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Abstract
Single crystal X-ray structures of halogen-bonded assemblies formed between host N-hexylammonium resorcinarene bromide (1) or

N-cyclohexylammonium resorcinarene chloride (2), and 1,4-diiodooctafluorobutane and accompanying small solvent guests (meth-

anol, acetonitrile and water) are presented. The guests’ inclusion affects the geometry of the cavity of the receptors 1 and 2, while

the divalent halogen bond donor 1,4-diiodooctafluorobutane determines the overall nature of the halogen bond assembly. The

crystal lattice of 1 contains two structurally different dimeric assemblies A and B, formally resulting in the mixture of a capsular

dimer and a dimeric pseudo-capsule. 1H and 19F NMR analyses supports the existence of these halogen-bonded complexes and en-

hanced guest inclusion in solution.
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Introduction
The construction of specific supramolecular assemblies based

on the directional non-covalent bonding has been a central goal

of supramolecular chemistry and materials science [1-3]. New

systems both help us to better understand the nature and

impetus behind the self-assembly of these fascinating systems,

while also providing new materials that can provide the basis
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for a wide number of applications [4,5]. Halogen bonding (XB),

as a type of directional non-covalent interaction, is regarded as

the “long lost brother” of hydrogen bonding (HB) [6,7]. Al-

though XB in many aspects is very similar to HB, and in most

cases not as strong as classical HB, the character of XB, such as

hydrophobicity, adjustability, or softness, allows these interac-

tions to be used in aqueous or polar environments where

HB-based systems are less viable [8-12]. However, we lack the

analytical tools to directly examine and determine the precise

structure of XB assemblies in solution [13-15]. In the solid-

state, X-ray diffraction has proven an incredibly effective tool

for observing privileged conformations and structures [15-19].

From the crystallographic information we can extract the poly-

morphism, high Z’-value, twining, and disorder that provide

insight into the dynamics of prenucleation assembly, nucleation,

and crystal growth, which, in turn, provide information

regarding the nature of assemblies in solution [20-25]. In partic-

ular, a high Z’-value structure is sometimes regarded as a

“fossil” of the solute in solution, since the symmetry indepen-

dent molecules have a great deal of influence on the way in

which the crystals form [26]. Twinning and disorder are gener-

ally seen as an undesirable complication in determining struc-

tures; however, the nature and extent of the disorder contains

significant information regarding the dynamics and conforma-

tional sampling of the molecules [19,24,27]. Desiraju et al. em-

ploying substitutional disorder, achieved the co-crystallization

of six components [28]. As for positional disorder, it generally

indicates the same molecule or assembly can adopt more than

one favourable conformation. From this perspective, disorder

can be considered as a special case of a co-crystal or high

Z’-value structure. Disorder is not inherently a feature of a poor

structure, disorder instead indicates the complexity of the

dynamic solution state. Solving it, however, remains a chal-

lenge.

N-Alkylammonium resorcinarene halides (NARXs) have been

extensively studied in our groups as multidentate halogen bond

acceptors [29-34]. We have previously shown that N-alkyl-

ammonium resorcinarene bromides (NARBrs) can form various

halogen-bonded assemblies with the classical organic halogen

bond donor 1,4-diiodooctafluorobutane (DIOFB) depending on

the solvent, the presence of potential guests, and the length of

the alkyl chain [30,31]. In our previous report, the basic confor-

mation of the host N-hexylammonium resorcinarene bromide

(Hex-NARBr) was driven by the incorporation of a 1,4-dioxane

guest molecule [32], and the inter-cavitand bridging of DIOFB.

The relatively long N-hexylammonium groups endow the

constructs with significant flexibility. Thus, different structures

of the same XB acceptor–donor pair could be obtained by

simply changing the solvent. The solvent does not appear

to be critical to the halogen bonded assembly, and this raised

the question as to whether crystals arising from solvent mix-

tures could be useful in probing the solvation interactions in

solution.

In the current study, we examine the role of the inclusion guest

in determining the final XB structures. Instead of adding 1,4-

dioxane as a guest, we use methanol and acetonitrile as both

solvent and as potential inclusion guests (Figure 1). The flexi-

bility imparted to the host due to the lack of a defined inclusion

guest in these systems is considerable and led to many amor-

phous systems, as expected. However, two samples were suc-

cessfully crystallized and structurally characterized by single

X-ray crystallography: MeOH-MeCN@1&DIOFB and

Water@2&DIOFB. These two structures, besides illustrating

the potential of halogen bonding for organizing complex

capsular systems, shed light on the importance of flexibility in

affecting the self-assembled systems.

Figure 1: Tetravalent XB acceptor, Hex-NARBr 1, Cy-NARCl 2, diva-
lent XB donor DIOFB, and guests MeCN, MeOH and water.

Results and Discussion
Single crystal X-ray diffraction
The endo-inclusion of guests by NARXs greatly influences the

geometry of the system and directly affects the orientation of

the upper rim arms. This is particularly true for the NARX de-

rivatives with long chain upper rim substituents. We have previ-

ously observed that even with the most suitable inclusion guest

(1,4-dioxane), the lattice solvent molecules, regardless of

their polarity, insert between two N-hexyl arms using an

OH/CH···Br− hydrogen bond (Figure 2) [32]. To better under-

stand whether this is fundamental to these systems, or a result of

the enforced geometry caused by the included guest, we have

extended this study in this current report by excluding the 1,4-

dioxane molecule as obvious inclusion guests.

The newly isolated crystal, MeOH-MeCN@1&DIOFB, is

formed as a 2:2 (1:DIOFB) halogen-bonded species encapsu-



Beilstein J. Org. Chem. 2019, 15, 947–954.

949

Figure 2: The previously reported halogen-bonded complexes CHCl3@1&DIOFB (a), and MeOH@1&DIOFB (b). (c)The fit of 1,4-dioxane within the
cavity of 1 [32].

lating approximately equimolar amounts of MeCN and MeOH

in the cavity of the resorcinarenes. Significant disorder is

present in this cavity, viz, half MeCN and half MeOH were

assigned as disorder in the cavity of 1. According to the previ-

ously reported structure, when 1,4-dioxane was the inclusion

guest, the volume of the cavity is above 170 Å3, much larger

than that of MeCN and MeOH, which are ca. 41 and 53 Å3, re-

spectively [35]. Hence, the resorcinarene has to deform to adapt

to the small guests by maximizing the contacts between the host

and guest (Figure 3). In detail, in the MeCN occupied systems,

the N atom is stabilized by an NH···N hydrogen bond and a

weak pnictogen bond to a Br− counterion with an RNB of 0.96

(Supporting Information File 1, Figure S2). MeOH-stabilized

systems instead employ weak NH···O and OH···N hydrogen

bonds (Supporting Information File 1, Figure S2). In both cases,

the electron-rich environment of the cavity provides a negative

electrostatic surface for interactions with the electropositive

methyl groups of either MeCN or MeOH causing the orienta-

tion to be similar in both cases. Deformation of the resor-

cinarene is a result of the small solvent size leading to a de-

crease in internal cavity volume of the receptor. The calculated

space sizes are 79.45 Å3 in MeOH@1 and 101.17 Å3 in

MeCN@1 (rprobe = 1.2 Å) [34]. The deformation also shifts the

relative positions of the N-alkyl “arms” and the halide anions,

which additionally change the relative orientation of DIOFB

XB donors when directional halogen bonding forms. Two

DIOFB linked two MeOH-MeCN@1 complexes, similar to that

observed with our previous chloroform-involved 2:2 halogen-

bonded complex [31]. In the present assembly, no solvent mole-

cules are found in the encapsulated volume outlined by the two

DIOFB molecules and so the two cavitands could be assigned.

The absence of the guest molecules, and the resulting empty

space, induces disorder for both the hexyl groups on the upper-

rim of the cavitand, and the DIOFB molecules. Two preferred

conformations of these systems were identified with a ratio of

ca. 3:1 (Figure 3, Figures S1 and S3 in Supporting Information

File 1). Due to the center of inversion, the two conformations

show different dimerization modes (Supporting Information

File 1, Figure S3). In 1&DIOFB_A, the two hex-NARBrs are

linked by two DIOFB molecules via four Br···I halogen bonds

with average RXB of 0.86. The two participating bromide anions

are on adjacent “arms”; the remaining two Br− counterions are

covered by the bent hexyl “arms”. In 1&DIOFB_B, the two

DIOFB molecules link the two hex-NARBrs using the diametri-

cally opposed Br− anions. The average RXB of these XBs is

0.98. In this second conformer, a space was created between the

hosts, thus the hexyl groups bend inwards to fill the space. The

relatively strong halogen bonds in 1&DIOFB_A partially

account for its larger population occupancy than 1&DIOFB_B.

In both modes, there is no solvent-accessible space between the

dimerized resorcinarene salts. The halogen bond donors connect

the two resorcinarene like a solid tube, only creating isolated
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Figure 3: The two dimerization modes in the MeOH-MeCN@1&DIOFB complex. In both modes, the cavities are shown as transparent yellow cloud.

pores in the cavity of the resorcinarene. Note that the two

modes are present simultaneously in the crystal lattice, thus, the

structure formally contains around 75% halogen bonded dimer,

and 25% halogen bonded capsule. Additionally, the conforma-

tion difference could reveal the motion of the molecules in solu-

tion, and the evaporation of the solvent molecules during crystal

growth. Waving of the hexyl groups also affects one of the

propyl groups in the lower rim of the resorcinarene. As a result,

the two conformers A and B also differentiate from each other

in the lower rim.

A similar study was also extended to another resorcinarene

chloride salt, Cy-NARCl 2. The obtained crystal showed the

assembly as Water@2&DIOFB, forming a 1:2 (2:DIOFB)

halogen bonded chain (Figure 4). In this case, the cavitand

encapsulated two water molecules in the cavity. The water mol-

ecules were positioned at the same level as the (HNH···Cl−)4

HB circle. The O···Cl− distances of 3.13(3) and 3.22(4) Å

suggest OH···Cl− hydrogen bonds. Meanwhile, an OH···O

hydrogen bond should also exist between the two water mole-

cules with the O···O distance of 3.01(5) Å. It is surprising to

find that the resorcinarene cavity below these water molecules

is empty. It seems the electronegative surface of the cavity

repels the water molecules and pushes them up (Figure 4).

Besides the hydrogen bonds, each Cl− anion also donates elec-

tron density to one DIOFB molecule via a halogen bond with an

average RXB of 0.88. The four DIOFB molecules bound with 2

can be classified into two groups by virtue of their direction-

ality. Each group links to another resorcinarene chloride salt

through an XB. The XB interactions consequently organize the

cavitands along the crystallographic c axis. This binding mode

is different from all the other reported halogen bonded assem-

blies observed for NARXs. We account for the staggered

connection in Water@2&DIOFB by the twist of the resor-

cinarene framework that results in the absence of a geometry-

supporting inclusion guest. The presence of the halogen bond

donors covers the cavity of the resorcinarene and creates a pore

with volume of ca. 114.51 Å3 (rprobe = 1.2 Å). The two encap-

sulated water molecules only take up 33.9% of this pore, much

lower than the 55% that would be expected based on Rebek’s

rule [36].

NMR spectroscopy
Solvent interference is a key limiting factor in observing

halogen bonds in solution. Despite this limitation, NMR spec-

troscopy is one of the most powerful tools for observing and

studying XB systems in solution [37-41]. The bromide anions

of the NARBrs are hydrogen-bonded to the hydrogens of the
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Figure 4: (a) The halogen bonding (blue broken lines), hydrogen bonding (red broken lines) and the host–guest effect (water molecules in CPK, and
the cavity space in transparent yellow cloud) in Water@2&DIOFB; (b) The halogen bonded polymer. Water molecules in CPK mode and all the other
in ball-and-stick type.

Figure 5: 19F NMR in CDCl3 at 298 K of: a) DIOFB (10 mM); b) 1:2 mixture of DIOFB and 1; 1:2:1 mixture of DIOFB, 1, and c) MeCN, d) MeOH. The
dashed lines give an indication of the signal changes in ppm, resulting from the formation of XBs. The dashed lines give an indication of the signal
changes in ppm.

ammonium groups and to the phenolic hydroxy groups. Halides

such as chloride and bromides can have high coordination

numbers and as such can simultaneously be involved in both

HB and XB to form ordered assemblies [32,33]. When the

already hydrogen-bonded halides in NARXs are involved in

XB, changes in the 1H NMR chemical shifts of the –OH and

–NH2 protons of the NARXs are expected [32,33]. Additional-

ly, NARXs are also known to cooperatively bind small guest

molecules such as mono- and diamides [42,43]. Consequently,

we used 1H and 19F NMR spectroscopy to study the XB assem-

blies formed between Hex-NARBr 1 and 1,4-diiodooctafluo-

robutane (5) in the presence of the solvent guests (MeOH and

MeCN) in chloroform. For this study, we prepared samples in-

cluding the pure components as well as three experimental mix-

tures: a 1:2 mixture of N-hexyl NARBr 1 and XB donor

DIOFB; and a 1:2:2 mixture of host, XB-donor, and either

methanol or acetonitrile. The 1H and 19F NMR spectra of all

these samples were recorded at 298 K and analyzed.

In the 19F NMR analyses, the fluorine signals of the XB donor

DIOFB were monitored. In all cases, minor upfield shifts of the

fluorines on the terminal carbons were observed (0.12 ppm in

1·DIOFB, 0.13 ppm in 1·DIOFB·MeOH and 1·DIOFB·MeCN,

Figure 5). Minimal changes (<0.03 ppm) were observed for the
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Figure 6: 1H NMR in CDCl3 at 298 K of: a) 1 (10 mM), b) 1:2 mixture of 1 and DIOFB, c) 1:2:1 mixture of 1, DIOFB and MeOH, d) 1:1 mixture of 1 and
MeOH, and e) MeOH (10 mM). The dashed lines give an indication of the signal changes in ppm. The asterisk represents the residual CDCl3 solvent.

fluorine atoms attached to the internal carbon atoms. This

strongly suggests that a similar XB involving the iodine atoms

of DIOFB exists in solution both with and without the guests

(Figure 5).

To complement the direct evidence from 19F NMR, 1H NMR

showed small changes of the –OH and –NH2 signals of 1, attri-

buted to the formation of HB and XB in solution (Figure 5 and

Figure S4 in Supporting Information File 1). In the presence of

the guests (MeOH and MeCN), 1H NMR reveal significant

complexation-induced shielding of the guest protons from sam-

ples 1·DIOFB·MeOH and 1·DIOFB·MeCN. There was a signifi-

cant increase in the shielding of the guest signals when com-

pared to the host:guest mixtures (1·MeOH and 1·MeCN).

Taking the MeOH guest as an example, in the presence of the

XB donor DIOFB, the methyl protons of MeOH move

0.27 ppm downfield compared to a more limited 0.12 ppm shift

in the absence of the XB donor DIOFB (Figure 6). In the

halogen bonded assembly between DIOFB and 1, the DIOFB

blocks the “side windows” of the NARX thus increasing the

depth of the cavity. As such the bound guest suffers an increase

in the anisotropy influence from the host’s aromatic rings, in-

creasing the shielding.

Conclusion
In conclusion, we present XB assemblies between Hex-NARBr

and Cy-NARCl as tetravalent XB acceptors, a divalent XB

donor DIOFB, and small organic guest solvents (MeOH, MeCN

and water). In the assemblies, both XB and HB are working in

tandem and concertedly to form networks of non-covalent inter-

actions stabilizing the dimeric and capsular structures in the

solid state. The inclusion guests affect the geometry of the

cavity of the hex-NARBr and cy-NARCl, thus affecting the

halogen bonding connection in the final assemblies. In the com-

plex MeOH-MeCN@1&DIOFB, because of the crystallo-

graphic disorder, two halogen bonded dimerization modes

were found in the crystal lattice. In the complex of

Water@2&DIOFB, two water molecules act as inclusion

guests, taking up only 33.9% of the cavity, thus the squeezed

resorcinarene chloride prefers to be polymerized via halogen

bonds with DIOFB. The 1H NMR studies in chloroform for

Hex-NARBr and DIOFB clearly confirm the existence of XB in

solution through reasonable shift changes of the 19F signals of

–CF2I and small chemical shift changes of the –OH and –NH2

signals. Guest binding was confirmed from the increase

shielding of the guest signals. These results adds to the litera-

ture of small organic guest compounds bound by N-alkylammo-

nium resorcinarene halide receptors synergistically via HB and

XB interactions.

Supporting Information
Supporting Information File 1
Experimental details, 1H and 19F NMR solution data and

X-ray crystallographic details.

[https://www.beilstein-journals.org/bjoc/content/

supplementary/1860-5397-15-91-S1.pdf]
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