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RÉSUMÉ

Dans cette thèse nous proposons un ensemble de contributions originales sous la forme de
trois articles relatifs aux réseaux de neurones profonds réels et complexes. Nous abordons
à la fois des problèmes théoriques et pratiques liés à leur apprentissage. Les trois articles
traitent des méthodes conçues pour apporter des solutions aux problèmes de l’instabilité
observée au cours de l’entrainement des réseaux, notamment le problème notoire de dilution
et d’explosion des gradients ou «vanishing and exploding gradients » lors de l’entrainement
des réseaux de neurones profonds.

Nous proposons dans un premier temps la conception de modules d’entrainement appropriés,
désignés par «building blocks», pour les réseaux de neurones profonds à valeurs complexes.
Notre proposition comporte des méthodes d’initialisation et de normalisation ainsi que des
fonctions d’activation des unités neuronales. Les modules conçus sont par la suite utilisés pour
la spécification d’architectures profondes à valeurs complexes dédiées à accomplir diverses
tâches. Ceci comprend des tâches de vision par ordinateur, de transcription musicale, de
prédiction du spectre de la parole, d’extraction des signaux et de séparation des sources audio.
Finalement nous procédons à une analyse détaillée de l’utilité de l’hypothèse contraignante
d’orthogonalité généralement adoptée pour le paramétrage de la matrice de transition à
travers les couches des réseaux de neurones réels récurrents.

Tout au long de ce manuscrit, nous montrons l’utilité des méthodes que nous proposons dans
le contexte des défis et objectifs annoncés. Nous donnons ci-dessous un résumé de chaque
article séparément.

Actuellement, la grande majorité des «building blocks» qui contiennent des techniques et des
architectures destinées à l’apprentissage des réseaux neuronaux profonds reposent essentiel-
lement sur des calculs et des représentations à valeurs réelles. Cependant, les représentations
basées sur des nombres complexes ont commencé récemment à faire l’objet d’une attention
particulière. Malgré leurs propriétés probantes, les réseaux profonds à valeurs complexes ont
été négligés pendant un certain temps en raison de l’absence de «building blocks» nécessaires
à leur entrainement. L’absence d’un tel cadre indique une lacune notable dans l’outillage de
l’apprentissage profond.

Le premier article vise à combler cette lacune en fournissant une nouvelle représentation
des réseaux de neurones complexes profonds et des méthodes d’apprentissage qui vont bien
au-delà d’une simple généralisation théorique du cas réel. Plus spécifiquement, les éléments
clés des réseaux de neurones profonds à valeurs complexes sont développés et appliqués aux



vi

réseaux à retransmission «feed-forward» convolutionnels et aux réseaux à mémoires courte
et longue «LSTM» convolutionnels. Des convolutions à valeurs complexes et de nouveaux
algorithmes pour la méthode de normalisation complexe par batch «Batch Normalization» et
des stratégies d’initialisation de poids complexes constituent le fondement du cadre proposé.
Les résultats d’une expérimentation intensive comportant des schémas d’entrainement de
bout en bout, consolident notre cadre théorique. En effet, dans les cas étudiés, ces «Building
Blocks» ont permis d’éviter des problèmes numériques ardus. Par ailleurs ils ont permis lors
de l’entrainement d’apprendre des tâches multiples correspondant à des inputs aussi bien
réels qu’intrinsèquement complexes.

Nous avons testé la performance des modèles profonds pour l’apprentissage des tâches de
vision par ordinateur, de transcription musicale à l’aide du jeu de données MusicNet et de
prédiction du spectre de la parole à l’aide du jeu de données TIMIT. Nous avons enregistré
des résultats compétitifs aux réseaux réels pour les tâches de vision et réalisé l’état-de-l’ art
pour les tâches audio.

Le second article est une extension qui s’appuie sur les développements étayés dans le pre-
mier article et propose un nouveau pipeline «Deep Separator ou Deep Pitcher» pour l’extrac-
tion des signaux et la séparation automatique des sources cachées dans des environnements
brouillés. Les représentations utilisent le domaine fréquentiel. Le «Deep Separator» est une
nouvelle méthode de masquage basée sur une version complexe d’une modulation linéaire des
inputs «Feature-wise Linear Modulation ou FiLM». Cette nouvelle méthode de masquage est
la clé de voûte de notre architecture pour la récupération de l’information et la séparation
des sources. Nous proposons également une nouvelle fonction de perte explicitement liée à la
phase, qui est invariante en amplitude et par translation, prenant en compte les composantes
complexes du spectrogramme. Nous la comparons par la suite à plusieurs autres fonctions de
pertes définies dans les domaines temporel et fréquentiel. Les résultats expérimentaux sur les
données du corpus standard de «Wall Street Journal» démontrent l’efficacité des séparateurs
complexes profonds et illustrent le potentiel des réseaux complexes profonds à améliorer la
performance lors de l’exécution des tâches de séparation des sources audio.

Le troisième article est une étude des problèmes liés à la nature des matrices orthogonales
souvent employées pour faciliter l’apprentissage des réseaux de neurones réels récurrents et
profonds. Les matrices de transition unitaires et les contraintes d’orthogonalité constituent
une solution appropriée au problème de «vanishing gradients» observé notamment dans les
réseaux neuronaux récurrents profonds. Néanmoins, l’application de contraintes strictes im-
plique des coûts prohibitifs au niveau computationnel. Ces contraintes s’avèrent même obso-
lètes pour des tâches comme celles relatives au traitement du langage naturel.
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Notre troisième article vise à évaluer l’utilité de la contrainte d’orthogonalité en contrôlant
l’ampleur de l’écart de la matrice de transition par rapport à la variété de transformations
orthogonales, et en mesurant la performance de généralisation du réseau de neurones récurrent
qui lui est associé. Nous avons constaté que les contraintes strictes d’orthogonalité limitent
la capacité de représentation du modèle entretenu, détériorent sa performance et ralentissent
la vitesse de convergence du processus d’optimisation. Une stratégie de paramétrisation et
de factorisation de la matrice de transition est proposée afin de majorer et minorer sa norme.
Ceci permet de surveiller le degré d’expansion et de contraction de la norme des gradients
lors de la propgation des activations et de la retro-propagation des gradients. En combinant
la décomposition en valeurs singulières de la matrice de transition et l’algorithme de descente
de gradient géodésique, nous exprimons explicitement l’ampleur de l’écart par rapport à
l’orthogonalité en définissant une marge pour les valeurs singulières. Cette marge peut être
apprise et optimisée. La stratégie ainsi définie nous permet d’observer et d’analyser les cas
où la déviation de l’orthogonalité pourrait être bénéfique ou néfaste.
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ABSTRACT

This thesis presents a set of original contributions in the form of three chapters on real
and complex-valued deep neural networks. We address both theoretical issues and practical
challenges related to the training of both real and complex-valued neural networks. First,
we investigate the design of appropriate building blocks for deep complex-valued neural net-
works, such as initialization methods, normalization techniques and elementwise activation
functions. We apply our theoretical insights to design building blocks for the construction
of deep complex-valued architectures. We use them to perform various tasks in computer
vision, music transcription, speech spectrum prediction, signal retrieval and audio source
separation. We also perform an analysis of the usefulness of orthogonality for the hidden
transition matrix in a real-valued recurrent neural network. Each of the three chapters are
dedicated to dealing with methods designed to provide solutions to problems causing training
instability, among them, the notorious problem of vanishing and exploding gradients during
the training of deep neural networks.

Throughout this manuscript we show the usefulness of the methods we propose in the context
of well known challenges and clearly identifiable objectives. We provide below a summary of
the contributions within each chapter.

At present, the vast majority of building blocks, techniques, and architectures for training
deep neural networks are based on real-valued computations and representations. However,
representations based on complex numbers have started to receive increased attention. De-
spite their compelling properties complex-valued deep neural networks have been neglected
due in part to the absence of the building blocks required to design and train this type of
network. The lack of such a framework represents a noticeable gap in deep learning tooling.

The first research article presented in this thesis aims to fill this gap by providing new
methods that go far beyond a simple theoretical generalization of real-valued neural networks.
More specifically, we develop some key atomic components for complex-valued deep neural
networks and apply them to convolutional feed-forward networks and Convolutional Long
Short-Term Memory (Convolutional LSTM). Complex convolutions and new algorithms for
complex batch-normalization and complex weight initialization strategies form the bedrock
of the proposed framework. Results from intensive experimentation, with end-to-end training
schemes, underpinned our theoretic framework. Indeed these building blocks have been shown
to avoid numerical problems during training and thereby enable the use of complex-valued
representations for learning various tasks with real and intrinsically complex inputs. We
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show that such deep models are competitive with their real-valued counterparts. We test
deep complex models on several computer vision tasks, on music transcription using the
MusicNet dataset and on Speech Spectrum Prediction using the TIMIT dataset. We achieve
state-of-the-art performance on these audio-related tasks.

The second article is an extension that builds on the results obtained in the first article
to provide a novel fully complex-valued pipeline for automatic signal retrieval and signal
separation in the frequency domain. We call this model a Deep Complex Separator. It is
a novel masking-based method founded on a complex-valued version of Feature-wise Linear
Modulation (FiLM). This new masking method is the key approach underlying our proposed
speech separation architecture. We also propose a new explicitly phase-aware loss, which
is amplitude and shift-invariant, taking into account the complex-valued components of the
spectrogram. We compare it to several other phase-aware losses operating in both time
and frequency domains. Experimental results on the standard Wall Street Journal Dataset
demonstrate the effectiveness of the complex-valued deep separators, highlighting the poten-
tial of deep complex networks to improve performance on audio source separation tasks.

We provide a re-written version and extensions to a third article, which consists of a study
that examines issues related to the nature of orthogonal matrices employed to train recurrent
neural networks. Unitary transition matrices and orthogonal constraints are shown to pro-
vide an appropriate solution to the vanishing and exploding gradients problem in recurrent
neural networks. However, imposing hard constraints has been shown to be computationally
expensive and needless for some real-world tasks. This third chapter aims at assessing the
utility of different types of soft and hard orthogonality constraints by controlling the extent of
the deviation of the corresponding transition weight matrix from the manifold of orthogonal
transformations and measuring the generalization performance of the associated recurrent
neural network. Hard constraint of orthogonality are found to limit the model’s represen-
tational power, worsens its performance, and slows down optimization convergence speed.
A weight matrix factorization and parameterization strategy is proposed to bound matrix
norms and therein monitor the degrees of expansion and contraction of the activations norm
during the forward propagation and the gradients norm during the backpropagation. By
combining Singular Value Decomposition of the hidden transition matrix and the geodesic
gradient descent algorithm, we explicitly express the amount of deviation from orthogonal-
ity by setting a learnable margin for the singular values and optimize it. This allows us to
observe and analyze cases where deviating from orthogonality could be either beneficial or
detrimental.
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CHAPTER 1 INTRODUCTION

1.1 Context and Overview

1.1.1 Deep Neural Networks and Deep Social Transformations

Artificial Intelligence (AI) is a field that bring together a number of theories and technologies
including conventional reasoning and rules-based methods. These technologies endow com-
puters and automata to perform problem solving tasks in ways that mimic human thinking,
at least in principle. Within the broader field we find a smaller domain known as machine
learning (ML). The latter is a complete toolbox of important mathematical methods and
algorithms allowing computers to improve their ability to perform many pattern recognition
tasks such as computer vision and speech processing through learning. Lastly, Deep Learning
(DL), constitutes a more specialized field within machine learning (Goodfellow et al., 2016).
It should be noted that in this manuscript we use the terms “deep learning” and “deep neural
networks” as equivalent synonyms unless otherwise indicated.

Recently, deep neural networks (DNNs) have made headlines in news for the general public.
The significant progress and the unprecedented success of deep learning in various areas, such
as natural language processing (NLP), image and speech recognition, and computer vision,
constitute an important part of the “AI revolution”. Speech recognition advances have been
made in leaps and bounds, as exemplified by products such as Amazon’s Alexa. Google
has continued to train very deep neural networks to enhance the fluency and accuracy of its
translation services. The increased ability of computers to identify images shows great promise
to positively shape the near future of medical imaging diagnosis. Deep neural networks are
expected to strengthen this growth in medical image analysis (X-rays, MRIs, and CT scans).
Further, the health sector is expected to grow at a steady pace as DNN technology expands
translational bioinformatics and sensor analysis. Enhanced image recognition is likely to be
key to advances in robotics, autonomous drones and cars.

While AI is not new, AI methods based on deep learning have been making significant
progress such that deep learning-based solutions are now widely used in industry. Fast im-
provements in information storage capacity, high computing power and parallelization (e.g.
the preeminence of Graphics Processing Units (GPUs)) have contributed, to a large extent, to
the swift uptake of deep learning technology in established industries such as search engines
based around computational advertising as well as emerging industries such as autonomous
vehicles. Businesses are now able to leverage the power of deep neural networks through
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using high level libraries and software packages. Software such as TensorFlow (Abadi et al.,
2016) and Pytorch (Paszke et al., 2017) are now regularly applied to massive amounts of
data allowing valuable insights to be extracted, to improve decision-making processes, to
offer original products, and to model customer preferences and create better services. Deep
learning technologies have attracted a significant amount of investment - nearly 60% of all
non-industry investment in 2016 according to McKinsey (Chui, 2017).

Deep learning techniques have essentially made speech recognition into a usable technology.
Consequently, it is now much more feasible to interact with computers by just talking to
them and many companies now have products based around this interaction paradigm.

1.1.2 Real-Valued Deep Neural Networks

A popular primitive form of artificial neural network was first introduced more than half a
century ago with Rosenblatt’s Perceptron (Rosenblatt, 1958, 1961). However, the limitations
of such simple models limited their interest in the research community. Neural networks
regained interest within the research community, first in the mid-80s with the introduction of
backpropagation by Rumelhart et al. (1986), followed by another moderate surge in interest
in the second half of the 2000s with early advances in learning deeper models such as the
contributions of Hinton et al. (2006), Bengio et al. (2007) and Poultney et al. (2007). A
much more significant progress was achieved in the second decade of the 21st century. Deep
Neural Networks or DNNs have represented one of the main vectors for research advances
and growth in machine learning. Progress made by Krizhevsky et al. (2012), Goodfellow et al.
(2014) and Karras et al. (2017) in computer vision, by Mnih et al. (2013) and Silver et al.
(2017) in the area of reinforcement learning, and, by Bahdanau et al. (2014) and Vaswani
et al. (2017) in the field of natural language processing, have made DNNs inescapable models
for many learning tasks.

A real-valued neural network (RV-NN), or more specifically, a conventional (shallow) artificial
neural network (ANN) is a set of nonlinear real-valued computing units (neurons) structured
into a particular architecture to learn from experience and predict unseen events in terms
of a hierarchy of concepts. It is a layered design with each layer composed of many neurons
that make decisions based on input data. For shallow ANNs the number of layers or the
(depth) is restricted to be small. Fully RV-NNs representations assume that the input data
and the output, as well as the connection weights are real. The computations performed by
the neural network are then based on real numbers. This is somewhat restrictive because
there are learning tasks for which input and output are, by design, complex numbers. For
such tasks, we wish here to use the full representational power of complex arithmetic, its
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richness and versatility. We are interested in incorporating fully complex computations into
a DNNs’ structure. In situations where the input and the output to a neural network are
both complex values, we argue that fully complex computations are particularly appropriate,
as will be described in later sections (see sections 1.4 and 3.2).

ANNs are loosely inspired by the neural networks of the human brain and the biological
mechanisms that process information in the cortex. In the case of a computer, a task is
performed by executing instructions contained in an algorithm written by a programmer. It
turns out that the simplest tasks that humans can perform, and seem instinctive to them,
such as the recognition of a person’s face or the recognition of his voice, cannot indeed, be
instructed to the computer in terms of basic and explicit algorithmic instructions. Neural
networks can learn things using data alone, by mapping input features to outputs. There is
no need for a human to program all the knowledge that the computer needs. The hierarchical
structure with many layers allows the computer to acquire intricate patterns by building
them out of simpler ones.

For the purpose of illustration, let’s take the popular example from the literature where a
neural network is assigned the task to learn how to recognize images of dogs. Initially, we
input a mixture of images into the neural net as data points representing dogs and not dogs.
By propagating the natural images in question from the input layer to the output layer, the
first layers of the network detect fine-grained details of the image and the final ones detect
more abstract structures. The deeper the information is processed through the network, the
more general features are captured. But at this point, each neuron output is random (dog or
not a dog). The network may or may not deliver the correct image. It is in fact no more than
a simple game of tossing a coin (50% chance the network deliver the correct answer). In fact,
the output is random because the network is initialized with random connection weights. But
here we are describing approximately what will happen when we continue the feeding process.
The weights are updated iteratively by using the well-known “backpropagation” algorithm
that computes the error between the output guessed by the network and what the output
should have been (dog or not a dog). The error is sent back through all layers of the system
via this algorithm. The updating of the weights obtained by feeding the network with large
numbers of images allows the system to improve over time at discerning between what an
image of a dog is and what isn’t. This type of learning is referred to as supervised learning.

Real-valued deep neural networks (RV-DNNs) use the composition of a large number of layers
and nonlinear activation functions to capture the implicit nonlinear dependencies between
input features and outputs. The difference between shallow RV-NNs and RV-DNNs is the
depth of the nets i.e., the number of layers. Deep learning (DL) is an expression used for
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various types of neural networks, (to cite a few, e.g. recurrent nets (RNNs), convolutional
networks (CNNs), and more recently, residual networks (He et al., 2016a) and Generative
Adversarial Nets (Goodfellow et al., 2014, GANs)).

1.1.3 Building Blocks for Training Real-Valued Deep Neural Networks

Real-valued feed-forward neural networks (FFNNs) such as CNNs and real-valued RNNs have
shown to excel in a wide variety of applications and learning tasks. However, their training is
a challenging computational task. For instance, recurrent neural networks are characterized
by a severe problem when training is carried out with gradient-based optimization algorithm,
particularly when trying to capture long-term dependencies. This difficulty stems from the
well-studied vanishing and exploding gradient problem (see section 5.2.3 for mathematical
description and more details of the problem in the context of RNNs). Training very deep
neural networks with stochastic gradient descent is hard because the gradients tend to decay
as they are backpropagated through multiple levels of non linearity. Bengio et al. (1994)
and Hochreiter (1991) report that the volatility of the gradients over a sequence of layers
can prevent algorithm from convergence and impede learning. This problem is particularly
intense for recurrent networks, since repeated applications of the recurrent weight matrix can
magnify instability. Poor conditioning of recurrent matrices leads to exponential exploding
or vanishing of gradients over the time horizon (see equation (5.4)). This problem prevents
RNN from capturing long-term dependencies. Many heuristics have been initially devised to
reduce some of the optimization difficulties. These include gradient clipping (Pascanu et al.,
2013), initialization of the recurrence weight matrix by means of orthogonal matrices (Saxe
et al., 2013; Le et al., 2015), use of long short-term memory (LSTM) recurrent networks
(Hochreiter and Schmidhuber, 1997), and finally gated recurrent units (Cho et al., 2014,
GRUs). Moreover, new architectures have been introduced to ensure smooth propagation of
information through the network, and hence avoid the gradient dilemma. The most prominent
are residual networks (Resnets), which directly transmit information from preceding layers up
in a feed-forward network (FFNN) (He et al., 2016a). The attention mechanism (Bahdanau
et al., 2014; Mnih et al., 2014), gives a recurrent network the possibility to have access to
prior activations.

Beside the previous heuristics, a quite different approach relies on initialization (see section
B) and/or normalization techniques. The latter introduce a particular type of transforma-
tions on the computations performed in the forward pass of the neural net. More precisely all
normalization procedures for training RV-DNNs explicitly normalize some component (acti-
vations or weights) through dividing activations or weights by some real number computed
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from its statistics and/or subtracting some real number activation statistics (typically the
mean) from the activations. For instance batch normalization uses the summed input to a
neuron over a mini-batch of training observations to compute a sample mean and a sample
variance which are then used to normalize the summed input to that neuron on each training
case. Initializations (Glorot and Bengio, 2010; He et al., 2015) and normalization mechanisms,
such as batch normalization (BN) (Ioffe and Szegedy, 2015), Layer normalization (LN) (Ba
et al., 2016) and weight normalization (WN) (Salimans and Kingma, 2016) have been shown
to empower training of very deep neural networks. They are widely understood to lessen
training variability, support higher learning rate, speed-up convergence and enhance gene-
ralization, yet the causes for their successes are still the focus of an ongoing active research
(Balduzzi et al., 2017; Santurkar et al., 2018; Kohler et al., 2018; Yang et al., 2019a). Ini-
tialization and normalization techniques constitute currently essential building blocks of the
most successful RV-DNNs. For instance in addition to image classification (He et al., 2016a;
Huang et al., 2017), a number of standardization techniques have excelled in achieving high
performance on various tasks, such as object detection and segmentation (Wu and He, 2018)
and fast stylization and style transfer (Ulyanov et al., 2016; Dumoulin et al.).

1.2 Complex-Valued Neural Networks

Complex-valued neural networks involve the use of complex valued inputs. A complex input
may be characterized by its amplitude and phase which are one of the most fundamental
concepts in signal processing (Hirose, 2012). CV-NNs process complex-valued information by
means of complex-valued parameters and variables. They are particularly rich in diversity.
CV-NNs are similar in architecture to their real-valued counterparts RV-NNs. The diffe-
rence lies in the nature of their parametrization (weighting). The former comprise a set of
non-linear computational units with complex-valued, instead of real-valued, weights and ac-
tivation functions. A peculiarity of the CV-NNs that we leverage in the manuscript is that
the analyticity property of their activation functions may be derogated (see section 3.6.2).

1.3 Problem Statement, Challenges and Objectives

From a research perspective, deep learning is still an active area where real-valued deep neural
networks have proven to be powerful substitutes for conventional machine learning methods.
They continue to set standards for a wide range of computer vision, automatic speech recog-
nition and natural language processing problems. At present, the vast majority of building
blocks, techniques, and architectures for training deep neural networks are founded on real-
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valued operations and representations. However, representations based on complex numbers
have started to receive increased attention. Many articles have explored the implementation
of complex numbers in deep learning architectures. Recent work on recurrent neural net-
works (Arjovsky et al., 2016; Wisdom et al., 2016; Danihelka et al., 2016) and older work
(Plate, 1991, 1995) suggest that there may be “real” advantages of using complex instead
of real arithmetic to parametrize deep neural networks. Despite their compelling properties,
complex-valued deep neural networks have been somewhat neglected because of the absence
of the building blocks required to design and train this type of nets. The lack of such a
framework represents a noticeable gap in deep learning tooling.

This thesis presents a set of original contributions in the form of three essays on real and
complex-valued deep neural networks. It addresses both theoretical and practical challenging
issues related to the improvement of the training building blocks for both real and complex-
valued deep neural networks including architectures, training methods (initialization, norma-
lization, etc.) and learning of various tasks in computer vision, music transcription, speech
spectrum prediction, signal retrieval and audio source separation. The three articles are de-
dicated to dealing with methods designed to provide solutions to the problems caused by the
vanishing and exploding gradients during the training of deep neural networks.

1.3.1 Thesis Objectives and Connections Between Chapters Themes

The objectives of the thesis are threefold. First of all, we address the problem of exploding
and vanishing gradient in deep complex and real-valued neural networks. This is achieved in
both chapters 3 and 5 by investigating the utility of orthogonality for the hidden transition
matrix in a Recurrent Neural Network (RNN) and leveraging the norm preservation property
of unitary matrices to design initialization methods for deep complex-valued networks. The
second objective is to investigate training stability issues that go beyond the vanishing and
exploding gradient problem and that are specific to deep complex-valued neural networks. We
do not limit our efforts to the investigation of such problems. In fact, we design appropriate
building blocks that cope with the issues in question and allow us to design deep complex
networks. Our third and final objective is to illustrate the utility of complex representa-
tion in tasks where both amplitude and phase components are relevant and highlight the
effectiveness of deep complex networks to learn adequate hidden and output complex-valued
representations for the task at hand. Therefore, we provide a solution in chapter 4 for the
challenging problem of signal retrieval and signal extraction in the frequency domain. More
specifically, we consider as a case study the task of monoaural audio source separation.

Below we provide an overview of each article objective, motivation, and contributions. Section
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1.4 is devoted to a more thorough presentation of the specific contributions.

The first article aims to fill the gap identified hitherto by providing a new complex-valued
deep neural network representation and training methods that go far beyond a simple theo-
retical generalization of the real-valued case. More precisely the key atomic components for
complex-valued deep neural networks are developed and applied to convolutional feed-forward
networks and convolutional LSTMs. Complex convolutions and new algorithms for complex
batch-normalization and complex weight initialization strategies form the bedrock of the
proposed framework. These are then used in intensive experiments with end-to-end training
schemes.

The second article is an extension that builds on the results obtained in the first article
to provide a novel fully complex-valued pipeline for automatic signal retrieval and separa-
tion in the frequency domain. We call our model a Deep Complex Separator. It is a novel
masking-based method founded on a complex-valued version of Feature-wise Linear Modu-
lation (FiLM). This new masking method is the keystone of our proposed speech separation
architecture. We also propose a new explicitly phase-aware loss function, which is amplitude
and shift-invariant, taking into account the complex-valued components of the spectrogram.

The third article is a study that discusses issues related to the nature of orthogonal transition
hidden matrices employed to train recurrent neural networks. Unitary transition matrices
and orthogonal constraints are shown to provide an appropriate solution to the vanishing
and exploding gradients in recurrent neural networks. However, imposing hard constraints is
shown to be computationally expensive and needless for some real-world tasks. This paper
aims at assessing the utility of the orthogonality constraint by controlling the extent of the
deviation of the corresponding transition weight matrix from the manifold of orthogonal
transformations and measuring the generalization performance of the associated RNN. Hard
constraint of orthogonality are found to limit the model’s representational power, worsens its
performance, and slows down optimization convergence speed. A weight matrix factorization
and parameterization strategy is proposed to bound matrix norms and therein monitor the
degrees of expansion and contraction of the activations norm during the forward propagation
and the gradients norm during the backpropagation. We suspect that a hard constraint
of orthogonality limits the model’s representational power, worsens its performance, and
slows down optimization convergence speed. By combining Singular Value Decomposition of
the hidden transition matrix and the geodesic gradient descent algorithm, we can explicitly
express the amount of deviation from orthogonality by setting a learnable margin for the
singular values and optimize it. This allows us to observe and analyze cases where deviating
from orthogonality could be either beneficial or detrimental.
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1.4 Complex-Valued Neural Networks : Motivations and Recent Work

In this section, we first present the motivations and benefits of using a neural network for-
mulation based on complex numbers rather than real numbers, then we briefly discuss recent
articles content on deep complex networks. The suggested use of complex arithmetic in deep
neural networks is justified by the many benefits it can provide. The latter are representa-
tional, computational and biological, as will be emphasized in the next subsections.

1.4.1 Representational Motivation

Complex arithmetic has long been the preferred tool for digital signal processing (Hirose
and Yoshida, 2012). The complex formulation is beneficial not only for wave-originating
information, but also for a broad-spectrum of processing with time-frequency treatment using
Short Time Fourier transform (STFT). A variety of other transformations can be applied
to convert real-valued input to complex-valued input. For instance work on the theory of
scattering networks (Bruna and Mallat, 2013), and subsequent works, have also provided
sound mathematical grounds for understanding deep learning neural networks on the basis of
complex wavelet settings and non-linear operators. A complex signal does not merely increase
the size of the signal (real + imaginary). Instead, the depictive richness of complex signals
is embedded in its practical interpretability and rigorous mathematical theory of complex
analysis. A CV-NN is not similar to a two dimensional real-valued neural network as it
may be thought at first glance. It has its own subtleties and appropriate features such as
generalization (Hirose and Yoshida, 2012). CV-NNs are shown to be valuable in processing
amplitude information and signal related phenomena. This is a critical point in applications
in various domains.

Further, there are learning tasks where the use of CV-NNs is inevitably required or greatly
effective. Inputs to a network may be naturally complex-valued (i.e. complex by design,
because they have phase and magnitude components that are statistically correlated), or
converted to a complex form. Complex-valued signals occur in many areas and are thus of
fundamental interest. Examples of such inputs include, Magnetic Reasoning Images (MRI),
Synthetic Aperture Radar Data (SAR) and Very-Long-Baseline Interferometry (VLBI), An-
tenna Design (AD), Radar Imaging (RI), Acoustic Signal Processing (ASP) and Ultrasonic
Imaging (UI), Communications Signal Processing (CSP), Traffic and Power Systems (TPS)
etc (Hirose and Yoshida, 2012).

It is worth noting that, even in the analysis of real-valued inputs (e.g. electrocardiogram
(ECG), electroencephalogram (EEG), images or audio signals), one of the most accurate
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approaches is to use frequency domain analysis, which directly involves complex numbers.
In general the frequency domain representation of a real-valued input is obtained using the
short time Fourier transformation which is a mapping from the set of real numbers to the set
of complex numbers. From a representational perspective, this is advantageous as it provides
a fine-grained 2D representation of a 1D signal without any loss of information. Moreover,
signals such as ECG, EEG and audio are seen as a superposition of different oscillations.
The representation in terms of frequency components seems then to be another natural
way of representing such inputs. By considering as input a Fourier-based encoding, a prior
knowledge about the nature of the signal and its structure is passed to the neural network.
The transmitted input signal is described by its magnitude and phase which carry different
information contents about the nature of that signal. Several studies suggest that phase is
important for perceptual quality, leading to consider magnitude and phase. Phase has proved
to be critical in image processing. It is much more informative and important than magnitude
for image understanding and interpretation, and for image recognition (Oppenheim and Lim,
1981). In the Fourier representation of an input, spectral magnitude and phase tend to behave
differently, and in some circumstances most of the main constituents of the input signal are
well-preserved if the phase alone is retained. In addition, under different settings, for example
when a signal is of finite length, the phase content alone is sufficient to fully reproduce a signal
within a scale factor (Oppenheim and Lim, 1981; Paliwal et al., 2011; Williamson et al., 2016).

Dating back to the 1980s literature (Oppenheim and Lim, 1981), it has been shown that
complex phase is useful for capturing non-stationary or quasi-stationary (locally-stationary)
behavior, discontinuity (edges and jumps) and oscillatory movements (textures). Oppenheim
and Lim (1981) have shown that the information related to all edges, shapes and all entities
in an image is completely embedded in phase. Paliwal and Alsteris (2005) have shown that
the phase spectrum of a speech signal can contribute to speech intelligibility as much as the
magnitude spectrum. A complex-valued feature, taken as a whole figure, is more appropriate
and efficient at capturing local behavior than a pair of real and imaginary coordinates,
calculated independently, and, integrating invariances with respect to translation or rotation.
Complex-valued neural nets take into account the existing correlation between the real and
the imaginary part and learn representations for the task at hand accordingly.

1.4.2 Computational Motivation

The previous discussion highlights the representational power of complex arithmetic, its rich-
ness and versatility which can be incorporated into deep neural networks’ structures. Other
benefits and motivating proprieties relate to computational aspects as we report below.
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The Short Time Fourier transform (STFT) time-frequency encoding provides important ad-
ded advantages : 1- the reduction of time dimension of the representation for an underlying
signal, and 2- computational efficiency. For instance, training Recurrent Neural Networks
(RNNs) or Convolutional Neural Networks (CNNs) on long sequences is known to be a chal-
lenging problem due, not only to the unstable vanishing and exploding gradient problems,
but also to the computational requirements of backpropagation through time (BPTT) (Ho-
chreiter, 1991; Bengio et al., 1994). The use of STFT embedding can considerably reduce
the temporal dimension of the representation. Besides, STFT is computationally efficient as,
in practice, it uses the Fast Fourier Transform (FFT) whose computational complexity is
O(N log(N)).

Many input and output signals are modeled as linear time-invariant or shift-invariant (LTI
and LSI) systems (e.g. Audio, speech, ...). These signals can be represented equally in the
time domain or in the frequency domain. A signal s is the result of convolving an input x
with a system’s transfer function g such that x ∗ g = s, where ∗ denotes the convolution
operation. According to the convolution theorem, the Fourier Transform of convolved signals
in the time domain is the elementwise multiplication of their Fourier Transforms and vice
versa (see section A). This means that F(s) = F(x ∗ g) = F(x)�F(g), where F denotes the
Fourier Transform and � denotes the elementwise complex multiplication. Now if we need
to recover x, deconvolution in the frequency domain is usually advised by computing F(s).
In the case of absence of noise it is merely F(x) = F(s) /F(g). Finally the inverse Fourier
Transform F−1 is applied to F(x) to estimate the deconvolved signal x.

1.4.3 Biological Motivation

Neuroscience provides another source of motivation for complex computations. Reichert and
Serre (2013) argue that neural network formulations relying on complex-valued neuronal units
are not only computationally efficient but also biologically meaningful and more plausible
than their real valued counterpart. The authors explain that in the human brain an action
potential, taking place in the cortex, is characterized by distinct pulse (spike) patterns, and
the time separating pulses may be different. This suggests that it is appropriate to introduce
complex numbers representing phase and amplitude into artificial deep neural networks. In
such representations units (neurons) in each layer are described by a pair of attributes, a firing
rate and a phase. The phase embodies several characteristics, believed to be linked to neuronal
synchrony. These include gating of information processing and binding of distributed object
representations. Focusing on the latter, Reichert and Serre (2013) show that neural synchrony
could be flexible enough to ensure multiple roles in deep neural networks. For instance the
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role of temporal coordination of a neuronal output or more specifically synchronization of
neuronal firing is a relevant computational element of how the gating mechanism can be
exploited in propagating information through deep networks.

Synchrony has been postulated in various studies as a key element in the processing of sen-
sory information by the cortex (Von Der Malsburg, 1994; Crick, 1984; Singer and Gray,
1995; Fries, 2005; Uhlhaas et al., 2009; Stanley, 2013). The order of magnitude of synchrony
of neuronal spikes has been shown to have an impact on the output of downstream neurons.
For this reason, synchrony is assumed to play an important role in the gating of informa-
tion transmission between neurons (Fries, 2005; Benchenane et al., 2011). It is important to
mention that this is related to the gating mechanism existing in deep feed-forward neural
networks (Srivastava et al., 2015; Greff et al., 2016), deep autoregressive models (van den
Oord et al., 2016a,b) and also recurrent neural networks (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014). In the context of deep gating-based networks, synchronization means the
propagation of information whose controlling gates simultaneously hold high values. These
controlling gates are usually the activations of a sigmoid function. In fact, in the case of a
deep feed-forward network, the gating mechanism allows one to propagate inputs of a given
layer to the subsequent ones. In the case of a recurrent neural network, it allows the holding
of information from one time step to another.

There are other advantages coming from computational neuroscience. For instance in their
description of the processing of sound by the human hearing system, Terhardt (1985) and
Zwicker and Fastl (2013) explain that the auditory system decomposes sound according to
its frequency bands, with the cochlea playing a role similar to that of the Fourier transform
in the frequency decomposition task, apart from the fact that computations are carried out
on a logarithmic basis (Chalupper and Fastl, 2000; McDermott, 2018). We conjecture that
when a deep neural network is fed with a complex input, it may learn the frequency-based
structures and features that are most informative to the task being learned.

1.4.4 Recent Related Work on Complex-Valued Representations in Recurrent
Neural Networks

As we pointed out earlier, for the majority of published work, it is common to shorten
complex-valued spectra by omitting the phase components of frequency domain signals, which
results in important losses of information. Complex-valued spectra have been often disregar-
ded as the deep learning community has not developed reliable methods for training complex
deep neural networks. Recently, a quite few articles have explored the implementation of
complex numbers in deep learning architectures. The tardy implementation of deep complex
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networks could be explained by the followings facts : 1) The lack of work investigating the
difficulty of training deep complex DNNs, and 2) The lack of open libraries allowing the
training of such models and supporting complex numbers. In this section, we present the few
closely related studies that have focused on the particular case of recurrent neural networks
using complex arithmetic.

Arjovsky et al. (2016) introduced the idea of applying a complex-valued unitary recurrent
weight matrix to guard against the vanishing and exploding gradients. The advised unitary
recurrent neural network (uRNN) is a complex-valued RNN, with a unitary recurrent weight
matrix and complex-valued ReLU-based activation function called modReLU. A unitary
recurrent weight matrix is a norm preserving mapping. The use of such unitary mapping
prevents the gradients from exploding or vanishing, and allows for the capture of long-term
dependencies. The proposed uRNN is computationally efficient as it spans a reduced subset
of unitary matrices. The authors provide empirical evidence suggesting that uRNNs perform
well at propagating gradient information over lengthy sequences and are not affected by
saturating hidden states as much as LSTMs. Unfortunately, there is no free lunch. Restricting
uRNNs to a reduced subset of unitary matrices decreases their expressive power (Wisdom
et al., 2016).

To overcome the problemWisdom et al. (2016) proposed to parameterize the recurrent matrix
with a full dimensional unitary matrix at the expense of computational efficiency. The training
of full capacity unitary recurrent networks (FC-uRNNs) requires a very greedy projection step
in terms of computation time to maintain the unitary propriety of the recurrent matrix at
each iteration of the stochastic optimization process. The FC-uRNNs outperform by a large
margin, their restrictive analogous uRNNs that use a restricted-capacity recurrence matrix.

Jing et al. (2016) proposed a new parameterization of the recurrent weight matrices using
unitary linear operators, called Efficient Unitary RNN (EURNN). EURNNs are supposed to
allow a rather fine control of the number of parameters of a recurrent neural network and
thereby overcome the problems of excessive parameterization and bad conditioning. Although
the idea of setting up recurrent weight matrices with a strict unitary matrix operator is
appealing, it raises a number of delicate issues. First, imposing strict unitary constraints
greatly limits the search space. In addition, strict unitary constraints make it difficult to
forget irrelevant information.

Jose et al. (2017) address two important concerns with recurrent neural networks : over-
parametrization, and ill-conditioning of the recurrent weight matrix. The first problem in-
creases the complexity of learning and the training time. The second leads to the vanishing
and exploding gradient problem. The authors propose a flexible recurrent neural network
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architecture referred to as Kronecker Recurrent Units (KRU) which improves parameter
efficiency in RNNs through a Kronecker factored recurrent matrix. It also circumvent the ill-
conditioning of the recurrent matrix by imposing soft unitary restrictions on the factors. Jose
et al. (2017) report that the KRU approach outperform classical methods which uses O(N2)
parameters in the recurrent matrix. Yet, their method still suffers from balance between
computational efficiency and sample complexity.

Mhammedi et al. (2016) in their orthogonal RNN (oRNN) bypass the costly projection step
in FC-uRNN by parametrizing the orthogonal matrices using Householder reflection vectors.
The latter allows a fine-grained control over the number of parameters by choosing the number
of Householder reflection vectors. However their continuous real-valued parametrization fails
to fulfil the necessary condition of the continuity of unitary space to ensure an adjustable
continuous parametrization going from subspace to full unitary space.

Danihelka et al. (2016) highlighted two main limitations related to computational aspects
of traditional LSTMs. First, the number of cells depends on the dimension of the recurrent
weight matrices, which implies that an LSTM with Nh memory cells uses a recurrent weight
matrix with O((Nh)2) entries. In addition, LSTM is limited in learning to represent common
data structures such as arrays due to the lack of a mechanism for indexing its memory du-
ring writing and reading. Combining Long Short-Term Memory networks and Holographic
Reduced Representations (HRRs) (Plate, 1991, 1995), Danihelka et al. (2016) introduced a
new method to enhance recurrent neural networks capacity with additional memory without
increasing the number of network parameters. The proposed combined scheme has an asso-
ciative memory array founded on complex-valued vectors. The authors report experimental
evidence of faster learning on numerous memorization tasks.

Jing et al. (2019) have built a novel RNN, named Gated Orthogonal Recurrent Units (GORU),
that conveys an explicit forgetting mechanism to the class of unitary/orthogonal RNNs.
GORU combines the remembering ability of orthogonal matrices (uRNNs) and the ability of
gated architectures to efficiently omit recurring or irrelevant past information. The authors
argue that their robust forgetting mechanism outperforms short and long-run neural net-
works such as gated recurrent unit GRU and traditional LSTM in several benchmark tasks.
In spite of their robust forgetting capabilities, GORU still suffer from perfect balance bet-
ween computational efficiency and sample complexity. Jing et al. (2019) also attempted to use
complex-valued representation by having unitary weights instead of orthogonal ones. The au-
thors report that they encountered training instabilities while working with complex-valued
representations, hence, they decided to consider only the real-valued case.

More recently, Wolter and Yao (2018a) built on the previous works related to the para-
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metrization of the hidden transition matrix with a unitary transformation. They present
a complex-valued gated recurrent network (cgRNN) in which weights are parameterized by
full-dimensional unitary matrices. The cgRNN is a hybrid cell resulting from the combination
of complex-valued norm-preserving state transitions with a gating mechanism.

To summarize, we can conclude from the previous discussion that there are indeed many
“real” benefits of using complex-valued representation. The reviewed research papers indi-
cate smoother flowing and more robust transmittal of gradient information across layers when
unitary transition matrices are used. Higher memory capacity and noise-robust memory re-
trieval mechanisms are reported in the context of associative memory. A significant reduction
in the number of parameters and a faster convergence are also reported when complex-valued
models are used. These are too many advantages that cannot be simply overlooked. If we are
willing to admit that the current Deep learning constitutes an open opportunity for further
research contributions, then perhaps we should make use of complex analysis where there is
a greater variety of recipes to leverage.

1.4.5 Contributions

This manuscript provides several contributions that we describe for each article separately,
with the mention that our approach is the first, in its kind, to provide a general framework
for building blocks that can be used in training complex-valued deep neural networks. Our
finding are impactful since they have been the subject of further exploration, adoption and
extensions in recent works (in sections 6.1.1 and 6.1.3).

Contributions in Article 1

Article 1 is the object of the developments detailed in Chapter 3. By leveraging the advan-
tages offered by complex representations, we propose a general formulation for the building
components of complex-valued deep neural networks and apply it to the context of feed-
forward convolutional networks and convolutional LSTMs. Our contributions in this article
are :

1. A specification of a new complex valued activation function and a comparison of its
performance to that of various complex-based activation functions. See sections 3.3.4
and 3.4.1 ;

2. A formulation of complex batch normalization, which is described in Section 3.3.5 ;

3. Complex weight initialization, which is presented in Section 3.3.6 ;
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4. A state-of-the-art result on the MusicNet multi-instrument music transcription
dataset, presented in Section 3.4.2 ;

5. A state-of-the-art result in the Speech Spectrum Prediction task on the TIMIT
dataset, presented in Section 3.4.3.

Contributions in Article 2

Article 2 is the subject of the developments included in chapter 4. It builds on the concepts
depicted in the first article to provide a novel fully complex-valued pipeline for automatic
signal retrieval and signal separation in the frequency domain. As a case study, we consider
speech separation. In audio source speech separation, the task consists of isolating the speech
of multiple speakers into separate signals. Our contributions are summarized as follows :

1. A novel masking method presented in section 4.3.3. It is based on Feature-wise Linear
Modulation (FiLM) (Perez et al., 2018) to create multiple separated candidates for
the audio associated with a given speaker. These candidates are averaged in order
to obtain the final separated speech for the speaker in question. Our experiments
demonstrate the efficacy of our proposed masking method, and show its regularizing
effect ;

2. A new frequency-domain loss presented in section 4.4. The loss function is taking
explicitly into account both magnitude and phase of the signals. The characteristic of
our loss is that it is amplitude and shift invariant. Our comparative analysis relates
to different phase-aware losses defined in time and frequency domains, demonstrates
the superiority of our proposed loss.

Contributions in Article 3

One method to prevent gradients from vanishing and exploding is to employ either soft or hard
constraints on the transition weight matrices in order to enforce orthogonality. Orthogonal
matrices have the compelling propriety of preserving gradient norm during backpropagation
and therefore are tractable as they provide potential solutions for the vanishing and exploding
gradient problem. Here our paper explores issues related to optimization convergence, speed
and gradient stability when encouraging or enforcing orthogonality. The main contributions
are :

1. A weight matrix factorization and parameterization strategy is proposed. The latter
is employed to bound matrix norms and therein control the degrees of expansion and
contraction of the activations norm during the forward propagation and the gradients
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norm during the backpropagation ;

2. A sensitivity analysis to identify the cases where deviating from orthogonality could
be either beneficial or detrimental is proposed. The results of the analysis suggest
that a strict orthogonality or an uncontrolled deviation from the orthogonal space of
parameters is generally detrimental to the training process and that a compromise
of the amount of deviation must be considered in order to ensure a faster and more
efficient convergence and a good performance of the model.

1.5 Outline

The chapters of this manuscript are based on published works reported in Trabelsi et al.
(2017), Vorontsov et al. (2017) and a work under review presented in chapter 4 introdu-
cing “Deep Complex Separators”. Chapter 2 is a review of closely related literature with
more focus on recent works. In this chapter we first present a detailed review of the main
approaches related to training difficulties observed when training real-valued deep neural
networks. Our review includes methods for parameter initialization and normalization of
activations, gating-based mechanisms and heuristics designed to deal with the problem of
vanishing and exploding gradients in deep feed-forward neural networks. In a second stage
we review recent work on complex-valued representation in deep neural networks. Finally we
discuss studies on signal retrieval and speech separation. Chapter 3 is the object of the article
entitled “Deep Complex Networks”. It contains the technical details and the experimentation
related to the proposed complex-valued “building blocks” for training deep neural networks.
It includes new initialization and normalization methods for training various tasks with real
and naturally complex-valued inputs. Chapter 4 is the object of the novel theoretical and
empirical developments for signal retrieval and speech separation proposed in the article en-
titled “Deep Complex Separators”. Chapter 5 is devoted to the “Study of Orthogonality for
the Hidden Transition Matrix in Recurrent Neural Networks”. Chapter 6 concludes the thesis
and opens up new research perspectives that can be explored in the future.

Basic concepts related to complex numbers and signal processing are presented in Appendix
A. In this thesis, we make use of two initialization techniques, widely used in deep learning
research, the Glorot and He initializations. Given the lack of technical details, found in
subsequent research work related to these methods, we have found it useful that we include,
in Appendix B, an in-depth mathematical derivation of the missing details. Notice that in
this thesis we build on these initializations to introduce new ones for the complex-valued
neural network architectures that we propose in the next chapters.
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CHAPTER 2 LITERATURE REVIEW

Deep Learning techniques have recently become standard tools for achieving state-of-the art
results in machine learning and pattern recognition tasks. This is the result of successive re-
search work that has shown the potential of deep learning models. A number of contributions
in the field have successfully dealt with the problem of the vanishing and exploding gradient
through the design of appropriate “building blocks” including architectures, techniques and
learning strategies.

In this chapter we first present a detailed review of the main building blocks used in real-
valued deep neural networks. Our discussion includes methods for parameter initialization and
normalization of activations, gating-based mechanisms and heuristics designed to deal with
the aforementioned problem in feed-forward and recurrent neural networks. In a second stage
we provide a summary on recent work dealing with complex-valued deep neural networks.

2.1 Initialization Techniques

The goal of a parameter initialization technique is to ensure that during the first iterations
of training that the input signal can propagate to the output layer of the network. It also
ensures the return of a correction feed-back signal from the output layer to the input layer.
The correction feed-back signal is also called the error signal. It consists of the gradient of
the cost function with respect to the parameter being updated. The propagation of the input
signal as well as the back-propagation of the correction term has to be performed through
the layers of the network without any severe vanishing or exploding of the signals amplitude.
The control of the signals amplitudes can be achieved by bounding their respective variances.

The two major works on initialization techniques are those of Glorot and Bengio (2010)
and He et al. (2015). Glorot and Bengio (2010) have investigated parameter initialization
for neural networks using tanh and sigmoid activation functions, while He et al. (2015) have
used linear rectifiers. He et al. (2015) present a more robust initialization method than Glorot
and Bengio (2010) as they make more appropriate assumptions about the distribution of the
activations and their derivatives by taking into account the sparsity induced by the use of
rectifiers and their linear behavior, except at the origin. This comes from the simple fact
that in the case of the rectifiers null activations have null derivatives and positive activations
have derivatives equal to 1. Therefore for rectifiers a distribution assumption can be easily
satisfied at initialization time for both the activations and their derivatives. With regard to
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the derivatives of tanh and sigmoid this is not the case. Glorot assumes that the derivative is
always equal to 1 at initialization time, regardless of the activation value. This is obviously
incorrect as the maximal values of the tanh and sigmoid derivatives are obtained for null
activations and correspond respectively to 1 and 1/4.

It is worth mentioning that Glorot et al. (2011) introduced the use of rectifiers for supervised
learning which was an essential step in deep learning research. The findings in both Glorot
and Bengio (2010) and Glorot et al. (2011) have led to the discarding of unsupervised pre-
training techniques as a means to perform weight initialization.

2.2 Normalization Techniques

Besides parameter initialization, normalization techniques have been widely adopted to en-
able faster convergence and stable training. The first approach that has been introduced to
normalize neural representations is Batch Normalization (Ioffe and Szegedy, 2015). Batch
Normalization is also the most commonly used method among normalizing techniques in the
deep learning literature. It is especially adopted for vision tasks and non-sequential data.

Normalizing the input representation of a machine learning model is not a recent practice.
The min-max normalization is probably the simplest normalization technique that use to be
widely adopted in the machine learning community. It consists of rescaling the features of the
input either in the [0, 1] or the [−1, 1] intervals (Juszczak et al., 2002). The standardization
of the input features is another normalization technique consisting of subtracting the sample
mean and the dividing by the sample standard deviation so that the transformed data has
zero mean and unit variance. Whitening transformations such as Principal Component Ana-
lysis whitening (PCA whitening), Mahalanobis or ZCA whitening and Cholesky whitening of
the input features, are different methods consisting of linearly decorrelating the input com-
ponents. Whitening is still a common practice in machine learning (LeCun et al., 2012). It is
a generalization of standardization techniques. If the features are normally distributed, per-
forming a whitening transformation on the input features allows one to feed the model with
independent factors that have the same sample mean and the same unit variance. In other
words, given that the features are normally distributed, a whitening transformation maps
the input space to a space where the features are independently and identically distributed.

Batch Normalization (BN) is applied at each neural layer instead of just performing norma-
lization on the input features. The first transformation that Batch Normalization performs is
the standardization of the previous layer features. During the training process, the standar-
dization is performed using the corresponding sample mean and sample standard deviation
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of each feature. These estimates are computed across a minibatch of instances. This depen-
dence on the minibatch is not desirable during inference time when using held-out data.
It yields a stochastic behaviour of the output while the latter should depend on the input
deterministically. It is possible then to estimate the mean and the standard deviation using
the whole training set instead of just a random minibatch. This is expensive especially if one
wants to track the validation loss during training. A more efficient alternative is to update
the mean and standard deviation estimates at each training iteration using exponentially
weighted moving averages of the estimates. Libraries such as Pytorch (Paszke et al., 2017)
and Tensorflow (Abadi et al., 2016) implement the exponentially weighted moving average
method to estimate the mean and the standard deviation of the features.

After performing standardization, an affine transformation is performed on the features using
a scaling and a shifting parameter. These features scaling and shifting parameters are learned
by backpropagation. The final formula for BN can then be expressed as :

xbn = γ
x− µ̂x
σ̂x

+ β, (2.1)

where µ̂x and σ̂x are respectively the estimates of the mean and the standard deviation of
the feature x. γ is the scaling parameter and β is the shifting one.

The standardization x−µ̂x
σ̂x

implemented in Batch Normalization ensures the non-explosion
and non-vanishing of both the sample mean and sample variance of the activations and their
feed-back gradient signal. Therefore, it achieves the goal for which initialization methods
have been introduced, which is avoiding vanishing and exploding variances of the activations
and their corresponding gradient through the layers of the network. This allows to maintain
stable training not only in the early stages of learning but through the whole training process.

Numerous other normalization techniques have been proposed in the deep learning setting.
Among those, Layer Normalization (Ba et al., 2016, LN) and Weight Normalization (Salimans
and Kingma, 2016, WN) are probably the most common methods that are used as alternatives
to Batch Normalization. Layer Normalization consists of performing the exact same standar-
dization, scaling and shifting operations as the ones implemented in Batch Normalization.
The only difference is that the sample mean and the sample standard deviation are compu-
ted over the features of the layer instead of the instances of the minibatch. This provides a
flexibility compared to the Batch version as the normalization becomes independent of the
minibatch size. Layer Normalization is mostly used in the context of sequential data such as
natural language texts, speech signals, time series data, etc. These temporal and sequential
data are mostly processed by autoregressive models taking into account temporal dependen-
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cies. Examples of such models are Recurrent Neural Networks. It has been shown empirically
that Layer Normalization is more effective than Batch Normalization on sequential data (Ba
et al., 2016).

Weight Normalization (Salimans and Kingma, 2016) is another technique which consists of
rescaling the norm of the weights at each layer and where the rescaling factor is learned.
This allows to avoid the co-adaptation of the weights with the norm of the activation during
learning by decoupling the norm of the weights from their direction. Like Layer Normalization,
the weight version is independent from the minibatch size. It is even independent of any data
statistics. The formula for WN is given by :

wwn = γ
w
||w||

, (2.2)

where ||w|| is the euclidean norm of the weight vector w and γ is a scalar expressing the
norm of wwn.

Self-Normalized Neural Networks (Klambauer et al., 2017) implement the Scaled Exponential
Linear Unit (SELU) activation which implicitly performs normalization as it ensures that the
activations at each layer converge towards a zero mean and a unit variance. Klambauer et al.
(2017) proved that the variance is also bounded which eliminates the risk of vanishing and
exploding gradient. The authors have also observed that the normalization induced by SELUs
provides a stable training and a strong regularization effect.

The common observations made when normalization techniques have been used are related
to their positive impact on the training process as they provide faster convergence, better
performance and a stable training. The authors in Ioffe and Szegedy (2015) speculate that
the preservation of the activations mean and variance in Batch Normalization reduces what
is called Internal Covariate Shift (ICS) and so, accelerates training. ICS is the change of the
layer’s features distribution through the depth of the network. The authors explanation lacks
theoretical clarity. It is true that, if the joint distribution of the neural units at each layer
is Gaussian, then, preserving the mean and the covariance of the joint distribution of the
features at each layer would result in its preservation. However, not only the distribution of the
features is not necessarily Gaussian but the covariance between the distinct features is also not
taken into account in Batch Normalization. The preservation of the features joint distribution
is then not guaranteed when using Batch Normalization. Recently, the machine learning
community has started to uncover more fundamental problems that batch normalization
is helping to solve. Santurkar et al. (2018) revealed that, under some assumptions, Batch
Normalization makes the loss landscape smooth which results in a more predictive and stable
gradients of the loss with respect to the features. This allows the neural network to converge
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faster towards an optimal solution. Under the Gaussian and zero mean assumptions of the
data, Kohler et al. (2018) have shown that Batch Normalization splits the optimization
problem in the same way as Weight Normalization by optimizing the norm and the direction
of the parameters separately.

2.3 Gating-Based Mechanism and Identity Skip Connections

In addition to the normalization and initialization techniques that have made it possible
to design and train deep networks, gating-based architectures have made it easier to train
recurrent neural networks, as well as to design new feed-forward networks that can reach
more than 100 layers.

Long Short TermMemory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent
Unit (Cho et al., 2014, GRU) are recurrent networks that use the gating-based mechanism.
The gating-based mechanism implemented in LSTMs and GRUs makes it possible to take into
account temporal dependencies between observations which are separated by short or long
time intervals. The gating-based mechanism allows them to reduce the problem of vanishing
and exploding gradient.

Highway networks (Srivastava et al., 2015; Greff et al., 2016) are feed-forward networks that
implement the same gating-based mechanism. To the best of our knowledge, the design of
highway networks allowed, for the first time, to build very deep feed-forward networks (more
than 100 layers). It is important to mention that the highway networks do not use any kind
of normalization layers. This is due to the fact that the gating-based mechanism, by itself,
implements a kind of normalization that limits the values of the activations between -1 and
1. The intermediate output f(xl) is multiplied by a transformation gate T (xl) and the result
is added to the multiplication of the input by another carry gate C(xl) as described by the
following equation :

xl+1 = T (xl) · f(xl) + C(xl) · xl. (2.3)

T (xl) and C(xl) are sigmoidal gates that use the sigmoid activation function. f(xl) uses
the tanh activation function. Srivastava et al. (2015) have noticed that when the carry gate
is expressed in terms the transformation gate such that C(xl) = 1 − T (xl), it reduces the
number of parameters and it makes sure that the sum of the contributions of the input xl

and of the intermediate output f(xl) to the activations is equal to 1. This is an implicit
standardization implemented at each layer of the highway network.

Inspired by the highway networks, He et al. (2016a) developed the residual networks by
taking advantage of the combination between batch normalization and the ReLU activation
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function. They have also changed the gating mechanism existing in the highway networks
to create an architecture that implements a specific case of highway layers. This specific
mechanism consists of computing an intermediate output f(xl) and adding to it the input xl.
This is equivalent to considering T (xl) = 1 and C(xl) = 1 for all layers l. The intermediate
output f(xl) is said to be connected to the input xl by an identity skip connection, or
shortcut, since xl is multiplied by C(xl) = 1 and it skips the convolutional layers inside the
residual modules that compute f(xl). As the intermediate output f(xl) could be expressed
as f(xl) = f(xl+1) − xl, it could be interpreted as a residual, hence, the name of residual
networks. Stacking the residual modules makes it possible to build very deep networks.

The combination of identity skip connection, batch normalization and ReLU activations al-
lows for a better flow of the activations and of their gradients through the layers of the
network. For highway networks, a trade-off in terms of the number of layers must be esta-
blished to obtain an optimal performance of the model. Whereas, for the residual networks,
the increase in the number of layers is generally beneficial.

Balduzzi et al. (2017) explained that the combination of identity skip connections, batch
normalization and ReLU activations ensures that the gradients of the loss with respect to
the units of the first layers are correlated. This is only observed for the residual networks and
for very shallow networks of just one layer. For deep feed-forwards networks without batch
normalization and identity skip connections, the gradients of the loss with respect to the first
layer units are decorrelated and resemble white noise, hence the shattered gradient problem.
The gradients correlation in residual networks decays sublinearly through the layers while in
standard deep feed-forward networks, it decays exponentially.

2.4 Vanishing and exploding gradient problem in Recurrent Neural Networks

As we have seen in section B, care must be taken to ensure a forward and a backward propa-
gation of the layers’ activations and their gradients respectively. The vanishing and exploding
gradient problem was discovered by Hochreiter (1991) and Bengio et al. (1994) separately.
Both recurrent and deep feed-forward neural networks suffer from this shortcoming. Nume-
rous attempts have been proposed in order to reduce the severity of this problem. One of the
most notable attempts is the Long Short Term Memory (LSTM) Network (Hochreiter and
Schmidhuber, 1997) where a memory cell is added to the architecture of a recurrent network.
The memory cell is updated or completely reset at each time step. This allows the recurrent
network mechanism to remember long-term dependency information if needed, as well as to
forget them and retain only short term ones when needed. The feed-forward analogue of the
LSTM is the highway network (Srivastava et al., 2015) which inspired He et al. (2016a) later
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to incorporate identity skip connections in deep feed-forward networks.

Pascanu et al. (2013) suggested the gradient norm clipping strategy to deal with exploding
gradients which turned out to be extremely efficient in practice. This has the effect of boun-
ding the spectral norm of the hidden transition matrix, i.e., bounding its maximal singular
value, and so, limiting the maximal gain induced by the hidden transition matrix.

Other methods have been deployed in order to overcome the vanishing and the exploding gra-
dient problem. Krueger and Memisevic (2015) applied a penalty on the differences between
successive Lp norms of the hidden representation. This has the effect of penalizing vanishing
or exploding gradients and encouraging norm-preserved representations through time. Or-
thogonal weight matrices provide a novel angle of attack on the well-known vanishing and
exploding gradient problem in RNNs. Le et al. (2015) adopted an identity initialization for
the hidden transition matrix which is a specific case of an orthogonal initialization. To the
best of our knowledge Saxe et al. (2013) were the first to use an orthogonal initialization for
the weights of a deep feed-forward network. Henaff et al. (2016) used a soft penalty constraint
on the hidden transition matrix, of the form λ||WTW− I||2 to encourage the weights to be
close to the Stiefel Manifold, the space of orthogonal parameters. When this is combined
with an L2 penalty on the hidden transition matrix, it has the effect of applying a Gaussian
prior with a mean equal to 1 on the singular values of the weights.

Arjovsky et al. (2016) designed a recurrent neural network where the transition hidden matrix
is unitary. Unitary matrices are the complex generalization of orthogonal matrices. Compared
to their orthogonal counterparts, unitary matrices provide a richer representation, for ins-
tance being capable of implementing the discrete Fourier transform, and thus of discovering
spectral representations. In Arjovsky et al. (2016) the hidden transition matrix is construc-
ted using the product of specific unitary transformations, more specifically using diagonal
matrices, permutations, rotations, the Discrete Fourier Transform and its inverse. As a conse-
quence, the resulting hidden transition matrix, does not cover the whole space of possible
unitary matrices in CNh×Nh where Nh is the number of complex hidden dimensions. Wisdom
et al. (2016) have proposed to cover the set of all unitary matrices for the hidden transition
matrix by adopting the geodesic gradient descent algorithm (Nishimori, 2005; Tagare, 2011)
when optimizing the unitary weights. The geodesic gradient descent is expensive in terms of
computational complexity as it is cubic, i.e O((Nh)3). This is because the algorithm requires
an inverse operation. Hyland and Rätsch (2017); Mhammedi et al. (2016); Lezcano-Casado
and Martínez-Rubio (2019) have proposed the design of full capacity unitary parameteriza-
tions for the hidden transition matrix that are efficient in terms of complexity. Arjovsky et al.
(2016) show the potential of this type of unitary RNNs on toy tasks. Wisdom et al. (2016)
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provided a more general framework for learning unitary matrices and applied their method
on toy tasks and on a real-world speech task.

2.5 Complex-Valued Representation in Deep Neural Networks

Complex-valued representations for deep neural networks have recently started to receive
increased attention.

Danihelka et al. (2016) used complex-valued representations in the context of Holographic
Reduced Representations (Plate, 1991, 1995, HRRs) to build an associative memory me-
chanism which is noise-robust. HRRs enable one to store key-value data. Retrieving a value
from the memory data associated with a given key can be performed by convolving the whole
memory with the key or by applying an inner product between these two. Plate (1991, 1995)
leveraged the Convolution Theorem (see section A) by applying the Fast Fourier Transform
(FFT) on the keys and the data. This allows one to perform an elementwise multiplication
between their Fourier transforms and apply an inverse FFT to convert the result to the time
domain. This is equivalent to performing convolution between the key and the data in the
time domain and has the advantage of being less expensive as the computational complexity
of each of the FFT and its inverse is O(N log(N)). Danihelka et al. (2016) used an associa-
tive memory to augment the capacity of LSTMs and to increase their robustness to noise
and interference. For that, they applied independent random permutations on the memory
to create multiple copies of it. This enables one to obtain decorrelated noise in each of the
permuted copies. A complex multiplication is then performed between the key and each of
the copies. A signal averaging on the resulted multiplications reduces the decorrelated noise
in them and strengthens the Signal-To-Noise Ratio (SNR) of the retrieved signal. Danihelka
et al. (2016), however, have not relied on FFTs in order to convert the temporal signals to
the frequency domain. In fact, they assumed that complex-valued multiplication between the
key and the data is itself enough to perform retrieval, and they have assumed that for each
input representation the first half is real and the second one is imaginary.

During this decade, interest in Fourier domain representations has started to grow in the
machine learning community. Bruna et al. (2013) introduced a generalization of convolutions
to graphs using the Graph Fourier Transform, which is in turn defined as the multiplication of
a graph signal by the eigenvector matrix of the graph Laplacian. However, the computation
of the eigenvector matrix is expensive. Recently, methods that are computationally more
efficient have been introduced in Defferrard et al. (2016) and Kipf and Welling (2016) to avoid
an explicit use of the Graph Fourier basis. In the context of Convolutional Neural Networks,
Rippel et al. (2015) introduced spectral pooling, which allows one to perform pooling in
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the frequency domain. This enables maintaining the output spatial dimensionality, and thus
retaining significantly more information than other pooling approaches. Rippel et al. (2015)
have also observed that the parametrization of the convolution filters in the Fourier domain
induces faster convergence during training. However, the authors avoid performing complex-
valued convolutions, instead building from real-valued kernels in the spatial domain. To
ensure that a complex parametrization in the spectral domain maps onto real-valued kernels,
the authors impose a conjugate symmetry constraint on the spectral-domain weights, such
that when the inverse Fourier transform is applied to them, it only yields real-valued kernels.

Arjovsky et al. (2016) designed a recurrent neural network (RNN) where the transition hidden
matrix is unitary. More specifically, the hidden transition matrix is constructed using the
product of specific unitary transformations including the Discrete Fourier Transform and its
inverse. This allows preserving the norm of the hidden state, and as a consequence, avoids
the problem of vanishing and exploding gradients. Wisdom et al. (2016) and Arjovsky et al.
(2016) showed that using complex numbers in recurrent neural networks (RNNs) allows to
have a richer representational capacity and unitary hidden transition parameters allows faster
convergence properties.

Wolter and Yao (2018b) designed an RNN where the input is converted to the frequency
domain using a Short Time Fourier Transform (STFT). The output is converted back to the
time domain by applying an inverse STFT. Zhang et al. (2018a) proposed a Fourier Recurrent
Unit (FRU) where they showed that FRU has gradient lower and upper bounds independent
of the temporal dimension. They have also demonstrated the great expressivity of the sparse
Fourier basis from which the FRU draws its power.

2.6 Audio Source Speech Separation

Real-world speech communication often takes place in overcrowded environments where there
are multiple speakers. Human hearing systems have the potential to focus the attention on
a particular sound source, while disabling all other surrounding voices and sounds. This is
recognized as the cocktail party effect (Cherry, 1953). The latter remains one of the most
pursued research issues in automatic speech recognition and source separation. The growing
interest in a reliable speech processing system, in noisy environments, stems from its valuable
application to varied human-interaction systems, such as smartphones, personal computers,
televisions, etc. A reliable speech processing system that is aimed to work in such noisy
environments needs to be endowed with the ability to separate speech of different talkers.
This task, which is natural for humans, has shown to be very difficult to model. Indeed
the decomposition of an audio signal into its individual constituents is a hard task for the
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following reasons : multiple sounds may overlap and create partial obscurities, the origins
of sounds may not be identified a priori even if the sources may come from the same class
and share comparable features, and finally a number of different interfering sources may be
present. Recent deep learning systems have made significant progress toward solving this
problem.

Audio source separation aims at decomposing an input audio signal, which is the aggregation
(fusion) of many sources, so as to recover these multiple independent target audio sources
(i.e., speakers). Speech separation is one of the fundamental problems in audio processing as
it refers to the instance where the background is highly non-stationary and may hide difficult
sources such as singing voices, or other types of speech waveforms.

Initially it takes as input a time-domain waveform which is a raw mixture of audio signals,
and then applies the Short Time Fourier transform (STFT) to obtain a time-frequency (T-F)
encoding of the mixture sound (i.e., Spectrograms). Finally the T-F bins that match each
source are then isolated, and used for the decoding (synthesis) of the hidden source waveforms
using the inverse STFT. Complex matrix representation of the spectrograms integrates ma-
gnitude and phase components. For an effective audio speech separation, accurate estimation
and integration of both components is highly recommended. In this context a major difficulty
of dissociating phase and magnitude has been witnessed in previous work. The phase of the
clean speech has been often omitted due to the difficulty of its estimation. This has led to the
state where most approaches often proceed to estimating the magnitude of the spectrum as
a time-frequency mask for each source, and then synthesizing using the masked magnitude
spectrogram and reusing the phase of the corrupted sound mixture. (Huang et al., 2014a;
Xu et al., 2014; Grais et al., 2016; Nugraha et al., 2016; Takahashi et al., 2018). Reusing
phase of the original corrupted speech has a negative impact on the quality of the inference
of the clean speech. The impact is amplified when noisy conditions deteriorate, i.e., when
Signal-to-Noise Ratio (SNR) is low.

Extensive studies have been devoted to this subject for a quite some time. Wang and Chen
(2018) provide a broad overview of recent audio-only methods based on deep learning that
tackle both speech denoising (Erdogan et al., 2015; Weninger et al., 2015) and speech separa-
tion tasks. Speech separation had long been considered as a signal extraction problem. Lately
speech separation has been cast as a supervised learning problem where the discriminative
features of speech, speakers and background perturbations are learned from training data.
Recently, we have witnessed an important increase in the volume of the papers where super-
vised separation of algorithms are put forward. The contribution of deep learning to super-
vised speech separation has drastically accelerated progress and boosted performance. Wang
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and Chen (2018) provide a comprehensive overview of the recent research of deep learning
applied to speech separation. The algorithms designed for audio source separation relate to
monaural methods which include speech enhancement (binary discrimination between speech
and non speech), speaker separation, speech dereverberation and finally, multi-mircophones
techniques. Our discussion here only focuses of selective overview of closely related work on
monaural speaker separation methods.

Early efforts at untangling multiple speakers in an audio source have usually involved either
pure audio inputs that are separated from any type of corrupting noise or particular micro-
phone configurations for robust supervision (Duong et al., 2010). Succeeding research work in
this area assumed in some cases monophonic audio signals (Wang and Plumbley, 2006; Virta-
nen, 2007; Smaragdis et al., 2007; Spiertz, 2009; Huang et al., 2014a) on which some familiar
matrix decomposition procedures were applied such as Independent Component Analysis
(Hyvärinen and Oja, 2000), Sparse Decomposition (Zibulevsky and Pearlmutter, 2001), Non-
negative Matrix Factorization (Févotte et al., 2009; Févotte and Idier, 2010; Liutkus et al.,
2014), and Probabilistic Latent Variables models (Smaragdis et al., 2006). For the source
separation task, matrix decomposition approaches appear to have some limits. First, most
of them operate on the frequency domain without taking into account the phase component
of the signals. In addition, for large data sets, performing composition can be computatio-
nally expensive and the decomposition task can be sensitive to the fixed number of spectral
bases chosen to encode the signal in hand. In addition as Hershey et al. (2015) argue, model
assumptions barely ever match data and inference is intractable because of the difficulty to
discriminatively train.

More recently, there has been growing interest in leveraging deep learning techniques (Huang
et al., 2014a; Hershey et al., 2015; Gao et al., 2018; Ephrat et al., 2018) to tackle the problem
of speech separation. The methods proposed so far can be grouped into two categories : audio-
video and audio-only speech separation methods. The first category exploit visual information
in video in order to carry out the task of audio source separation. In this category a number
of independent and parallel works have recently emerged. They address the problem of audio-
visual sound source separation using deep neural network representations.

Two recent examples in this category include Gao et al. (2018) and Ephrat et al. (2018). Gao
et al. (2018) addressed the closely connected problem of sorting out the sound of multiple
on-screen objects (e.g. musical instruments). The authors perform two-step modeling proce-
dure. Their first step consists of performing a non-negative matrix factorization on the audio
channel in order to discover latent sound representations for each physical object detected.
The subsequent step is a classification task achieved by training a multi-instance multi-label
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neural network to map the spectral audio bases to the distribution of detected visual objects.
One shortcoming is that the objects in the videos are identified without guidance from the
subsequent classification task, thus, some valuable information could be missed, as a result of
overfitting. Ephrat et al. (2018) introduced a hybrid speaker independent audio-visual model,
where they combine the strength of feed-forward convolutional networks and the short and
long-run dynamics of bidirectional LSTM, to conjointly extract visual features of distinct
speakers and their corresponding audio signals. While both Gao et al. (2018) and Ephrat
et al. (2018) leverage visual and auditory signals as a means to achieve high separation
quality, in our work, we rely however on audio source only.

For the audio-only speech separation category the use of deep learning techniques has also
gained growing interest in recent years. Our work falls into this category of methods. Huang
et al. (2014a) were the earliest to use a deep learning approach to modeling monaural speech
separation. They combine of a feed-forward and a recurrent network that are jointly optimized
with a soft masking function. Concomitantly, in a closely-related work, Du et al. (2014)
proposed a neural network to estimate the log power spectrum of the target speakers. Hershey
et al. (2015) proposed a deep clustering approach to speech separation. The basic idea is to
learn high-dimensional embedding of the mixture signals ; then standard clustering techniques
use the obtained embedding to separate the speech targets. The deep attractor network
suggested by Chen et al. (2016) is an extension of the deep clustering approach. The network
also creates the so-called “attractors” to better cluster time-frequency points dominated
by different speakers. The aforementioned approaches estimate only the magnitude of the
STFTs and reconstruct the time-domain signal. Similarly to our work, other papers have
recently proposed to integrate the phase-information within a speech separation system. The
work by Erdogan et al. (2015), for instance, proposes to train a deep neural network with a
phase-sensitive loss. Another noteworthy attempt has been described in Wang et al. (2018),
where the neural network still estimates the magnitude of the spectrum, but the time-domain
speech signals are retrieved directly. Further, another trend, instead of explicitly integrating
phase-information, performs speech separation in the time domain directly, as described in
Venkataramani and Smaragdis (2018). Likewise, the TasNet architectures proposed in Luo
and Mesgarani (2017) and Luo and Mesgarani (2018) accomplish speech separation using the
mixed time signal as input. TasNet directly models the mixture waveform using an encoder-
decoder framework, and performs the separation on the output of the encoder.

The studies by Lee et al. (2017); Hu and Wang (2004); Huang et al. (2014a) are more closely
related to our work as they address the speech separation problem taking into account phase
information. However, this was done without leveraging the recent advances in complex-
valued deep learning. The authors in Lee et al. (2017) address the audio-source separation
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problem using a fully complex-valued deep neural network that learns the nonlinear relation-
ship between an input sound and its distinct sources. Both the activations and weights of the
network are complex-valued. For a more comprehensive review of most of these techniques,
we refer the readers to Wang and Chen (2018).

Previous work has shown that one way to go around the decoupling of magnitude/phase
problem is to estimate a masking function to be applied to the noisy spectrum based on
appropriate objective function. In addition, better modeling of dynamics has shown to im-
prove the quality of the speech separation process. In our work, we follow both of these
tracks. Erdogan et al. (2015) are among the first to propose a masking based-approach by
incorporating phase information (a phase-sensitive mask (PSM)). Their sensitive objective
function is based on the signal-to-noise ratio (SNR) of the signal to be recreated. Because of
reusing noisy phase the performance of PSM was shown to be limited (Wang et al., 2016).
Subsequent work suggested the use of complex-valued ratio masks (cRM). Williamson et al.
(2016) define the complex ideal ratio mask (cIRM) and train a deep neural network to jointly
estimate real and imaginary components of the cIRM. The authors argue that by operating
in the complex domain, the cIRM is able to overcome the decoupling phase/magnitude di-
lemma simultaneously and enhance both components. However, this method is found to be
restricted because it uses only the error between the cIRM and its expected counterpart at
the training stage, which often results in performance deterioration (Wang et al., 2014; Yu
et al., 2017). In a more recent article, Ephrat et al. (2018) propose a cIRM in which each
of the real and imaginary parts is a sigmoidal transformation of the corresponding real and
imaginary components of the model output. Despite its advantages, the previous approach to
cRM seems to have its main limitations (Choi et al., 2019). Choi et al. (2019) argue that, first
the suggested loss function does not capture the cIRM distribution appropriately. Secondly,
the masking method produces a cRM with delimited rotation range of 0 - 90 degrees, which
prevents an accurate adjustment of the noisy phase. Lee et al. (2017) address the audio-
source separation problem using a fully complex-valued deep neural network that learns the
nonlinear relationship between an input sound and its distinct sources. Both the activations
and weights of the network are complex-valued.

Except Choi et al. (2019), who used the building blocks that we propose in this thesis,
previous approaches are incomplete in the sense that they essentially only replace real-valued
architectures by complex-valued equivalents and leave out other important deep learning
building blocks such as initialization, and the normalization methods known to be extremely
important in a real-valued models.

Motivated by all the shortcomings and challenges we have highlighted in the previous sections,
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we aim, in our work, at taking advantage of the compelling properties of the complex-valued
building blocks and framework that we have developed in the first article in order to break
the magnitude/phase decoupling deadlock. More specifically we propose a new deep complex
separator for audio source separation. Our Deep Separator is a novel masking-based me-
thod founded on a complex-valued version of Feature-wise Linear Modulation (FiLM) (Perez
et al., 2018). This new masking method is the keystone of our proposed speech separation
architecture. We also propose a new explicitly phase-aware loss, which is amplitude and
shift-invariant, taking into account the complex-valued components of the spectrogram. We
compare it to several other phase-aware losses operating in both time and frequency domains.
Our experimental results on the standard Wall Street Journal Dataset demonstrate the effec-
tiveness of the proposed model and loss, highlighting the potential of deep complex-valued
networks to improve performance on audio source separation tasks.
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CHAPTER 3 ARTICLE 1 : DEEP COMPLEX NETWORKS

This chapter is a verbatim copy of our accepted paper at the International Conference on
Learning Representations (ICLR) 2019. The paper submission and reviews could be found in
the following link https ://openreview.net/forum ?id=H1T2hmZAb . The authors of the paper
are : Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian,
João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio and Christopher J
Pal.

At present, the vast majority of building blocks, techniques, and architectures for deep lear-
ning are based on real-valued operations and representations. However, recent work on re-
current neural networks and older fundamental theoretical analysis suggests that complex
numbers could have a richer representational capacity and could also facilitate noise-robust
memory retrieval mechanisms. Despite their attractive properties and potential for opening
up entirely new neural architectures, complex-valued deep neural networks have been mar-
ginalized due to the absence of the building blocks required to design such models. In this
work, we provide the key atomic components for complex-valued deep neural networks and
apply them to convolutional feed-forward networks and convolutional LSTMs. More precisely,
we rely on complex convolutions and present algorithms for complex batch-normalization,
complex weight initialization strategies for complex-valued neural nets and we use them in
experiments with end-to-end training schemes. We demonstrate that such complex-valued
models are competitive with their real-valued counterparts. We test deep complex models
on several computer vision tasks, on music transcription using the MusicNet dataset and on
Speech Spectrum Prediction using the TIMIT dataset. We achieve state-of-the-art perfor-
mance on these audio-related tasks.

3.1 Introduction

Recent research advances have made significant progress in addressing the difficulties invol-
ved in learning deep neural network architectures. Key innovations include normalization
techniques (Ioffe and Szegedy, 2015; Salimans and Kingma, 2016) and the emergence of
gating-based feed-forward neural networks like Highway Networks (Srivastava et al., 2015).
Residual networks (He et al., 2016a,b) have emerged as one of the most popular and effective
strategies for training very deep convolutional neural networks (CNNs). Both highway net-
works and residual networks facilitate the training of deep networks by providing shortcut
paths for easy gradient flow to lower network layers thereby diminishing the effects of vani-
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shing gradients (Hochreiter, 1991). He et al. (2016b) show that learning explicit residuals of
layers helps in avoiding the vanishing gradient problem and provides the network with an ea-
sier optimization problem. Batch normalization (Ioffe and Szegedy, 2015) demonstrates that
standardizing the activations of intermediate layers in a network across a minibatch acts as
a powerful regularizer as well as providing faster training and better convergence properties.
Further, such techniques that standardize layer outputs become critical in deep architectures
due to the vanishing and exploding gradient problems.

The role of representations based on complex numbers has started to receive increased atten-
tion, due to their potential to enable easier optimization (Nitta, 2002), better generalization
characteristics (Hirose and Yoshida, 2012), faster learning (Arjovsky et al., 2016; Danihelka
et al., 2016; Wisdom et al., 2016) and to allow for noise-robust memory mechanisms (Dani-
helka et al., 2016). Wisdom et al. (2016) and Arjovsky et al. (2016) show that using complex
numbers in recurrent neural networks (RNNs) allows the network to have a richer represen-
tational capacity. Danihelka et al. (2016) present an LSTM (Hochreiter and Schmidhuber,
1997) architecture augmented with associative memory with complex-valued internal repre-
sentations. Their work highlights the advantages of using complex-valued representations
with respect to retrieval and insertion into an associative memory. In residual networks, the
output of each block is added to the output history accumulated by summation until that
point. An efficient retrieval mechanism could help to extract useful information and process
it within the block.

In order to exploit the advantages offered by complex representations, we present a general
formulation for the building components of complex-valued deep neural networks and apply
it to the context of feed-forward convolutional networks and convolutional LSTMs. Our
contributions in this paper are as follows :

1. A formulation of complex batch normalization, which is described in Section 3.3.5 ;

2. Complex weight initialization, which is presented in Section 3.3.6 ;

3. A comparison of different complex-valued ReLU-based activation functions presented
in Section 3.4.1 ;

4. A state of the art result on the MusicNet multi-instrument music transcription
dataset, presented in Section 3.4.2 ;

5. A state of the art result in the Speech Spectrum Prediction task on the TIMIT
dataset, presented in Section 3.4.3.

We perform a sanity check of our deep complex network and demonstrate its effectiveness on
standard image classification benchmarks, specifically, CIFAR-10, CIFAR-100. We also use
a reduced-training set of SVHN that we call SVHN*. For audio-related tasks, we perform a
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music transcription task on the MusicNet dataset and a Speech Spectrum prediction task on
TIMIT. The results obtained for vision classification tasks show that learning complex-valued
representations results in performance that is competitive with the respective real-valued
architectures. Our promising results in music transcription and speech spectrum prediction
underscore the potential of deep complex-valued neural networks applied to acoustic related
tasks 1 – We continue this paper with discussion of motivation for using complex operations
and related work.

3.2 Motivation and Related Work

Using complex parameters has numerous advantages from computational, biological, and si-
gnal processing perspectives. From a computational point of view, Danihelka et al. (2016) has
shown that Holographic Reduced Representations (Plate, 2003), which use complex numbers,
are numerically efficient and stable in the context of information retrieval from an associa-
tive memory. Danihelka et al. (2016) insert key-value pairs in the associative memory by
addition into a memory trace. Although not typically viewed as such, residual networks (He
et al., 2016a,b) and Highway Networks (Srivastava et al., 2015) have a similar architecture to
associative memories : each ResNet residual path computes a residual that is then inserted
– by summing into the “memory” provided by the identity connection. Given residual net-
works’ resounding success on several benchmarks and their functional similarity to associative
memories, it seems interesting to marry both together. This motivates us to incorporate com-
plex weights and activations in residual networks. Together, they offer a mechanism by which
useful information may be retrieved, processed and inserted in each residual block.

Orthogonal weight matrices provide a novel angle of attack on the well-known vanishing and
exploding gradient problems in RNNs. Unitary RNNs (Arjovsky et al., 2016) are based on
unitary weight matrices, which are a complex generalization of orthogonal weight matrices.
Compared to their orthogonal counterparts, unitary matrices provide a richer representa-
tion, for instance being capable of implementing the discrete Fourier transform, and thus of
discovering spectral representations. Arjovsky et al. (2016) show the potential of this type
of recurrent neural networks on toy tasks. Wisdom et al. (2016) provided a more general
framework for learning unitary matrices and they applied their method on toy tasks and on
a real-world speech task.

Using complex weights in neural networks also has biological motivation. Reichert and Serre
(2013) have proposed a biologically plausible deep network that allows one to construct richer

1. The source code is located at http://github.com/ChihebTrabelsi/deep_complex_networks

http://github.com/ChihebTrabelsi/deep_complex_networks
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and more versatile representations using complex-valued neuronal units. The complex-valued
formulation allows one to express the neuron’s output in terms of its firing rate and the
relative timing of its activity. The amplitude of the complex neuron represents the former
and its phase the latter. Input neurons that have similar phases are called synchronous as
they add constructively, whereas asynchronous neurons add destructively and thus interfere
with each other. This is related to the gating mechanism used in both deep feed-forward
neural networks (Srivastava et al., 2015; van den Oord et al., 2016b,a) and recurrent neural
networks (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Zilly et al., 2016) as this
mechanism learns to synchronize inputs that the network propagates at a given feed-forward
layer or time step. In the context of deep gating-based networks, synchronization means
the propagation of inputs whose controlling gates simultaneously hold high values. These
controlling gates are usually the activations of a sigmoid function. This ability to take into
account phase information might explain the effectiveness of incorporating complex-valued
representations in the context of recurrent neural networks.

The phase component is not only important from a biological point of view but also from a
signal processing perspective. It has been shown that the phase information in speech signals
affects their intelligibility (Shi et al., 2006). Also Oppenheim and Lim (1981) show that the
amount of information present in the phase of an image is sufficient to recover the majority
of the information encoded in its magnitude. In fact, phase provides a detailed description
of objects as it encodes shapes, edges, and orientations.

Recently, Rippel et al. (2015) leveraged the Fourier spectral representation for convolutio-
nal neural networks, providing a technique for parameterizing convolution kernel weights in
the spectral domain, and performing pooling on the spectral representation of the signal.
However, the authors avoid performing complex-valued convolutions, instead building from
real-valued kernels in the spatial domain. In order to ensure that a complex parametriza-
tion in the spectral domain maps onto real-valued kernels, the authors impose a conjugate
symmetry constraint on the spectral-domain weights, such that when the inverse Fourier
transform is applied to them, it only yields real-valued kernels.

As pointed out in Reichert and Serre (2013), the use of complex-valued neural networks
(Georgiou and Koutsougeras, 1992; Zemel et al., 1995; Kim and Adalı, 2003; Hirose, 2003;
Nitta, 2004) has been investigated long before the earliest deep learning breakthroughs (Hin-
ton et al., 2006; Bengio et al., 2007; Poultney et al., 2007). Recently Reichert and Serre
(2013); Bruna et al. (2015); Arjovsky et al. (2016); Danihelka et al. (2016); Wisdom et al.
(2016) have tried to bring more attention to the usefulness of deep complex neural net-
works by providing theoretical and mathematical motivation for using complex-valued deep
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networks. However, to the best of our knowledge, most of the recent works using complex
valued networks have been applied on toy tasks, with the exception of some attempts. In
fact, (Oyallon and Mallat, 2015; Tygert et al., 2015; Worrall et al., 2016) have used complex
representation in vision tasks. Wisdom et al. (2016) have also performed a real-world speech
task consisting of predicting the log magnitude of the future short time Fourier transform
frames. In Natural Language Processing, (Trouillon et al., 2016; Trouillon and Nickel, 2017)
have used complex-valued embeddings. Much remains to be done to develop proper tools and
a general framework for training deep neural networks with complex-valued parameters.

Given the compelling reasons for using complex-valued representations, the absence of such
frameworks represents a gap in machine learning tooling, which we fill by providing a set
of building blocks for deep complex-valued neural networks that enable them to achieve
competitive results with their real-valued counterparts on real-world tasks.

3.3 Complex Building Blocks

In this section, we present the core of our work, laying down the mathematical framework
for implementing complex-valued building blocks of a deep neural network.

3.3.1 Representation of Complex Numbers

We start by outlining the way in which complex numbers are represented in our framework.
A complex number z = a + ib has a real component a and an imaginary component b. We
represent the real part a and the imaginary part b of a complex number as logically distinct
real valued entities and simulate complex arithmetic using real-valued arithmetic internally.
Consider a typical real-valued 2D convolution layer that has N feature maps such that N
is divisible by 2 ; to represent these as complex numbers, we allocate the first N/2 feature
maps to represent the real components and the remaining N/2 to represent the imaginary
ones. Thus, for a four dimensional weight tensorW that links Nin input feature maps to Nout

output feature maps and whose kernel size is m ×m we would have a weight tensor of size
(Nout ×Nin ×m×m) /2 complex weights.

3.3.2 Complex Convolution

In order to perform the equivalent of a traditional real-valued 2D convolution in the complex
domain, we convolve a complex filter matrix W = A + iB by a complex vector h = x + iy
where A and B are real matrices and x and y are real vectors since we are simulating complex
arithmetic using real-valued entities. As the convolution operator is distributive, convolving
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the vector h by the filter W we obtain :

W ∗ h = (A ∗ x−B ∗ y) + i (B ∗ x + A ∗ y). (3.1)

As illustrated in Figure 3.1a, if we use matrix notation to represent real and imaginary parts
of the convolution operation we have :<(W ∗ h)

=(W ∗ h)

 =
A −B

B A

 ∗
x
y

. (3.2)

3.3.3 Complex Differentiability

In order to perform backpropagation in a complex-valued neural network, a sufficient condi-
tion is to have a cost function and activations that are differentiable with respect to the
real and imaginary parts of each complex parameter in the network. See Section 3.6.3 in the
Appendix for the complex chain rule.

By constraining activation functions to be complex differentiable or holomorphic, we restrict
the use of possible activation functions for a complex valued neural networks (For further
details about holomorphism please refer to Section 3.6.2 in the appendix). Hirose and Yo-
shida (2012) shows that it is unnecessarily restrictive to limit oneself only to holomorphic
activation functions ; Those functions that are differentiable with respect to the real part and
the imaginary part of each parameter are also compatible with backpropagation. (Arjovsky
et al., 2016; Wisdom et al., 2016; Danihelka et al., 2016) have used non-holomorphic acti-
vation functions and optimized the network using regular, real-valued backpropagation to
compute partial derivatives of the cost with respect to the real and imaginary parts.

Even though their use greatly restricts the set of potential activations, it is worth mentio-
ning that holomorphic functions can be leveraged for computational efficiency purposes. As
pointed out in Sarroff et al. (2015), using holomorphic functions allows one to share gradient
values (because the activation satisfies the Cauchy-Riemann equations 3.11 and 3.12 in the
appendix). So, instead of computing and backpropagating 4 different gradients, only 2 are
required.
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3.3.4 Complex-Valued Activations

ModReLU

Numerous activation functions have been proposed in the literature in order to deal with
complex-valued representations. Arjovsky et al. (2016) have proposed modReLU, which is
defined as follows :

modReLU(z) = ReLU(|z|+ b) eiθz =

(|z|+ b) z
|z| if |z|+ b ≥ 0,

0 otherwise,
(3.3)

where z ∈ C, θz is the phase of z, and b ∈ R is a learnable parameter. As |z| is always positive,
a bias b is introduced in order to create a “dead zone” of radius b around the origin 0 where the
neuron is inactive, and outside of which it is active. The authors have used modReLU in the
context of unitary RNNs. Their design of modReLU is motivated by the fact that applying
separate ReLUs on both real and imaginary parts of a neuron performs poorly on toy tasks.
The intuition behind the design of modReLU is to preserve the pre-activated phase θz, as
altering it with an activation function severely impacts the complex-valued representation.
modReLU does not satisfy the Cauchy-Riemann equations, and thus is not holomorphic. We
have tested modReLU in deep feed-forward complex networks and the results are given in
Table 3.1.

CReLU and zReLU

We call Complex ReLU (or CReLU) the complex activation that applies separate ReLUs on
both of the real and the imaginary part of a neuron, i.e :

CReLU(z) = ReLU(<(z)) + iReLU(=(z)). (3.4)

CReLU satisfies the Cauchy-Riemann equations when both the real and imaginary parts are
at the same time either strictly positive or strictly negative. This means that CReLU satisfies
the Cauchy-Riemann equations when θz ∈ ]0, π/2[ or θz ∈ ]π, 3π/2[. We have tested CReLU
in deep feed-forward neural networks and the results are given in Table 3.1.

It is also worthwhile to mention the work done by Guberman (2016) where a ReLU-based
complex activation which satisfies the Cauchy-Riemann equations everywhere except for the
set of points {<(z) > 0,=(z) = 0} ∪ {<(z) = 0,=(z) > 0} is used. The activation function
has similarities to CReLU. We call Guberman (2016) activation as zReLU and is defined as
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follows :

zReLU(z) =

z if θz ∈ [0, π/2],

0 otherwise,
(3.5)

We have tested zReLU in deep feed-forward complex networks and the results are given in
Table 3.1.

3.3.5 Complex Batch Normalization

Deep networks generally rely upon Batch Normalization (Ioffe and Szegedy, 2015) to acce-
lerate learning. In some cases batch normalization is essential to optimize the model. The
standard formulation of Batch Normalization applies only to real values. In this section, we
propose a batch normalization formulation that can be applied for complex values.

To standardize an array of complex numbers to the standard normal complex distribution,
it is not sufficient to translate and scale them such that their mean is 0 and their variance
1. This type of normalization does not ensure equal variance in both the real and imagi-
nary components, and the resulting distribution is not guaranteed to be circular ; It will be
elliptical, potentially with high eccentricity.

We instead choose to treat this problem as one of whitening 2D vectors, which implies scaling
the data by the inverse square root of their variances and canceling the covariance between the
real and the imaginary part. This can be done by multiplying the 0-centered data (x− E[x])
by the inverse square root of the 2× 2 covariance matrix V :

x̃ = (V)− 1
2 (x− E[x]) ,

where the covariance matrix V is

V =
 Vrr Vri

Vir Vii

 =
 Cov(<{x},<{x}) Cov(<{x},={x})

Cov(={x},<{x}) Cov(={x},={x})

 .
The square root and inverse of 2 × 2 matrices has an inexpensive, analytical solution, and
its existence is guaranteed by the positive (semi-)definiteness of V. Positive definiteness of
V is ensured by the addition of ε I to V (Tikhonov regularization). The mean subtraction
and multiplication by the inverse square root of the variance ensures that x̃ has standard
complex distribution with mean µ = 0, covariance Γ = 1 and pseudo-covariance (also called
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relation) C = 0. The mean, the covariance and the pseudo-covariance are given by :

µ = E [x̃]

Γ = E [(x̃− µ) (x̃− µ)∗] = Vrr + Vii + i (Vir − Vri)

C = E [(x̃− µ) (x̃− µ)] = Vrr − Vii + i (Vir + Vri).

(3.6)

The normalization procedure allows one to decorrelate the imaginary and real parts of a
unit. This has the advantage of avoiding co-adaptation between the two components which
reduces the risk of overfitting (Cogswell et al., 2015; Srivastava et al., 2014).

Analogously to the real-valued batch normalization algorithm, we use two parameters, β and
γ. The shift parameter β is a complex parameter with two learnable components (defining
the new real and imaginary means). The scaling parameter γ is a 2×2 matrix with only three
degrees of freedom, and thus only three learnable components. The matrix (V)− 1

2 normalizes
the variance of the input to 1 along both of its original principal components. γ scales the
input to achieve a new desired covariance. The scaling parameter γ is given by :

γ =
 γrr γri

γri γii

 .
As the normalized input x̃ has real and imaginary variance 1, we initialize both γrr and γii
to 1/

√
2 in order to obtain a modulus of 1 for the variance of the normalized value. γri, <{β}

and ={β} are initialized to 0. The complex batch normalization is defined as :

BN (x̃) = γ x̃+ β. (3.7)

We use running averages with momentum to maintain an estimate of the complex batch
normalization statistics during training and testing. The moving averages of Vri and β are
initialized to 0. The moving averages of Vrr and Vii are initialized to 1/

√
2. The momentum

for the moving averages is set to 0.9.

3.3.6 Complex Weight Initialization

In a general case, particularly when batch normalization is not performed, proper initializa-
tion is critical in reducing the risks of vanishing or exploding gradients. To do this, we follow
the same steps as in Glorot and Bengio (2010) and He et al. (2015) to derive the variance of
the complex weight parameters.
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A complex weight has a polar form as well as a rectangular form

W = |W |eiθ = <{W}+ i ={W}, (3.8)

where θ and |W | are respectively the argument (phase) and magnitude of W .

Variance is the difference between the expectation of the squared magnitude and the square
of the expectation :

Var(W ) = E [WW ∗]− (E [W ])2 = E
[
|W |2

]
− (E [W ])2,

which reduces, in the case of W symmetrically distributed around 0, to E [|W |2]. We do not
know yet the value of Var(W ) = E [|W |2]. However, we do know a related quantity, Var(|W |),
because the magnitude of complex normal values, |W |, follows the Rayleigh distribution (Chi-
distributed with two degrees of freedom (DOFs)). This quantity is

Var(|W |) = E [|W ||W |∗]− (E [|W |])2 = E
[
|W |2

]
− (E [|W |])2. (3.9)

Putting them together :

Var(|W |) = Var(W )− (E [|W |])2, and Var(W ) = Var(|W |) + (E [|W |])2.

We now have a formulation for the variance of W in terms of the variance and expectation
of its magnitude, both properties analytically computable from the Rayleigh distribution’s
single parameter, σ, indicating the mode. These are :

E [|W |] = σ

√
π

2 , Var(|W |) = 4− π
2 σ2.

The variance of W can thus be expressed in terms of its generating Rayleigh distribution’s
single parameter, σ, thus :

Var(W ) = 4− π
2 σ2 +

(
σ

√
π

2

)2
= 2σ2. (3.10)

If we want to respect the Glorot and Bengio (2010) criterion which ensures that the variances
of the input, the output and their gradients are the same, then we would have Var(W ) =
2/(nin + nout), where nin and nout are the number of input and output units respectively. In
such case, σ = 1/

√
nin + nout. If we want to respect the He et al. (2015) initialization that

presents an initialization criterion that is specific to ReLUs, then Var(W ) = 2/nin which
σ = 1/√nin.

The magnitude of the complex parameterW is then initialized using the Rayleigh distribution
with the appropriate mode σ. We can see from equation 3.10, that the variance ofW depends
on on its magnitude and not on its phase. We then initialize the phase using the uniform
distribution between −π and π. By performing the multiplication of the magnitude by the
phasor as is detailed in equation 3.8, we perform the complete initialization of the complex
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parameter.

In all the experiments that we report, we use variant of this initialization which leverages
the independence property of unitary matrices. As it is stated in Cogswell et al. (2015),
Srivastava et al. (2014), and Tompson et al. (2015), learning decorrelated features is beneficial
for learning as it allows to perform better generalization and faster learning. This motivates
us to achieve initialization by considering a (semi-)unitary matrix which is reshaped to the
size of the weight tensor. Once this is done, the weight tensor is mutiplied by

√
Hevar/Var(W )

or
√
Glorotvar/Var(W ) where Glorotvar and Hevar are respectively equal to 2/(nin+nout) and

2/nin. In such a way we allow kernels to be independent from each other as much as possible
while respecting the desired criterion. Note that we perform the analogous initialization for
real-valued models by leveraging the independence property of orthogonal matrices in order
to build kernels that are as much independent from each other as possible while respecting
a given criterion.

3.3.7 Complex Convolutional Residual Network

A deep convolutional residual network of the nature presented in He et al. (2016a,b) consists
of 3 stages within which feature maps maintain the same shape. At the end of a stage, the
feature maps are downsampled by a factor of 2 and the number of convolution filters are
doubled. The sizes of the convolution kernels are always set to 3 x 3. Within a stage, there
are several residual blocks which comprise 2 convolution layers each. The contents of one such
residual block in the real and complex setting is illustrated in Appendix Figure 3.1b.

In the complex valued setting, the majority of the architecture remains identical to the one
presented in He et al. (2016b) with a few subtle differences. Since all datasets that we work
with have real-valued inputs, we present a way to learn their imaginary components to let the
rest of the network operate in the complex plane. We learn the initial imaginary component
of our input by performing the operations present within a single real-valued residual block

BN → ReLU → Conv → BN → ReLU → Conv

Using this learning block yielded better emprical results than assuming that the input image
has a null imaginary part. The parameters of this real-valued residual block are trained by
backpropagating errors from the task specific loss function. Secondly, we perform a Conv →
BN → Activation operation on the obtained complex input before feeding it to the first
residual block. We also perform the same operation on the real-valued network input instead
of Conv → Maxpooling as in He et al. (2016b). Inside, residual blocks, we subtly alter the



42

Table 3.1 Classification error on CIFAR-10, CIFAR-100 and SVHN∗ using different complex
activations functions (zReLU, modReLU and CReLU). WS, DN and IB stand for the wide
and shallow, deep and narrow and in-between models respectively. The prefixes R & C refer
to the real and complex valued networks respectively. Performance differences between the
real network and the complex network using CReLU are reported between their respective
best models. All models are constructed to have roughly 1.7M parameters except the mo-
dReLU models which have roughly 2.5M parameters. modReLU and zReLU were largely
outperformed by CReLU in the reported experiments. Due to limited resources, we haven’t
performed all possible experiments as the conducted ones are already conclusive. A “-” is
filled in front of an unperformed experiment.

Arch CIFAR-10 CIFAR-100 SVHN∗

zReLU modReLU CReLU zReLU modReLU CReLU zReLU modReLU CReLU

CWS 11.71 23.42 6.17 - 50.38 26.36 80.41 7.43 3.70
CDN 9.50 22.49 6.73 - 50.64 28.22 80.41 - 3.72
CIB 11.36 23.63 5.59 - 48.10 28.64 4.98 - 3.62

ReLU ReLU ReLU

RWS 5.42 27.22 3.42
RDN 6.29 27.84 3.52
RIB 6.07 27.71 4.30

DIFF -0.17 +0.86 -0.20

way in which we perform a projection at the end of a stage in our network. We concatenate
the output of the last residual block with the output of a 1x1 convolution applied on it
with the same number of filters used throughout the stage and subsample by a factor of 2.
In contrast, He et al. (2016b) perform a similar 1x1 convolution with twice the number of
feature filters in the current stage to both downsample the feature maps spatially and double
them in number.

3.4 Experimental Results

In this section, we present empirical results from using our model to perform image, music
classification and spectrum prediction. First, we present our model’s architecture followed
by the results we obtained on CIFAR-10, CIFAR-100, and SVHN∗ as well as the results on
automatic music transcription on the MusicNet benchmark and speech spectrum prediction
on TIMIT.
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Table 3.2 Classification error on CIFAR-10, CIFAR-100 and SVHN∗ using different norma-
lization strategies. NCBN, CBN and BN stand for a Naive variant of the complex batch-
normalization, complex batch-normalization and regular batch normalization respectively.
(R) & (C) refer to the use of the real- and complex-valued convolution respectively. The
complex models use CReLU as activation. All models are constructed to have roughly 1.7M
parameters. 5 out of 6 experiments using the naive variant of the complex batch normali-
zation failed with the apparition of NaNs during training. As these experiments are already
conclusive and due to limited resources, we haven’t conducted other experiments for the
NCBN model. A “-” is filled in front of an unperformed experiment.

Arch CIFAR-10 CIFAR-100 SVHN∗

NCBN(C) CBN(R) BN(C) NCBN(C) CBN(R) BN(C) NCBN(C) CBN(R) BN(C)

WS - 5.47 6.32 27.29 26.63 27.89 NAN 3.80 3.52
DN - 5.89 6.71 NAN 27.13 28.83 NAN 3.54 3.58
IB - 5.66 6.83 NAN 26.99 29.89 NAN 3.74 3.56

3.4.1 Image Recognition

We adopt an architecture inspired by He et al. (2016b). The latter will also serve as a baseline
to compare against. We train comparable real-valued Neural Networks using the standard
ReLU activation function. We have tested our complex models with the CReLU, zReLU and
modRelu activation functions. We use a cross entropy loss for both real and complex models.
A global average pooling layer followed by a single fully connected layer with a softmax
function is used to classify the input as belonging to one of 10 classes in the CIFAR-10 and
SVHN datasets and 100 classes for CIFAR-100.

We consider architectures that trade-off model depth (number of residual blocks per stage)
and width (number of convolutional filters in each layer) given a fixed parameter budget.
Specifically, we build three different models - wide and shallow (WS), deep and narrow (DN)
and in-between (IB). In a model that has roughly 1.7 million parameters, our WS architecture
for a complex network starts with 12 complex filters (24 real filters) per convolution layer
in the initial stage and 16 residual blocks per stage. The DN architecture starts with 10
complex filters and 23 blocks per stage while the IB variant starts with 11 complex filters
and 19 blocks per stage. The real-valued counterpart has also 1.7 million parameters. Its WS
architecture starts with 18 real filters per convolutional layer and 14 blocks per stage. The
DN architecture starts with 14 real filters and 23 blocks per stage and the IB architecture
starts with 16 real filters and 18 blocks per stage.

All models (real and complex) were trained using the backpropagation algorithm with Sto-
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chastic Gradient Descent with Nesterov momentum (Nesterov, 1983) set at 0.9. We also clip
the norm of our gradients to 1. We tweaked the learning rate schedule used in He et al.
(2016b) in both the real and complex residual networks to extract small performance impro-
vements in both. We start our learning rate at 0.01 for the first 10 epochs to warm up the
training and then set it at 0.1 from epoch 10-100 and then anneal the learning rates by a
factor of 10 at epochs 120 and 150. We end the training at epoch 200.

Table 3.1 presents our results on performing image classification on CIFAR-10, CIFAR-100.
In addition, we also consider a truncated version of the Street View House Numbers (SVHN)
dataset which we call SVHN*. For computational reasons, we use the required 73,257 training
images of Street View House Numbers (SVHN). We still test on all 26,032 images. For all the
tasks and for both the real- and complex-valued models, The WS architecture has yielded
the best performances. This is in concordance with Zagoruyko and Komodakis (2016) who
observed that wider and shallower residual networks perform better than their deeper and
narrower counterpart. On CIFAR-10 and SVHN∗, the real-valued representation performs
slightly better than its complex counterpart. On CIFAR-100, the complex representation
outperforms the real one. In general, the obtained results for both representation are quite
comparable. To understand the effect of using either real or complex representation for a
given task, we designed hybrid models that combine both. Table 3.2 contains the results for
hybrid models. We can observe in the Table 3.2 that in cases where complex representa-
tion outperformed the real one (wide and shallow on CIFAR-100), combining a real-valued
convolutional filter with a complex batch normalization improves the accuracy of the real-
valued convolutional model. However, the complex-valued one is still outperforming it. In
cases, where real-valued representation outperformed the complex one (wide and shallow on
CIFAR-10 and SVHN∗), replacing a complex batch normalization by a regular one increased
the accuracy of the complex convolutional model. Despite that replacement, the real-valued
model performs better in terms of accuracy for such tasks. In general, these experiments
show that the difference in efficiency between the real and complex models varies according
to the dataset, to the task and to the architecture.

Ablation studies were performed in order to investigate the importance of the 2D whitening
operation that occurs in the complex batch normalization. We replaced the complex batch
normalization layers with a naive variant (NCBN) which, instead of left multiplying the
centred unit by the inverse square root of its covariance matrix, just divides it by its complex
variance. Here, this naive variant of CBN is Mimicking the regular BN by not taking into
account correlation between the elements in the complex unit. The Naive variant of the
Complex Batch Normalization performed very poorly ; In 5 out of 6 experiments, training
failed with the appearance of NaNs (See Section 3.6.6 for the explanation). By way of contrast,
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all 6 complex-valued Batch Normalization experiments converged. Results are given in Table
3.2.

Another ablation study was undertaken to compare CReLU, modReLU and zRELU. Again
the differences were stark : All CReLU experiments converged and outperformed both mo-
dReLU and zReLU, both of which variously failed to converge or fared substantially worse.
We think that modReLU didn’t perform as well as CReLU due to the fact that consecutive
layers in a feed-forward net do not represent time-sequential patterns, and so, they might
need to drop some phase information. Results are reported in Table 3.1. More discussion
about phase information encoding is presented in section 3.6.7.

3.4.2 Automatic Music Transcription

In this section we present results for the automatic music transcription (AMT) task. The
nature of an audio signal allows one to exploit complex operations as presented earlier in the
paper. The experiments were performed on the MusicNet dataset (Thickstun et al., 2016). For
computational efficiency we resampled the original input from 44.1kHz to 11kHz using the
algorithm described in Smith (2002). This sampling rate is sufficient to recognize frequencies
presented in the dataset while reducing computational cost dramatically. We modeled each
of the 84 notes that are present in the dataset with independent sigmoids (due to the fact
that notes can fire simultaneously). We initialized the bias of the last layer to the value
of -5 to reflect the distribution of silent/non-silent notes. As in the baseline, we performed
experiments on the raw signal and the frequency spectrum. For complex experiments with
the raw signal, we considered its imaginary part equal to zero. When using the spectrum
input we used its complex representation (instead of only the magnitudes, as usual for AMT)
for both real and complex models. For the real model, we considered the real and imaginary
components of the spectrum as separate channels. The model we used for raw signals is a
shallow convolutional network similar to the model used in the baseline, with the size reduced
by a factor of 4 (corresponding to the reduction of the sampling rate). The filter size was
512 samples (about 12ms) with a stride of 16. The model for the spectral input is similar
to the VGG model (Simonyan and Zisserman, 2015). The first layer has filter with size of 7
and is followed by 5 convolutional layers with filters of size 3. The final convolution block
is followed by a fully connected layer with 2048 units. The latter is followed, in its turn, by
another fully connected layer with 84 sigmoidal units. In all of our experiments we use an
input window of 4096 samples or its corresponding FFT (which corresponds to the 16,384
window used in the baseline) and predicted notes in the center of the window. All networks
were optimized with Adam (Kingma and Ba, 2014). We start our learning rate at 10−3 for
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the first 10 epochs and then anneal it by a factor of 10 at each of the epochs 100, 120 and
150. We end the training at epoch 200. For the real-valued models, we have used ReLU as
activation. CReLU has been used as activation for the complex-valued models.

The complex network was initialized using the unitary initialization scheme respecting the He
criterion as described in Section 3.3.6. For the real-valued network, we have used the analogue
initialization of the weight tensor. It consists of performing an orthogonal initialization with
a gain of

√
2. The complex batch normalization was applied according to Section 3.3.5.

Following Thickstun et al. (2016) we used recordings with ids ’2303’, ’2382’, ’1819’ as the
test subset and additionally we created a validation subset using recording ids ’2131’, ’2384’,
’1792’, ’2514’, ’2567’, ’1876’ (randomly chosen from the training set). The validation subset
was used for model selection and early stopping. The remaining 321 files were used for
training. The results are summarized on Table 3.3. We achieve a performance comparable
to the baseline with the shallow convolutional network. our VGG-based deep real-valued
model reaches 69.6% average precision on the downsampled data. With significantly fewer
parameters than its real counterpart, the VGG-based deep complex model, achieves 72.9%
average precision which is the state of the art to the best of our knowledge. See Figures 3.3
and 3.4 in the Appendix for precision-recall curves and a sample of the output of the model.

3.4.3 Speech Spectrum Prediction

We apply both a real Convolutional LSTM (Xingjian et al., 2015) and a complex Convolu-
tional LSTM on speech spectrum prediction task (See section 3.6.5 in the Appendix for the
details of the real and complex Convolutional LSTMs). In this task, the model predicts the
magnitude spectrum. It implicitly infers the real and imaginary components of the spectrum
at time t+1, given all the spectrum (imaginary part and real components) up to time t. This
is slightly different from (Wisdom et al., 2016). The real and imaginary components are consi-
dered as separate channels in both model. We evaluate the model with mean-square-error
(MSE) on log-magnitude to compare with the others (Wisdom et al., 2016). The experiments
are conducted on a downsampled (8kHz) version of the TIMIT dataset. By following the
steps in Wisdom et al. (2016), raw audio waves are transformed into frequency domain via
short-time Fourier transform (STFT) with a Hann analysis window of 256 samples and a
window hop of 128 samples (50% overlap). We use a training set with 3690 utterances, a
validation set with 400 utterances and a standard test set with 192 utterance.

To match the number of parameters for both model, the Convolutional LSTM has 84 feature
maps while the complex model has 60 complex feature maps (120 feature maps in total).
Adam (Kingma and Ba, 2014) with a fixed learning rate of 1e-4 is used in both experiments.
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Table 3.3 MusicNet experiments. FS is the sampling rate. Params is the total number of
parameters. We report the average precision (AP) metric that is the area under the precision-
recall curve.

Architecture FS Params AP, %

Shallow, Real 11kHz 66.1
Shallow, Complex 11kHz 66.0
Shallow, Thickstun et al. (2016) 44.1kHz - 67.8

Deep, Real 11kHz 10.0M 69.6
Deep, Complex 11kHz 8.8M 72.9

We initialize the complex model with the unitary initialization scheme and the real model
with orthogonal initialization respecting the Glorot criterion. The result is shown in Table 3.4
and the learning curve is shown in Figure 3.5. Our baseline model has achieved the state of
the art and the complex convolutional LSTM model performs better over the baseline in
terms of MSE and convergence.

3.5 Conclusions

We have presented key building blocks required to train complex valued neural networks,
such as complex batch normalization and complex weight initialization. We have also explo-
red a wide variety of complex convolutional network architectures, including some yielding
competitive results for image classification and state of the art results for a music trans-
cription task and speech spectrum prediction. We hope that our work will stimulate further
investigation of complex valued networks for deep learning models and their application to
more challenging tasks such as generative models for audio and images.
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Table 3.4 Speech Spectrum Prediction on TIMIT test set. CConv-LSTM denotes the Complex
Convolutional LSTM.

Model #params MSE(validation) MSE(test)

LSTM Wisdom et al. (2016) ≈ 135k 16.59 16.98
Full-capacity uRNN Wisdom et al. (2016) ≈ 135k 14.56 14.66
Conv-LSTM (our baseline) ≈ 88k 11.10 12.18
CConv-LSTM (ours) ≈ 88k 10.78 11.90

3.6 Appendix

In practice, the complex convolution operation is implemented as illustrated in Fig.3.1a where
MI , MR refer to imaginary and real feature maps and KI and KR refer to imaginary and real
kernels. MIKI refers to result of a real-valued convolution between the imaginary kernels KI and
the imaginary feature maps MI .

An illustration of the complex convolution opera-
tor.

A complex convolutional residual network (left)
and an equivalent real-valued residual network
(right).

Figure 3.2 Complex convolution and residual network implementation details.
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3.6.1 MusicNet illustrations

Figure 3.3 Precision-recall curve

Figure 3.4 Predictions (Top) vs. ground truth (Bottom) for a music segment from the test
set.
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3.6.2 Holomorphism and Cauchy–Riemann Equations

Holomorphism, also called analyticity, ensures that a complex-valued function is complex differen-
tiable in the neighborhood of every point in its domain. This means that the derivative, f ′(z0) ≡
lim∆z→0

[
(f(z0)+∆z)−f(z0)

∆z

]
of f , exists at every point z0 in the domain of f where f is a complex-

valued function of a complex variable z = x + i y such that f(z) = u(x, y) + i v(x, y). u and v

are real-valued functions. One possible way of expressing ∆z is to have ∆z = ∆x + i∆y. ∆z can
approach 0 from multiple directions (along the real axis, imaginary axis or in-between). However, in
order to be complex differentiable, f ′(z0) must be the same complex quantity regardless of direction
of approach. When ∆z approaches 0 along the real axis, f ′(z0) could be written as :

f ′(z0) ≡ lim
∆z→0

[(f(z0) + ∆z)− f(z0)
∆z

]
= lim

∆x→0
lim

∆y→0

[∆u(x0, y0) + i∆v(x0, y0)
∆x+ i∆y

]
= lim

∆x→0

[∆u(x0, y0) + i∆v(x0, y0)
∆x+ i 0

]
.

(3.11)

When ∆z approaches 0 along the imaginary axis, f ′(z0) could be written as :

= lim
∆y→0

lim
∆x→0

[∆u(x0, y0) + i∆v(x0, y0)
∆x+ i∆y

]
= lim

∆y→0

[∆u(x0, y0) + i∆v(x0, y0)
0 + i∆y

] (3.12)

Satisfying equations 3.11 and 3.12 is equivalent of having ∂f
∂z = ∂u

∂x + i ∂v∂x = −i ∂u∂y + ∂v
∂y . So, in

order to be complex differentiable, f should satisfy ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x . These are called the
Cauchy–Riemann equations and they give a necessary condition for f to be complex differentiable
or "holomorphic". Given that u and v have continuous first partial derivatives, the Cauchy-Riemann
equations become a sufficient condition for f to be holomorphic.

3.6.3 The Genralized Complex Chain Rule for a Real-Valued Loss Function

If L is a real-valued loss function and z is a complex variable such that z = x+ i y where x, y ∈ R,
then :

∇L(z) = ∂L

∂z
= ∂L

∂x
+ i

∂L

∂y
= ∂L

∂<(z) + i
∂L

∂=(z) = <(∇L(z)) + i= (∇L(z)). (3.13)
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Now if we have another complex variable t = r + i s where z could be expressed in terms of t and
r, s ∈ R, we would then have :

∇L(t) = ∂L

∂t
= ∂L

∂r
+ i

∂L

∂s

= ∂L

∂x

∂x

∂r
+ ∂L

∂y

∂y

∂r
+ i

(
∂L

∂x

∂x

∂s
+ ∂L

∂y

∂y

∂s

)
= ∂L

∂x

(
∂x

∂r
+ i

∂x

∂s

)
+ ∂L

∂y

(
∂y

∂r
+ i

∂y

∂s

)
= ∂L

∂<(z)

(
∂x

∂r
+ i

∂x

∂s

)
+ ∂L

∂=(z)

(
∂y

∂r
+ i

∂y

∂s

)
= <(∇L(z))

(
∂x

∂r
+ i

∂x

∂s

)
+ =(∇L(z))

(
∂y

∂r
+ i

∂y

∂s

)
.

(3.14)

3.6.4 Computational Complexity and FLOPS

In terms of computational complexity, the convolutional operation and the complex batchnorm are
of the same order as their real counterparts. However, as a complex multiplication is 4 times more
expensive than its real counterpart, all complex convolutions are 4 times more expensive as well.

Additionally, the complex BatchNorm is not implemented in cuDNN and therefore had to be simu-
lated with a sizeable sequence of elementwise operations. This leads to a ballooning of the number
of nodes in the compute graph and to inefficiencies due to lack of effective operation fusion. A
dedicated cuDNN kernel will, however, reduce the cost to little more than that of the real-valued
BatchNorm.

Ignoring elementwise operations, which constitute a negligible fraction of the floating-point ope-
rations in the neural network, we find that for all architectures in 3.1 and for all of CIFAR10,
CIFAR100 or SVHN, the inference cost in real FLOPS per example is roughly identical. It is ∼ 265
MFLOPS for the R-valued variant and ∼ 1030 MFLOPS for the C-valued variant of the architecture,
approximately quadruple.

3.6.5 Convolutional LSTM

A Convolutional LSTM is similar to a fully connected LSTM. The only difference is that, ins-
tead of using matrix multiplications to perform computation, we use convolutional operations. The
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computation in a real-valued Convolutional LSTM is defined as follows :

it = σ(Wxi ∗ xt + Whi ∗Wt−1 + bi)

f t = σ(Wxf ∗ xt + Whf ∗ ht−1 + bf )

ct = f t ◦ ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + bo)

ht = ot ◦ tanh(ct)

(3.15)

Where σ denotes the sigmoidal activation function, ◦ the elementwise multiplication and ∗ the real-
valued convolution. it, f t, ot represent the vector notation of the input, forget and output gates
respectively. ct and ht represent the vector notation of the cell and hidden states respectively. the
gates and states in a ConvLSTM are tensors whose last two dimensions are spatial dimensions. For
each of the gates, Wxgate and Whgate are respectively the input and hidden kernels.

For the Complex Convolutional LSTM, we just replace the real-valued convolutional operation by
its complex counterpart. We maintain the real-valued elementwise multiplication. The sigmoid and
tanh are both performed separately on the real and the imaginary parts.

Figure 3.5 Learning curve for speech spectrum prediction from dev set.
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3.6.6 Complex Standardization and Internal Covariate Shift

Figure 3.6 Depiction of Complex Standardization in Deep Complex Networks. At left, Naive
Complex Standardization (division by complex standard deviation) ; At right, Complex Stan-
dardization (left-multiplication by inverse square root of covariance matrix between < and =).
The 250 input complex scalars are at the bottom, with <(v) plotted on x (red axis) and =(v)
plotted on y (green axis). Deeper representations correspond to greater z (blue axis). The
gray ellipse encloses the input scalars within 1 standard deviation of the mean. Red ellipses
enclose all scalars within 1 standard deviation of the mean after “standardization”. Blue el-
lipses enclose all scalars within 1 standard deviation of the mean after left-multiplying all the
scalars by a random 2× 2 linear transformation matrix. With the naive standardization, the
distribution becomes progressively more elliptical with every layer, eventually collapsing to a
line. This ill-conditioning manifests itself as NaNs in the forward pass or backward pass. With
the complex standardization, the points’ distribution is always successfully re-circularized.
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3.6.7 Phase Information Encoding

CReLU zReLU modReLU

Figure 3.8 Phase information encoding for each of the activation functions tested for the
Deep Complex Network. The x-axis represents the real part and the y-axis axis represents
the imaginary part ; The figure on the right corresponds to the case where b < 0 for modReLU.
The radius of the white circle is equal to |b|. In case where b ≥ 0, the whole complex plane
would be preserving both phase and magnitude information and the whole plane would
have been colored with orange. Different colors represents different encoding of the complex
information in the plane. We can see that for both zReLU and modReLU, the complex
representation is discriminated into two regions, i.e, the one that preserves the whole complex
information (colored in orange) and the one that cancels it (colored in white). However,
CReLU discriminates the complex information into 4 regions where in two of which, phase
information is projected and not canceled. This allows CReLU to discriminate information
easier with respect to phase information than the other activation functions. It also allows to
halve the variance of the pre-activations at the time of initialization (at beginnning of training
process if we assume that pre-activations have a circular distribution around the origin). This
is not the case neither for zReLU nor for modReLU as the former divides the variance by 4
at the time of initialization and modReLU preserves the variance of the preactivations if b is
initialized to 0 (if modReLU acts as identity at the time of initialization). For both zReLU
and modReLU, we can see that phase information may be preserved explicitly through a
number of layers when these activation functions are operating in their linear regime, prior
to a layer further up in a network where the phase of an input lies in a zero region. CReLU
has more flexibility manipulating phase as it can either set it to zero or π/2, or even delete
the phase information (when both real and imaginary parts are canceled) at a given level of
depth in the network.
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CHAPTER 4 DEEP COMPLEX SEPARATORS

Recent advances have made it possible to create deep complex-valued neural networks. Despite this
progress, many challenging learning tasks have yet to leverage the power of complex representations.
Building on recent advances, we propose a new deep complex-valued method for signal retrieval and
separation in the frequency domain. As a case study, we perform audio source separation in the
Fourier domain. Our new method takes advantage of the convolution theorem which states that the
Fourier transform of two convolved signals is the elementwise product of their Fourier transforms.
Our novel method is based on a complex-valued version of Feature-Wise Linear Modulation (FiLM)
and serves as the keystone of our proposed signal separation architecture. We also introduce a
new and explicit phase-aware loss, which is amplitude and shift invariant, taking into account
the complex-valued components of the spectrogram. Using the Wall Street Journal Dataset, we
compared our phase-aware loss to several others that operate both in the time and frequency
domains and demonstrate the effectiveness of our proposed model and loss. Our results highlight
the potential of deep complex-valued networks to improve performance on signal retrieval and
separation tasks in the frequency domain.

4.1 Introduction

Complex-valued neural networks have been studied since long before the emergence of modern deep
learning techniques (Georgiou and Koutsougeras, 1992; Zemel et al., 1995; Kim and Adalı, 2003;
Hirose, 2003; Nitta, 2004). Nevertheless, deep complex-valued models have only just started to
gain momentum (Reichert and Serre, 2013; Arjovsky et al., 2016; Danihelka et al., 2016; Trabelsi
et al., 2017; Jose et al., 2017; Wolter and Yao, 2018a; Choi et al., 2019), with the great majority
of models in deep learning still relying on real-valued representations. The motivation for using
complex-valued representations for deep learning is twofold : On the one hand, biological nervous
systems actively make use of synchronization effects to gate signals between neurons – a mechanism
that can be recreated in artificial systems by taking into account phase differences (Reichert and
Serre, 2013). On the other hand, complex-valued representations are better suited to certain types
of data, particularly those that are naturally expressed in the frequency domain.

Other benefits provided by working with complex-valued inputs in the spectral (frequency) domain
are computational. In particular, short-time Fourier transforms (STFTs) can be used to considerably
reduce the temporal dimension of the representation for an underlying signal. This is a critical ad-
vantage, as training Recurrent Neural Networks (RNNs) or Convolutional Neural Networks (CNNs)
on long sequences remains challenging due to unstable gradients and computational requirements of
backpropagation through time (BPTT) (Hochreiter, 1991; Bengio et al., 1994). Applying the STFT
on the raw signal, on the other hand, is computationally efficient, as in practice it is implemented
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with the Fast Fourier Transform (FFT) whose computational complexity is O(N log(N)).

The aforementioned biological, representational and computational considerations provide compel-
ling motivations for designing learning models for tasks where the complex-valued representation of
the input and output data is more desirable than their real-counterpart.

Recent work has provided building blocks for deep complex-valued neural networks (Trabelsi et al.,
2017). These building blocks have been shown, in many cases, to avoid numerical problems du-
ring training and thereby enable the use of complex-valued representations obtained through deep
neural networks. These representations are well-suited for frequency domain signals, as they have
the capacity to explicitly encode frequency magnitude and phase components. In particular, mo-
dels built with these building blocks have excelled at tasks such as automatic music transcription,
spectrum prediction (Trabelsi et al., 2017), speech enhancement (Choi et al., 2019), as well as MRI
reconstruction (Dedmari et al., 2018).

Recently, Choi et al. (2019) have designed a deep complex U-Net for speech enhancement. This task
consists of separating clean speech from noise when the noisy speech is given as input. A different
but related task is that of separating the speech of multiple speakers into separate signals. This
motivates us to build and improve upon the deep complex U-Net for the task of speech separation.
From this work, our contributions are summarized as follows :

1. We present a novel masking method based on Feature-wise Linear Modulation (FiLM) (Perez
et al., 2018) to create multiple separated candidates for each of the signals we aim to retrieve
from a mixture of inputs. A signal averaging operation on the candidates is performed in
order to increase the robustness of the signal to noise and interference. Before the averaging
procedure, a dropout operation is implemented on the signal candidates in order to reduce
the amount of interference and noise correlation existing between the different candidates.
Our masking method could be seen as performing local ensembling. In the case of audio
source separation, we aim to retrieve distinct audio signals associated with each speaker in
the input mix. The candidates are averaged in order to obtain the final separated speech for
each of the speakers in question. Our experiments demonstrate the efficacy of our proposed
masking method, and show its regularizing effect.

2. We propose and explore a new frequency-domain loss taking explicitly into account the
magnitude and phase of signals. A key characteristic of our loss is that it is amplitude- and
shift-invariant. Our comparative analysis related to different phase-aware losses defined in
time and frequency domains demonstrates the advantage of our proposed loss.
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4.2 Related work

Extended related work sections on complex-valued representation in deep learning and speech sepa-
ration can be respectively found in sections 2.5 and 2.6 1. We give here below a very concise review
about recent developments on audio source separation.

4.2.1 Audio Speech Separation Methods

In this section, we discuss some neural speech separation methods that rely on audio information
only. Our work falls into this category of methods. To the best of our knowledge, Huang et al.
(2014b) were the first to explore the use of deep learning applied to monaural speech separation.
Their system is based on a combination of a feed-forward and a recurrent network, that are jointly
optimized with a soft masking function. A closely-related work has been concurrently proposed by
Du et al. (2014), where a neural network is trained to estimate the log power spectrum of the target
speakers.

Hershey et al. (2015) proposed a deep clustering approach to speech separation. The basic idea
is to learn high-dimensional embeddings of the mixture signals, that is later exploited to separate
the speech targets with standard clustering techniques. A recent attempt to extend deep clustering
led to the deep attractor network proposed by Chen et al. (2016). Similarly to deep clustering,
high dimensional embeddings are learned, but the network also creates the so-called “attractors" to
better cluster time-frequency points dominated by different speakers.

The aforementioned approaches estimate only the magnitude of the STFTs and reconstruct the
time-domain signal with the Griffin-Lim algorithm (Griffin and Lim, 1984) or other similar pro-
cedures (Sturmel and Daudet, 2006). Similarly to our work, other papers have recently proposed
to integrate the phase-information within a speech separation system. The work by Erdogan et al.
(2015), for instance, proposes to train a deep neural network with a phase-sensitive loss. Another
noteworthy attempt has been described in Wang et al. (2018), where the neural network still esti-
mates the magnitude of the spectrum, but the time-domain speech signals are retrieved by directly
integrating the Griffin-Lim reconstruction into the neural layers. Instead of explicitly integrating
phase-information, other recent work perform speech separation in the time domain directly, as
described in Venkataramani and Smaragdis (2018). Likewise, The TasNet architectures proposed
in Luo and Mesgarani (2017) and Luo and Mesgarani (2018) perform speech separation using the
mixed time signal as input.

1. Important Note : The goal of this paper is not to provide a state-of-the-art method in the speech
separation task. In this work, we are interested in providing a method which improves signal retrieval and
separation quality when the input data is complex-valued and represented in the Fourier domain. Recently,
state-of-the-art in speech separation has been obtained by using Temporal Convolutional Networks (TCN)
(Bai et al., 2018) on the time domain signal (Luo and Mesgarani, 2018) and by combining embedding and
clustering methods with TCN on both magnitude spectrogram and time domain signal (Yang et al., 2019b).
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The studies by (Lee et al., 2017; Huang et al., 2014b) are more closely related to our work as they
address the speech separation problem taking into account phase information. However, this was
done without leveraging the recent advances in complex-valued deep learning. The authors in Lee
et al. (2017) address the audio-source separation problem using a fully complex-valued deep neural
network that learns the nonlinear relationship between an input sound and its distinct sources. Both
the activations and weights of the network are complex-valued. For a more comprehensive review
of most of these techniques, we refer the readers to Wang and Chen (2018).

4.3 Deep Complex Speech Separation

We detail here a new deep complex architecture to perform speech separation. For this, we rely
on the U-Net architecture proposed by Ronneberger et al. (2015) and the complex-valued building
blocks proposed by Trabelsi et al. (2017). In our proposed architecture, we incorporated residual
connections inside the U-Net blocks and we replaced the complex batch normalization with complex
layer normalization, as the model was unable to learn with the former technique and yielded insta-
bilities during training. The details of the complex layer normalization technique and the reasons of
its outperformance compared to complex batchnorm are discussed in section 4.3.1. After that, we
describe the steps of our novel complex masking method which is based on a complex-valued version
of Feature-wise Linear Modulation (FiLM) (Perez et al., 2018), which we designed, and allows to
perform local ensembling. Later, in section 4.4, we present our new frequency-domain loss which
takes explicitly into account the magnitude and phase of signals.

4.3.1 Complex Layer Normalization

Just as in complex batch normalization, complex layer normalization consists in whitening 2D
vectors by left-multiplying the 0-centered data (x− E[x]) by the inverse square root of the 2 × 2
covariance matrix V . x̃ = (V )−

1
2 (x− E[x]) , where the covariance matrix V is

V =

 Vrr Vri

Vir Vii


=

 Cov(<{x},<{x}) Cov(<{x},={x})
Cov(={x},<{x}) Cov(={x},={x})

 .
Complex layer normalization is distinguished from complex batch normalization by its computation
of the mean and covariance statistics over the layer features instead of the batch instances. This
allows us, as in the real-valued version, to avoid estimating batch statistics during training. An
intuition for batch normalization’s inappropriateness is related to the sparsity, in both time and
frequency domains, of speech. This is reflected in the spectrograms. Speech is temporally halting
and restarting, and spectrally consists of at most a few simultaneously-held fundamentals and their
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discrete overtones. Mixing few speakers does not significantly change this property.

In the light of this observation, it stands to reason that statistics computed across a batch’s multiple
utterance mixtures are almost meaningless. Speakers within and across utterance mixtures are not
controlled for volume, nor can their pauses be meaningfully aligned. Batch statistics will therefore be
inappropriately driven by the mixture with the most simultaneous speakers, the loudest speaker(s),
or the speaker(s) with the “dirtiest” spectrogram. Finally, in the absence of any speech, batch
statistics will inappropriately boost background noise to a standardized magnitude.

The above motivates the use of exclusively intra-sample normalization techniques like Layer Nor-
malization for speech data. Batch normalization is more appropriate for natural images, which are
spatially dense.

In addition to the fact that intra-sample normalization is more appropriate for speech signals, CLN
ensures a more robust normalization of data when the number of feature maps is sufficiently large. In
fact, according to the weak law of large numbers, as the sample size increases, the sample statistics
approximate their expected values. Therefore, when the number of feature maps far exceeds the
number of batch instances, we obtain more robust estimates because they converge, in probability,
to the corresponding expected values.

4.3.2 Complex Residual U-Nets

Residual networks (He et al., 2016a) and identity connections (He et al., 2016b) have had a significant
impact on image segmentation. These architectural elements have also been combined with U-
Nets (Drozdzal et al., 2016) for image segmentation. In our case, we use simple basic complex
residual blocks (Figure 4.1) inside each of the U-Net encoding and decoding paths (Figure 4.2).
Figure 4.1 (Left) and (Middle) illustrate the basic structure of our Residual U-Net upsampling
and downsampling blocks (Ui and Di) used in Figure 4.2, while Figure 4.1 (Right) illustrates the
structure of the complex residual blocks used in Figure 4.1 (Left) and Figure 4.1 (Middle). Each U-
Net block begins with an upsampling block (in the decoding U-Net path) or a downsampling block
(in the encoding U-Net path). It also contains a block that doubles the number of feature maps
(in the encoding path), or halves them (in the decoding path). The upsampling, downsampling,
doubling and halving blocks each apply successively a complex layer normalization, a CReLU and
a complex convolution to their inputs. All complex convolutions have kernel size of 3× 3 except for
the case of a downsampling block, where the convolution layer has a kernel size of 1×1 and a stride
of 2× 2. In the case of upsampling, we use bilinear interpolation instead of transposed convolution
because we found empirically that it yielded better results.

Immediately before and immediately after the doubling / halving blocks, we use k = 1 or k =
2 residual blocks. We have opted for this residual U-Net block architecture because of memory
constraints and because residual connections are believed to perform inference through iterative
refinement of representations (Greff et al., 2016; Jastrzebski et al., 2017).
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Figure 4.1 The basic structures of our U-Net downsampling block Di (Left) and our U-Net
upsampling block Ui (Middle) used respectively in the encoding and the decoding paths of
Figure 4.2. The structure of a basic complex residual block (Right) in each of Di and Ui.

4.3.3 Complex mask generation

In a environment involving multiple speakers and multiple sources of noise signals, a clean speech
signal s(t), of a particular speaker, is corrupted by the environment impulse response r(t). It is also
corrupted by an additive noise a(t) (Zhang et al., 2018b). Then, the observed corrupted signal y(t),
can be written as : y(t) = s(t) ∗ r(t) + a(t), where ∗ denotes the convolution operator. We can then
perform a Fourier Transform on the corrupted signal and leverage the Convolution Theorem along
with the linearity property of the Fourier Transform. The Fourier Transform of the clean signal
would then be written as :

F(y(t)) = F [s(t) ∗ r(t) + a(t)]

= F [s(t) ∗ r(t)] + F [a(t)]

= F [s(t)]�F [r(t)] + F [a(t)] ,

(4.1)

where F is the Fourier Transform and ⊗ is the elementwise complex product. We can then express
F [s(t)] as :

F(s(t)) = F [y(t)]� 1
F [r(t)] −

F [a(t)]
F [r(t)] . (4.2)

The problem of estimating F [s(t)] is reduced to estimating the scaling representation 1
F [r(t)] and

the shifting representation −F [a(t)]
F [r(t)] . For that, FiLM (Perez et al., 2018) can be used.

Featurewise Linear Modulation (FiLM) (Perez et al., 2018) technique has yielded impressive re-
sults in visual question answering (VQA). The FiLM approach applies an affine transformation
to convolutional feature maps, given the embedding of the question. In our approach, we create
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Figure 4.2 The architecture of our Deep Complex Separator that we call Deep Pitcher. It
consists of a pipeline containing a U-Net and a Complex FiLMed Masking operator (see
Algorithm 1). The Deep Pitcher takes as input the mixed speech signal which is fed to
the U-Net. The downsampling blocks of the U-Net are denoted by Di where in our case
i ∈ {1, 2, 3, 4} and the upsampling blocks are denoted by Ui where i ∈ {1, 2, 3, 4}. The
output of the U-Net along with the input mix are then fed to the Complex FiLMed Masking
operator in order to estimate the clean speech for each of the speakers.

multiple transformations of the complex input spectrogram using FiLM. The FiLM parameters are
determined from the output of our U-Net. We then generate a complex mask for the original input
spectrogram as well as for each of the FiLM-transformed spectrograms. This is accomplished by
using a ResNet conditioned on the U-Net output, the spectrogram and its FiLM transformations.
Each spectrogram is multiplied by its corresponding complex mask. This leads to multiple candi-
dates for the separated speech of each speaker. The resulting outputs are averaged to produce the
final estimated clean speech. This could be interpreted as a local ensembling procedure to estimate
the clean speech of the different speakers.

More precisely, given the output of the last upsampling block of the U-Net, we generate scaling
matrices Γj and shift matrices Bj , j ∈ [1, C] of the same size as the input mix spectrogram. These
parameters operate on the input mix as described by the following equation :

input_transformationj = Γj ⊗ inputmix + Bj , (4.3)

where Γj and Bj are functions of the output of the last upsampling block in the U-Net, and ⊗ is
the elementwise complex product. In our case, we used a simple complex convolution layer with a
kernel of size 3 × 3 to generate Γj and Bj .

The original input mix and its C scaled and shifted transformations together form C+1 representa-
tions of the input mix. Given these C+1 complex representations, we generate C+1 corresponding
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complex masks, with which the representations are then multiplied. These masks are generated by
a sequence of a complex convolution layer which kernel size is 3 × 3 followed by two residual blocks.
Once we have performed the complex multiplication of the masks with their respective inputs, C+1
separated speech candidates are obtained for a given speaker. This procedure is repeated for the
maximum number of speakers that could exist in an input mix.

The main motivation for this process is to increase the separation capability and reduce interference
between the separated speakers. Each transformation can focus on a specific pattern in the repre-
sentation ; Thereafter, as Danihelka et al. (2016) suggest, we can include and exclude candidates in
order to keep specific patterns in the speech while removing unwanted ones. Each mask correspon-
ding to a specific input transformation can be seen as a feature of the speaker embedding. Grouped
together, the masks generated to retrieve the speech of a given speaker could be interpreted as an
embedding identifying the speaker. The complex masking procedure is summarized in Algorithm 1.

Algorithm 1 Complex FiLMed Masking
Require: U-Net output : O
Require: Nb transformations (XFs) : C
Require: Nb speakers : N
Require: Input Mix : mix
Ensure: Speakers separated speeches : S1, ..., SN

1: function C-FiLMed Masking(O, C, N , mix)
2: for i← 1 to N do
3: Γi1 ...ΓiC , Bi1 ...BiC ← FilMFunction(O)
4: end for
5: XFS← [ ]
6: for i← 1 to N do
7: for j ← 1 to C do
8: XFij ← Γij ⊗mix + Bij

9: XFSi.append(XFij)
10: end for
11: end for
12: XFS← concatenate(XFS11, ...,XFSNC)
13: masks← GenerateMasks(O,XFS)
14: candidates← masks⊗ XFS
15: cleanspeeches← [ ]
16: for i← 1 to N do
17: cleanspeechi ← average(candidates[(C + 1)× (i− 1) + 1 : (C + 1)× i]))
18: cleanspeeches.append(cleanspeechi)
19: end for
20: return cleanspeeches
21: end function
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4.4 Normalized Complex-Valued Inner Product Loss

In Choi et al. (2019) a weighted version of the SDR loss proposed in Vincent et al. (2006) is used
in order to maximize the similarity between the reference and the estimated signal. The SDR loss
proposed by Vincent et al. (2006) is nothing but the real-valued cosine similarity given by the
following equation :

losssdr(y,x) = −
∑
i xi ◦ yi

||x|| · ||y|| , (4.4)

where ◦ denotes the element-wise real-valued multiplication operation. Both y and x are real-valued
in the above equation as y is the target signal in the temporal domain and x is the estimated signal
after performing an inverse STFT on the spectrogram. The phase is then taken implicitly into
account as the real-valued target signal encodes inherently the phase of the spectrogram. As the
task in Choi et al. (2019) is speech enhancement (which is different from ours as we are performing
speech separation), the authors used a weighted version of the SDR loss to weight the part of the
loss corresponding to the speech signal and also the complementary part corresponding to the noise
signal. This weighting is performed according to their respective target energies.

Here, we suggest the use of a loss function which explicitly takes into account both magnitude and
phase. This is accomplished by computing the inner product, between the reference signal and its
estimate, in the complex plane. In fact computing the inner product in the frequency domain is
equivalent to computing the cross correlation in the time domain followed by a weighted average.
The inner product in the frequncy domain is then, shift invariant. The complex inner product
between 2 signals is given by the following equation :

〈x|y〉 =
∑
j

[<(xj)<(yj) + =(xj)=(yj)] + i [<(xj)=(yj)−=(xj)<(yj)]. (4.5)

If x and y are identical, which is equivalent of having ||x|| = ||y|| and ∠x = ∠y, then, 〈x|y〉 =
||y||2 +0i. If x and y are parallel, then 〈x|y〉

||x||·||y|| = 1+0i = 1. The inner product between the 2 signals
normalized by the product of their amplitudes, is then amplitude and shift invariant. We chose a
loss that maximizes the real part of that normalized inner product and minimizes the square of its
imaginary part. Note that each of the real and imaginary parts of the normalized inner product lies
between [-1, 1]. To understand more how the complex inner product is both amplitude and phase
aware, how the real part of equation (4.5) is responsible of the amplitude similarity between the
reference and estimate signals and how the imaginary part of the same equation is responsible for
the phase matching between them, see Appendix 4.7.

Real-valued objective functions expressed in terms of complex variables have been used in optimi-
zation (Au, 2007; Sorber et al., 2012). We use a similar approach to express our new similarity
loss. In order to approximate both the magnitude and phase in a proper way, we use independent
penalization constants for the terms responsible for the amplitude and phase similarities. We define
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Table 4.1 Speech separation experiments on two speakers using the standard setup with the
Wall Street Journal corpus.
We explore different real and complex-valued model variants and report the test SDR. k
is the the number of residual blocks used inside the residual U-Net block (See Figure 1).
Start Fmaps is the number of feature maps in the first layer of the encoding path in the
U-Net. The Start Fmaps defines the width of each of the successive layers in the model. We
respectively double and half the size of the layers in each of the successive downsampling and
upsampling stages. The effective number of feature maps for a complex feature map is equal
to the number of reported feature maps × 2. This is due to the fact that it has a real and
an imaginary part. The number of parameters is expressed in millions. The number of input
mixture transformations is also reported. Test SDR scores for different time and spectral
domain losses are inserted in the last column.

Model k Start Fmaps Params Transforms Loss function Test SDR

Real U-Net 1 64 8.45 0 L2freq 4.59
Real U-Net 2 64 14.76 0 L2freq 7.92
Complex U-Net 1 32 4.29 0 L2freq 9.61
Complex U-Net 2 32 7.4 0 L2freq 9.70

Complex U-Net 2 40 11.55 0 L2freq 10.30
Complex U-Net 2 40 11.55 0 CSimLoss 10.21
Complex U-Net 2 40 11.55 0 L2time 9.31
Complex U-Net 2 40 11.55 0 costime 9.34

Complex U-Net 2 40 11.57 5 L2freq 10.58
Complex U-Net 2 40 11.57 5 CSimLoss 10.87
Complex U-Net 2 40 11.57 5 L2time 10.31
Complex U-Net 2 40 11.57 5 costime 10.14

Complex U-Net 2 40 11.61 10 L2freq 10.59
Complex U-Net 2 40 11.61 10 CSimLoss 10.90
Complex U-Net 2 40 11.61 10 L2time 10.86
Complex U-Net 2 40 11.61 10 costime 10.47

Complex U-Net 2 40 11.67 15 L2freq 10.93
Complex U-Net 2 40 11.67 15 CSimLoss 10.91
Complex U-Net 2 40 11.67 15 L2time 10.66
Complex U-Net 2 40 11.67 15 costime 10.74

the following similarity loss denoted by CSimLoss as :

CSimLoss(x,y) =− λreal<
( 〈x|y〉
||x|| · ||y||

)
+ λimag=2

( 〈x|y〉
||x|| · ||y||

)
, (4.6)

where λreal and λimag are penalty constants. We fixed λreal to 1 in all our experiments. We tried
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different values of λimag ∈ {102, 103, 104}. λimag = 104 worked the best. All the results are reported
in Table 4.1 and Table 4.2 for CSimLoss correpond to λimag = 104.

4.5 Experiments

4.5.1 Data Pre-processing and Training Details

Figure 4.3 Validation curves of models with and without performing multiple input trans-
formations.The plotted curves relate to models reported in Table 4.2. Models with multiple
input transformations outperform those without transformations. The former achieved higher
SDR scores, on average.

The speech mixtures are generated using the procedure adopted in Erdogan et al. (2015) and Wang
et al. (2018). More precisely, the training set consists of 30 hours of two-speaker mixtures that
were generated by randomly selecting sentences (uttered by different speakers) from the Wall Street
Journal WSJ0 training set called si_tr_s. The signals are then mixed with different amplitude
factors, leading signal-to-noise ratios (SNR) ranging between 0 dB and 5 dB. Using the same me-
thod, we also generated 10 hours of validation set. The test set is composed of 5 hours that were
generated similarly using utterances from the different speakers belonging to the WSJ0 development
set si_dt_05.

Table 4.1 and Table 4.2 contain the results for the experiments conducted using the Wall Street
Journal dataset.
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Figure 4.4 Validation curves of the models that yielded the highest SDRs using either the
L2 spectral loss or our CSimLoss. The Drawn curves are related to models reported in Table
4.2.

All models in Tables 4.1 and 4.2 were trained using the backpropagation algorithm with Stochastic
Gradient Descent with Nesterov momentum (Nesterov, 1983) set at 0.9. The gradient norm was
clipped to 1. We used the learning rate schedule described in Trabelsi et al. (2017). In order to
warm up the model during training, a constant learning rate of 0.01 was fixed for the first 10
epochs. From epoch 10 to 100, the learning rate was increased to 0.1. Later, an annealing of the
learning rates by a factor of 10, at epochs, 120 and 150 was performed. We ended up the training at
epoch 200. Models in Table 4.1 have been trained using a batch size of 40. Models in Table 4.2 have
been trained using a batch size of 24 to fit in the GPU memory. All the models have been trained in
parallel using 8 V100 GPUs. For all the tested losses, we used the Permutation Invariant Training
criterion knows as PIT (Yu et al., 2017). The PIT criterion allows to take into account all possible
assignments between the target signals and the estimated clean speeches. This is done by computing
all possible permutations between the targets and the estimated clean speeches. During training,
the assignment with the minimal loss is considered for backpropagation. This is due to the fact that
for the synthetically mixed input, the order of the target speakers is randomly chosen and it doesn’t
satisfy a specific criterion. This random order in the target speakers causes the well-known label
permutation problem (Hershey et al., 2015; Weng et al., 2015). The PIT criterion allows then to
reduce significantly this problem by considering the output-target assignment yielding the minimal
training loss. During inference, we assume that the model has learned to produce output that does
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Figure 4.5 Validation curves of the models that yielded the highest SDRs for both cases where
dropout on the input mixture transformations was used and where it was not. The Drawn
curves are related to models reported in Table 4.2.

not permute speeches. Yu et al. (2017) mention that output-to-speaker assignment may change
across time frames. This would have the effect of decreasing the Signal to Noise Ratio (SNR) and
the Signal to Distortion Ratio (SDR) as it causes interference of speakers speeches.

At the end of each epoch, we assess our model on the validation set. Of all the models evaluated at
the end of each epoch, the one which achieves the highest SDR validation score is then retained for
testing.

We tried different configurations combining unitary and standard complex initializations. All of these
initializations have been proposed by Trabelsi et al. (2017). It turned out that the best configuration
is obtained when using a complex standard initialization for all layers, except for the convolutional
layer, generating the FiLM parameters, and the first convolutional layer in the generating mask
function which precedes the 2 residual blocks. For the above-mentioned convolutional layers a uni-
tary initialization respecting the He criterion (He et al., 2015) was applied. This is not surprising
as a unitary weight matrix ∈ Cd×d constitutes a basis of Cd. Therefore any complex-valued vector
in Cd, such as those representing the FiLM parameters or the masks, could be generated using a
linear combination of the row vectors of that unitary matrix.
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Table 4.2 Experiments on two speaker speech separation using the standard setup with the
Wall Street Journal corpus. We explore different numbers of input mixture transformations
and different dropout rates on the latter using the training losses defined in the spectral
domain. The losses in questions are L2freq and CSimLoss. The number of parameters is
expressed in millions. All tested models contain 44 feature maps in the first downsampling
layer of the U-Net instead of 40 in Table 4.1. The same number of k = 2 residual blocks is
used inside the basic structure of the residual U-Net block. SDR scores are shown in the last
column.

Params Transforms Dropout Loss function Test SDR

13.97 0 0 L2freq 9.88
13.99 5 0 L2freq 10.11
14.03 10 0 L2freq 10.91
14.09 15 0 L2freq 9.92
13.97 0 0 CSimLoss 9.87
13.99 5 0 CSimLoss 10.64
14.03 10 0 CSimLoss 11.05
14.09 15 0 CSimLoss 10.82

13.99 5 0.1 L2freq 10.54
14.03 10 0.1 L2freq 10.72
14.09 15 0.1 L2freq 10.91
13.99 5 0.1 CSimLoss 10.96
14.03 10 0.1 CSimLoss 11.34
14.09 15 0.1 CSimLoss 11.22

13.99 5 0.2 L2freq 10.67
14.03 10 0.2 L2freq 10.90
14.09 15 0.2 L2freq 10.90
13.99 5 0.2 CSimLoss 11.23
14.03 10 0.2 CSimLoss 11.29
14.09 15 0.2 CSimLoss 11.23

13.99 5 0.3 L2freq 10.71
14.03 10 0.3 L2freq 10.06
14.09 15 0.3 L2freq 10.91
13.99 5 0.3 CSimLoss 11.21
14.03 10 0.3 CSimLoss 11.12
14.09 15 0.3 CSimLoss 11.06

13.99 5 0.4 L2freq 10.72
14.03 10 0.4 L2freq 10.74
14.09 15 0.4 L2freq 10.83
13.99 5 0.4 CSimLoss 11.09
14.03 10 0.4 CSimLoss 11.08
14.09 15 0.4 CSimLoss 11.12
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In Table 4.1 and 4.2 we experiment with architectures that use different number of mixture transfor-
mations. Adding mixture transformations does not significantly increase the number of parameters
compared to the size of the whole model. In the case where 15 transformations are adopted, the
number of parameters is increased by less than 1% of the total number.

The real-valued models in Table 4.1 contain significantly more parameters than their complex-valued
counterparts. However they are, by far, the worst in terms of SDR scores. For example, the complex
valued model, with 7.4 M parameters, beats its real-valued counterpart by a margin of 1.82 SDR.
Yet the number of parameters of the real model is twice that of the complex model. It is clear that
the complex-valued models are more suited for the audio separation task than their real-valued
counterpart. Thus, we will no longer focus on real-valued models, but, instead, will concentrate on
transformations and losses that are appropriate for complex-valued models.

Three major observations can be inferred from the numbers displayed in Table 4.1 : 1- Wider and
deeper models improve the quality of separation in terms of SDRs ; 2- The increase in the number
of input transformations has a positive impact on the task of separating audio sources, as additional
input transformations achieve higher SDR scores ; 3- For a given number of input transformations,
the best results are obtained with losses computed in the spectral domain. For all the experiments
reported in Table 4.1, either the CSimLoss or the L2freq achieve the highest SDR.

The scores reported in Table 4.1 show that the local ensembling procedure is beneficial to the
task of speech separation. This rewarding impact is confirmed in all experiments of Table 4.2
(See also Figure 4.3). As mentioned in section 4.3.3, each mask could be seen as a feature of the
speaker embedding and the generated masks together constitute the whole embedding. Performing
dropout on the masks might then allow to perform regularization for the retrieval and separation
mechanism. Dropping out a mask is equivalent to a dropout of input mixture transformations or
clean speech candidates. Since spectral loss functions yielded higher SDRs than their time-domain
counterparts, we adopted them to evaluate the effect of applying different dropout rates to the
input transformations. Wider and deeper models with Start Fmaps = 44 and k=2 residual blocks
are tested in the conducted experiments. Results are reported in Table 4.2.

In the absence of dropout and multiple transformations, we observe from the results displayed in
Table 4.2, that wider models are not necessarily more beneficial to the separation task. The SDRs
reported in the case of no mixture transformations are 9.88 and 9.87 for the wider model. These SDR
scores correspond to the L2freq and CSimLoss losses respectively. However, for the narrower models,
SDRs of 10.30 and 10.21 were respectively reported for the same losses in Table 4.1. This means
that wider models have the potential to overfit. On the other hand, if input transformations are
taken into account, a jump in the SDR is observed. When 10 input transformations are introduced,
SDR scores of 11.05 and 10.90 are recorded with the CSimLoss and the L2freq losses, respectively.
Lower SDR performances are recorded when ensembling is implemented with mixtures of 5 and
15 transformations, respectively. This means that the local ensembling procedure is acting as a
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regularizer. However, a tradeoff in terms of the number of input transformations (and so in terms
of clean speech candidates) has to be made as increasing the number of input transformations
might worsen the performance of the model and lead to overfitting. This could be explained by the
fact that, for a given dropout rate, adding a significant number of transformations can potentially
increase the correlation of the noise existing in the different candidates, hence, decreasing the Signal-
To-Noise-Ratio of the signal and so, reduces the robustness of the retrieval method to noise and
interference.

Dropping out the speech candidates using a small probability rate has a further regularization effect
on the wider model. This could be inferred from the results reported in Table 4.2 (See also Figure
4.5). We employed different dropout rates varying from 0 to 0.4. A rate of 0.1 yielded the best
result as it caused a jump of SDR score from 11.05 to 11.34. It is important to emphasize again the
importance of having a compromise in terms of the number of transformations. For instance, for most
of the dropout rates we experimented, a number of 10 mixture transformations yielded the highest
SDRs. In all the experiments reported in Table 4.2, the CSimLoss clearly outperformed the L2freq

(See Figure 4.4). In fact, regardless of the dropout rate and the number of input transformations
employed, for wider models using the L2freq training loss function, the SDR score did not cross
the threshold of 10.91 dB. The highest SDR score obtained, when using the L2freq loss function, is
10.93. This value corresponds to a narrower model with 15 input transformations (see Table 4.1).

4.6 Conclusion

In this work, we introduced a new complex-valued framework for signal retrieval and signal sepa-
ration in the Fourier domain. As a case sudy, we considered audio source separation. We proposed
a new masking method based on a complex-valued version of the Feature-wise Linear Modulation
(FiLM) model, allowing to perform local ensembling and yielding a beneficial regularization effect.
We also proposed a new phase-aware loss taking, explicitly, into account the magnitude and phase
of the reference and estimated signals. In our study, phase proved to be an important factor that
should be taken into account in order to improve the quality of the separation in terms of SDR.
The phase-aware loss improves over other frequency and time-domain losses. Our deep separator
draws its power from the compelling properties of complex-valued neural networks and the propo-
sed masking method. Our finding might shed light on the deep complex-valued neural networks’
tendency to solve challenging tasks where the data lie in the complex space and where it could be
represented in the frequency domain. We view these results as an opportunity to pursue a more
systematic investigation of the underpinning of complex-valued representation success. We believe
that our proposed method could lead to new research directions where signal separation and signal
retrieval are needed.
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4.7 Appendix

We show here that solving the two-equation system, assimilating the real part of the inner product,
between the two signals x and y, to the square of the amplitude of y, and canceling its imaginary
part, amounts to canceling the differences in amplitude and phase between x and y, respectively
(See equation 4.9). For this we will use the following trigonometric properties :



cos(θx) cos(θy) = 1
2cos(θx − θy) + 1

2cos(θx + θy)

sin(θx) sin(θy) = 1
2cos(θx − θy) − 1

2cos(θx + θy)

cos(θx) sin(θy) = 1
2sin(θx + θy) − 1

2sin(θx − θy)

sin(θx) cos(θy) = 1
2sin(θx + θy) + 1

2sin(θx − θy),

(4.7)

where θx, θy ∈ R. For simplicity of notation, we will denote a complex-valued target scalar as y and
a its estimate as x instead of ŷ :

y = |y|eiθy = |y| [cos(θy) + i sin(θy)] ∈ C

x = |y|eiθx = |x| [cos(θx) + i sin(θx)] ∈ C.
(4.8)

θy and θx are the corresponding phases of the reference y and its complex estimate x respectively.

Resolving the system of equations below is equivalent of having both magnitude and phase of the
reference and estimation identical OR when y is 0.<(x)<(y) + =(x)=(y)− |y|2 = 0

<(x)=(y)−<(y)=(x) = 0

⇔

<(x)<(y) + =(x)=(y) = <(y)2 + =(y)2

<(x)=(y) = <(y)=(x)

⇔

|x| cos(θx) |y| cos(θy) + |x| sin(θx) |y| sin(θy) = |y|2

|x| cos(θx) |y| sin(θy) = |y| cos(θy) |x| sin(θx)

⇔

|x| |y| [cos(θx) cos(θy) + sin(θx) sin(θy)] = |y|2

|x| |y| [cos(θx) sin(θy)− cos(θy) sin(θx)] = 0

⇔

|y| [ |x| (cos(θx) cos(θy) + sin(θx) sin(θy)) − |y| ] = 0

|x| = 0 OR |y| = 0 OR [cos(θx) sin(θy)− cos(θy) sin(θx)] = 0

⇔

|y| = 0 OR |x| (cos(θx) cos(θy) + sin(θx) sin(θy)) = |y|

|x| = 0 OR |y| = 0 OR cos(θx) sin(θy) = cos(θy) sin(θx)
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⇔

|y| = 0 OR |x|
(

1
2cos(θx − θy) + 1

2cos(θx + θy) + 1
2cos(θx − θy) − 1

2cos(θx + θy)
)

= |y|

|x| = 0 OR |y| = 0 OR 1
2sin(θx + θy) − 1

2sin(θx − θy) = 1
2sin(θx + θy) + 1

2sin(θx − θy)

⇔

|y| = 0 OR |x| cos(θx − θy) = |y|

|x| = 0 OR |y| = 0 OR − sin(θx − θy) = sin(θx − θy)

⇔

|y| = 0 OR |x| cos(θx − θy) = |y|

|x| = 0 OR |y| = 0 OR θx − θy ≡ 0 (modπ)

⇔

|y| = 0 OR |x| cos(θx − θy) = |y|

|x| = 0 OR |y| = 0 OR − sin(θx − θy) = sin(θx − θy)

⇔

|y| = 0 OR |x| cos(kπ) = |y|, k ∈ Z

|x| = 0 OR |y| = 0 OR θx = θy + kπ, k ∈ Z

⇔

|y| = 0 OR |x| cos(2k′π) = |y| OR |x|cos((2k′ + 1)π) = |y| = 0 (because cos((2k′ + 1)π) = −1)

|x| = 0 OR |y| = 0 OR θx = θy + k′π, k′ ∈ Z

⇔

|y| = 0 OR |x| = |y| OR |x| = |y| = 0

|x| = 0 OR |y| = 0 OR θx = θy + 2k′π, k′ ∈ Z

⇔

|y| = 0 OR |x| = |y|

θx = θy + 2k′π, k′ ∈ Z.
(4.9)

Now, a solution corresponding to a null reference vector y could be problematic as it leads to an
infinite number of choices for the estimated signal x. In fact, the authors in Choi et al. (2019)
mentioned this issue and chose to work with a cosine similarity-based function in order to learn
from noisy-only data. This is why it is more convenient to work with the normalized inner product
loss.
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CHAPTER 5 A STUDY OF ORTHOGONALITY FOR THE HIDDEN
TRANSITION MATRIX IN RECURRENT NEURAL NETWORKS

5.1 Introduction

The vanishing and exploding gradient problem constitutes one of the main challenges faced when
training a feed-forward or a recurrent neural network. Unitary transition matrices and soft orthogo-
nality constraints have been adopted successfully to train recurrent neural networks for long-term
dependency tasks. However, even though it seems that unitary and orthogonal constraints are ideal
solutions to vanishing and exploding gradients, real-world tasks, such as language modeling, might
not require such hard constraints on the transition matrices. Restricting the weights to be orthogo-
nal might be too restrictive as it limits the search space of the parameters by constraining it to lie on
the Stiefel manifold, the manifold of all orthogonal parameters. Moreover, hard and soft orthogonal
constraints are computationally expensive. In this work, we study the usefulness of orthogonality
for the hidden transition matrix in recurrent neural networks and we investigate the deviation of
the parameters from the Stiefel manifold. We propose a parameterization of the singular values of
the hidden transition matrix in order to control the deviation of orthogonality. We find that ortho-
gonal initialization of the weights helps in several real-world tasks as well as carefully constructed
synthetic datasets. Our experiments support the thesis that a hard orthogonal constraint is too
restrictive and limits the representational power of recurrent networks.

5.2 Related Work and Motivation

5.2.1 Related Work

An extended related work section on the vanishing and exploding gradient problem can be found
in 2.4. We detail our motivation for studying orthogonality of hidden transition matrices in RNNs
in the next subsection.

5.2.2 Motivation

In this work, our goal is to know whether orthogonality is restrictive or provides advantages in terms
of optimization convergence and performance. We focus on the optimization of real valued hidden
transition matrices. We set the singular values within a configurable margin about the Stiefel mani-
fold. We suspect that a hard constraint of orthogonality limits the model’s representational power,
worsens its performance, and slows down optimization convergence speed. By combining Singular
Value Decomposition of the hidden transition matrix and the geodesic gradient descent algorithm,
we can explicitly express the amount of deviation from orthogonality by setting a learnable margin
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for the singular values and optimize it. This allows us to observe and analyze cases where deviating
from orthogonality could be either beneficial or detrimental.

5.2.3 Vanishing and Exploding Gradients in Recurrent Networks

As it can be seen in Appendix B, where the problem of the exploding and the vanishing variance
of both the propagated and backpropagated signals can be illustrated via the composition of acti-
vations (equations (B.8) and (B.24)) and the derivative’s chain rule (equations (B.5) and (B.20))
respectively, the issue of vanishing and exploding gradients in a recurrent neural network can be
illustrated by expressing the gradient back-propagation chain through time steps.

A recurrent neural network with N time steps (can be also denoted by T instead of N) has activa-
tions :

ht = f(h̃t) = f(Wh ht−1 + Wx xt + b), t ∈ {1, · · · , N}, (5.1)

where f is an element-wise nonlinear activation function. h̃t ∈ RNh is hidden pre-activation. Wh ∈
RNh×Nh is the hidden transition weight matrix propagating hidden information through all time
steps. Nh denotes the number of hidden dimensions. Wx ∈ RNx×Nh is the input weight matrix
projecting the input information to the hidden space. Nx is the number of input dimensions. Wx

is also shared through all time steps. b is the shared bias through all time steps and it is a vector
in RNh .

We can see that for some loss function LN computed after propagating the hidden information for
all N time steps, the derivative with respect to hidden transition matrix Wh by backpropgating
the loss signal to a given time step t is given by :

∂LN
∂Wh

= ∂LN
∂ht

∂ht
∂Wh

. (5.2)

The partial derivatives for ht with respect to Wh can be decomposed as follows :

∂ht
∂Wh

= ∂ht
∂h̃t

∂h̃t
∂ht−1

∂ht−1
∂Wh

= DtWh
∂ht−1
∂Wh

⇒ ∂ht
∂ht−1

= DtWh,

(5.3)

where Dt is the Jacobian corresponding to the elementwise activation function, containing partial
derivatives of the hidden units at time step t with respect to the pre-activation inputs. Typically,
Dt is diagonal as the activation function is elementwise. Following the above, the gradient of the
loss at the last time step N backpropgated to the 1st time step can be fully decomposed into a
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recursive chain of matrix products :

∂LN
∂Wh

= ∂LN
∂hN

∂hN
∂hN−1

∂hN−1
∂hN−2

· · · ∂h2
∂h1

∂h1
∂Wh

= ∂LN
∂hN

[
N−2∏
i=0

∂hN−i
∂hN−(i+1)

]
∂h1
∂Wh

= ∂LN
∂hN

[
N−2∏
i=0

DN−iWh

]
∂h1
∂Wh

.

(5.4)

In Pascanu et al. (2013), it is shown that the L2 norm of ∂ht
∂ht−1

is bounded by the product of the
norms of the nonlinearity’s Jacobian and transition matrix at time t :∣∣∣∣∣∣∣∣ ∂ht

∂ht−1

∣∣∣∣∣∣∣∣ ≤ ||Dt|| ||Wh|| ≤ λDt λWh
= ηt,

λDt , λWh
∈ R.

(5.5)

where λDt and λWt are respectively the largest singular values of the nonlinearity’s Jacobian Dt

and the hidden transition matrix Wh , i.e, their respective spectral norms.

It is extremely important to notice here that Wx does suffer from the exploding and vanishing
gradient problem. A new input xt is fed to the recurrent network and processed by Wx at each
time step. This would allow us to compute the gradient of the loss with respect to Wx in terms
of the sum of the gradients of the loss with respect to the hidden representation corresponding to
each time step. The gradient of the loss function LN with respect to Wx is given by :

∂LN
∂Wx

=
N−2∑
i=0

∂LN
∂hN−i

∂hN−i
∂h̃N−i

∂h̃N−i
∂Wx

=
N−2∑
i=0

∂L

∂hN−i
DN−i xN−i

=
N−2∑
i=0

∂LN
∂hN

∂hN
∂hN−1

∂hN−1
∂hN−2

· · · ∂hN+1−i
∂hN−i

DN−i xN−i

=
N−2∑
i=0

∂LN
∂hN

i−1∏
j=0

∂hN−j
∂hN−(j+1)

 DN−i xN−i

=
N−2∑
i=0

∂LN
∂hN

i−1∏
j=0

DN−j Wh

 DN−i xN−i.

(5.6)

We clearly see in equation (5.6) that ∂LN
∂Wx

is expressed in terms of a sum of products. The same
form of product is expressed in equation (5.4). Both products are expressed in terms of Wh and Dt.
It is very important to mention that the recurrence in the expression of ht is the reason why the
gradient is expressed in terms of a product, which causes it to vanish or to explode. The vanishing and
exploding gradient problem might be less pronounced in equation (5.6) as the product is expressed
inside a sum. It is also important to mention that for some tasks, like language modeling, a loss is
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computed at each time step instead of only computing one loss at the very end of the computation.
In such case the gradient of each time step loss with respect to Wh is summed in order to obtain
the gradient of the overall loss with respect to Wh. The same is done to obtain the gradient with
respect to Wx. In this case, equations (5.4) and (5.6) would involve a sum over all time steps losses
in the following way :

∂L

∂Wh
=

N−2∑
i=0

∂LN−i
∂hN−i

 i∏
j=0

DN−jWh

 ∂h1
∂Wh

. (5.7)

∂L

∂Wx
=

N−2∑
i=0

∂LN−i
∂hN−i

i∑
j=0

j−1∏
k=0

DN−k Wh

 DN−j xN−j . (5.8)

The gradient would be computed without problems for the first few terms involved in the sum
expressed in (5.6), (5.7) and (5.8). These terms would be contributing the most in ∂L

∂Wx
if we have a

vanishing gradient. Heuristics such as truncated backpropagation through time (TBPTT) (Williams
and Peng, 1990) are generally deployed in order to cope with this issue. The heuristic consists of
dividing the time dimension into different time slots where at each slot, the product expressed in
equations (5.4), (5.6), (5.7) and (5.8) does not involve the terms outside the slot. Such a heuristic
in practice is very efficient as it allows to avoid exploding and vanishing gradients. However, the
estimation of the gradient is biased. In fact, for a given time slot, we might want to take into
account hidden representations outside it as their contribution to the loss might be beneficial for
the gradient estimation.

We can make an analogy with feed-forward networks for the processing of xt as it is similar to the
processing of an input information in a shallow feed-forward network with weight Wx. The hidden
signal ht however, has been processed by the same hidden transition matrix Wh from time 1 to time
t − 1. If Wh does not preserve the norm, and if its spectral norm, i.e its maximal singular value,
is less than 1, the hidden information would vanish through time. This will cause the loss of the
previously processed hidden information when propagating the forward signal. The network would
then mostly rely on the encoded information in Wx xt. This is not desirable if the task at hand
requires long term dependencies and if xt is not inherently encoding past information. If the spectral
norm of Wh is greater than 1, ||Wh ht−1|| would explode and this would cause the impossibility to
train the neural network.

5.3 Deviation from Orthogonality Via Singular Values Parametrization

The amount of deviation from the space of orthogonal parameters can be controlled by parameteri-
zing the singular values of the hidden transition matrix Wh. When the singular values are close to
1, we ensure that the hidden transition matrix is close to the Stiefel Manifold, and so, close to the
space of norm preserving transformations. Another way to ensure that the hidden transition matrix
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is not far from the space of orthogonal transformations is to perform a soft orthogonality constraint
of the form λ||WT

hWh − I||2. As mentioned already in section 5.2, this form of soft orthogonality
constraint has been already applied by Henaff et al. (2016).

As our goal is to perform an analysis of orthogonality by explicitly expressing the amount of contrac-
tion and expansion at each hidden dimension when Wh is applied on ht−1 (See equation (5.1)),
we perform a singular value decomposition of Wh, which consists of expressing Wh in terms of
orthogonal basis matrices U and V with a diagonal spectral matrix S containing its singular values.
We would then have :

Wh = USVT . (5.9)

For each hidden dimension i ∈ {1, 2, · · ·Nh}, si ∈ {diag(S)} controls the amount of contraction,
expansion or norm preservation for the ith dimension when Wh is applied. Contraction, expansion or
norm preservation correspond respectively to si > 1, si < 1 and si = 1. If si = 1 ∀ i ∈ {1, 2, · · ·Nh},
Wh would preserve the norms of ht−1, i.e, ||Wh ht−1|| = ||ht−1||. In this case Wh is orthogonal.

Whether Wh deviates from orthogonality or not, the bases U and V must be kept orthogonal during
training. This is achieved via the Geodesic Gradient Descent algorithm. The Geodesic Gradient
Descent allows one to optimize along the set of weights satisfying UTU = UUT = I and VTV =
VVT = I, i.e, along the Stiefel manifold. For an orthogonally-initialized matrix W, the Cayley
transformation of the update step onto the Stiefel manifold of orthogonal matrices is performed.
This is done in Nishimori (2005) and Tagare (2011). Given an orthogonally-initialized parameter
matrix W and its Jacobian G with respect to the objective function, we create a skew symmetric
matrix A depending on W and G and project W by the Cayley transform of A. The result obtained
by The projection of W with the Cayley transform of A is orthogonal as both matrices involved in
the product are orthogonal. More precisely. the updated W is obtained as follows :

A = GWT −WGT

Wnew = (I + η

2A)−1(I− η

2A)W,
(5.10)

where η is the learning rate.

In order to allow deviation from orthogonality, we employ a sigmoidal parameterization of the
singular values allowing us to perform a hard constraint on the maximum and minimum amount of
deviation from the Stiefel Manifold. Specifically, we define a margin m such as the singular values
lie in [1−m, 1 + m]. This is achieved in the following way :

si = 2m(σ(pi)− 0.5) + 1, si ∈ {diag(S)}, m ∈ [0, 1]. (5.11)

The underlying parameters pi are updated freely via stochastic gradient descent. The parameteri-
zation of a singular value, expressed in equation (5.11) has an effect on the gradient of a given loss
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L with respect to pi. In fact :

dL

dpi
= dL

dsi

dsi
dpi

= dL

dsi

dσ(pi)
dpi

2m. (5.12)

This means for example that the effective learning rate for the singular values is multiplied by 2m.
Consequently, we adjust the learning rate for the singular values to be independent of the margin
by dividing it by 2m.

5.4 Experiments

In this section, we compare the convergence speed and performances of recurrent models relying
on orthogonal hidden transition matrices to the ones where the hidden transition matrix deviates
from the orthogonality space. As discussed in section 5.3, deviation from orthogonality is done by
either setting a spectral margin as described in equation (5.11) or by applying the same form of soft
orthogonality than Henaff et al. (2016). We observe that orthogonal initialization is always helpful
as mentioned in Henaff et al. (2016) and Saxe et al. (2013). We also observe that deviation from
orthogonality helps converging faster while strict orthogonality stablizes gradient computation but
slows down the convergence speed.

5.4.1 Datasets and Learning Tasks

The content of this section is the same as the beginning of sections 3 and 3.1 in Vorontsov et al.
(2017). It contains fine details of the different tasks, their corresponding data pre-processing as well
as the optimization algorithm and the hyperparameters used by the authors.

In order to perform our analysis, we performed five different tasks. To test the memorization capa-
bility of the recurrent network and its long-term dependency encoding robustness, we relied on the
copy and adding tasks. These are toy synthetic tasks introduced in (Hochreiter and Schmidhuber,
1997). After that, We used more realistic, non-synthetic, data that require from the recurrent net-
work to capture both short- and long-range dependencies. We first performed digit classification for
sequential and permuted MNIST vectors (Le et al., 2015; LeCun et al., 1998), then we performed a
character-level language modeling task using the Penn Treebank dataset (Marcus et al., 1993).

The copy task consists of an input sequence that must be remembered by the network, followed by
a series of blank inputs terminated by a delimiter that denotes the point at which the network must
begin to output a copy of the initial sequence. We use an input sequence of T + 20 elements that
begins with a sub-sequence of 10 elements to copy, each containing a symbol ai ∈ {a1 , ..., ap} out
of p = 8 possible symbols. This sub-sequence is followed by T − 1 elements of the blank category
a0 which is terminated at step T by a delimiter symbol ap+1 and 10 more elements of the blank
category. The network must learn to remember the initial 10 element sequence for T time steps and
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output it after receiving the delimiter symbol.

The goal of the adding task is to add two numbers together after a long delay. Each number is
randomly picked at a unique position in a sequence of length T . The sequence is composed of
T values sampled from a uniform distribution in the range [0, 1), with each value paired with an
indicator value that identifies the value as one of the two numbers to remember (marked 1) or as
a value to ignore (marked 0). The two numbers are positioned randomly in the sequence, the first
in the range [0, T2 − 1] and the second in the range [T2 , T − 1], where 0 marks the first element. The
network must learn to identify and remember the two numbers and output their sum.

In the sequential MNIST task from Le et al. (2015), MNIST digits are flattened into vectors that
can be read sequentially by a recurrent neural network. The goal is to classify the digit based on
the sequential input of pixels at the last time step. The simple variant of this task is with a simple
flattening of the image matrices ; the harder variant of this task includes a random permutation of
the pixels in the input vector that is determined once for an experiment. The latter formulation
introduces longer distance dependencies between pixels that must be interpreted by the classification
model.

The English Penn Treebank (PTB) dataset from Marcus et al. (1993) is an annotated corpus of
English sentences, commonly used for benchmarking language models. We employ a sequential
character prediction task : given a sentence, a recurrent neural network must predict the next
character at each step, from left to right. We use input sequences of variable length, with each
sequence containing one sentence. We model 49 characters including lowercase letters (all strings
are in lowercase), numbers, common punctuation, and an unknown character placeholder. We use
two subsets of the data in our experiments : in the first, we first use 23% of the data with strings
with up to 75 characters and in the second we include over 99% of the dataset, picking strings with
up to 300 characters.

In all experiments, we employed RMSprop (Tieleman and Hinton, 2012) when not using geodesic
gradient descent. We used minibatches of size 50 and for generated data (the copy and adding
tasks), we assumed an epoch length of 100 minibatches. We cautiously introduced gradient clipping
at magnitude 100 (unless stated otherwise) in all of our RNN experiments although it may not be
required and we consistently applied a small weight decay of 0.0001. Unless otherwise specified, we
trained all simple recurrent neural networks with the hidden to hidden matrix factorization as in
(5.9) using geodesic gradient descent on the bases (learning rate 10−6) and RMSprop on the other
parameters (learning rate 0.0001), using a tanh transition nonlinearity, and clipping gradients of
100 magnitude. The neural network code was built on the Theano framework (Team et al., 2016) 1.
When parameterizing a matrix in factorized form, we apply the weight decay on the composite
matrix rather than on the factors in order to be consistent across experiments. For MNIST and

1. Source code for the model and experiments located at https://github.com/veugene/spectre_
release

https://github.com/veugene/spectre_release
https://github.com/veugene/spectre_release
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PTB, hyperparameter selection and early stopping were performed targeting the best validation set
accuracy, with results reported on the test set.

5.4.2 Empirical Study on Orthogonality for The Copy and Adding Tasks

For different sequence lengths T of the copy and adding tasks (we can also denote the sequence
length by N as described in equation (5.1)), we trained a factorized RNN with 128 hidden units
and tested a wide range of spectral margins m. For the copy task, we used a simple recurrent neural
network where the expression of hidden representation at a given time t is given by equation (5.1).
The nonlinearity f used for the copy task is the identity function. We also investigated the use of
nonlinearities.

For sequence lengths of 200, 500 and 1000, we can see from Figure 5.1 that deviating from or-
thogonality helps converging faster as for values of m = 0.1 and m = 1, the models converge to
an optimal solution before 50 epochs. Recall that singular values lie in [1−m, 1 + m] and that
m ∈ [0, 1] An interesting phenomenon occurs for a much longer sequence length. For T = 10000, the
only model which succeeded to resolve the copy task after 300 epochs is the one corresponding to
a margin m = 10−3 while all other models failed including the one corresponding to an orthogonal
hidden transition matrix (m = 0) and the one with the highest margin (m = 1). This means that
a sufficient condition to converge faster to an optimal solution is to deviate a little bit from the
space of orthogonal weights while orthogonality does not ensure a faster convergence for long-term
dependency tasks.
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Figure 5.1 (Taken from Vorontsov et al. (2017)). Accuracy curves on the copy task for different
sequence lengths given various spectral margins. Convergence speed increases with margin
size ; however, large margin sizes are ineffective at longer sequence lengths (N=T=10000,
right).

We found that nonlinearities such as tanh was detrimental to solve the copy task. Using tanh in a
short sequence length (T = 100) copy task requires the same form of orthogonality constraint used
in Henaff et al. (2016) and also thousands of training epochs to converge. It is worth mentioning that
Henaff et al. (2016) present a solution mechanism for the copy task that does not use nonlinearities
in an RNN. To examine more closely the use of nonlinearities in RNNs, we used the parametric
leaky ReLU activation function (PReLU) which introduces a learnable slope α for negative valued
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inputs x, producing f (x) = max(x, 0) + αmin(x, 0) (He et al., 2015). We first experimented with a
fixed value of α where the latter was not learnable. We tested 3 different values of a fixed α, i.e,
α ∈ {0.5, 0.7, 1}. Setting the slope α to 1 makes the PReLU equivalent to an identity activation
function. We set the spectral marginm to 0.3. We found that only the model corresponding to α = 1
solved the T = 1000 length copy task. We also experimented with a trainable slope α, initialized to
0.7 and found that it converges to 0.96.

These observations lead us to believe that a linear regime of the model (combination of transfor-
mations and activations), or a regime close to linearity, is necessary to converge quickly in a task
requiring the memorization of information in the medium and long term. Nonlinear activations en-
courage the model to forget about processed information which is undesirable in long-term tasks.
This being said, a small deviation from the linear regime does not harm the performance of the
model. This is similar to what has been observed for the orthogonality where small deviation from
it allowed a faster convergence to the optimal solution.

For the adding task, we trained the factorized RNN on T = 1000 length sequences and used ReLU
as an activation function for the hidden representation. The mean squared error (MSE) is shown
for different spectral margins in Figure 5.2. A completely different observation is made for the
adding task. It can be seen from Figure 5.2 that the loss function for the adding task starts to
decrease only for margins bigger or equal to 1 (for m ∈ {10, 100} we applied ReLU on si so that
it doesn’t get negative values). The only models which loss function failed to decrease below the
threshold corresponding to outputing the same constant at all time steps are the ones related to
strict orthogonality (m = 0) and where the singular values are not bound (no margin, i.e, equation
(5.11) was not applied on the singular values. Instead, a simple ReLU was applied on pi)).
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Figure 5.2 (Taken from Vorontsov et al. (2017)). Mean squared error (MSE) curves on the
adding task for different spectral margins m. A trivial solution of always outputting the same
number has an expected baseline MSE of 0.167.
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This is another confirmation of the fact that orthogonality of the transition hidden matrix is not
necessarily what we need to converge faster to an optimum. Certainly, orthogonality provides sta-
bility in terms of gradient computation of the loss function with respect to the activations and
parameters. However, deviation from the orthogonal space of weights is needed in both the copy
and adding tasks in order to converge in a faster pace.

5.4.3 Empirical Study on MNIST and PTB
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Figure 5.3 (Taken from Vorontsov et al. (2017)). Loss curves for different factorized RNN
parameterizations on the sequential MNIST task (left) and the permuted sequential MNIST
task (right). The spectral margin is denoted by m ; models with no margin have singular
values that are directly optimized with no constraints ; Glorot refers to a factorized RNN
with no margin that is initialized with Glorot normal initialization. Identity refers to the
same, with identity initialization.

For both sequential and permuted MNIST experiments, loss curves and accuracies are shown in
Figure 5.3 and Table 5.1 respectively. We trained a factorized RNN with 128 hidden units for 120
epochs. The tanh function was used as an activation for the hidden representation. For comparison
purposes, we also trained an LSTM with 128 hidden units with peephole connections on both tasks.
We trained the LSTM for 150 epochs for both sequential and permuted MNIST. The parameters of
the LSTM were orthogonally initialized and the forget gate bias was initialized to the unit vector
1 in order to take into account long-term dependencies. Both the factorized RNN and the LSTM
were trained with RMSprop using a learning rate of 10−4. We performed gradient clipping for both
the factorized RNN and the LSTM. The gradients magnitudes were clipped to 1.

We can observe from the curves drawn in Figure 5.3 and the numbers in Table 5.1 that for relatively
higher values of the margin, i.e,m ∈ {0.1, 1}, the factorized RNN converged faster and yielded better
performances in terms of accuracy. A margin of m = 0.1 performed the best on both sequential and
permuted MNIST. This confirms again our observation in the copy and adding task where strict



83

Table 5.1 (Taken from Vorontsov et al. (2017)). Performance on MNIST and PTB for dif-
ferent spectral margins and initializations. Evaluated on classification of sequential MNIST
(MNIST) and permuted sequential MNIST (pMNIST) ; character prediction on PTB sen-
tences of up to 75 characters (PTBc-75) and up to 300 characters (PTBc-300).

MNIST pMNIST PTBc-75 PTBc-300
margin initialization accuracy accuracy bpc accuracy bpc accuracy

0 orthogonal 77.18 83.56 2.16 55.31 2.20 54.88
0.001 orthogonal 79.26 84.59 - - - -
0.01 orthogonal 85.47 89.63 2.16 55.33 2.20 54.83
0.1 orthogonal 94.10 91.44 2.12 55.37 2.24 54.10
1 orthogonal 93.84 90.83 2.06 57.07 2.36 51.12
100 orthogonal - - 2.04 57.51 2.36 51.20
none orthogonal 93.24 90.51 2.06 57.38 2.34 51.30
none Glorot normal 66.71 79.33 2.08 57.37 2.34 51.04
none identity 53.53 42.72 2.25 53.83 2.68 45.35

LSTM 97.30 92.62 1.92 60.84 1.64 65.53

orthogonality does not guarantee a faster convergence to the optimal solution. It is important to
stress that for the models that do not use bounded singular values, the Glorot initialization as well
as the identity initialization performed poorly compared to an orthogonal initialization.

This suggests that orthogonality is beneficial at the time of initialization and that weights close to the
orthogonal space of parameters, especially during the very early phases of training, help to converge
quickly towards an optimal solution. This being said, a weight orthogonality maintained throughout
the training can affect negatively, not only the speed of convergence, but more importantly, the
performance of the model.

Figure 5.4 confirms our observations. For the 200 length copy task, a model with the highest margin
(m = 1) converged the fastest (see Figure 5.1). We can deduce from Figure 5.4 that the gradient
norm is maximal at the beginning of training and is smoothly decreased for the remaining of the
training phase as the spectrum of the norm intensities becomes lighter in Figure 5.4. This is not
surprising as the more we train, the more we approach a local minimum of the training loss, and
so, the norm of the gradient decreases towards 0. The only case where the norm of the gradient
does not decrease is for the model which corresponds to a strict orthogonality (m = 0). This leads
us to think that for a model expressing a strict orthogonality, the learning rate must be decreased
in a faster pace, so the norm of the weights update decreases through training iterations. This
decreasing of the corrections would allow to converge quickly towards the optimal solution when a
strict orthogonality is expressed.

The peephole LSTM outperformed the factorized RNNs in both sequential and permuted MNIST.
Nevertheless, the factorized RNN with margin m = 0.1 yielded a competitive performance on
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Figure 5.4 (Taken from Vorontsov et al. (2017)). Gradient evolution for the copy task during
training. The norm of the gradient of the loss from the last time step with respect to the
hidden units at a given time step for a length 220 RNN over 1000 update iterations for
different margins. Iterations are along the abscissa and time steps are denoted along the
ordinate. The first column margins are : 0, 0.001, 0.01. The second column margins are : 0.1,
1, no margin. Gradient norms are normalized across the time dimension.

permuted MNIST. It is important to mention that the factorized RNNs contain significantly less
parameters, and so less capacity, than the LSTM due the gated architecture of the latter.

For PTB character prediction, we use prediction accuracy as well as Bits Per Character (BPC) as
evaluation metrics. The Bits per character is the expected log2 cross-entropy between the predicted
and the target distributions of the characters in a given string x of length N . Given the string x
and the predicted character distribution p̂t outputed by an RNN model for the string x, the Bits
Per Character formulas is given by :

bpc(x, p̂t) = 1
N

T∑
t=1

H(pt, p̂t) = − 1
N

N∑
t=1

|alphabet|∑
c=1

pt(c) · log2 (p̂t(c))

= − 1
N

N∑
t=1

|alphabet|∑
c=1

pt(c) · log2 (p̂(c |ht))

= − 1
N

N∑
t=1

log2 (p̂(xt |ht)) ,

(5.13)

where pt is the target distribution of the characters at time t. pt is a categorical distribution
represented by a one-hot vector where pt(xt) = 1, pt(x′t) = 0 ∀x′t 6= xt and xt is the index of the
character existing in the alphabet which has the position t in x. |alphabet| is the size of the alphabet.

We trained a factorized RNN with 512 hidden units for 200 epochs with geodesic gradient descent on
the bases using a learning rate of 10−6 and RMSprop on the other parameters using a learning rate
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of 10−3. The gradients magnitudes were clipped to 30. We also trained an LSTM with 512 hidden
units with peephole connections. Early stopping was performed for the LSTM training in order
to avoid overfitting. As for the MNIST experiments, the the LSTM parameters were orthogonally
initialized and the forget gate bias was initialized to 1.

Prediction results are shown in Table 5.1 both for a subset of short sequences (up to 75 characters ;
23% of data) and for a subset of long sequences (up to 300 characters ; 99% of data). It is important
to recall that in the language modeling tasks, the vanishing and exploding gradient problem is not
as severe as it is in sequential and permuted MNIST. This is because an output is predicted at each
instant t, and so, a loss is computed at each time step (see section 5.2.3 and equations (5.7) and
(5.8)).

As for the sequential and permuted MNIST tasks, and without surprise, the LSTM, with its high
capacity gated-architecture, performed better than the simple factorized models on both shorter and
longer sequences. For the factorized RNNs, we can see from Table 5.1 that the highest accuracy for
shorter sentences corresponds to the model with the highest margin, i.e, m = 100. The factorized
models corresponding to non-bounded singular values and to the Glorot initialization performed
better than the models with a margin less than 100. This is not surprising as for language modeling,
the problem of vanishing and exploding gradient is less severe especially when sentences are short.

For longer sentences, the opposite is observed. Models with smaller margins performed better and
strict orthogonality was beneficial as it allowed to obtain the best accuracy among the factorized
models.

5.4.4 Spectral Evolution During Training

We evaluated the evolution of the singular values in terms of their mean, standard deviation, maxi-
mal and minimal values in all of our experiments on permuted MNIST. Singular values evolution
for different values of the margin is shown in Figure 5.5. We found that, in general, singular va-
lues do not deviate by much from their mean as long as the factorized RNN model is orthogonally
intialized. In such case, the mean is maintained around 1.05 along all the training process. The
only case where the singular values reached the margin upper and lower bounds is when we used
a very big learning rate which does not allow the model to converge. The only case where singular
values where deviating by much from their mean is where no bounds on the singular values were set
while the parameters where initialized using the Glorot initialization. In such case the mean of the
singular values was around 1. However, as it can be seen from Figure 5.5, the singular values had
a much bigger standard deviation than models initialized orthogonally. The minimal and maximal
values where also deviating by much from the mean. For the model initialized orthogonally where
no bounds were set for the singular values, a maximal and a minimal value of approximately 1.18
and 0.91 were respectively obtained at end of the epoch 200. For the same model which used Glorot
initialization, the maximal and minimal values reached 2.3 and 0 at the end of epoch 200.
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Figure 5.5 (Taken from Vorontsov et al. (2017)). Singular value evolution on the permuted
sequential MNIST task for factorized RNNs with different spectral margin sizes (m). The
singular value distributions are summarized with the mean (green line, center) and standard
deviation (green shading about mean), minimum (red, bottom) and maximum (blue, top)
values. All models are initialized with orthogonal hidden to hidden transition matrices except
for the model that yielded the plot on the bottom right, where Glorot normal initialization
is used.

The spectral evolution results emphasize the importance of the orthogonal initialization as the
latter allows to stabilize the training of the RNN model while giving it the freedom to deviate from
orthogonality when the margin is different than 0.

5.5 Conclusion

We carried out a study on the effect of orthogonality of the hidden transition matrix of a Recurrent
Neural Network on the learning process. More specifically, we assessed the usefulness of orthogo-
nality of the hidden weight matrix for the training procedure by controlling its deviation from the
manifold of orthogonal transformations and measuring the generalization performance of the RNN
for different bounds of deviation. We conducted experiments on toy and real-world tasks. The ob-
tained results suggest that orthogonality is beneficial at the early stages of the training process as
it ensures the propagation of the hidden representation through time and the backpropagation of
the gradient. It also suggest that, in most cases, a small deviation from orthogonality after the first
iterations is necessary to achieve a faster convergence and, more importantly, a better performance
of the model. This being said, a non-controlled deviation may lead to instabilities during training
due to the vanishing and exploding gradient problem. It may also lead to a slow convergence and
a poor performance of the model. This allows us to conclude that a strict orthogonality or an un-
controlled deviation from the Stiefel Manifold are, in general, detrimental to the training process
and that a trade-off in the amount of deviation has to be considered in order to ensure a faster
convergence and a good performance of the model.
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CHAPTER 6 CONCLUSION AND GENERAL DISCUSSION

In this chapter we first summarize and discuss the main results obtained in the thesis focusing on
the contributions we have made in chapters 3, 4 and 5. In a second step, we present the limits and
possible improvements of the proposed approaches and open a discussion on potential future research
directions. In our thesis we pursued three main objectives. The first is to combine theoretical and
empirical insights in order to devise a principled approach towards training both real and complex-
valued deep neural networks. Here we addressed challenging issues related to the training modules
or “building blocks” for complex-valued deep neural networks. The second objective is to provide
a solution to the challenging problem of signal retrieval and signal separation in the frequency
domain. As a case study, we considered audio source separation. Finally the third objective is to
assess the utility of orthogonal matrices, used in training recurrent neural networks, and measure
the performance of the corresponding model. Throughout chapters 3 to 5 we showed the expediency
of the methods we proposed in the context of the announced challenges and contended objectives.
The methods we have conceived are more generally applicable and have been applied to model
various deep learning tasks. We return to these avenues in sections 6.1.1 and 6.1.3 with a more
general discussion.

6.1 Summary and General Discussion

In this manuscript we proposed a set of original contributions in the form of three chapters on me-
thods for understanding, stabilizing and enhancing the training process for both real and complex-
valued deep neural networks. We tackled both theoretical and practical challenging issues associated
with problems causing training instability, among them, the vanishing and exploding gradient pro-
blem. More specifically the dedicated approaches provided novel complex-valued training modules
or “building blocks” including appropriate initialization and normalization techniques for learning
various tasks with real and intrinsically complex-valued inputs. Results from intensive experimenta-
tion underpinned our theoretic framework. Indeed these building blocks have been shown, in many
cases, to avoid numerical problems during training and thereby enable the use of complex-valued
representations. These representations are well-suited for frequency domain signals, as they have
the capacity to explicitly encode frequency magnitude and phase components. In particular, models
built with these building blocks have excelled at tasks including computer vision, music transcrip-
tion, speech spectrum prediction, signal retrieval and audio source separation. We summarize below
the key content of each chapter by reviewing the objectives, motivation, and contributions.
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6.1.1 General Discussion on the First Chapter

Real-valued deep learning neural networks have become the benchmark for a wide range of computer
vision, automatic speech recognition and natural language processing tasks. However one of the
major drawbacks they face during the training process is the vanishing and exploding gradients.
Difficulties intensify even more when it comes to capturing long-term dependency structures. This
is the case for training recurrent neural networks (RNNs).

Building blocks including initialization and normalization techniques have provided solutions to
overcome this notorious problem. Initialization techniques have been debated in Glorot and Ben-
gio (2010) and He et al. (2015), Normalization techniques such as batch normalization (Ioffe and
Szegedy, 2015), weight normalization (Salimans and Kingma, 2016) and layer normalization (Ba
et al., 2016) have been shown to reduce training instability, sustain higher learning rate, speed-up
convergence and boost generalization performance. The mainstream of building blocks for training
deep neural networks are established for real-valued inputs, structures and computational opera-
tions. However real-valued parametrization are not suitable for learning tasks where intrinsically
complex inputs are required or greatly effective. This is also the case when real-valued input is
converted to a complex form by means of a transformation such as the Fourier-related transforms.
In fact complex-valued signals occur in many areas and are thus of fundamental interest. Examples
of such inputs include, Magnetic Reasoning Images, Synthetic Aperture Radar Data, Radar Ima-
ging, Acoustic Signal, Ultrasonic Imaging, Communications Signal Processing, Very-Long-Baseline
Interferometry, etc.

The use of complex arithmetic for neural networks representations has been sidelined for some
time. Currently, deep complex neural networks are in their infancy. Few articles have investigated
the utility of using complex numbers in deep learning architectures. The tardy adoption of such
architectures could be explained for the following reasons. First, they are hard to train using the
gradient descent algorithm. This is mainly due to the problem that we unveiled in section 3.6.6. The
training instability is caused by the increased correlation between the real and the imaginary parts
of each neural unit output through the network layers. Furthermore, there aren’t public libraries
available to train complex-valued models.

Latest work on recurrent neural networks and past studies on signal processing advocate that there
is definitely palpable payoffs in using complex arithmetic to parametrize deep neural networks,
as its ability to encode complex inputs. Actually the reviewed recent works show that complex
numbers allow richer representational capacity (Wisdom et al., 2016; Arjovsky et al., 2016) better
generalization (Hirose and Yoshida, 2012), enable easier optimization (Nitta, 2002), faster learning
(Arjovsky et al., 2016; Wisdom et al., 2016; Danihelka et al., 2016), higher memory capacity and
noise-robust memory retrieval mechanisms (Danihelka et al., 2016).

Notwithstanding their appealing properties and the imminent likelihood of introducing new neural
architectures, complex-valued deep neural networks have been disregarded due to the nonexistence
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of proper building blocks. The lack of a framework for complex-valued building blocks represents
a clear gap in deep learning tooling. In chapter 3 we filled this gap by providing, a novel complex-
valued deep neural network and training methods that go further than a simplistic theoretical
adaptation of the real-valued counterpart. We showed that the new complex design allows the
functionality of neural networks to be sustained in order to solve a variety of applied problems that
do fit within the realm of real-valued neural schemes. We argued that it is beneficial not only for
wave-originating inputs (complex by design such as radar data), but also for a large-spectrum of
information processing with time-frequency treatment using Short Time Fourier transform (Real
inputs transformed by STFT).

We have specifically designed here the main atomic components of complex-valued deep neural net-
works and applied them to convolutional feed-forward neural networks (FFNNs) and convolutional
LSTMs. From a methodological perspective we relied on complex convolutions and presented algo-
rithms for complex batch-normalization and complex weight initialization schemes. These complex
building blocks are further implemented in intensive experiments with end-to-end training plans.
These are related to image classification, automatic music transcription and spectrum prediction.
The contributions presented in chapter 3 and discussed in more details beneath are :

1. A specification of a new complex valued activation function and a comparison of its
performance to that of various complex-based activation functions. See sections 3.3.4, 3.4.1
and 3.6.7 ;

2. A formulation of complex batch normalization, which is described in Section 3.3.5 ;

3. Complex weight initialization, which is presented in Section 3.3.6 ;

4. A state of the art result on the MusicNet multi-instrument music transcription dataset,
presented in Section 3.4.2 ;

5. A state of the art result in the Speech Spectrum Prediction task on the TIMIT dataset,
presented in Section 3.4.3.

Contributions 1-3 represent the core of the work we presented in this chapter 3, laying down the
mathematical details for implementing complex-valued building blocks of a deep neural network.

In Contribution 1, we defined a new complex-valued rectifier activation function, referred to as
CReLU. We also compared its performance, in deep feed-forward neural networks, with that of
different analogues. The results in Table 3.1, show the superiority of our CReLU.

As we pointed out earlier, deep neural networks generally rely upon batch normalization to ensure
training stability and a good generalization performance on held-out data. The formulation of batch
normalization relates only to real values. In contribution 2 we suggested a specification of batch
normalization that is appropriate to complex-valued neural networks. To transform an array of
complex numbers into a standard complex array, it is not sufficient to shift and scale them to get zero
mean and identity covariance matrix. This kind of normalization does not lead necessarily to equal
variances of the real and imaginary components and null covariance between them. Furthermore
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the resulting distribution is not guaranteed to be circular even if the original data is Gaussian. As
an alternative we have formulated the problem as whitening two dimensional vectors In fact, in
our first experimentation, we discovered that in a deep complex-valued neural network, the training
instabilities were caused, not only by the vanishing and exploding gradients, but also by the increased
correlation between the real and the imaginary parts of each neural unit output through the network
layers. The whitening step in the normalization procedure permits to decorrelate the imaginary and
real parts of a neural unit. This has the potential of preventing co-adaptation between the two
components which lowers the risk of overfitting (Cogswell et al., 2015; Srivastava et al., 2014).

In Contribution 3 we proposed a formulation of complex weight initialization which is generally ap-
plied when batch normalization is not implemented. We followed the same orientations as in Glorot
and Bengio (2010) and He et al. (2015) to derive the variance of the complex weight parameters.
In the reported experimentation, we have used variants of the derived complex weight initializa-
tion that leverages the independence property of unitary matrices. Indeed learning uncorrelated
features helps to accomplish better generalization and faster learning. Notice that we also proposed
in section 3.3.6 an equivalent initialization for real-valued models using the independence property
of orthogonal matrices.

Contributions 4 and 5 are the result of an evaluation of the performance of our deep complex mo-
dels on many computer vision tasks including music transcription using the MusicNet dataset and
on Speech Spectrum Prediction using the TIMIT dataset. State-of-the-art performance has been
achieved on these audio-related tasks. In addition, our approach has been shown to be effective on
standard image classification benchmarks, specifically, CIFAR-10, CIFAR-100. For vision classifica-
tion tasks, learning deep complex-valued representations yielded a performance that is competitive
with the respective real-valued architectures.

Recent Developments Based on Contributions within the First Chapter

Our work has paved the way for new research to integrate and extend our complex-valued frame-
work. For instance, Gaudet and Maida (2018), Parcollet et al. (2018), Parcollet et al. (2019) and
Wu et al. (2019) adopted the methodology that we had introduced to design new deep neural net-
works architectures based on hypercomplex arithmetic. Gaudet and Maida (2018) presented deep
quaternion networks where quaternion weight initialization and batch normalization methods were
formulated. Later complex and quaternion methods have been extended by Wu et al. (2019) to octo-
nion networks. In another essay, Parcollet et al. (2018) leveraged the intialization method presented
in Gaudet and Maida (2018) to perform a speech recognition task. The magnitude spectrogram, its
first order and second order temporal differences were embedded in the quaternion space through
the layers of a deep convolutional network. This has the advantage of encoding the nonlinear cor-
relations that may be present in the quaternion-based input features. Similar adaptations to RNNs
and LSTMs were also discussed in Parcollet et al. (2019).
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The main feature of the works quoted above is their ability to better generalize than real-valued
networks while using a reduced number of parameters. For example, Parcollet et al. (2019) achieved
better performance in speech recognition using a quaternion LSTM with 3.3 times fewer parameters
than its real counterpart. Similarly Wu et al. (2019) used a deep octonion network with eight times
fewer parameters than its real counterpart. They obtained significant improvements over the real-
valued network for the classification task using the CIFAR-100 dataset. This could be explained by
the fact that the hypercomplex operations encode correlations between the real and the imaginary
parts of the input. However, hypercomplex operations are more expensive than their real analogues
in terms of computation. For example, a complex multiplication or a convolution costs 4 times more
than its real counterpart. Quaternion operations are 4 times more expensive than their complex
counterparts, and therefore 16 times more than the current analogs. Octonions are 64 times more
expensive than their real counterparts. It should also be noted that the analog of our whitening
operation is expensive in the case of hypercomplex representations. Indeed computing the inverse
of the square root of the covariance matrix requires performing eigenvalue decomposition whose
complexity is cubic since the dimension N of the covariance matrix is greater than 2 in this case.
Gaudet and Maida (2018) argue that the whitening operation does not require an inverse square root
and that the Cholesky decomposition can be used to obtain the inverse of the covariance matrix.
However, the complexity of Cholesky decomposition is also cubic.

Motivated by our findings, others proposed new complex-valued models for sequential prediction
such as Wolter and Yao (2018a) and Wolter and Yao (2018b). Moran et al. (2018) went beyond
our unitary initialization to propose a soft unitary regularization approach to invert transmission
effects in multimode optical fibers. Their regularization is similar to the soft orthogonal constraint
proposed by Henaff et al. (2016). Dedmari et al. (2018) designed a deep complex U-Net using
our building blocks. The deep complex U-Net was applied for magnetic resonance images (MRI)
to de-alias the reconstruction artifacts within undersampled MRI images. The proposed method
achieved state-of-the-art in recovering fine structures and high frequency textures of MRI images.
Using our building blocks, Choi et al. (2019) designed a complex U-Net along with a phase-aware
loss in the time domain and a new masking method. The authors achieved state-of-the-art in speech
enhancement.

6.1.2 General Discussion on the Second Chapter

In our second chapter, we leveraged these building blocks along with the convolution theorem, to
develop methods for extracting and separating complex-valued signals in the Fourier domain by
considering audio source separation as a case study. In fact, when modeling audio signal separation
within a deep learning setting, it has been common to use a simple algorithm to encode the mixture
signal. The encoding is based on the spectral representation by means of the Short Time Fourier
Transform. The resulting spectrogram is a complex-valued mapping involving magnitude and phase
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components. In this setting a main difficulty of isolating phase and magnitude has been acknowled-
ged in previously published work. The phase of the clean speech has been frequently ignored due to
the difficulty of its approximation. Most approaches first estimate the magnitude of the spectrum
as a time-frequency mask for each source in the mixture, and then reconstructing using the masked
magnitude spectrogram and reusing the phase of the corrupted sound mixture. (Huang et al., 2014a;
Xu et al., 2014; Grais et al., 2016; Nugraha et al., 2016; Takahashi et al., 2018). Reusing phase of
the original corrupted speech has a negative impact on the quality of the inference of the clean
speech. The impact is amplified when noisy conditions deteriorate, i.e., when signal-to-noise ratio
(SNR) is low.

Recent works have recommended the use of a complex-valued ratio masks (cRMs). Williamson
et al. (2016), trained a deep neural network to jointly estimate real and imaginary components
of a complex ideal ratio mask (cIRM). The authors assert that the cIRM method provides the
solution to the decoupling phase/magnitude dilemma. However, this method is shown to be limited
as it propagates only the error between the cIRM and its estimated counterpart at the training
stage. This often ends up with performance deterioration (Wang et al., 2014; Yu et al., 2017).
Ephrat et al. (2018) propose a cIRM in which the real and imaginary parts are sigmoidal mapping
of the matching components of the model output. Despite its advantages, this approach to cIRM
have main shortcomings. First the corresponding loss function does not reflect the cIRM distribution
appropriately. Furthermore, the masking method yields a cRM values in a bounded rotation interval
of 0-90 degrees. This prevents from fine-tuning the noisy phase. Other works, such as Hershey et al.
(2015); Chen et al. (2016), estimate only the magnitude of the STFTs and reconstruct the time-
domain signal with the Griffin-Lim algorithm (Griffin and Lim, 1984) or other similar procedures
(Sturmel and Daudet, 2006).

We leveraged the results acquired in Chapter 3 and provided a novel fully complex-valued pipe-
line named “Deep Complex Separator” for automatic signal retrieval and source separation in the
frequency domain. The Deep Complex Separator is a novel masking-based method founded on a
complex-valued version of Feature-wise Linear Modulation (Perez et al., 2018) and takes advan-
tage of the convolution theorem which states that the Fourier transform of two convolved signals
is the elementwise product of their Fourier transforms. This new masking method is essential for
speech separation tasks and deep architectures. We also formulated a new explicitly phase-aware
loss function which takes into accounts the complex-valued components of the spectrogram and has
applealing propoerties such as amplitude and shift-invariance.

Our contributions are summarized as follows :

1. We present a novel masking method based on Feature-wise Linear Modulation (FiLM) (Perez
et al., 2018) to create multiple separated candidates for each of the signals we aim to retrieve
from a mixture of inputs. A signal averaging operation on the candidates is performed in
order to increase the robustness of the signal to noise and interference. Before the averaging
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procedure, a dropout is implemented on the signal candidates in order to reduce the amount
of interference and noise correlation existing between the different candidates. Our masking
method could be seen as one performing local ensembling. In the case of audio source sepa-
rations, we aim to retrieve distinct audio signals associated with each speaker in the input
mix. The candidates are averaged in order to obtain the final separated speech for each of
the speakers in question. Our experiments demonstrate the efficacy of our proposed masking
method, and show its regularizing effect.

2. We propose and explore a new frequency-domain loss taking explicitly into account the
magnitude and phase of signals. A key characteristic of our loss is that it is amplitude and
shift-invariant. Our comparative analysis related to different phase-aware losses defined in
time and frequency domains demonstrates the advantage of our proposed loss.

6.1.3 General Discussion on the Third Chapter

It is common practice to use unitary transition matrices and orthogonal constraints as perfect solu-
tions to the technical difficulties of vanishing and exploding gradients in recurrent neural networks
for long-term dependency tasks. However real-world tasks, such as natural language processing,
might not necessitate such hard constraints. We conjecture that narrowing the weights to fulfill
the orthogonality propriety might be excessively restrictive as it confines the search space of the
parameters to the Stiefel manifold. Moreover, hard and soft orthogonal constraints are computatio-
nally expensive. In this chapter, our goal was to know whether orthogonality is restrictive or offers
benefits in terms of optimization convergence and performance of the associated recurrent neural
network.

To this end, we assessed the utility of the orthogonality of the hidden transition weight matrix by
controlling its deviation from the manifold of orthogonal transformations and measuring the gene-
ralization performance of the associated RNN for different deviations. By combining Singular Value
Decomposition (SVD) of the hidden transition matrix and the geodesic gradient descent algorithm,
we explicitly expressed the magnitude of deviation from orthogonality and optimized it by setting
a learnable margin for the singular values. This allowed us to carry out a sensitivity analysis and
identify the cases where deviating from orthogonality could be either beneficial or detrimental. We
conducted experiments on toy and real-world tasks. The obtained results suggest that orthogonality
is beneficial at the early stages of the training process as it ensures the propagation of the hidden
representation through time and the backpropagation of the gradient. It also suggest that, in most
cases, a small deviation from orthogonality after the first iterations is necessary to achieve a faster
convergence and, more importantly, a better performance of the model. That said, an uncontrolled
deviation can lead to instabilities during training because of the vanishing and exploding gradient
problem. It can also lead to slow convergence and poor performance of the model. We concluded
that a strict orthogonality or an uncontrolled deviation from the Stiefel manifold is generally detri-
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mental to the training process and that a compromise of the amount of deviation must be considered
in order to ensure a faster convergence and a good performance of the model. To summarize our
contributions are :

1. A weight matrix factorization and parameterization strategy is proposed. The latter is em-
ployed to bound matrix norms and therein control the degree of expansivity induced during
backpropagation.

2. A sensitivity analysis to identify the cases where deviating from orthogonality could be either
beneficial or detrimental is proposed.

We have shown that the strict orthogonality of hidden weight matrices is beneficial in the beginning
of the training process and a controlled deviation from orthogonality after the early stages of training
is generally beneficial.

Recent Developments Based on the Third Chapter

Several works have benefited from our analysis and used similar constraints to optimize along the
Stiefel Manifold. Huang et al. (2018) used semi-orthogonal matrices to obtain independent filters
for each convolutional layer in a feed-forward network. This is also similar to our idea of orthogonal
and unitary initialization for real-valued and complex convolutional layers in chapter 3. Huang et al.
(2018) propose to decorrelate the filters of each convolutional layer by performing optimization in
the Stiefel manifold of each filter. Jose et al. (2017) perform soft orthogonal constraints similar
to ours and the one presented in Henaff et al. (2016) for their complex-valued Kronecker RNN.
Zhang et al. (2018c) used our singular value margin formulation expressed in equation (5.11) in
order to control the amount of deviation from the space of orthogonal parameters. Bansal et al.
(2018) used advanced analytical tools, more precisely, mutual coherence and restricted isometry
property to perform soft orthogonality constraints on convolutional layers. The complexity of their
regularization method is negligible compared to other methods, including ours, which use singular
value decomposition. Kusupati et al. (2018) addressed limitations of methods using orthogonal and
unitary RNNs as most of them are costly in terms of computational complexity. They added residual
connections between sucessive states in order to take into account long-term dependencies.

6.2 Limitations and Future Work

Although the results we obtained with our complex-based building blocks throughout the thesis are
encouraging, and their subsequent adaptations in training deep complex neural networks, through
recent research, are promising, much remains to be done to improve their performance and determine
the reasons for their successes. In this section we will pin point to some limitations and the future
work. We will not propose solutions to them, but will only sketch the outline of possible routes
inspired from our observations when conducting empirical studies.
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In our work we performed an analysis on the usefulness of orthogonaility for the hidden transition
matrix of a vanilla RNN. It would have also been ideal if our analysis had been applied to other
models such as GRUs (Cho et al., 2014), LSTMs (Hochreiter and Schmidhuber, 1997) and also
attentional weights (Bahdanau et al., 2014) such those of Transformer (Vaswani et al., 2017).

In the case of speech separation task, our experiments are carried out with two speakers. Increasing
the number of speakers will shed more light on the robustness of the proposed signal retrieval
mechanism to the number of sources to be extracted. Further experimentation is recommended.

A logical follow up project would be to combine audio-visual signals for isolating a single speech
signal from a mixture of sounds including speakers and background noise using the complex-valued
deep neural network framework.

Recently, a generative model for spectral representations of audio was proposed (Vasquez and Lewis,
2019). It discards phase information by converting the frequency representation to the Mel scale
using Mel filter banks followed by an elementwise application of the log function to perform a
logarithmic rescaling of the amplitudes. The generated spectrograms are converted back to time-
domain signals using the Griffin-Lim algorithm (Griffin and Lim, 1984) or a gradient-based inversion
algorithm (Decorsière et al., 2014). Our building could be used to design an end-to-end architecture
performing generation of complex-valued spectral representations of audio. This would allow to
leverage the phase information and to reduce the amount of artifacts and distortions in the generated
spectrogram.

As pointed out in earlier section, adaptation of the complex-valued building blocks methodology
in a more abstract setting, such as hypercomplex specification of neural units, has led to increased
performance of deep complex neural representations. One reason for such success could be attributed
to the diversity (increased number) of features describing the activations of neural units. Other
reasons could be attributed to the ability of hypercomplex models to capture dependencies in the
input features and learn representation dynamics according to the task at hand. A more fine-grained
analyses are needed to identify and understand the causes of such success.

Although ablation studies designed to evaluate the impact of the 2D whitening, performed within
the complex batch normalization, established its raison d’être, the exact causes for the success
of complex batch normalization as a whole transformation need to be understood. A systematic
investigation of the origins of the effectiveness may include the control of the internal covariate shift,
i.e, the change of the layers’ input distributions (Ioffe and Szegedy, 2015). A second element of this
investigation is to evaluate the impact of batch normalization on the training process including the
effect on the optimization landscape which is tightly linked to the behavior of the gradients.

In a final commentary, we hope that our findings have highlighted the tendency of complex-valued
deep neural networks to solve difficult tasks when data lie in the complex domain. We consider these
results as a stimulus to pursue more systematic studies of the foundations of the complex-valued
representations. We believe that our proposed methods could lead to new directions of research
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where complex-valued modeling and signal retrieval and extraction are needed.
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APPENDIX A BASIC CONCEPTS

Complex Numbers

Complex numbers are the set of numbers that can be expressed as z = a+ ib where a, b ∈ R and z is
in the complex space C. i denotes the solution for the equation x2 = −1. As a consequence, we can
write i2 = −1 or

√
−1 = ±i. i is called the imaginary number. a is called real part of z and is denoted

by <(z). b is called imaginary part of z and is denoted by =(z). The coordinates (a, b) = (<(z), =(z))
of the complex number z are called the Cartesian coordinates of z in the complex plane. Another
alternative to represent a complex number is to use the polar form (|z|, θz) where |z| is called
modulus, magnitude and also amplitude of z. θz is the phase of z. |z| =

√
<(z)2 + =(z)2 =

√
a2 + b2.

=(z)
<(z) = tan(θz) = sin(θz)

cos(θz) ∀ θz 6≡ 0 ( mod 2π). θz could then expressed as :

θz =



tan−1(=(z)
<(z)) ∀ <(z) ∈ R \ {0}

π/2 ∀ =(z) ∈ ]0, +∞[ and <(z) = 0

−π/2 ∀ =(z) ∈ ]−∞, 0[ and <(z) = 0

0 if <(z) = 0 and =(z) = 0

(A.1)

We can write a complex number in any of the following forms :

z =



a+ i b (Cartesian form)

<(z) + i=(z) (Cartesian form)

|z| [cos(θz) + i sin(θz)] (Polar form)

|z| eiθz (Polar form)

(A.2)

The conjugate of a complex number z is denote by z∗ or z̄ where z∗ = z̄ = a − ib = |z|e−iθ. As a
consequence, zz∗ = |z|2 = |z∗|2, z + z∗ = 2<(z) and z − z∗ = 2i=(z).

The Vector and Matrix Representations of a Complex Number

let z1 and z2 ∈ C where z1 = a+ ib and z2 = c+ id. the product of z1 and z2 would be equal to :

z1 · z2 = z2 · z1 = ac+ i ad+ i bc− bd

= ac− bd

+ i(ad+ bc).

(A.3)
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If we use the vector form in order to represent any complex number z such that z = [<(z), =(z)]T

we can write the product z1 · z2 in the following way :

z1 · z2 =

a −b
b a

c
d

 = z2 · z1 =

c −d
d c

a
b

 =

ac− bd
ad+ bc

 . (A.4)

If we use the matrix form in order to represent any complex number z such that z =

<(z) −=(z)
=(z) <(z)


then :

z1 · z2 =

a −b
b a

c −d
d c

 = z2 · z1 =

c −d
d c

a −b
b a

 =

ac− bd −(ad+ bc)
ad+ bc ac− bd

 . (A.5)

We can see from equations (A.4) and (A.5) that the first element in the multiplication is always
written in the matrix form even if the result and the second element of the multiplication are written
in the vector form.

Convolution

Convolution is a linear operation on two functions or signals which expresses how much two signals
effect linearly one another. Similar to cross-correlation, it is considered as similarity or linear depen-
dency measure between two signals. A convolution operation over two discrete 1D signals is defined
as :

y[n] = (f ∗ g)[n] =
∞∑

k=−∞
f [k] · g[n− k] = (g ∗ f)[n] =

∞∑
k=−∞

g[k] · f [n− k], (A.6)

where the * denotes the convolution operation between the signals f and g while y is the output
of the convolution operation. In the Digital Signal Processing community g is called the impulse
response filter and the g[k] is the impulse response at the kth instant. In the machine learning
community, g is a referred as a convolution kernel and it is generally denoted by w. In a convolution
neural network terminology, f is referred as the input and it is commonly denoted by x, g as the
kernel and is commonly denoted by w, while the output y is called the feature map. We can clearly
observe in equation (A.6) the commutative property of convolution. In fact, besides of being a
linear and a commutative operator, convolution is distibutive, i.e, f ∗ (g + h) = (f ∗g) + (f ∗h), and
associative, i.e, f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Another important propoerty of the convolution operator is its translation equivariance. Let’s call
Tk a shifting operator (also called lag operator or backshift operator in the time series community)
which shifts a signal by k time steps or spatial positions such that Tk(f[n]) = fk[n] = f[n− k]. The
convolution is a translation equivariant operator means that Tk(f ∗ g) = Tk(f) ∗ g = f ∗ (Tk(g)).
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It is important to notice that translation equivariance of the convolution operator is different from
the translation invariance property of the convolution neural network. In fact, along with the pooling
operation, the equivariance property of the convolution operator contributes to the approximate
translation invariance of the convolutional layers in the neural network. When a max pooling is
used in a convolution layer, the maximal values in a receptive field will be kept. Max pooling
is a downsampling operation along the spatial dimension(s) of the signal allowing to retain only
the maximum value of each overlapping window in the receptive field. The size of the overlapping
window is called the pooling size. The amount of overlap is called the stride. Given that convolution
is translation equivariant, these maximal values will be captured by the convolutional filters even
if they have been probably translated from their positions after performing the pooling operation.
This is why the combination of the max pooling operation and the convolution gives to the network
its approximate translation invariance property.

For 2D signals, such as images and spectrograms, the convolution operation over two discrete signals
is defined as :

Y[n,m] = (F ∗G)[n, m] =
∑
j

∑
k

F[j, k] ·G[n− j, m− k]

= (G ∗ F)[n, m] =
∑
j

∑
k

G[j, k] · F[n− j, m− k].
(A.7)

Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a linear transformation F applied on a finite complex-
valued sequence x of N samples {x0, x1, ·, xN−1} regularly spaced in time or space. It produces
another finite complex-valued sequence s of N samples {s0, s1, ·, sN−1} regularly spaced in the fre-
quency space and given by :

Fx = s =



s[0] = s0 =
N−1∑
n=0

xn · e−i
2π
N

0n

s[1] = s1 =
N−1∑
n=0

xn · e−i
2π
N

1n

s[2] = s2 =
N−1∑
n=0

xn · e−i
2π
N

2n

...

s[k] = sk =
N−1∑
n=0

xn · e−i
2π
N
kn

...

s[N − 1] = sN−1 =
N−1∑
n=0

xn · e−i
2π
N

(N−1)n.

(A.8)

s is called the spectrum of x. We can see in equation (A.8) that the elements in s are regularly
spaced in the frequency domain by −i2π

N . It can be observed, from equation (A.8) that the elements
of s are obtained using a matrix product between The DFT matrix F and the signal x. We denote
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e−i
2π
N
k.n by ωk.n (i.e, ω = e−i

2π
N ). Then, the matrix F could be written as :

F =


e−i

2π
N

0.0 e−i
2π
N

0.1 e−i
2π
N

0.2 . . . e−i
2π
N

0.(N−1)

e−i
2π
N

1.0 e−i
2π
N

1.1 e−i
2π
N

1.2 . . . e−i
2π
N

1.(N−1)

...
...

... . . . ...
e−i

2π
N

(N−1).0 e−i
2π
N

(N−1).1 e−i
2π
N

(N−1).2 . . . e−i
2π
N

(N−1).(N−1)

 (A.9)

⇒ F =


1 1 1 . . . 1
1 ω ω2 . . . ω(N−1)

...
...

... . . . ...
1 ω(N−1) ω2(N−1) . . . ω(N−1)(N−1)

 . (A.10)

The inverse of the DFT matrix F is F−1 = 1
NF∗, where F∗ is the conjugate transpose of F. So when

normalized by 1√
N
, F becomes unitary, i.e, 1√

N
F · 1√

N
F∗ = 1√

N
F∗ · 1√

N
F = I. It could then be easily

deduced that the transformed signal x could be retrieved using the conjugate transpose of the DFT

matrix applied on the spectrum s. This means that x = 1
N F∗s where xk = 1

N

N−1∑
n=0

sn · ei
2π
N
kn.

The Parseval’s Theorem and Conservation of Energy

If x and y are 2 signals and sx and sy are their respective spectrums, the Parseval’s theorem states
the following :

x∗y = 1
N

s∗xsy

⇔
N−1∑
n=0

x∗n · yn = 1
N

N−1∑
n=0

(sx[n])∗ · sy[n].
(A.11)

Now for the special case when x = y, the Parseval’s theorem becomes the Plancherel theorem which
states the following :

x∗x = 1
N

s∗xsx

⇔
N−1∑
n=0

x∗n · xn = 1
N

N−1∑
n=0

(sx[n])∗ · sx[n]

⇔
N−1∑
n=0
|xn|2 = 1

N

N−1∑
n=0
|sx[n]|2

⇔ ||x||2 = 1
N
||sx||2.

(A.12)

This means that the energy in sx is N times the energy in x where N is the number of regularly
spaced samples in x.
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The Convolution Theorem

The convolution theorem states that the convolution of 2 infinite discrete signals is obtained by
the Inverse Discrete Fourier Transform of the product of their spectrums. It also states that the
element-wise multiplication between 2 infinite sequences is obtained by the inverse Discrete Fourier
Transform of the convolution of their spectrums. This could be written in the following way : x ∗ y = F−1 [F(x)� F(y)]

x� y = F−1 [F(x) ∗ F(y)] ,
(A.13)

where � is the Hadamard product and it denotes the element-wise complex multiplication. In the
case of finite sequences, one of two assumptions can be made. The first is that the finite sequence
x of N samples repeats itself an infinite number of times, i.e, x is periodic with a period N . In
such case, the circular convolution of the 2 finite discrete signals is obtained by the inverse Discrete
Fourier Transform of the product of their spectrums and the convolution in equation (A.13) is
replaced by a circular convolution. x ~ y = F−1 [F(x)� F(y)]

x� y = F−1 [F(x) ~ F(y)] ,
(A.14)

where (x ~ y)[n] =
N−1∑
k=0

x[k] · y[(n− k) modN ].

The other assumption that could be made about finite sequences is that the signal contains zeros
outside the finite number of samples it contains.

The Discrete Short-Time Fourier Transform

The Discrete Fourier Transform only applies to stationary processes. It only encodes the input in the
frequency domain ignoring the time dimension. For non-stationary signals such as natural signals
like speech, we may assume local stationarity (Paliwal and Alsteris, 2005) and, therefore, can be
processed by a transformation which output is represented into time chunks. This is the case of the
Discrete short-time Fourier Transform. The Discrete Short-Time Fourier Transform of a signal s is
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a representation of the signal in the time-frequency domain. The Discrete STFT is defined by :

s(m,ω) = s(m, 2π
N
k) =

N−1∑
n=0

xn · wn−m · e−i
2π
N
kn

=
N−1∑
n=0

x[n] · w[n−m] · e−i
2π
N
kn

=
N−1∑
n=0

(
x[n] · e−i

2π
N
kn
)
· w[n−m]

=
N−1∑
n=0

(
x[n] · e−iωn

)
· w[n−m].

(A.15)

We can see from equation (A.15) that the window sequence w is convolved with the signal formed
by the product of x and the sequence containing the points on the unit circle that are separate by
a phase of 2πk

N . N samples of the signal x are converted to the frequency domain for each each time
chunk.
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APPENDIX B GLOROT AND HE INITIALIZATIONS

The Glorot initialization

Despite the increasing number of practical uses for deep learning, training deep neural networks
remains a challenging problem. Training advanced deep neural networks is computationally expen-
sive and even tuning a simple neural network to get improved results is particularly tedious. But,
one way to reduce training time is initialization of the model’s parameters (weights and biases). If
the initialization is done appropriately then optimization and hence parameter estimation could be
achieved in least time, otherwise, convergence to a minima using stochastic gradient descent will
not be guaranteed. In this thesis, we make use of two initialization techniques, widely used in deep
learning research, the Glorot and He initializations. Given the lack of technical details, found in
subsequent research work related to these methods, we have found it useful, for the reader that we
include, in the following, an in-depth mathematical derivation of the missing details. Notice that
in this thesis we build on these initializations to introduce new ones for the complex-valued neural
network architectures that we propose in the next chapters.

Weight initialization is shown to have a great impact on the network performance. As will be shown,
controlling the variance of the distribution, from which initial weights are drawn, allows to regulate
the way how layers gradually intensify or reduce the variance of the activations and error signal.
Appropriate initializing schemes of deep neural networks has led into a sequence of innovations
dating back to the unsupervised pretraining in Hinton et al. (2006); Bengio et al. (2007). The
intuition of Glorot and Bengio (2010) is that controlling the variance of the distributions from
which parameters are drawn permits to regulate the way layers gradually increase or decrease the
variance of activations and error signals. Lately, He et al. (2015) refined the method by selecting
linear rectifiers as nonlinear transformations to activate layer units. Indeed rectifiers halve the
sample variance since, at initialization and on average, they are active for half their inputs.

The goal of the Glorot and He initializations (Glorot and Bengio, 2010; He et al., 2015) is to prevent
training instability that appears in the course of neural networks training process. These instabilities
are caused by either the growing or the vanishing variance of the activations and their respective
derivatives. The exploding and the vanishing of the variance could happen either when propagating
the information from the bottom to the top of the neural network, or, when backpropagating the
error information related to the derivative of the loss function with respect to the activations.

Glorot and Bengio (2010) were influenced by the thesis of Bradley (2010) where the latter explains
that the variance of the gradient, in a linear neural network (neural network with linear activa-
tion functions), diminishes when backpropagating the error term. Bradley (2010) noticed that the
decaying behavior, of the gradient variance, starts immediately after the initialization. Glorot and
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Bengio (2010) have provided a proper initialization for neural networks in a linear regime.

A feed-forward neural network is a nonlinear transformation of an input vector x to an output
vector y. Consider the lth hidden layer in a deep feed-forward neural network, and let xl, yl and
bl be the activation, the preactivation and bias vectors of the lth layer respectively. Then, for a
network of L layers we can write : yl = Wl.xl−1 + bl

xl = f(yl),
∀ l = 1, 2, ..., L (B.1)

where f is an element-wise nonlinear activation function and Wl is a weight matrix propagating
information from the (l−1)th layer units to the lth layer units. In equation (B.1) the summed inputs
yl to the lth layer are computed through the linear projection weight matrix Wl and the bottom-up
inputs xl−1 coming from previous layer. xl, yl and bl are vectors in RN l

out . N l
in and N l

out are the
number of inputs fed to the lth layer, and the number of outputs coming out from the lth layer,
respectively. Wl ∈ RN l

in×N
l
out (equivalently Wl ∈ RN

l−1
out ×N l

out since N l
in = N l−1

out ). From equation
(B.1), the jth component xlj of the activation vector xl is :

xlj = f
(
ylj

)
= f

N l
in∑

i=1
W l
ji x

l−1
i + blj

 , j = 1, ..., N l
out, (B.2)

where xlj ∈ R the activation of the jth unit in the lth layer, ylj ∈ R the pre-activation of the jth unit
in the lth layer, W l

ji ∈ R is the scalar weight connecting the ith unit of the (l− 1)th layer to the jth

unit of the lth layer. Equation (B.2) implies that :

δxl−1
i = ∂Cost

∂xl−1
i

=
N l
out∑
j=1

∂Cost

∂ylj

∂ylj

∂xl−1
i

=
N l
out∑
j=1

W l
ji

∂Cost

∂ylj
=

N l
out∑
j=1

W l
ji δy

l
j

=
N l
out∑
j=1

W l
ji

∂Cost

∂xlj

∂xlj
∂ylj

=
N l
out∑
j=1

W l
ji f
′(ylj)

∂Cost

∂xlj
=

N l
out∑
j=1

W l
ji f
′(ylj) δxlj ,

(B.3)

where Cost is the cost function. The sum in equation B.3
∑Nout
j=1 takes into account all the neural

units in the lth layer connected, and so affected, by the value of xl−1
i .

Glorot and Bengio (2010) propose to control the decrease and the growth of the variance observed
by Bradley (2010) for δxli ∀ i, l. We can see a that δxli in equation (B.3) is expressed in a recursive
way as δxl−1

i =
∑Nout
j=1 W l

ji f
′(ylj) δxlj . So in order to derive the expression of the variance for δxl−1

i ,
Glorot and Bengio (2010) make some assumptions. even though they consider neural networks with
tanh and sigmoidal activation functions, they assume that, at the time of initialization, all the units
are operating in the linear regime, i.e, f(x) ≈ x, and so, f ′(ylj) ≈ 1. All the units in a given lth layer
are assumed to be independently and identically distributed (and as a consequence they have the
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same variance). The, the pre-activations are accordingly identically and independently distributed
as the units are assumed to be operating in a linear regime. The biases vectors are initialized to the
same constant (blj = 0∀ j, l) so that Var(blj) = 0, ∀ j, l. The authors also assume that δxlj and W l

ji

are independent of each other as well as W l
ji and xl−1

i are also independent. The activations are
supposed to be centered around 0. The same assumptions apply to δxli andW l

ji, i.e, E(δxli) = 0, ∀ i, l
and E(W l

ji) = 0, ∀ i, j, l. With this set of assumptions, the variance for δxl−1
i can be expressed as :

Var(δxl−1
i ) = Var

N l
out∑
j=1

W l
ji f
′(ylj) δxlj

 ≈ Var

N l
out∑
j=1

W l
ji δx

l
j

 =
N l
out∑
j=1

Var
(
W l
ji δx

l
j

)

=
N l
out∑
j=1

Var(W l
ji) Var(δxlj) + E2(W l

ji) Var(δxlj) + E2(δxlj) Var(W l
ji)

=
N l
out∑
j=1

Var(W l
ji) Var(δxlj) + 0×Var(δxlj) + 0× V ar(W l

ji)

=
N l
out∑
j=1

Var(W l
ji) Var(δxlj)

=
N l
out∑
j=1

Var(W l
ji)

N l+1
out∑
k=1

Var(W l+1
kj ) Var(δxl+1

k )

=
N l
out∑
j=1

Var(W l
ji)

N l+1
out∑
k=1

Var(W l+1
kj ) · · ·

NL
out∑
q=1

Var(WL
qp) Var(δxLq )

= N l
out Var(W l

ji) N l+1
out Var(W l+1

kj ) · · · NL
out Var(WL

qp) Var(δxLq )

=

Var(δxL)
L∏

layer=l
N layer
out Var(W layer)

 (ommited indices for simplicity).

(B.4)

We can then write the variance of the activation’s gradient in the first layer of the network in terms
of the gradient’s variance in the last layer as :

Var(δx1) = Var(δxL)
L∏
l=2

N l
outVar(W l). (B.5)

To avoid the vanishing of the gradient’s variance during backpropagation, the key is to keep the
product term in equation (B.5) equal to a constant, for instance

∏L
l=1N

l
outVar(W l) = 1. This

constraint is a way to keep the variance stable during the backpropagation. In order to have∏L
l=1N

l
outVar(W l) = 1, a basic solution would be to constraint N l

outVar(W l) = 1 ∀ l. In that case,
the variance of the weights in each layer would then be :

N l
outVar(W l) = 1 ∀ l⇒ Var(W l) = 1

N l
out

∀ l. (B.6)
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Equation (B.5) defines the constraints on the variance of the weights so that the variance of the
gradient, or backward signal, does not explode or vanish. Let’s now investigate the Glorot criterion
so that the variance of the activation, or forward signal, does neither vanish nor explode.

For the variance of the forward signal, we make the same set of assumptions that we used in the
case of the gradient signal. Equation B.2 gives the expression of the activation units in the lth layer.
The variance of the jth unit in the lth layer is then given by :

Var(xlj) = Var
[
f(ylj)

]
≈ Var

(
ylj

)
= Var

N l
in∑

i=1
W l
ji x

l−1
i + blj


= Var

N l
in∑

i=1
W l
ji x

l−1
i

+ Var(blj) = Var

N l
in∑

i=1
W l
ji x

l−1
i


=

N l
in∑

i=1
Var(W l

ji x
l−1
i )

=
N l
in∑

j=1
Var(W l

ji) Var(xl−1
i ) + E2(W l

ji) Var(xl−1
i ) + E2(xl−1

i ) Var(W l
ji)

=
N l
in∑

j=1
Var(W l

ji) Var(xl−1
i ) + 0×Var(xl−1

i ) + 0× V ar(W l
ji)

=
N l
in∑

j=1
Var(W l

ji) Var(xl−1
i )

=
N l
in∑

j=1
Var(W l

ji)
N l−1
in∑
k=1

Var(W l−1
kj ) · · ·

N2
in∑

q=1
Var(W 2

qp) Var(x1
q)

= N l
in Var(W l

ji) N l−1
in Var(W l−1

kj ) · · · N2
in Var(W 2

qp) Var(x1
q)

=

Var(x1)
l∏

layer=1
N layer
in Var(W layer)

 (ommited indices for simplicity).

(B.7)

Finally we obtain the variance of the activations in the last layer of the network in terms of the
variance of the activations in the first layer by setting l = L. We can then express as :

Var(xL) = Var(x1)
L∏
l=l
N l
inVar(W l). (B.8)

Similar to what was done in equation (B.5), to avoid the vanishing and exploding of the variance
in (B.8), Glorot and Bengio (2010) choose to constrain the value of the product in (B.8) to 1, i.e,∏L
l=lN

l
inVar(W l) = 1. This provides the second constraint for the variance of the weights at each

layer :
N l
inVar(W l) = 1 ∀ l⇒ Var(W l) = 1

N l
in

∀ l. (B.9)
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Equation (B.9) defines the constraints for the variance of the weights so that the variance of the
forward signal does not explode and does not vanish. Combining constraints B.6 and B.9 for the
variance of the weights, Glorot and Bengio (2010) propose the following trade-off between the two :

Var(W l) = 2
N l
in +N l

out

∀ l, (B.10)

where the distribution of W l has to be centred around 0, i.e, E(W l) = 0.

The He initialization

Initialization methods became even more popular with the introduction of the He initialization
(He et al., 2015). Here, the weights are initialized, memorizing, in parallel, the size of the previous
layer. This helps to achieve an overall minimum of the cost function more quickly and efficiently.
The weights are always random but their range varies according to the size of the previous layer.
This provides controlled initialization resulting in a faster and more efficient gradient descent. The
initialization in He et al. (2015) is based on a set of assumptions similar to those in Glorot and
Bengio (2010). He et al. (2015) use the Rectifier Linear Unit (Hahnloser, 1998), commonly called
ReLU, as activation function. The ReLU activation function is defined as :

f(x) = ReLU(x) = x+ = max(0, x) =

 x ∀x ∈ [0,+∞[ ,
0 otherwise.

(B.11)

As a consequence of the use of ReLU, the activation derivative will be defined as :

f ′(ylj) =

 1 ∀ ylj ∈ [0,+∞[ ,

0 otherwise.
(B.12)

So instead of assuming that all the units of the model are operating in the linear regime at initializa-
tion time, it is rather assumed that the distributions of both yli and δyli are symmetric around 0. This
means the mean and the median both coincide in 0 for both yli and δyli. We will show that, as a conse-
quence of this assumption, have Var

(
xli

)
= E

[
(xli)2

]
= Var(yli)

2 and Var
(
δyli

)
= E

[
(δyli)2

]
= Var(δxli)

2 .
Besides the set of assumptions in the context of the Glorot initialization, The following assumptions
are made for any integers i, j, l : δyli are identically and independently distributed and their distri-
bution is symmetric around 0 ; δylj and W l

ji are mutually independent ; f ′(ylj) and δxlj are mutually
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independent. With this set of assumptions, the variance for δxl−1
i can be expressed as :

Var(δxl−1
i ) = Var

N l
out∑
j=1

W l
ji δy

l
j

 =
N l
out∑
j=1

Var(W l
ji δy

l
j) =

N l
out∑
j=1

Var(W l
ji δy

l
j)

=
N l
out∑
j=1

Var(W l
ji) Var(δylj) + E2(δylj) Var(W l

ji) + E2(W l
ji) Var(δylj)

=
N l
out∑
j=1

Var(W l
ji) Var(δylj) + E2(δylj) Var(W l

ji) + 0×Var(δylj)

=
N l
out∑
j=1

Var(W l
ji) Var(δylj) + E2(δylj) Var(W l

ji)

=
N l
out∑
j=1

Var(W l
ji)
[
Var(δylj) + E2(δylj)

]

=
N l
out∑
j=1

Var(W l
ji)
[
Var

(
f ′(ylj) δxlj

)
+ E2

(
f ′(ylj) δxlj

)]
.

(B.13)

In equation B.13 we expressed Var(δxl−1
i ) in terms of Var

[
f ′(ylj) δxlj

]
and E2

[
f ′(ylj) δxlj

]
. It is

important to notice that this is exactly where the He initialization is mostly different from the
Glorot one. He et al. (2015) take into account the activation’s derivative in the computation of
the variance of the gradient. Glorot and Bengio (2010) assumed that the activation’s derivative is
approximately equal to one during initialization time, which is not necessarily true. In fact, In the
case of tanh and sigmoidal activations, the activation’s derivative is exactly equal to one only when
the pre-activation is at the origin. He et al. (2015) on the other hand, leveraged the use of ReLU
as an activation as it is trivial to compute its statistics (mean and variance). Var(δylj) can be now
written as :

Var(δylj) = Var
[
f ′(ylj) δxlj

]
= Var(f ′(ylj)) Var(δxlj) + E2(δxlj)Var(f ′(ylj)) + E2(f ′(ylj))Var(δxlj)

= Var(f ′(ylj)) Var(δxlj) + 0×Var(f ′(ylj)) + E2(f ′(ylj))Var(δxlj)

= Var(δxlj)
[
Var(f ′(ylj)) + E2(f ′(ylj))

]
.

(B.14)

In order to get the expression of
[
Var(f ′(ylj)) + E2(f ′(ylj))

]
we have to compute E(f ′(ylj)) and then

Var(f ′(ylj)).

E(f ′(ylj)) =
∫ +∞

−∞
p(ylj)f ′(ylj) dylj =

∫ +∞

0
p(ylj)× 1 dylj = 1

2 .
(B.15)
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As a consequence E2(f ′(ylj)) = 1
4 . The variance Var(f ′(ylj)) can then be computed :

Var(f ′(ylj)) =
∫ +∞

−∞
p(ylj)

[
f ′(ylj)− E(f ′(ylj))

]2
dylj

=
∫ 0

−∞
p(ylj)×

1
4 dy

l
j +

∫ +∞

0
p(ylj)×

1
4 dy

l
j

= 1
4

∫ +∞

−∞
p(ylj) dylj = 1

4 .

(B.16)

Leveraging the results obtained in equations (B.15) and (B.16) we can express equation (B.14) as :

Var(δylj) = 1
2 Var(δxlj). (B.17)

Having obtained the expression of Var(δylj) we can use it later in equation (B.13). We will now
deduce the expression for E2(δylj).

E(δylj) = E
[
f ′(ylj) δxlj

]
= E

[
f ′(ylj)

]
E
[
δxlj

]
= 1

2 × 0 = 0. (B.18)

Given the results found in equations (B.17) and (B.18), we can replace Var(δylj) and E2(δylj) in
equation (B.13) and express Var(δxl−1

i ) as :

Var(δxl−1
i ) =

N l
out∑
j=1

Var(W l
ji)
[
Var(δylj) + E2(δylj)

]

=
N l
out∑
j=1

Var(W l
ji)

1
2 Var(δxlj)

=
N l
out∑
j=1

Var(W l
ji)

1
2

N l+1
out∑
k=1

Var(W l+1
kj ) · · · 1

2

NL
out∑
q=1

Var(WL
qp) Var(δxLq )

= N l
out Var(W l

ji)
1
2 N

l+1
out Var(W l+1

kj ) · · · 1
2 N

L
out Var(WL

qp)
1
2 Var(δxLq )

=

Var(δxL)
L∏

layer=l
N layer
out

1
2 Var(W layer)

 (ommited indices for simplicity).

(B.19)

We can then write the Var(δxl−1
i ) in terms of Var(δxLq ). We can express it as :

Var(δx1) = Var(δxL)
L∏
l=2

N l
out

1
2 Var(W l). (B.20)

Equation (B.20) is very similar to the gradient’s variance constraint found for the Glorot initiali-
zation and expressed in equation (B.5). The only difference remains in the multiplicative factor 1

2
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expressed inside the product of variances. As for the Glorot initialization a simple solution to avoid
vanishing and exploding variance during backpropagation is to set the expression inside the product
equal to 1. We would then obtain :

N l
out

1
2 Var(W l) = 1 ∀ l⇒ Var(W l) = 2

N l
out

∀ l. (B.21)

Let’s now investigate the He criterion for the forward signal. The set of assumption made in the
backward case is maintained.

Var
(
ylj

)
= Var

N l
in∑

i=1
W l
ji x

l−1
i + blj


= Var

N l
in∑

i=1
W l
ji x

l−1
i

+ Var(blj) = Var

N l
in∑

i=1
W l
ji x

l−1
i


=

N l
in∑

i=1
Var(W l

ji x
l−1
i )

=
N l
in∑

j=1
Var(W l

ji) Var(xl−1
i ) + E2(W l

ji) Var(xl−1
i ) + E2(xl−1

i ) Var(W l
ji)

=
N l
in∑

j=1
Var(W l

ji) Var(xl−1
i ) + 0×Var(xl−1

i ) + E2(xl−1
i )× V ar(W l

ji)

=
N l
in∑

j=1
Var(W l

ji)
[
Var(xl−1

i ) + E2(xl−1
i )

]
=

N l
in∑

j=1
Var(W l

ji)E
[
(xl−1
i )2

]
.

(B.22)

In order to express Var
(
ylj

)
in terms of Var

(
yl−1
j

)
, we have to express E

[
(xl−1
i )2

]
in terms of yl−1

j .

E
[
(xl−1
i )2

]
=
∫ +∞

−∞
p(xl−1

i )[xl−1
i ]2 dxl−1

i =
∫ 0

−∞
p(ylj)× 0 dxl−1

i +
∫ +∞

0
p(xl−1

i )[xl−1
i ]2 dxl−1

i

=
∫ +∞

0
p(yl−1

i )[yl−1
i ]2 dyl−1

i =
∫ +∞

0
p(yl−1

i )[yl−1
i − 0]2 dyl−1

i

= 1
2 Var(yl−1

i ).

(B.23)

We can replace E
[
(xl−1
i )2

]
by 1

2 Var(yl−1
j ) in equation (B.22) to obtain the He criterion for the
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forward propagated signal :

Var
(
ylj

)
=

N l
in∑

j=1
Var(W l

ji)
1
2 Var(yl−1

i )

=
N l
in∑

j=1
Var(W l

ji)
1
2

N l−1
in∑
k=1

Var(W l−1
kj ) · · · 1

2

N2
in∑

q=1
Var(W 2

qp)
1
2 Var(y1

q )

= N l
in Var(W l

ji)
1
2 N

l−1
in Var(W l−1

kj ) · · · 1
2 N

2
in Var(W 2

qp)
1
2 Var(y1

q )

=

Var(yL)
l∏

layer=l
N layer
in

1
2 Var(W layer)

 (ommited indices for simplicity).

(B.24)

Equation (B.24) provides the initialization constraint to ensure the propagation of the signal. Thiss
is expressed as :

N l
in

1
2 Var(W l) = 1 ∀ l⇒ Var(W l) = 2

N l
in

∀ l. (B.25)

We have expressed the He criteria for both the forward and the backward signals respectively in
equations (B.21) and (B.25). In practice, one of either one of these 2 criteria is used during the
intialization of the parameters.
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