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RÉSUMÉ 

La conception et le fonctionnement efficace des lignes de transmission dépendent fortement des 

simulations précises des transitoires électromagnétiques, qui nécessitent de couvrir une large 

gamme de fréquences, comprenant celles très proches du courant continu (CC). Plusieurs 

approches de modélisation des lignes de transmission et des câbles ont été développées au cours 

des dernières décennies. Les modèles les plus sophistiqués souffrent de problèmes de 

performances de calcul et les modèles simplifiés ne sont pas suffisamment précis lorsqu'ils sont 

utilisés dans une large gamme de transitoires.  

Cette thèse passe en revue les modèles prédominants à l’heure actuelle et démontre leurs 

inconvénients au moyen de simulations. Ensuite, elle étudie les pratiques de modélisation 

requises pour obtenir des simulations plus précises et plus rapides dans le domaine temporel en 

utilisant de modèles de lignes/câbles dépendant de la fréquence. 

Dans la première partie, cette thèse contribue à une procédure d’ajustement améliorée pour 

l’identification de la fonction de propagation H  dans les câbles. La procédure d’ajustement 

proposée repose sur des techniques de pondération adaptative et de partitionnement de fréquence 

afin d’assurer la précision de l’ajustement pour toutes les entrées de la matrice H , comprenant 

des éléments hors diagonaux de faible magnitude. En outre, une technique de réduction d’ordre 

de modèle via une réalisation équilibrée est appliquée pour obtenir un ordre d’approximation 

réduit. Les résultats numériques montrent que la méthodologie proposée permet d’obtenir un 

ajustement plus précis et qu’elle, combinée à des schémas d’intégration précis, fournit des 

simulations stables et plus précises. 

L’analyse transitoire des lignes de transmission en capturant avec précision la réponse du courant 

continu est devenue un intérêt particulier avec le nombre croissant de systèmes HVDC planifiés 

et installés. Une pratique pour capturer la réponse CC consiste à démarrer la gamme de 

fréquences dans le modèle à partir d'un échantillon de très basse fréquence dans l'ajustement des 

fonctions de ligne de transmission. Toutefois, cela peut rigidifier l'ajustement en raison de 

l’augmentation de la gamme de fréquences, et les valeurs calculées de tension/courant de ligne de 

régime permanent à courant continu peuvent s'écarter de la solution correcte. Pour résoudre ce 

problème, cette thèse propose une méthode d’ajustement en deux étapes dans laquelle les 

échantillons de basse fréquence sont exclusivement pris en compte. Dans une première étape, 
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l’ajustement est réalisé en excluant les échantillons de très basse fréquence tels que ceux 

inférieurs à 1 Hz. Dans une deuxième étape, une fonction de correction est trouvée pour les 

échantillons basse fréquence uniquement. Il est proposé d’utiliser cette approche pour éviter les 

instabilités numériques dues à un ajustement déséquilibré et pour améliorer la précision de la 

réponse CC. 

D'autre part, cette thèse propose une méthode de relaxation permettant de surveiller le contenu 

fréquentiel d'un transitoire et d'ajuster les calculs de modélisation convenablement, afin d'obtenir 

de meilleures performances sans perte de précision significative. Il est proposé de basculer entre 

les modèles WB et PI pendant la simulation. Fondamentalement, l’idée est de relaxer les 

équations de ligne pendant le régime permanent dans la simulation pour augmenter la vitesse des 

calculs de type EMT. La commutation entre les deux modèles est effectuée en modifiant les 

termes du courant d’histoire et leurs éléments correspondants dans la matrice d’admittance 

nodale au cours de la simulation. 

Les travaux de recherche présentés dans cette thèse sont également accompagnés des résultats 

d’essais disponibles via un groupe IEEE de Bonneville Power Administration (BPA). Les 

résultats d’essais disponibles permettent de valider les modèles de ligne de transmission. Les 

principaux objectifs sont de comprendre les facteurs dominants de la reproduction des résultats 

d’essais sur le terrain à l'aide de simulations et d'étudier la sensibilité des simulations à divers 

paramètres électriques de modélisation. Il comprend également des recherches sur la solution de 

problèmes complexes, tels que l’effet couronne distribué. Il est démontré que les résultats des 

simulations sont considérablement surestimés, sauf si l'effet couronne est inclus. 

Enfin, cette thèse contribue à une recherche sur des simulations statistiques de surtensions de 

commutation pour déterminer la pire surtension à la réception d’une ligne de transmission à 

charge piégée lors d’une refermeture à grande vitesse. La surtension maximale estimée obtenue à 

partir des simulations statistiques montre un bon accord avec celle enregistrée lors des tests sur le 

terrain. 

 



vii 

 

ABSTRACT 

The design and effective operation of transmission lines strongly depend on accurate 

electromagnetic transients (EMT) simulations, which require covering a wide range of 

frequencies including those very close to DC. Several approaches for transmission line and cable 

modeling have been developed during the last decades. The more sophisticated models suffer 

from computational performance issues, and the simplified models are not sufficiently accurate 

when they are used in a wide range of transients. 

This thesis first reviews the most currently predominant models and demonstrates their 

drawbacks through simulations. Then, it investigates the modeling practice required to obtain 

more accurate and faster time-domain simulations using frequency-dependent line/cable models. 

In the first part, this thesis contributes with an improved fitting procedure for the identification of 

the propagation function H  in cables. The proposed fitting procedure relies on adaptive 

weighting and frequency partitioning techniques to ensure the precision of fitting for all the 

entries of H  including the low-magnitude off-diagonal elements. In addition, a model order 

reduction technique via balanced realization is applied to obtain a reduced order of 

approximation. Numerical results show that the proposed methodology allows obtaining more 

accurate fitting, and when combined with more precise integration schemes, it yields stable and 

more accurate time-domain simulations. 

Transient analysis of transmission lines while accurately capturing the DC response has become 

of special interest with the increasing number of planned and installed HVDC systems. One 

practice to capture the DC response is to start the frequency range in the model from a very low 

frequency sample in the fitting of transmission line functions. However, this may stiffen the 

fitting due to increased range of frequencies, and the calculated DC steady-state line 

voltage/current values may deviate from the correct solution. To address this problem, this thesis 

proposes a two-stage fitting method in which low frequency samples are exclusively considered. 

In the first step, the fitting is performed by excluding very low frequency samples such as those 

below 1 Hz. In the second step, a correction function is found for the excluded low frequency 

samples. It is proposed to use this approach for avoiding numerical instabilities due to 

unbalanced fitting, and for improving the precision of the DC response. 
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In the other part, this thesis proposes a relaxation method that can monitor the frequency content 

of a transient and adjust model mathematics accordingly to achieve better performance without 

significant loss of accuracy. It is proposed to switch between WB and PI models during the 

simulation. Basically, the idea is relaxing the line equations during the steady state in the 

simulation to increase the speed of the EMT-type computations. The switching between the two 

models is performed by modifying the terms of the history current and their corresponding 

elements in the nodal admittance matrix during the simulation. 

The research work presented in this thesis is also accompanied by test data available through an 

IEEE group from Bonneville Power Administration (BPA). The available test data allows to 

validate the transmission line models. The main objectives are to understand the major factors in 

the reproduction of field measurements using simulations and to investigate the sensitivity of 

simulations to various modeling electrical parameters. It also includes research on the solution of 

complicated problems, such as distributed corona effect. It is demonstrated that simulation results 

are significantly overestimated unless the effect of corona is included.  

Finally, this thesis contributes with an investigation on statistical simulations of switching 

overvoltages to determine the worst overvoltage at the receiving end of a transmission line with 

trapped charge during a high-speed reclosing. The estimated maximum overvoltage obtained 

from the statistical simulations shows a good agreement with the one recorded in the field tests. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

The transmission line is one of the most important devices in the electrical power system, its 

primary function is to transfer electrical power from generating stations to consumers. Typically, 

aerial lines are used for long distances in rural zones, while underground cables are used in urban 

areas. 

The design and effective operation of transmission lines strongly depends on accurate 

electromagnetic transients (EMT) simulations, which are obtained using precise line models. Line 

modeling is much easier when the line equations are formulated directly in the frequency domain 

[1], [2]. However, for transient analysis of large systems, the step-by-step time-domain solution 

[3] is more flexible than frequency-domain formulations, especially with the presence of 

nonlinear elements and switching events in the network. Thus, time-domain based models are 

preferred and widely used in practice. 

Transmission lines are characterized by two electrical parameters, i.e., series impedance Z  

(longitudinal field effects), and shunt admittance Y  (transversal field effects) matrices. 

Considering the nature of these parameters, time-domain line models can be divided into two 

groups: lumped- and distributed-parameters models. In the lumped-parameter models, both Z  

and Y  are calculated at a single frequency. These models, also called PI models, are adequate for 

steady-state studies when calculating parameters at fundamental power frequency. For transient 

studies, the most appropriate models are those that consider line parameters distributed along the 

distance. These models are formulated based on the traveling-wave theory [3]-[5], and can be 

classified into two categories: a) constant parameters and b) frequency-dependent parameters 

models. 

The constant parameter (CP) model considers that Z  and Y  are independent of the frequency 

effects caused by the skin effect on phase conductors and on the ground [5]. The CP model 

implementation requires a small computational burden [5]. However, since a transient typically 

involves a wide range of frequencies, the CP model is only recommended for modeling lines 

located on zones distant to the area where the transient event occurs. 
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The implementation of frequency-dependent models requires rational function-based 

approximations of two coefficients: the characteristic admittance cY , which relates current waves 

to voltage waves, and the propagation function H , which defines the delay and distortion of a 

wave traveling along the line. Rational functions allow efficient computation of convolution 

integrals in the time-domain through recursive schemes. 

Early attempts to include frequency dependence in traveling-waves based models for transient 

simulations relied on performing direct numerical convolutions [6]-[8]. The major drawbacks 

encountered in those convolution methods are the excessive computation time and large 

accumulation errors. These problems were first addressed with the introduction of the recursive 

convolution scheme [9]-[11]. Afterwards, several models have been developed during the last 

decades, which can be classified into two groups: a) modal-domain, and b) phase-domain based 

models. 

Modal-domain models 

Modal-domain based models typically assume a constant transformation matrix [6]-[13]. In 

general, these models provide accurate representations for a large class of lines. However, when 

the frequency dependence of modal transformation matrices is very strong, the assumption of 

constant transformation matrices causes inaccuracies [14]. Therefore, their accuracy is restricted 

to aerial lines with symmetric or nearly-symmetric configurations. 

The consideration of the frequency-dependent modal transformation can be achieved by applying 

a convolution to the matrix columns, as proposed in [14]. However, it has been encountered that 

transformation matrices cannot be synthesized with sufficient accuracy in many cases, yielding to 

imprecisions and numerical instabilities in time-domain simulations [15]. 

Phase-domain models 

The issues associated with the constant transformation matrices mentioned above can be avoided 

by fitting the line functions directly in the phase domain [16]-[27]. However, this conveys 

complexities because the elements of H  contain modal contributions with multiple time delays. 

Some models suggest extracting a single time-delay from each entry of H  [18], [19]. However, 

this may stiffen the fitting procedure, requiring a high order fitting. This problem is addressed in 

other models by including modal time delays in the phase-domain formulation [21]-[27]. 
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One of the most accepted phase-domain models is the universal line model (ULM) [27], which 

has been implemented in many EMTP-type programs. The ULM has a two-step fitting approach 

in which the poles of H  are identified in the modal domain together with time delays, and the 

residues in the phase domain. Repetitive or close modal delays are grouped. The criterion for 

grouping is the difference in angle and magnitude at a high frequency [28]-[30]. Since its 

proposal, ULM has received several improvements related to fitting accuracy [31], out-of-band 

passivity violations [32]-[33], matrix symmetry issues [34], and real-time implementation [35].  

Although the ULM is considered an accurate model for both transmission lines and cables, it has 

been associated with numerical stability problems [36]-[39]. These problems potentially arise 

when the propagation function H  is fitted with poles and delays coming from different but close 

delay groups. This is denoted as unbalanced modal contributions and it results in magnification 

of integration errors in time-domain simulations. Adapting more accurate integration methods 

and a two-step interpolation scheme, as proposed in [37], reduces integration errors and helps 

maintaining numerical stability in the time domain. However, the unbalanced modal 

contributions in H  cannot be removed by changing the integration method, and inaccurate 

simulation results with spurious oscillations can still be observed in cases with high residue/pole 

ratios. 

Fitting modal contribution groups of H  directly in the phase-domain, as proposed in [39], avoids 

high residue/pole ratios. However, if the fitting of H  is performed directly in the phase domain 

and per modal contribution, more poles are required compared to ULM approach to maintain 

similar precisions. Moreover, since a single set of poles is used per modal contribution group to 

accelerate time domain simulations, the overall system of equations becomes large, and off-

diagonal low-magnitude entries of H  may not be accurately fitted. Even though off-diagonal 

entries of H  are of very small magnitude, their poor fitting may have an observable impact on 

induced transient voltages. 

Curve fitting techniques 

The basic idea of frequency-dependent line models in EMT-type programs is to use rational 

approximations for cY  and H , calculated by using different methodologies. Among existing 

methodologies, the vector fitting (VF) method has been widely used for the fitting of measured or 

calculated frequency-domain functions with rational function approximations [40]. Alternatively, 
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the matrix pencil method (MPM) [46] has also been applied to rational fitting of frequency 

responses [47], [48]. However, the MPM is not as direct as VF method, since it requires 

additional numerical operations from and to the time-domain and the frequency-domain, 

involving a set of closed-form formulas based on the Fourier transform [49]. 

After its original proposal, the VF method has been modified to improve its numerical 

performance [41]-[43]. However, its equations may become ill-conditioned for wide frequency 

ranges, creating problems for low order rational fitting. To address this problem, the orthonormal 

vector fitting, and the weighted vector fitting have been proposed in [44], and [45], respectively. 

Partitioning of frequency responses improves fitting precision. This idea has been applied for the 

modeling of frequency dependent network equivalents [50]-[52], transmission lines [53], and 

underground cables [54]. The downside is the increasing number of poles. Recently, the 

application of a model order reduction [52] via a balance-realization (BR)-based technique [55], 

[56] has been proposed to remove the redundant poles. 

Corona effect 

It has been mentioned the importance of including the frequency dependence of line parameters 

in the line modeling. However, even though frequency dependent line models provide accurate 

time-domain simulations, conservative results can be obtained unless the corona effect is 

considered [57]. The corona effect has a strong influence on the propagation of waves [57]-[63]. 

The corona discharge is produced by the ionization of the air surrounding a conductor that is 

electrically charged. This occurs when the voltage of a conductor reaches a critical value, i.e. 

corona inception voltage [59]. The storage and movement of charges in the ionized region can be 

viewed as an increase of the conductor radius and consequently of the capacitance to ground [58]. 

The effect of corona is characterized by the charge-voltage (q-v) response of the conductors of 

the transmission line [59].  

The representation of corona involves a distributed nonlinear hysteresis behavior which becomes 

difficult to combine with the EMTP-type transmission line formulations. Most of the methods 

proposed in the literature rely on the two following techniques: i) subdividing lines in linear 

subsections with non-linear shunt branches at each junction [58], and ii) applying finite 

differences methods to line equations [60]. The latter presents less numerical oscillations than the 

former; however, it requires a significant computational burden [60]. 
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Existing corona models can be classified into two groups: static and dynamic. In general, all the 

models need to calculate beforehand the corona inception voltage [59]. Static models are those in 

which the corona capacitance is only a function of the voltage. In this type of models, a fixed 

nonlinear q-v characteristic is assumed, and can be either simulated directly by using RC circuits 

and diodes [61], or described by analytical expressions [62]. Dynamic models consider the fact 

that the charge depends on the voltage and on the rate of change of the voltage [63]. 

1.2 Contributions 

EMT simulations require covering a wide range of frequencies including those very close to DC. 

As mentioned before, several line and cable models have been developed during the last decades 

[3]-[27]. It is concluded that the more sophisticated models suffer from computational 

performance issues, and the simplified models are not sufficiently accurate when they are used in 

a wide range of transients. 

This thesis first reviews the most predominant models in the literature and demonstrates their 

drawbacks through simulations. Then, it investigates the modeling practice required to obtain 

more accurate and faster time-domain simulations using frequency-dependent line/cable models. 

The contributions of this thesis are detailed as follows. 

A) Identification procedure of the propagation function  

This thesis contributes with precise fitting procedures for the identification of H  in the phase 

domain while maintaining reduced order of approximation. In the proposed fitting approach, 

poles and residues of H  are identified simultaneously in the phase domain. The procedure 

encapsulates the following proposed features. An adaptive weighting technique is applied to 

normalize all the entries of H  prior to fitting. This allows ensuring the precision of fitting for all 

the entries including the low-magnitude off-diagonal elements. The frequency band of fitting is 

partitioned so that the fitting problem is simplified, and the accuracy is improved compared to the 

standard application of vector fitting. Finally, a model order reduction (MOR) technique via 

balanced realization (BR) is applied to obtain a reduced order of approximation. 

The proposed methodology allows obtaining more accurate fitting, and when combined with 

more precise integration schemes, it yields more stable and more accurate time-domain 

simulations. 



6 

 

B) DC correction in wideband models 

Transient analysis of transmission lines with accurate capturing of the DC response, has become 

of special interest with the increasing number of planned and installed HVDC systems [65]-[68]. 

One practice to capture the DC response in the ULM is to specify a very low frequency for fitting 

H  and cY . However, this approach often leads to incorrect solutions for the DC steady-state 

voltages and currents due to generally poor DC fitting [69]-[70]. To address this problem, this 

thesis contributes with a two-stage fitting method in which low frequency samples are given 

priority. In the first stage, the fitting is performed by excluding very low frequency samples such 

as those below 1 Hz. In the second stage, a correction function is found for the excluded low 

frequency samples. It is proposed to use this approach for avoiding numerical instabilities due to 

unbalanced fitting, and for improving the precision of DC response. 

C) Adaptive line modeling 

Another contribution of this thesis is a relaxation method that can monitor the frequency content 

of a transient and adjust model mathematics accordingly to achieve better performance without 

significant loss of accuracy. Simulation of EMT using relaxing models have been proposed 

through the shift frequency concept [71]-[74]. In this thesis, it is proposed to switch between 

wideband (WB) and PI models during the simulation. Basically, the idea is to relax the line 

equations during the steady state to increase the speed of the EMT-type computations. The 

switching between the two models is performed by modifying the terms of the history current 

vectors and their corresponding elements in the nodal admittance matrix during the simulation. 

D) Validation of line models with field measurements 

One more contribution of this thesis is to validate transmission lines model with field tests and to 

identify the required simulation practices in reproducing field measured overvoltages in EMT 

simulations. The test data are available through an IEEE working group from Bonneville Power 

Administration (BPA). It is demonstrated that even though the pattern of the transient voltage 

waveforms can be reproduced very well using frequency-dependent line models, simulations 

results are significantly overestimated unless the effect of corona is included. Two types of 

corona models are tested; both models demonstrate that corona is the primary factor that allows 

the simulations to correctly reproduce field measurements.  
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E) Statistical study of switching overvoltages  

This thesis also contributes with an investigation on statistical simulations of switching 

overvoltages to determine the worst overvoltage at the receiving end of a transmission line with 

trapped charge. 

1.3 Thesis outline 

This thesis is composed of eight chapters and two appendices. 

CHAPTER 1 – INTRODUCTION, explains the background motivating this PhD project, and 

summarizes its objectives and contributions. 

CHAPTER 2 – REVIEW OF LINE/CABLE MODELS, contains the basic theory essential for a 

better understanding of the content of this thesis. This includes main equations and a general 

classification of line and cable models. In addition, it demonstrates the drawback of current 

models through time-domain simulations. 

CHAPTER 3 – ENHANCED FITTING TECHNIQUES FOR THE IDENTIFICATION OF THE 

PROPAGATION FUNCTION, presents fitting procedures for the identification of the 

propagation function in the phase domain. The proposed procedure encapsulates: Frequency 

partition and adaptive weighting techniques to ensure the precision of fitting, and a model order 

reduction method via balanced realization to obtain a reduced order of approximation. It also 

includes an additional two-stage fitting procedure for improving the precision of DC response. 

CHAPTER 4 – TIME DOMAIN SIMULATIONS, analyses the impact of improving the fitting 

of the propagation function in time-domain simulations via transient studies. The proposed fitting 

procedures are combined with more precise integration schemes to obtain stable and more 

accurate simulation results. 

CHAPTER 5 – ADAPTIVE LINE MODEL, presents a relaxation method to increase the speed 

of time-domain simulations. It is proposed to switch between WB and PI models during the 

simulation. The idea is illustrated via a simple case of study. 

CHAPTER 6 – SIMULATION OF SWITCHING OVERVOLTAGES AND VALIDATION 

WITH FIELD TEST, presents the analysis of other important factors in line modeling, such the 

consideration of corona. It includes validation of transmission lines with field test. 
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CHAPTER 7 – STATISTICAL SIMULATIONS OF SWITCHING OVERVOLTAGES, presents 

a statistical simulation study to determine the worst overvoltage at the receiving end of a 

transmission line during high-speed reclosing with a trapped charge on the line. 

CHAPTER 8 – CONCLUSION, presents the main conclusions of this thesis, the list of 

publications derived from its contributions and possible future work. 

APPENDIX A – CONSTANT PARAMETER LINE MODEL DETAILS, presents the time-

domain implementation details of the constant parameter line model. 

APPENDIX B – CORONA MODEL DETAILS, summarizes the equations and parameters of the 

corona models used in Chapter 6. 
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CHAPTER 2 REVIEW OF LINE/CABLE MODELS 

This chapter presents the basic theory related to line/cable modeling, including main equations 

and a general classification of time-domain models. In addition, it demonstrates the drawback of 

current models used for EMT through time-domain simulations. 

2.1 Main equations 

2.1.1 Equations in the frequency domain 

Most of existing transmission line models for EMT simulations are based on the traveling-wave 

theory [3]. Figure 2.1 illustrates reference directions of a transmission line of length L  assuming 

N  conductors parallel to the ground. 

LI

LV

0I

0V

N

2
1

0x = x L=
 

Figure 2.1  Multiconductor line segment of length L  

At each point of the line depicted in Figure 2.1, the frequency domain line equations are 

expressed as: 

 
d

dx
= −

V
ZI    (2.1) 

 
d

dx
= −

I
YV   (2.2) 

where Z  and Y  are the per unit length series impedance (longitudinal field effects) and shunt 

admittance (transversal field effects) matrices, respectively. Both Z  and Y  can be numerically 

obtained from the geometry and the electrical parameters of the line [75].  

The general solution of (2.1) and (2.2) can be expressed as [4]: 

 ( ) x xx e e−= +Γ Γ
F BI I I    (2.3) 

 ( ) ( )1 x xx e e− −= −Γ Γ
c F BV Y I I   (2.4) 
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where =Γ YZ ; the forward and backward currents, FI  and BI , can be obtained from the 

boundary conditions of the line. The characteristic admittance matrix cY  is given by: 

 1−=cY ΓZ   (2.5) 

In EMTP-type models, the transmission line/cable is represented by decomposing the current 

waves into incident and reflected waves as depicted in Figure 2.2. 

kV mV

kI mI
cH,Y

kiI

krI

miI

mrI

k m

 

Figure 2.2  Traveling-wave multiconductor line/cable segment 

Based on (2.3) and (2.4), and the reference directions given in Figure 2.2, the frequency-domain 

voltages and currents at both ends are related by: 

 ( )= − + = −
kk c k m c m sh kiI Y V H I Y V I I   (2.6) 

 ( )= − + = −
mm c m k c k sh miI Y V H I Y V I I   (2.7) 

where kI  and mI  are the vectors of injected currents, and kV  and mV  correspond to nodal 

voltage vectors. Also, subscripts i  and r  refer to incident and reflected waves, respectively. H  is 

the propagation function matrix defined by: 

 Le−= Γ
H   (2.8) 

Equivalently, the model defined by (2.6) and (2.7) can be expressed in terms of a two-port 

network. Combining (2.6) and (2.7), and defining U  as the identity matrix, the two-port model is 

given by: 

 ( )
2

1
2

2

2

2

−  + −    
= −      

− +       

k k
c

m m

I VH U H
U H Y

I VH H U
  (2.9) 
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2.1.2 Equations in the time domain 

To obtain the time-domain counterparts of (2.6) and (2.7), convolution operations (denoted by  ) 

at line/cable terminals must be performed, as indicated in (2.10) to (2.13) (time-domain variables 

indicated with lowercase letters).  

 = 
ksh c ki y v   (2.10) 

 = 
msh c mi y v   (2.11) 

 ( )=  + = 
mki m sh mri h i i h i   (2.12) 

 ( )=  + = 
kmi k sh kri h i i h i   (2.13) 

The objective is to obtain the Norton equivalent shown in Figure 2.3 by solving the time-domain 

versions of (2.6) and (2.7). The history current sources in Figure 2.3 are obtained using the 

convolutions involved in (2.10) to (2.13). The 
cYG  term is calculated from the convolution of the 

characteristic admittance with a terminal voltage.  

ki
kv mv

mi
khisti

mhisti

cYGcYG

 

Figure 2.3  Equivalent Norton circuit 

The time-domain implementation of this type of model requires the synthesis of H  and cY . The 

identification of rational functions for these two matrices is not straightforward, particularly in 

the case of H  due to multiple time delays [27]. 

2.2 Classification of line/cable models 

Figure 2.4 presents a general classification of the most commonly used transmission line/cable 

models for EMT simulations. Considering the nature of Z  and Y , the line models can be 

divided into two groups: 1) lumped- and 2) distributed-parameters models. 
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Line/cable models

Lumped parameters Distributed parameters

Constant 

parameters

Frequency-dependent 

parametersPI model

CP model Modal domain Phase domain

FD model

FDQ model

Universal line model 

(ULM)

Frequency-dependent 

cable model (FDCM)
 

Figure 2.4  Classification of the currently most predominant line/cable models 

2.2.1 Lumped parameter models 

In the lumped parameter models, or PI models, the coefficients Z  and Y  are calculated at a 

single frequency; thus, (2.9) can be directly used for modeling a line segment. For a time-domain 

simulation, the model of (2.9) can be discretized according to the integration time-step and solved 

at each simulation time-point [4]. However, since this model is only capable to simulate one 

frequency, its application is only adequate for steady-state purposes. For instance, harmonic 

initialization and frequency scan solutions. 

2.2.2 Distributed parameter models 

For EMT simulations, the most appropriate models are those that consider the parameters 

distributed along the distance. These models use (2.6) and (2.7) to represent the line at each end 

by a Norton equivalent circuit [4], as shown in Figure 2.3. This group of models may consider the 

parameters Z  and Y  as: a) constant- or, b) frequency-dependent. 

The constant parameter (CP) model considers that (2.6) and (2.7) are resolved independently of 

the frequency effects, avoiding numerical convolution operations and consequently requiring a 

small computational burden [5]. However, since the propagation modes cannot be represented at 

high frequencies, the CP model is only recommended for modeling lines in analysis of problems 

with limited frequency dispersion. 
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The basic idea of frequency-dependent line models in EMT-type programs is to use rational 

approximations for cY  and H , calculated by using different methodologies [40]-[46]. Rational 

functions allow efficient computation of convolution integrals through recursive schemes. The 

identification of cY  and H  is not straightforward, particularly in the case of H , due to multiple 

time delays [30]. Several frequency-dependent line models have been proposed during the last 

decades [6]-[27], the most predominant ones are reviewed in the next section. 

2.3 Frequency-dependent models 

Frequency-dependent line and cable models used for EMT simulations can be divided into two 

groups: a) modal-domain, and b) phase-domain based models.  

2.3.1 FD model (modal domain) 

In the frequency-dependent line model proposed in [12], named in this thesis as FD model, the 

multiphase line functions are decoupled via modal transformation. The transformation matrix 

used to relate modal and phase quantities is assumed to be constant and real. The line functions, 

i.e., the characteristic impedance cZ  and the propagation function H , in the modal domain are 

calculated as: 

 m T=c cZ Q Z Q   (2.14) 

 m 1−=H Q HQ   (2.15) 

where Q  is the eigenvector matrix which diagonalizes the product YZ  and superscript m  

indicates modal quantity. The FD model represents frequency dependence by fitting cZ  and H  

for each mode using a Bode approximation [12]. Then, each mode is solved separately as a 

single-phase circuit. For time-domain implementation details see [12]. 

Synthesis of the characteristic impedance 

In the fitting procedure presented in [12], the characteristic impedance cZ  is formulated by a 

series of RC parallel blocks. The rational function of each mode m  of 
m
cZ  is of the form  
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( )( ) ( )

( )( ) ( )
1 2

1 2

Mm
c

M

s z s z s z
Z K

s p s p s p

+ + +
=

+ + +
  (2.16) 

where iz  and ip  are real and positive zeros and poles, respectively, and K  is a constant value. 

Equivalently, (2.16) can be expressed as a partial fraction expansion as follows 

 0

1

M
m i
c

ii

k
Z k

s p=

= +
+

   (2.17) 

where M  is the order of approximation, 0k  is a constant value, and ik  and ip  represents its ith 

pole and its ith residue, respectively. 

Synthesis of the propagation function 

The modes of the propagation function H  are normalized as minimum-phase-shift functions 

prior to fitting [12]. The propagation modes are represented by the rational approximation of the 

form 

 
( )

1

m
M

sm i

ii

k
H e

s p

−

=


−

   (2.18) 

where   is a real constant value associated with a modal time delay. 

Frequency-dependent transformation matrix 

The FD model provides accurate representations for a large class of line configurations. 

However, their accuracy is restricted to cases where the frequency dependence of the 

transformation matrix Q  is not very strong, i.e., aerial lines with symmetric or nearly symmetric 

configuration; thus, it is not applicable to cables.  

The consideration of the frequency-dependent modal transformation in the model can be 

achieved by applying additional convolution operations to the transformation matrix elements, as 

proposed in the cable model presented in [14]. In this model, named in this thesis as FDQ model, 

each entry of the full transformation matrix Q  is approximated with  

 0

1

M
i

ii

k
Q k

s p=

= +
+

   (2.19) 
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To obtain the rational approximation of the entries of Q , its eigenvectors are normalized prior to 

fitting, so that one of its elements becomes real and constant along the entire frequency range. 

This procedure allows that all the entries of Q  become minimum-phase-shift functions. It is 

noted that Q  can be fitted only when its elements are continuous function of frequency [14]. 

2.3.2 ULM (phase domain) 

The ULM [27] accounts for frequency-dependent parameters and constitutes a wideband model. 

Although ULM has its bases on modal factorization, it resolves the multiconductor propagation 

relations in the phase domain. Thus, it provides highly accurate results for the simulation of 

coupling effects between parallel conductors, compared to the modal-domain based models. 

Fitting of the characteristic admittance 

The fitting of the characteristic admittance cY  is not stringent as it exhibits smooth behavior in 

the frequency-domain. The following form is used [27]: 

 
1

yN

i

ii s q=

 +
−

c 0

G
Y G   (2.20) 

where yN  is the order of approximation, iq  represents the ith fitting pole, iG  is the matrix of 

residues, and 0G  is a constant matrix representing the limit of cY  when s → . 

Fitting of the propagation function 

In ULM, H  is first decoupled into single-delay terms through modal decomposition 

 m 1−=H TH T   (2.21) 

where T  is the matrix of eigenvectors of the product YZ , and m
H  is a matrix of the form 

 ( )1 2m , , , Ndiag e e e
 

=H   (2.22) 

where the terms ie


 are the eigenvalues of H , representing the propagation modes iH . To 

compensate excessive phase lag and achieve a low-order rational approximation, a constant time 

delay is removed prior to fitting. Therefore, poles and delays are identified by fitting each modal 

propagation function with  
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,1
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M
j s
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c
H e

s p

−

=


−

   (2.23) 

where iM  is the order of the approximation for the ith mode, ,i jp  represents the jth pole, jc  

represents its jth residue, and i  is the time associated to the ith mode. Repetitive or close modal 

delays are grouped. The criterion for grouping is the difference in angle and magnitude at a high 

frequency [27]. Once the poles and delays are known, the matrix of residues is found by solving 

the following overdetermined problem:  

 
( ),

,1 1

gr i
i

N M
i j s

i ji j

e
s p

−

= =

 
  

 − 
 

R
H   (2.24) 

where grN  is the number of modal groups, and ,i jR  corresponds to the matrix of residues.  

2.3.3 FDCM (phase domain) 

Although (2.24) can be used for any cable or line configuration, it has been associated with 

numerical stability problems due to the existence of residue pole pairs with high ratios and 

opposite signs coming from different but close delay groups [39]. This results in a magnification 

of integration and interpolation errors in time-domain simulations.  

In the frequency-dependent cable model (FDCM) proposed in [39], H  is decomposed into modal 

contributions groups which are individually fitted in the phase domain. In FDCM, similar 

eigenvalues of H  and their corresponding eigenvectors are grouped by summing them, and a 

single time delay is assigned to the group. The resulting modal contribution groups are smooth 

functions of frequency [39]. Thus, H  in (2.24) is expressed now with: 

 
1

ˆ
gr

i

N

s
i

i

e
−

=

 H H   (2.25) 

where grN  is the number of modal contribution groups ˆ
iH . The fitting of H  is directly 

performed on each modal contribution group to obtain poles and residues simultaneously; 

consequently, the high residue/pole ratios encountered in ULM are eliminated. In (2.25), a 
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common set of poles can be used for each modal contribution. The exponential time delay i  

term is removed prior to fitting, i.e. 

 
,

,1

ˆ
iM

i j
i

i jj s p=


−


R

H   (2.26) 

The fitting of cY  in FDCM is performed using (2.20) due to its smooth behavior in the frequency 

domain. 

2.4 Discussion on line and cable models 

This section aims to evaluate and to discuss the performance of the most predominant line and 

cable models used for EMT analysis. The drawbacks of such models are demonstrated trough 

transient simulation of practical cases. The models and routines currently implemented in EMTP 

are adopted for the time-domain simulations. For verification purposes, the simulation results 

obtained with the numerical Laplace transform (NLT) technique [2], are considered as reference 

solution. 

2.4.1 Importance of frequency dependence of line parameters 

The objective of this section is to show that frequency-dependent models are required to achieve 

accurate results in EMT studies. 

2.4.1.1 Example 1: Energization of an overhead transmission line 

This example considers the three-phase transmission line system of Figure 2.5. Figure 2.6 shows 

the frequency response of the Thevenin impedance seen from the source side (see Figure 2.5b), 

when the transmission line is represented with the line models of Figure 2.4. It can be observed 

that the PI model is able to represent only one resonant frequency, while the CP model loses 

precision at high frequencies. On the contrary, the frequency-dependent models, i.e., FD and 

ULM, are able to provide accurate results for the entire frequency range, compared to the exact 

solution obtained with (2.9). 

For time-domain analysis, the line of Figure 2.5a is modeled with the approaches of Figure 2.4 

and energized by a three-phase voltage source of 230 kV, see Figure 2.5b. Figure 2.7 shows the 

voltage of phase a at the receiving end of the line when the three phases are simultaneously 
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closed at 0ct =  s. It is observed that FD and ULM provide accurate results when compared to 

NLT, while both CP and PI models are not able to properly reproduce the high frequency 

dispersion of the transient. This phenomenon is more evident in an unbalanced energization. 

Figure 2.8 shows the time-domain results when the closing times ct  are 1 ms, 6 ms, and 4 ms, for 

the phases a, b, and c, respectively. 

ρg = 100  -m

20 m
10 m

Phase wires:

Rdc = 0.0701  /km

r = 1.529 cm

14 m

9 m

Ground wires:

Rdc = 3.75  /km

r = 0.475 cm

         
193.1 km

ct

0V LV

a

b

c

sV

 

(a)                                                                           (b) 

Figure 2.5  Three-phase transmission line (a) physical layout, and (b) test circuit 

     

(a)                                                                           (b) 

Figure 2.6  Frequency response, (a) exact versus PI and CP and (b) exact versus FD and ULM 

    

(a)                                                                           (b) 

Figure 2.7  Voltage of phase a at the receiving end, balanced energization, (a) NLT versus PI and 

CP and (b) NLT versus FD and ULM 
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(a)                                                                           (b) 

Figure 2.8  Voltage of phase a at the receiving end, unbalanced energization, (a) NLT versus PI 

and CP and (b) NLT versus FD and ULM 

2.4.1.2 Example 2: Single-phase fault on a double circuit transmission line 

This case study aims at analyzing the transient response of a faulted transmission line. For this 

analysis, the first circuit of the 231-kV double-circuit transmission line of Figure 2.9 is submitted 

to a single-phase fault. It is considered that the fault occurs at the receiving end of the first 

conductor (phase a), as shown in Figure 2.9b. The sending end of the second circuit is grounded 

by a resistor of 1 Ω while the receiving end is left open. 

Figure 2.10 shows the transient response of the fault current when the line of Figure 2.9 is 

modeled with the CP, FD, and ULM. The frequency band considered in the fitting of line 

function in both FD and ULM is from 0.01 Hz to 1 MHz. As for the CP, the line parameters are 

calculated at 1 kHz. The simulation time-step is of 10 μs for all models. It is observed in Figure 

2.10 that frequency-dependent models, i.e., FD and ULM, provide identical results, which 

significantly differ from the response obtained with the CP model. This is explained as follows. 

Although CP model considers the distributed nature of the line parameters, this model is not 

capable to represent the high frequency dispersion occurred during the fault. The effect of the 

frequency dependence is more noticeable in the transient waveform of induced voltages at the 

end of the line. For example, Figure 2.11 shows the induced voltage on the fourth conductor C4.  

Note that the minor deviation between the simulation obtained with the FD and ULM approach is 

attributed to the accuracy of fitting process obtained in each model. It is remarked that the FD 

model is based on the modal domain, while the ULM performs the fitting in the phase domain.  
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(a)                                                                           (b) 

Figure 2.9  25-km double-circuit transmission lines physical (a) layout and (b) test circuit 

 

Figure 2.10  Fault current at the end of the line 

         

Figure 2.11  Voltage at the receiving end of conductor C4 

2.4.1.3 Example 3: Three-phase underground cable 

The objective of this example is to compare the CP with ULM and FDQ models, for the 

evaluation of sheath overvoltages by using a realistic case study. The cable system layout used in 

this example is shown in Figure 2.12. The corresponding electrical circuit diagram is shown in 
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Figure 2.13. The cable sheaths are grounded by a 1 Ω resistance at both ends. sZ  is determined 

by its zero- (0) and positive- (1) sequence data in ohms: 0 2R = , 1 1R = , 0 22X = , and 1 15X = . 

The closing times ct  are 0 ms, 0.63 ms, and 0.4 ms, for phases a, b, and c, respectively. 

The transient scenario considers the energization of the cable system by a 169-kV three-phase 

source sV . Figure 2.14 shows the sheath voltage of phase a at the receiving end when the cable 

system is modeled by the CP, FDQ and ULM approaches. It is observed that FDQ and ULM, 

provide identical results and accurately reproduce the high frequencies of the transient waveform, 

which significantly differ from the response obtained with the CP model. 

0.25 m 0.25 m

1.1 ma cb
 Outer 

Radius (m) 

Resistivity 

(Ohm-m) 

Relative 

Permittivity 

Core 0.01254 17×10-7 - 

Insulator 1 0.022735 - 3.5 

Sheath 0.02622 21×10-6 - 

Insulator 2 0.029335 - 2.0 

  

Figure 2.12  Layout and parameters details of the 15-km cable system 

sV

1 1 shV
coreV

a

b

c

sZ ct

 

Figure 2.13  Test circuit used in the example 2 

 

Figure 2.14  Sheath voltage of phase a at the receiving end 
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2.4.2 Inaccuracies of modal-domain based models 

This section aims at verifying high accuracy of phase-domain based models for the simulation of 

induced voltages compared to modal-domain based models. 

2.4.2.1 Example 4: Coupling effect between three parallel transmission lines       

The FD model fits line parameters in the modal domain and accurately represents their frequency 

dependence in transient simulations. However, since the FD model assumes a constant 

transformation matrix, its precision decreases when modeling transmission line systems with 

highly asymmetrical configurations. On the other hand, ULM fits parameters in the phase 

domain. To evaluate and compare the efficiency and accuracy of FD and ULM models in 

asymmetrical conditions, the transmission system shown in Figure 2.15 with corresponding 

parameter data listed in Table 2.1 is considered as example. The system consists of two 550-kV 

and one 360-kV transmission lines running in parallel. For time-domain simulations, the 

transmission system is divided in five sections (see Figure 2.16). It is noticed that Line 3 is 

transposed between each section. For transient analysis, Lines 2 and 3 are energized with ideal 

sources of 550 kV and 360 kV, respectively. It is also noticed that Line 1 is grounded at both 

ends. 

39"

77'

100'

Line 1 (550 kV)

C1 C2 C3

76'

73'

35"

35"

33' (Midspan) 33' (Midspan)
55' (Midspan)

95.5'

C4 C5 C6
C7 C8 C9

Line 2 (550 kV) Line 3 (360 kV)

Reference

 

Figure 2.15  Three transmission lines in parallel 

Table 2.1  Conductor data of the transmission system of Figure 2.15 

Cond. Rdc (Ω/mi) r (in) Thick/Diam Cond. in the bundle Spacing (in) 

C1-C3 0.1510 0.500 0.4260 4 18 

C4-C6 0.1600 0.475 0.3870 4 18 

C7-C9 0.1288 0.554 0.4476 2 18 
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Figure 2.16  Network configuration for example 4 

Figure 2.17 and Figure 2.18 show the transient voltages of phase b at the receiving ends of Line 

2, and Line 3, respectively. The frequency band considered in the fitting of line function in both 

FD and ULM models is from 0.01 Hz to 1 MHz. The simulation time-step for both is of 1 μs. It is 

observed in Figure 2.17 and Figure 2.18 that there is a noticeable difference between the results 

obtained with FD model, the ULM, and NLT. The reason of this deviation can be explained as 

follows. High frequency dispersion is presented during the transient. The FD model includes 

frequency dependence in the model by fitting the line parameters in the modal domain and 

assuming a constant and real transformation matrix to relate modal and phase quantities. 

However, when the frequency dependence of modal transformation matrices is very strong, such 

as the case of the asymmetrical line system of Figure 2.15 (see the results of Figure 2.19), the 

assumption of constant transformation matrices causes inaccuracies in the model. On the other 

hand, since the ULM fits the parameters in the phase domain, it can be applicable to any line 

configuration, and consequently, the coupling effects between the parallel lines of Figure 2.15 are 

accurately represented during the simulation. 

 

Figure 2.17  Voltage of phase b at the receiving end of Line 2 
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Figure 2.18  Voltage of phase b at the receiving end of Line 3 

 

(a)                                             (b)                                           (c) 

Figure 2.19  Magnitude of entries of the second column of the transformation matrix of the lines 

shown in: (a) Figure 2.5a, (b) Figure 2.9a and (c) Figure 2.15 

2.4.2.2 Example 5: Fitting precision of the FDQ on short underground cables 

As mentioned, the accuracy of the FD model is restricted to aerial lines with symmetric or nearly 

symmetric configuration. The basic idea of the FD model is extended in the FDQ for cable 

modeling purposes. The consideration of the frequency-dependent modal transformation in the 

FDQ is achieved by fitting each element of the transformation matrix Q  with a rational 

approximation of the same form as the characteristic admittance. However, this results in 

additional recursive convolutions in the time domain, and consequently, additional computational 

burden. In addition, since eigenvectors corresponding to similar eigenvalues may exhibit a non-

smooth behavior, is not always possible to fit the entries of Q  with stable poles, as demonstrated 

in [15]. Moreover, since the fitting of H  and cY  is performed in the modal domain, the off-

diagonal elements corresponding to the H  and cY  matrices in the phase domain cannot be 
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properly fitted. Although the off-diagonal elements of H  and cY  are of very small magnitude, 

their poor fitting may have an observable impact in induced transient voltages. To evaluate the 

fitting precision of the FDQ model, the 12-conductor cable system of Figure 2.20 (data listed in 

Table 2.2) is considered. Figure 2.21 shows the magnitude of the diagonal entries of H  and cY . 

Figure 2.22 shows the magnitude of two off-diagonal elements (similar results are obtained with 

other entries). In both Figure 2.21 and Figure 2.22 blue solid lines correspond to actual data and 

red dashed lines correspond to entries fitted with FDQ model. It can be observed that diagonal 

elements are fitted with acceptable accuracy, while off-diagonal elements are poorly fitted. 

0.25 m 0.25 m 1 m

1.1 m
Reference

 

Figure 2.20  Underground cable system of 1 km, 6 phases and 12 conductors 

Table 2.2  Cable data for the system of Figure 2.20 

Inner-Outer Radius of the Core 3.175-12.54 mm 

Inner-Outer Radius of the Sheath 22.735-26.225 mm 

Outer Insulation Radius 29.335 mm 

Resistivity of Sheath 2.1×10-7 Ohm-m 

Resistivity of Core 1.7×10-8 Ohm-m 

Core Insulator Relative Permittivity 3.5 

Shield Insulator Relative Permittivity 2.0 

Insulation Loss Factor 0.001 

Earth Resistivity 250 Ohm-m 
 

    

(a)                                                                           (b) 

Figure 2.21  Magnitude of diagonal entries of the (a) H , and (b) cY  matrices.  
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(a)                                                                           (b) 

Figure 2.22  Magnitude of off-diagonal entries of the (a) H , and (b) cY  matrices. 

For a time-domain simulation, the configuration of Figure 2.23 is considered. The cores of the 

first three conductors of the cable system of Figure 2.20 are excited with a step unit voltage at 

0t = . Figure 2.24 compares the transient voltages given by FDQ, ULM using a two-step 

interpolation scheme [37], and NLT methods at the receiving end of the first core, i.e. 1V . Figure 

2.25 shows the induced voltage at the receiving end of the fourth conductor 7V . Regarding the 

induced voltage, Figure 2.25 shows a significant deviation between FDQ model compared to the 

NLT and ULM solutions. 

sV

sR sL

0.1

1μH

s

s

R

L

= 

=

7V

1V

11

1

 

Figure 2.23  Network configuration for example 5 

 

Figure 2.24  Voltage at the receiving end of the first core, 1V  
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Figure 2.25  Voltage at the receiving end of the fourth core, 7V  

2.4.3 Instabilities in the ULM  

The ULM involves a two-step fitting approach. In the first step, the poles of H  are identified in 

the modal domain together with time delays; in the second step, the residues are calculated in the 

phase domain. The ULM has been implemented in EMT-type programs and considered an 

accurate model for both transmission lines and cables. However, it has been associated with 

numerical stability problems [36]-[39] due to the existence of residue/pole pairs with large ratios 

and opposite signs coming from different but close delay groups. This is denoted as unbalanced 

modal contributions and it results in magnification of integration errors in time-domain 

simulations. The simulation of Figure 2.23 is now performed with ULM using the classic single-

step integration scheme. The result corresponding to 1V  is shown in Figure 2.26. It can be 

observed that the simulation obtained with ULM numerically explodes due to roundoff errors. 

The maximum residue/pole ratio in the approximation of H  is 9128.4. 

 

Figure 2.26  Voltage at the receiving end of the fourth core, 1V , using the ULM approach 
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Adapting more accurate integration schemes and a two-step interpolation technique, as proposed 

in [37], reduces integration errors and helps maintaining numerical stability in the time domain, 

as observed in Figure 2.24 and Figure 2.25. However, the unbalanced modal contributions in H  

cannot be removed by changing the integration method, and as it will be demonstrated in Chapter 

4, inaccurate simulation results with spurious oscillations can still be observed in cases with very 

large residue/pole ratios. 

2.4.4 Inaccuracies when fitting H in the phase domain 

When fitting the modal contributions of H  individually in the phase domain, as in (2.25), some 

off-diagonal entries of H  may not be accurately fitted with a regular VF procedure. This is 

basically due to the significant difference in magnitude between the diagonal and off-diagonal 

elements of H , as demonstrated in the following example. 

For the cable system of Figure 2.20, there are 7 distinct modal contribution functions after 

grouping. Each one is fitted with 25 poles. According to Figure 2.27, the diagonal elements of H  

are accurately fitted (Figure 2.27a); however, the fitting of the off-diagonal entries (5,7) and (7,9) 

is oscillatory (Figure 2.27b). This is due to significant difference in magnitude between the 

entries of H , which are attempted to be fitted simultaneously using the same set of poles to 

accelerate time domain simulations. Although, the off-diagonal elements of H  are smaller, their 

poor fitting may have an observable impact on induced voltages, as will be shown in Chapter 4. 

   

(a)                                                                           (b) 

Figure 2.27  Magnitude of (a) two diagonal and (b) two off-diagonal entries of H  

Idempotent models also perform fitting through decomposition [24] but the non-smooth behavior 

associated with similar eigenvalues was overlooked. Moreover, it divides modal contributions 



29 

 

into eigenvalues and idempotent matrices which can reduce the efficiency of models due to 

cascaded convolutions in the time domain. 

2.5 Conclusions 

The chapter presented a review and a comparison of the most predominant line models used for 

EMT simulations. First, the basic line modeling theory, including main line equations, is 

provided. Then, various cases of study are used to evaluate the performance of the most common 

line models in time-domain simulations. It is shown that frequency-dependent models are 

required to achieve accurate results in transient analysis. It is verified that phase-domain based 

models provide highly accurate results for the simulation of coupling effects between parallel 

conductors, compared to modal-domain based models. In addition, the drawbacks of phase-

domain models are demonstrated trough the simulation of practical cases. 

The line and cable models currently implemented in EMTP are used in this chapter. For 

verification purposes, the simulation result obtained with the numerical Laplace transform 

technique, is considered as reference solution. 
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CHAPTER 3 ENHANCED FITTING TECHNIQUES FOR THE 

IDENTIFICATION OF THE PROPAGATION FUNCTION 

It has been verified in Chapter 2 that phase domain models provide highly accurate results in 

EMT analysis. However, fitting the line/cable functions in the phase domain is not 

straightforward, particularly in the case of the propagation function H , due to multiple time 

delays. The ULM has been associated with numerical stability problems due to the existence of 

residue/pole pairs with high ratios and opposite signs coming from different but close delay 

groups. Moreover, this approach often leads to incorrect solutions for the DC steady-state 

voltages and currents due to generally poor DC fitting. On the other hand, when fitting the modal 

contributions of H  individually in the phase domain, some off-diagonal entries may not be 

accurately fitted with a regular VF procedure.  

This chapter contributes with two improved identification procedures of H  in the phase domain 

for wideband (WB) models. The first procedure encapsulates: Frequency partition and adaptive 

weighting techniques to ensure the precision of fitting, and a model order reduction method via 

balanced realization to obtain a reduced order of approximation. The second procedure includes a 

DC correction step in the fitting process for improving the precision of DC response of the 

model. Both methodologies are illustrated via numerical examples. The impact of improving the 

fitting of H  in time-domain simulations will be analyzed via transient studies in Chapter 4. 

3.1 Accurate identification of H in the phase domain 

One of the main contributions of this thesis is the proposal of an improved fitting in three steps: i) 

normalization of all entries of H  via a weighting technique prior to fitting, and ii) frequency 

partitioning. Since frequency partitioning generally increases the number of poles, iii) a model 

order reduction (MOR) technique via balanced realization (BR) is applied to obtain a reduced 

order of approximation [55]. 

3.1.1 Adaptive weighting technique 

It is proposed to normalize all entries of H  prior to fitting and assign a weighting value   for the 

elements whose magnitude is smaller than a predefined threshold value. Therefore, the ith modal 

contribution group in (2.25) is normalized as: 



31 

 

 ( ) ( )ˆ ˆ, ,i in m W n m =H H   (3.1) 

where n  and m  correspond to its nth row, and its mth column, respectively, and W  is the 

weighting function calculated as 
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where •  denotes the 2-norm, and   represents an adaptive weighting defined as 

 

( )

( )

( )

1

max

max

max

2

3

ˆ1 if , 0.01

ˆif 0.001 , 0.01

ˆ1

10

if , 0.000 1

1 10

1

i

i

i

n m

n m

n m

 −

−

+ 



=  

 









H

H

H

  (3.3) 

Applying (3.1) to (3.3), the differences in magnitude between the elements of ˆ
iH  are reduced, 

and the residues ,i jR , and poles ,i jp  of ˆ
iH  are calculated. This approach guarantees lower fitting 

errors for all entries. To recover the original ˆ
iH , the residues are compensated considering the 

same weighting function, i.e, 
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i j
i j

n m
n m
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=

R
R   (3.4) 

3.1.2 Frequency partitioning approach 

The fact that residues and poles are simultaneously identified in the phase domain allows to take 

advantage of frequency partitioning. It has been reported that partitioning of the frequency band 

improves fitting precision [52]-[54]. The downside is the increasing number of poles. In this 

thesis, a frequency partitioning approach using two sections is proposed for the fitting of ˆ
iH , as 

seen in Figure 3.1. The fitting is followed by model order reduction. The main steps of the 

proposed approach are given as follows. 

Step 1) A local rational approximation, LFH , is performed in a pre-defined low frequency 

(LF) range LF  (e.g. from 0.01 Hz to 100 Hz). 
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Step 2) A second rational approximation is performed onto an error function computed as: 

 ( ) ( ) ( )LF  = −E H H   (3.5) 

That is, E  is given by the difference between LFH  and the original H . The whole 

frequency range is considered for the evaluation of E  whose fitting gives the second 

part of the approximation: HFH . 

Step 3) The final approximation is obtained on LF HF  , by summing the local 

approximations, i.e., 

 ˆ
i LF HF  +H H H   (3.6) 

where each local approximation is given by a set of partial fractions. 

The final solution comprises all the poles and residues by both local approximations, i.e., 
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where TN  is the number of total poles, and ,
ˆ

i jR  and ,ˆ i jp  are the combined residues and poles, 

respectively. 
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Figure 3.1  Illustration of the proposed frequency partitioning method for a given entry of H  

3.1.3 Model order reduction via balanced realization 

In the proposed partitioned-based fitting approach, redundant poles are prone to appear when the 

local approximations are added up. To remove the redundant poles, a model order reduction 
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method is applied using the BR technique [55]. A state-space model with an order of TN , (3.7) 

can be expressed as a linear-time-invariant system: 

 = +x Ax Bu   (3.8) 

 =y Cx   (3.9) 

where A  is a diagonal matrix containing the set of poles p̂ , B  is a column vector of ones with a 

length equal to the number of entries of ˆ
iH , and C  corresponds to a matrix containing the 

residues. In (3.9), C  is built with the entries ( ),n m  of R̂  sorted in a column-wise manner. Thus, 

C  has the size of ( )n m  by TN . The BR transforms (3.8) and (3.9) into a balanced system 

where direct truncation can be applied to obtain the reduced rth order (with Tr N ) model ( rA , 

rB , rC ), given by 

 = +r r r rx A x B u   (3.10) 

 = r ry C x   (3.11) 

Although BR produces a new set of poles, it is demonstrated in [55] that they are always stable. 

The Matlab functions of balreal and modred (from control system toolbox) are applied in this 

thesis for the implementation of the model order reduction (MOR) via BR. It is noted that a 

common set of poles is considered in each modal contribution matrix. 

3.1.4 Numerical example 

This section illustrates the performance of the three steps of the proposed fitting procedure 

through a numerical example. 

Application of adaptive weighting 

All the seven modal contribution groups of the cable system of Figure 2.20 are fitted either with 

25 or 30 poles. Table 3.1 lists the rms errors associated with two different fitting approaches:  

using the vector fitting technique without weighting (labeled as VF) and using the vector fitting 

technique with the proposed weighting technique (labeled as WF). Figure 3.2 and Figure 3.3 

show the fitting results for entries ( )5,7  and ( )9, 2  obtained with 25 and 30 poles, respectively. 
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The use of the proposed WF reduces numerical oscillations observed in VF significantly. Figure 

3.3 suggests that, despite increasing the number of poles, it is not possible to eliminate the 

oscillations by using VF.  

Table 3.1  Fitting errors of the modal contribution groups of the cable system of Figure 2.20 

Modal 

group 

Rms fitting error (25 poles) Rms fitting error (30 poles) 

 VF WF VF WF 

1 1.8225×10−5 1.2264×10−5 1.8474×10−5 1.2087×10−5 

2 7.7694×10−5 4.2056×10−5 5.7211×10−5 3.4560×10−5 

3 4.7448×10−4 1.8314×10−5 4.6718×10−4 1.8214×10−4 

4 5.8099×10−4 3.2009×10−4 5.9657×10−4 3.1869×10−4 

5 2.2000×10−3 1.4000×10−3 2.0000×10−3 1.3000×10−3 

6 1.3000×10−3 8.6142×10−4 1.3000×10−3 7.4263×10−4 

7 2.1000×10−3 2.4543×10−4 1.7000×10−3 1.8579×10−4 

 

Figure 3.2  Magnitude of the ( )5,7H , and ( )9,2H  fitted with 25 poles 

 

Figure 3.3  Magnitude of the ( )5,7H , and ( )9,2H  fitted with 30 poles 

To further increase the fitting precision of the modal groups obtained with the WF approach, the 

frequency partitioning and MOR techniques are applied next. 
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Application of weighting, frequency partitioning, and model order reduction 

Table 3.2 presents the fitting rms error of H  for the cable system of Figure 2.20 using two 

different techniques a) proposed WF combined with frequency partitioning technique (labeled as 

WFP) and b) application of model order reduction (labeled WFP-MOR). The frequency range, 

predefined from 0.01 Hz to 10 MHz, is partitioned into two at 100 Hz. It is seen that the fitting 

errors are further reduced when frequency-partitioning technique is applied. Although this 

increases the number of poles due to the introduction of redundant poles (55 poles), the order of 

approximation is reduced without loss of accuracy by applying the proposed MOR since 

redundant poles are removed. The last column of Table 3.2 shows that a more accurate fitting is 

obtained with WFP-MOR using a smaller number of poles than VF. Figure 3.4 presents the 

fitting of ( )5,7H  using the VF and proposed WFP and WFP-MOR techniques. It is seen that the 

numerical oscillations are effectively eliminated by both proposed techniques. 

Table 3.2  Fitting errors of the modal contribution groups of the cable system of Figure 2.20, 

considering the frequency partitioning approach 

Modal 

group 

Rms fitting error 

WFP 

(55 poles) 

WFP-MOR 

(30 poles) 

WFP-MOR 

(25 poles) 

WFP-MOR 

(20 poles) 

1 1.2077×10−5 1.2077×10−5 1.2179×10−5 1.4589×10−5 

2 3.3781×10−5 3.3838×10−5 3.5376×10−5 1.0258×10−4 

3 1.8035×10−5 1.8035×10−4 1.8032×10−4 1.8114×10−4 

4 3.0937×10−4 3.0937×10−4 3.0940×10−4 3.0967×10−4 

5 1.1000×10−3 1.1000×10−3 1.1000×10−3 1.1000×10−3 

6 7.4020×10−4 7.4021×10−4 7.4038×10−4 7.4188×10−4 

7 1.5601×10−4 1.5623×10−4 1.5966×10−4 2.0670×10−4 

 

Figure 3.4  Magnitude of entry ( )5,7H  refer to Table 3.2 for rms fitting errors 
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3.2 DC correction 

This section contributes by extending the fitting approach of FDCM to transmission lines using a 

two-stage fitting method in which low frequency samples are given special attention. In the first 

step, the fitting is performed by excluding very low frequency samples such as those below 1 Hz. 

In second step, a correction function is found for the excluded low frequency samples. 

Partitioning and reduced frequency range helps avoiding pairs with large residue pole ratios with 

the classic ULM approach. The proposed new approach is called FDM (Frequency Dependent 

Model) with DC correction, i.e., FDM/DC, and it can be also applied to cables or combined with 

the classic ULM to improve low frequency fitting when necessary.  

3.2.1 FDM/DC approach 

To increase the precision in the fitting of H  at frequencies close to DC, a two-stage fitting 

method is proposed. In the proposed approach, the frequency band is partitioned to relax fitting, 

and a correction term is found afterward. 

In the proposed FDM/DC, the propagation function H  is fitted as follows (see Figure 3.5): 

Step 1) Divide the frequency range: low frequency (LF) section (e.g., 0.001 to 1 Hz) and high 

frequency (HF) section (e.g., 1 Hz to 1 MHz). 

Step 2) Perform fitting at the HF section to obtain HFH  (poles and residues). The rational 

approximation can be obtained by using either the FDCM or ULM approach. 

 
( ),

,1 1

gr i
HF i

N M
si m

HF
HF i mi m

e
s p

−

= =

 
   − 
 

R
H   (3.12) 

where HF HFs j= , grN  is the number of modal propagation groups, iM  is the order 

of the approximation for the ith modal group, ,i mp  represents its mth pole, ,i mR  

corresponds to a matrix of residues, and i  is the time delay associated with the ith 

modal group.  
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Step 3) Evaluate the fitted propagation function HFH  at the LF section. Then calculate the 

error of fitting at this section, LFH . The error function is calculated as the difference 

between the analytical LFH  , and the fitted LFH  propagation function. 

 ( )LF LF HF LF LF LFs = − = −H H H H H   (3.13) 

where LF LFs j= . 

Step 4) Obtain a rational function approximation, LFH , for LFH . In the LF range, the 

propagation function behaves flat and the impact of time delay is negligible; thus, an 

arbitrary time delay can be removed prior to fitting. It is proposed to use the delay 

associated to the first modal group, i.e., 1 , (labelled as delay 1 assuming that delays 

are sorted). Then, LFH  is computed as follows 

 
( )1,

,1

DC
LF

M
sDC k

LF
LF DC kk

e
s p

−

=

 
−


R

H   (3.14) 

where DCM  is the order of approximation, and DCR  and DCp  are respectively the 

residues and poles obtained at the LF section, i.e. the DC correction terms. 

Step 5) Obtain the final fitted function by combining the fitted functions given by (3.12) and 

(3.14): 

 HF LF + H H H   (3.15) 

In this step, the DC correction terms in (3.14) are added to the first group in (3.12). 

Thus, the first modal group 1H  is now obtained as 

 
( )

1
11, ,

1
1, ,1 1

DCMM
sm DC m

m DC mm k

e
s p s p

−

= =

 
= +  − − 
 

R R
H   (3.16) 

and the final propagation function is given by  

 
( ),

1
,2 1

gr i
i

N M
si m

i mi m

e
s p

−

= =

 
 +   − 

 
R

H H   (3.17) 
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Figure 3.5  Illustration of the FDM/DC approach for one entry of H  

The approach detailed above allows achieving more accurate fitting at low frequencies. 

Moreover, the partitioning and reduced frequency ranges help avoiding pairs with large residue 

pole ratios and consequently avoiding numerical instabilities that may occur in the classic 

implementation of ULM, regardless of the integration method. The FDM/DC approach is verified 

via a numerical example next. 

3.2.2 Numerical example 

This example considers a system involving 220-km AC and DC transmission lines running in 

parallel with 80 m separation from each other, see Figure 3.6. For this system, H  is fitted with 

the proposed FDM/DC method and compared the ULM approach. Table 3.3 shows the 

corresponding fitting data considering 20 samples per decade and a convergence tolerance of 

0.0001 in the fitting process. In the first stage of the FDM/DC, H  is fitted from 1 Hz to either 105 

or 106 Hz. Then, the error at the LF section is fitted using 8 poles from 0.001 Hz to 1 Hz. It is 

mentioned that fitting up to 106 Hz results very similar to the one up to 105 Hz, even with a 

smaller residue/pole ratio (see Table 3.3). The approximation of LFH  is shown in Figure 3.7. It 

is observed that deviations of magnitudes are acceptable. The magnitudes of the final 

approximation for the elements of the first column of H  for the entire frequency range are shown 

in Figure 3.8. It is observed that all the elements are accurately fitted. In ULM, the fitting of H  is 

performed in a single range of frequencies using four different ranges of frequency (see Table 

3.3). It is noticed in Table 3.3 that a very large residue/pole ratio results when the frequency 

range is increased to 8 decades in the ULM, i.e. from 0.001 Hz to 105 Hz, and from 0.01 Hz to 

106 Hz. Moreover, more poles are required with ULM compared to the FDM/DC technique. 
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Figure 3.6  AC/DC lines geometry 

Table 3.3  Fitting data of the system of Figure 3.6 

Model Fmin (Hz) Fmax (Hz) No. poles (total) Max. r/p ratio 

FDM/DC 
0.001 105 32 25.23 

0.001 106 32 1.46 

ULM 

0.100 105 34 5.17 

0.010 105 37 3.85 

0.001 105 80 426226.24 

0.010 106 100 1633120.74 

 

Figure 3.7  Low-frequency approximation of function error for LFH    

 

Figure 3.8  Magnitude of the first column of H . Solid line corresponds to actual values while 

dashed lines corresponds to fitted values with FDM/DC   
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3.3 Conclusions 

This chapter presented two fitting procedures to obtain an accurate identification of the 

propagation function of cables and lines while maintaining reduced order of approximation. In 

the first procedure, frequency-domain partitioning and adaptive weighting techniques are directly 

applied in the phase domain for the identification of poles and residues simultaneously to ensure 

the precision of fitting of all entries including the low-magnitude off-diagonal elements. The 

order of approximation is reduced by post-processing the fitting using the balanced realization 

technique. 

In the second procedure, the fitting approach of FDCM is extended to transmission lines by using 

a two-stage fitting method in which low frequency samples are given special attention. The fitting 

is performed in a two-stage fashion ensuring precise fitting primarily at frequencies near DC. 

This approach complements the prevailing universal line model by avoiding pairs with large 

residue pole ratios, and by improving low frequency fitting when necessary. 

The accuracy of the proposed methodology is demonstrated via numerical examples. 
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CHAPTER 4 TIME DOMAIN ANALYSIS 

This chapter describes the time-domain implementation details of the wideband line/cable model 

used in this thesis. The impact of improving the fitting of H  in time-domain simulations is 

analyzed via transient studies. The methodologies proposed in Chapter 3 lead to more accurate 

fitting and, when combined with precise integration schemes, provide stable and more accurate 

time-domain simulations. This chapter also demonstrates the advantages for accurately 

computing DC steady-state waveforms and preserving numerical stability. 

4.1 Time domain implementation 

For the implementation of wideband models in EMT-type programs, the classic one-step 

integration scheme using the trapezoidal method proposed in [27] remains as the most accepted. 

However, it has been associated with numerical stability problems [36], [37], [39], [70]. 

In this thesis, the discrete form of time domain convolutions is obtained by assuming that the 

input is piece-wise linear [76]. In addition, the method in [37] proposed to reduce integration and 

interpolation errors by evaluating the convolutions associated with H  in two steps as a function 

of the delay, is tested.  

4.1.1 Discrete convolution 

For the implementation of a phase-domain based model, the frequency-domain line equations are 

transformed to the time domain by using the convolution principle [9], expressed here as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

X s A s U s x t a t u t a T u t T dT



=  =  = −   (4.1) 

The integral of (4.1) can be efficiently evaluated using recursive convolution if ( )a T  is an 

exponential of the form 
ptre− . This is achieved by using the partial fraction expansion of a 

rational function to represent ( )A s  in the frequency domain. Considering that ( )A r s p= + , the 

convolution integral in (4.1) becomes: 

 ( ) ( ) ( )
0

p T
x t r e u t T dT


−

= −   (4.2) 
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As shown in [9], for a single time-step t  (4.2) yields 

 ( ) ( ) ( ) ( )
0

t
p Tp tx t t e x t r e u t t T dT


−− +  = + +  −   (4.3) 

Since the term ( )x t t+   is found from ( )x t  with a simple integration over one single time step, 

(4.3) becomes a recursive process. If the input in (4.3) is assumed to vary linearly during the time 

step [76], it can be taken outside the integral which can then be determined analytically, i.e., 

 ( ) ( ) ( ) ( )
1 1

1
p t p t

p t p tr e r e
x t t e x t u t t e u t

p p t p p t

−  − 
−  − 

   − −
+  = + − +  + −          

  (4.4) 

Alternatively, applying the trapezoidal rule of integration to (4.3) yields 

 ( )
( )

( )
( )

( )
( ) ( )( )

2

2 2

p t p t
x t t x t r u t t u t

p t p t

−  
+ = + + +

+  + 
  (4.5) 

4.1.2 Discrete state-space form of the characteristic admittance convolution 

Considering terminal k  of the cable system in Figure 2.2, the frequency-domain realization, or 

rational representation, of the product c kY V  in (2.6) is given by 

 
1

yN

i i

i=

= +ksh 0 kI G V G W   (4.6) 

 
1

i
is q

=
−

kW V   (4.7) 

The corresponding discrete time-domain solution assuming that the input is piece-wise linear is 

given by [76] 

 ( ) ( ) ( ) ( )i i i i it t t t t t  +  = + +  +k kw w v v   (4.8) 

where t  is the integration step, and i , i , and i  are the integration constants given by 

 ( )expi iq t =    (4.9) 

  ( )
1

2 21i i i iq t q t t 
−

= − −      (4.10) 
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 ( ) ( )
1

2 21 1i i i iq t q t t 
−

 = − +  +      (4.11) 

A change of variables is applied to reduce the number of arithmetic operations: 

 ( ) ( ) ( ) ,    :1i i i yt t t t i N+ = +
k kYc Yc kx x v   (4.12) 

 ( ) ( ) ( )
1

yN

i i

i

t t t t t t
=

+  = +  + + k k csh Yc Y ki C x G v   (4.13) 

where 

 ( )i i i i i  = +C G   (4.14) 

 
1

yN

i i

i


=

= +cY 0G G G   (4.15) 

A similar set of equations can be obtained for terminal m , i.e., 

 ( ) ( ) ( ) ,    :1i i i yt t t t i N+ = +
m mYc Yc mx x v   (4.16) 

 ( ) ( ) ( )
1

yN

i i

i

t t t t t t
=

+  = +  + + m m csh Yc Y mi C x G v   (4.17) 

4.1.3 Discrete state-space form of the propagation function convolution 

The frequency-domain realization, or rational representation, of the product ( )+m c mH I Y V  in 

(2.6) is given by 

 , ,

1 1

gr i
N M

i j i j

i j= =

=ki kI R X   (4.18) 

 
( )

,
,

1
is

i j
i j

e
s p

−
=

−
k mrX I   (4.19) 

Single-step integration scheme 

Figure 4.1 shows the classic single-step integration path used to discretize (4.19). The integration 

step is defined as a function of the delay. Given that ( 1)i i in t n t   +  , the time delay is 
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expressed as i i in t = +  , where in  is an integer. Assuming that the input is piece-wise linear, 

the discretized form of (4.19) is given by 

 ( ) ( ) ( ) ( ), . , , ,i j i j i j i j i i j it t t t t t    +  = + +  − + −k k mr mrx x i i   (4.20) 

where the integration constants are given by 

  ( ), ,expi j i jp t =    (4.21) 

 ( )
1

2 2
, , , ,1i j i j i j i jp t p t t 

−
 = − −       (4.22) 

 ( ) ( )
1

2 2
, , , ,1 1i j i j i j i jp t p t t 

−
 = − +  +  
 

  (4.23) 

In general, the time delay is not an integer multiple of the time step. Since the inputs, i.e. 

reflected currents mri  in (4.20), are only available on the discrete time mesh, they need to be 

interpolated between the sampled points. Thus, the terms of the input mri  are obtained with 

 ( ) ( ) ( ) ( )i i i i it t n t t t t n t t n t   − = −  +  − −  − −  mr mr mr mri i i i   (4.24) 

 ( ) ( ) ( ) ( )i i i i it t t t n t t t n t t t n t   +  − = +  −  +  −  − +  −  mr mr mr mri i i i   (4.25) 

The single integration scheme has been widely used in the classic implementation of the ULM in 

EMT-type programs [27]. However, this scheme has been associated with numerical stability 

problems in cases with the presence of high residue/pole ratios, due to the magnification of the 

traveling-wave interpolation errors in time domain simulations [32], [33], [35], [70]. 

Based on the above procedure, a similar set of equations can be obtained for terminal m . 

i t 

Single-Step

( )it t +  −( )it −

( )it t n t+  − ( )it n t− ( )it t n t−  − 

mri

 

Figure 4.1  Single-step integration scheme  



45 

 

Two-step integration scheme 

To alleviate integration and interpolation errors, a two-step integration technique [37] is applied 

to (4.19), see Figure 4.2. It should be noted that eliminating such errors is only possible under 

synthetic special conditions. 

i t 

Step 2

( )it t +  −( )it −

( )it t n t+  − ( )it n t− ( )it t n t−  − 

mri

1 i t− i t 1 i t− 

Step 1

 

Figure 4.2  Two-step integration scheme 

The integration steps depicted in Figure 4.2 are defined as a function of time delay as follows. 

Step 1. Evaluate: 

 ( ) ( ) ( ) ( ), . , , ,i j i i j i j i j i i i j it t t t t t        +  = + +  − + −k k mr mrx x i i   (4.26) 

Step 2. Evaluate: 

 ( ) ( ) ( ) ( ), . , , ,i j i j i j i i j i i j i it t t t t t t t        +  = +  + +  − + +  −k k mr mrx x i i   (4.27) 

Finally, the solution from step 2 provides 

 ( ) ( ), ,

1 1

gr i
N M

i j i j

i j

t t t t
= =

+  = + ki ki R x   (4.28) 

The discrete time-domain solution assumes that the input is piecewise linear. Defining 

( )ˆ 1i i in t = +  − , the coefficients in (4.26) and (4.27) are given as follows: 

 ( ), ,expi j i j ip t  =    (4.29) 

 ( )
1

2 2 2
, , , ,1i j i j i j i i j i ip t p t t    

−
  = − −       (4.30) 
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 ( ) ( )
1

2 2 2
, , , ,1 1i j i j i j i i j i ip t p t t    

−
  = − +  +  
 

  (4.31) 

 ( ), ,
ˆexpi j i j ip t  =    (4.32) 

 ( )
1

2 2 2
, , , ,

ˆ ˆ ˆ1i j i j i j i i j i ip t p t t    
−

  = − −       (4.33) 

 ( ) ( )
1

2 2 2
, , , ,

ˆ ˆ ˆ1 1i j i j i j i i j i ip t p t t    
−

  = − +  +  
 

  (4.34) 

Note that the term ( )i it t +  −  is on the time mesh while ( )it −  and ( )it t +  −  are not (see 

Figure 4.2). Thus, these two last points are interpolated between the sampled points. The values 

of the input at ( )it −  and ( )it t +  −  are obtained with (4.24) and (4.25), respectively.  

A similar procedure is applied to obtain the set of equations for terminal m. 

 ( ) ( ) ( ) ( ), . , , ,i j i i j i j i j i i i j it t t t t t        +  = + +  − + −m m kr krx x i i   (4.35) 

 ( ) ( ) ( ) ( ), . , , ,i j i j i j i i j i i j i it t t t t t t t        +  = +  + +  − + +  −m m kr krx x i i   (4.36) 

 ( ) ( ), ,

1 1

gr i
N M

i j i j

i j

t t t t
= =

+  = + mi mi R x   (4.37) 

4.1.4 Discrete line/cable model 

The line/cable is represented by the Norton equivalent circuit shown in Figure 2.3, where: 

 ( ) ( ) ( )t t t= −
c kk Y k histi G v i   (4.38) 

 ( ) ( ) ( )t t t= −
c mm Y m histi G v i   (4.39) 

where 
cYG  is given by (4.15) and the history terms are computed as: 

 ( ) ( ) ( ), ,

1 1 1

2
gr yi

N NM

i j i j i i

i j i

t t t t t t
= = =

+  = +  − +  k khist k Yci R x C x   (4.40) 

 ( ) ( ) ( ), ,

1 1 1

2
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i j i j i i

i j i

t t t t t t
= = =

+  = +  − +  m mhist m Yci R x C x   (4.41) 
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4.2 Case studies  

This section illustrates the performance of the fitting procedures proposed in Chapter 3 through 

various cases. The impact of improving the fitting of H  in time-domain simulations is analyzed 

via transient studies performed with different integration and interpolation schemes. 

4.2.1 Case study 1: 12-Conductor Cable System 

This section shows the impact of fitting precision in time domain simulations. For validation 

purposes, the numerical Laplace transform technique [2] is considered as the reference solution. 

The transient simulations are performed using the models obtained with the fitting techniques 

presented in section 3.1.4. The time domain solution is obtained using the integration and two 

step interpolation methods mentioned in section 4.1.  

This case study simulates the cable system of Figure 2.20. The first three cores are energized with 

a unit step voltage at 0t =  as seen in Figure 4.3. The simulation time step is 0.2 μs. Figure 4.4 

shows the transient voltages at the receiving end, 1V , obtained with both the VF method and the 

proposed WFP-MOR technique. The reference Laplace solution is also provided for comparison 

purposes. Figure 4.5 shows the induced voltage at the receiving end of the fourth core, 7V . It is 

observed in Figure 4.5 that the difference between models becomes significant for induced 

voltage simulation. Figure 4.5 also implies that the proposed WFP-MOR approach is able to 

maintain accuracy with less number of poles compared to VF. 

sV

sR sL

0.1

1μH

s

s

R

L

= 

=

7V

1V

11

 

Figure 4.3  Case study 1, 12-conductor cable system  
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Figure 4.4  Voltage at the receiving end, 1V  in Figure 4.3 

 

Figure 4.5  Induced voltage at the receiving end, 7V  in Figure 4.3 

The simulation mentioned above is now performed by fitting H  with the ULM approach. The 

time domain solution is also obtained using the integration and two-step interpolation techniques 

[37]. A portion of the result corresponding to 1V  is presented in Figure 4.6, together with the 

WFP-MOR solution. The simulation time step is 0.1 μs considering that the fastest time delay in 

the system is 6.24 μs. It is observed in Figure 4.6 that the proposed WFP-MOR provides a 

smooth simulation, while the ULM based solution shows inaccurate spurious oscillations. These 

inaccuracies are attributed to the amplification of integration errors due to large residue/pole 

ratios. The largest residue/pole ratio of H  corresponding to the WFP-MOR and ULM models are 

5.27, and 1.63×106, respectively.  
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Figure 4.6  Comparison of the proposed WFP-MOR and ULM approaches 

Table 4.1 lists residue-pole pairs with large ratios, associated to different but close modal groups. 

The existence of these pairs can potentially magnify the integration and/or interpolation errors. 

Figure 4.7 presents the simulation corresponding to Figure 4.6 using half time step. According to 

Figure 4.7, halving the time step does not decrease the numerical errors in the time domain, 

although the integration errors are supposed to be less. On the contrary, this suggests an increase 

of interpolation errors even though two-step interpolation scheme is used. Table 4.1 shows that, 

reflected currents associated with modal groups 5 and 6 arrive at the same time step, and 

opposing residue pole pairs compensate each other if the time step is 0.1 microseconds. However, 

if the step is halved, they arrive at different steps resulting in magnification of interpolation 

errors. 

Table 4.1  Residue-pole pairs with large ratios obtained with ULM 

Modal 

group 

Time 

delay 
Residue Pole Residue/Pole 

3 23.52μs 
2.2647×108 −1.5213×105 −1.4886×103 

8.3060×107 −3.8525×105 −2.1560×102 

4 23.43μs 
−2.1923×108 −1.6348×105 1.3410×103 

−1.6361×108 −4.7014×105 3.4801×102 

5 19.72μs 

1.1474×1012 −7.1618×105 −1.6021×106 

−1.1680×1012 −7.1774×105 1.6274×106 

3.6579×1010 −2.7799×106 −1.3158×104 

6 19.77μs 

−1.3858×1010 −7.2510×105 1.9112×104 

3.4060×1010 −7.7837×105 −4.3758×104 

−2.9448×1010 −2.6960×106 1.0923×104 
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Figure 4.7  Comparison of the proposed WFP-MOR and ULM approaches, halved time step 

4.2.2 Case study 2: A cable system running in parallel with a three-phase 

overhead transmission line 

To see the impact of the fitting precision on the simulation of coupling effects between different 

conductors, the transmission system shown in Figure 4.8 is studied. The system consists of an 

underground cable system (data listed in Table 2.2) running in parallel with a three-phase 

overhead transmission line. The series impedance Z  and shunt admittance Y  parameters are 

computed using the cable and line constants available in EMTP [77]. These routines are based on 

[78]-[79]. Table 4.2 shows the fitting rms error obtained by fitting H  with the VF, WFP, and 

WFP-MOR techniques. It is shown that the proposed WFP-MOR technique achieves a more 

accurate fitting than the VF for the same number of poles. 

0.25 m 0.25 m3 m
1.1 m

10 m

1 m 1 m
rc = 0.01 m

ρc = 1.68E-8  -m

ρg = 100  -m

 

Figure 4.8  10-km transmission system layout for the case study 2 



51 

 

Table 4.2  Fitting errors of the modal groups of the system of Figure 4.8 

Modal 

group 

Rms fitting error 

VF 

(14 poles) 

WFP 

(45 poles) 

WFP-MOR 

(14 poles) 

1 7.5041×10−5 1.6929×10−5 8.9846×10−5 

2 7.9438×10−4 2.9702×10−4 4.5716×10−4 

3 1.3000×10−3 9.0844×10−5 3.1303×10−5 

4 4.6000×10−3 1.3000×10−3 1.3000×10−3 

5 4.7000×10−3 8.3921×10−4 8.4135×10−4 

6 1.2000×10−3 1.0713×10−4 7.7204×10−4 

For the evaluation of induced voltages, the test circuit of Figure 4.9 is considered. The source is a 

sinusoidal voltage source of 169 kV peak value and 60 Hz. Figure 4.10 shows the transient 

waveform of sheath voltage of phase-a at the receiving end considering the VF, WFP, and WFP-

MOR techniques. These simulations are compared with the reference solution obtained using 

inverse numerical Laplace transform. It is observed that, some accuracy is lost when the number 

of poles is reduced to 14 with VF, whereas the proposed WFP-MOR method preserves precision. 

This becomes more evident in the induced voltage at the receiving end of the line, as shown in 

Figure 4.11. 

Note that the proposed fitting WFP-MOR method allows modeling of challenging systems, such 

as the one of Figure 4.8, regardless of the integration technique. Figure 4.12 shows the core-

voltage of phase-a at the receiving end of the cable in Figure 4.9 when H  is fitted with the 

proposed WFP-MOR technique and the ULM approach. The time domain solution is obtained 

using a single-step integration scheme [27] considering a time-step of 10 μs. It is observed that 

the proposed WFP-MOR technique provides a stable solution whereas the simulation obtained by 

ULM method becomes unstable. The largest residue/pole ratio corresponding to WFP-MOR and 

ULM are 1.490 and 7.514×103, respectively. 
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Figure 4.9  Test circuit for the case study 2 
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Figure 4.10  Sheath voltage on phase-a at the receiving end of the cable in Figure 4.9 

 

Figure 4.11  Induced-voltage on phase-a at the receiving end of the line in Figure 4.9 

 

Figure 4.12  Core-voltage of phase-a at the receiving end of the cable in Figure 4.9 
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4.2.3 Case study 3: AC and DC lines in parallel 

This case of study considers the numerical example shown in Section 3.2.2. The FDM/DC 

approach is verified in time domain simulations and compared against ULM using the classic 

single step integration scheme. The impact of improving the fitting of H  at low frequencies in 

time-domain simulations is analyzed via transient studies. 

The two circuit configurations of Figure 4.13 are used to test the system of Figure 3.6. In the first 

test (Figure 4.13a), a unit step current, with a ramping time of 0.5 s, is applied to the sending end 

of the positive conductor of the DC line, while the other conductors are grounded. Figure 4.14 

shows the induced voltage at the receiving end of C2 considering four cases listed in Table 3.3. It 

is observed that the FDM/DC provides a stable and precise time-domain solution. On the other 

hand, and based on Table 3.3, two ULM cases using minimum frequency values of 0.1 Hz and 

0.001 Hz deviate from the correct response. Hence, when using ULM, the computation of 

accurate DC response requires inclusion of very low frequencies in the fitting of H . Reducing 

the frequency range in ULM to 0.001 Hz results in large residue/pole ratios (see Table 3.3), 

leading to an unstable solution as shown in Figure 4.14. This problem is avoided in ULM by 

setting the minimum frequency for the fitting to 0.01 Hz. In this case, the time-domain response 

becomes stable and agrees with the solution obtained by the FDM/DC (Figure 4.14). However, 

the ULM requires five poles more than FDM/DC in the fitting of H  (see Table 3.3).  

Note that the maximum frequency needs to be adjusted in the ULM to provide accurate DC 

response. Such frequency is not known beforehand and implies a trial-and-error procedure for the 

common ULM user. On the contrary, the FDM/DC works well with either 105 Hz or 106 Hz as 

maximum fitting frequency. 

C1

C2

C3

C4

C5

1 m

1 m +
sI

2V
C1

C2

C3

C4

C5

4V

sV

0t =

+

 

(a)                                                                                (b) 

Figure 4.13  (a) short- and (b) open-circuit configuration for testing the AC/DC line 
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Figure 4.14  Time domain results of 2V  in Figure 4.13(a) 

To analyze the performance of the proposed FDM/DC method under a fast front transient, the 

open-circuit configuration of Figure 4.13b is tested. In this second test, a step function is applied 

to the positive conductor (C5) at the sending end while the receiving end is open. Conductors C1-

C4 are left open at both ends. Figure 4.15 shows the time-domain results of the induced voltage 

at the receiving end of C4, i.e. 4V . The minimum frequency for the fitting in FDM/DC and ULM 

is set to 0.001 Hz and 0.01 Hz, respectively. It is observed that FDM/DC provides accurate and 

stable solution regardless of the maxF , which confirms that the higher frequencies are also 

accurately simulated. It is noticed that ULM becomes unstable when the frequency range is 

extended to 1 MHz, despite the model in passive. The instability problem is due to the resulting 

very large residue/pole ratio in the fitting of H  (see Table 3.3). 
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Figure 4.15  Time domain results of 4V  in Figure 4.13(b) 

4.2.4 Case study 4: HVDC transmission system 

This example aims at verifying the precision of FDM/DC and ULM models for computing DC 

steady-state waveforms via the time-domain simulation of a two-terminal HVDC transmission 
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system. Consider the system of Figure 4.16. The tower configuration and conductor details for 

both line segments are shown in Figure 4.17. The cable segment layout is shown in Figure 4.18 

with data details in Table 4.3.  

The HVDC system consists of a 27-km aerial line, 44-km cable, and 97-km aerial line segments. 

For the two aerial lines and the cable, H  is fitted via the proposed FDM/DC approach. 

According to the first step of Section 3.2.1, H  is fitted from 1 Hz to either 105 or 106 Hz using 12 

poles per group. Then, the error function at the LF section is fitted using 8 poles from 0.001 Hz to 

1 Hz. 

Rectifier 

end

Inverter 

end

Transmission System

Line LineCable

44 km 97 km27 km

Converter

Converter 

transformer

AC system 

equivalent
 

Figure 4.16  HVDC test system used for the case study 4 

Phase wires:

Rdc = 0.0321  /km

r = 2.02 cm

Ground wire:

Rdc = 0.1186  /km

r = 1.035 cm

ρg = 100  -m

46 cm

13.41 m
37.49 m

10.06 m
(-) (+)

 

Figure 4.17  Layout of the line segments in Figure 4.16 

0.4 m

1 m

 

Figure 4.18  Layout of the cable segment in Figure 4.16 
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Table 4.3  Cable data for the system of Figure 4.18 

Inner-Outer Radius of the Core 00.00-33.00 mm 

Inner-Outer Radius of the Sheath 66.00-66.44 mm 

Outer Insulation Radius 76.00 mm 

Resistivity of Sheath 1.72×10-8 Ohm-m 

Resistivity of Core 1.72×10-8 Ohm-m 

Core Insulator Relative Permittivity 4.10 

Shield Insulator Relative Permittivity 2.30 

Insulation Loss Factor 0.001 

Earth Resistivity 100 Ohm-m 

 

A unit step voltage is applied to the sending end of the positive conductor (see Figure 4.19) while 

the receiving end is grounded by a resistance of 1Ω. The negative conductor is left open at both 

ends. The steady-state magnitudes of 2V  and 4I  in Figure 4.19 provided by the FDM/DC are 

shown in Table 4.4. These values are compared against the method of [70], and the exact 

solution. The simulation time-step is 10 µs. The smallest time delay in this system is 89.9 µs, 

corresponding to the 27-km line segment. According to Table 4.4, the steady-state value is the 

same regardless of the maximum frequency considered in the fitting of H . 

Line 27 km Cable 44 km Line 97 km

+ +
1V 2V 3V+

sV 1 4I

 

Figure 4.19  Circuit configuration of the case study 4 

Table 4.4  Time-domain results (steady-state values)  

maxF  

(Hz) 

2V  (p.u.) 4I  (p.u.) 

FDM/DC Ref. [70] Exact sol. FDM/DC Ref. [70] Exact sol. 

106 0.8650 0.8647 
0.8649 

0.3112 0.3112 
0.3107 

105 0.8650 0.8647 0.3112 0.3112 

 

Table 4.5 lists the steady-state results obtained with the ULM. The fitting is performed using 

three different minimum frequency values. It can be observed in Table 4.5 that, as the lower limit 

of the fitting frequency range approaches 0.001 Hz, the steady-state values seem to be closer to 

the ones obtained with FDM/DC. Figure 4.20 shows the time-domain waveforms for 4I  obtained 
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by using ULM and FDM/DC. The upper limit of the fitting frequency range for both models is 1 

MHz. The ULM approach shows oscillations and its steady state response is not accurate even 

when the lower limit of the fitting frequency range is set to 0.001 Hz. 

Table 4.5  Steady-state magnitude results obtained by ULM  

minF  

(Hz) 

maxF  

(Hz) 

Steady-State values (p.u.) 

2V  4I  

0.100 

106 

0.7783 0.2233 

0.010 0.8665 0.3091 

0.001 0.8691 0.3242 

0.100 

105 

0.8761 0.2523 

0.010 0.8659 0.3083 

0.001 0.8663 0.3084 

 

Figure 4.20  Time domain results for 4I  in Figure 4.19 with time-step of 10 µs.  

4.2.5 Case study 5: Hybrid AC/DC transmission line 

This example is aimed to further demonstrate numerical stability performances of FDM/DC and 

ULM techniques. Consider the 125-km hybrid AC/DC line configuration depicted in Figure 4.21. 

The transient scenario consists of applying a unit step voltage behind a resistance of 0.001 Ω to 

the sending end of conductor C5, while the receiving end is grounded by a resistance of 1 Ω. The 

rest of the conductors are left open at both ends. In ULM, the fitting range is set from 0.001 to 

106 Hz.  

The energization of the line results in unstable ULM simulation, as seen in Figure 4.22 despite 

the ULM model is passive. The numerical problems are due to the integration errors related to 

large residue/pole ratios explained before. If the frequency range is reduced to 0.01 to 105 Hz, the 
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fitting is relaxed, and the model becomes stable in the time domain. However, the steady-state 

DC solution becomes inaccurate this time (see Figure 4.23). The new partitioning and DC 

correction method either applied to FDCM or ULM allows achieving numerical stability in the 

time domain, as shown in Figure 4.22 and Figure 4.23. 

The method of [70] is also tested for this case and applied to correct the DC response. Like ULM, 

it results in unstable simulations in the time domain due to large integration errors. 

Phase wires:

Rdc = 0.0511  /km

r = 1.595 cm

Ground wires:

Rdc = 0.0943  /km

r = 1.21 cm

ρg = 100  -m

40 cm
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7.5 m

15.5 m

18 m

9.5 m

11.6 m

380 kV AC 450 kV DC

C1

C2 C3
C4

(-)

C5
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Figure 4.21  Hybrid AC/DC line geometry for the case study 5 

 

Figure 4.22  Voltage at the receiving end of C5 in Figure 4.21, time-step 10 µs  

 

Figure 4.23  Voltage at the receiving end of C5 in Figure 4.21, time-step 10 µs  
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4.3 Conclusions 

This chapter presents the time-domain implementation details of the frequency dependent line 

model used in this thesis. Then, the performance of the fitting procedures proposed in Chapter 3 

is studied through various cases. The impact of improving the fitting of H  in time-domain 

simulations is analyzed via transient studies.  

Numerical results show that, when the proposed fitting approach is combined with a precise 

integration scheme, it leads to stable and accurate time-domain simulations. This is particularly 

the case for induced transient voltages. In addition, the proposed approaches complement the 

prevailing ULM by eliminating spurious oscillations or numerical instabilities due to opposing 

high residue pole pairs coming from different but close delay groups. Moreover, it is shown that 

the DC-correction fitting procedure allows improving the accuracy in the computation of DC 

steady-state waveforms. 
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CHAPTER 5 ADAPTIVE LINE MODEL 

As mentioned in Chapter 1, several line and cable models have been developed during the last 

decades [5]-[39]. It has been observed that the more sophisticated models suffer from 

computational performance issues when they are used in long-term steady-state simulations, 

while the simplified models are not sufficiently accurate to simulate fast-front transients. To 

address these problems, this chapter proposes a unified model that can adapt itself to both steady- 

and transient-state studies by relaxing the line equations during the time-domain simulation, 

while maintaining appropriate accuracy and computational performance. 

Simulation of EMT using relaxing models have been proposed through the shift frequency 

concept [71]-[74]. This chapter proposes to switch between WB and PI models during the 

simulation. The WB model is used during a transient where precise models are required, whereas 

the CP model is used during the steady state. Basically, the idea is relaxing the line equations 

during the steady state to increase the speed of the EMT-type computations. The switching 

between WB and CP models is performed by modifying the terms of the history current vectors 

and their corresponding elements in the nodal admittance matrix during the simulation. Although 

the WB model can also be switched to the PI model, the CP model is preferred since its topology 

is similar to that of the WB model, providing more flexibility in the numerical implementation. 

This flexibility becomes very attractive for multi-scale modeling applications [73] and real-time 

simulations [35]. The proposed model includes an algorithm that enables the automatic setting of 

the line model along the simulation. In every transition point, the required variables and states are 

initialized based on phasor analysis. The proposed model is verified via time-domain simulations. 

5.1 Adaptive line model 

This section presents an adaptive model used to increase the speed of time-domain simulations.  

5.1.1 Relaxation scheme 

Basically, the idea of the proposed relaxation scheme is switching between WB and CP models 

during the simulation. The time-domain implementation details of the WB and CP models are 

explained in Chapter 4 and Appendix A, respectively. The proposed method uses the WB model 

during a transient where precise models are required, and switches to the CP model when steady-
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state is reached, see Figure 5.1. The objective is relaxing the line equations during the steady-

state to increase the speed of EMT-type computations. It is mentioned that PI model can also be 

used during the steady state; however, the CP model is preferred since it provides more 

topological flexibility. The implementation of the PI model creates physical coupling between 

both line ends, which is a disadvantage for parallel computing. In the proposed adaptive line 

model, the history current terms of the CP and the WB models are initialized based on their 

steady-state phasor solution. In every transition point, the elements of the nodal admittance 

matrix of the network are modified accordingly. 

Initialize

Steady State Transient Steady State

WB model CP modelCP model
Initialize

TimePhasor Solution Phasor Solution

 

Figure 5.1  Transition steps in the proposed adaptive line model 

5.1.2 Switching control algorithm 

This section presents a control algorithm that enables the automatic setting of the line model 

during the simulation, see Figure 5.2. The control algorithm is explained as follows: 

1) Simulation starts with the steady-state phasor solution. The first time-domain solution is 

found at t t=   with history term computed from the steady-state at 0t = . 

2) If any discontinuity occurs, such as a switching event, simulation continues with the WB 

model connected in the network; otherwise, simulation continues with the CP model. 

3) After finding the transient-state solution with the WB model, simulation continues to the 

next time step. 

4) After each fundamental period, the algorithm tracks natural waveforms to find any steady 

state condition. If such condition is detected, then the simulation switches to the CP model. 

5) After finding the steady-state solution with the CP model, simulation continues to the next 

time step. 

6) Step 2 is repeated. Simulation switches to WB model if any other discontinuity is detected. 

7) Simulation ends after the steps 3 and 5 when the simulation time T  is met. 
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Figure 5.2  Proposed switching control algorithm 

5.1.3 Model initialization 

For initialization proposes, the network is solved based on phasor analysis. Initialization from 

steady-state phasor solution allows to start in an almost perfect steady state in the time domain. 

The first time-domain solution is found at t t=   with history term computed from the steady-

state at 0t = . At every transition point, the variables of the line equations must be updated.  

WB model equations 

To initialize the variables and states of the discretized WB model equations, the network is 

solved in the phasor domain based on the use of the equivalent PI of the line (see Figure 5.3). The 

nodal solution in the phasor domain is expressed as 

 
−     

=     
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Figure 5.3  Equivalent PI model 
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Existing formulations for the steady-state initialization of a transmission line consider the exact 

PI model equations, where the shunt and series admittance matrices are given by: 

 ( )tanh 2l=sh cY Y YZ   (5.2) 

 ( )sinh l=ser cY Y YZ   (5.3) 

However, the use of the exact PI is prone to create mismatches between the steady-state values 

obtained in the phasor solution and the steady-state values calculated with the WB model. This is 

because the nodal admittance matrix calculated in the exact PI and WB models is not numerically 

identical. In the proposed formulation, the nodal admittance in (5.1) is calculated using the fitted 

propagation function H  and characteristic admittance cY . Then, (5.2) and (5.3) are found with 

 ( ) ( ) ( )
1 1

2 2 22
− −

= − − − −sh c cY U H U H Y U H HY   (5.4) 

 ( )
1

22
−

= −ser cY U H HY   (5.5) 

where U  is an identity matrix. Next, considering (4.27), the states of the discretized propagation 

function convolution at 0t =  are computed as 
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where   is the network frequency.  

In a similar manner, the states of discretized convolution of characteristic admittance are 

initialized as follows 

 ( )
,

1 1
0

2 21 1i j t j t
i ie e  



−  
= +

− −k

k k
Yc

V V
x   (5.7) 

Finally, the history current terms are found as 

  Re= − −
k chist k Y kI I G V   (5.8) 

  Re= − −
m chist m Y mI I G V   (5.9) 



64 

 

The traveling wave buffers are initialized by applying phase shift to the history current phasors. 

The phase shift is function of the number of time steps from the initial steady state. 

CP model equations 

For the CP model initialization of the subsequent time-domain solution, the two lossless sections 

of Figure A.1 are replaced by a lossless approximation of the model of Figure 5.3. Each lossless 

section is considered with a halved equal propagation time. The resulting series and shunt 

admittance matrices are used to calculate the phasor solution for each mode in the CP model. The 

terminal current phasors are given by: 

 ( )     = + −k sh k ser k mI Y V Y V V   (5.10) 

 ( )     = + −m sh m ser m kI Y V Y V V   (5.11) 

and the history current terms are found as 

  Re   = − −
khist k kI I G V   (5.12) 

  Re   = − −
mhist m mI I G V   (5.13) 

The traveling wave history buffers are initialized by applying phase shift to the history current 

phasors. The buffer length depends on the propagation delay and the integration time-step. The 

propagation delay for each mode must be greater or equal to the integration time-step. 

5.1.4 Tracking the steady state 

To find the switching time swt  when the steady state is reached during the simulation, the natural 

waveform of the voltage at the receiving end of the line is monitored. The proposed idea is 

explained as follows (see Figure 5.4). Starting at the beginning of a transient, a buffer of voltage 

samples of the length of the fundamental period nT  is created. Then, the fast Fourier transform 

(FFT) [80] is applied on the waveform of the voltage stored in the buffer. The resulting frequency 

spectrum sF  is analysed. The steady state is reached when the only frequency component found 

in sF  correspond to the fundamental frequency. It is noted that the buffer is updated throughout 

the simulation, maintaining the same length.  
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Figure 5.4  Tracking the steady state waveform 

5.1.5 Phasor solution at the switching time 

At each switching time swt , the variables and states corresponding to the subsequent model (WB 

or CP) must be initialized for the following time-domain solution. To initialize the subsequent 

model at swt , the steady-state phasor of the voltages at both line ends are required. 

At the beginning of the simulation, the steady-state solution (nodal voltages) is calculated by 

solving the network using phasors. However, the steady state values obtained during the time-

domain simulation may be different than the values obtained from the initial phasor solution. In 

this thesis, the steady-state phasors are obtained as follows.  

Consider the instantaneous voltage values from the steady-state period nT  previous to swt , see 

Figure 5.5. The natural waveform depicted in Figure 5.5 is expressed as 

 ( ) ( )( )0coss sw swv t t V t t − = − +   (5.14) 

 ( ) ( )0coss sw swv t V t = +   (5.15) 

V

T

t

sv

swt

( )swt t−



 

Figure 5.5  Finding the steady state phasor solution 
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Solving (5.14) and (5.15) gives the values for the magnitude V  and phase   of the 

corresponding phasor. Once the phasor voltages at both line ends are found, the variables of the 

next model are initialized according to Section 5.1.3. 

5.2 Numerical results 

The numerical example presented in this section considers the three-phase transmission line 

system of Figure 2.5. For a time-domain analysis, the line is modeled with the WB model and the 

proposed adaptive line model, which is named in this thesis as WB-CP. The implementation of 

both models and the entire network is performed in the Matlab platform. 

5.2.1 Example 1: Single transition point 

The voltage of phase A at the receiving end is shown in Figure 5.6 for a simulation time T  of 

0.16 s, when the three phases are simultaneously closed at 0.0083ct =  s. In the WB-CP model 

(dashed line), simulation starts with the WB model being connected to the circuit; after 0.1 

seconds, the simulation switches the line model to the CP model. This solution is compared with 

the solution obtained from the WB model only (solid line). It can be observed that the solution 

obtained by the WB-CP model agrees with the solution obtained with the WB model.  

 

Figure 5.6  Voltage of phase A at the receiving end. Simulation time of 0.16 s 

The CPU times of the simulation corresponding to the WB and WB-CP are 9.6 and 6.3 s, 

respectively. That is, the simulation obtained using the WB-CP model is 34.4 % faster than the 

simulation obtained by the WB. It should be noticed that the gain is only obtained during the last 

3.5 cycles. If the WB-CP model is used for longer simulations, the CPU-time gain is increased. 

For instance, Figure 5.7 shows the simulation results for a long-term steady state simulation, 
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which may be followed by a fault. The CPU-time gain time is 68.8 %. Table 5.1 lists the CPU 

times for both simulations. 

 

Figure 5.7  Voltage of phase A at the receiving end. Simulation time of 0.5 s 

Table 5.1  Comparison of CPU times 

Model 
CPU time (s) 

T = 0.16 T = 0.5 

WB 9.6 28.5 

WB-CP 6.3 8.9 

Gain 34.4 % 68.8 % 

5.2.2 Example 2: Three transition points 

To observe the performance of the proposed WB-CP model in the transition from CP to WB, an 

additional switching event is applied in the simulation of Section 5.2.1. This new simulation 

includes grounding the phase B at the receiving end of the line from 0.16 s to 0.17 s. During this 

time, phases A and C remain open. The voltage of the three phases at the receiving end is 

presented in Figure 5.8. It is observed that the overvoltage on phase B after clearing the fault is 

influenced by the interphase coupling of the other phases, see Figure 5.9. 

 

Figure 5.8  Voltage of the three phases at the receiving end obtained with WB-CP model 
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Figure 5.9  Voltage of the three phases at the receiving end obtained with WB-CP model, 

transient state  

Figure 5.10 compares the solution of phase B with the solution obtained with the WB only. It is 

noticed that three transition points occur in the WB-CP model (dashed red lines). First, 

simulation starts with the WB model being connected to the circuit; after 0.1 seconds, the 

simulation reaches the steady-state condition and switches the line model to the CP model. Next, 

when the fault on phase B appears, i.e. at 0.16 s, simulation switches to WB. Finally, once the 

steady-state is again reached at 0.25 s, simulation switches back to CP. It can be observed from 

Figure 5.10 that the solution obtained by the WB-CP model agrees with the solution obtained 

with the WB. The CPU-time gain obtained with the WB-CP compared to that of the WB model is 

of 47.4 %.  

It is noted that the CPU-time gain of the WB-CP in this example is obtained by simulating a 

simple network. The computational gain obtained with the proposed WB-CP may become more 

significant in multi-scale modeling applications. 

 

Figure 5.10  Voltage of phase B at the receiving end. Comparison between WB-CP and WB 
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5.3 Analysis of other switching schemes 

This section discusses two alternative switching schemes for the proposed adaptive model. 

Switching from WB model to PI model is labeled as WB-PI model. Switching from WB model to 

a reduced-order WB model is labeled as WB-RWB model. 

5.3.1 Switching from WB to PI model: WB-PI model 

As an alternative switching scheme to the proposed adaptive model, the WB model is switched to 

the PI model during the steady state to accelerate the time domain simulation. The PI model is 

accurate, and its implementation is simple; however, there is no a substantial increase in the 

computational gain compared to that obtained with the WB-CP model, as will be demonstrated in 

the example of Section 5.3.3. Moreover, it should be remarked that the implementation of the PI 

model creates physical coupling between both line ends, which is a disadvantage for parallel 

computing. 

5.3.2 Switching from WB to reduced WB: WB-RWB model 

This section analyzes the use of a reduced-order WB model in the proposed adaptive model. In 

this approach, both H  and cY  are fitted in a low frequency range. Since the fitting is performed 

in a reduced frequency band, the required number of poles is relatively small. The reduced fitted 

model is then used during the steady state to increase the speed of simulation. The drawback of 

this approach is the fact that the line functions cannot be properly fitted for a reduced frequency 

band. Figure 5.11 presents the entry ( )1,1  of H  fitted from 0.001 Hz to 100 Hz. It is observed 

that H  cannot be accurately fitted regardless of the number of poles. This problem can be 

addressed by increasing the fitting frequency range. For instance, Figure 5.12 presents the fitting 

results when the fitting range is increased to 100 kHz. It is observed that the fitting precision is 

significantly improved. 

To evaluate the performance of the reduced-order WB (RWB) model in time-domain simulations, 

the system of Figure 2.5b is tested. Figure 5.13 shows the steady-state waveform of the phase A. 

The RWB model is fitted from 0.001 Hz to 100 kHz using 4 and 8 poles. It is observed that the 

steady state waveform is simulated with acceptable accuracy. 
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Figure 5.11  Element ( )1,1H  of the line of Figure 5.7 fitted from 0.01 Hz to 100 Hz 

 

Figure 5.12  Element ( )1,1H  of the line of Figure 5.7 fitted from 0.01 Hz to 100 kHz 

 

Figure 5.13  Steady-state simulation of phase A, H  fitted from 0.01 Hz to 100 kHz 

As another alternative, the order of the fitted functions can be reduced via the frequency-domain 

balance realization (FDBR) method [81]. This technique permits to reduce a state-space model, 

fitted from a wideband of frequency, to a specific frequency range. The downside of this 

approach is that is not always possible to greatly reduce order of approximation. Moreover, is not 

always possible to obtain stable poles. Figure 5.14 presents the entry ( )1,1  of H  fitted from 

0.001 Hz to 100 Hz. It is observed that H  cannot be accurately fitted regardless of the number of 

poles. It is mentioned that, some of the fitted functions of Figure 5.14 contain unstable poles. 
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Figure 5.14  Element ( )1,1H  of the line of Figure 5.7 fitted with the FDBR technique 

5.3.3 Numerical example 

To evaluate the accuracy and computational performance of the WB-PI and WB-RWB models, 

the simulation of Figure 5.7 is repeated. The simulation results are compared with the ones 

obtained with the WB and the WB-CP models. Simulation results are presented in Figure 5.15. 

The CPU times are listed in Table 5.2. In the WB model, H  and cY  are fitted, from 0.01 Hz to 1 

MHz, with 12 and 8 poles, respectively. In the RWB model, H  and cY  are fitted, from 0.01 Hz 

to 100 kHz, with 8 and 4 poles, respectively. It is observed from Figure 5.15 that the solution 

obtained by all models is in agreement. According to Table 5.2, the WB-RWB model does not 

significantly reduce the CPU time compared to the WB-CP model. On the other hand, there is not 

significant difference in the gain obtained with the WB-CP and WB-PI models. However, it is 

remarked that the WB-PI model creates physical coupling between the line ends. 

 

Figure 5.15  Voltage of phase A at the receiving end. Comparison between different models 
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Table 5.2  Comparison of CPU times for the simulation of Figure 5.15 

Model CPU time (s) Gain 

WB 28.5 - 

WB-CP 8.9 68.8 % 

WB-PI 8.1 71.58 % 

WB-RWB 22.8 19.30 % 

5.4 Conclusions 

This chapter presents an adaptive transmission line model based on switching between WB and 

CP models. The WB model is used during a transient where precise models are required whereas 

the CP model is used in steady-state. The proposed idea is to relax the line equations during the 

steady state to increase the speed of the EMT-type computations. The switching between the two 

models is performed by modifying the terms of the history current vectors and their 

corresponding elements in the nodal admittance matrix during the simulation. 

The proposed model includes an algorithm that enables the automatic setting of the line model 

during the simulation. At every transition point, the required variables and states are initialized 

based on phasor analysis. Numerical results show that the solution obtained with the adaptive 

approach (WB-CP model) matches that obtained from the WB only. The WB-CP model provides 

faster simulation than the WB model. Alternative switching schemes have not shown significant 

improvements in terms of computational performance compared to the proposed WB-CP model. 

The proposed adaptive model has been tested in a simple network. However, the flexibility 

provided by the proposed WB-CP allows to cover diverse transients with only one set of models, 

which is very attractive for multi-scale modeling applications and real-time simulations. 
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CHAPTER 6 SIMULATION OF SWITCHING OVERVOLTAGES AND 

VALIDATION WITH FIELD TEST 

On transmission lines where switching surges are not mitigated with closing resistors and/or 

surge arresters, high-speed reclosing on a line with trapped charge will produce high 

overvoltages. The research work presented in this chapter aims to identify the required simulation 

practices in reproducing field measured overvoltages in EMT simulations. Variations in line 

modeling and electrical parameters have been tested in an unsuccessful attempt to reproduce the 

field data. It is demonstrated that even though the pattern of the transient voltage waveforms can 

be reproduced very well using frequency-dependent line models, the magnitude of the maximum 

overvoltage is significantly overestimated unless the effect of corona is included. Two types of 

corona models are tested, and both demonstrate that corona is the primary factor that allows the 

simulations to correctly reproduce high peak overvoltage measurements. 

6.1 Background 

Switching of transmission lines results in electromagnetic transients that propagate along the 

lines as discussed in many references, including [82]-[84]. The switching overvoltages are more 

significant during high-speed reclosing due to the trapped charge on the line [85]. Switching 

overvoltages tend to be well controlled at the extra high voltage level with closing resistors 

and/or arresters, but below that level they have not historically been controlled. Although 

arresters are common today, older lines used rod gaps installed at the ends of the line to protect 

the substation equipment by flashing over during lightning overvoltages. However, below extra 

high voltage switching overvoltages may also be sufficiently high to flash over the rod gaps 

during high-speed line reclosing. Such an event occurred on the Bonneville Power 

Administration (BPA) Big Eddy-Chemawa 230 kV line and prompted an investigation and 

switching surge field test as describe in [64], [86]. 

The 1995 field test performed by BPA was intended to verify the modeling techniques in EMT-

type programs and determine the highest overvoltages at the receiving end of a 230-kV line 

during high-speed reclosing with a trapped charge [64]. The resulting measurements included 

data taken at 1 MHz for 50 high-speed reclosing tests with a maximum measured overvoltage of 

3.3 pu. Reference [86] provides a description of the BPA field test, including the purpose, 
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procedures and measurements along with a summary of the main results. The recorded field 

measurements provide a unique opportunity for the experimental validation of line models [3], 

[12], [27] at high overvoltage levels in EMT-type programs. Rather than validate the EMT 

studies, the field measurements showed that for the highest switching surge voltage levels, the 

EMT studies are not accurate and overestimate the overvoltages by about 1 pu, or 30%.  The 

importance of this becomes clear when it is recalled that the highest 2% of overvoltage results of 

switching surge studies are normally used for line design and reliability purposes, while the 

maximum overvoltages are often used for safety-related purposes such as minimum approach 

distances.    

The objectives of the research work presented in this chapter are to validate line models using the 

field test, to understand the major factors in the reproduction of field measurements using 

simulations and to investigate the sensitivity of simulations to various modeling and electrical 

parameters. For validation purposes, the waveforms recorded during the “Three-phase line 

switching test series” reported in [64] are used since they approximate high-speed reclosing and 

produced the highest switching-surge overvoltages. In principle, once a line model is validated, it 

is possible to proceed with statistical simulation phase to identify the worst-case overvoltage, 

which is of utmost importance for transmission line and substation related issues such as the 

evaluation of minimum approach distance and clearance practices [64].  

According to the results presented in this chapter, refinements in ground resistivity, skin effect, 

phase-to-ground conductance and detailed source modeling are not sufficient to match maximum 

transient overvoltages. The peak of the transient voltage is significantly overestimated unless the 

effect of corona is included. On the other hand, the pattern of the transient overvoltage 

waveforms is matched when frequency dependent line models are employed, and multiple 

prestrike events are sequentially produced in the simulation environment. 

The representation of corona involves a distributed nonlinear hysteresis behavior, and it is 

complex to combine it with the line model equations in EMT studies [57], [58], [87], [88]. Most 

of the methods proposed in the literature rely on subdividing the line into linear subsections and 

represent corona with non-linear shunt branches at each junction [14]. In this work, the Suliciu 

Model [63] and the corona model presented in [61] are used. Both models require subdividing the 

line into linear sections. 
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6.2 Big Eddy-Chemawa test system 

The Big Eddy-Chemawa line is a 230-kV line of 116 miles long. It originates at the Big Eddy 

Substation near The Dalles, Oregon, and terminates at the Chemawa Substation near Salem, 

Oregon. Figure 6.1 shows the one-line diagram of the Big Eddy-Chemawa 230-kV line and the 

detailed test system. The results of the BPA field investigation are reported in [7]. The BPA 

report includes overvoltage and field data recorded during the switching surge field test on the 

Big Eddy-Chemawa line. The switching surge field tests consist of single-phase and three-phase 

line switching with and without trapped charge. The three-phase test is selected in this paper 

since it produced the highest overvoltages [64]. 

 

Figure 6.1  Big Eddy-Chemawa 230-kV detailed system model [64] 

6.2.1 Three-phase line switching test  

The purpose of the three-phase test is the collection of measurements for the verification of EMT 

models and statistical data on overvoltages that could be expected during high-speed reclosing 

[64]. The highest switching surge overvoltage occurs when reclosing a line with trapped charge. 

In tests reported in [64], switch opening is controlled and synchronized to generate the same 

polarity and magnitude of trapped charge on each phase for each of the reclosing tests. The 
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breaker closing times were varied uniformly over a complete 60 Hz cycle by increments of 18 

electrical degrees (1/20 cycle). Closing from Big Eddy provided line switching measurements 

with a strong source, while closing from Chemawa provided measurements with a relatively 

weak source. The results shown in this chapter includes the switching transient analysis for the 

cases 5-02, 5-03, 5-05 (switching from Big Eddy side), and 5-53 (switching from Chemawa side) 

of [64] since they present the highest overvoltage levels. The overvoltages measured at each end 

of the line during these cases are listed in Table 6.1, whereas the trapped charge values are 

presented in Table 6.2. The steady-state peak line-to-ground bus voltage prior to switching is 

197.6 kV at Big Eddy and 187.4 kV at Chemawa. 

Table 6.1  Three-phase line switching, peak voltages (kV) 

Case 
Big Eddy end line voltage Chemawa end line voltage 

A-Ph B-Ph C-Ph A-Ph B-Ph C-Ph 

5-02 442.3 -284.1 -493.8 505.6 445.9 -643.2 

5-03 452.1 409.9 -570.6 566.6 561.6 -638.9 

5-05 459.7 -284.0 -541.9 536.9 529.2 -622.8 

5-53 -587.0 -569.8 497.4 -394.4 332.5 288.9 

 

Table 6.2  Trapped charge voltages (kV) 

Case 
Relative closing angle 

(degrees) 
A-Ph B-Ph C-Ph 

5-02 0 -235.4 -176.4 179.6 

5-03 18 -230.9 -175.2 179.8 

5-05 54 -234.3 -177.4 181.9 

5-53 18 221.2 185.1 -184.14 

 

6.2.2 Field test data 

The critical line voltage measurements were made with laboratory-quality RCR dividers to 

ensure accurate measurements from DC to 1 MHz as described [86]. 

6.3 Test system modeling in EMTP 

To reproduce the field measurements using simulations, the test system is modeled with varying 

level of details. Line parameters, conductor data and other relevant system details are given in 

[86] and [89]. A description of the various modeling approaches and details follows. 
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6.3.1 Big Eddy-Chemawa line model 

As shown in the right-of-way drawing of Figure 6.2, there are two additional 230-kV lines 

parallel to the Big Eddy-Chemawa line for part of its length, along with a 525-kV line. 
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Figure 6.2  One-line diagram of Big Eddy-Chemawa and parallel lines, [89] 

In this work, the Big Eddy-Chemawa line is modeled together with the three parallel lines due to 

their impact on transients as will be shown in Section 6.5.1. The configuration of this line system, 

consisting of 10 sections with different geometry, is illustrated in Figure 6.2. All the sections are 

modeled using either the wideband (WB) model which is the implementation of the Universal 

Line Model in EMTP [27], the frequency-dependent (FD) line model [12], and the constant 

parameters (CP) model [3]. The line parameters including conductor data and line geometries at 

different sections are available in [89]. The CP model parameters are evaluated at 1 and 10 kHz. 
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6.3.2 Trapped charge model 

To account for the trapped charge on the line, a three-phase dc voltage source is connected to the 

line with magnitudes as given in Table 6.2. The source is disconnected at the instant when the 

switching transients are triggered.  

6.3.3 Filter and capacitor bank models 

Filters and capacitor banks seen in Figure 6.1 are modeled with equivalent circuits. The 

equivalent models connected at the Chemawa and Big Eddy buses are shown in Figure 6.3 with 

the numerical parameters of the components [89]. 
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Figure 6.3  Equivalent model for filters and capacitor banks 

6.3.4 Simplified and detailed source models 

The surrounding system connected to the Big Eddy-Chemawa line and its parallel lines, is either 

represented by using simplified equivalent source models as shown in Figure 6.4 or the detailed 

source model, i.e. with surrounding system, as given in Figure 6.1. The source and surge 

impedance data are listed in Table 6.3 for the simplified source models (subscript 1 and 0 stand 

for positive and zero sequence, respectively). Table 6.4 shows the bus voltage levels used in the 

simulations. The angles are initialized through steady state solution. 

Line

Zc Surge characteristic impedance

Zs 60 Hz System fault impedance

cZ

sZ

 

Figure 6.4  Simplified source model 
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Table 6.3  Source impedance data for buses along Big Eddy-Chemawa line 

Bus 
sZ  (Ω) cZ  (Ω) 

1R  1X  0R  0X  
1c

Z  
0cZ  

Big Eddy 230 0.12 3.1 0.06 2.0 42 81 

Chemawa 1.60 12.6 1.30 16.0 190 365 

McLoughlin 0.28 4.8 0.24 4.1 63 122 

Troutdale 0.36 5.0 0.31 4.8 76 146 

Big Eddy 525 0.70 14.0 0.60 12.0 56 130 

Ostrander 1.80 21.0 2.20 25.0 93 217 

Pearl 1.30 20.0 2.10 24.0 140 325 

Table 6.4  Source voltage data for buses along Big Eddy-Chemawa line 

Bus 
Nominal 

voltage (kV) 

Approximated 

bus Voltage (kV) 

Voltage angle 

phase A (deg) 

Big Eddy 230 230 240 0 

Chemawa 230 237 0 

McLoughlin 230 238 -11 

Troutdale 230 238 -11.7 

Big Eddy 525 525 542 0 

Ostrander 525 539 -4.5 

Pearl 525 539 -10 

6.3.5 Prestrike modeling 

There are multiple prestrikes during the closing events, as described in [64], and they are 

different for each phase. The switching times are very important for producing the exact 

waveform of transients [85]. The multiple prestrikes are modeled by a set of switches, which is 

connected at the sending end of the line. The switch closing times are determined from the 

voltage and current measurements. The opening time is the first instant when the current crosses 

zero during the transients. Forcing the interruption at an instant determined from the 

measurements alone generates current chopping phenomenon that mismatches the pattern of field 

measurements in simulations. The sequence of switching times is given in Table 6.5. 

As an alternative to the modeling of prestrikes, a tabulated source using the measurements at the 

switching end is also tested. In this case the source is an ideal source that forces the 

measurements at the sending end of the line. This approach is supposed to account for the impact 

of prestrikes intrinsically. 
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Table 6.5  Sequence of switching times 

Phase Condition 
Time (ms) 

Case 5-02 Case 5-03 Case 5-05 Case 5-53 

A 

Closes 0.000 0.000 0.000 0.000 

Opens 1.262 0.856 1.264 1.270 

Closes 2.180 2.260 1.832 2.170 

Opens - - 3.081 4.990 

Closes - - 3.575 5.380 

B 

Closes 5.087 4.060 3.776 3.730 

Opens - 4.936 - - 

Closes - 6.100 - - 

C 

Closes 3.130 1.800 1.894 0.890 

Opens 4.370 2.596 3.159 3.560 

Closes 4.780 3.510 4.140 4.660 

Opens 7.020 7.616 - - 

Closes 7.380 8.510 - - 

6.4 Preliminary switching transient studies 

This section is the initial study step on the field test results of Case 5-03. The system of parallel 

lines in Figure 6.2 is built by considering the modeling approaches described in Section 6.3. Two 

cases are studied for the energization of the Big Eddy-Chemawa line system: 

1) Tabulated source model using measurements 

2) Simplified source using switches for prestrikes  

To simplify the comparisons between waveforms, only one phase with substantial overvoltages 

will be shown. 

6.4.1 Simulation results using a tabulated source model 

In this case, the Big Eddy-Chemawa line model is energized at the Big Eddy end by a tabulated 

source. The voltage of phase A at the Chemawa end is shown in Figure 6.5. The different line 

models, including FD, WB, and CP are compared with the field data. Note the -231 kV initial 

trapped charge in the measurements and on the line models. Figure 6.5 shows that the WB and 

FD models yield similar results. However, they don’t follow the pattern of the field data, there are 

unexpected spikes, and there is a mismatch of 0.23 pu in peak values compared to the measured 

value of 3.02 pu. Moreover, the damping in simulations seems to be slower than the one in 
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measurements, which may be due to the lack of surge impedance in the tabulated source. On the 

other hand, Figure 6.5 shows that the waveform associated with the CP model is not as accurate 

as the ones obtained with the FD or WB model. The performance of the CP model depends on 

the frequency at which the parameters are evaluated. In the cases of Figure 6.5 and Figure 6.6, 1 

kHz provides better results than 10 kHz.  

It is mentioned that adjustments in ground resistivity and phase to ground conductances did not 

improve the results significantly (not shown). 

 

Figure 6.5  Voltage of phase A at Chemawa end, tabulated source model 

6.4.2 Simplified source model with prestrike  

In this test, the Big Eddy-Chemawa line is energized from the Big Eddy bus using a simplified 

source with prestrikes created with a set of switches as described in Section 6.3.5. The voltage of 

phase A at the Chemawa end for the simplified source model is shown in Figure 6.6. It can be 

observed in Fig. 6 that the WB and FD models produce simulation results that are very close to 

each other. However, although the voltage waveforms follow the pattern of the field 

measurements better compared to the previous test case, the peak voltages are overestimated by 

about 1.62 pu. On the other hand, as in the previous test case, the CP model does not follow the 

waveform pattern. It is noted that the frequency dependence of line parameters is important in 

this study.  

Similar results are obtained with different ground resistivity and different phase to ground 

conductance values (not shown). 
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Figure 6.6  Voltage of phase A at Chemawa end, simplified source model 

6.4.3 Comparison of tabulated and simplified source models 

Modeling the Big Eddy-Chemawa line system by using the FD model only, a comparison 

between the results of tabulated and simplified source model is presented in Figure 6.7. The 

simplified source model produces waveforms that follow the field data better but overestimates 

the peak more than the tabulated source model does.  

An analysis on the line parameters is presented next. 
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Figure 6.7  Voltage of phase A at the Chemawa end, comparison between tabulated and 

simplified source model with the FD model. 

6.5 Analysis of line parameters 

The simplified source model, and the FD model are used to produce the simulation results of this 

section. 
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6.5.1 Effect of the parallel lines 

The impact of parallel lines can be seen in Figure 6.8 where simulation results are provided for 

the voltage of phase A at the Chemawa end for Case 5-03 with and without parallel lines. 

Removing the parallel lines reduces the simulated peak overvoltage from 4.63 pu to 3.65 pu. The 

results are non-intuitive, where the parallel line modeling further increases the overvoltages. The 

impact is mainly due to the closely-coupled 230 kV line. The impact of parallel lines on 

switching transients is discussed in many references including [90].  
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Figure 6.8  Voltage of phase A at Chemawa end, effect of the parallel lines 

6.5.2 Refinements in ground resistivity, phase-to-ground conductance and 

skin effect correction 

The BPA expert on transmission line ground resistivity estimated that the values would fall 

between 50 and 200 Ω-m, where the higher values might occur in mountainous regions [89]. 

Rather than using the default 100 Ω-m for the entire Big Eddy-Chemawa line, the following 

values are proposed [89]: i) 100 Ω-m for the first 23 miles (section 1), ii) 200 Ω-m for the next 38 

miles (sections 2 to 4), and iii) 50 Ω-m for the remaining 55 miles (sections 5 to 9). 

Considering possible additional losses in the line system, the assumed phase-to-ground 

conductance of 
102 10−  S per unit length, is modified to 

81 10−  S. Additionally, a correction on 

skin effect is considered by including the thickness-of-aluminum/outside diameter-of-conductor 

data [89]. The simulation results are shown in Figure 6.9. The peak overvoltage reduces from 

4.63 pu to 4.53 pu with the additional considerations in the computation of line parameters, and it 

is not possible to match field measurements through these refinements. 
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Figure 6.9  Voltage of phase A at the Chemawa end, effect of model refinements 

6.5.3 Detailed source model 

To obtain more precise results in the simulations, instead of the simplified source models 

described in Section 6.3.4, a detailed model is used to perform the switching transient analysis of 

Case 5-03. The detailed system model includes all the surrounding elements in Figure 6.1 with 

detailed parameters taken from [89]. 

The Big Eddy-Chemawa and the parallel lines are modeled as shown in Figure 6.2, using the FD 

model for all the 10 sections. The trapped charge and the prestrike conditions are the same as 

described in Section 6.3.2, and 6.3.5, respectively. The simulated voltage of phase A at the 

Chemawa end is shown in Figure 6.10. It is noticed that there is not a significant difference 

between the simulation results obtained with detailed and simplified source models. 
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Figure 6.10  Voltage of phase A at the Chemawa end considering a detailed source model 
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6.5.4 Discussion on line parameters 

Several different approaches have been considered to reproduce the field data for Case 5-03. 

Simulation results show that various improvements such as refinements in ground resistivity and 

phase-to-ground conductance, correction on skin effect and the use of detailed source model have 

little impact on the transient voltage waveform. This implies that a phenomenon is present on the 

line that acts to reduce the switching surge magnitudes that hasn’t yet been included. Thus, the 

effect of corona is considered next. 

6.6 Inclusion of the corona effect in the line model  

Although considering the frequency dependence of line parameters without considering corona 

helped improve the simulation waveforms, it still overestimates the transients [57], [58], [87], 

[88]. Corona has a strong effect on wave propagation [58], [14]. 

In this paper, the Suliciu nonlinear corona model [63] and a linear model [61] are considered. The 

Suliciu model requires, in principle, the charge-voltage (Q-V) curve of the targeted transmission 

line, either obtained theoretically or by measurements. In addition, a specific EMT 

implementation is required for the solution of nonlinear equations and integration to the main 

solver of the EMT-type program [57].  

The linear model is a piece-wise linear model of a nonlinear one and can be easily realized on 

any EMT-type simulation platform using basic components, i.e., resistors, capacitors and diodes. 

But the model produces spike-like voltages at the breaking points of the linear curves, like those 

of an arrester and a nonlinear inductor, as is well-known. The model components can be 

numerically evaluated by the user once the corona parameters specific to the targeted line are 

specified (corona onset voltage and corona loss constants) [61]. 

6.6.1 Suliciu corona model 

For the inclusion of corona, the Big Eddy-Chemawa line, including the parallel lines, is divided 

into subsections of 0.6 miles long (approximately 1 km). The FD model is used for modeling 

each subsection. The Suliciu corona branch model [63] available in EMTP examples [57], is 

connected at each section as shown in Fig. 11. The corona branch model equations are described 
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in [63] and [57], and they are summarized in Appendix A to define the corona parameters. The 

numerical values of the parameters used in this paper are also given in the Appendix A. 

For the analysis of Case 5-03, the Big Eddy-Chemawa line is energized by: a) the tabulated 

source model as input source, and b) the simplified source model considering the prestrike 

conditions. Figure 6.12 presents the voltage of phase A at the Chemawa end considering 

approaches a), and b). It can be observed in Figure 6.12 that the simulation results are clearly 

better with the inclusion of corona. With the modeling approach a), a “chopping” condition is 

observed. The simplified source with prestrike modeling provides accurate results with a 

mismatch less than 0.01 pu in peak overvoltage (Figure 6.12). 
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Figure 6.11  Suliciu corona model (shunt branch) with FD model for each section 
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Figure 6.12  Voltage of phase A at the Chemawa end with the Suliciu corona model 

6.6.2 Linear corona model 

The corona model described in [61] is also considered in this work. This model consists of a 

piecewise linear approximation. According to [61], three straight lines are sufficient to 

approximate the nonlinear characteristic of a nonlinear corona model. Thus, the model used in 

this paper includes three linear RC parallel branches as detailed in the Appendix A.2. The 
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constants of the linear corona model used in this paper are defined in the Appendix A.2 together 

with the basic equations used to obtain them. 

Considering that the Big Eddy-Chemawa line is energized by the simplified source model, the 

voltage of phase A at the Chemawa bus is shown in Figure 6.13. The lines are divided into 0.6 

miles long sections in both models to model the corona effect. It can be observed in Figure 6.13 

that there is no significant difference between the two corona models. But as the simulation time 

gets longer, the linear corona model presents spikes as seen in Figure 6.14. Moreover, it requires 

careful tuning of the model parameters (corona onset voltages and loss constants) to match the 

pattern and peak. However, the Suliciu model is less sensitive to its parameters and it was even 

possible to obtain close results by using the example parameters for the 230-kV line in EMTP 

corona example. 
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Figure 6.13  Voltage of phase A at Chemawa end. Comparison of Sulicio and linear corona 

model 
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Figure 6.14  Voltage of phase A at the Chemawa end. Comparison of the Suliciu and Linear 

Corona models. 12ms (high resolution field data). 
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6.6.3 Longer simulation time 

Considering the simplified source model and the Suliciu corona model only, longer simulations 

were performed and compared with the field data. A 100 ms simulation is presented in Figure 

6.15 to show the steady-state solution after the switching transients have damped out. Figure 6.15 

shows that the simulation results match the field data with the inclusion of corona in the model 

and that the Suliciu corona model provides a stable steady-state result. The field data is available 

up to 66ms only. 
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Figure 6.15  Voltage of phase A at the Chemawa end including the Suliciu corona model for a 

100-ms simulation time 

6.7 Switching transient studies: other cases 

This section studies three additional cases, i.e., Case 5-02, Case 5-05, and Case 5-53. The relative 

energization angle, and the trapped charge values for these cases are already listed in Table 6.2. 

For the switching transient analysis of Case 5-02, Case 5-05, and Case 5-53, the test system of 

Figure 6.1 is modeled as described in Section 6.3. The corona effect is included by dividing the 

Big Eddy-Chemawa line into sections of 0.6 mi, considering only the Suliciu model. The Big 

Eddy-Chemawa line is energized by a simplified source model including the multiple prestrike 

conditions. For Case 5-02 and Case 5-05, the Big Eddy-Chemawa line is energized from the Big 

Eddy end (strong source), while for Case 5-53, it is energized from the Chemawa end (weak 

source). The switching times for all cases are shown in Table 6.5. Figure 6.16, Figure 6.17, and 

Figure 6.18 present simulation results for the cases 5-02, 5-05, and 5-53, respectively. In Figure 

6.16, the peak overvoltages are 2.69, 2.78 and 3.11 pu for measured, simulated with corona and 
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without corona waveforms, respectively. With the same order, the overvoltages in Figure 6.17 are 

2.86, 2.97 and 3.41 pu while in Figure 6.18 they are 2.65, 2.65 and 3.45 pu. It is observed that the 

match between simulation results and field measurements greatly improves with the inclusion of 

corona. In Figure 6.18 the phase presenting the highest overvoltage, i.e. phase C, is shown. 

0 1 2 3 4 5 6 7 8 9 10
-6

-4

-2

0

2

4

6

8
x 10

5

t (ms)

V
o

lt
a

g
e

 (
V

)

Suliciu corona model

Field data

Without corona model

 

Figure 6.16  Voltage of phase A at the Chemawa end. Case 5-02 
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Figure 6.17  Voltage of phase A at the Chemawa end. Case 5-05 
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Figure 6.18  Voltage of phase C at the Big Eddy end, Case 5-53 
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To get simple results for comparison with transient models, an additional single-phase case is 

also studied, i.e., Case 1-04. The test is performed on phase B. Trapped charge values for this test 

are: A-ph = -30.90 kV, B-ph = -171.9 kV and C-ph = -23.23 kV. For the switching transient 

analysis of Case 1-04, the test system of Figure 6.1 is modeled as described in Section 6.3. The 

Big Eddy-Chemawa line is energized by a simplified source model. The closing time is 18.86 ms. 

Figure 6.19 present simulation results for Case 1-04. In Figure 6.19, the peak overvoltages are 

2.66, 2.65 and 2.97 pu for measured, simulated with corona, and without corona waveforms, 

respectively. Similar than other cases, it is observed that the match between simulation results 

and field measurements greatly improves with the inclusion of corona. 
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Figure 6.19  Voltage of phase B at the Chemawa end, Case 1-04 

6.8 Conclusions 

For transmission lines without switching surge mitigation, high-speed reclosing results in 

significant switching overvoltages due to trapped charge on the line. With frequency-dependent 

line models and standard simulation techniques, the shapes of measured waveforms are 

reproduced well, but the peak overvoltages are considerably overestimated compared to actual 

field measurements. Variations in the numerous typical modeling parameters have shown to not 

solve the problem of higher simulated voltages. However, modeling corona on the switched line 

has proven to be the key for simulations to match the measurements. Corona, frequency 

dependence of line parameters and prestrike have been shown to be the most important factors in 

matching simulations to the field measured transients, both in terms of waveform pattern and 

magnitude, as presented here for a 230-kV line.  
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This work provides the utility industry with a needed breakthrough in simulation techniques for 

performing switching surge studies and obtaining realistic results. 

It is remarked that this work is not targeted toward the situations where switching surges are 

controlled to lower levels using surge arresters, closing resistors or where trapped charge is 

removed prior to closing. For those situations, the overvoltages are lower and EMT programs, 

using standard modeling techniques, are considerably more accurate. For the unique case of 

shunt-compensated lines, the high overvoltages can still occur where the reactor and 

accompanying surge arrester are on the same end of the line as the first breaker to reclose. 
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CHAPTER 7 STATISTICAL SIMULATIONS OF SWITCHING 

OVERVOLTAGES 

As seen in Chapter 6, switching overvoltages along transmission lines are higher during high-

speed reclosing due to trapped charge on the line. Chapter 6 is focused on highest measured 

overvoltages and what can be done to close the gap between measurements and simulations. It is 

demonstrated that even though the pattern of the transient voltage waveforms can be reproduced 

very well using frequency-dependent line models, the magnitude of the maximum overvoltage is 

significantly overestimated unless corona effect is included. In principle, once a line model is 

validated, it is possible to proceed with statistical simulation phase to identify the worst-case 

overvoltage, which is of utmost importance for transmission line and substation related issues 

such as the evaluation of minimum approach distance and clearance practices [89], [64].  

The objective of the research work presented in this chapter is to perform statistical simulations 

to determine the worst-overvoltage scenario at the receiving end of a line with a trapped charge 

during high-speed reclosing. There are multiple prestrikes during the tests reported in [64], and 

they are different for each phase. In Chapter 6, the prestrike times are determined from the 

voltage and current measurements and modeled by a set of ideal switches. Nevertheless, for 

statistical studies, the switching times must be calculated in a such way that the prestrike 

conditions are automatically reproduced in the simulation model. The recorded waveforms of 

voltages and currents in [64] provide a significant amount of prestrike data, which allows to 

determine the voltage versus time characteristic (dielectric slope) for the breaker. The breaker 

model used in this chapter includes the dielectric slope characteristic given in [64] to enable the 

breaker conduction when its voltage withstand is reached. When the breaker is closing, if the 

voltage at the terminal of the breaker reaches the envelope of the voltage withstand, the gap is 

closed and opened again when the current crosses zero. 

The simulation strategy used in this chapter is explained as follows. First, the breaker closing 

times of the three phases are systematically varied over a complete 60 Hz cycle to obtain a 

uniform distribution of overvoltage. The dielectric slope characteristic is used to represent the 

typical prestrike conditions at each simulation. Once the mean time with the highest overvoltage 

is found, i.e., the switching time that produces the highest overvoltage, a statistical study is 

followed. In the subsequent set of simulations, the switching (closing) times for the three phases 
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are calculated by a Gaussian law, using the previously found mean time value as reference. It is 

noted that, although the dielectric slope characteristic of the breaker contacts can be used to 

represent the prestrike conditions, the actual prestrike events may occur very randomly. To 

represent the highly statistical nature of this phenomenon, an additional set of simulations is 

performed where the prestrikes times are also estimated by the Gaussian law. 

The modeling guidelines presented in Chapter 6 are used in this chapter; however, for running the 

statistical simulations, the corona model is not included to save CPU time. The simulation with 

the highest overvoltage is compared afterwards with the one obtained by including corona. 

7.1 Simulation model 

7.1.1 Big Eddy-Chemawa system model 

For the statistical studies performed in this chapter, the test system of Figure 6.1 is modeled 

considering the following conditions (see modeling guidelines outlined in Chapter 6): 

➢ The Big Eddy-Chemawa line is modeled together with the three parallel lines (see Figure 

6.2) using the FD line model. 

➢ The surrounding system connected to the Big Eddy-Chemawa line and its parallel lines is 

represented by simplified equivalent source models (see Figure 6.4). 

➢ Filters and capacitor banks are modeled with equivalent circuits (see Figure 6.3). 

➢ A DC voltage source is connected to the line to account for the trapped charge. The 

source is disconnected at the instant when the switching transients are triggered. 

7.1.2 Prestrike model 

A significant amount of prestrike data has been obtained from the recorded waveforms of 

voltages and currents in [64]. The prestrike voltage versus relative prestrike time for each phase 

of the Big Eddy breaker is shown in Figure 7.1. Linear regression is used to determine the 

voltage versus time characteristic. It is observed in Figure 7.1 the decreasing dielectric strength of 

the breaker contacts, as they are closing. 

It is reported in [64] that the Big Eddy breaker is constructed with each phase in its own tank, and 

the maximum closing time difference between the phases (or ''pole span") is approximately 3.7 
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ms. This pole span is determined by taking the difference in time in which the prestrike 

characteristic of each phase crosses zero voltage [64]. The zero-voltage point is where the breaker 

contacts are connected metal-to-metal [64]. 

To represent the dielectric strength of the breaker contacts of Figure 7.1, the model of Figure 7.2 

is used. This model enables the breaker conduction when its voltage withstand is reached. When 

the breaker is closing, if the voltage at the terminal of the breaker reaches the envelope of the 

voltage withstand (see closing part in Figure 7.2), the gap is closed and opened again when the 

current goes below zero. In Figure 7.2, cu  represents the maximum value of the withstand 

voltage of the circuit breaker reached at 3t . 

 

Figure 7.1  Big Eddy breaker dielectric slopes based on prestrike data during closing 
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Figure 7.2 Prestrike modeling in EMTP 

 



95 

 

7.2 Simulation results 

7.2.1 Single simulation with fixed closing times 

For the initial switching transient analysis, the three phases of the Big Eddy-Chemawa line are 

energized from the Big Eddy bus at 1.18 ms (see the Case 5-03 in Chapter 6). The Big Eddy 

Chemawa system is modeled considering the guidelines listed in section 7.1, and the prestrike 

conditions are represented using the model of Figure 7.2. In the following simulations, the linear 

slope of phase A in Figure 7.1 is considered, where 3 8t = ms and 437cu =  kV. Figure 7.3 shows 

the 2-parameter envelope obtained in the EMTP simulation. It is observed the decreasing 

dielectric strength of the breaker contacts, as they are closing, i.e. from 1.18 ms to 9.18 ms.  
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Figure 7.3  Big Eddy breaker dielectric slope of phase A 

Figure 7.4 shows the voltages at the Big Eddy. It is observed that several prestrikes appear over 

the three phases. The maximum overvoltage, i.e., 514.618 kV or 2.73 pu, occurs during the first 

one. Figure 7.5 shows the voltage at the receiving end of the line, i.e. Chemawa end. It is 

observed that the maximum overvoltage occurs on phase A, i.e. 852.126 kV or 4.53 pu. 

It is demonstrated in Chapter 6 that even though the pattern of the transient voltage waveforms is 

reproduced very well using frequency-dependent line models, the magnitude of the maximum 

overvoltage is significantly overestimated unless the effect of corona is considered. Therefore, 

the simulation of Figure 7.5 is repeated considering the corona effect included in the line model. 

Figure 7.6 shows the simulation results of voltage of phase A at Chemawa end obtained including 

the Suliciu corona model. It is observed that the magnitude of the results is effectively reduced 
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compared with the simulation obtained without corona. The maximum overvoltage obtained with 

corona is of 3.05 pu, only 0.02 pu greater than the one calculated in Chapter 6, i.e. 3.03 pu. 

0 5 10 15

-4

-2

0

2

4

6
x 10

5

min: -499066.1614  max: 268286.4249

min: -369422.5551  max: 369570.8205

min: -234500.0043  max: 514618.7083

t (ms)

V
o
lt
a
g
e
 (

V
)

 

 

phase A

phase B

phase C

 

Figure 7.4  Voltages at Big Eddy end 
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Figure 7.5  Voltages at Chemawa end 
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Figure 7.6  Voltage of phase A at Chemawa end 
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7.2.2 Simulations with systematic closing times over a complete cycle  

In this test, the Big Eddy breaker closing times of the three phases are uniformly varied over a 

complete 60 Hz cycle by increments of 1 electrical degree, i.e. 1/360 cycles. The prestrike 

conditions are represented using the model of Figure 7.2 at each simulation. Figure 7.7 shows the 

closing times. The purpose of this test is to obtain a statistical distribution of overvoltage and to 

determine the instant when the highest overvoltage occurs. Figure 7.8 and Figure 7.9 show 

respectively the maximum and minimum overvoltage values obtained at Chemawa end. The 

maximum overvoltage, 4.79 pu, is obtained in the simulation 5 (after 5/360 cycle), i.e. at 1.585 

ms, while the minimum values, -4.2 pu, is obtained in the simulation 2 (after 2/360 cycle), i.e. at 

1.446 ms. Figure 7.10 shows the time domain results of the voltage at Chemawa of the simulation 

5. Figure 7.11 compares the waveform of phase A with the results obtained by including corona 

in the model. It is observed that the maximum overvoltage value in the simulation with corona is 

2.99 pu. It is noted that the maximum overvoltage recorded in the tests of [64] is of 3.01 pu. 
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Figure 7.7  Systematic switching times 

 

Figure 7.8  Maximum overvoltages from 360 simulations 
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Figure 7.9  Minimum overvoltages from 360 simulations 

0 2 4 6 8 10 12
-1

-0.5

0

0.5

1
x 10

6

min: -602749.1147  max: 430681.1155

min: -402477.9092  max: 504124.9316

min: -608840.8085  max: 900974.1812

t (ms)

V
o
lt
a

g
e
 (

V
)

 

 

phase A

phase B

phase C

 

Figure 7.10  Voltages at Chemawa end, simulation 5 
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Figure 7.11  Voltage of phase A at Chemawa end, simulation 5 

7.2.3 Simulations with random closing times 

The simulation results of the previous section provide the switching time value for obtaining the 

highest overvoltage over a complete 60 Hz cycle, i.e., 1.585 ms. This switching time is used as a 
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mean time value   in the following statistical study. In the new set of simulations, the three 

phases are not closed simultaneously. The closing times for the three phases are found by a 

Gaussian law considering the mean time   as reference (see Figure 7.12). It is reported in [64] 

that the maximum closing time difference between the phases in the Big Eddy breaker is 

approximately 3.7 ms, i.e. the pole span. Thus, the standard deviation   used in the simulations 

of this section is set to 0.6 ms. For this test, the total number of simulations is 300. The prestrike 

conditions are represented using the model of Figure 7.2 at each simulation. The cumulative 

distribution of random switching data is presented in Figure 7.13 (phase A). The calculated mean 

and standard deviation are shown on the top of the graph (see Figure 7.13). 
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Figure 7.12  Gaussian distribution 
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Figure 7.13  Cumulative distribution function 

Figure 7.14 shows the results of the maximum overvoltage values obtained at Chemawa end. The 

maximum overvoltage is obtained in the simulation 146, i.e. 4.79 pu. The switching times of the 

three phases in the simulation are: 1.446at =  ms, 2.286bt =  ms and 1.311ct =  ms. Figure 7.15 

shows the corresponding waveforms of the voltage at Chemawa end. Figure 7.16 compares the 

waveform of phase A with the results obtained by including corona in the model. The maximum 

overvoltage value in the simulation with corona is of 2.99 pu. 
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Figure 7.14  Maximum overvoltages from 300 simulations 
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Figure 7.15  Voltages at Chemawa end, simulation 146 
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Figure 7.16  Voltage of phase A at Chemawa end, simulation 146 

Although the maximum overvoltage occurs in simulation 146 (Figure 7.14), it is observed that 

there are other values that are frequently repeated. Figure 7.17 shows the maximum values 

observed in Figure 7.14. Figure 7.18 presents the histogram of Figure 7.14. It is observed in 

Figure 7.18 that the value 4.52 appears 25 times (e.g. in simulation 66), while the maximum 
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value, i.e. 4.79 pu, appears only once. The switching times of the three phases in simulation 66 

are: 1.446at =  ms, 2.286bt =  ms and 1.311ct =  ms. Figure 7.19 shows the waveforms of 

voltage at Chemawa end. Figure 7.20 compares the waveform of phase A with the results 

obtained by including corona in the model. The maximum overvoltage in the simulation with 

corona is of 2.99 pu. 

 

Figure 7.17  Maximum values obtained in Figure 7.14 
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Figure 7.18  Histogram of Figure 7.17 
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Figure 7.19  Voltages at Chemawa end, simulation 66 
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Figure 7.20  Voltage of phase A at Chemawa end, simulation 66 

Finally, Figure 7.21 shows the results of the minimum overvoltage values obtained at Chemawa 

end. The minimum overvoltage is found on phase C in the simulation 32, i.e. -4.53 pu. The 

switching times of the three phases are: 0.1443at =  ms, 0.8577bt =  ms and 2.705ct =  ms. 

Figure 7.22 shows the time domain results of the voltage at Chemawa end. Figure 7.23 compares 

the waveform of phase C with the results obtained by including corona in the model. The 

minimum overvoltage value in the simulation with corona is of -2.89 pu. 

 

Figure 7.21  Minimum overvoltages values from 300 simulations 
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Figure 7.22  Voltages at Chemawa end, simulation 32 
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Figure 7.23  Voltage of phase C at Chemawa end, simulation 32 

7.2.4 Simulations with random prestrike times  

Although the dielectric slope characteristic of the breaker contacts can be used to represent the 

prestrike conditions, the actual prestrike times may be very random. To represent the highly 

statistical nature of this phenomenon, a new set of 300 simulations is performed, where the 

prestrike times are determined by the Gaussian law. Since the maximum overvoltage occurs 

during the first prestrike, only one prestrike event is modeled in this test. Figure 7.24 shows the 

selections in the switching model used in EMTP. Following the sequence of the switching events, 

SW4 stands for the first closing time, SW5 stands for opening time, and SW6 stands for the final 

closing time. The mean and standard deviation values are selected based on the analysis of 

prestrike data available from [64]. 
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Figure 7.24  Prestrike model with random times 

Figure 7.25 shows the cumulative distribution for the switches SW4, SW5 and SW6. The 

calculated mean and standard deviation values are shown on the top of the graph. Figure 7.26 

shows the calculated times (tstat) and the actual event times (tstat-real) of phase B in SW5. It is 

observed that some timings do not coincide since the actual (real) opening is occurring on current 

crossing zero. This means that there are some of the simulations where the switch does not open 

within the simulation interval, i.e. there is no prestrike on phase B in those simulations.  

Switch Condition Dependency 
Mean value 

μ (ms) 

Standard 

deviation σ (ms) 

SW4 Closing  Master 1.585 0.60 

SW5 Opening Slave SW4 0.450 0.10 

SW6 Closing  Slave SW5 0.700 0.23 
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Figure 7.25  Cumulative distribution function 

0 50 100 150 200 250 300
0

1

2

3

4

5
x 10

-3

Simulation number

T
im

e
 (

s
)

 

 

t
stat

t
stat-real

 

Figure 7.26  Comparison of the statistical and real switching times of phase B 

Figure 7.27 shows the results of the maximum overvoltage values obtained at Chemawa end. 

Figure 7.28 shows the maximum values obtained in Figure 7.27. It is observed that the maximum 

value, 4.78 pu, occurs in simulation 246. The sequence of switching times is listed in Table 7.1. 

Figure 7.29 shows the time-domain results of the voltage at Chemawa of simulation 246. Figure 

7.30 compares the waveform of phase A with the results obtained by including corona in the 

model. The maximum overvoltage value in the simulation with corona is 2.98 pu. 

 

Figure 7.27  Maximum overvoltages values from 300 simulations 
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Figure 7.28  Maximum values obtained in Figure 7.27 

Table 7.1  Sequence of switching events in simulation 246 

Phase Closes (ms) Opens (ms) Closes (ms) 

A 1.442 2.711 3.466 

B 1.555 1.897 3.551 

C 2.017 3.383 3.906 
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Figure 7.29  Voltages at Chemawa end, simulation 246 
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Figure 7.30  Voltage of phase A at Chemawa end, simulation 246 
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Finally, Figure 7.31 shows the results of the minimum overvoltage values obtained at Chemawa 

end. The minimum overvoltage is obtained on phase C in the simulation 152, i.e. -4.75 pu. The 

sequence of switching times is listed in Table 7.2. Figure 7.32 shows the time-domain results of 

the voltage at Chemawa end. Figure 7.33 compares the waveform of phase C with the results 

obtained by including corona in the model. The minimum overvoltage value in the simulation 

with corona is of -3.12 pu. 

 

Figure 7.31  Minimum overvoltages values from 300 simulations 

Table 7.2  Sequence of switching events in simulation 152 

Phase Closes (ms) Opens (ms) Closes (ms) 

A 1.100 2.362 2.790 

B 2.082 2.743 4.299 

C 2.825 4.167 4.851 
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Figure 7.32  Voltages at Chemawa end, simulation 152 
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Figure 7.33  Voltage of phase C at Chemawa end, simulation 152 

7.2.5 Summary of results 

Table 7.3 shows the summary of results obtained in this chapter. For comparison purposes, Test 3 

is repeated using 500 simulations. It is observed that identical values are obtained in all the tests. 

It is noted that the maximum overvoltage recorded in the field data in [64] is of 3.01 pu. 

Table 7.3  Summary of results 

Test Closing times Prestrike model 
Number of 

simulations 

Maximum overvoltage (pu) 

Without 

corona 

With 

corona 

1 
Varied uniformly over 

a complete cycle 

Deterministic 

(linear slope) 
360 4.79 2.99 

2 
Varied randomly 

(Gaussian law) 

Deterministic 

(linear slope) 
300 4.79 2.99 

3 
Varied randomly 

(Gaussian law) 

Random 

(Gaussian law) 
300 4.78 2.98 

4 
Varied randomly 

(Gaussian law) 

Random 

(Gaussian law) 
500 4.78 2.98 

7.3 Conclusions 

This chapter presents a statistical study to determine the worst overvoltage at the receiving end of 

a line with a trapped charge during high-speed reclosing. For the statistical simulations, the 

voltage versus time characteristic (dielectric slope) for the breaker is automatically represented. 

The utilized model enables the breaker conduction when its voltage withstand is reached. When 

the breaker is closing, if the voltage at the terminal of the breaker reaches the envelope of the 

voltage withstand, the gap is closed and opened again when the current crosses zero.  
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The simulation tests performed in this chapter are summarized as follows. First, the breaker 

closing times of the three phases are systematically varied over a complete 60 Hz cycle to obtain 

a uniform distribution of overvoltage. Once the simulation with the highest overvoltage is found, 

a subsequent set of simulations is performed, where the closing times for the three phases are 

calculated by a Gaussian law. Moreover, to represent the highly statistical nature of prestrike 

phenomenon, an additional set of simulations is performed where the prestrike times are also 

determined by the Gaussian law. 

For running the statistical simulations, the corona model is not included. However, the simulation 

with the highest overvoltage is compared afterwards with the one obtained by including corona. 

Simulations results demonstrate that the estimated maximum overvoltage shows a good 

agreement with the one recorded in the field tests. 
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CHAPTER 8 CONCLUSION 

8.1 Summary of thesis 

The main objective of this thesis is to investigate the modeling practice required to obtain more 

accurate and faster time-domain simulations using frequency-dependent line and cable models. 

The most important contributions of this PhD project are summarized as follows. 

Review of current models 

Various cases of study have been used to evaluate the performance of the most common line 

models in time-domain simulations. It is verified that phase-domain based models provide highly 

accurate results for the simulation of coupling effects between parallel conductors, compared to 

modal-domain based models. The drawbacks of phase-domain models are numerical instability 

issues due to the presence of high residue pole ratios and inaccurate phase-domain fitting 

procedures, and they have been demonstrated through the simulation of practical cases. 

Improved identification procedure for the propagation function in cables 

This thesis proposes an improved fitting procedure for the accurate identification of the 

propagation function of cables while maintaining reduced order of approximation. In the 

proposed method, frequency-domain partitioning and adaptive weighting techniques are directly 

applied in the phase domain for the identification of poles and residues simultaneously. This 

procedure ensures the fitting precision of all entries including the low-magnitude off-diagonal 

elements. The order of approximation is reduced by post-processing the fitting using the balanced 

realization technique. It is demonstrated that when the proposed methodology is combined with 

more precise integration schemes allows obtaining more accurate time-domain simulations, 

especially for induced voltages. In addition, the proposed method complements the prevailing 

ULM by eliminating spurious oscillations or numerical instabilities due to opposing high residue 

pole pairs coming from different but close delay groups regardless of the integration scheme. 

Improved DC response 

To improve the DC response in transmission lines, this thesis proposes a two-stage fitting method 

in which low frequency samples are given priority. The fitting is performed in a two-stage 

fashion ensuring precise fitting primarily at frequencies near DC. This method also complements 
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the prevailing universal line model by avoiding pairs with large residue pole ratios, and by 

improving the computation of DC steady-state waveforms when necessary.  

Adaptive line model 

To increase the speed of simulations, this thesis presents an adaptive transmission line model 

based on switching between WB and CP models. The WB model is used during a transient where 

detailed models are required whereas the CP model is used in steady-state. The switching 

between the two models is performed by modifying the terms of the history current vectors and 

their corresponding elements in the nodal admittance matrix during the simulation. The proposed 

model includes an algorithm that enables the automatic setting of the line model throughout the 

simulation. Numerical results have shown that the proposed adaptive model provides faster 

simulations than the one from the WB model without significant loss of accuracy. 

Validation of line models with field test 

One more contribution of this thesis is to validate transmission line model with field test and to 

understand the major factors implied in reproducing field measurements using simulations. It is 

demonstrated that even though the pattern of the transient voltage waveforms is reproduced very 

well using frequency-dependent line models, simulations results are significantly overestimated 

unless the effect of corona is included. Two types of corona models have been tested and both 

models have demonstrated that corona is the primary factor that allows the simulations to 

correctly reproduce field measurements, as presented in this thesis for a 230-kV line. It is 

remarked that for the conventional situations where switching surges are controlled to lower 

levels using surge arresters, closing resistors or where trapped charge is removed prior to closing, 

EMT-type programs using standard modeling techniques, are considerably more accurate.  

Statistical switching overvoltages 

Once a line model is validated it is possible to proceed with statistical simulation phase to 

identify the worst-case overvoltage. For the statistical simulations, the voltage versus time 

characteristic (dielectric slope) for the breaker has been represented either by a linear slope or by 

random switching times calculated by the Gaussian law. For running the statistical simulations, 

the corona model is not included. However, the simulation results are compared afterwards with 

the ones obtained by including corona. Numerical results have shown that the difference between 

the calculated maximum overvoltage and the one from measurements is 0.02 pu. 
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8.2 List of publications 

The following is a list of journal and conference articles that originated from this Ph.D. project. 

Journal publications 

1) M. Cervantes, I. Kocar, J. Mahseredjian and A. Ramirez "Accurate and Reduced 

Order Identification of Propagation Function for Electromagnetic Transient 

Analysis of Cables," IEEE Trans. on Power Del., (Early Access Article), 2019. 

2) M. Cervantes, I. Kocar, J. Mahseredjian and A. Ramirez "Partitioned Fitting and DC 

Correction for the Simulation of Electromagnetic Transients in Transmission 

Lines/Cables," IEEE Trans. on Power Del., vol. 33, pp. 3246-3248, 2018. 

3) M. Cervantes, I. Kocar, A. Montenegro, D. Goldsworthy, T. Tobin, J. Mahseredjian, R. 

Ramos, J. Marti, T. Noda, A. Ametani, and C. Martin, "Simulation of Switching 
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2884-2893, Dec 2018.  
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1) M. Cervantes, I. Kocar, J. Mahseredjian and A. Ramirez “Partitioned Fitting and DC 

Correction in Transmission Line/Cable Models”, International Conference on Power 

Systems Transients (IPST’2019), June 2019, Perpignan, France. 
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Electromagnetic Transients Analysis”, The papers of technical meeting on high voltage 

engineering, IEE Japan (IEEJ-HV), paper HV-18-92, August 2018, Montreal, Canada. 

3) A. Ametani, H. Xue, M. Cervantes, I. Kocar, T. Noda “A Study on the Effect of a 

Source Circuit on Switching Surges”, The papers of technical meeting on high voltage 

engineering, IEE Japan (IEEJ-HV), paper HV-18-7, January 2018, Japan. 

4) M. Cervantes, “Adaptive Transmission Line/Cable Models for the Simulation of 

Electromagnetic Transients”, 11th International Symposium on EMC and Transients in 

Infrastructures and 13th International Student Session (ISET-ISS’2017), paper ISET-04, 

Kyoto, Japan. 
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8.3 Future work 

Considering the general scope of this thesis, which is based on electromagnetics transient 

simulations using frequency-dependent line/cable models, possible developments are as follows. 

Further improvements of fitting procedures 

The two fitting procedures proposed in Chapter 3 have been applied separately, i.e. to improve 

either transient simulations (applying WFP-MOR) or DC response (applying FDM/DC). 

Therefore, a further investigation would be the application of both techniques together to achieve 

better performance and to further improve fitting precision. 

Improvements of the adaptive line model 

The proposed adaptive method enables the automatic setting of the line model, i.e. switching 

between WB and CP models, along the simulation. However, the proposed techniques have been 

implemented to simulate a simple network. Therefore, further implementation improvements are 

required to apply the proposed adaptive model in multi-scale networks. In addition, initialisation 

with harmonics could be also investigated. 
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APPENDIX A   CONSTANT PARAMETER LINE MODEL DETAILS 

The CP model neglects the frequency dependence of line parameters, i.e. Z  and Y , and assumes 

a lossless line. The lumped resistances can be inserted throughout the line by dividing its total 

length into several sections [3]. In this thesis, the losses are modeled by dividing the line into two 

separate lossless lines of halved equal propagation time and distributing the total line resistance 

R  [3], see Figure A.1. 

R/2

cZ cZkI

kV mV

mI

2τ 2τ4R 4R

 

Figure A.1  Inclusion of losses in the CP line model 

A.1 Single-phase line 

Considering the CP model of Figure A.1 for a single-phase line, the line equations are expressed 

in the time domain as [3]: 

 ( ) ( )
kk k histi t Gv t i= −   (A.1) 

 ( ) ( )
mm m histi t Gv t i= −   (A.2) 

where ( )1 4cG Z R= + , and the history current sources are given by 

 ( ) ( ) ( ) ( )1 2 3 2khist m m k ki K v t K i t K v t K i t   = − + − + − + −         (A.3) 

 ( ) ( ) ( ) ( )1 2 3 2mhist k k m mi K v t K i t K v t K i t   = − + − + − + −         (A.4) 

where ( )
2

1 4c cK Z Z R= + , ( )2 4cK Z R= − , and ( ) ( )
2

3 4 4cK R Z R= + , and the time delay 

  and characteristic impedance cZ  are give by: 

 l LC =   (A.5) 

 cZ L C=   (A.6) 

where l  is the length of the line, and L  and C  are the per unit length series inductance and shunt 

capacitance of the line, respectively. 
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A.2 Multiphase line  

For the multiphase case, the line equations are solved through a modal transformation, i.e. the 

multiphase line is transformed into a decoupled set of modal circuits. Any given mode has its 

own time delay and characteristic impedance. For an untransposed line there are as many distinct 

modes as phases. The model of (A.1) and (A.2) is now expressed in the modal domain as: 

 ( ) ( )t t   = −
kk k histi G v i   (A.7) 

 ( ) ( )t t   = −
mm m histi G v i   (A.8) 

where primed variables denote modal quantities. Once the system of (A.7) and (A.8) is solved for 

every mode, the modal solution is transformed back to the phase domain. The CP model uses a 

real and constant transformation matrix iT  calculated at high frequencies. The time-domain CP 

model is depicted in Figure A.2, with 

 t=CP i iG TG T   (A.9) 

 ( ) ( ) ( ) ( ) t t t t           = − + − + − + −      khist i 1 m 2 m 3 k 2 ki T K v τ K i τ K v τ K i τ   (A.10) 

 ( ) ( ) ( ) ( ) t t t t           = − + − + − + −      mhist i 1 k 2 k 3 m 2 mi T K v τ K i τ K v τ K i τ   (A.11) 
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 ( )4  = −2 cK Z R   (A.13) 
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Figure A.2  CP equivalent circuit 
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APPENDIX B   CORONA MODEL DETAILS 

B.1 Suliciu corona model 

Considering that x  is the radius of a cylinder on which space charge is concentrated when 

conductor voltage falls to zero, then for a multiphase system: 

 1 1− −= +0 x x r cV C C V C Q   (B.1) 

 1−= +0 0 x cQ C V C C Q   (B.2) 

where V  is the line end (or section end) voltage, xV  is the voltage inside the cylinder, Q  is the 

total line charge, rC  is the capacitance of the cylinder to ground, xC  is the capacitance of the 

line conductor to cylinder boundary, cQ  is the corona charge inside the cylinder and 0C  is the 

geometric capacitance of the line [63]. Next, the corona charge is given by: 

 1−=cor 0 x cQ C C Q   (B.3) 

and the corona branch current is found from: 

 1−=cor 0 x cI C C I   (B.4) 

where cI  is the corona current vector inside the cylinder and its members can be found from the 

Suliciu equation [63]: 
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2 1 2

1 2 1
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3 4 3

0 if 0 state 6

if 0 state 2 0

if 0 state 1

0 if 0 state 5

if 0 state 4 0
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c c
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g g g V

g g gd
i q

dt g

g g g V

g g g
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

  
 +  

= = 
 

   
 +  

  (B.5) 

 ( )( )       1 4j j j x x j cg k c c v v q j = − − − =
 

  (B.6) 

where jk , jc  and jv  are model parameters, xc  xC , and xv  xV . The Suliciu model parameters 

used in this thesis are given in Table B.1. They are tuned by using the field measurements. 
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Negative and positive sides of the Q-V curve are taken symmetrical and phase-to-phase corona is 

not considered. 

Table B.1  Suliciu model parameters 

Sections 1 - 4 5 - 9 

Cx (pF/m) 8.4 8 

 1 2 3 4 1 2 3 4 

k (Hz) 1e5 0.1 1e5 0.1 1e5 0.1 1e5 0.1 

c (pF/m) 22 35 22 35 30 35 30 35 

v (kV) 400 230 -400 -230 380 230 -380 -230 

 

B.2 Linear corona model 

The linear corona model used in this paper includes three linear RC parallel branches as shown in 

Figure B.1. The parameters are computed as follows [61]: 

 1 2 3,       2 ,        3co co coV V V V V V= = =   (B.7) 

where coV  is the corona onset voltage in kV defined by 

 ( )
5 2

1 1 sin
3

co

nr r
V n

C s n

  
= + −   

  
  (B.8) 

where C  is the line charging capacitance in µF/km, n  the number of bundles of a conductor, r  

the bundle radius in cm, and s  the separation distance of the bundles in cm, 

 

2

1 co
k g

co k

V
G k x

V V

 
= −  

+ 
  (B.9) 

 2 1 co
k c

co k

V
C k x

V V

 
= −  

+ 
  (B.10) 

where kG  is a linear conductance in S, kC  is a linear capacitance in F, kV  represents the DC 

voltage source ( 1,2,3k = ), x  is the separation distance of the corona models in m and, 

 1110
2

g g

a
k

h
 −=    (B.11) 
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 1110
2

c c

a
k

h
 −=    (B.12) 

where a  is the conductor radius in m, h  is the conductor height in m, g  and c  are the corona 

loss constants in S/m and F/m. The corona loss constants and onset voltages used in this thesis 

are given in Table B.2. They are obtained by using the field measurements. Only the positive side 

of the Q-V curve is considered as the overvoltages in this work are on that side. 

One of the drawbacks of this model is the fact that the parameters g  and c  are empirically 

established, and they cannot be easily applied to situations for which experimental results are not 

available [91]. However, it should be remarked that corona phenomena itself is highly statistical. 

Big Eddy – Chemawa

Phase a

1C 2C 3C1G 2G 3G

1D
2D 3D

1V 2V 3V
 

Figure B.1  Linear corona model of phase A inserted after each section 

Table B.2  Linear corona model parameters 

Section coV  (kV) g   (106 S/m) c  (F/m) 

1 405 0.13 20.6 

2-4 402 0.13 23 

5-9 375 0.13 33 

 

 

 

 

 


