. 3.9(c) shows the co-
and cross-polarized scattering results for this single layer scenario. A strong cross-polarized
scattering appears, which reveals a strong anisotropic property of the CFC material. Com-
paring our presented results with those presented in [117] at each integer k0ra, an excellent
agreement is achieved. The multilayered CFC-based shell is represented by a 4 ˆ 4 TIBC
matrix in the MFCM without modeling the internal geometrical details of the structure.
This differs from the finite-difference algorithm used in [117] which needs to consider every
interface in the multilayered structure for determining the total reflection and transmission
coefficients.

The bistatic scattering results are shown in Fig. 3.10. The configuration of composites is
the same as the previous example. Again, the co-polarized scattering terms MWe and EWm

versus φ, as Fig. 3.10(a) and 3.10(b) indicate, are not sensitive to the number of layers
under TE or TM cases with different fiber patterns. Various k0ra scenarios are considered,
including k0ra of values 2.405 and 3.834 which are the resonances of a circular waveguide. A
single layer example with the fiber orientation as 30˝ is also investigated to reveal its strong
anisotropic characteristic. The cross-polarization scattering is smaller but comparable to the
co-polarization scattering, as Figs. 3.10(c) and 3.10(d) suggest. To obtain the results of Figs.
3.9 and 3.10, the numbers of matching points per boundary and the sources in each region are
the same (N1 “ N2 “ Nm). A unique solution for the coefficients of all current sources can
be found since a square matrix rQs defined in (3.44) is formulated. Only 30 doublet currents
per region (N1 “ N2 “ 30), for the TM case, and 45 doublet current units (N1 “ N2 “ 45)
per region for the TE case are chosen to reach a good result of convergence.
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Figure 3.11 SE performances under various situations in the low frequency range. (a) TM and (b)
TE cases. (εa “ 3.4ε0´ j40000{ω, εb “ 5.0ε0´ j50{ω and d=0.127 mm for each single CFC material
layer, ra=1 m).

3.2.3 Shielding effectiveness (SE) analysis

In this section, we will investigate the SE properties of a cylindrical shell constituted of the
multilayered CFC material. In this study, the SE is defined by

MSEe “ ´20 log10p
|Es

max|q

|Ez
inc|

(3.30)

MSEm “ ´20 log10p
|η0H

s
max|q

|Ez
inc|

(3.31)

for the TM case, and

ESEe “ ´20 log10p
|Es

max|q

|η0Hz
inc|

(3.32)

ESEm “ ´20 log10p
|Hs

max|q

|Hz
inc|

(3.33)

for the TE case. The subscriptes “e”and “m”are associated with the electric and magnetic
fields shielding, respectively. The Es

max and Hs
max in (3.30)-(3.33) are the maximum fields

within the shell and are generated by the doublet current sources placed outside of the shell.
The SE definition in [116] only takes the field magnitude at the center of a cylindrical shell into
consideration. The position of the field sampling for SE calculation is not so important when
the frequency is low since no resonance occurs in the cylindrical shell. However, it becomes
important at high frequencies where resonances lead to a highly non-uniform distribution of
fields within the shell.
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(a)

(b)

Figure 3.12 SE performance under various situations in the high frequency range with fiber orien-
tation patterns (a) [0/90] and (b) [0/45/90/-45]. (εa “ 3.4ε0 ´ j40000{ω, εb “ 5.0ε0 ´ j50{ω and
d=0.127 mm for each single CFC-based layer, ra=1 m).
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Figure 3.13 The normalized magnitude of Ez component at the center of shell versus frequency
under the TM incidence. The shell is made by four layered CFC material and the fiber orientation
is [90/90/90/90]. (εa “ 3.4ε0 ´ j40000{ω, εb “ 5.0ε0 ´ j50{ω and d=0.127 mm for each single
CFC-based layer, ra=1 m).

Considering a composite shell with M layers and the interior radius ra=1 m, each layer has
the same εa “ 3.4ε0´ j40000{ω and εb “ 3.4ε0´ j50{ω as well as the thickness d=0.127 mm,
as referred from [115], [116]. Fig. 3.11 shows the SE performance in a low frequency range.
It is interesting to observe that the SE performance is essentially the same of two different
fiber orientation patterns, both under TM or TE cases. As can be seen, more layers lead
to a greater shielding, as expected. Both electric and magnetic fields shielding responses are
presented in Fig. 3.11. By comparing our results with [116], an excellent agreement is also
achieved. Once again, our method represents the multilayered CFC-based shell with a 4ˆ 4
matrix whereas the method used in [116] needs to apply a finite-difference to each interface
of the multilayered structure.

Resonances occur in the shell at higher frequencies, which dramatically reduces the SE per-
formance, as observed in Fig. 3.12. This effect was not pronounced in [116] where the SE
calculation is based on the field at the center of the cylinder. It is interesting to see in Fig.
3.12(b) that the TE and TM modes are both excited by TE or TM incident waves for the
fiber orientation pattern [0/45/90/-45]. Whereas the TE modes are excited only under the
TE incidence, so does the TM case, for the fiber pattern[0/90]. The field distributions of
modes shown in Fig. 3.12(b) are presented in Appendix C.

In order to validate our numerical implementation of the MFCM method, a comparison of the
normalized magnitude of Ez field at the center of the shell versus frequency, obtained with
the proposed method and with commercial software FEKO (from Altair) was conducted. It is
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fair to compare with FEKO (MoM-based solver) because the proposed MFCM is a variant of
MoM. Since curved anisotropic multilayered material cannot be modelled in FEKO, a four-
layer CFC-based shell with fiber orientation [90/90/90/90] under TM incidence was used.
Under these conditions, the shell can be considered as an isotropic material which makes
the comparison with FEKO possible. The results for both methods are compared in Fig.
3.13, which shows that an excellent agreement is achieved. In FEKO, the 2D cylindrical
structure is built with a finite height h “ ra. Then, one-dimensional periodic boundaries are
applied in the z-direction to mimic an infinitely long cylindrical shell. A logarithmic sweep of
200 frequencies was done for both methods in the frequency range 0.1 MHz„100MHz. The
MFCM code which is implemented in a Matalb script took 34 seconds to obtain the results
whereas it took 1.5 hour for FEKO, both codes running on the same hardware platform.

In the SE calculations presented in this section, the numbers of matching points and filamen-
tary sources are equal, and the values are the same as that used in the Section 3.2.2.

A method to estimate the scattering and SE performances of multilayered CFC-based cylin-
drical shells has been proposed. A TIBC of a multilayer CFC-based shell is formulated to
represent the shell with a 4 ˆ 4 matrix at each matching point. In light of the TIBC and
MFCM, the scattering and shielding performances of multilayered CFC-based shells are stud-
ied and discussed through several numerical examples. Our results are in excellent agreement
with the published ones. The proposed technique shows its advantages in formulating and
solving the problem with a simple and concise way. An interesting observation is that the
anisotropic characteristic of the multilayered CFC material is negligible in scattering analyses
since the cross-polarized fields are quite small compared with the main polarized counterpart.
Anisotropy has a significant impact on the SE performance at high frequencies since both
TE and TM modes are excited within the cylindrical shell under arbitrary incident plane
waves. Although all the numerical examples discussed in this chapter are circular cylindrical
shells, our proposed MFCM is also able to solve problems of shells with arbitrary smooth
cross sections as long as the impedance boundary condition of the shell could be established.
Also, since the TIBC is applied independently at each matching point, non-homogeneous
shells where the property of the material varies with φ can be handled without additional
considerations in the formulation.

3.3 Slot shells

In a metallic fuselage aircraft, shielding against incoming interference is essentially dependent
on the penetration through apertures such as windows. When the fuselage is made of CFC,
incident waves could also propagate through the material at certain frequencies. A simple
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and fast simulation tool, proposed in this section, to assess the relative contribution of these
two interference paths through the aperture and the CFC-based fuselage would be useful to
better predict how CFC properties could affect the level of interference coming from external
high-intensity radiated fields (HIRF) emitters. Since the lowest level of SE occurs when the
cabin is illuminated at normal incidence, a simple 2D multilayered CFC-based slotted shell
can be used as an acceptable simplified model to represent the CFC-based fuselage with
a row of windows. By comparing with the closed multilayered CFC-based shell which has
been discussed in [122], the slotted shell model is closer to the practical situation of interest.
Moreover, the strategy used for the placements of matching points and sources is totally
different for a slotted shell in comparison to that for a closed shell. Although windows are
located at the two sides of a fuselage, which means that a CFC-based shell with two slots
is closer to the practical composite fuselage case, the proposed numerical technique can be
straightforwardly extended to the case where multiple slots present.

The scattering and SE analyses of a slotted cylindrical shell have generated a great interest
among researchers for many years. An extensive literature review on this issue was reported
in [123]. By incorporating a modal expansion of aperture fields, the scattered and penetrated
fields have been investigated efficiently in [124]. The dual-series approach is a powerful tech-
nique to handle a series of mixed boundary-value problems of slotted cylindrical shells as
reported in [125–127]. Three methods have been proposed to study the penetration fields
of a slotted conducting cylinder under TM excitation in [128]. The multifilament current
method (MFCM) was used in [129] to analyze the scattering from a slotted PEC shell, yet
the MFCM is not capable to handle the situation where an anisotropic material is considered.
A series of field integral equations were built in [130] and a mode-matching technique was
used in [131] to calculate the EM evaluations from slotted shells.

The tensorial boundary condition (TBC), incorporated in the MFCM, is used for represent-
ing the multilayered CFC-based slot shell with a chain matrix. A specified strategy on the
placements of matching points and sources is given by considering singular field behaviors
near the slotted edge in this section. A convergence study is conducted in order to test the
accuracy of the proposed technique. Several numerical examples are presented to analyze the
SE performance in various situations.

3.3.1 Formulation

The problem is depicted in Fig. 3.14. The solution domain contains three regions, namely
outer region 1, inner region 2, and region 3. Regions 1 and 2 are considered as air. Region 3 is
constituted of multilayered CFC materials. The slot area is represented by a virtual boundary
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Figure 3.14 Layout of the single CFC-based planar layer.

Figure 3.15 Formulation of MFCM for a multilayered CFC-based slotted shell
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with slot angle 2φ0 as indicated in Fig. 3.14. Regions 1 and 2 are separated by the region
3 and the virtual slot boundary. The modeling of CFC is discussed in Sec. 3.1.2 in detail.
The carbon fibers inside of a single layer CFC-based shell will form helices, as shown in Fig.
3.3(a). According to the EMT [91], a single layer CFC material could be characterized by a
tensor permittivity, which reads

ε “

»

—

–

εa 0 0
0 εa 0
0 0 εb

fi

ffi

fl

ρ1φ1z1

(3.34)

where εa “ ε0εra ´ jσa{ω and εb “ ε0εrb ´ jσb{ω represent the complex permittivity of
directions along and perpendicular to the fiber orientation.

The physical boundary, depicted in Fig. 3.14, contains two parts. The material part is made
up of M -layer CFC-based curved slabs, and each layer has a different fiber orientation. The
slot part is a virtual arc boundary defined with respect to the slot angle. For the material
part, the TBC is easy to obtain and reads

»

—

—

—

—

–

E1φ

H1z

E1z

H1φ

fi

ffi

ffi

ffi

ffi

fl

“ rAs

»

—

—

—

—

–

E2φ

H2z

E2z

H2φ

fi

ffi

ffi

ffi

ffi

fl

(3.35)

where rAs is the chain matrix of the M -layer CFC-based shell. The details are discussed in
Sec. 3.1.3. For the slot part, rAs is a 4 ˆ 4 identity matrix. The subscripts 1 and 2 for the
material boundary are defined as circular arcs of the region 3 with radiuses ra `Md and ra,
respectively, and d is the thickness of each layer. While for the slot part, the subscripts 1 and
2 are defined as the outer and inner faces of the virtual arc with radius ra `Md, as shown
in Fig. 3.14.

The formulation of the MFCM combined with the TBC for a slotted CFC-based cylindrical
shell is similar to that was introduced in Sec. 3.2.1 where a closed shell is considered. As Fig.
3.15 shows, a set of doublet current units are placed in regions 1 and 2. Each doublet current
unit contains two z-directed co-located filament currents, one is the electric current and the
other is the magnetic current, with complex magnitudes yet to be determined. Two equiv-
alences are conducted in the MFCM. Firstly, the scattered fields in region 1 are generated
by the equivalent doublet sources placed in region 2, and secondly, the scattered fields in
region 2 are generated by all doublet sources placed in region 1. The expressions of scattered
fields were given in Sec. 3.2.1. The main difference in the MFCM for the slotted and closed
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cylindrical shells appears in the locations of matching points and doublet current units. The
uniform placement strategy which was deployed in Sec. 3.2.1 by placing filament currents
on virtual circular boundaries for a closed shell fails for the slotted scenario due to a poor
approximation on the field behaviors near the slot edges. By considering the physical phe-
nomenon of a slotted shell, we locate sources closer to the edges and then gradually place
the others a distance away in order to better approximate the singular field behavior near
the slotted edges as Fig. 3.15 indicates. The location of matching points on the physical
boundary also obeys the same rule. Specifically, we place a total of N1 sources per region in
front of the virtual arc boundary and N1 matching points on the virtual arc boundary. The
virtual arc boundary is defined with respect to the slot angle, and a total of N2 sources per
region in front of on the remaining boundary and N2 matching point pairs on the remaining
boundary. The remaining boundary is associated to the material part. Each matching point
pair contains one matching point on the outer and one on the inner boundaries, and the
two points have the same φ angle as shown in Fig. 3.15. A useful empirical formula [129]
for the matching points and sources is given below. For the ith source position (ρs, φs) (the
cylindrical coordinate system is exploited herein for the convenience) placed in front of the
material boundary in region 1 is given by

ρspiq “ ρmax ´ pρmax ´ ρminq sinpπpi´ 1q
N2 ´ 1 q, 1 ď i ď N2 (3.36a)

φspmqpiq “ π ´ pπ ´ φ0 ´∆φsq cospπpi´ 1q
N2 ´ 1 q, 1 ď i ď N2 (3.36b)

where ρmax “ 1.4rb, ρmin “ 1.001rb are obtained empirically and used in our numerical
examples. Equation (3.36b) also can be used to position the matching point pairs on the
boundary associated to the multilayered CFC material. The inner and outer source locations
associated to the material part are symmetrical with respect to the material boundary. For
the ith source position placed in front of the virtual arc boundary in region 1 is given by

ρspiq “ ρmax ´ pρmax ´ ρminq sinpπpi´ 1q
N1 ´ 1 q, 1 ď i ď N1 (3.37a)

φspmqpiq “

#

pφ0 ´∆φsq cospπpi´1q
N1´1 q, 1 ď i ď N1´1

2

2π ´ pφ0 ´∆φsq cospπpi´1q
N1´1 q,

N1´1
2 ď i ď N1

(3.37b)

Similarly, equation (3.37b) also can be used to position the matching points on the virtual arc
boundary. The inner and outer source locations associated to the slot part are symmetrical
with respect to the virtual arc boundary. The distributions of sources in both regions and the
matching point pairs on the boundary according to the introduced strategy of placements



57

Figure 3.16 The distributions of sources inside and outside as well as matching points for a
slot CFC-based shell with radius ra=2 m and φ0 “ 5˝. The locations of inside sources are
marked with star, and outside sources are marked with triangle. The matching points are
marked with dots.(N1 “ 5 and N2 “ 85).

are presented in Fig. 3.16. ∆φs denotes a suitably chosen angular section in the azimuthal
direction relative to each edge position as shown in Fig. 3.15. Two small sections of the
physical boundary defined in terms of 2∆φs at each edge as indicated in Fig. 3.15, are not
considered in the MFCM formulation. There are no matching points placed on it. ∆φs is
chosen as 0.5˝, which works well in the range ra{λ ď 5, and it makes the length of the
untouched boundary very small compared with the incident wavelength and therefore the
scattered far field and penetrated field are not greatly affected in our numerical examples.

Based on the formulation of the MFCM and the constructed TBC, a linear system is easy to
establish for solving the unknown current magnitudes. The monostatic echo width normalized
to the incident wavelength and SE at the origin of the slotted shell under a TM excitation
in terms of electric field are the parameters of interest to be evaluated once these current
magnitudes are determined. They are defined as:

W

λ
“ lim

rÑ8
p2πr |Es

z |
2

λ |Einc
z |

2 q (3.38a)

SE “ ´20 log10p
|E2p0, 0q|q
|Einc

z |
(3.38b)

where λ is the incident wavelength and Einc
z is the electric field of the incident plane wave.
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3.3.2 Numerical examples

The commercial software tools at hand (FEKO [132], HFSS [133] and CST [101]) are unable
to do the simulation of a multilayered CFC-based shell with a continuous space-varying per-
mittivity tensor. Consequently, the validation of our solutions will be based on a convergence
study of the boundary condition error. A boundary condition error calculated at a set of
testing points along the boundaries, is defined as follows:

∆C “ maxt
| rF1s ´ rAs rF2s |

maxt|F1|, |F2|u
u (3.39)

where the division should be done in a term-by-term manner. rF1s and rF2s contain four
field components, as defined in equation (3.12), which are tangential fields in regions 1 and 2
respectively. rAs is the formulated TBC defined in equation (3.12). ∆C is the maximum value
out of four calculated field components at each testing point. The number of testing points is
three times of the number of matching point used in the MFCM solution. To illustrate this,
we consider a 4-layered CFC-based slotted shell. Each layer has the same configurations as:
εa “ 5ε0 ´ j40000{ω, εb “ 5ε0 ´ j200{ω and d=0.127 mm. The fiber orientation ξ in each
layer is [0˝{45˝{90˝{ ´ 45˝], and ξ “ 90˝ means the fiber orientation is parallel to the xoy
plane. The interior radius is ra=2 m, and the incident angle is φinc “ 0˝. φ0 “ 5˝ is selected
as an example to study the convergence response. The frequency is set as k0ra “ 5 (f “ 119
MHz). ∆C responses with respect to three different choices of N1 and N2 are shown in Fig.
3.17. If we take ∆C ď 1% as the criterion, using N1 “ 5 and N2 “ 85 can generate results
with the desired accuracy. The convergence of all the numerical examples shown later satisfy
the prescribed criterion ∆C ď 1%.

In addition, we consider a scenario where an isotropic lossy slotted shell is considered in
order to validate the accuracy of the proposed technique with a commercial simulation tool.
The shell, with a finite thickness d=0.5 mm, is constituted of a lossy material with σ=10000
S/m. In FEKO, the 2D cylindrical shell is built with a finite height h “ 0.5ra. Then, one-
dimensional periodic boundaries are applied in the z-direction to mimic an infinitely long
cylindrical shell. The calculated magnitudes of the electric field along the x-axis within the
slotted shell using the proposed MFCM and FEKO with different slot angles are presented in
Fig. 3.18. An excellent agreement is obtained even if the slot edges are not modelled accurately
in the ∆φs intervals as Fig. 3.18 shows, which confirms the accuracy of the proposed technique
for the isotropic case.

We then consider a 4-layer CFC-based slotted shell. Each layer has the same configurations
as: εa “ 5ε0 ´ j40000{ω, εb “ 5ε0 ´ j200{ω and d=0.127 mm. The fiber orientation ξ in each
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Figure 3.17 A convergence study regarding to the boundary condition error of a 4-layered
CFC-based slotted shell with φ0 “ 5˝ and k0ra “ 5

Figure 3.18 Comparisons of the E-field along x-axis within the slotted lossy shell between the
proposed method and FEKO, for different slot angles.(σ=10000 S/m, d=0.5 mm, ra “ λ “ 1 m.
N1 “ 5, 12, 22 and N2 “ 35, 28, 22 are used for the MFCM to do the simulations of φ0 “ 5˝, 15˝, 60˝,
respectively.)
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Figure 3.19 The monostatic scattering responses of the 4 layered CFC-based slotted shell for
different slot angles.(εa “ 5.0ε0 ´ j40000{ω, εb “ 5.0ε0 ´ j200{ω and d=0.127 mm for each single
CFC-based layer, ra=2 m, N1 “ 12, 16, 22 and N2 “ 78, 68, 63 are used for the MFCM to do the
simulations of φ0 “ 15˝, 30˝, 60˝, respectively.)

(a) (b)

Figure 3.20 The SE responses of the 4 layered CFC-based slotted shell under (a) different
slot angles, and εa “ 5.0ε0 ´ j40000{ω, εb “ 5.0ε0 ´ j200{ω for each single CFC-based
layer, N1 “ 5, 9, 12 and N2 “ 85, 83, 78 are used for the MFCM to do the simulations of
φ0 “ 5˝, 10˝, 15˝, respectively, and (b) different σa, and εa “ 5.0ε0´jσ{ω, εb “ 5.0ε0´j200{ω,
N1 “ 5 and N2 “ 85 are used for the CFC-based shell and N1 “ 5 and N2 “ 35 are used for
the PEC shell in the MFCM.) (d=0.127 mm for each single CFC-based layer, ra=2 m.)
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layer is [0˝{45˝{90˝{´45˝]. The interior radius is ra=2 m, and the incident angle is φinc “ 0˝.
Fig. 3.19 shows the normalized monostatic echo width responses of a slotted CFC-based shell
with different slot angles. The slot will lead to more scattering compared with the closed shell
when frequency goes higher, and the normalized echo width also increases as the slot angle
increases in the higher frequency range. Several sharp changes in the scattering responses as
observed in Fig. 3.19 are due to the internal resonances of the slotted shell [124].

The SE analysis of a slotted shell with a small slot angle is more of practical interests in the
electromagnetic compatibility. The configuration of the CFC material is the same as in the
previous example. Generally, there are two paths for the external fields to couple into the
slotted shell, one is coupled through the multilayered CFC material and the other is via the
aperture. Fig. 3.20(a) shows the SE performances of a slotted 4-layer CFC-based shell versus
different slot angles. Obviously, the three considered slots do not affect the SE responses
when frequency is low, which indicates that the penetration is mainly through CFC-based
layers. However, SE decreases drastically when frequency increases to a certain point where
the incident wavelength is comparable to the arc length of the slot, and the slot then plays
an important role in coupling external fields into the inner region, as Fig. 3.20(a) suggests.
As expected, the larger slot angle will decrease the SE response earlier and result in a lower
SE compared with the slot with a smaller value in the higher frequency range.

Fig. 3.20(b) describes the SE responses versus σa, the conductivity of the direction parallel
to the fiber orientation in a single CFC-based layer. The slot angle is fixed at 5˝ in this
scenario. As expected, the higher conductivity will provide more shielding, as can be seen
from Fig. 3.20(b). Moreover, the SE responses of closed and slotted CFC-based shells overlap
in the low frequency range. The SE of a slotted PEC shell, which represents the infinite
conductivity situation, is also presented in Fig. 3.20(b). The slotted PEC shell exhibits a
high SE level in the lower frequency range, because the inner and outer fields can only be
coupled via the aperture. The SE responses of the slotted PEC shell and the slotted CFC-
based shells with σa “ 4000 S/m and σa “ 40000 S/m overlap in the high frequency range as
Fig. 3.20(b) indicates, which means the coupling of fields between the outer and inner regions
are dominated by the slots. However, for the case of σa “ 400 S/m, the SE response is a
bit lower in the high frequency range, which suggests that coupling through the multilayered
CFC-based shell is comparable to that via a slot.

3.4 Simulation of cylindrical metasurfaces using GSTC-MFCM

The generalized sheet transition conditions (GSTC) is proposed to investigate the guided
waves on a metafilm (metasurface), a surface distribution of electrically small scatterers
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Figure 3.21 Problem description.

characterized by electric and magnetic surface susceptibilities, and it expresses the relation-
ship between tangential electric and magnetic fields on both sides of a metasurface [134–136].
Usually, the thickness of a metesurface is much smaller than the operating wavelength and
is considered as 0. The FDTD [137] and FEM [138] formulations, incorporating the GSTC,
have been fully developed as efficient analysis tools to study the electromagnetic evaluation
of planar metasurfaces, yet there are few efficient computational tools have been developed
so far for curved metasurfaces. The MoM introduced in [139,140] combined with the GSTC
were developed to simulate a cylindrical metasurface with arbitrary cross sections in 2D
scenario. But a singularity issue is encountered when the distance between source and obser-
vation points vanishes, and therefore a special treatment on Hankel function with augment
approaching zero should be considered. Several wave-controlled designs using cylindrical and
spherical metasurfaces could be found in [141–144]. By considering the potential applica-
tions of curved metasurfaces, the development of an efficient and accurate simulation tool
should be considered. In this section, we will explore the application of the MFCM on EM
evaluations of cylindrical metasurfaces by deploying the GSTC into the formulation.

3.4.1 Impedance-type GSTC and Metasurface Synthesis Procedure

The problem of interest is depicted in Fig. 3.21. The outer region a and inner region b are
considered to be occupied by isotropic materials characterized by the permittivity and perme-
ability couple pεa, µaq and pεb, µbq, respectively. Regions a and b are separated by a cylindrical
metasurface with an arbitrary cross section. We assume that the cylindrical metasurface is
infinite in z-direction and a 2-D condition, B{Bz ” 0, is applied. The cross section of the
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metasurface could be closed or slotted with an arbitrary shape. Two orthogonal coordinate
systems are provided in Fig. 3.21. One is the global (Cartesian) coordinate system (x, y, z)
and the other is the local coordinate system (n, t, z). The z components in two coordinate
systems overlap. In our proposed numerical method, the contour of the considered cylindri-
cal metasurface is discretized via matching points, and the tangential electromagnetic fields
are forced to obey GSTC at each matching point. The vector form or scalar form of GSTC
was introduced in [134–136,145–147], and it usually casts in the form relating the difference
and average of transverse electric and magnetic fields on the two sides of a metasurface. Yet
the impedance-type boundary condition is more common in moment method solutions for
the convenience of problem formulation. In this section, the impedance-type GSTC at each
matching point in the local coordinate system on the contour of a cylindrical metasurface is
developed and reads

rLs

»

—

—

—

—

–

E1t

E2t

E1z

E2z

fi

ffi

ffi

ffi

ffi

fl

“ rRs

»

—

—

—

—

–

H1z

H2z

H1t

H2t

fi

ffi

ffi

ffi

ffi

fl

(3.40)

with

rLs “

»

—

—

—
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–
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A21 A21 A22 A22
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fl

«

A11 A12

A21 A22

ff

“
1
2jωε0

«

χttee χtzee

χztee χzzee

ff

;
«

B11 B12

B21 B22

ff

“
1
2jk0

«

χttem χtzem

χztem χzzem

ff

«

C11 C12

C21 C22

ff

“
1
2jωµ0

«

χttmm χtzmm

χztmm χzzmm

ff

;
«

D11 D12

D21 D22

ff

“
1
2jk0

«

χttme χtzme

χztme χzzme

ff

where χee, χmm, χem and χme are the electric/magnetic (first e{m subscripts) surface suscep-
tibilities reacting to electric/magnetic (second e{m subscripts) excitations, k0 “ ω

?
ε0µ0 is

the wave number in free space. The subscripts 1 and 2 in (3.40) refer to region 1, where the
incident and reflected fields are involved, and region 2, where only the transmitted fields are
involved, respectively. Either the region a or b in Fig. 3.21 could be the region 1 or 2 depend-
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ing on the locations of excitations. The normal polarization densities are assumed to be 0
by considering the subwavelength thickness of a metasurface, the four surface susceptibility,
rAs, rBs, rCs and rDs, appear with a 2 ˆ 2 dyadic form. The derivation of impedance-type
GSTC can be found in Appendix D.

Theoretical synthesis procedure to obtain surface susceptibilities was conducted in [145]. To
solve for 16 unknown susceptibilities, up to 4 independent wave triplet bases are required
for the systhesis input. Each wave triplet (ψ) includes incident (ψinc), reflected (ψref ) and
transmited (ψtra) waves, ψ “ tE,Hu. Although given more independent wave triplets may
provide a possibility to synthesize a metasurface which could control electromagnetic waves in
a peculiar way, the synthesized surface susceptibilities must be realizable in practice. One or
two wave triplets, in most cases, are input into the synthesis procedure in order to obtain up to
8 surface susceptibilities. Providing one specified wave triplet, up to 4 surface susceptibilities
can be synthesized to make the metasurface behaves monoanisotropic (rBs “ rDs “ 0) and
uniaxial (χtzee “ χztee “ χtzmm “ χztmm “ 0) medium characteristics. Given two independent
wave triplets, up to 8 susceptibilities could be synthesized. The choices of selecting 8 from
total 16 susceptibilities could be random. There are two meaningful alternatives, one is for a
metasurface with monoanisotropic properties (rBs “ rDs “ 0) but not uniaxial (rAs and rCs
are nonzero matrices), and the other case of interest is for a metasurface with bianisotropic
(rAs, rBs, rCs and rDs are all nonzero matrices) medium characteristic. Once the impedance-
type GSTC of a metasurface is established, it will be subsequently deployed in the MFCM
to analyze the electromagnetic performances of an investigated metasurface.

3.4.2 GSTC-MFCM Formulation

The concept of MFCM is illustrated in Fig. 3.22. We place a set of doublet current units in
inner and outer regions. Each doublet current unit contains two co-located z-directed filament
currents, one is electric current and the other is magnetic current. The formulation of MFCM
is simple and conducted through two equivalences. Firstly, the scattered fields in the outer
region a are generated by the equivalent sources placed in the inner region b, and those
filament sources are treated as source currents radiating in an unbounded region constituted
of the isotropic material with permittivity εa and permeability µa. Secondly, the scattered
fields in the inner region b are generated by all equivalent sources placed in the outer region
a, and those filament sources are treated as source currents radiating in an unbounded region
constituted of the isotropic material with permittivity εb and permeability µb. The scattered
fields generate by doublet current units could be either reflected or transmitted fields.
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Figure 3.22 Formulation of MFDCM

Fields Expressions in Regions 1 And 2

The region 1 contains the incident and scattered fields. The scattered fields in region 1 are
produced by all z-directed filament currents in region 2, and vice versa. Either the region a
or b in Fig. 3.21 could be the region 1 or 2 depending on the locations of incident excitations.
Assuming that the outer and inner regions of a metasurface are occupied by isotropic mate-
rials, the scattered fields in each region can be directly written in terms of the 2-D dyadic
isotropic Green’s function, and the total fields in each region read:

Eq “
kq
4j

Nq
ÿ

i“1
Kqi

py ´ yqisqx̂` pxqis ´ xqŷ

Rqi

H
p2q
1 pkqRqiq

´
k2
q

4ωεq

Nq
ÿ

i“1
IqiH

p2q
0 pkqRqiqẑ ` δpq ´ 1qEinc

(3.41)

Hq “
kq
4j

Nq
ÿ

i“1
Iqi
pyqis ´ yqx̂` px´ xqisqŷ

Rqi

H
p2q
1 pkqRqiq

´
k2
q

4ωµq

Nq
ÿ

i“1
KqiH

p2q
0 pkqRqiqẑ ` δpq ´ 1qH inc

(3.42)

with
Rqi “

b

px´ xqisq2 ` py ´ yqisq2

kq “ ω
?
εqµq



66

where q “ t1, 2u indicates the region 1 or 2. δ is the Kronecker delta function, and equal to
1 when the region 1 is considered. The Iqi and Kqi are the unknown electric and magnetic
current coefficients we need to determine in two regions. N1 and N2 are the number of the
doublet current units in regions 2 and 1, respectively, and for the convenience, an equal
number of doublet current units, N1 “ N2, are used in our numerical examples. (xqis, yqis) is
the ith doublet current unit position in the region 1 or region 2 and (x, y) is the observation
point. The Rqi is the distance between ith filament source and observation point. The kq is
the wavenumber in the correspond region.

Boundary Conditions

The connection between the fields in regions 1 and 2 is dictated by the impedance-type GSTC
which has been expressed in (3.40) at the contour of the meatsurface indicated in Fig. 3.21. A
linear system is then created by imposing the GSTC at a number of matching points on the
physical boundary in order to determine the unknown current coefficients. An equal number
of matching points is placed on the inner and outer surfaces of the cylindrical metasurface,
and the outer and inner matching points merge by considering the zero thickness of the
metasurface. The number of matching points (Nm) must satisfy the inequality

2Nm ě N1 `N2 (3.43)

to determine the total current coefficients (2N1 in region 2 and 2N2 in region 1). Notice that
each matching point is tested twice for the fields in the outer and inner regions by considering
zero thickness metasurface.

Upon the application of a point-matching procedure, we will finally obtain a matrix expres-
sions of the type

rQsX “ B (3.44)

where X is a column vector containing the unknown current coefficients (K1, I1, K2, and
I2) in two regions, and B is another column vector containing samples of incident tangential
fields at the matching points. rQs is a matrix whose entries are obtained from the filament’s
tangential fields at matching points, and it could be rectangular or square depending whether
oversampling is used or not. If it is in square form, a unique solution can be found, otherwise
the smallest least-square error solution is pursued [58]. In our case, we will always adopt the
square matrix rQs by letting N1 “ N2 “ Nm.
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(a) (b)

Figure 3.23 Source location strategies for (a) circular and (b) rectangular contours.

Source Location

The source location is dependent on the shape of the contour. For the contour with a smooth
boundary, the sources are placed on two virtual contours which have the same shape as the
physical boundary but are located inside and outside of the metasurface. For example, the
ad hoc R{2´ 2R rule which used in [119–121] is effective for a circular boundary as shown in
Fig. 3.23(a). The doublet current units in outer region are uniformly placed on a virtual circle
with a radius 2r, and the units in inner region are uniformly placed on a virtual circle with
a radius r/2, where r is the radius of a circular cylindrical metasurface. For an unsmooth
boundary as suggested in Fig. 3.23(b) which contains sharp edges, the ad hoc R{2´ 2R rule
does not apply. Experiments have shown that better convergence is achieved by locating the
sources closer to the edges and then gradually place the others a distance away. This approach
better approximates the singular field behavior near the edges [27,105]. The inner and outer
locations of doublet current units are symmetrical with respect to the boundary, as shown
in Fig. 3.23(b). The location of matching points on the physical contour also obey the same
rule. A useful empirical formula of the source and matching point locations for a contour
with edges can be found in [105,148], and also provided in (3.36) and (3.37). It is noteworthy
that the singularity problem appears in [139, 140] when the distance between source and
observation points vanishes, therefore a special treatment on Hankel function with argument
approaching zero should be considered. However, this singularity is avoided completely in the
MFCM by placing sources at a prescribed distance away from the matching points.

So far, all information have been presented for the linear system. Once these current mag-
nitudes are determined, the fields and related parameters of interest can be evaluated in a
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straightforward manner.

3.4.3 Illustrating examples

Two examples will be discussed in this section in order to prove the ability of proposed method
in the simulation of a cylindrical metasurface incorporating GSTC. The first example con-
cerns a rectangular cylindrical metasurface camouflaging origin-located actual source by an
fictitious source placed within the metasurface. The second example is about a bianisotropic
metasurface with a circular contour cloaking incident plane waves with given incident angles.

Camouflage Metasurface

Region 1 which contains the incident and reflected waves is defined as the inner region of the
metasurface shell in this example, and the incident fields are generated by an electric line
source with a unit magnitude placed at the origin. The reflected fields within the shell are
assumed as null. The transmitted fields in the region 2 assumed to be generated by an electric
line source placed at (xa, ya) within the metasurface. In this case, the original electric line
source is camouflaged by the cylindrical metasurface. The contour of the shell is rectangular
as indicated in Fig. 3.24.

Only incident fields are presented in the region 1 in this case, and read

Einc
“ ´

k2
0

4ωε0
H
p2q
0 pk0Rqẑ (3.45a)

H inc
“
k0

4j
xŷ ´ yx̂

R
H
p2q
1 pk0Rq (3.45b)

with
R “

a

x2 ` y2

where (x, y) is the observation point.

The transmitted fields which generated by a fictitious source placed at (xa, ya) are present
in the region 2, and read

Etra
“ ´

k2
0

4ωε0
H
p2q
0 pk0Raqẑ (3.46a)

Htra
“
k0

4j
px´ xaqŷ ` pya ´ yqx̂

R
H
p2q
1 pk0Raq (3.46b)

with
Ra “

a

px´ xaq2 ` py ´ yaq2
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Figure 3.24 Problem description of a camouflaged rectangular metasurface.

Inserting these specified fields into (3.40) yields

A22 “
1
2jωε0χ

zz
ee “

H tra
t ´H inc

t

Einc
z ` Etra

z

(3.47a)

C11 “
1
2jωµ0χ

tt
mm “

Etra
z ´ Einc

z

H tra
t `H inc

t

(3.47b)

We consider the square metasurface with a “ b “ 1 m, and the displaced source is placed at
(xa “ 0.5, ya “ 0.5). The operation wavelength is 1 m. The simulation results are presented
in Fig. 3.25. The magnitude difference of reflected and transmitted electric fields between the
calculated ones using GSTC-MFCM and the preset ones is presented in Fig. 3.25(a). The
value of the difference varies in the range of 10´6, which indicates the simulated reflected
and transmitted field have a good agreement with the prescribed ones. The magnitude of
the total electric field in the two regions is presented in Fig. 3.25(b). It is clearly to see
that the actual source has been successfully replaced by the illusion source after coating the
rectangular metasurface.
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(a) (b)

Figure 3.25 (a) The magnitude difference between the calculated and preset Ez in the two regions.
(b) The Ez component of the total electric fields in the two regions.

Bianisotropic Metasurface

The second example is a metasurface with a circular contour cloaking TEz incident waves
with two prescribed directions of propagation. In this case, the reflected fields are considered
as null in the outer region 1 which is occupied by vacuum. The inner region 2 is occupied
by a dielectric with εb “ 4ε0 and µb “ µ0. Two independent wave triplets, both including
TEz incident waves but with different incidence angles, are presented in this example in
order to synthesize a bianisotropic metasurface. Since the reflected fields are null, only the
expressions of preset incident and transmitted waves in two wave triplets, distinguished by
a and b, respectively, are given and read in the cylindrical coordinates for convenience:

H1
za “ H inc

za “ ejk0rpa ;E1
φa “ Einc

φa “ ´η0pae
jk0rpa (3.48a)

H2
za “ H tra

za “ Tejk2rpa ;E2
φa “ Etra

φa “ ´Tη2pae
jk2rpa (3.48b)

H1
zb “ H inc

zb “ ejk0rpb ;E1
φb “ Einc

φb “ ´η0pbe
jk0rpb (3.48c)

H2
zb “ H tra

zb “ Tejk2rpb ;E2
φb “ Etra

φb “ ´Tη2pbe
jk2rpb (3.48d)

with
pa “ cospφ´ φaincq; pb “ cospφ´ φbincq

k2 “ k0
?
εbµb; η2 “

a

µb{εb
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Here, only tangential fields which are used for synthesis are considered. The transmission
coefficient is imposed as T “

a

ηb{η0. (r, φ) is the position of the observation point, and φainc
and φbinc are the incident angles of two independent TEz polarized plane waves, respectively.
η0 and k0 are the impedance and wave number of free space, respectively.

By substituting (3.48) into (3.40) and assuming nonzero A11, B12, C22 and D21, we will have

B12 “
pH tra

za ´H
inc
za qpE

inc
φb ` E

tra
φb q ´ pH

tra
zb ´H

inc
zb qpE

inc
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φa q

pH tra
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zb qpE
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(3.49a)
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tra
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Einc
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(3.49b)

D21 “
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φa ´ E
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φa qpH
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tra
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C22 “
p1´D21qE

inc
φa ´ p1`D21qE

tra
φa

H inc
za `H

tra
za

(3.49d)

We consider a circular cylindrical metasurface with a radius rm “ 1 m. The metasurface
is excited simultaneously by two TEz polarized plane waves propagating in -x direction
(φainc “ 180˝) and propagating in x direction (φbinc “ 0˝). The calculated reflected and
transmitted fields are compared with the preset ones, and the differences between them are
below 10´10 as shown in Fig. 3.26(a) and 3.26(b), which indicate a high simulation accuracy
is achieved by using the proposed MFCM. The phase distribution of Hz component of total
magnetic field in two regions for the scenario that the metasurface is solely illuminated by
a TEz polarized plane wave propagating in -x direction is shown in Fig. 3.26(c). Obviously,
the metasurface can successfully cloak the incident plane wave as prescribed.

Simulation performances

To obtain simulation results in Fig. 3.25, 200 doublet current units per region and 200
matching points are used in the MFCM for the calculation. The CPU time and required
memory for solving 800 unknowns are 1.4063 s and 0.0478 GB, respectively. We use 70
doublet current units per region and 70 matching points in the second example to obtain
results in Fig. 3.26. The CPU time and required memory for solving 280 unknowns are 0.5781
s and 0.0059 GB, respectively. All simulations were run on the desk computer with an intel(R)
Core(TM) i7-7700@3.6 GHz. Simulation performances are not provided in [139,140] therefore
a comparison is not possible. But according to [3, 149], the MFCM has been proven to have
relative significant advantages with respect to efficiency, complexity, accuracy, and ease of
implementation over the MoM, and these advantages are definitely inherited in this work for
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(a) (b)

(c)

Figure 3.26 The magnitude differences between the calculated and preset (a) electric and (b)
magnetic fields in two regions. (c) Phase distribution of Hz component of total magnetic field in
two regions for the case that the metasurface is solely illuminated by a TEz polarized plane wave
propagating in -x direction.
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the simulation of GSTC-characterized metasurfaces.

3.5 Analyses of induced current on a CFC-based shell excited by line sources

The problem of routing conducting wires and cables is an attractive topic in electromagnetic
interference (EMI) and electromagnetic compatibility (EMC). Ensuring EMC of electrical
wiring system in an aircraft, which may contain many kilometers of wires, is a real engineering
challenge. Usually cables are installed in close proximity of the conductive aircraft skin,
which provides a good return path when unexpected unbalanced (common mode) current
develop on the cables. This is true for aluminum aircraft, but the situation may be different
when the aircraft skin is made of anisotropic CFC material. The conducting wires, usually
contains driving and returning wires therefore differential wire pairs, would generate magnetic
induction on the surface of the fuselage. To study induced currents on the surface of a CFC-
based shell is meaningful for the installation of electric systems mounted on the CFC-based
fuselage. In this section, we will study the problem of a CFC-based shell enclosing two
differential wires. For the simplicity, we use line sources to represent the conducting wires.
The problem is depicted in Fig. 3.27. A set of z-directed line sources carrying different phase
terms (e´jkzz) are placed within the shell, and each line source could be either electric or
magnetic currents. The incident fields are generated by these line sources. For the simplicity,
the inner and outer regions of the shell are considered as vacuum in this section, and therefore
k0 “ k1 “ k2, where k0 is the wavenumber of free space. In addition, since the shell is infinitely
long in the z-direction.

The problem formulation is the same as that discussed in Sec. 3.2.1, but the filament currents
within the doublet current unit carry the e´jkzz phase term in this case. Therefore the ex-
pressions of four tangential scattered fields generated by filament currents are different with
that introduced in (3.14)„(3.17) and should be slightly modified by considering the phase
term of filament currents:

Es
qφ “

kρ
4j

Nq
ÿ

i“1
Kqi

rqis cospφ´ φqisq ´ r
Rqi

H2
1 pkρRqiqe

´jkzz

`
kρkz
4jωε

Nq
ÿ

i“1
Iqi
rqis sinpφ´ φqisq

Rqi
H2

1 pkρRqiqe
´jkzz

(3.50a)

Es
qz “ ´

k2
ρ

4ωε

Nq
ÿ

i“1
IqiH

2
0 pkρRqiqe

´jkzz (3.50b)
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Figure 3.27 The problem description of a CFC-based shell excited by a set of line sources

Hs
qφ “

kρkz
4jωµ

Nq
ÿ

i“1
Kqi

rqis sinpφ´ φqisq
Rqi

H2
1 pkρRqiqe

´jkzz

`
kρ
4j

Nq
ÿ

i“1
Iqi
r ´ rqis cospφ´ φqisq

Rqi

H2
1 pkρRqiqe

´jkzz

(3.50c)

Hs
qz “ ´

k2
ρ

4ωµ

Nq
ÿ

i“1
KqiH

2
0 pkρRqiqe

´jkzz (3.50d)

with
Rqi “

b

r2 ` r2
qis ´ 2rrqis cospφ´ φqisq

k2
0 “ k2

ρ ` k
2
z

where q “ t1, 2u indicates the region 1 or 2. The Iqi and Kqi are the unknown electric and
magnetic current coefficients that need to be determined in two regions. N1 and N2 are the
numbers of doublet current unit in region 2 and region 1, respectively. (rqis, φqis) is the ith
filament source position in the region 1 or region 2 and (r, φ) is the observation point. The
Rqi is the distance between ith filament source and the observation point.

We assume the incident fields are generated by a set of electric line sources placed within
the shell. The z “ 0 plane is selected in all numerical examples and the common term e´jkzz

can be assumed and omitted. For one electric line source expressed as J0 “ I0e
´jkzzδpr ´

rsaqδpφ´ φsaqẑ placed at (rsa, φsa), the generated incident tangential fields read

Einc
φ “ I0

kzkρ1

4jωε0

rsa sinpφ´ φsaq
Ra

H
p2q
1 pkρRaq (3.51a)
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Einc
z “ ´I0

k2
ρ1

4ωε0
H
p2q
0 pkρRaq (3.51b)

H inc
φ “ I0

kρ1

4j
r ´ rsa cospφ´ φsaq

Ra

H
p2q
1 pkρRaq (3.51c)

with
k2

0 “ k2
z ` k

2
ρ

Ra “
a

r2 ` r2
sa ´ 2rrsa cospφ´ φsaq

The incident fields generated by a magnetic line source can be obtained from (3.51) through
the duality theory. The total incident fields generated by a set of line sources can be easily
obtained by superposition. It is worthwhile to mention that the Hankel function in (3.50)
must be replaced by the modified Bessel function of the second kind when kz ą k0 (the slow
wave case) in order to represent the physics of the problem.

The shell considered in this section is made up of 4-layer CFC material. Each layer has the
same configurations as εa “ 5ε0´ j40000{ω, εb “ 5ε0´ j50{ω and d=0.127 mm (see equation
(3.2)). The fiber orientation ξ in each layer is [0˝{45˝{90˝{´45˝], and the outermost layer with
a fiber orientation 0˝. ξ “ 0˝ means the fiber orientation is parallel to the z-axis. The interior
radius is ra=1 m. It is assumed that the line sources operate at 300 MHz, corresponding
to a free-space wavelength of 1 meter. Two electric line sources with differential uniform
magnitudes are placed within the shell, and the locations of two line sources are (rsa, φsa)
and (rsb, φsb) respectively. Two scenarios are considered. In the first case, the kz is set as
0.5k0 (fast wave) whereas kz is set as 1.5k0 (slow wave) in the second case.

3.5.1 Convergence study

The convergence of the situations where the closed shell is illuminated by a plane wave
is easy to achieve. When the line sources illuminate the shell, the convergence response is
highly related to the positions of line sources and therefore needs to be studied in detail. The
convergence definition has been given in (3.39), and for the convenience, we rewrite it here:

∆C “ | rEs ´ rZs rHs |

maxt|E|, | rZs rHs |u
(3.52)

where the division should be done in a term-by-term manner, and rEs, rZs and rHs are
three matrices defined in (3.13).

For the first investigated scenario, the four components of ∆C with respect to each component
of the tangential electric and magnetic fields are plotted in Fig. 3.28 for different locations of



76

(a)

(b)

(c)

(d)

Figure 3.28 Convergence responses on the boundary with respect to the locations of the two
differential line sources for the case kz “ 0.5k0. (a) ∆CpEφq, (b)∆CpEzq, (c) ∆CpHφq and
(d) ∆CpHzq. (rs “ rsa “ rsb, φsa “ 5˝, and φsb “ ´5˝).
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(a) (b)

Figure 3.29 The magnitudes of induced currents (a) Jφ and (b)Jz for the first scenario.

(a) (b)

Figure 3.30 The magnitudes of induced currents (a) Jφ and (b)Jz for the second scenario.
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the two line sources with differential currents, and rsa “ rsb “ rs, φsa “ 5˝ and φsb “ ´5˝. We
use 120 doublet current units and matching point pairs for the solution to obtain unknown
current coefficients and 1000 test point pairs are selected on the the shell to do the convergence
test. It is obvious that the response of the convergence deteriorates as the two sources come
closer to the shell. The convergence response cannot be improved by increasing the number of
doublet current units and matching point pairs. This is because the incident fields are highly
non-uniformly distributed on the inner surface of the shell in this case. Since the fields vary
rapidly in the area close to the line sources, the proposed MFCM cannot capture details of
the fields behavior and therefore a bad convergence is obtained as shown in Fig. 3.28. If we
use ∆C ă 1% as the criteria for the convergence response, a converged result can be achieved
when the location parameter rs “ rsa “ rsb of the differential line sources is smaller than
0.6 m in this case. One possible solution to improve the convergence response when the line
sources are placed closer to the shell is to use other type of weighting (for instance the RWG
test technique [150]) instead of point matching technique. Those findings in the first scenario
are also true in the second scenario where kz “ 1.5k0 is considered.

3.5.2 Calculation of induced currents

The induced current on the inner surface of the shell can be calculated once the prescribed
criteria for the convergence is achieved. The induced current is calculated with the tangential
magnetic fields on the physical boundary:

J “ n̂ˆ pH |r“ra
´H |r“ra`4dq (3.53)

where n̂ is a unit vector normal to the inner surface and point to the inner region of the
shell, and ra is the radius of inner surface of the shell.

In Fig. 3.29, the magnitudes of induced currents Jφ and Jz on the inner surface of a 4 layered
CFC-based shell are presented for the first scenario, i.e., kz “ 0.5k0. For the second scenario,
i.e., kz “ 1.5k0, the calculated magnitudes of induced currents are presented in Fig. 3.30. Two
different locations of the differential line sources with uniform magnitudes are investigated
in both scenarios, one is the case where two line sources are placed closely, and the location
parameters are rsa “ rsb “ rs “ 0.6 m, φsa “ 5˝ and φsb “ ´5˝. The other is the case where
the location parameters are rsa “ rsb “ rs “ 0.5 m, φsa “ 90˝ and φsb “ 180˝. In both
scenarios, the magnitude of Jφ is much smaller than that of Jz as indicated in Fig. 3.29 and
3.30, and this is because the electric line sources used as excitations carrying current in the
z direction, which generates only a φ component of incident magnetic field. In a PEC shell,
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there would be no scattered Hz. When the shell is made composite, the Hz field is induced
by the fibers not aligned with the z axis. In addition, the magnitudes of induced current in
the second case are also much smaller than that in the first case, and this is because the
fields generated by the line source in the second case decay rapidly. Since the magnitudes of
two sources are differential, there will be a null point once they are placed closely as shown
in Fig. 3.29(b) and 3.30(b) with dotted lines.

3.6 Conclusion

In this chapter, we have exploited applications of the MFCM on anisotropic shells by de-
ploying boundary conditions in the formulation. The impedance boundary condition for a
multilayered CFC-based shell and GSTC for a cylindrical metasurface have been discussed in
detail. The closed and slotted shells also have been taken into consideration. The plane wave
and line source excitations have been investigated in the MFCM. Many numerical examples
have been presented and discussed, and they have proven the ability of the proposed MFCM
in handling simulations under the presence of anisotropic impedance boundary conditions.



80

CHAPTER 4 THREE-DIMENSIONAL SCATTERING FROM OBJECTS
MADE OF UNIAXIAL MATERIALS

The 3D scattering analyses from uniaxial objects using the equivalent source method (ESM)
are discussed in this chapter. The multiple infinitesmall dipole method (MIDM) is a com-
monly used name to designate the ESM in the 3D scenario. Therefore the term, MIDM, is
used throughout this chapter. We start with a derivation, as introduced in Sec. 4.1, of dyadic
Green’s functions of uniaxial materials. The fields within the investigated uniaxial objects are
expressed in terms of the derived dyadic Green’s functions, and subsequently deployed in the
formulation of the proposed MIDM. The formulation for an object with a smooth boundary
is introduced in Sec. 4.2. While for an object with sharp edges, the formulation should include
additional treatment to consider the edge effect and is presented in Sec. 4.3. The boundary
conditions, singularities in using the dyadic Green’s functions as well as convergence study
are presented in Sec. 4.4. Two sets of examples regarding the smoothness of the boundary of
an object are computed in Sec. 4.5. Apart from good agreements of calculated results between
our proposed MIDM and commercial software packages, our proposed computational tech-
nique has advantages on CPU time and/or required memory in comparison to commercial
software.

4.1 Closed-form dyadic Green’s functions of uniaxial material

The uniaxial characteristic seems to be the most widely used type of anisotropic materials.
This is because the uniaxial material can be either easily found in many natural crystals
[82, 85], or artificially made by a stacked dielectric sheet structure consisting of alternative
layers of two isotropic materials [78,79,86], or obtained by homogenizing a mixture of several
different materials via effective medium theory [87,88]. If the uniaxial material is considered,
the tensor permittivity and tensor permeability are characterized as

ε “

¨

˚

˝

ε1 0 0
0 ε1 0
0 0 ε2

˛

‹

‚

ûv̂ĉ

(4.1a)

µ “

¨

˚

˝

µ1 0 0
0 µ1 0
0 0 µ2

˛

‹

‚

ûv̂ĉ

(4.1b)
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Figure 4.1 The configurations of local and global coordinates.

where the local orthogonal coordinates, represented by unit vectors û, v̂ and ĉ as shown in
Fig. 4.1, are used to express the uniaxial medium in local coordinate system. Vector ĉ is the
unit vector parallel to the distinguished axis of the medium. Parameters ε1, µ1 and ε2, µ2 are
the permittivity and permeability associated with the directions perpendicular and parallel
to the distinguished axis (ĉ), respectively. The relationship between the unit vectors in the
local and global coordinates is written as

»

—

–

û

v̂

ĉ

fi

ffi

fl

“

»

—

–

sinϕc ´ cosϕc 0
cos θc cosϕc cos θc sinϕc ´ sin θc
sin θc cosϕc sin θc sinϕc cos θc

fi

ffi

fl

»

—

–

x̂

ŷ

ẑ

fi

ffi

fl

(4.2)

where θc and ϕc are defined in Fig. 4.1.

The closed-form dyadic Green’s functions represent the electric and magnetic fields radiated
into an unbounded region filled with uniaxial materials by electric and magnetic point sources
(infinitesimal dipoles). A brief introduction of the derivation is given herein, more details can
be found in [54]. The time dependence of ejωt is assumed and suppressed throughout this
section. The investigations are carried out in the time-harmonic regime, and the Maxwell’s
equations can be written as

´ jωD `∇ˆH “ J (4.3a)

∇ˆE ` jωB “ ´M (4.3b)

where the vector fields E, D,H and B stand for electric field, dielectric displacement, mag-
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netic field, and magnetic induction. J andM represent impressed electric and magnetic cur-
rent density distribution. By considering the constitutive relations of a homogeneous medium,
we have

D “ ε ¨E (4.4a)

B “ µ ¨H (4.4b)

where ε and µ are the tensor permittivity and permeability of the investigated uniaxial
material, defined in (4.1).

Equations 4.3 and 4.4 can be written in the compact form

pjω

˜

ε 0
0 µ

¸

`

˜

0 ´∇ˆ I
∇ˆ I 0

¸

q ¨

˜

E

H

¸

“ ´

˜

J

M

¸

(4.5)

where I is the unit dyadic in three dimensional orthogonal coordinates. If we set J “ δpr´r1q

andM “ δpr´r1q, which are the electric and magnetic infinitesimal dipoles, respectively, the
solution for the F prq of equation 4.5 corresponds to the closed-form dyadic Green’s function
exactly. Vector r1 is the position of the infinitesimal dipole, and δpr ´ r1q is the Dirac delta
function. In this case, the equation 4.5 reduces to

pjω

˜

ε 0
0 µ

¸

`

˜

0 ´∇ˆ I
∇ˆ I 0

¸

q ¨Gspr, r
1
q “ ´δpr ´ r1qIs (4.6)

where Is is the 6 ˆ 6 unit dyadic. It is convenient to revert the above compact notation to
standard 3ˆ 3 dyadic for actual calculations [54], then

Gspr, r
1
q “

˜

Geepr, r
1q Gempr, r

1q

Gmepr, r
1q Gmmpr, r

1q

¸

(4.7a)

Is “

˜

I 0
0 I

¸

(4.7b)

where Geepr, r
1q, Gmmpr, r

1q, Gempr, r
1q and Gmepr, r

1q are the dyadic Green’s functions of
the electric type, the magnetic type and the hybrid type. By substituting equation 4.7 into
4.6, we can further develop equation 4.6 as

Le ¨Geepr, r
1
q “ ´jωIδpr ´ r1q (4.8a)

Lm ¨Gmepr, r
1
q “ p∇ˆ Iq ¨ ε´1δpr ´ r1q (4.8b)
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Le ¨Gempr, r
1
q “ ´p∇ˆ Iq ¨ µ´1δpr ´ r1q (4.8c)

Lm ¨Gmmpr, r
1
q “ ´jωIδpr ´ r1q (4.8d)

with the differential operators Le and Lm, which are

Le “ p∇ˆ Iq ¨ µ´1
¨ p∇ˆ Iq ´ ω2ε

Lm “ p∇ˆ Iq ¨ ε´1
¨ p∇ˆ Iq ´ ω2µ

To solve equation 4.8 is difficult and complicated, and pursing the solution for it is beyond
the scope of this thesis. Several techniques have been introduced in [53, 54, 151–156] for the
solution of equation 4.8. The solution for the dyadic uniaxial Green’s functions in the global
coordinates reads [53]:

Gee “ ´jωµ1pε2ε
´1
`
∇∇
k2
u

qge ` jωµ1T (4.9a)

Gme “ pge ´ gmqpR ¨ ĉq
rĉˆRcsRc `RcrĉˆRcs

|Rc|
4

`
p1` jkuReqε2ge

ε1R2
e

RcrRˆRcs

|Rc|
2

´
p1` jkuRmqµ2gm

µ1R2
m

rRˆRcsRc

|Rc|
2

(4.9b)

Gmm “ ´jωε1pµ2µ
´1
`
∇∇
k2
u

qgm ´ jωε1T (4.9c)

Gem “ G
T

me (4.9d)

with
ku “ ω

?
ε1µ1, Rc “ Rˆ ĉ, ge “

e´jkuRe

4πRe

, gm “
e´jkuRm

4πRm

Re “
a

ε2R ¨ ε´1 ¨R, Rm “
a

µ2R ¨ µ´1 ¨R

T “ p
ε2

ε1
ge ´

µ2

µ1
gmq

RcRc

|Rc|
2 ` pûû` v̂v̂ ´

2RcRc

|Rc|
2 q

jpRege ´Rmgmq

ku|Rc|
2

If we substitute ε=εI and µ=µI into equation 4.9, the dyadic Green’s functions for the
isotropic material (characterized by the permittivity ε and permeability µ) read

Gee “ ´jωµpI `
∇∇
k2 q

e´jkR

4πR (4.10a)



84

Gme “ ´p1` jkRq
e´jkR

4πR3 pRˆ Iq (4.10b)

Gmm “ pε{µqGee (4.10c)

Gem “ ´Gme (4.10d)

with
R “ r ´ r1, R “ |R|

where r1 and r are the locations of the source and observation points, respectively. The term
I is the identity dyad defined in global coordinates. With the help of the dyadic Green’s
functions of the uniaxial materials, the formulation of scattering evaluations from a uniaxial
object using the proposed MIDM is ready to be introduced. Though we only focus on the
uniaxial material, the proposed MIDM can also be applied to other kinds of anisotropic
materials as long as the corresponding dyadic Green’s functions are available.

4.2 Problem formulation for an object with a smooth boundary

The geometry of a smooth boundary problem is illustrated in Fig. 4.2. Two regions are pre-
sented, the outer region 1 is free space and the inner region 2 is occupied by an homogeneous
uniaxial material characterized by (4.1). The concept of the MIDM is illustrated in Fig. 4.3.
We place a set of infinitesimal dipole doublets (IDDs) in regions 1 and 2. Each IDD contains
two co-located orthogonal polarized infinitesimal dipoles, namely point sources. The formu-
lation of the proposed MIDM is conducted through two equivalences. Firstly, the scattered
fields in the region 1 are generated by equivalent IDDs placed in the region 2, and those
point sources are treated as source currents radiating in unbounded vacuum. Secondly, the
scattered fields in region 2 are generated by equivalent IDDs placed in the region 1, and those
point sources are radiating in unbounded space filled with an homogeneous uniaxial material
identical to that constituting the scatterer.

4.2.1 Fields Expressions in Regions 1 And 2

Region 1, considered as free space, contains the incident (Einc,Hinc) and the scattered fields
(Es

1, Hs
1). If the incident fields are those of a plane wave, they can be written as:

Einc “ p̂e
´jkpx sin θinc cosϕinc`y sin θinc sinϕinc`z cos θincq (4.11a)

Hinc “
1
η0
k̂ ˆEinc (4.11b)
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Figure 4.2 Geometry of the problem.

Figure 4.3 The concept of the MIDM.
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where p̂ is the polarization direction of the incident electric field, and k̂ is the normalized
wave vector. The scattered fields could be evaluated in a simple manner and expressed in
terms of the dyadic Green’s functions. So the total fields (E1, H1) could be expressed as:

E1 “ Einc `
N1
ÿ

i“1
G

1
ee ¨ pJ

1
i1pr

1
q ` J1

i2pr
1
qq (4.12a)

H1 “Hinc `

N1
ÿ

i“1
G

1
me ¨ pJ

1
i1pr

1
q ` J1

i2pr
1
qq (4.12b)

where J1
i1 and J1

i2 are the two orthogonal electric point sources in the ith IDD associated to
the region 1. It has been proven in [157] that using two orthogonal electric point sources, i.e.
IDD, is efficient to handle the scatterer with a smooth boundary, yet using three orthogonal
electric point sources, i.e. infinitesimal dipole triplets (IDT), could be more general to deal
with a scatterer with/without a smooth boundary. The IDD is used in this section whereas
the IDT will be deployed in Sec. 4.3 and Chap. 5. Noticing that one electric and one magnetic
or two magnetic point sources can also be deployed in each IDD, and dyadic Green’s functions
(Gem and Gmm) are then required with respect to the magnetic point source. In (4.12), N1

is the number of IDDs placed in the region 2. The two Green’s functions, G1

ee and G1

me, in
(4.12) are the dyadic Green’s functions of isotropic materials, corresponding to the electric
and magnetic fields radiated into the region 1 by an electric point source, which are presented
in (4.10).

The region 2 only contains the scattered fields generated by the IDDs placed outside of it,
and the expressions of fields read

Es
2 “

N2
ÿ

i“1
G

2
ee ¨ pJ

2
i1pr

1
q ` J2

i2pr
1
qq (4.13a)

Hs
2 “

N2
ÿ

i“1
G

2
me ¨ pJ

2
i1pr

1
q ` J2

i2pr
1
qq (4.13b)

where J2
i1 and J2

i2 are the two orthogonal electric point sources in the ith IDD associated
to the region 2. N2 is the number of IDDs placed in the region 1. Since region 2 is occupied
by the uniaxial material, the two Green’s functions, G2

ee and G
2

me, in (4.13) are the uniaxial
dyadic Green’s functions, corresponding to the electric and magnetic fields radiated into the
region 2 by an electric point source, which are presented in (4.9).
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Figure 4.4 The strategy of matching points placement for a spherical object.

4.2.2 Placements of matching points and sources

For an object with a smooth boundary, the matching points could be distributed as uniformly
as possible on the surface of a scatterer. However, non-uniform placement also works well
for structures with a smooth boundary. Taking a spherical shape depicted in Fig. 4.4 as
an example, we can evenly distribute Nm1 points along the θ direction firstly, and then a
latitudinal closed circle of radius ra sin θI is constructed with respect to the ith point on the
θ direction. The matching points are then uniformly placed on each closed circle in terms of
the samples per wavelength (SPW ). Specifically, the total number of matching points (Nm)
is given as

Nm “

Nm1
ÿ

i“1
r
2πra sin θiSPW

λ
s (4.14)

with
θi “

pi´ 1qπ
Nm1 ´ 1

where ra is the radius of the sphere, and λ is the wavelength of the incident wave. The r s

symbol represents the ceiling function used to obtain an integer value.

For the placement of the sources, the IDDs are placed on closed virtual smooth surfaces
which are some distance away from the smooth physical surface. The placement should be
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(a) (b)

Figure 4.5 The strategies of sources placement for a spherical object. (a) Single-layered and (b)
double-layered.

as uniform as possible. The orientations of the two point sources inside the IDD are set to
be parallel to the virtual surface in order to have a fast convergence. Two strategies are used
for the placements of IDDs. One is the traditional single-layered distribution used in [157],
and the other is the proposed double-layered distribution. Taking the spherical shape as an
example, the single-layered scheme is performed by placing a set of IDDs on a closed spherical
surface with radius r1 in the region 2 whereas with radius r2 in the region 1, as shown in
Fig. 4.5(a). We can set r1 “ 0.2ra and r2 “ 2.0ra as referred from [157] where only isotropic
materials were considered. The distribution of the IDDs on the surface should be as uniform
as possible. A convenient way to achieve the “uniform" criteria for a spherical object is to
project the location parameters (azimuthal angle and polar angle) of each matching point to
the surfaces where the IDDs are placed. Therefore the total number of IDDs (Ns) per region
is expressed as

Ns “

Nm1
ÿ

i“1
r
2πra sin θiSPW

λ
s (4.15)

The numbers of matching points and IDDs per region are equal in this scenario.

The proposed double-layered scheme is performed by placing the IDDs on two closed spherical
surfaces with radii r11 and r12 in the region 2 whereas with radii r21 and r22 in the region 1,
as shown in Fig. 4.5(b). The determinations of the four radii are given as

r11 “
r2
a

λ` ra
(4.16a)

r12 “ 0.5 ˚ r11 (4.16b)
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r21 “ 2ra ´ r11 (4.16c)

r22 “ 2ra ´ r12 (4.16d)

The surfaces with radii r11 and r21 are closer to the physical surface than those with radii r12

and r22. In order to avoid positioning the IDDs too close to (r11 and r21 approach ra) or too
far away from (r12 is much smaller than ra) the physical surface when a relatively large or
small object is encountered, we set upper and lower limits as rmax11 “ 0.95ra, rmin12 “ 0.15ra,
rmin21 “ 1.2 and rmin22 “ 1.6. The strategy in (4.16) is proposed for the case of a spherical
scatterer. In the case of other smoothly curved structures, ra should be replaced with the
local radius of curvature. The proposed adhoc rule is suitable for an object with the size
ranging from 0.2λ ˆ 0.2λ to 4λ ˆ 4λ. The distribution of IDDs on each closed surface also
should be as uniform as possible, and a strategy for the uniform placement is given as

Ns “ 2
Ns1
ÿ

i“1
rNmax ´ pNmax ´Nminq|1.3 cos θis|s (4.17)

with
θis “

pi´ 1qπ
Ns1 ´ 1

where Ns1 and θis have the same relationships with Nm1 and θi in (4.14), respectively. The
number 1.3 in (4.17) is obtained after trying several cases and found to be an optimised value
for the placement of sources. Ns is the total number of IDDs per region. For the convenience,
the number of IDDs per region can be set equal, i.e. N1 “ N2 “ Ns. Nmax and Nmin are the
coefficients used to adjust the distribution density of IDDs.Nmax “ 3.0Ns1 andNmin “ 1.0Ns1

are utilized in our numerical examples. It is convenient but not mandatory to use the same
angular positions (azimuthal angle and polar angle) of the IDDs on each layer.

4.3 Problem formulation for an object with sharp edges

We can consider a cylinder of finite length as an example to illustrate the formulation of an
object with sharp edges. The proposed strategy for a cylinder also can be straightforwardly
applied to other geometries where sharp edges are involved. The geometry of a problem is
illustrated in Fig. 4.6, as before, two regions are presented. The outer region 1 is free space
and the inner region 2 is occupied by an homogeneous uniaxial material characterized by
(4.1). Instead of placing a set of IDDs in regions 1 and 2 as was done in Sec. 4.2, a set of
infinitesimal dipole triplets (IDTs) are utilized this time. Each IDT contains three co-located
orthogonal polarized infinitesimal dipoles, namely point sources. Definitely, the IDTs can also
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Figure 4.6 Problem description for an anisotropic cylinder.

be used for case where a smooth boundary is considered, and it is found that performances of
simulation using the IDTs and IDDs are almost the same. The scattered fields from equivalent
sources expressed in (4.12) and (4.13) require a modification when IDTs are deployed, and
read

Es
“

N
ÿ

i“1
Gee ¨ pJi1pr

1
q ` Ji2pr

1
q ` Ji3pr

1
qq (4.18a)

Hs
“

N
ÿ

i“1
Gme ¨ pJi1pr

1
q ` Ji2pr

1
q ` Ji3pr

1
qq (4.18b)

where EpHqs are the scattered fields generated by N IDTs. Ji1, Ji2 and Ji3 are the three
co-located orthogonal polarized infinitesimal dipoles. Gee and Gme are the dyadic Green’s
functions with respect to the investigated region.

4.3.1 Placement of matching points

According to the experience of a 2D scenario where sharp edges are encountered as discussed
in Sec. 2.2.3, more matching points are required near the edges in order to capture the fast
variation behavior of the fields. A simple way to place the matching point is to make use of the
RWG mesh [150] information which could be exported directly from the commercial software.
Fig. 4.7(a) shows a cylinder which is adaptively meshed with the RWG basis functions in
the commercial software FEKO [132]. The mesh size in FEKO is defined with respect to
the triangle edge length (TEL). Two different mesh sizes can be applied on one object in
FEKO in order to have an adaptive mesh on the physical surface of an investigated scatterer.



91

(a) (b)

(c)

Figure 4.7 (a) RWG adaptive mesh for a cylinder in the commercial software FEKO. (b) The
triangle patches generated by the RWG mesh. (c) Placement of matching points for a cylinder with
ra “ 0.5λ and h “ 0.25λ. (λ=1 m, TELe=0.035 and TELg=0.07 are set in FEKO to generate
adaptive RWG mesh).
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One is called local mesh size (TELe), which is used to apply on the area where a finer mesh
is required, such as the edge of a cylinder, and the other one is called is global mesh size
(TELg), which is used to apply on the remaining part of the physical surface, such as the
top, bottom and side curved surfaces of a cylinder. In our numerical examples, we set the
local mesh size to be half of the global one and therefore a finer mesh is conducted near
edges. The exported mesh file from FEKO contains the geometric information of triangle
patches and nodes. The matching points are subsequently placed at the centroid of each
triangle patch as shown in Fig. 4.7(b), and their locations can be determined easily from the
nodes information exported from FEKO. In Fig. 4.7(c), the placement of matching points
according to the introduced strategy is displayed for a cylinder with a radius ra “ 0.5λ and
height 2h “ 0.5λ (λ=1 m). The TELe and TELg are set as 0.035 and 0.07, respectively, in
FEKO to generate the adaptive RWG mesh. It is clearly seen that a finer mesh is constructed
around the edge according to the proposed scheme.

An important practical strategy regarding the point matching technique for nonuniform
sampling of testing points is to weigh the fields evaluated in (4.18) by an area. This is
considered as using an approximated pulse by the middle-point testing function instead of
pure testing points. Therefore, a more practical solution is prefered to use EpHqpriq ¨ Ai
rather than just EpHqpriq in (4.18), where ri is the distance between the source and the
centroid of the ith patch and Ai is the area of the ith triangle patch, which can be easily
calculated from the information of the RWG mesh.

4.3.2 Placement of sources

The placement of sources is conducted through two steps. Firstly, we uniformly place the
sources on the surfaces which are obtained by scaling the physical surface to the inner and
outer regions of a scatterer with respect to the samples per wavelength (SPW). Double-
layered and single-layered distribution strategies for equivalent sources are considered in this
scenario. Secondly, we place additional sources near the edge in order to better approximate
the singular fields behaviors around edge areas.

For the uniform placement in the first step, we initially determine points on the physical sur-
face with respect to SPWs and SPWd, where SPWs corresponds to single-layered whereas
SPWd corresponds to double-layered distributions of sources, respectively. Then, the loca-
tions of these points are moved to the inner and outer surfaces by defining scaling parameters.
One IDT is placed at each point. For the top and bottom faces of the cylinder, we define a
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(a) (b)

Figure 4.8 Inside sources placements of (a) single-layered and (b) double-layered schemes for a
cylinder with ra “ 0.5λ and h “ 0.25λ. (λ=1 m, SPWs=16 and SPWd=13 are set to generate the
placement. S1 “ 0.85 for single-layered strategy and S11 “ 0.5 and S12 “ 0.85 for double-layered
one).

parameter Na regarding the SPW as

Na “ r
2raSPWspdq

λ
s (4.19)

where ra is the radius of the cylinder and λ is the incident wavelength. rs symbol represents
the ceiling function used to obtain an integer value. There are several ways to uniformly place
points on the top and bottom surfaces, and one strategy used herein consists of considering
a square area in the z “ h plane (top face) or z “ ´h plane (bottom face) defined by
x P r´ra, ras and y P r´ra, ras and grided with Na points in each dimension. Each grid node
is then tested and stored once it is located within a circular area defined by r “ ra´ra{pNa´1q
in the z “ h or z “ ´h planes. Finally, a number of points, recorded as Ns1, are uniformly
located on the top and bottom faces of the cylinder. For the side of the cylinder, we define
a parameter Nb as

Nb “ r
2hSPWspdq

λ
s (4.20)

where 2h is the height of the cylinder. The height of the cylinder is then grided with Nb

points evenly, and at each height, r2πraSPWspdq{λs points are placed on the side face of the
cylinder. Finally, a number of points, recorded as Ns2, are uniformly located on the side face
of the cylinder. The total number, Nuni “ Ns1`Ns2, of points are finally generated uniformly
on the surface of the cylinder.

The scaling parameters are subsequently defined in order to move these points determined
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on the physical surface to the inner and outer regions of the scatterer. For single-layered
distribution of sources, two parameters S1 (S1 ă 1) and S2 (S2 ą 1) are defined to move the
determined points to the inner and outer regions of a scatterer, respectively. It is found that
the selections of S1 in the range (0.75„0.85) and S2 in the range (2.0„4.0) can generate a
stable solution with fast convergence. In our numerical examples, S1 “ 0.85 and S2 “ 2 are
selected for the scattering simulation of an anisotropic cylinder. As for the double-layered
distribution of sources, four parameters S11, S12, S21 and S22 are defined. S11 and S12, both
smaller than 1, are used to move the points to the inner region of a scatterer whereas S21 and
S22, both larger than 1, are used to move the points to the outer region. Also, the selections
of S11, S12 in the range (0.75„0.85) and S21, S22 in the range (2.0„4.0) can generate a stable
solution with fast convergence. In our numerical examples, S11 “ 0.75, S12 “ 0.85, S21 “ 2.0
and S22 “ 3.0 are selected for scattering simulations.

Additional sources are required to be placed near edges in order to capture the fast variation of
fields around the edge. Two edges are presented in the cylinder geometry. A number of points
are generated on the edge with respect to the SPWspdq firstly and are subsequently scaled to
the inner and outer regions of the scatterer. To better approximate the physical phenomenon,
these points are scaled to multiple layers with different scale parameters. Placing additional
5 to 10 layered sources around the edge gave a better simulated performance, and 7 layers
are selected in our numerical examples. The scale parameters of the 7 layers are linearly
selected in the range (0.9„0.999) for the inner region and range (1.001„1.10) for the outer
region. In this case, a set of additional sources, recorded as Nadd, are placed around the sharp
edge. Fig. 4.8 shows the placement of inside sources according to the introduced strategy for
a cylinder with a radius ra “ 0.5λ and height 2h “ 0.5λ (λ=1 m). The single-layered and
double-layered schemes are displayed in Fig. 4.8(a) and 4.8(b), respectively. In order to make
the double-layered placement clear to see, we have set S11 “ 0.5 to generate the figure. The
two-step placement of IDTs are clearly conducted as shown in Fig. 4.8.

In conclusion, the placement of matching point is determined by making use of the RWGmesh
in commercial software package for an object with sharp edges. Two parameters, local mesh
size (TELe) and global mesh size(TELg), are used to control the density and nonconformity
of the placement. The numbers of IDTs uniformly and non-uniformly placed are designed to
relate only one parameter, the SPWspdq, in the formulation process. The proposed strategies
for the placements of matching points and sources are tested and found suitable for the size of
a cylinder in the range 0.5 ď ra{h ď 2, where ra could vary from 0.2λ to 1λ. For an object with
edges but a different geometry, the proposed strategy also can be utilized straightforwardly.
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4.4 Boundary conditions, singularities in using dyadic Green’s functions and
convergence study

4.4.1 Boundary conditions

The connection between the fields in regions 1 and 2 is dictated by the boundary conditions
of surface S shown in Fig. 4.2 and 4.6. Specifically, the tangential components of electric and
magnetic fields must be continuous along the physical boundary S, which leads to

n̂ˆ pEinc `E
s
1q “ n̂ˆE

s
2

n̂ˆ pHinc `H
s
1q “ n̂ˆH

s
2

(4.21)

where n̂ is a unit vector normal to the physical surface S. A linear system is then created
by imposing the boundary condition at a number of generated matching points on S. For
the smooth boundary involved scenario where IDDs are deployed, the number of matching
points (Nm) must satisfy the inequality

Nm ě Ns (4.22)

in order to determine the total unknown current coefficients, 2Ns per region, where Ns is the
total number of IDDs in each region.

While for the sharp edges involved scenario where IDTs are deployed, the number of matching
points (Nm) must satisfy the inequality

2Nm ě 3Ns (4.23)

in order to determine the total unknown current coefficients, 3Ns per region, where Ns is the
total number of IDTs in each region.

Upon the application of a point-matching procedure, we will finally obtain a matrix expression
of the type

rQsX “ B (4.24)

where X is a column vector containing the unknown current coefficients, and B is another
column vector containing samples of incident tangential fields at the matching points. rQs is
a matrix whose entries are obtained from the tangential fields of sources at matching points,
and it could be rectangular or square depending on whether oversampling is used or not. If it
is in a square form, a unique solution can be found, otherwise the smallest least-square error
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Figure 4.9 The proposed filtering strategy used to eliminate the singularity of the type |Rc| “ 0.

solution is pursued and known to be

X “ p
“

Q̃
‰˚
rQsq´1 “Q̃

‰˚
B (4.25)

where
“

Q̃
‰

is the transpose of rQs and the asterisk denotes complex conjugate.

4.4.2 Singularities in using dyadic Green’s functions

Two types of singularity issues usually appear when using the dyadic Green’s functions. The
first singularity issue is involved in both free space and uniaxial dyadic Green’s functions
when |R|, the distance between source and matching points, is approaching zero. A special
treatment on this issue should be considered in the VIE or SIE-based solution while this
type of singularity is completely avoided in our case because the sources are placed at a
certain distance away from the matching points. The other singularity appears in the usage
of the uniaxial dyadic Green’s functions when the term |Rc| vanishes, which occurs when
R is parallel to the distinguished axis ĉ. In this case, Rc{|Rc| becomes undefined as can be
seen from (4.9). A special treatment on this issue has been proposed in [48] for the SIE-based
methodology. In our proposed method, once the locations of matching points and sources are
generated as specified in Sec. 4.2 and 4.3, we implement a filtering strategy to firstly find
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those locations of sources letting R to be parallel to ĉ. Then we slightly shift the location
of each problematic source. For the smooth boundary case, the location of each problematic
source is shifted by adding θis{4 to the azimuthal angle, where θis is defined in (4.17). For
the sharp edges involved situation, each problematic source is moved λ{p4SPWspdqq along x
or y direction if the problematic source is on the top or bottom face of the cylinder, or along
z direction if the problematic source is on the curved face of the cylinder. The flow chart of
this singularity elimination strategy is shown in Fig. 4.9. This procedure handles the second
type of singularity issue efficiently.

4.4.3 Convergence study

In order to study the convergence of results, we make use of the error on the imposed
tangential boundary conditions as a metric, whose definitions read

∆Ebc “
|n̂ˆ pEs

1 `Einc ´E
s
2q|

|Einc|
(4.26a)

∆Hbc “
|n̂ˆ pHs

1 `Hinc ´E
s
2q|

|Hinc|
(4.26b)

where ∆Ebc and ∆Hbc are evaluated on the physical surface S, half away between the match-
ing points used to solve (4.24). The necessary numbers of sources and matching points in the
MIDM are increased until ∆Ebc and ∆Hbc reach the desired level of accuracy.

So far, all information has been presented for the linear system. Once the magnitudes of
those infinitesimal dipoles are determined, the fields and related parameters of interest can
be evaluated in a straightforward manner.

4.5 Computations of scattering analyses

Based on the numerical scheme described in the previous sections, a computer program has
been implemented. The program computes the normalized bistatic radar cross section (RCS)
(σ{λ2) in xoz and yoz planes, defined as

σ

λ2 “ lim
rÑ8

p4πr2 |Es|
2

λ2 |Ei|
2 q (4.27)

where Es is the total scattered electric field in the region 1.

We take the sphere as a representation of the scenario where a smooth boundary is involved.
Nm1 which is defined in (4.14) and SPW are used to control the density of the matching
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points. Increasing either of them leads to a finer mesh on the physical surface and a good
boundary condition error response. In our numerical examples, 5 samples per wavelength
(SPW=5) is fixed and an acceptable boundary condition error response is easily achieved
by increasing the Nm1.

The finite length cylinder is considered as an application of the proposed method on a geom-
etry with sharp edges. Parameters TELe and TELg are used to control the mesh density and
result in nonuniform sampling points, and SPWspdq is used to control the number of IDTs,
where SPWs corresponds to the single-layered and SPWd corresponds to the double-layered
distributions of IDTs. In the simulation, the RWG mesh is firstly generated with respect to
TELe and TELg, and the centroid of each triangle patch in the RWG mesh is selected as
the location of a matching point. Subsequently, the number of sources, controlled by the
SPWspdq, is increased to a maximum value under the condition in (4.23). The increase step
of SPWs is set as 1 whereas the step of SPWd is set as 0.5. Two sets of examples regarding
the smoothness of the boundary are presented in the following sections.

4.5.1 Scattering from uniaxial spheres

The first example is a both electrically and magnetically uniaxial sphere with radius ra “
0.5λ illuminated by a plane wave with an unit magnitude of x̂ polarized electric field and
propagating along the z axis. The uniaxial medium parameters are ε1 “ 2ε0, ε2 “ 4ε0,
µ1 “ 3µ0, µ2 “ 5µ0. The distinguished axis ĉ is parallel to the z axis (θc “ 0˝) and ϕc “ 0˝.
The normalized bistatic RCS responses in xoz and yoz planes are shown in Fig. 4.10. The
computed results of single-layered and double-layered distribution schemes are compared
with the simulation results from commercial software HFSS [133] where the finite-elements
method (FEM) is applied and FEKO [132] where the FDTD is applied. Excellent agreement
can be observed. The details of the necessary numbers of matching points and IDDs are
displayed in Table 4.1. Ns1 is defined in (4.15) for the single-layered scheme whereas Ns1 is

Table 4.1 The numbers of matching points and infinitesimal dipole doublets in single-layer
and double-layer sources placement strategies.

Single-layered Double-layered
Fig. 4.10 Nm “ Ns “ 626(Nm1 “ Ns1 “ 60) Nm “ 626, Ns “ 602(Nm1 “ 60, Ns1 “ 15)

Fig. 4.11(a) and 4.11(b) Nm “ Ns “ 708(Nm1 “ Ns1 “ 35) Nm “ 604, Ns “ 602(Nm1 “ 30, Ns1 “ 15)
Fig. 4.11(c) Nm “ Ns “ 604(Nm1 “ Ns1 “ 30) Nm “ 604, Ns “ 602(Nm1 “ 30, Ns1 “ 15)

Fig. 4.12(a) and 4.12(b) Nm “ Ns “ 2174(Nm1 “ Ns1 “ 54) Nm “ 2174, Ns “ 1950(Nm1 “ 54, Ns1 “ 27)
Fig. 4.12(c) Nm “ Ns “ 2582(Nm1 “ Ns1 “ 64) /

Fig. 4.15(rb “ 0.5λ) / Nm “ 2516, Ns “ 2272(NS1
m1 “ 2NS1

s1 “ 54, NS2
m1 “ 3NS2

s1 “ 33)
Fig. 4.15(rb “ 1.0λ) / Nm “ 2782, Ns “ 2552(NS1

m1 “ 2NS1
s1 “ 54, NS2

m1 “ 2NS2
s1 “ 30)

Fig. 4.15(rb “ 1.5λ) / Nm “ 3188, Ns “ 2720(NS1
m1 “ 2NS1

s1 “ 50, NS2
m1 “ 2NS2

s1 “ 32)
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(a) (b)

Figure 4.10 Normalized bistatic RCS responses of a uniaxial sphere illuminated by a plane wave
with x̂ polarized electric field propagating along the z axis in (a) xoz plane and (b) yoz plane.
(ra “ 0.5λ, ε1 “ 2ε0, ε2 “ 4ε0, µ1 “ 3µ0, µ2 “ 5µ0, θc “ 0˝, ϕc “ 0˝).

(a) (b)

(c)

Figure 4.11 Normalized bistatic RCS responses of a uniaxial sphere illuminated by a plane wave
with x̂ polarized electric field propagating along the ´z axis in (a) xoz plane, (b) yoz plane and (c)
both xoz and yoz planes whereas less numbers of matching points and IDDs of the single-layered
scheme are used. (ra “ 1λ, ε1 “ 5ε0, ε2 “ 9ε0, µ1 “ µ2 “ µ0, θc “ 45˝, ϕc “ 90˝).
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(a) (b)

(c)

Figure 4.12 Normalized bistatic RCS responses of a uniaxial TiO2 sphere illuminated by a plane
wave with x̂ polarized electric field propagating along the z axis in (a) xoz plane, (b) yoz plane
and (c) both xoz and yoz planes whereas more numbers of matching points and IDDs of the single-
layered scheme are used. (ra “ 2λ, ε1 “ 5.913ε0, ε2 “ 7.197ε0, µ1 “ µ2 “ µ0, θc “ 0˝, ϕc “ 180˝).
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defined in (4.17) for the double-layered scheme. Although the calculated results from two
IDDs distribution schemes are very close, the double-layered scheme has advantages on using
less CPU time and memory compared with the single-layered strategy, as indicated in Table
4.2.

The second example is related to an electrically uniaxial sphere with radius ra “ λ illuminated
by a plane wave with an unit magnitude of x̂ polarized electric field and propagating along
the ´z axis. The uniaxial medium parameters are ε1 “ 5ε0, ε2 “ 9ε0, µ1 “ µ2 “ µ0 and the
orientation of ĉ is defined as θc “ 45˝ and ϕc “ 90˝. The computed normalized RCS results
in xoz and yoz planes of two IDDs distribution strategies agree well with the results from
HFSS, as Fig. 4.11 suggests. Since the axis ĉ is oriented in the yoz-plane, the scattered field
pattern in the yoz plane (including ϕ “ 90˝ and ϕ “ 270˝) will be asymmetric as observed in
Fig. 4.11(b). In order to match the simulated results from HFSS, the single-layered strategy
requires more matching points and IDDs than the double-layered counterpart as indicated
in Fig. 4.11(a) and 4.11(b), leading to more CPU time and required memory as suggested in
Table 4.2. On the other hand, if the similar numbers of matching points and IDDs used in the
double-layered scheme are deployed in the single-layered scheme, as shown in Fig. 4.11(c), the
computed results will have a clear disagreement with that from HFSS or the double-layered
scheme in both xoz and yoz planes, which proves the merit of the double-layered strategy in
terms of convergence in comparison to the single-layered scheme.

If the radius of the uniaxial sphere further increases, limitations of the single-layered scheme
become more evident. To illustrate this, we consider a TiO2 sphere with radius ra “ 2.0λ illu-
minated by a plane wave with an unit magnitude of x̂ polarized electric field and propagating
along z axis. The medium parameters of TiO2 are ε1 “ 5.913ε0, ε2 “ 7.197ε0, µ1 “ µ2 “ µ0

as referred from [158]. The axis ĉ is parallel to the z axis. The normalized RCS results are
computed in both xoz and yoz planes, and are presented in Fig 4.12. The same number of
matching points is exploited in the two IDDs distribution schemes whereas a lower num-
ber of sources is used in the double-layered strategy as indicated in Table 4.1. Yet only the
results generated by the double-layered scheme have an excellent agreement with the simu-
lated results from HFSS as suggested in Fig. 4.12(a) and 4.12(b). The computed results using
the single-layered scheme are unstable and do not match well with those from HFSS. The
computed results are expected to improve if more matching points and sources are used, yet
much worse results are obtained as shown in Fig. 4.12(c) for the single-layered strategy. The
results are more unstable and have poorer agreements with those from HFSS.

To further study this phenomenon, we calculate the tangential electric field boundary con-
dition error in the xoz plane for the two distribution schemes of sources. Fig. 4.13(a) shows
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the ∆Ebc responses of the single-layered scheme with different numbers of matching points
and IDDs. It can be seen that more matching points and sources degrade the ∆Ebc response.
The instability of the single-layered scheme results in inaccurate RCS results, as shown in
Fig. 4.12(c). On the other hand, the proposed double-layered scheme does not suffer from
such instability problem. The more matching points and IDDs, the better performance of
∆Ebc is achieved as shown in Fig. 4.13(b). In addition, in the case where the same number
of matching points is used in both schemes, the double-layered scheme with a less number
of IDDs has a much better ∆Ebc response (around 0.01%) than that (around 1%) of the
single-layered scheme but with greater number of IDDs as shown in Fig. 4.13. This indicates
that the proposed double-layered scheme can accelerate the rate of convergence compared to
the single-layered scheme.

The scattering from a PEC sphere coated with a uniaxial layer, as depicted in Fig. 4.14, can
also be handled straightforwardly without more modifications in the formulation. Comparing
with the previous examples, three regions instead of two are presented in this scenario. The
outermost region 1 is free space, the region 2 is a layer with two physical boundaries S1 and
S2 occupied with an anisotropic TiO2 material, and the innermost region 3 is a PEC sphere
with a radius rb. The incident plane wave has an unit magnitude of x̂ polarized electric field
and is propagating along z axis. The formulation is similar to previous examples. The only
difference is that additional sources located within the region 3 are required to simulate the
fields inside of the anisotropic layer. The double-layered scheme is deployed in this example.
The radii of the closed surfaces where IDDs are placed are determined via (4.16) for the
physical boundary S1, and the radii for the closed surfaces where IDDs are placed within the
region 3 for the physical boundary S2 are defined with respect to an average radius (rav) as

r11 “
0.5ravrb
λ` rav

(4.28a)

r12 “
ravrb
λ` rav

(4.28b)

Table 4.2 The comparisons of CPU time (s) and memory (GB) between the proposed method
and commercial software (HFSS and FEKO)(All simulations were run on the same server
with an Intel(R) Xeon(R) E5-2680@2.70 GHz )

HFSS(FEM) Single-layered Double-layered FEKO(FDTD)
CPU time Memory CPU time Memory CPU time Memory CPU time Memory

Fig. 4.10(ra “ 0.5λ) 547 5.017 374.14 0.28 287.26 0.27 37569.60 0.642
Fig. 4.11(a) and 4.11(b)(ra “ 1.0λ) 2989 14.82 261.97 0.36 216.47 0.26 / /
Fig. 4.12(a) and 4.12(b)(ra “ 2.0λ) 82980 170.20 6695.63 2.88 4421.52 2.40 / /

Fig. 4.15(ra “ 2.0λ, rb “ 1.0λ) 12068 61.93 / / 10563.33 3.99 / /
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(a) (b)

Figure 4.13 The boundary condition error of electric field under different numbers of matching
points and IDDs (a) the single-layered scheme and (b) the double-layered scheme. (ra “ 2λ, ε1 “
5.913ε0, ε2 “ 7.197ε0, µ1 “ µ2 “ µ0, θc “ 0˝, ϕc “ 180˝).

Figure 4.14 Geometry of the PEC sphere coated with an TiO2 layer.



104

(a) (b)

Figure 4.15 Normalized bistatic RCS responses of a TiO2 layer coated PEC sphere with different
values of rb illuminated by a plane wave with x̂ polarized electric field propagating along the z axis
in (a) xoz plane and (b) yoz plane. (ra “ 2λ, ε1 “ 5.913ε0, ε2 “ 7.197ε0, µ1 “ µ2 “ µ0, θc “ 0˝, ϕc “
180˝).

where rav “ 0.5pra ` rbq. The normalized RCS responses in both xoz and yoz planes are
computed with different radii of the inside PEC sphere and presented in Fig. 4.15. The
configurations of the numbers of matching points and IDDs are also given in Table 4.1. The
computed results with rb “ λ are compared with the simulated results from HFSS, and an
excellent agreement is achieved as shown in Fig. 4.15.

So far, four numerical examples have been presented and computed. The first three examples
suggest that the proposed double-layered scheme has obvious advantages on the convergence
and the stability in handling larger objects in comparison to the traditional single-layered
scheme. Moreover, the computed results using the proposed double-layered scheme have an
excellent agreement with the simulated results generated from commercial software for each
example. However, the proposed MIDM has great advantages on the simulation performance
including the CPU time and the required memory over commercial software as displayed in
Table 4.2. The CPU time has been significantly reduced with proposed technique in the first
three examples, but the CPU time of the fourth example under rb “ λ, the multiple-region
problem, is comparable to that of HFSS. This is because additional sources and matching
points are required in multiple-region scenarios. The required memory in all the cases are
drastically reduced (by 71 times in the third example) compared with the commercial soft-
ware. The FEM (deployed in HFSS and CST [101] frequency domain solver), FDTD (deployed
in FEKO) and Finite integration technique (FIT, deployed in CST time domain solver) are
existing computational algorithms which support the simulation with anisotropic materials
in commercial software packages. Since FDTD and FIT are time domain solutions, they will
take a much longer time and relatively larger memory to do the simulation at a single fre-
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quency point. Therefore, a comparison at only one frequency point, as indicated in Table 4.2,
is unfair. The FEM has been applied in both HFSS and CST, we only take the results from
HFSS to conduct comparisons. Obviously, a very high computational requirement is needed
in FEM as suggested in Table 4.2. This is due to the discretization of the entire body of a
scatterer. This drawback will also happen in the VIE-based methods. The only comparable
technique is the SIE-based MoM proposed in [48]. Although a different CPU configuration
is employed in [48], the required memory for the scattering computation of a uniaxial sphere
with ra “ λ has been reduced from 0.59 GB in [48] to 0.26 GB by using the proposed MIDM.
It is noteworthy that our programs are written in MATLAB [159], and the computing time
of the MIDM can be improved if a compiled programming language is utilized.

4.5.2 Scattering from uniaxial cylinders and limitations

The first example is related to an electrically uniaxial cylinder with a radius ra “ 0.5λ
and a height h “ 0.25λ, therefore ra{h “ 2, illuminated by a plane wave with an unit
magnitude of x̂ polarized electric field and propagating along ´z axis. The uniaxial medium
parameters are ε1 “ 5ε0, ε2 “ 9ε0, µ1 “ µ2 “ µ0 and the axis ĉ is parallel to the z axis. The
computed normalized RCS results in xoz and yoz planes of two IDTs distribution strategies
are compared with that obtained from HFSS, in Fig. 4.16. The TELe and TELg are defined as
0.035 and 0.07 respectively in FEKO in order to generate an adaptive mesh for the cylinder
resulting in Nm “ 2312 matching points in the MIDM. The SPWs “ 16, resulting in
Ns “ 1434 IDTs, is used for the single-layered distribution of sources and SPWd “ 13,
resulting in Ns “ 1536 IDTs, is used for the double-layered case. Obviously, the calculated
results using the single-layered strategy do not agree well whereas using double-layered have
a good agreement with that obtained from HFSS.

The second example is about a uniaxial cylinder with a radius ra “ 0.25λ and a height
h “ 0.5λ, therefore ra{h “ 0.5. The excitation is the same as in the previous example.
The uniaxial medium parameters are ε1 “ 5.913ε0, ε2 “ 7.197ε0, µ1 “ µ2 “ µ0 and axis ĉ
is parallel to the z axis. The computed normalized RCS results in xoz and yoz planes of

Table 4.3 The comparisons of CPU time (s) and memory (GB) between the proposed method
and commercial software HFSS (All simulations were run on the same server with an Intel(R)
Core(TM) i7-7700@3.6 GHz )

HFSS(FEM) Single-layered Double-layered
CPU time Memory CPU time Memory CPU time Memory

Fig. 4.16(ra “ 0.5λ, h “ 0.25λ) 185 3.14 1096.21 1.19 1248.61 1.27
Fig. 4.17(ra “ 0.25λ, h “ 0.5λ) 201 7.728 1468.63 1.39 1440.30 1.34
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(a) (b)

Figure 4.16 Normalized bistatic RCS responses of a uniaxial cylinder illuminated by a plane wave
with x̂ polarized electric field propagating along the ´z axis in (a) xoz plane and (b) yoz plane.
(ra “ 0.5λ, h “ 0.25λ, ε1 “ 5ε0, ε2 “ 9ε0, µ1 “ µ2 “ µ0, θc “ 0˝).

(a) (b)

Figure 4.17 Normalized bistatic RCS responses of a TiO2 cylinder illuminated by a plane wave
with x̂ polarized electric field propagating along the ´z axis in (a) xoz plane and (b) yoz plane.
(ra “ 0.25λ, h “ 0.5λ, ε1 “ 5.913ε0, ε2 “ 7.197ε0, µ1 “ µ2 “ µ0, θc “ 0˝, ϕc “ 0˝).
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two IDTs distribution strategies are compared with that obtained from HFSS, as Fig. 4.17
suggests. The TELe and TELg are defined as 0.025 and 0.05 respectively in FEKO resulting
in Nm “ 2416 matching points in the MIDM. The SPWs “ 24, resulting in Ns “ 1604 IDTs,
is used for the single-layered distribution of sources and SPWd “ 18, resulting in Ns “ 1598
IDTs, is used for the double-layered case. Again, the single-layered strategy fails to have
accurate results whereas the double-layered one can generate results agreeing well with that
from HFSS.

Unlike the case where an object with a smooth boundary is encountered, the CPU time and
required memory in the simulation for an object with sharp edges increase a lot. This is
because larger numbers of matching points and sources are required in the formulation in
order to capture the fast variation behavior of fields near edges. The simulation performance
is displayed in Table 4.3. Although the required memory of the proposed MIDM is less than
that used in HFSS, the CPU time of the MIDM is larger than the commercial software. It is
noteworthy that our programs are written in MATLAB. The performance of the MIDM can
be improved if a compiled programming language is utilized and the codes are optimized.

This method is acceptable to handle a cylinder with a relatively small size (pra&hq ď 1λ)
and a moderate ratio between ra and h, i.e., 0.5 ď ra{h ď 2. However, the proposed strategy
becomes unstable when the electrical size or the ratio is not covered in the ranges introduced
before. We will study the limitation of this method by conducting another example.

A cylinder with ra “ 0.9λ and h “ 0.3λ, therefore ra{h “ 3, illuminated by a plane wave
with an unit magnitude of ẑ polarized electric field and propagating along ´x axis is consid-
ered herein. Since the difference between the isotropic and anisotropic material in the ESM
formulation only appears in the utilization of the dyadic Green’s function, only the isotropic
dielectric material with εr “ 4 is considered in this section for the case of investigating the
limitation of the ESM on sharp objects. The double-layered distribution of IDTs are used in
the numerical examples.

The computed normalized RCS results in xoz and yoz planes using three different sets of
mesh parameters, TELe and TELg, in the MIDM are compared with results obtained from
FEKO as shown in Fig. 4.18. None of the three choices of mesh parameters in the MIDM
can generate accurate results. This means the solved complex coefficients of currents in the
MIDM cannot satisfy the equivalence theory accurately, and the reason may appear in two
aspects. The first one is the testing method enforced on the physical boundary, and the other
is the placements of IDTs in each region. In 2D scenario, placing more matching points and
sources near the edge can easily capture behaviors of singular fields near the edge, whereas
the behaviors of singular fields near edges in a 3D scenario may be hard to be captured by
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(a) (b)

Figure 4.18 Normalized bistatic RCS simulations of a dielectric cylinder with different mesh pa-
rameters illuminated by a plane wave with ẑ polarized electric field propagating along the -x axis
in (a) xoz plane and (b) yoz plane.

Figure 4.19 The triangle patches generated by the RWG mesh.
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(a) (b)

Figure 4.20 Normalized bistatic RCS simulations of a dielectric cylinder using the RWG testing
method of different mesh parameters illuminated by a plane wave with ẑ polarized electric field
propagating along the -x axis in (a) xoz plane and (b) yoz plane.

the point-matching technique since the fields vary faster near the edge in 3D scenario. In
this case, we deploy the RWG testing procedure in the MIDM in order to provide a more
accurate way to apply the boundary condition on the physical boundary. Fig. 4.19 provides
an illustration of the RWG edge testing function (fm), where c`p´qm are the centroid of the
two triangles forming the testing edge m. The testing procedure can be approximated as

xt
Eipsqprq

H ipsqprq
u ¨ fmy –

Lm
2 ˆ

˜

t
Eipsqprc

`
mq

H ipsqprc
`
mq
u ¨ r`m ` t

Eipsqprc
´
mq

H ipsqprc
´
mq
u ¨ r´m

¸

(4.29)

where EpHqipsq indicates the incident (scattered) electric (magnetic) field and rc`m is a radius
vector between the source and the centroid c`m and c´m, pointing at the centroid c`m and c´m,
respectively.

The computed results are shown in Fig. 4.20. Unfortunately, the MIDM using the RWG test-
ing method still suffers the inaccuracy of dealing with the investigated cylinder. However, the
RWG testing method has been proven in [4] to be better than the point-matching technique
in handling an object with sharp edges in the RAS method, a MIDM-like method, and many
complex geometries can be solved using the RWG testing procedure as reported in [4]. There-
fore the reason for obtaining inaccurate calculated results using the RWG testing method in
our proposed MIDM may be due to the placements of the sources. Actually, the scattered
fields in each region are highly related to the placements of sources. Two steps are conducted
in our proposed MIDM for the placement of sources. Firstly, we place the sources uniformly
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by scaling the physical surface to the inner and outer regions of the scatterer with respect to
the samples per wavelength. Secondly, we place additional sources near the edge in order to
better approximate the singular fields behaviors around edge areas. It is reasonable to place
more sources near the edges by considering the singular behavior of fields near the edges,
yet placing the sources on two virtual surfaces inside and outside of an investigated object
may be not appropriate for a relatively larger object or an object with a complex geometry,
such as the cylinder considered herein with ra{h “ 3. The random placement of sources, as
introduced in [3,4,160], is a good strategy to approximate the scattered fields in the MIDM
for isotropic objects and should also work well for the anisotropic scatterers with complex
geometries. Currently, we are working on this issue.

4.6 Conclusion

In this chapter, we have explored the application of the ESM on uniaxial objects in 3D
scenario. The dyadic uniaxial Green’s functions have been introduced firstly and subsequently
deployed in the formulation of the proposed method. It is worthwhile to mention that it is the
first time for the GMT-like method, namely the proposed MIDM, to deploy the dyadic Green’s
functions of anisotropic materials in the formulation. The key parameters, the placements of
matching points and sources, have been discussed in detail in the formulation of an object
with or without a smooth boundary. The boundary condition and convergence study also have
been introduced and discussed. A simple strategy to deal with the singularities in using the
dyadic Green’s functions has been introduced, and it handles the singularity issue efficiently
and therefore simplifies the problem formulation drastically in comparison to the traditional
MoM. Several numerical examples have been presented, and a good agreement has been
achieved in comparison to the simulated results obtained from commercial software packages.
The simulation performance of the proposed technique in terms of CPU time and required
memory has clear advantages over the commercial software packages used for comparisons if
an object with a smooth boundary is considered. While for an object with sharp edges, our
simulation tool only has advantages on required memory compared with HFSS. Yet the CPU
time performance can be improved when a compiled programming language is utilized and
the codes are written in a professional way. Only uniaxial materials have been considered
in this work, yet the MIDM also can handle other types of anisotropic materials as long as
the corresponding Green’s functions are available, such as the biisotropic, chiral materials or
uniaxial bianisotropic materials.
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CHAPTER 5 APPLICATIONS TO LARGE SCATTERERS

Based on the discussions introduced in previous chapters, it is obvious that the ESM is
powerful in comparison to commercial software packages for the EM evaluations of an object
with a smooth boundary in both 2D and 3D scenarios. Once an object with sharp edges is
encountered, the problem still can be solved efficiently in 2D situation, but in the 3D scenario,
the ESM suffers from costly simulation performance in comparison to the commercial software
packages. By considering this limitation, in this chapter, the ESM is extended to scattering
evaluations of a relatively large object with a smooth boundary in 3D scenario. In addition,
the investigated object is assumed to be symmetrical with respect to the coordinate system,
which is often satisfied in many situations, such as spheroids and lens antennas. In addition,
the characteristic of a considered material inside an object is also assumed to be symmetrical.
Therefore only isotropic materials or PEC bodies are considered throughout this chapter.

The problem formulation is discussed in Sec. 5.1. The construction of the impedance matrix
is introduced in Sec. 5.2. Several numerical examples with respect to scattering evaluations
of PEC and dielectric objects as well as near fields calculation are presented in Sec. 5.3.

5.1 Problem formulation

We take the sphere as an example to illustrate the formulation of our proposed MIDM. In
Sec. 4.2, we have introduced two parameters, Nm1 (the number of points placed along the
longitude direction) and SPW (samples per wavelength), to control the density of distribution
of matching points, and an empirical formula (4.17) was proposed to control the number of
sources. The strategy proposed there worked well for a scatterer with a spherical geometry,
yet it seems not concise since two parameters are involved in controlling the placement
of matching points , and the proposed empirical formula (4.17) may be not efficient for
the placement of sources of a relatively large scatterer. In this section, we will propose a
more concise way for the placements of matching points and sources. In addition, the IDT
(infinitesimal dipole triplet) introduced in Sec. 4.3 is exploited.

Taking the spherical shape shown in Fig. 5.1 as an example. The sphere is divided into eight
parts according to the three symmetric planes. Each octant contains one part of the sphere.
Only the part in the first octant of the sphere ((x&y&z>=0)) is required to be considered in
the placements of matching points and sources. Once the placements in the first octant are
done, the placements in other octants could be obtained directly through the symmetry.
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Figure 5.1 The symmetric sphere with respect to three coordinate planes

As for the placement of matching points, the SPWm, samples per wavelength for matching
points, is firstly defined. Then the number of points selected along the longitude (θ) direction
determined in terms of the SPWm. A latitudinal closed circle is constructed with respect
to the ith point on the θ direction. The matching points are then uniformly placed on each
closed circle in terms of the SPWm. Specially, the total number of matching points in the
first octant (N b

m) is given as

N b
m “

Na
ÿ

i“1
r
πra sin θiSPWm

2λ s (5.1)

with
Na “ r

πraSPWm

2λ s

θi “ Gap` pi´ 1q0.5π ´ 2Gap
Na ´ 1

where ra is the radius of a sphere, and λ is the incident wavelength. Gap is used to avoid
overlapped matching points generated on the physical surface, and Gap “ 0.25π{pNa ´ 1q is
used in our numerical method. The r s symbol represents the ceiling function and is used to
obtain an integer value. So the total number of matching points are Nm “ 8N b

m.

As for the placement of sources, we firstly place the points on the physical surface with
respect to the SPWs, samples per wavelength for sources, using the previously introduced
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strategy. Then the locations of these points are moved to the inner and outer surfaces by
defining scaling parameters. One IDT is placed at each point. The total number of IDTs is
recorded as Ns “ 8N b

s , where N b
s is the total number of IDTs in each part. Only double-

layered distribution strategy of sources is used in this chapter, the single-layered strategy
has been proven in Sec. 4.5.1 to be not capable in handling relatively large scatterers. The
scaling parameters for a sphere can be found in (4.16) in Sec. 4.2, and we place it below for
the convenience

r11 “
r2
a

λ` ra
(5.2a)

r12 “ 0.5r11 (5.2b)

r21 “ 2ra ´ r11 (5.2c)

r22 “ 2ra ´ r12 (5.2d)

where ra is the radius of a sphere. In order to avoid positioning the IDTs too close to (r11 and
r21 approach ra) or too far away from (r12 is much smaller than ra) the physical surface when a
relatively large or small object is encountered, we set upper and lower limits as rmax11 “ 0.95ra,
rmin12 “ 0.15ra, rmin21 “ 1.2 and rmin22 “ 1.6. If a non-spherical geometry is encountered, the
ra should be replaced by rmax, which is the maximum one of distances among the matching
points and the origin point.

The number of matching points relates to only one parameter, SPWm, rather than being
determined by two parameters, Nm1 and SPW , as discussed in Sec. 4.2.2. The number of
sources relates to SPWs rather than being controlled by an empirical formula. The strategy
proposed herein is more concise and general than that introduced in previous chapter.

In the simulation, the SPWm is firstly given and the initial value, for a large scatterer with
a radius bigger than 3λ, is recommended to set as 2.0 and the initial value for the SPWs

is recommended as 1.0. The increasing steps for the SPWm and SPWs are 0.25 and 0.125,
respectively. In addition, only the matching points and sources in the first octant need to
be specified. The locations of matching points and sources in other octants can be directly
obtained through the symmetry of the investigated object.

5.2 Construction of the impedance matrix

By imposing the standard boundary condition expressed in (4.21) on matching points gen-
erated on the physical surface of a scatterer, a linear system is created. As discussed in the
previous section, the geometry of an investigated object could be divided into 8 parts if it is
symmetrical to three coordinate planes as indicated in Fig. 5.1. In this case, 8ˆ8 blocks are
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Figure 5.2 Constructed impedance matrix.

generated in the impedance matrix but only the tangential fields generated by the sources
in the first octant need to be calculated. Fig. 5.2 shows the description of a constructed
impedance matrix. The first column of the block matrix is required to be calculated, which
represents the tangential fields generated by the sources in the first octant at matching points
in each octant. The remain 7ˆ8 blocks can be filled directly according to the fields relation-
ships among the eight octants as shown in the Fig. 5.2. For examples, once the tangential
fields at matching points in the first octant generated by the sources in the first octant are
calculated, indicated as 1 in the first column of Fig. 5.2, the blocks in the diagonal of the
matrix can be obtained directly by considering the fields relationships.

By making use of the symmetry of the investigated object, the construction time of the
impedance matrix is reduced to around 1/8 of the time used for calculating all blocks of the
impedance matrix. However, the tangential fields generated by each source at each matching
point are recorded and therefore the required memory is not saved.

5.3 Numerical examples and discussions

The first example is a PEC sphere illuminated by a plane wave with an unit magnitude of
x̂ polarized electric field and propagating in the ´z direction. The normalized bistatic RCS
responses in xoz and yoz planes are shown in Fig. 5.3(a) and 5.3(b) for a sphere with a radius
ra “ 5λ, and in Fig. 5.3(c) and 5.3(d) for a sphere with a radius ra “ 10λ. The computed
results are compared with the simulation results obtained from commercial software FEKO
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(a) (b)

(c) (d)

Figure 5.3 Normalized bistatic RCS responses of a PEC sphere illuminated by a plane wave with x̂
polarized electric field propagating along the -z axis in (a) xoz plane and (b) yoz plane for ra “ 5λ,
and (c) xoz plane and (b) yoz plane for ra “ 10λ.

Table 5.1 The matrix sizes and unknowns as well as the CPU time (s) of the matrix con-
struction and matrix solution (All simulations were run on the same server with an Intel(R)
Xeon(R) E5-2680@2.70 GHz)

Matrix Size Unknowns Matrix Construction(symmetric) Matrix Construction(traditional) Matrix Solution
Fig. 5.3(ra “ 5λ) 5968ˆ5376 5376 84.23 412.41 686.7188

Fig. 5.3 and 5.4(ra “ 10λ) 16320ˆ14976 14976 1371.22 6200.20 12648.14
Fig. 5.5(ra “ 5λ) 20960ˆ20256 20256 514.83 2458.61 28177.18
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(a) (b)

Figure 5.4 The magnitudes of scattered electric field of a PEC sphere illuminated by a plane wave
with x̂ polarized electric field propagating in the z direction in (a) xoz plane and (b) yoz plane at
r “ 1.2ra, ra “ 10λ.

(a) (b)

Figure 5.5 Normalized bistatic RCS responses of a dielectric sphere with εr “ 4 illuminated by a
plane wave with x̂ polarized electric field propagating in the -z direction in (a) xoz plane and (b)
yoz plane for ra “ 5λ.
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Table 5.2 The comparisons of CPU time (s) and memory (GB) between the proposed method
and commercial software FEKO (All simulations were run on the same server with an Intel(R)
Xeon(R) E5-2680@2.70 GHz)

FEKO(MoM) FEKO(MLFMM) MIDM
CPU time Memory CPU time Memory CPU time Memory

Fig. 5.3(ra “ 5λ) 64708.16 40.813 8329.05 3.726 796.78 0.48
Fig. 5.3(ra “ 10λ) / / 33362.51 11.17 14740.55 3.64
Fig. 5.4(ra “ 10λ) / / / / 16217.45 3.64
Fig. 5.5(ra “ 5λ) / / 7621.63 19.69 28728.46 12.65

where MLFMM [161] solver is applied. Excellent agreement can be observed. The SPWm “ 3
and SPWs “ 1.625 are selected in the simulation for the PEC sphere with ra “ 5λ whereas
SPWm “ 2.5 and SPWs “ 1.375 are selected for the PEC sphere with ra “ 10λ. The
resulted matrix sizes and unknowns are shown in Table 5.1. The CPU time of the impedance
matrix construction and matrix solution are also provided in Table 5.1. It is obvious to see
that the CPU time for the matrix construction by making use of the symmetry has been
reduced a lot compared with the time used for the impedance construction through the
traditional approach. However, in both cases, the CPU time for matrix solution is much
larger than that for matrix construction.

In the second example, the MIDM is used to calculate the near fields of a PEC sphere with a
radius ra “ 10λ illuminated by a plane wave with an unit magnitude of x̂ polarized electric
field and propagating in the z direction. The monitor sphere for the near fields calculation
is selected with a radius r “ 1.2ra. The magnitudes of scattered electric field in xoz plane
and yoz plane are calculated and compared with Mie theory, as shown in Fig. 5.4. Excellent
agreements are achieved. SPWm “ 3 and SPWs “ 1.625 are selected in the simulation in
this case. The resulting matrix sizes and unknowns as well as the CPU time of the matrix
construction and solution are presented in Table 5.1.

The last example is about a dielectric sphere with εr “ 4 and a radius ra “ 5λ illuminated
by a plane wave with an unit magnitude of x̂ polarized electric field and propagating along
the ´z axis. The normalized bistatic RCS responses in xoz and yoz planes are shown in Fig.
5.5(a) and 5.5(b), respectively. The computed results are compared with the simulation results
obtained from commercial software FEKO where MLFMM is applied. Excellent agreement
can be observed. The SPWm “ 4 and SPWs “ 2.25 are selected in the simulation. The
relevant information about the impedance matrix is provided in Table 5.1.

The simulation performances regarding to the CPU time and required memory of above
three examples using the proposed MIDM and commercial software FEKO are displayed in
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Table 5.2. Two solvers are used in FEKO for the simulation, one is based on the MoM and
the other is based on MLFMM. The computational cost of the MoM based general solver
in FEKO is quite higher than the MLFMM based solver as indicated in Table 5.2 for the
first example. In this case, the MoM solver is not used for the simulation where a larger or
a dielectric scatterer is encountered. The required memory for the scattering evaluations of
a PEC or dielectric sphere using the MIDM is less than that using the MLFMM solver in
FEKO, yet the proposed MIDM only has the advantage on the CPU time where PEC spheres
are considered.

Based on the three numerical examples, it is obvious that the proposed MIDM is an efficient
and powerful simulation tool for the EM evaluations of a relatively large scatterer with a
smooth boundary. While for a relatively large dielectric scatterer or an electrical large PEC
scatterer (for example a PEC sphere with a radius bigger than 10λ), the advantages on
simulation performances of the MIDM become not obvious or even poorer than the commer-
cial software FEKO (MLFMM based solver). Actually this is the common drawback, which
appears in the costly construction, storage, and solution of a dense linear system, of MoM-
like methods. This drawback has led to the development of other fast algorithms such as
AIM [162], MLFMM [161], MLMDA [163–165] and SVD-MDA [166]. But several desirable
features of the MoM-like methods, including: few problem-dependent parameters; fixed time
solution avoiding convergence problems; and high efficiency for multiple excitation problems
[e.g., monostatic radar cross section (RCS)], are emphasized in comparison to the fast algo-
rithms introduced previously for a moderate electric large problems (up to several tens of
thousands of unknowns) as discussed in [161–166].

5.4 Conclusion

In this chapter, we have investigated the MIDM on the application of relatively larger scatter-
ers. The time of constructing impedance matrix is accelerated by making use of the symmetry
of investigated scatterers. However, the computation cost spent on the matrix solution is quite
high as indicated in the Table 5.1 and 5.2. The smallest least-square error solution or the
LU decomposition solution becomes time-consuming when the matrix is dense. One possi-
ble solution to solve this issue is to use the block decomposition algorithm (BDA) proposed
in [167,168] to calculate the unknowns. But a new problem rises in deploying the BDA in the
MIDM is that the BDA cannot handle an ill-conditioned matrix which is usually generated in
the MIDM. In this case, a pre-processing method should be firstly applied on the constructed
impedance matrix in order to have a well-conditioned matrix. Then the BDA can be applied
to solve the linear system fast and accurately. More details will be discussed in Appendix E.
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1 Summary of the contributions

In this thesis, the ESM has been exploited in the EM evaluations of scatterers with anisotropic
characteristics in both 2D (a specific name, MFCM, is used to represent ESM) and 3D (a
specific name, MIDM, is used to represent ESM) scenarios. An efficient, concise, and accurate
simulation tool has been proposed, formulated and further utilized for EM evaluations of
anisotropic scatterers. Several research works have been conducted, as listed below:

In Chapter 2, we have succeed in analyzing the scattering of an anisotropic cylinder using
the MFCM. The radiation fields of a line source placed in an unbounded region occupied
with anisotropic materials have been derived. The formulation of the MFCM which employs
derived radiation fields is discussed systematically. Several numerical examples are provided.
Monostatic and bistatic normalized scattering widths are computed in different scenarios such
as incident wave polarizations, material characteristics, and cross section shapes. A boundary
condition error is proposed and tested in order to determine the necessary numbers of sources
and matching points for an object with sharp edges. The analyses of the oscillation of filament
currents associated with the singularities of the scattered fields’ analytic continuation and the
matrix ill-conditioning are also presented and discussed. Our computed results are in good
agreement with results already published, which prove that we have succeeded in extending
the application of the MFCM to anisotropic materials. Moreover, our proposed method has its
merits on simplicity and conciseness in the formulation. The CPU time and required memory
are 611 s/7.50 GB for the FEM (CST) whereas only 1.58 s/0.00037 GB for the ESM when
computing the field on the surface of an elliptical cylinder in 2D case under the illumination
of a TM plane wave. The necessity of integrating surface currents and the singularity issue
(the filament current and the physical boundary coincide) are also avoided in the MFCM.

In Chapter 3, we have studied the MFCM with respect to anisotropic boundary conditions.
Specifically, two types of anisotropic boundary conditions have been considered. One is the
tensorial impedance boundary condition (TIBC) which is used to represent multilayered CFC
material, and the other is the generalized sheet transition condition (GSTC) which is used
to represent a metasurface. The formulations of the TIBC and GSTC have been introduced
in detail and subsequently deployed in the MFCM to study EM estimations of interest.

Several numerical examples have been presented with respect to the scattering and shielding
analyses of multilayered CFC-based cylindrical shells. Our results are in excellent agreement
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with the published ones. The proposed technique shows its advantages in formulating and
solving the problem with a simple and concise way. An interesting observation is that the
anisotropy of the multilayered CFC material is negligible in scattering analyses since the
cross-polarized fields are quite small compared with the main polarized counterpart. While
the anisotropic property has a significant impact on SE performances at high frequencies
as seen from that both TE and TM modes are excited within the cylindrical shell under
arbitrary incident plane waves.

Several illustrated numerical examples also have been provided by employing the GSTC. The
simulated fields are in a good agreement with the preset fields, which prove the proposed
method is capable to handle a spatial-varying impedance boundary condition. In addition,
the slotted multilayered CFC-based shells also have been considered by using the MFCM.
A hybrid tensorial boundary condition is constructed in order to represent the slotted shell.
A specific strategy to place the sources and matching points with respect to the slot is
proposed in order to consider the singularities of fields near the slot. Finally, the induced
currents distribution on the surface of a multilayered CFC-based shell under the illumination
of line sources has been investigated by using the MFCM. Several numerical examples also
have been presented and discussed.

In Chapter 4, we bring applications of the ESM from 2D to 3D. The dyadic Green’s functions
of anisotropic materials have been deployed in the GMT-like method, namely the proposed
MIDM, for the first time. A brief introduction for the derivation of dyadic Green’s functions
has been presented. The dyadic Green’s function regarding to the uniaxial materials is then
considered in the MIDM to study the scattering performance from uniaxial scatterers. A
strategy to avoid the singularity issue when using the dyadic Green’s functions has been
proposed. The placements of matching points as well as sources, which play a key role in
the MIDM, have been discussed and specified in detail, for objects with a smooth bound-
ary or with sharp edges. Both infinitesimal dipole doublet (IDD) and infinitesimal dipole
triplet (IDT) are used to simulate the scattered fields in the MIDM. In addition, the pro-
posed double-layered distribution scheme of sources can handle the scattering evaluation from
electrically large objects in a stable and efficient way in comparison to the traditional single-
layered counterpart. Several numerical examples are investigated under different scenarios,
and the computed results for each example have an excellent agreement with simulated results
obtained from commercial software packages. The simulation performance of the MIDM in
terms of CPU time and required memory has clear advantages over the commercial software
packages for an object with a smooth boundary, for example, the CPU time and required
memory are 82980 s/170.2 GB for the FEM (HFSS) whereas only 4421.52 s/2.40 GB for the
ESM when computing scattering from an uniaxial sphere with a 2λ radius, while the CPU
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time for an object with sharp edges is larger by using the MIDM. It is noteworthy that our
programs are written in MATLAB, by a non-professional programmer. The performance of
the MIDM can be improved if a compiled programming language is utilized and the codes
are written in a professional way. The limitation of the proposed MIDM on simulating a
structure with sharp edges was also studied there.

In Chapter 5, we have extended the application of MIDM to relatively large isotropic scat-
terers. The construction time for the impedance matrix is reduced by making use of the
symmetry of an object. Several numerical examples have been provided and discussed in de-
tail. The simulation performance in terms of CPU time and required memory of the MIDM
has clear advantages over the commercial software packages where the MoM are used to do
the simulation.

6.2 Future Research

p1q. The main direction of our future work is try to provide a stable solution for the simulation
of an anisotropic object with sharp edges in 3D scenario. As discussed in Sec. ??, the proposed
MIDM is not capable to handle an arbitrary object with sharp edges, and the reason is highly
due to the placement of sources. In this case, placing the infinitesimal sources inside and
outside an investigated object randomly , as introduced in [3,4,160], could be an alternative
solution to address this issue. The RWG [150] testing method was also utilized for a complex
geometry in [4]. The physical boundary is adaptively meshed with respect to the edges, which
is similar to the strategy proposed in our method as introduced in Sec. 4.3.2. More random
sources are placed near the edges in order to better approximate the singular behaviors of
fields near edges as shown in Fig. 6.2. It has been proven this strategy can handle problems
with complex shapes and sharp edges accurately. An iterative scheme also has been proposed
to satisfy the boundary condition on the physical surface with a prescribed criterion as shown
in Fig. 6.1. This is an efficient way to guarantee the solution is convergent. Although the ill-
conditioned issue of the constructed impedance matrix was not considered there, an accurate
calculation can still be obtained. Currently, we are working on using the RAS method to
simulate scattering performances of uniaxial objects with arbitrary geometries.

p2q. As discussed in Appendix E, the BDA can accelerate the computation of the constructed
dense linear system. However, ill-conditioned impedance matrices cannot be used with the
BDA approach. In this case, our second future work is to find a pre-processing method which
can be applied on the constructed impedance matrix in order to have a well-conditioned
impedance matrix. A possible pro-processing method could be singular value decomposition
method. Then the BDA can be applied to solve the linear system rapidly and accurately.
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Figure 6.1 Iterative RAS procedure flowchat. [3]

Figure 6.2 Adaptive mesh of a cone-sphere structure and the placement of random sources near
the edges. [4]
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The ESM could handle general-purpose EM problems if the above two problems could be
tackled. Specifically for symmetrical objects, for example the dielectric resonator antenna,
the lens antenna and so on, the ESM is a powerful simulation tool.

p3q. The ESM also can be used to do modal analyses for a waveguide filled with uniaxial
materials or uniaxial dielectric resonators. The natural frequencies of cavities and scatterers
using the ESM were reported in [169]. Instead of solving the Ax “ b problem, for example
the scattering problem with specific excitations b, the solution of Ax “ 0 corresponds
to the eigen modes of an investigated structure. Specifically, the eigen modes are found
by searching the real or complex roots of the determinant of the impedance matrix in a
considered frequency range [169]. For a metallic waveguide or metallic cavity with a smooth
boundary filled with uniaxial material, the formulation discussed in Chapter 4 can be directly
applied to analyze the resonant modes by setting the excitation as null. These modes can
be easily found by searching the real roots of the determinant of the impedance matrix in
a frequency range. Yet for an open dielectric resonator, the resonant modes are complex.
The real part of the modes represents the resonant frequency and the imaginary part relates
to the Q-factor of the resonator. To find these complex modes, the roots searching of the
determinant of the impedance matrix should be conducted in two dimensions and usually it
is very time-consuming. Recently, the study of resonant modes in rectangular DRA based
on the RCS was introduced in [170]. The commercial software HFSS is utilized to simulate
the monostatic RCS of a rectangular DRA in an investigated frequency range, and the peaks
in the monostatic RCS response correspond to the resonant modes. The drawback in using
the HFSS appears in the simulation time due to a very fine step in the frequency sweep
should be set in order to accurately determine the resonant frequency of each mode, and this
drawback will be more obvious when an uniaxial object is considered. The MIDM could be
a potential candidate to calculate the monostatic RCS of a uniaxial dielectric resonator with
a symmetrical geometry rapidly , and an adaptive sampling algorithm introduced in [171]
could be used to fast determine the locations of modes.
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APPENDIX A PROPAGATION MODES OF UNBOUND REGION
CONSTITUTE OF CARBON-FIBER COMPOSITE MATERIAL

With the tensor permittivity in (3.2), we will investigate the propagation modes inside of
unbounded CFC material. The two vector wave equations are given below:

∇1 ˆ∇1 ˆE1 ´ ω2µ0εE
1
“ 0 (A.1a)

∇1 ˆ pε´1
¨∇1 ˆH 1

q ´ ω2µ0H
1
“ 0 (A.1b)

The 1 is used to indicate the derivation is conducted in the local coordinates as shown in
Fig. 3.2. Applying the condition ∇1 ¨H 1 “ 0 to the y1-component (the distinguished axis of
uniaxial CFC material) of (A.1b) yields a scalar equation for:

B2H 1
y

Bx12
`
B2H 1

y

By12
`
B2H 1

y

Bz12
` ω2µ0εaH

1
y “ 0 (A.2)

The H 1
y is used to find E 1x, E 1z, and then constituting the TM 1 case. Similarly, applying the

condition ∇1 ¨ pε ¨E1q “ 0 to the y1-component of (A.1a) yields a scalar equation for:

B2E 1y
Bx12

`
εb
εa

B2E 1y
By12

`
B2E 1y
Bz12

` ω2µ0εbE
1
z “ 0 (A.3)

It is easy to obtain H 1
x, H 1

z from E 1y and then forming TE 1 case. By assuming oblique plane
wave propagation of the form E 1pH 1qz “M0e

´jpk1xx
1`k1yy

1`k1zz
1q, and substituting it into (A.2)

and (A.3) will result in propagation modes:

k12za “ ω2µ0εa ´ k
12
x ´ k

12
y (A.4a)

for the TM1 case, and
k12zb “ ω2µ0εb ´ k

12
x ´

εb
εa
k12y (A.4b)

for the TE1 case.
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APPENDIX B INCIDENT ANGLE INDEPENDENT TIBC

Generally, the TIBC for an anisotropic material is highly related on incident angle (θ), how-
ever, the dependence on the incident angle can be neglected under certain conditions for
CFC materials containing high conductivity carbon fibres. Moreover, in practical problems,
the incident field is not a plane wave with a well-defined polarization and angle of incidence,
but it could be a non-uniform spherical wave coming from a nearby source such as an an-
tenna. Therefore, a TIBC which is not sensitive to incident angle would be much more useful
in 3D electromagnetic field solvers. The incident angle is involved in the calculation of the
propagation constants of the two orthogonal modes inside of the CFC material as shown in
the expressions (A.4).

In the 3D case, as shown in Fig. B.1, kx “ k0 sin θ cos γ and ky “ k0 sin θ sin γ ,where γ is
the azimuthal angle defining the plane of incidence. Let us consider the case where of a CFC
material in which the fibre orientation is along x-axis. The conductivity in x direction will
be quite high compared with that in perpendicular directions. Therefore the kx and ky items
in (A.4a) are very small compared with the term ω2µ0εa and they can be neglected. We
therefore have angle-independent propagation constants (B.1a). However, if the conductivity
in the direction perpendicular to the fibre orientation is quite low, the kx and ky items in
(A.4b) are comparable to ω2µ0εb. In this case it may be inaccurate to ignore the two items
randomly. However, the term containing ky in (A.4b) can be neglected because the value of
εb{εa is quite small.

k12za « ω2µ0εa (B.1a)

k12zb « ω2µ0εb (B.1b)

Under certain conditions, it is possible to neglect the k2
x and k2

y terms in (A.4b) and then
make the resulting kzb independent of the incidence angle as shown in (B.1b). Supposing the
direction perpendicular to fibre orientation has a complex permittivity εu “ εrε0 ` jσu{ω,
once the conditions expressed in (B.2) are satisfied, it is safe to omit the k2

x and k2
y terms in

(A.4b), and form an incident angle independent TIBC.

|

d

εr
εr ´ 1

cotpkzdq
cotpkdq ´ 1 |ď 5% (B.2a)
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Figure B.1 Constructed impedance matrix in different levels.

|

d

εr
εr ´ 1

cscpkzdq
cscpkdq ´ 1 |ď 5% (B.2b)

where
kz “ k0

c

εr ´ 1´ j σu
ωε0

; k “ k0

c

εr ´ j
σu
ωε0

This condition is obtained by comparing the elements of TIBC matrix, defined in (3.8), under
different propagation constants kz and k as indicated in (B.2). Moreover, we have assumed
θ “ 90˝ and γ “ 0˝ to represent the worst case to obtain an incident angle-independent
TIBC. When these conditions are satisfied, we can calculate the TIBC without considering
the incident angles.
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APPENDIX C MODES DISTRIBUTIONS OF A CFC-BASED
CYLINDRICAL SHELL UNDER TM PLANE WAVE ILLUMINATION

In Fig. 3.12(b), the SE performance of a 4-layer CFC based shell with a fiber orientation
pattern [0/45/90/-45] is presented under the illumination of TM and TE plane waves. The
peaks of SE response correspond to the internal modes of the 4-layer CFC-based shell, and
both TE and TM modes are excited under the TM or TE illumination. In this appendices,
we plot the field distributions of the first ten modes under the TM plane wave illumination.
The first four TM modes are plotted in Fig. C.1 and the first six TE modes are displayed in
Fig. C.2. Since the 4-layer CFC-based shell can provide a good shielding of external fields,
there is a big difference on the intensity of the fields inside and outside of the shell. In this
case, the contrast of field distribution within the shell, for the modes TM01 and TM02, would
not be clear.
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(a) (b)

(c) (d)

Figure C.1 |Ez| (dB) component of the first four TM modes for a 4-layer CFC-based shell with
with a fiber orientation pattern [0/45/90/-45] under the TM plane wave illumination.(εa “ 3.4ε0 ´
j40000{ω, εb “ 5.0ε0 ´ j50{ω and d=0.127 mm for each single CFC-based layer, ra=1 m).
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(a) (b)

(c) (d)

(e) (f)

Figure C.2 |Hz| (dB) component of the first six TE modes for a 4-layer CFC-based shell with
with a fiber orientation pattern [0/45/90/-45] under the TM plane wave illumination.(εa “ 3.4ε0 ´
j40000{ω, εb “ 5.0ε0 ´ j50{ω and d=0.127 mm for each single CFC-based layer, ra=1 m).
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APPENDIX D DERIVATION OF IMPEDANCE-TYPE GSTC

The vector form or scalar form of GSTC was introduced in [134–136,145–147], and it usually
casts in the form relating the difference and average of transverse electric and magnetic fields
on the two sides of a metasurface. Considering a two-dimensional problem as shown in Fig.
D.1, the GSTC in local coordinate system reads:

«

´∆Hz

∆Ht

ff

“jωε0

«

χttee χtzee

χztee χzzee

ff«

Et,av

Ez,av

ff

` jk0

«

χttem χtzem

χztem χzzem

ff«

Ht,av

Hz,av

ff (D.1a)

«

∆Ez
´∆Et

ff

“jk0

«

χttme χtzme

χztme χzzme

ff«

Et,av

Ez,av

ff

` jωµ0

«

χttmm χtzmm

χztmm χzzmm

ff«

Ht,av

Hz,av

ff (D.1b)

where χee, χmm, χem and χme are the electric/magnetic (first e{m subscripts) surface sus-
ceptibilities reacting to electric/magnetic (second e{m subscripts) excitations. k0 “ ω

?
ε0µ0

is the wave number in free space. The subscripts 1 and 2 are used for referring to region 1,
where the incident and reflected fields are involved, and region 2, where only the transmitted
fields are involved, respectively. Either the region a or b in Fig. D.1 could be the region 1
or 2 depending on the locations of excitations. ∆ψ “ ψ1 ´ ψ2 in (D.1) denotes the jump
discontinuity of the tangential field component ψ, and ψav “ pψ1`ψ2q{2, where ψ “ tE,Hu.
We then expand (D.1) into four equations in terms of regions 1 and 2:

H2z ´H1z “ A11pE1t ` E2tq ` A21pE1z ` E2zq `B11pH1t `H2tq `B12pH1z `H2zq (D.2a)

H1t ´H2t “ A21pE1t ` E2tq ` A22pE1z ` E2zq `B21pH1t `H2tq `B22pH1z `H2zq (D.2b)

E1z ´ E2z “ D11pE1t ` E2tq `D21pE1z ` E2zq ` C11pH1t `H2tq ` C12pH1z `H2zq (D.2c)

E2t ´ E1t “ D21pE1t ` E2tq `D22pE1z ` E2zq ` C21pH1t `H2tq ` C22pH1z `H2zq (D.2d)

with
«

A11 A12

A21 A22

ff

“
1
2jωε0

«

χttee χtzee

χztee χzzee

ff

;
«

B11 B12

B21 B22

ff

“
1
2jk0

«

χttem χtzem

χztem χzzem

ff
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Figure D.1 Problem description.

«

C11 C12

C21 C22

ff

“
1
2jωµ0

«

χttmm χtzmm

χztmm χzzmm

ff

;
«

D11 D12

D21 D22

ff

“
1
2jk0

«

χttme χtzme

χztme χzzme

ff

Now, classifying the tangential electric and magnetic fields to the left and right sides, respec-
tively, and transforming (D.2) into matrix form, we will have

rLs

»

—

—

—

—

–

E1t

E2t

E1z

E2z

fi

ffi

ffi

ffi

ffi

fl

“ rRs

»

—

—

—

—

–

H1z

H2z

H1t

H2t

fi

ffi

ffi

ffi

ffi

fl

(D.3)

with

rLs “

»

—

—

—

—

–

A11 A11 A12 A12

A21 A21 A22 A22

D11 D11 D12 ` 1 D12 ´ 1
D21 ´ 1 D21 ` 1 D22 D22

fi

ffi

ffi

ffi

ffi

fl

rRs “ ´

»

—

—

—

—

–

B12 ´ 1 B12 ` 1 B11 B11

B22 B22 B21 ` 1 B21 ´ 1
C12 C12 C11 C11

C22 C22 C21 C21

fi

ffi

ffi

ffi

ffi

fl

Equation (D.3) is the derived impedance-type GSTC.
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APPENDIX E LIMITATION ON USE OF BLOCK DECOMPOSITION
ALGORITHM

A fast direct solution of MoM linear system has been proposed in [167, 168, 172–174]. This
method approximates the impedance matrix with the concept of matrix decomposition algo-
rithm (MDA) [163–165]. Once the impedance matrix is constructed, the block decomposition
method (BDA) is applied to solve for the unknowns efficiently. It seems that the simulation
performance of the ESM could be drastically improved if the BDA can be deployed for solving
the established linear system, yet in fact there are problems in employing the BDA into the
ESM.

In Chapter 5, we have explored the ESM on the simulation of a relatively large scatterer.
Specifically, the construction time of an impedance matrix can be reduced significantly if the
investigated object is symmetrical. Once the impedance matrix is constructed, the unknowns
can be obtained by the multiplication between the inverse impedance matrix and excitation
vectors. Usually, a non-square impedance matrix will be finally constructed according to the
strategy introduced above. It is found the matrix in a rectangular form results a larger CPU
time than the matrix in a square form, and this is due to the computation using smallest
least-square error solution is more complex than using the LU decomposition for solving the
unknown currents coefficients. Moreover, the non-square matrix can generate errors in using
the block decomposition method. In this case, additional sources are added after the SPWm

and SPWs are fixed for a specific object. These sources are uniformly placed on a quarter
circle in the middle of a octant in order to satisfy the condition:

2N b
m “ 3N b

s ` 3N b
add `Ncom (E.1)

with
N b
add “ t

2N b
m ´ 3N b

s

3 u

where tu symbol represents the flooring function used to obtain an integer value. N b
add `

rNcom{3s points are then placed on a quarter circle. In the first octant, this quarter circle is
specified with φ “ 45˝, θ ranges from 0 to π{2 and radius r13 “ pr12 ` r21q{2. In the first
N b
add points, each IDT is placed at each point. Ncom could be 0, 1 or 2. If Ncom “ 1, the last

point is placed with a x̂-polarized infinitesimal dipole with a uniform magnitude. Otherwise
two infinitesimal dipoles with x̂ and ŷ polarizations are placed at the last point. Based on
the above scheme, a square impedance matrix is finally generated.



147

Figure E.1 Constructed impedance matrix in different levels.

The inverse operation of the impedance matrix is usually conducted with LU (or QR) de-
composition for a square matrix, yet the inverse operation suffers a high computational cost
when the matrix is dense, which happens when a large object is encountered. One possible
solution to solve this issue is to utilized the block decomposition algorithm (BDA). The BDA
is proposed in [167] for a impedance matrix with arbitrary number of blocks. A multiscale
BDA is proposed in [168] for a matrix with 2n ˆ 2n blocks, where n is the number of levels.
Since the impedance matrix constructed in our formulation has 8 ˆ 8 blocks, the multiscale
BDA with 3 levels is deployed herein. Fig. E.1 shows the constructed impedance matrix Q in
different levels. In level 1, Q can be divided into 2ˆ2 blocks, and Q11 in level 1 can be further
divided into 2ˆ2 sub-blocks in level 2. Subsequently, the Q11 in level 2 can be again divided
into 2ˆ2 sub-blocks in level 3. Finally, the Q11 in level 3 is a matrix with a small size, and
it can be processed efficiently using LU decomposition method. The basic idea of multiscale
BDA is that the computation of a dense matrix can be firstly conducted in the finest level,
which is time-saving, and the computed results in the finest level are then substituted to the
previous levels in order to obtain the final computed result of a dense matrix.

A simple description of the BDA is given herein, and more details can be found in [168]. Let
us consider the linear system generated in the formulation

B “ QX (E.2)

where B is the excitation, Q is the constructed impedance matrix and X is the unknown
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currents. It then can be partitioned with the form
«

B1

B2

ff

“

«

Q11 Q12

Q21 Q22

ff«

X1

X2

ff

(E.3)

The partitioned inverse matrix of Q is

Q´1
“

«

Q̃11 Q̃12

Q̃21 Q̃22

ff

(E.4)

with
Q̃11 “ Q´1

11 `Q
´1
11 Q12Q̃22Q21Q

´1
11 (E.5a)

Q̃12 “ ´Q
´1
11 Q12Q̃22 (E.5b)

Q̃21 “ ´Q̃22Q21Q
´1
11 (E.5c)

Q̃22 “ pQ22 ´Q21Q
´1
11 Q12q

´1 (E.5d)

Let us define
D11 “ Q´1

11 (E.6a)

D12 “ D11Q12 (E.6b)

D21 “ Q21D11 (E.6c)

D22 “ pQ22 ´Q21D12q
´1 (E.6d)

Equations (E.5) can be rewritten as

Q̃11 “ D11 `D12D22D21 (E.7a)

Q̃12 “ ´D12D22 (E.7b)

Q̃21 “ ´D22D21 (E.7c)

Q̃22 “ D22 (E.7d)

We wish to compute
X “ Q´1B (E.8)



149

which in partitioned form (E.3),(E.4) is

X1 “ Q̃11B1 ` Q̃12B2 (E.9a)

X2 “ Q̃21B1 ` Q̃22B2 (E.9b)

Using equations in (E.7), we can compute X1, X2 in terms of D11, D12, D21 and D22 as

X2 “ D22pB2 ´D21B1q (E.10a)

X1 “ D11B1 ´D12X2 (E.10b)

The algorithm D “ BDApQq, given below, returns the four D11, D12, D21 and D22 operators
from (E.6) that together permit fast reconstruction of the partitioned inverse

Algorithm 1 FUNCTION D=BDA(Q)

if Q ‰ partioned then
D “ LU of Z

else
D11 “ BDApQ11q

D12 “MULT pD11, Q12q

D21 “MULT pQ22, D11q

D22 “ BDApQ22 ´Q21D12q

end if

When the Algorithm 1 is called, it calls itself recursively to compute the partitioned inverse
operators for the two blocks, Q11 and Q22 ´ Q21D12. When the sub-blocks are not further
partitioned, at the finest level (level 3 in our case), an LU decomposition is returned. The
Algorithm 2 X “ MULT pD,Bq is called in the second line of Algorithm 1, which returns
the product of two matrices. The Algorithm 2 is given below based on (E.10)

Algorithm 2 FUNCTION X=MULT(D,B)

if D ‰ partioned then
X “ U´1L´1B

else
X2 “ D22pB2 ´D21B1q

X1 “ D11B1 ´D12X2
end if
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Once the entire recursively partitioned impedance matrix Q has been converted into the
recursively partitioned inverse operator D through the Algorithm 1, the solution of the linear
system (E.2) is obtained by using Algorithm 2 according to (E.10). The entire inverse operator
D, including D11, D12, D21 and D22, is the first argument and the excitation B is the second
argument of the Algorithm 2.

Usually, a non-square impedance matrix will be finally constructed according to the strategy
introduced in Chapter 5.2. The non-square matrix can be solved by using the smallest least-
square error solution as discussed in Sec. 4.4.1, yet it generates errors in using the block
decomposition method. In this case, additional sources are added after the SPWm and
SPWs are fixed for a specific object in order to form a square impedance matrix. These
sources are uniformly placed on a quarter circle in the middle of a octant in order to satisfy
the condition:

2N b
m “ 3N b

s ` 3N b
add `Ncom (E.11)

with
N b
add “ t

2N b
m ´ 3N b

s

3 u

where tu symbol represents the flooring function used to obtain an integer value. N b
add`Ncom

points are then placed on a quarter circle. In the first octant, this quarter circle is specified
with φ “ 45˝, θ ranges from 0 to π{2 and radius r13 “ pr12 ` r21q{2. In the first N b

add points,
each IDT is placed at each point. Ncom could be 0, 1 or 2. If Ncom “ 1, the last point is placed
with a x̂-polarized infinitesimal dipole with a uniform magnitude. Otherwise two infinitesimal
dipoles with x̂ and ŷ polarizations are placed at the last point. Based on the above scheme,
a square impedance matrix is finally generated.

We take the example where a PEC sphere is illuminated by a plane wave with an unit mag-
nitude of x̂ polarized electric field and propagating along the ´z axis. The the impedance
matrix is constructed with SPWm “ 2.5, SPWs “ 1.375 and N b

add “ 56. The defini-
tions of SPWm and SPWs can be found in Sec. 5.1. The size of the constructed matrix is
16320ˆ16320. Two approaches are utilized for solving the unknown currents with complex
magnitudes, one is the introduced BDA and the other is the LU. A relative error metric is
defined as:

Ierror “
IBDA ´ ILU

maxtIBDA, ILUu
(E.12)

The real and imaginary parts of Ierror are calculated and shown in Fig. E.2. It is found that
the LU decomposition can provide an accurate solution for the unknown complex coefficients
of currents. In this case, the currents solved by BDA approach are not accurate since an
extremely large difference is observed in Fig. E.2. The simulation is conducted on the server
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(a) (b)

Figure E.2 (a)Real and (b) imaginary parts of Ierror with respect to a matrix generated in the
RCS calculation of a sphere illuminated by a plane wave.

(a) (b)

Figure E.3 (a)Real and (b) imaginary parts of Ierror with respect to a matrix generated randomly.
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with an Intel(R) Xeon(R) E5-2680@2.70 GHz. Although the CPU time for solving the cur-
rents coefficients has been reduced by using the BDA approach, the accuracy issue makes it
unable to be used in the MIDM. The reason for the high value of Ierror is due to the stability
of the impedance matrix rQs. rcondprQsq “ 1.68ˆ 10´18 is obtained for the constructed rQs,
where rcond is a function defined in MATLAB used to test the stability of a matrix. If rQs
is well conditioned, rcondprQsq is near 1.0, and if rQs is badly conditioned, rcondprQsq is
near 0. To further study this issue, we replace the constructed matrix by a new matrix with
the same size but generated through the function rand in MATLAB. The rcondprQsq of the
new matrix is 1.503 ˆ 10´7 this time. The excitation is kept the same with the previous
example. The calculated Ierror is shown in Fig. E.3, and this time, the error between the two
approaches is quite small, which is around 10´5 level. The difference in obtaining Fig. E.2
and E.3 appears in the considered impedance matrix. Obviously, the BDA can be deployed
in the MIDM to fast calculate a dense linear system as long as the ill-conditioned issue could
be solved.
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