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CHAPTER 4

Pkase Structures 

and Transitions 

in Tkermotropic 

Liquid Crystals

PETER J. COLLINGS

4.1 PHASE STRUCTURES
4.1.1 Nematic Liquid Crystals
4.1.1.1 Orientational Order
Since there is no long-range positional order in 
nematic liquid crystals, one is concerned exclusively 
with long-range orientational order. This is best 
described by an orientational distribution function, 
/($!), which is proportional to the probability of find­
ing the long axis of a molecule oriented at solid angle 
fl relative to a coordinate frame in which the z-axis 
points along the director, h. Since the nematic phase is 
almost always uniaxial,/(fl) does not depend on the 
azimuthal angle cf>, but only on the polar angle 0. 
Therefore, complete knowledge of the long-range 
orientational order in a nematic liquid crystal comes 
from knowledge of the orientational distribution 
function,/(0).

In order to generate an order parameter, averages 
of certain functions must be used. Since the director in 
a nematic liquid crystal can point in either of two 
directions, a logical choice for these functions is the 
even members of the series of Legendre polynomials:

P2(cos 9) cos^ 0 — 1
^ ^ (4.1)

P4(cos0) =l(35cos^0-3Ocos^0 + 3).

The average of P2(cos 0) is called the orientation order 
parameter and given the symbol S.

^ — J 9— sinOdB ^J sin0d0. (4.2)
If the molecules are perfectly ordered, then S = 1. If 
the molecules are randomly ordered as is true for the 
isotropic liquid phase, S = 0. The orientational order 
parameter can be determined using just about any 
method which measures the macroscopic anisotropy 
of the liquid crystal. This is described in the next
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100 1 Chapter 4: Phase Structures and Transitions in Thermotropic Liquid Crystals

paragraph. The average of Pi{cos6) can be measured 
by Raman scattering, elastic x-ray and neutron scatter­
ing, and by electron spin resonance. These methods 
give somewhat conflicting results, but seem to indicate 
tiiat Pi{cos 6) starts out small or even negative near the 
isotropic transition and grows more positive as the 
temperature is decreased (Jen et al., 1977; Miyano, 
1978; Kohli et al., 1976; and Luckhurst and Yeates, 
1976).

The relationship between the order parameter and 
the anisotropy of a macroscopic property can be illu­
strated quite easily. Let Tj^x, Pyy, and be the three 
components of a molecular tensor property, such as 
the diamagnetic susceptibility. Let T'-y-, and T'- j-
be the components of the corresponding macroscopic 
tensor property, with the z'-axis along the director. 
If the direction cosines giving the orientation of 
molecular axis i relative to macroscopic direction i' 
are denoted by Aa then the transformations relating 
Tij to Tiij' are as follows.

{T'x',’) = {Al,x){T..} + {Aly){Tyy) + (71?-,) (T^>

(r;-y-} = {Al,x){Txx) + (A?-y)(Tyy) + (A?,,)(T„) (4.3)

(n-,-) = {Alx)(T..) + {Aly){T^) + (4'.>(Tzz>.
The brackets denote an average over time and an 
assumption has been made that the intramolecular 
and intermolecular motions are uncorrelated. Equa­
tion (4.3) allows the relationship between the aniso­
tropies in the microscopic and macroscopic properties 
to be determined.

(AT') = (T,v>-i((nv) + (T;y))

{AT') = i((4'.)(T«) + (A?-y)(Tyy) (4.4)

+ (A?-,)(T„))-lTr(f).

If three order parameters are defined as follows,

Sxx = I (A^'x) ~ i (Az'y) — 5
c _ 3 (a2 \ 1 ^
*^Z2 — 2 V^z'z/ 2

then the anisotropy can be written in terms of these 
order parameters. In fact, the sum of these three order 
parameters is zero, so that only two are necessary to 
describe the relationship between macroscopic and 
microscopic tensor properties. The usual choice for 
the two independent order parameters is S = S„, the 
orientational order parameter described previously, 
and D = Syy - Sxx- With these choices, the macroscopic

anisotropy has a simple form;

{AT') = {{Tzz)-l[{Txx) + {Tyy)])S
(4.6)

+ {{Tyy) - {Txx))D.

As noted before, S measures the tendency for the 
longest axis of the molecule to project along n, while 
D measures the difference in tendencies for the two 
transverse molecular axes to project along n.

Macroscopic properties for which this approach 
has been used include magnetic susceptibility, electric 
polarizability, dipolar and quadrupolar NMR, linear 
dichroism, Raman scattering, birefringence, and EPR. 
Since the molecular quantities in the parentheses of 
(4.6) must be known in order to determine the order 
parameter, some methods are more useful than others 
(de Gennes and Frost, 1993). Quadrupolar NMR also 
allows the order parameter for different parts of the 
molecule to be measured. For example, order param­
eters for parts of the hydrocarbon chain on the end of 
liquid crystal molecules tend to decrease the further 
away they are from the molecular core (Emsley, 1985).

TTieoretically, noncyhndrically symmetric mole­
cules can form a biaxial nematic phase, that is, one in 
which all directions perpendicular to the director are 
not equivalent (Chandrasekhar, 1992). Such a phase 
has been foimd in both lyotropic (Yu and Saupe, 1980) 
and thermotropic systems (Praefcke et al., 1991).

4.1.1.2 Short-Range Positional Order
Positional order is best described through the density- 
density correlation function (p is the density):

G{r-r') = {p{r)p{r'))-p\ (4.7)

When this correlation function does not decay to zero 
as r — r' ^ 00, then true long-range order is present. If 
the correlation function decays to zero as [r — 
where rj may be temperature-dependent, then the 
positional order is quasi-long-range. Finally, when 
the decay of the correlation function is exponential, 

where $ is a correlation length, then the order 
is short-range only. Long-range order is typical of 
solids, short-range order is the norm for liquids, and 
all three forms of positional order are found in liquid 
crystals (Pershan, 1988).

X-ray scattering is the most valuable tool in 
measuring the positional order in liquid crystals. 
High resolution, intense sources, and the ability to 
produce monodomain samples have combined to
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produce detailed information on the structure of 
phases. Since the x-ray scattering cross-section can be 
expressed in terms of the Fourier transform of the 
density-density correlation function, the location of 
the scattering peak in reciprocal space determines the 
spatial periodicity present, while the structure of the 
peak indicates the spatial extent of this periodicity.

The positional order of nematic liquid crystals is 
short-range, but anisotropic. That is, the x-ray scatter­
ing cross-section of an oriented monodomain sample 
shows two diffuse spots. One represents a wavevector 
^11 = 27t/L along the director, where L is on the order of 
a molecular length, and the other represents a wave- 
vector = 27r/rf perpendicular to the director, where d
is on the order of a molecular width. This indicates that 
there are two correlation lengths for short-range posi­
tional order in nematics, along the director, and fx 
perpendicular to the director. The diffuse spot along 
the director sometimes grows in intensity and sharpens 
as the temperature is lowered in the nematic phase and 
a smectic A phase is approached. This is a precursor 
to the ordering present in smectic layers, and exactly 
how this order builds up has been the focus of a great 
deal of both theoretical and experimental research. This 
will be discussed at length in a later section.

4.1.2 Chiral Nematic Liquid Crystals 
4.1.2.1 Intrinsic Twist
Although the nematic phase is characterized by a 
director which does not vary spatially, there are 
many liquid crystals with spatially varying directors. 
Most of these involve twist, so a general description of 
twist in liquid crystals is required. Liquid crystal 
phases with intrinsic twist are possible whenever the 
molecules of the liquid crystal are chiral, that is, lack a 
center of inversion symmetry. While chiral liquid 
crystal molecules possess both chiral and achiral 
liquid crystal phases, no achiral molecules form 
chiral liquid crystal phases. Perhaps the most con­
venient formulation to describe the twist is through 
the variation of a macroscopic tensor property, such as 
the anisotropic part of the electric susceptibility, e,y.

Imagine a chiral nematic liquid crystal with a pitch 
P and a helical axis directed along the z-axis. The 
components of the director n can be expressed quite 
easily:

Hj. = cos{2nz/P) Hy = sin(27rz/P) = 0. (4.8)

The anisotropic part of the electric susceptibility is 
given by £,y = Saininj — Sij/3) where £„ is the aniso­
tropy or difference between the electric susceptibility 
parallel and perpendicular to the director, £][ - £x- 
This means that £,y takes the following form:

\0 0 -1/
(4.9)

It is important to see this expression for the aniso­
tropic part of a tensor property for a chiral nematic 
liquid crystal as a specific example for a more general 
treatment of the problem. Since £,y is a symmetric 
tensor with zero trace, five independent quantities 
are necessary to specify it in general. For chiral sys­
tems, the most convenient way to do this is to define 
five basis tensors, each isomorphic to the spherical 
harmonics of order two (Brazovskii and Dmitriev, 
1975; and Brazovskii and FUev, 1978):

/I ±i 0\

±i 0

\o 0 0/

/O 0

0 0 ±z

\1 diZ 0 /

/-I

0

\o

0

-1

0

o\
0

2/

(4.10)

The anisotropic part of the electric susceptibility can 
then be written in terms of the basis tensors.

■ii = l E (£„T,7e‘?- + £;r,fe-‘?-) (4.11)

m=-2

where £„ is the amplitude of the “structural mode” 
described by each basis tensor and m = —2, —1, 0, +1, 
+2 (Grebel et al., 1983, 1984). The m = ±2 modes 
describe a planar spiral variation of the director, with 
the —2 mode being right-handed and the +2 mode 
being left-handed. The m = ±1 modes describe a con­
ical spiral variation of the director, with the principal
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FIGURE 4.1. Three of the five structural "modes” useful in 
describing the orientational order in a chiral liquid crystal. 
The two additional "modes” are the m = +2 and m = +1 
"modes,” which are the left-handed analogs of the m = -2 
and m = -1 "modes,” respectively.

axes of the director making a constant angle of 45° to 
the helical axis. The m = -1 mode is right-handed and 
the m = -1-1 mode is left-handed. The m = 0 mode 
describes the achiral mode appropriate for a nematic 
liquid crystal. Using this formulation, e,y for the chiral 
nematic liquid crystal described by (4.9) is just a 
combination of the m = —2 and tn = 0 modes with 
£„ equal to -CalV^ and eJ2, respectively, and with 
q = 47t/P. Figure 4.1 shows the principal axes for the 
m = —2, -1, and 0 structural modes.

While the smallest pitch encountered is about 
100 nm (Yang and Crooker, 1987), there is no bound 
as to how long the pitch can be. In fact, mixing equal 
amoimts of the stereoisomers produces a nematic 
phase, that is, a chiral nematic phase with an infinite 
pitch. The uniform variation in the refractive index 
due to the helical structure produces spectacular 
optical effects for light with a wavelength in the

liquid crystal equal to the pitch. These include the 
reflection of circularly polarized light and anomalous 
optical activity (Chandrasekhar, 1992; and de Gennes 
and Prost, 1993). The fact that at normal incidence 
there are no higher order reflections indicates that the 
components of the director are well described by a 
sinusoidal function.

4.1.2.2 Local Nematic Order
Since the pitch is at least ten times larger than a typical 
molecular width, a thin slice perpendicular to the 
helical axis several molecular widths wide possesses 
orientational order which is very similar to a nematic. 
For this reason, chiral nematic liquid crystals are 
described as twisted nematic phases. It should be 
kept in mind, however, that the uniaxial symmetry 
of the nematic phase is broken by the twist, that is, one 
direction perpendicular to the local director is parallel 
to the helical axis and the other orthogonal direction is 
perpendicular to the helical axis. Since the twist is 
usually small on a molecular scale, this is a very small 
effect in most cases.

There is at least one situation where the fact that a 
chiral nematic is not locally uniaxial does become 
important. When the coherence length for orienta­
tional fluctuations and the pitch become comparable, 
the biaxial character of the local orientational order is 
crucial and new phases become stable. These are the 
so-caUed blue phases and are discussed later in the 
chapter.

4.1.3 Smectic Liquid Crystals 

4.1.3.1 Positional Order
Short-range, quasi-long-range, and long-range posi­
tional order aU occur in smectic liquid crystals, \\fliile 
the dominant positional order is a tendency to form a 
layered structure, positional order of various kinds can 
occur in the two directions parallel to the layers. Of 
course, when long-range order in all three directions is 
present, the phase is crystalline, but in many liquid 
crystalline materials a number of crystalline phases 
form in which the amount of disorder is quite high. 
These phases are characterized by only a small 
number of independent x-ray reflections, and large 
entropy and volume changes at the transition to the 
highly ordered crystal phase at lower temperatures.

The smectic A phase possesses positional order in 
one dimension, that is, there is a tendency for the
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molecules to be in layers which have normals parallel 
to the director. De Gennes first represented this order 
as a sinusoidal variation in the density:

p{r)=p + Re{^ • (4.12)

Here L is the spacing between the layers and z is along 
the director, is a complex order parameter: is a
measure of the change in density in going from layer to 
layer, and the phase of describes where the layers 
are along the z-axis (de Geimes, 1972).

It has long been known that true long-range order 
in only one dimension is not possible (Peierls, 1934; 
and Landau, 1965). These arguments can be extended 
to liquid crystalline systems (CaiUe, 1972), where it is 
shown that the density-density correlation function 
decays as some power of the distance (quasi-long- 
range order). Experimental confirmation of this has 
been achieved in both thermotropic and lyotropic 
systems (Als-Nielsen et al., 1980; and Safinya et al., 
1986). The positional order within the layers is short- 
range in smectic A liquid crystals, with correlation 
lengths of only a few molecular widths.

4.1.3.2 Non-polar Smectics
Positional order in the plane perpendicular to the 
director can take many forms. In the hexatic smectic 
B phase, this positional order is quasi-long-range in 
the direction normal to the layers and short-range, 
but with much longer correlation lengths than in the 
smectic A phase, within the plane of the layers. The 
interesting additional feature is the presence of long- 
range bond orientational order within the layers. 
Bond orientational order implies that in spite of the 
fact that positional order within the layers is only 
short-range and is weakly correlated from layer to 
layer, the in-plane crystallographic axes are main­
tained over large distances both parallel and perpen­
dicular to the layers. Locally the molecules are packed 
with hexagonal symmetry, and the orientation of 
the sixfold sjHnmteric axes is maintained with true 
long-range order. The fact that a crystal with two- 
dimensional order can melt to a phase with hexatic 
order was first proposed by a number of workers 
(Halperin and Nelson, 1978; Nelson and Halperin, 
1979; and Yoimg, 1979). The reason for this is an 
instability against the spontaneous creation of disloca­
tions, which produces short-range positional order but 
maintains long-range order in the orientation of the 
crystallographic axes.

With the presence of long-range positional order in 
the plane perpendicular to the director, disordered 
crystalline phases are formed. The crystal B phase is 
si^ar to the hexatic B phase, but now long-range 
positional order exists both within the layers and from 
layer to layer. While the molecular centers are packed 
with hexagonal s)nnmetry within the layers, the mole­
cules are free to rotate about the normal to the layers. 
This rotational freedom is frozen out in the crystal E 
phase, where the transverse axes of the four nearest 
neighbors are rotated by 90° relative to the transverse 
axes of the center molecule. AU molecules imdergo 
rapid rotations of 180° about their long axes. This 
results is what is called a herringbone pattern within 
the layers, and a lattice that has rectangular symmetry. 
Both the crystal B and E phases show sharp Bragg-Hke 
x-ray reflections, indicative of structures with long- 
range order (Leadbetter, 1987; and Pershan, 1988).

There are also versions of these phases in which the 
director is not normal to the layers, but tilted at an 
angle of up to 45°. The tilted analog of the smectic A 
phase is called the smectic C phase. In many cases the 
tilt angle increases from a very small value just below 
the smectic A to smectic C transition to a value 
typically aroimd 30°. There is stiU short-range posi­
tional order within the planes. The hexatic smectic F 
and I phases are tilted versions of the hexatic smectic B 
phase. In the hexatic smectic F phase, the molecular tilt 
is toward the midpoint of the line connecting two 
nearest neighbors; in the hexatic smectic I phase, the 
molecular tilt is toward a nearest neighbor. Since these 
phases have long-range bond orientational order, the 
direction of tilt is maintained over large distances both 
within and perpendicular to the planes. The crystal G 
and K phases are the tilted analogs to the crystal B 
phase, with the tilt being toward the side of the 
hexagon in the crystal G phase, and toward the apex 
of the hexagon in the crystal J phase. The molecules in 
both phases rotate freely about their long molecular 
axes. Finally, the crystal H and K phases correspond to 
tilted versions of the crystal E phase. In the crystal H 
phase the tilt is toward a next nearest neighbor, like the 
crystal G phase. In the crystal K phase, the tilt is 
toward a nearest neighbor, tike the crystal J phase. 
Rotation motion about the long molecular axis is 
restricted as in the crystal E phase (Leadbetter, 1987; 
and Pershan, 1988).

Finally, there are chiral versions of these tilted 
smectic and crystal phases. This occurs if the molecule
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itself is chiral, that is, it lacks inversion symmetry. 
Such molecules can form smectic phases which are 
nonchiral, such as the smectic A phase, but tilted 
smectic phases of these molecules have a helical struc­
ture. If the normal to the smectic layers is the z-axis, 
then the director rotates about a cone from layer to 
layer. The generating angle of the cone is just the tUt 
angle of the smectic phase. The smallest pitch for a 
chiral smectic C phase (denoted smectic C ) is around 
300 run.

A chiral smectic C liquid crystal with a pitch of P 
and a helical axis in the z-direction has components of 
the director in all directions at some point in the 
structure:

= sin 0 cos(27tz/P) = sin sin(27rz/P)

= cos 0

Therefore, takes the following form: 

^in^0cos^(?^) -

sin 9 cos 6 cos
27TZ
~Y

\

sin 6 cos 0 sin
27TZ
T' (4.14)

Phue* of Non-polar Moleculet -with Potitiooal Order

Non-tilted Tilted Cliiral

Positional Order

Between Within 
Planes Planes

Bond
Orientational

Order

1 Smectic A | 1 Smectic C [ |Smectic C* |

1 Hescatic B I 1 Smectic F;I | ISm. F-,I* 1

[ Crystal B | 1 Crys. G,J | |Crys.

1 Crystal E ]
[Crys, H,K | |Crys. H*,K*|

S - short-range order 0 - qvMSi-long-renge order
L " lonc-iutge order

FIGURE 4.2. Chart of layered liquid crystal and "soft 
crystal” phases.

sin 6 cos 9, and the amount of wi = —2 contribution is 
proportional to sin^ 9, where 9 is the tilt angle.

There are also antiferroelectric and ferrielectric 
forms of the chiral smectic C phase (Chandari et al., 
1989; Gorecka et al., 1990; and Inui et al., 1990). In the 
antiferroelectric phase, even though the director 
rotates in helical fashion along the direction perpen­
dicular to the layers, neighboring layers have in-layer 
projections of the director which are approximately in 
opposite directions. The electric polarization is in the 
plane of the layer, perpendicular to the director, and 
antiparallel in neighboring layers, producing an anti­
ferroelectric phase. The ferrielectric phase is thought to 
be similar to the chiral smectic C antiferroelectric 
phase, but with imequal numbers of layers with 
polarization in opposite directions. This creates a 
phase with net electric polarization. These helicoidal 
phases are both scientifically and technologically 
important, and are discussed in Chapter 5.

Figure 4.2 summarizes the phases found in non­
polar liquid crystals along with the most important 
properties of each.

cos^e-(^) j
As in the case of chiral nematics, e,y can be expressed as 
a linear combination of the structural modes described 
by the tensor in (4.10). Three modes contribute and 
the amount of each depends on the tUt angle. For a 
right-handed helicoidal phase, the amount of m = 0 
contribution is proportional to (3cos^ 0 — l)/2, the 
amount of m = -1 contribution is proportional to

4.1.3.3 Polar Smectics
The smectic phases formed by highly polar molecules 
or mixtures of highly polar molecules include some of 
the phases described for nonpolar molecules, but also 
include a number of additional phases. When a 
smectic A or smectic C phase is present with complete 
head-to-taU disorder within the layers, then these 
phases are called smectic Ai or smectic Ci if the 
molecules are polar. Flowever, polar molecules also
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form smectic A and C phases in which there is anti- 
ferroelectric ordering of pairs of layers. Since the 
spatial periodicity is two layers in these phases, they 
are called smectic A2 and smectic C2. In some systems, 
there is a good deal of molecular association of pairs 
of molecules (parallel long axes, partial overlap). A 
smectic phase with a periodicity of between one and 
two molecular lengths sometimes occurs in these 
compounds and is called the smectic Aj or smectic 
Cd phase, depending on the orientation of the director 
relative to the layer normal. Finally, a modulated 
phase occurs in some highly polar systems, in which 
antiferroelectric ordering of neighboring layers is 
modulated in two directions, one parallel to the direc­
tor and the other perpendicular to the director. These 
are called the smectic A and smectic C phases or 
smectic A and C fluid antiphases. All of the smectic 
phases of polar molecules are sometimes referred to as 
frustrated smectic phases. This term stems from the 
fact that one periodicity is locked in for each phase; the 
other periodicities are frustrated and are absent.

These phases are usually identified from x-ray 
scattering experiments. The smectic Aj phase pro­
duces an on-axis quasi-Bragg peak at a reciprocal 
wavevector of 27t/L, where L is on the order of a 
molecular length. The x-ray pattern for the smectic 
A2 phase shows a reciprocal wavevector at tt/L, while 
the smectic Aj phase has a peak at 27t/L', where L' is 
between L and 2L. All these peaks are on-axis. The 
smectic A phase shows weak, diffuse off-axis peaks. In 
fact, these spots can be seen in the smectic Ai phase, 
near the transition to the smectic A phase (Yoimg et al., 
1994). The smectic C phases corresponding to these A 
phases have similar x-ray reflections, but the tilt of the 
director relative to the layer normal shifts the peaks 
off-axis.

X-ray measurements on these highly polar smectic 
systems have also revealed that phases with more than 
one periodicity may occur. In the smectic Ainc phase 
(inc = incommensurate), peaks indicating both Aj 
and A2 ordering are present (Ratna et al., 1985). 
Likewise, the smectic Aden phase (cren = crenelated) 
shows peaks indicating a modulation of the antiferro­
electric order as in the smectic A phase, but with 
regions of opposite polarization not equal in size 
(Levelut, 1984). The existence of both of these phases 
is doubtful, as revealed by recent experiments which 
showed that these phases are probably broad two- 
phase regions due to extremely slow conversion of one

phase to the other (Kumar et al., 1991; Patel et al., 1992; 
and Yotmg et al., 1994). For example, following a 
change in temperature across a phase transition in a 
mixture of a nonpolar and polar liquid crystal, x-ray 
peak intensities changed with a time constant of about 
half a day.

A phenomenological theory is useful in xmder- 
standing the existence of these phases in polar smectic 
liqmd crystals (Prost, 1984; Wang and Lubensky, 1984; 
and Lubensky et al., 1988). In this theory, two order 
parameters are used to describe the tendency of the 
molecules to form layers. The first is the normal 
smectic order parameter describing the amplitude of 
the mass density wave. The second is the amplitude of 
a wave describing the antiparaUel association of either 
molecules or layers. While the first order parameter 
is associated with a wavevector equal to 2-n/L, where L 
is a molecular length, the second order parameter is 
associated with a wavevector equal to 27t/L', where l! 
is between one and two molecular lengths. Terms in 
the free energy which include both order parameters 
compete with the elastic energy and produce several 
phases: the Aj phase with only the first order par­
ameter nonzero; the phase with both order 
parameters about equal; and the Aj phase with the 
second order parameter significantly greater than the 
first. This theory also predicts that smectic phases with 
incommensurate wavevectors are possible when the 
mismatch between the two wavevectors is great.

One other property of polar smectics is the 
existence of reentrant phases. First discovered in a 
mixture of two polar compoimds, cooling the sample 
resulted in the phase sequence isotropic-nematic- 
smectic Aj-nematic-solid (Cladis, 1975). The most 
extreme example of reentrant behavior is probably 
the compound 4-nonyloxyphenyl-4'-nitrobenzoyloxy- 
benzoate, which has the following phase sequence 
on cooling: iso-N-A(j-N-A<j-N-Ai-C-A2-C2-
soUd (Tinh et al., 1982). Such behavior can be 
xmderstood both in terms of mean-field theory if 
certain coefficients have appropriate temperature 
and pressure dependences (Prost, 1979) and by pack­
ing considerations for molecules with a tendency for 
antiparallel pairing (Cladis, 1980).

One final phase which is worthy of note is the 
“smectic D” phase, first discovered in a laterally 
substituted carboxylic acid compound. This phase is 
optically isotropic and occurs between the smectic C 
and smectic A phases or between the smectic C and
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isotropic phases. Recent x-ray measurements have 
shown that it is a three-dimensional cubic crystal, 
with a unit cell of about 800 molecules. A second 
type of “cubic smectic” phase has also been foimd in 
nonsubstituted, nonpolar liquid crystals. This phase 
exists between the crystal and smectic C phase and 
seems to have a unit cell about half the size of the first 
“smectic D” phase described. Clearly these phases 
possess three-dimensional order and should be 
referred to as crystals rather than smectic phases 
(Leadbetter, 1987; and Pershan, 1988).

4.1.3.4 Mixture and Pressure Studies 
The study of mixtures has been an important compo­
nent of research into smectic phases. Typically, various 
concentrations of two compounds are prepared and 
the phases present as a function of temperature are 
determined. This results in a phase diagram for the 
mixture. If a phase of each pure compound is con­
nected across the phase diagram, then that is good 
evidence that the phases in each pure compound are in 
fact the same. Much more important, however, is the 
fact that firstly, “induced phases” are sometimes 
present for some concentration range of the mixture 
when that phase does not exist in either of the pure 
compoimds, and secondly, phase boundaries in the 
mixtures show interesting topologies when either the 
two pure compounds possess different phase 
sequences, or induced phases are present. Much of 
the work on reentrant phases has been done in 
mixtures, and mixtures of polar and nonpolar smectic 
liquid crystals have provided a wealth of information 
on the polymorphism in smectic liquid crystals. A 
good example of the polymorphism in a binary 
mixture is shown in figure 4.3, where four different 
smectic phases are present, with one of them occuring 
in two regions (Levelut et al., 1981).

Pressure studies have also been important in 
understanding smectic phases. Because high-pressure 
experiments are much more difficult than mixture 
experiments, many fewer of them have been per­
formed. One of the important consequences of these 
pressure experiments has been to confirm many of the 
findings coming out of experiments on mixtures. 
While pressure is a true thermodynamic variable 
which can be changed for a system of a single compo­
sition, the concentration in a mixture experiment suf­
fers from the fact that the actual system being studied 
changes as the concentration is varied. When the

FIGURE 4.3. Polymorphism in a binary mixture of two 
liquid crystals. The entire phase diagram is shown in (a) 
and an enlarged inset is shown in (b). (From Levelut et al., 
1981.)

behavior of a single compoimd under presssure 
corresponds to the behavior of a mixture as the con­
centration is changed, there is reason to have some 
faith that the behavior can be explained in simple 
terms. A good example of this is the pressure experi­
ment on the reentrant behavior of a single polar 
compound that compared favorably with the experi­
ments on mixtures of two similar polar compounds 
(Cladis et al., 1977).

4.1.4 Defect Phases
4.1.4.1 Blues Phases
While chiral nematics can be viewed as slightly 
twisted nematics in systems where the chirality is 
low (and the pitch is long), such is not the case for 
highly chiral systems. The presence of a large addi­
tional term in the free energy promotes the formation
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FIGURE 4.4. Double twist cylinder, in which the director 
rotates by 45° in all directions radial to the central axis, (a) Top 
view; (b) side view.

of a double twist structure rather than the single twist 
structure typical of the chiral nematic phase. In the 
double twist structure, the director rotates about every 
axis in a plane as shown in figure 4.4(a). The free 
energy of such a structure is lower than the free energy 
of the chiral nematic structure only near the center. 
This means that macroscopic phases with double twist 
must be comprised of many of these structures. For 
example, if the double twist structure ends when the 
director is rotated by 45°, then a macroscopic phase 
can be made from many of these double twist 
cylinders (see figure 4.4(b)). Although such double 
twist cylinders which meet at right angles can have a 
continuous rotation of the director in going from one 
cylinder to the next, the points in the region between 
three orthogonal double twist cylinders possess a 
defect where the orientational order goes to zero and 
the director is imdefined. Examples of a simple cubic 
structure and a body centered structure composed of 
double twist cylinders are shown in figures 4.5(a) 
and (b), respectively. The defects in both structures are 
line defects in which the director rotates by 180° in 
going arotmd the defect. The lattice constant for these 
structures is roughly one half the pitch. One can also 
imagine a random assortment of double twist cylin­
ders, with an accompanying arrangement of line 
defects typical of an amorphous phase. As has been 
pointed out, chiral structures are inherently biaxial, 
although the biaxiaUty in chiral nematics is very small 
and of little importance. Such is not the case for the

FIGURE 4.5. Two possible defect phases composed of 
double twist cylinders, (a) a simple cubic structure; (b) a 
body centered cubic structure. (From Grebel et at, 1984.)

phases of highly chiral substances made from double 
twist cylinders.

These three structures (simple cubic, body centered 
cubic, and amorphous) exist in chiral liquid crystals if 
the pitch is small. Usually they are stable in a very 
narrow temperature region (on the order of IK) 
between the chiral nematic and isotropic phases. 
These phases are called the blue phases, because they 
were first discovered in materials which reflected 
ultraviolet light in the chiral nematic phase and blue 
light in the phases with cubic s)unmetry. The color of
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reflected light is determined by the pitch of the struc­
ture in exact analogy to x-ray diffraction from crystals, 
so blue phases which reflect at wavelengths through­
out the visible spectrum have been observed. Several 
recent reviews excellently summarize the theoretical 
and experimental work on blue phases (Wright and 
Mermin, 1989; Crooker, 1989; Homreich and Shtrik- 
man, 1989; Seideman, 1990; and Keyes, 1991).

A useful way to view the stability of the blue phases 
is through experiments on mixtures of the two optical 
isomers of the same chiral compound. In some senses 
these mixtures should be thermodynamically identical 
except for the pitch, which is a minimum for either of 
the pure isomers and infinite for the racemic mixture. 
Figure 4.6 shows the phases which are stable as the 
chiral fraction (amount of pure isomer divided by the 
sum of the amounts of pure isomer and racemic 
mixture) is increased from zero to one for one parti­
cular liquid crystal. Notice (1) that at a certain chiral 
fraction, the body centered cubic phase (BPI) forms; (2) 
that at a higher chiral fraction, the simple cubic phase 
(BPII) forms; (3) that at a higher chiral fraction, the 
amphorous phase (BPIII) forms; and (4) that at an even 
higher chiral fraction, BPII becomes unstable, leaving 
only BPI and BPIII. In compoimds with a longer pitch, 
the pure isomer may possess only BPI, or BPI and BPII, 
or BPI, BPII, and BPIII. These compounds therefore 
represent a region of the phase diagram shown in 
FIGURE 4.6 extending from the left-hand axis to some 
point in the middle of the diagram. AU compounds 
which have been investigated to date, however, follow

FIGURE 4.6. Temperature-chirality phase diagram. (From 
Bowling et al., 1993.)

TOBMB

this scheme of BPI first, BPII second, BPIII third, and 
loss of BPII as the chiral fraction is increased (Bowling 
et al., 1993).

Single crystals of a blue phase with dimensions on 
the order of millimeters have been grown, and thus 
there have been numerous experiments performed on 
both powder samples and single crystals in addition 
to optical diffraction. Facets on these single crystals 
are even visible in some cases. Optical microscopy, 
including the observation of Kossel diagrams, optical 
activity measurements, and nuclear magnetic reso­
nance experiments have been used to probe the blue 
phases.

4.1.4.2 Twist Grain Boundary Phases 
Chirality is responsible for a slightly different phe­
nomenon in smectic liquid crystals. Because of the 
layered structure, smectic liquid crystals do not 
allow for twist, so in many cases chiral molecules 
possess the nonchiral smectic A phase. However, in 
compounds with a very short pitch, the free energy of 
the phase is lowered by introducing twist grain 
boundaries at regular intervals. The phase is therefore 
a succession of imdistorted smectic blocks, separated 
at regular intervals by defect or fluid-like regions 
where the layer structure and director rotate by a 
small angle. This structure is shown in figure 4.7, 
where it can be seen that the twist axis is in the plane of 
the layers with the director perpendicular to this twist 
axis. In one compoimd, a rotation of the smectic blocks 
by A4> = 17° occurs at twist grain boundaries spaced 
Zi, = 24nm apart. This results in a pitch of about

FIGURE 4.7. Twist grain boundary (TGB) phase. (Re­
printed with permission from Dm et al.. Science 258, 1992. 
Copyright American Association for the Advancement of 
Science.)

Screw Grain Smectic
Dislocations Boundaries Layers
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500 run and a resulting optical reflection of about 
800 nm (Dm et al., 1992). Such a twist grain boundary 
A phase (TGB A phase) was theoretically predicted 
(Renn and Lubensky, 1988) and experimentally 
observed (Goodby et al., 1989) at about the same 
time. Since that time there has been both additional 
theoretical (Renn, 1992) and experimental (Navailles 
et al., 1993) work on the twist grain boimdary C phase 
(TGB C) in addition to the TGB A phase.

This work on the twist grain boundary phases has 
extended the analogy between superconductors and 
smectic A liquid crystals first pointed out by de 
Gennes. Both possess a complex order parameter 
and a free energy of the same form (de Gennes, 
1972). Twist distortion in smectic A liquid crystals 
plays the same role as the magnetic field for super­
conductors. Type-I superconductors expel the mag­
netic field just as smectic A liquid crystals possess no 
twist distortion, even when the molecules are chiral. 
Type-n superconductors allow the magnetic field to 
penetrate in flux vortices just as the TGB A phase 
incorporates twist in grain boundaries. The TGB A 
phase, with its regular spaced array of twist grain 
boimdaries, is analogous to the lattice of flux vortices 
of the Abrikosov phase in superconductors.

4.1.5 Discotic Liquid Crystals 

4.1.5.1 Nematic Phase
One of the most important findings of the last fifteen 
years is that disk-shaped molecules can form liquid 
crystal phases (Chandrasekhar and Ranganath, 1990). 
These molecules are called discotic liquid crystals and 
usually possess a flat core connected to four, six, or 
eight long chains via ester or ether linkages. Figure 4.8 
shows a molecule with two discotic phases. X-ray 
scattering and NMR spectroscopy experiments show 
that the cores are well ordered and the chains are not; 
yet the chains seem to be crucial to the stability of these 
phases.

The most simple discotic phase is the nematic 
phase, sometimes given the notiation Np, so as not 
to confuse it with the nematic phase of rod-hke 
molecules. As shown in figure 4.9(a), it is the short 
axes of the molecules which preferentially orient along 
the director. There is no long-range positional order. 
While the S)munetry of the nematic phases for both 
rod-hke and disk-like molecules is the same, the 
nematic phase of rod-like molecules is diamagneticaUy

FIGURE 4.8. Discotic liquid crystal possessing both colum­
nar and nematic phases.

and optically positive while the nematic phase of disk­
like molecules is negative. The dielectric anisotropy of 
both nematic phases can be either positive or negative.

Nematic phases occur in compounds with shorter 
chains. In fact, lengthening the chains in a homologous 
series narrows the nematic phase and eventually 
eliminates it, just as for the nematic phase of rod-hke 
molecules. There has not been a great deal of work 
done on the No phase, but what has been done reveals 
that the elastic constants for disk-like and rod-hke 
systems are similar, and the viscosity of the disk-like 
systems is much higher (Chandrasekhar, 1992). A 
chiral nematic phase has been observed in discotic 
systems, with the director perpendicular to the hehcal 
axis, just as in the chiral nematic phase of rod-like

FIGURE 4.9. Structure of the nematic (a) and columnar (b) 
phases.

(a) (b)
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molecules (Destrade et al., 1980). FinaUy, a reentrant 
Nd phase exists between two columnar phases of 
certain truxene derivatives (Frank and Chandra­
sekhar, 1980).

4.1.5.2 Columnar Phase
Figure 4.9(b) shows the type of positional order pre­
sent in the columnar phases of discotic liquid crystals. 
There is still no long-range positional order along the 
columns, but there is two-dimensional positional 
order of the columns themselves. The columns can 
either form a rectangular lattice or a hexagonal lattice. 
Along the columns, long-range orientational order of 
the molecular cores is present, but the flexible chains 
are again highly disordered.

In the rectangular columnar phase Dj, the columns 
occupy a rectangular lattice but the short axis of the 
molecules in each column is tilted away from the 
column axis. The tilt direction of the columns is a 
herringbone arrangement as shown in figure 4.10(a). 
The higher-temperature hexagonal columnar phase Dh 
possesses a hexagonal lattice of columns with the 
molecules tilted within the columns, but there is no 
order in the azimuthal direction of the tilt. This 
arrangement is shown in figure 4.10(b).

There is also evidence for phases in which the 
positional order of the molecules along the column is 
long-range in addition to the two-dimensional order of 
the columns themselves. Since true long-range posi­
tional order in one dimension is forbidden by the 
Landau-Peierls instability, there must be ordering 
between the molecules in neighboring columns.

Experiments with freely suspended strands of these 
ordered phases reveal a helicoidal stacking of the 
molecular cores and triangular superlattice (Fontes 
et al., 1988). These “ordered” discotic phases 
obviously have much in common with the three- 
dimensionally ordered smectic phases, and therefore 
should be referred to as soft crystals rather than liquid 
crystals.

4.1.5.3 Biaxial Nematic Phase
The existence of a biaxial nematic phase has been the 
subject of discussion for a long time. In such a phase, 
the molecular axes perpendicular to the long axis of a 
rod-shaped molecule possess long-range orientational 
order just as the long molecular axis does. The most 
common example is a fluid of orthorhombic 
molecules, in which each molecular axis defines 
three orthogonal directors. Such a phase was first 
discovered in a lyotropic system, where for certain 
concentration and temperature conditions, the 
micelles did not possess cylindrical symmetry (Yu 
and Saupe, 1980).

The first thermotropic biaxial nematic phases were 
seen in molecules containing both rod-like and disk­
like features. In one case, the molecular core was a 
metal complex with four attached groups; two long 
rod-like groups at opposite ends and two small side 
groups perpendicular to the long axis of the molecule 
(Chandrasekhar et al, 1986). In another case, two disk­
like groups with a benzene core were tethered together 
to form a long molecule (Praefcke et al, 1990). Both 
optical and x-ray experiments were used to ascertain 
that the molecular order was indeed biaxial.

FIGURE 4.10. The rectangular (a) and hexagonal (b) colum­
nar phases. The molecules are tiled with respect to the column 
axis in both phases.

4.1.6 Free Standing Films 

4.1.6.1 Smectic Films
A technique whereby free-standing films of smectic 
liquid crystal material can be made has been recently 
revived in an effort to study the transition from three- 
dimensional systems to two-dimensional systems. In 
this technique, some smectic material is drawn across a 
hole in a thin piece of glass or metal using the edge of 
another piece of glass or metal. The size of the hole is 
on the order of a few millimeters. By adjusting the 
amount of material the speed at which it is drawn 
over the hole, and the temperature, free-standing 
smectic films of varying thicknesses (from a few 
layers up to thousands of layers) can be fashioned.
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The smectic film is quite stable with the smectic layers 
in the plane of the film, and experiments can be 
performed on it for hours. The angular spread of the 
normal to the layers is extremely low in these films (on 
the order of a tenth to a hundredth of a degree 
compared with about one degree for a bulk liquid 
crystal aligned by a magnetic field). The majority of 
experiments on smectic films have been x-ray diffrac­
tion experiments probing the positional and orienta­
tion order within the film. Polarized light microscopy, 
light reflection spectroscopy, and heat capacity experi­
ments have also been performed.

The stability of the smectic film is due to the energy 
barrier necessary to create a hole. The energy required 
to create a hole has two contributions: (1) the positive 
energy required to create an air-liquid crystal inter­
face line, and (2) the negative energy from the decrease 
in the air-hquid crystal interface area. Since the first is 
proportional to the radius of the hole, while the second 
is proportional to the radius squared, the positive 
contribution wins for small radii. However, once a 
hole is created, it grows and the film pops (de Gennes 
and Prost, 1993).

In many cases, free-standing smectic films provide 
the ordered material which allows the various types of 
positional and orientational order in smectic liquid 
crystals to be imderstood (Moncton and Pindak, 
1979; and Pindak et al., 1981). But thin films can 
have smectic phases not found in the bulk. For 
example, in one material in which the bulk possesses 
only crystal G and B phases, thin films show two 
additional crystal B phases and two tilted hexatic 
phases (Sirota et al., 1987).

In tilted smectic films of only a few layers, line 
defects where the orientation changes by multiples of 
7t/2 have recently been studied. These lines form 
closed loops or terminate in fractional vortices and 
can be found in smectic C, hexatic smectic F, hexatic 
smectic I, and antiferroelectric phases (Pang et al., 
1992).

4.1.6.2 Surface Ordering
Free-standing films have also provided the means for a 
good deal of work probing the ordering that takes 
place near surfaces (in this case, the air-liquid crystal 
surface). For example, the liquid crystal 750BC has the 
following phase sequence upon cooling in the bulk: 
smectic A (65 °C)-hexatic B (59 °C)-crystal E. Yet in a 
ten-layer free-standing film of this material, the two

outermost layers imdergo a transition to the hexatic B 
phase at 71 °C, the next two outermost layers trans­
form at 65.2 °C, followed by the bulk at 64.6 °C. Like­
wise, the two outermost layers transform to the crystal 
E phase at a higher temperature than the internal 
layers. This crystal E ordering of the two outermost 
layers also dramatically affects the hexatic B-smectic 
A transition for the inner layers (Geer et al, 1992).

Surface ordering has also been studied in bulk 
materials with an air-liquid crystal interface. An 
example is the smectic A ordering at the air-liquid 
crystal interface that occurs in nematic liquid crystals 
(Chen et al., 1989). Thin nematic films on an isotropic 
liquid substrate have also been used recently to study 
both the defects in these films (Lavrentovich and 
Nastishin, 1990) and the so-called "surface” elastic 
energy terms (Lavrentovich, 1991).

4.1.6.3 Columnar Strands
When discotic material in a columar phase is spread 
across a hole, freely suspended strands form. The 
strands are typically tens of microns thick, meaning 
that they contain on the order of a thousand molecular 
columns. High-resolution x-ray experiments have 
revealed that the column axes are very well ordered 
(less than 0.3° variation on average) even though the 
strand contains several domains. The number of 
domains can be decreased by proper annealing of 
the strands (de Gennes and Prost, 1993).

4.2 PHASE TRANSITIONS 
4.2.1 Universality Classes
One reason for the continued interest in liquid crystal 
phase transitions is that these transitions provide 
numerous examples for much of the recent theoretical 
work on critical phenomena. Because liquid crystal 
transitions are either weakly discontinuous or contin­
uous, they should display the behavior associated 
with critical points, including strong fluctuations and 
diverging susceptibilities. One of the most important 
results of this theoretical work is that near such a 
transition, the microscopic details of the system 
become unimportant in describing how the transition 
takes place. Instead, the range of the interactions, the 
physical dimension of the system, and S5nnmetry of 
the order parameter determine how the system 
behaves very close to the transition.
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Order Parametersymmetry “• ^_____ >
exponents for the various models are also given in 
figure 4.11.

2D Ising scalar 0 0.125 1.75 1

3D Ising scalar 0.1 0.33 1.24 0.63

3D XV 2D vector 0.01 0.34 1.30 0.66

3D Heisenberg 3D vector -0.12 0.36 1.39 0.71

2D Potts scalar 0.33 0.111 1.44 0.83

FIGURE 4.11. Some models for phase transitions.

The striking implication of this is that phase transi­
tions in very different systems, superconductors and 
liquid crystals for example, may behave identically if 
the interactions, physical dimension, and symmetry of 
the order parameter are the same. To provide predic­
tions, theorists have developed models of systems in 
which they can calculate the important thermo­
dynamic properties. By convention these models are 
for magnetic systems, but they really correspond to a 
general interacting system with a particular type of 
interaction, dimension, and order-parameter sym­
metry. Some of these models, along with their dimen­
sions and order-parameter symmetries, are described 
in figure 4.11.

One parameter which is extremely important in 
describing the physical behavior near a phase transi­
tion is a critical exponent. This parameter gives the 
functional form of the divergence of a particular 
property. For example, the critical exponent a 
describes how the specific heat at constant magnetic 
field, Ch, diverges as the transition is approached by 
changing the temperature

Ch oc |f|-“ (4.15)

where f = (T — Tc)/Tc is the reduced temperature and 
Tc is the transition temperature. This critical exponent 
is determined experimentally from the slope of a log- 
log plot of Ch versus f.

a = —lim
f —0

~MCh) 
. ln(f) (4.16)

Other critical exponents describe the temperature vari­
ation of the order parameter (/?), the susceptibility (7), 
correlation length (i/), etc. Values for the critical expo­
nents from experiments are then compared with those 
predicted by the various models, to see how well the 
transition is described by the model. Some of these

4.2.2 Liquid Crystal-Isotropic Transition

4.2.2.1 Nematic-Isotropic Transition 
The transition from the nematic phase to the isotropic 
phase is always a discontinuous one, with a latent heat 
typically about 0.5kjmor\ which is nearly two 
orders of magnitude smaller than for the melting of a 
solid to either the liquid crystal or the isotropic liquid 
phase. Due to the smallness of the latent heat, there are 
pretransitional effects on either side of the transtion. 
Values for the critical exponent a range from 0.3 and 
0.4, depending on the range of temperatures used for 
the fit, while the critical exponent /? is aroimd 0.25 
(Thoen, 1992). These exponents are closer to those of a 
classical tricritical point (a = 0.5 and /3 = 0.25), than 
those of mean-field theory (a = 0 and (3 = 0.5). In 
general, the latent heat of the transition increases in a 
homologous series as the smectic-nematic transition 
gets closer to the nematic-isotropic transition.

The nematic-isotropic transition is usually 
described by the mean-field theory of Maier and 
Saupe or the phenomenological theory of Landau 
and de Gennes. In the latter, the free energy is 
expanded in powers of the order parameter

F = Fo+ lASa^Spa + 5 BSajsSg^Sja

+ \C{Sal3S^af ■

The constants B and C are greater than zero and 
A = Ag(T - T*), where ,4q is a constant. Fq is the free 
energy of the isotropic phase. Since the transition 
occurs near where A = 0, T* sets the temperature of 
the transition. At temperatures well above T*, the 
isotropic phase with = 0 is stable. Below a tem­
perature slightly above T*, the nematic phase with 
Sa0 7^ 0 is stable. The presence of the cubic term 
insures that the transition will be discontinuous with 
both critical exponents a and (3 equal to 0.5. As shown 
in figure 4.12, enthalpy data show the discontinuous 
nature of the transition. Due to the smallness of the 
discontinuity, critical-like pretransition effects are 
present, but the values for critical exponents tend to 
depend on the range of temperature used for the fit.

A similar phenomenological theory is used to 
describe the short-range nematic order that is present 
in the isotropic phase just above the transition. The free
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FIGURE 4.12. Enthalpy in the vicinity of the nematic- 
isotropic transition for three alkylcyanobiphenyls (nCB). 
(From Thoen et al., 1992.)

energy is expanded in terms of the order parameter 
and the spatial variation of the order parameter

F = Fq +

+ 1^2
dSg7
dXa dXff )'

(4.18)

A=Ao{T-T*)as before and Lj and L2 are constants. 
By expressing this free energy in terms of the Fourier 
transform of 5^0 and then applying the equipartition 
theorem, the mean-square order parameter value in the 
isotropic phase varies with temperature as (T - 
This temperature dependence has been verified by 
light scattering experiments (Litster and Stinson, 
1972), although it may break down close to the transi­
tion if a smectic phase exists below a narrow nematic 
phase (Gohin et al., 1983 and Anisimov et al., 1987).

4.2.2.2 Blue Phase-Isotropic Transition
For chiral substances, the transition from the liquid 
crystal to isotropic phase can be from the chiral 
nematic, BPl, BPII, or BPIll phase to the isotropic 
liquid. The phenomenological Landau-de Gennes 
theory predicts that these transitions may be weaker 
than for nonchiral phases. The free energy for a chiral 
system has the following additional gradient term 
allowed by symmetry

£a7/3S«/3(-^) (4-19)

where Bays is the totally antisymmetric third rank 
tensor. It is convenient to express the free energy in 
terms of the Fourier transform of the order parameter 
and utilize the five basis tensors described previously. 
Then the free energy becomes

F = F,

-F

m ^

0(4-mV ||Sm(‘?)PB +

(4.20)

where qo = A-k/P and P is the pitch. The parameter A 
has the same temperature dependence as before, while 
B and C are constants (Grebel et al., 1983, 1984). The 
effect of the new term is to shift the temperature 
dependence of the orientational order fluctuations in 
the isotropic phase for four of the structural modes. 
For the two modes with the same handedness as the 
liquid crystal phases, T* is shifted to higher tempera­
ture, and thus closer to the actual transition tempera­
ture. This has the effect of making the transition less 
discontinuous. This shift is proportional to q^, so this 
effect should be strongest for the most chiral sub­
stances.

The blue phase to isotropic transition has been 
studied using heat capacity, optical activity, and 
light scattering measurements (Thoen, 1992; and 
Collings, 1992). For all but one of the compounds 
studied, aU transitions between the chiral nematic 
and blue phases, between the blue phases themselves, 
and between the blue phases and the isotropic phase 
are first-order, although some have latent heats which 
are almost two orders of magnitude smaller than is 
t5q)ical for transitions from liquid crystals to the 
isotropic phase. The effect of increasing chirality on 
the transition to the isotropic phase is quite dramatic, 
as evidenced from the adiabatic scanning calorimetry 
on two systems in which the concentration of optical 
isomers was varied to change the chirality without 
affecting other physical parameters of the system 
(Voets, 1992; and Voets and Van Dael, 1993). For 
one compound, the latent heat of the BPIII-isotropic 
transition decreased from 1627 mj g“^ in the racemic 
mixture to 785mjg“^ for the pure optical isomer. 
For another compoimd, this decrease was from 
957 mjg-^ to 147mjg“\ Very recent heat capacity 
and dynamic light scattering measurements on one 
of the most chiral compounds available indicates that 
the BPIII-isotropic transition is actually a supercritical
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FIGURE4.13. Specific heat in the chiral nematic phase (N‘), 
first blue phase (BPI), third blue phase (BPni), and isotropic 
phase (I) for a highly chiral liquid crystal. The N*-BPI and 
BPI-BPIII transitions are weakly first-order, while BPIII con­
verts to I without a phase transition. (From Kutnjak et al, 
1995.)

conversion and not a phase transition at all (Kutnjak 
et al., 1995). This is shown in figure 4.13 where the 
latent heats for the chiral nematic-blue phase I and 
blue phase I-blue phase III transitions are clearly 
evident, but the blue Ill-isotropic transition region 
shows only a roimded conversion without a phase 
transition. The most important implication of this 
finding is that the macroscopic symmetry of the 
BPIII and isotropic phases must be the same.

4.2.2.3 Smectic-Isotropic Transition
The latent heat for a direct transition from the smectic 
phase to the isotropic phase is considerably larger than 
for the nematic-isotropic transition (Thoen, 1992). 
Pretransitional effects, which include both orienta­
tional order and positional order fluctuations are less 
pronounced.

4.2.3 Smectic A-Nematic Transition

4.2.3.1 Heat Capacity and X-ray Experiments 
The transition from the smectic A phase to the nematic 
phase involves the melting of one-dimensional

translational order. For the past two decades, this 
transition has received more theoretical and experi­
mental attention than any other, partially due to the 
analogy with the superconducting-normal transition. 
Most of the focus has been on the critical exponents, in 
the hope of determining the universality class of this 
transition. In spite of all this research, the situation 
remains very complicated with numerous questions 
unresolved. A list of references to much of the theore­
tical and experimenal work is contained in a recent 
article (Garland and Noimesis, 1994).

The critical exponents that have been measured 
most extensively are a, 7, and where the last 
two correspond to the divergence of the correlation 
lengths parallel and perpendicular to the director, 
respectively. In summarizing the data, it is convenient 
to specify the McMillan ratio, where Tj^a

is the nematic-smectic A transition temperature and 
Tjv; is the nematic-isotropic transition temperature 
(McMillan, 1973). At first, differential scanning calori­
metry (DSC) seemed to indicate that most of the 
observed smectic A-nematic transitions were discon­
tinuous, with only those below the tricritical value of 
0.87 being continuous, as suggested by McMillan. 
Later work utilizing adiabatic scanning calorimetry 
and AC calorimetry showed that pretransitional 
effects had been interpreted as latent heats in the 
DSC experiments, and that continuous behavior 
occurred up to much higher values of the McMillan 
ratio (Kasting et al., 1980; and Thoen et al., 1984). 
Experimental advances continue to be made in detect­
ing small latent heats; a good example is the dynamical 
method using propagation characteristics of the inter­
face between two phases (Cladis et al., 1989; and 
Anisimov et al., 1990).

The critical exponents for the susceptibility and 
correlation lengths are measured from diffuse x-ray 
scattering experiments in the nematic phase (Ocko 
et al., 1984). First, the x-ray structure factor is fit to 
the following form

^_____________________________ (4 21)

where C is a constant. Then the temperature depen­
dences of Xf 4||' power laws to
determine the critical exponents 7, v\\, and i/j_, respec­
tively. The power laws typically hold over three 
decades in reduced temperature (de Gennes and 
Frost, 1993).



Phase Transitions | 115

__________ ___________ I__________ ^__________ I__________,__________ I____V y________
0,6 0.7 0.8 0.9 1.0

^NA ! "'"nI

FIGURE 4.14. Specific heat exponent (a) and susceptibility 
exponent (7) as a function of the ratio of the N-A transition 
temperature (T^a) to the N-I transition temperature (Tnj). 
(From Garland and Nounesis, 1994.)

If one looks at the measurements of continuous 
smectic A-nematic transitions, the critical exponents 
are clearly dependent on the McMillan ratio. For aU 
ratios below about 0.93, they are close to those of the 3D 
XY universality class (a = —0.007, 7 = 1.316,
i/|l =v^ = 0.669). Above a ratio of roughly 0.93, they 
are no longer fairly constant, but tend to approach their 
tricritical values (a = 0.5,7 = 1.0, =v^= 0.5) as the
McMillan ratio approaches unity. This trend for a and 
7 is shown in figure 4.14. In addition, the correlation is 
no longer isotropic at these high McMillan ratios, with 
i^ll falling above and faUing below their tricritical 
values. It should be pointed out that the value of the 
McMillan ratio at the tricritical point is not universal 
and that the crossover from 3D XY values to tricritical 
values is not the same for different homologous series, 
but the trend in the critical exponents is very similar 
for all compounds studied. A clear demonstration

FIGURE 4.15. Excess specific heat near the nematic- 
smectic A transition for seven different binary mixtures. The 
mole fraction for one of the compoimds increases from 0 (Xj) 
to 0.5 (X7). (From Stine and Garland, 1989b.)

showing the change in a in approaching the tricritical 
point along with the increase in the size of the specific 
heat anomaly is given in figure 4.15. For this binary 
mixture, the tricritical concentration is close to the one 
labeled X5 in the figure.

4.2.3.2 Theory
The mean-field description for the smectic A-nematic 
transition begins with an expansion for the free energy 
in terms of the amplitude of the smectic order param­
eter \‘ip\

F = Fo+la\rpf+\bo\i^f + --- (4.22)

where a = ao{T — Tna) and bo > 0. Only even powers 
are allowed since changing the sign of \ip\ is the same 
as changing the reference point for the sinusoidal 
density variation and therefore cannot affect the free 
energy. This free energy predicts a continuous transi­
tion at T^a-

Coupling between the amoimt of nematic order 
(given by the order parameter S) and the smectic 
order parameter \ip\ complicates the theory. This 
means that the value of S wfiich minimizes the nematic 
free energy, Sq, may not be the value of S which 
minimizes the total free energy if a term coupling S 
and is present. Letting AS = S — Sq, the free energy 
becomes

F = fo + + ^ - c\i^\{SS) (4.23)
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where x is the susceptibility and c > 0. Minimizing F 
with respect to AS, one obtains

F = Fo+iflH'+K^o-2c"x)IV>l"

= Fo+^ali/>f+lbM*.

For a small value of the McMillan ratio, x is small and 
b > 0, resulting in a continuous transition. For high 
values of the McMillan ratio, x is large and 1; < 0, 
resulting in a discontinous transition (assuming that a 
sixth-order term in \ip\ is present for stability). A tri- 
critical point thus exists at the McMillan ratio where 
b = 0. TTie critical exponents have their classical values.

Near the transition, fluctuations in both the smectic 
order parameter and nematic director are important. If 
one introduces gradient terms of the smectic order 
parameter into the free-energy expression but with 
isotropic coefficients, the situation is analogous to 
superfluid helium and thus 3D XY behavior is 
expected (Frost, 1984). If fluctuations of the director 
are also included, the situation resembles the normal 
superconducting transition. Some of the analogies to 
superconductivity are quite interesting. For example, 
just as a superconductor expells magnetic fields (the 
Meissner effect), smectic A liquid crystals expell twist 
and bend distortions. Accordingly, the twist and bend 
elastic constants in the nematic phase diverge as the 
transition to the smectic A phase is approached.

A variety of conclusions have been reached 
through theoretical work on this problem. The transi­
tion seems always to be first-order in four dimensions 
due to the coupling between the smectic order par­
ameter and the director fluctuations (Halperin et al., 
1974). In three dimensions, the behavior on the low 
and high sides of the transition can be reversed from 
3D XY behavior, i.e., an inverted 3D XY model 
(Dasgupta and Halperin, 1981; and Lubensky, 1983). 
A dislocation-loop melting theory, in which a diver­
gence in the density of dislocation loops destroys the 
smectic order, pelds anisotropic critical behavior in 
the correlation lengths (Nelson and Toner, 1981; and 
Toner, 1982). Noninverted behavior is seen in Monte 
Carlo simulations (Dasgupta, 1987). Finally, self- 
consistent one-loop theory employing intrinsically 
anisoptropic coupling between the director fluctua­
tions and the smectic order parameter predicts a 
gradual crossover from isotropic behavior to strongly 
anisotropic behavior (Patton and Andereck, 1992; and 
Andereck and Patton, 1994).

Clearly the nematic-smectic A transition is very 
complicated, with many factors affecting the behavior 
near the transition. Coupling between the smectic 
order parameter and the nematic order drives the 
transition toward tricritical behavior, while coupling 
between the smectic order and nematic director fluc­
tuations drives it into an anisotropic regime. While the 
McMillan ratio is a convenient indicator of the strength 
of both of these couplings, it is quite imprecise. Still, 
general trends with the McMillan ratio are plainly 
evident (Garland and Nounesis, 1994).

4.2.3.3 Polar Smectics
The smectic A phase of polar compounds can be Aj, 
A2, or Ad, depending on whether the layer spacing is 
roughly one molecular length, two molecular lengths, 
or between one and two molecular lengths, respec­
tively. The smectic Ad-N transition falls into the 
category of crossover behavior from 3D XY to tri­
critical as the McMillan ratio is increased as described 
previously, and in fact this transition has been used for 
quite a few experiments. When a reentrant nematic 
phase. Nr, is present, the smectic Ad-N, transition is 
similar. Tlie heat capacity peak at this transition is 
often extremely small (Wu et al., 1992).

A large number of experiments on the smectic 
Aj-N transition show critical exponents consistent 
with the 3D XY universality class (Garland, 1990). 
Typical specific heat data are contained in figure 
4.16. One of the reasons for this may be the large

FIGURE 4.16. Specific heat associated with the smectic Ai- 
nematic transition. (From Garland et al., 1989.)
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nematic range that occurs in many of these systems. 
More recent heat capacity measurements have also 
shown a tendency for this system to crossover to 
tricritical-like behavior (Wu et al., 1992). The reason 
for this may be the same as for the smectic A-N 
transition in nonpolar compounds (or the smectic 
A(j-N transition for polar compounds), namely a 
trend to a larger nematic susceptibility that drives 
the transition toward first order through the coupling 
of the nematic and smectic order parameters. For the 
smectic Aj-N transition, however, the larger nematic 
susceptibility may be due to a nearby nematic 
(dimers)-nematic (monomers) transition rather than 
a nearby nematic-isotropic transition.

Although most smectic A2-N transitions are first- 
order with high values of the McMillan ratio, at least 
one continuous transition has been observed (Wen 
et al., 1991). In this case 3D XY critical exponents 
were obtained from heat capacity measurements. As 
with the other smectic-nematic transitions, it is 
expected that crossover from 3D XY to tricritical 
behavior occurs for the smectic A2-N transition also. 
So far, experimental results showing this have not 
been reported.

It must be pointed out that the reentrant phenom­
enon in the case of polar molecules creates some very 
special circumstances that have only been hinted at in 
the previous discussion. An isolated nematic region 
replacing a critical point at the end of a smectic Aj- 
smectic Aj coexistence line in binary mixtures has been 
theoretically described by a dislocation loop melting 
model (Prost and Toner, 1987) and experimentally 
observed (Hardouin et al., 1986; and Wu et al., 1992). 
A frustrated spin-gas model also predicts such a 
"nematic lake,’’ but completely surrounded by the 
smectic Aj phase (Marko et al., 1989). The dislocation 
loop melting theory also predicts that a transition 
between a nematic phase with strong Aj fluctuations, 
Ni, to a nematic phase with strong A<j fluctuations, 
Nd, occurs in this region, but such a transition has not 
been observed.

In the case of mixtures, especially ones involving 
dissimilar molecules, Fischer renormalization is some­
times important (Fischer, 1968; and Anisimov, 1988). 
This is a renormalization of the critical exponents in 
systems with positive a due to large changes in the 
smectic A-nematic transition temperature as the con­
centration is varied. The critical exponents are divided 
by 1 — a, except for a itself, which is divided by a — 1.

-0.15 0 0.15

FIGURE 4.17. Excess specific heat at the smectic Aj- 
nematic transition for a tricritical mixture. The solid line is a 
fit with a fully Fischer-renormalized exponent. (From Huster 
et al., Phys. Rev. A 36, 2364 (1987)).

Good examples of this occur in mixtiues of polar and 
nonpolar molecules (Huster et al., 1987; HiU et al., 
1989; and Stine and Garland, 1989). Figure 4.17 shows 
heat capacity data for the tricritical mixtixre of two 
dissimilar molecules. The data fit a curve with a 
renormalized value for a of —1.

4.2.4 Smectic A-Smectic C Transitions
The order parameter that must be specified in the 
smectic A-smectic C transition is the magnitude and 
azimuthal direction of the tilt of the director relative to 
the layer normal. Thus a two-component (complex) 
order parameter and free energy are involved, both of 
which are formally identical to the condensation of 
superfluid helium (de Gennes, 1972). This leads to the 
expectation that the transition is continuous and of the 
3D XY universality class. The heat capacity critical 
exponent should be about —0.007 and below the 
transition the tilt angle should vary with temperature 
with a power of about 0.35.

The regime of critical fluctuations, however, may 
lie outside of experimental observation. The Ginzburg 
criterion indicates that for this transition a reduced 
temperature as low as 10“® may be necessary to 
observe critical phenomena. The experimental data 
show mean-field Landau behavior with a large sixth- 
order term (Huang and Viner, 1982; and Birgeneau 
et al., 1983). The heat capacity exponent a is too small
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to measure and the tilt angle dependence below the 
transition is in the neighborhood of 0.35.

In smectic A-smectic C* transitions, the lower tem­
perature phase possesses both a helicoidal twist of the 
director about the layer normal and a spontaneous 
polarization in the plane of the layers. Both first- and 
second-order smectic A-smectic C* transitions have 
been observed; the continuous transitions and tricritical 
point are again explained well by a Landau free energy 
with a large sixth-order term (Garland, 1992).

In polar compounds a smectic A-smectic C transi­
tion is possible, but in both cases involving bUayers 
(smectic A2-smectic C2). Heat capacity studies on this 
transition for two compotmds show a step in the heat 
capacity at the treinsition with a constant value below 
the transition. A mean-field model for the data in the 
smectic A2 phase requires an extremely small sixth- 
order term Qeong et al., 1988; and Wen et al., 1991).

4.2.5 Nematic-Smectic A-Smectic C Point
By varying the concentration in a binary mixture or 
by varying the pressure in certain single-component 
systems, it is possible to obtain a point where 
the smectic A-N, smectic A-smectic C, and smectic 
C-N phase boundaries meet (NAC point). This region 
of the phase diagram has been studied extensively, 
with very interesting results.

Perhaps the most important finding is that there is 
universal behavior near the NAC point. Figure 4.18 
shows that the phase diagrams for four different binary 
systems fall right on top of each other (Brisbin et al., 
1983; Shashidhar et al., 1984). Figure 4.19 shows that a 
single-component system under pressure has the same 
topology in the neighborhood of the NAC point 
(Shashidhar et al., 1984). The boimdaries between the 
phases in a temperature (T)-concentration (X) phase 
diagram obey simple power laws of the form

T - Tmc = ^|X - + B{X - X^^c). (4.25)

where A and B are constants and <p is equal to about 0.6 
for the smectic A-N and smectic C-N transitions, and 
about 1.5 for the smectic A-smectic C transition. An 
NAC point also exists for some reentrant nematic 
phases. In many cases the critical regions near this 
NAC point seem too small to be realized, but in the 
proper system singularities in the phase boimdaries 
and the same universal behavior have been observed 
(Somasekhara et al., 1986).

FIGURE 4.18. Temperature-concentration phase diagram 
in the vicinity of the NAC point for four binary mixtures. 
(From Shashidhar et al., Phys. Rev. Lett. 53, 2141 (1984)).

4.2.5.1 Theory
Any theoretical description of the NAC point must 
utilize an order parameter which can describe a mass 
density wave not just normal to the layers, but in rings

FIGURE 4.19. Temperature-pressure phase diagram in the 
vicinity of the NAC point for a single compound. (From 
Shashidhar et al., 1984.)
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around the layer normal. A single order parameter 
involving an integration in wavevector space can be 
used in a free energy involving this order parameter 
and gradients of this order parameter (Chen and 
Lubensky, 1976). Depending on the sign of one of 
the coefficients, the fluctuations in the nematic phase 
can be either smectic A-Uke or smectic C-like. The 
point where both this coefficient and the coefficient 
in front of the term quadratic in the order parameter 
are zero is the NAC point and implies that the NAC 
point is a Lifshitz point (Homreich et al., 1975). The 
amplitude of the mass density wave increases in 
moving away from the Lifshitz point and the x-ray 
scattering profile should change from being Lorent- 
zian away from the NAC point to quartic at the NAC 
point. Other theoretical approaches utilize two order 
parameters, one for the mass density wave and the 
other for the tQt angle.

A dislocation loop model can be developed by 
using the renormalization group technique (Grinstein 
cmd Toner, 1984). The interesting addition in this 
treatment is the prediction of a biaxial nematic phase 
between the nematic and smectic C phases. This means 
that the NAC point is really a tetracritical point. The 
theory of Chen and Lubensky can also be modified to 
predict such a biaxial nematic phase if fluctuations are 
included (Grinstein et al., 1986).

4.2.S.2 Experiment
The NAC point has been investigated most thoroughly 
using calorimetry but there have been some high- 
resolution x-ray scattering and light scattering experi­
ments also. The first detailed study was done on a 
binary mixture of two thioesters, revealing second- 
order smectic A-N and smectic C-smectic A transi­
tions and a first-order smectic C-N transition, 
although the latent heat for this last transition 
decreased to zero at or near the NAC point (De Hoff 
et al., 1982). Experiments on other systems confirm 
these first results and the nature of the heat capacity 
anomalies indicate that a classical tricritical point may 
exist at or near the NAC point (Anisimov et al., 1985; 
Garland and Huster, 1987; and Thoen and Parret, 
1989). Alternatively, the x-ray scattering (Safinya 
et al., 1981, 1983; and Martinez-Miranda et al., 1986) 
and light scattering experiments (Witanachi et al., 
1983; Solomon and Litster, 1987; and Huang and Ho, 
1987,1990) are in fuU agreement with the NAC point 
being a Lifshitz point.

Although the biaxial nematic phase between the 
nematic and smectic C phases has not been observed, a 
broad peak in the heat capacity in the nematic phase 
has been observed in two systems. The first was a 
binary mixture of two nonchiral compoimds (Anisi­
mov et al., 1985) and the second was a binary mixture 
of two chiral substances with chiral nematic and chiral 
smectic C phases (Wen et al., 1990). These broad peaks 
may be the manifestation of biaxial or chiral fluctua­
tions.

4.2.6 Smectic A-Hexatic Smectic B Transition
The order that sets in at the smectic A-hexatic smectic 
B phase transition is bond orientational order with 
sixfold symmetry in the plane of the layers. The 
appropriate order parameter is much like the smectic 
A order parameter, namely a bond angle variation of 
the form

(4.26)

where 0 is the azimuth angle and If, is the complex 
order parameter. This complex order parameter 
should again put the transition into the 3D XY uni­
versality class. However, instead of a critical exponent 
a near —0.007, heat capacity and optical studies )deld 
values for a of about 0.6 (Pitchford et al., 1985; and 
Nounesis et al., 1986). The heat capacity data can be 
seen in figure 4.20. While these results are clearly 
inconsistent with the 3D XY model, they are close to 
the tricritical value of 0.5, raising the question of 
whether the transition occurs in the neighborhood of 
a tricritical point. In order to predict such a tricritical

FIGURE 4.20. Specific heat in the vicinity of a hexatic B- 
smectic A transition. (From Nounesis et al., 1986.)
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point, theoretical work includes a coupling of to 
some other type of local order, but more recent heat 
capacity results show that this high value of a is 
maintained over wide composition ranges and in 
many compounds, making the explanation of a 
tricritical point less likely (Huang et al., 1989; and 
Noimesis et al., 1989).

The transition to hexatic order has also been 
studied in tilted phases. In this case the transition is 
from the smectic C phase to either the smectic F or 
smectic I phases. The molecular tilt acts as a tempera­
ture-independent field, which promotes some bond 
orientational order in the smectic C phase. In at least 
one compound the heat capacity peak at the smectic 
C-smectic I transition is clearly rounded (Garland 
et al., 1989), while in other compounds the smectic 
C-smectic F transition is strongly first-order (Stine and 
Garland, 1990).

Some recent work on free-standing liquid crystal 
films has been very revealing. For very thin smectic A 
films of three or four layers, a single heat capacity peak 
appears at the smectic A-hexatic B transition. For 
thicker films (five to ten layers) two heat capacity 
peaks appear, one at a higher temperature represent­
ing the establishment of bond orientational order in 
the outer two layers and another at lower temperature 
when the rest of the film undergoes the phase transi­
tion (Geer et al., 1989). These thinnest films with 
only one heat capacity peak have the chance of repre­
senting a truly two-dimensional system. The record 
for the number of individual layer transitions 
observed is four. Using a different compound in the 
same homologous series, heat capacity studies have 
revealed the smectic A-hexatic B transition at 74 °C for 
the outermost layers, 67 °C for the second outermost 
layers, 66.3 °C for the third outermost layers, and the 
fourth outermost layers transforming just above the 
bulk transition. These layer transitions are evident in 
the data shown in figure 4.21 (Geer et al., 1993). All 
these layer transitions are continuous (Stoebe et al 
1992).

4.2.7 Smectic A-Smectic A Transitions
The large number of smectic phases exhibited by polar 
molecules creates many interesting phase diagrams. 
Many involve transitions between different smectic A 
phases as well as interesting critical points, reentrant 
phases, and isolated nematic regions.

iI0"‘

FIGURE 4.21. Specific heat near the hexatic B-smectic A 
transition in thin films, (a) Ten layers and (b) eight layers. 
(From Geer et al., Phys. Rev. E 48, 408 (1993)).

4.2.7.1 Smectic Aj-Smectic A2 Transition 
The transition from the smectic Aj phase to the smectic 
A2 phase involves the doubling of the spatial period 
due to dipolar ordering, so it can be first- or second- 
order. Theoretical work places this transition in the 
3D Ising universality class with critical exponents 
7 = 1.24, 1/ = 0.63, and a = 0.11 (Frost and Barois, 
1983, and Wang and Lubensky, 1984). Heat capacity 
and high-resolution x-ray studies in binary mixtures 
of a nonpolar and a polar compound have observed 
a tricritical point where the transition changes from 
first- to second-order, but the measured exponents 
have significantly different values, namely 7 = 
1.46 ±0.05, 1/= 0.74 ± 0.03, and a ~-0.16 (Chan 
et al., 1986; and Das et al., 1990). These different results 
can be nicely explained by Fischer renormalization, 
since the slope of the temperature-concentration 
phase boundary is large (Fischer, 1968; Anisimov, 
1988). When the renormalized values of the critical 
exponents are calculated, one obtains 7 = 1.39, 
u = 0.71, and a = -0.124, which are all close to the 
measured values. Figure 4.22 shows the heat capacity 
data.
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FIGURE 4.22. Excess specific heat associated with the 
smectic A2-smectic Ai transition. (From Das et al., 1990.)

4.2.7.2 Smectic Aj-Smectic A2 Transition
The smectic A<j and smectic A2 phases both involve 
dipolar ordering of pairs of molecules in layers, so they 
possess the same macroscopic symmetry. The phase 
boimdaiy between them must represent a first-order 
transition and the boimdary can end at a critical point. 
This has been confirmed by x-ray measurements that 
measured the layer periodicities in the neighborhood 
of the transition. In a binary mixture of two polar 
compounds, changing the temperature for certain 
mixtures caused the transition to take place. As this 
was repeated for differing concentrations, what was a 
discontinuous jump in the layer spacing at the transi­
tion (with a two-phase region) became less and less of 
a jump, finally reaching a critical concentration for 
which one phase continuously evolved into the other 
phase (Shashidhar et al., 1987). This behavior, which is 
shown in figure 4.23, is strikingly similar to what 
happens to the density at the gas-liquid critical point. 
Theoretical arguments involving fluctuations and 
order parameter coupling to the elastic degrees of 
freedom, however, suggest that this critical point 
may belong to a new universality class with upper 
critical dimension six and anisotropic scaling (Park 
et al., 1988). Experiments seem to confirm this (Frost 
et al., 1990; and Wen et al., 1992).

4.2.7.S Smectic Aj-Smectic Ai Transition
In a similar fashion, it is predicted theoretically that the 
smectic Aj-smectic Ai transition line can end at a 
critical point (Park et al., 1988). A disclination loop 
model, however, predicts a number of other interest­
ing possibilities (Prost and Toner, 1987). One of them
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FIGURE 4.23. Smectic wavevector in the vicinity of the 
smectic Aj-smectic A2 transition for eight binary mixtures. 
(From Shashidhar et at, 1987.)

involves a “nematic lake” at the end of the smectic 
Aj-smectic A] transition line, as has been mentioned 
previously. This "nematic lake” is separated from the 
smectic phases around it by a second-order transition 
boimdary, but the two ends of this boundary connect 
to the first-order smectic A^-smectic Aj phase transi­
tion line at two different points. This creates a first- 
order smectic A^-N phase transition and finally a 
first-order N-N transition. This N-N transition line 
ends in the nematic lake at a critical point. Inside the 
nematic lake and on opposite sides of the N-N tran­
sition line, there are two nematic phases. One is 
characterized by strong A^-type smectic fluctuations 
and the other by strong Aj-type smectic fluctuations. 
As is clear from figure 4.24, such a “nematic lake” has 
been observed, but high-resolution experiments cap­
able of detecting some of these predicted transitions 
have not been performed (Hardouin et al., 1986; and 
Wu et al., 1992).

4.2.7.4 Other Transitions
Transitions are possible between both the smectic Ai 
and smectic A2 phases and the modulated antiferro- 
electric phases (antiphase A or crenelated phase Acren)- 
The smectic Ai-smectic A transition is expected to be 
first-order due to Brazovskii fluctuations (Prost and 
Barois, 1983). While two-phase coexistence has been 
observed for this transition, there are strong pretransi- 
tional effects, especially on the smectic Aj side of the 
transition. The transition to the smectic Aden phase is
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FIGURE 4.24. Partial temperature-concentration phase 
diagram for a binary mixture. (From Hardouin et al., 1986.)

very different, with a heat capacity peak which is 
truncated. The interpretation is that the smectic A,.ren 
phase is more like a periodic repeating of smectic A 
and smectic A2 slabs (Garland, 1990).

It should be noted that all smectic A phases possess 
the same macroscopic s}nnmetry. One way to realize 
this comes from the fact that the smectic Aj phase can 
convert to the smectic A^ phase without a phase trans­
ition and that the smectic Aj phase can convert without 
a phase transition to the smectic A2 phase. Therefore, it 
is possible for the smectic Aj phase to convert to the 
smectic A2 phase without a phase transition. This does 
not rule out, however, the possibility of a first- or 
second-order transition from the smectic Ai to the 
smectic A2 phase (de Gennes and Frost, 1993).
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