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ABSTRACT

LONG-TERM RECONSTRUCTION AND ANALYSIS 
OF WHITE RIVER STREAMFLOW

A 281-year reconstruction of White River annual runoff at Claren­
don, Arkansas, was developed from a regional average of nine Oklahoma, 
Missouri, and Arkansas tree-ring chronologies (six post oak, Quercus 
stellata, and three baldcypress, Taxodium distichum). Inhomogeneity 
of the gaged series was detected with both double mass analysis (using 
state average total annual Arkansas precipitation) and regression 
(using the regional tree-ring average). Simple regression calibrated 
the homogeneous runoff data with the average ring width data from 1930 
to 1980. Comparing the reconstruction with independent data verified 
the regression model. Variance of the reconstruction increases signif­
icantly during the 20th century, a change that may be caused by climatic 
shifts or by anthropogenic disturbances in the watershed. Years of sur­
plus and deficit runoff are non-randomly distributed in both gaged and 
reconstructed series. This non-randomness appears to be caused by a 
significant tendency for inter-annual persistence of runoff extremes, 
which may provide a basis for improvement of probabilistic forecasts of 
White River runoff.

Malcolm K. Cleaveland, David W. Stahle and John G. Hehr

Completion Report to the U.S. Department of the Interior, Geological 
Survey, Reston, VA, June, 1988.

Keywords — Climate/Planning/Dendrochronology/Stochastic Hydrology/ 
Paleohydrology/Time Series Analysis/Rainfall-Runoff Pro- 
cesses/Rivers/Drought/White River/Arkansas/Missouri
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INTRODUCTION

The demand for high quality surface and groundwater supplies by 

agricultural, industrial and municipal interests has increased nation­

wide, in some cases exceeding existing supplies [U. S. Water Resources 

Council, 1978]. The Southcentral United States is experiencing rapid 

growth in population and water demand, and available supplies may soon 

become inadequate in or near the arid southern Plains or in areas of 

intensively irrigated agriculture such as the Grand Prairie of eastern 

Arkansas [U. S. Water Resources Council, 1978; Bryant et al., 1985]. 

Surface water supplies in the Southcentral United States are subject to 

substantial interannual variability due to natural fluctuations in cli­

mate. In fact, the Arkansas-White-Red and the Texas-Gulf water resource 

regions [U. S. Water Resources Council, 1978] have been identified as 

having two of the three most variable runoff regimes in the 19 subdivi­

sions of the continental United States [Stockton and Boggess, 1979].

Arkansas is particularly well endowed with high quality surface 

water resources, and proposals for interbasin transfers both within and 

from Arkansas have generated controversy. Consideration is being given 

to the transfer of surface water from the White River to augment dwind­

ling groundwater suppl ies in the Grand Prairie of eastern Arkansas [U.S. 

Army Corps of Engineers, n.d.]., where water-intensive rice and soybean 

production make a significant contribution to the state economy [Arkan­

sas Agricultural Statistics Service, 1988]. The possible transfer of 

"surplus" water from Arkansas to supplement supplies in Texas has also 

been investigated [U. S. Army Corps of Engineers, 1982] and the Dallas- 
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Ft. Worth water supply system will extend eastward to Lamar County, 

only 80 km from Arkansas (Dallas Water Utilities, 1986).

Apart from the many economic and environmental questions concern­

ing possible interbasin transfers of surplus water, there is uncertainty 

about the long-term availability of surplus flow regimes in Arkansas. 

The probable discontinuous nature of surplus flows would impose serious 

planning and design constraints on the possible use of this water re­

source component. Because the gaged runoff data is limited to the past 

century in Arkansas, a thorough investigation of the history and depend­

ability of surplus flows is probably not possible solely on the basis of 

the historic record [Rodriguez-Iturbe, 1969].

A. Purpose and Objectives .

Proxy tree-ring data are often well correlated with hydrometeoro­

logical variables such as precipitation and temperature, and can there­

fore be useful for developing long-term estimates of specific hydro- 

logical variables such as runoff. Tree-ring data are particularly 

suited to the analysis of drought or low flow characteristics because 

moisture stress is a fundamental growth-limiting factor which can be 

faithfully reproduced in properly selected ring width data. During years 

of abundant precipitation, multiple factors such as temperature, competi­

tion, or soil fertility may limit growth in individual trees, usually 

creating greater standard errors in the ring width indices derived for 

those years [Fritts, 1976]. For this reason tree-ring reconstructions 

of very wet years usually involve greater error and should be interpreted 

cautiously [e.g., Biasing et al., 1988].

In this paper we use a network of moisture sensitive post oaks
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(Quercus stellata) and baldcypress (Taxodium distichum) chronologies 

located in and near the White River Basin to estimate annual runoff 

for the White River at Clarendon, Arkansas from A.D. 1700 to 1980. 

The gaged and reconstructed runoff data are then investigated in terms 

of: (i) the timing, distribution, and duration of surplus and deficit 

runoff; (ii) possible interannual persistence of surplus or deficit 

runoff levels; (iii) possible periodicity in the annual runoff data; 

and (iv) any secular changes in the mean or variance of the runoff 

data that might have implications for hydrological management in the 

White River Basin. These studies are warranted, in part, because anal­

yses of contemporaneous gaged and reconstructed runoff data indicate 

that the reconstruction is not systematically biased in the range of 

above and below average runoff amounts used to define surplus and def­

icit flows.

B. Study Area

The White River is the principal drainage of the Ozark Plateau 

and Western Lowlands of Arkansas and Missouri, and has served as the 

focus of historical settlement and twentieth century economic develop­

ment in the region. A sharp change in the hydrologic profile of the 

stream occurs at the confluence with the Black River, where the White 

leaves the uplifted Ozark Plateau and enters the Western Lowlands of 

the alluviated lower Mississippi Valley (Fig. 1). The Clarendon gag­

ing station is located below the confluence of the Cache River, and 

consequently reflects the combined discharge from the Ozark and Western 

Lowland portions of the basin, an area of 66,187 km2 . However, the



Figure 1. Locations of the tree-ring chronologies used in reconstruction 
of White River Basin annual runoff at Clarendon, Arkansas, 
(triangle). The six post oak chronologies (circles) are 1) 
Little Maries River, MO, 2) Hahatonka, MO, 3) Democrat Ridge, 
MO, 4) Neosho River, OK, 5) Roaring River, MO, 6) Clayton 
Ridge, MO, and the three baldcypress chronologies (squares) 
are 7) Allred Lake, MO, 8) Egypt, AR and 9) Black Swamp, AR. 
The four largest impoundments (that affect this study) in the 
White River Basin (dashed line) are (A) Beaver, (B) Table Rock, 
(C) Bull Shoals and (D) Norfork.

4



Clarendon gage is far enough above the confluence of the Arkansas and 

Mississippi Rivers to be largely unaffected by fluvial damming from 

either river [u. S. Geological Survey, 1984].

Intensive logging of the upland oak-hickory and pine forests 

occurred during the early twentieth century. These logging operations 

and land clearing for agriculture may have affected the discharge, sus­

pended sediments, or bed load of the White River, at least temporarily 

during the initial wave of clearing. Four large-scale impoundments for 

flood control, power generation, water supply, and recreation purposes 

were constructed in the basin from 1943 to 1980 [U. S. Geological Sur­

vey, 1984], and these projects have promoted both the economic develop­

ment of the central Ozarks and agricultural productivity along the 

lower White River. The volume of high quality surface water stored in 

these reservoirs is certainly one of the most important resources in 

the Ozarks, but the present and future management of these supplies re­

main subject to a conflicting array of public and private pressures. 

C. Related Research and Activities

Properly developed tree-ring chronologies are particulary well 

suited as surrogate runoff records because of great age (some species 

exceed 1000 years), absolute dating, annual to seasonal resolution, 

sensitivity of tree growth to climatic variables that also influence 

runoff, and the wide availability of tree-ring data in the specific 

drainage system of interest [Fritts, 1976; Stockton and Boggess, 1980]. 

A number of previous studies have employed surrogate or proxy data such 

as tree rings to extend relatively short streamflow records. The most
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important and well known tree-ring reconstruction of runoff was for the 

Colorado River, reported by Stockton (1975). The reconstructed long­

term mean annual runoff in the Colorado River was only about 13.5 maf 

between 1564 and 1962, some 2.0 maf year-1 less than the amount allo­

cated in the Colorado River Compact of 1922 [Stockton and Jacoby, 1976]. 

It appears that the Compact was based on gaging data from a period of 

sustained high flow unequaled in the last 450 years. These results 

provide a classic illustration of both the need to consult proxy data 

when confronted with short, potentially biased gaging records and the 

potential practical importance of tree-ring data.

Other hydrological applications of tree-ring data include a re­

construction of summer streamflow in the Occoquan River, Virginia, which 

indicated that critical low flows were more frequent in the reconstructed 

data prior to the period of instrumental records [Phipps, 1983]. Cook 

and Jacoby [1983] reconstructed summer low flows in the Potomac River, 

and for similar reasons concluded that the gaged discharge measurements 

for the Potomac are not entirely representative of the last 250 years. 

Jones et al. [1984] have demonstrated the hydrological application of 

tree-ring data in the British Isles, while Stockton and Fritts [1973] 

and Brinkmann [1987] have used tree-ring chronologies to reconstruct 

past lake levels.

The use of proxy data to investigate long streamflow series in the 

Southcentral United States has been limited to early tree-ring studies 

by Hawley [1937] in Tennessee. No quantitative estimates of past runoff 

have been reported in the White River Basin, although Guyette [1981] has
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demonstrated significant correlation (r = 0.75) between growth of 

eastern red cedar (Juniperus virginiana) and June minimum discharge of 

the Gasconade, James, and Current rivers in southern Missouri. Indi­

vidual red cedar up to 700 years old have been reported from the Ozark 

Plateau [Guyette, 1981; Guyette et al., 1980], and hold great promise 

as long proxy hydrological series.

METHODS AND PROCEDURES

A. Gaging Data

We selected the U.S. Army Corps of Engineers (COE) gaging record 

at Clarendon for reconstruction because it is the longest in Arkansas, 

it is believed to provide a reasonable integration of the surface water 

supply in the entire White River Basin, the gage has never been moved, 

and homogeneity of the record does not appear to have been seriously 

affected by post-war reservoir development. Clarendon discharge data 

was not available from 1921 to 1930, but a single rating table to con­

vert gage height to discharge for those years was supplied by the Memphis 

District COE [S. A. Lehr, Jr., personal communication, 1987]. The rating 

table has the notation "Based on L.W. (low water) Measurements in 1917— 

High Water 1927".

Correlations between monthly, seasonalized, and annual mean daily 

discharge and the regional tree-ring chronologies [Stahle et al., 1985b] 

were used initially to determine which chronologies should be used and 

what fraction of the year might be most successfully reconstructed. 

Seasonal mean daily discharge for February through July produced the 

highest correlation (r = 0.64, P < 0.001), but annual mean daily discharge

7



produced comparable results. Annual mean daily discharge was converted 
 to annual runoff [annual runoff (km3 year-1 ) = annual mean daily dis- 

charge (ft3 sec-1 ) x 0.000893005], which was then used for reconstruc­

tion because (i) it is a fundamentally important hydrological variable; 

and, (ii) annual runoff is normally distributed with a first order per­

sistence structure [Box and Jenkins, 1976], while the seasonalized 

series was not normal and had a more complicated persistence structure. 

The monthly and annual discharge measurements are in Appendix 1.

Double mass analysis and station history criteria were used to 

identify the most reliable portions of the Clarendon discharge record 

[Kohler, 1949; Burnash and Ferral, 1980]. Normally a long, homogeneous 

streamflow series would be matched with the Clarendon record for double 

mass analysis, but unfortunately such a reliable control series is not 

available. Instead, total annual precipitation averaged for the state 

of Arkansas from 1891 to 1982 [Karl et al., 1983] was used, following a 

procedure suggested by Cook and Jacoby [1983]. The state precipitation 

series was transformed by a linear regression transfer function into 

predicted discharge by

In Qt = 0.1524 Pt + 4.786 (1)

where In Qt is the natural logarithm of estimated annual mean daily
-1discharge of year t in m3 sec and Pt is the state average annual 

total precipitation of year t in cm.

The regression was significant (P <0.0001) and accounted for 57

8



percent of the streamflow variance in the interval 1900 to 1980. An 

exponential function of In Qt (reversing the logarithmic transforma­

tion) is cumulatively plotted against measured discharge (Fig. 2), and 

reveals apparent inhomogeneity in the Clarendon data. The double mass 

plot indicates a visible change in slope before 1930, with relatively 

minor fluctuations thereafter, in spite of extensive hydrological devel­

opment in the basin (Fig. 2). The apparent change in the Clarendon 

discharge data near 1930 may involve one or more of the following: (i) 

early twentieth century logging and land clearing in the basin may have 

disturbed the relationship between precipitation, infiltration, and 

runoff; (ii) the spring flood of 1927 was the largest recorded in the 

White River and lower Mississippi Valley and may have significantly 

altered the channel geometry of the White River near Clarendon; (iii) 

although the station has not been moved, some undocumented change in 

recording procedures may have occurred around 1930; and (iv) the state­

wide precipitation data used for analysis could be responsible since 

the precipitation data prior to 1931 are based on weighted single sta­

tion records, but after 1931 use averages of climatic divisions [Karl 

et al., 1983].

Whatever the reason may be for apparent inhomogeneity in the 

Clarendon data, the calibrations reported below between the runoff and 

tree-ring data for three subperiods suggested by the homogeneity tests 

tend to confirm a change in the streamflow data near 1930 (Table 1, 

Fig. 3). The regression results suggest that the regional tree-ring 

average could be used directly in double mass analysis.
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Figure 2. Double mass analysis of White River cumulative annual mean 
daily discharge at Clarendon, Arkansas, vs. cumulative 
estimated discharge (see text). Annotations on the graph 
show the years of largest discharge (gaged data) and major 
reservoir closures with impoundment capacity.



TABLE 1. Calibration and verification statistics (B0 Is the Intercept and is the slope of the regression model).

Calibratlon
Verification

±-Teste

Period 2 a
Radj B0 B1 Period Correlationb

1st Dlfferencec 
Correlation

Sign 
Pos.

Testd 
Neg.

Difference 
of Means

Reduction 
of Error

1930-1951 0.62*** -25.94 52.98 1952-1980 0.64*** 0.60*** 19$ 10 1.06ns9 +0.38

1952-1980 0.37*** -19.51 45.46 1930-1951 0.78*** 0.80*** 15$ 7 1.09ns9 +0.60

1930-1980 0.50*** -23.10 49.54 1900-1929 0.49** 0.48** 23** 7 0.91ns9 +0.08

1900-1929h 0.21** 3.54 24.94

a Multiple correlation coefficient squared and adjusted for loss of degrees of freedom [Draper and Smith, 1980]. 
b Pearson correlation coefficient [Steel and Torrie, 1980].
c Pearson correlation coefficient [Steel and Torrie, 1980] between first differenced series.
d One-tailed sign test [Conover, 1980].
e Two-talled paired observation test for the difference between means [Steel and Torrie, 1980]. Failure to 

reject Ho Is the optimum result [Gordon, 1982].
f Reduction of error statistic [Fritts, 1976]. Any positive number Is significant [Gordon and LeDuc, 1981].
g Not significant (P > 0.05).
h Regression statistics computed only for comparison of coefficients between periods (1900-1929 and 1930-1980).
$ P < 0.10
* P < 0.05

** P < 0.01
*** P < 0.001

11
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1900 1920 1940 1960 1980
YEAR

Figure 3. Reconstructed (solid line) and observed (dashed line) 
annual runoff (Jan.-Dec.) of the White River at Clarendon, 
Arkansas, for the calibration and verification periods. 
The solid horizontal line is the 1900-1980 gaged mean, 
and the two horizontal dashed lines are the surplus and 
deficit runoff thresholds (120 percent and 80 percent of 
the gaged mean, respectively).
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B. Tree-Ring Data

Nine high quality tree-ring chronologies were selected from the

50 now available in the Southcentral United States [Stahle et al., 

1985a, 1985b] on the basis of proximity to the White River Basin, to­

tal length of record, and correlation with White River discharge. The 

nine chronologies are based on two species, post oak and baldcypress, 

from well-drained upland and poorly drained wetland habitats, respect­

ively, and both species exhibit strong sensitivity to drought during 

and before the growing season [Stahle and Hehr, 1984; Stahle et al., 

1985a]. The direct correlation between post oak growth and moisture 

anomalies is consistent with the xeric nature of their upland sites, 

and it has been known for more than half a century that the moisture 

signal in tree growth can often be maximized by selecting native trees 

from these well drained upland positions [Douglass, 1920]. The direct 

correlation between the radial growth of swamp-grown baldcypress was 

discovered more recently [Bowers, 1973; Stahle et al., 1985a, 1988], and 

extends the range of drought sensitive tree species into a distinctive 

and widespread bottomland environment.

Each tree-ring chronology represents a mean value function of the 

detrended ring width measurement series available for each year from 

30 to 50 trees per site, usually with two radii per tree. Chronology 

development started with the absolute crossdating of each radius [Stokes 

and Smiley, 1968] and the measurement of each dated ring to 0.01 mm. 

The series of annual ring width measurements were then detrended and 

transformed to dimensionless indices using the ARSTAN program [Cook,

13



1985; Holmes et al., 1986]. This procedure removes biological growth 

trends related to increasing tree age [Fritts, 1976], and the flex­

ibility of the spline curves fitted to the measurement series was 

strictly controlled to avoid removing more long-term variance than ab­

solutely necessary. Low order serial correlation present in the annual 

ring width series of most trees was largely removed from each tree-ring 

chronology using autoregressive (AR) modeling procedures [Cook, 1985]. 

Finally, it was necessary to remove some remaining long-term variance 

trend in the derived chronologies, which appears to be due, in part, to 

changing chronology sample size and an age-related decline in growth 

vigor of oaks [e.g., Stahle and Cleaveland, 1988; Biasing et al., 1988].

When the nine residual series were averaged, this regional average 

series had weak serial correlation (r-1 =-0.13), apparently due to re­

inforcement of weak persistence in the separate chronologies. The aver­

age was modeled as an AR(3) process to derive a serially random predictor 

chronology for calibration [Meko, 1981]. Serial correlation in unmodeled 

tree-ring time series appears to arise primarily from biological factors 

(e.g., food storage, crown area, root area) [Fritts, 1976], but some per­

sistence may also be due to climatic forcing. To enhance reconstruction 

fidelity in the frequency domain, the autoregressive properties of the 

Clarendon runoff series were added to the serially random tree-ring based 

estimates to complete the reconstruction [Meko, 1981] (see below).

C. Calibration and Verification

An empirical approach was used to identify the best predictor var­

iables and time interval to calibrate the tree-ring and annual runoff

14 



series. The tree-ring and runoff data were both prewhitened prior to 

calibration, and marginally significant first-order serial correlation 

(r-1 = 0.22, P < 0.10) was modeled as an AR(1) process and removed from 

the runoff series. Principal components analysis [Cooley and Lohnes, 

1971] of the nine chronology network was performed and the amplitude 

series of the first two eigenvectors (with eigenvalues > 1.0, that re­

tain 44.6 percent and 16.5 percent of the variance in the tree-ring 

data set, respectively) were entered into stepwise multiple regression 

with annual runoff from 1930 to 1980 [Draper and Smith, 1981]. This 

approach explained less variance in the gaged data than bivariate re­

gression between the gaged runoff series and an average of the nine 

tree-ring chronologies. In addition, loadings on the second eigenvector 

were all negative for post oak chronologies and positive for baldcypress 

chronologies, suggesting that physiological or ecological differences 

unrelated to hydrometerological conditions may be involved in the tree­

ring variance associated with the second eigenvector. For these reasons, 

the regional average of the nine chronologies was used to reconstruct 

annual runoff.

In an attempt to further assess the homogeneity of the gaged data, 

and to select the most reliable subperiod for calibration, the tree-ring 

data and the annual runoff data were entered into linear regression for 

four subperiods,1900-1929, 1930-1951, 1952-1980, and 1930-1980, These 

subperiods were selected in light of the apparent inhomogeneity in the 

Clarendon data before 1930, and the possible impact of Bull Shoals and 

other large impoundments on the tree growth - runoff relationship after
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1951. The coefficients and statistics computed in these four regres­

sion analyses are listed in Table 1, and the tree-ring data explain 

the most runoff variance for the period from 1930 to 1951 and the least 

from 1900 to 1929. The regression slope and intercept (Table 1) com­

puted during these two subperiods are significantly different (P < 0.05; 

Steel and Torrie, 1980; SAS Institute Inc., 1985) which, with double 

mass analysis, suggests that the gaged series is heterogeneous. Also, 

regression results indicate that post-war reservoir construction in the 

basin has perturbed the natural relationship between climate and runoff. 

The regression model from the 1930 to 1980 period explains 50 percent of 

the annual runoff variance and was used to derive the transfer function 

to reconstruct runoff from 1700 to 1980 for the following reasons: (i) 

there is no statistical difference between the regression coefficients 

calculated for 1930 to 1951 and 1952 to 1980; (ii) serious inhomogeneity 

is not apparent in the discharge data after 1930; (iii) although the ex­

plained variance is maximized from 1930 to 1951, a sample size of only 

22 years may not be adequate to insure a stable regression relationship.

It should also be noted that calibrations based on separate averages 

of the upland post oak and bottomland cypress chronologies each explained 

38 percent of the annual runoff variance from 1930 to 1980, twelve per­

cent less than was explained by an average of both species. This is con­

sistent with the assumption that runoff from the Ozark Plateau and Western 

Lowlands is reflected primarily by the post oak and baldcypress chronolo­

gies, respectively, and that each region can contribute independently to 

White River discharge measured at Clarendon.
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The transfer function used to reconstruct White River annual run­

off was

Yt = 49.54 Xt - 23.10 (2)

3 -1 .where Yt is reconstructed runoff for year t in km year and is the 

regional average of the nine tree-ring chronologies for year t. The
3 -1standard errors of the slope and intercept are 6.95 and 6.98 km year 

respectively. The AR(1) persistence model determined for the gaged 
runoff series (AR(1) coefficient = 0.22) was then added to the estimated 

series. The addition of persistence changes the reconstructed mean 

slightly, so the reconstruction was adjusted to maintain the equality 

of the observed and reconstructed means during the calibration interval 

(1930-1980).

To evaluate the accuracy and stability of the reconstruction, the 

subperiod calibrations based on 1930 to 1951 and 1952 to 1980 (with co­

efficients that are not statistically different from the 1930 to 1980 

transfer function) were also used to reconstruct annual flow during the 

alternate period for which statistically independent gaged runoff data 

is available (1952-1980 and 1930-1951, respectively). Several statist­

ical comparisons were made between the gaged and reconstructed runoff 

values during the verification periods (Table 1). The correlations and 

first difference correlations are both strongly positive and highly 

significant (Table 1), demonstrating strong covariance of observed and 

reconstructed series outside the period in which regression forces an 

optimum relationship. The sign tests [Conover, 1980] indicate signif­

icant skill in reconstructing the direction of departures from the mean
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(P<0.10) and paired t-tests [Steel and Torrie, 1980] reveal no signif­

icant difference between the average of reconstructed and observed run­

off (Table 1).

The final verification test used was the reduction of error (RE) 

statistic which compares the actual and estimated runoff during the 

verification period with the actual mean runoff during the calibration 

interval, and is a measure of information gained by using the regression 

estimates of runoff rather than simply the mean of runoff during the 

calibration interval [Gordon, 1982; Biasing et al., 1988]. Values of 

the RE theoretically range from - ∞ to +1.0, and any positive value is 

considered significant ( P < 0.05, N>10) [Gordon and LeDuc, 1981]. The 

RE statistics calculated on the actual and reconstructed runoff data 

are +0.38 and +0.60. The positive RE statistics indicate that the re­

construction is contributing unique paleohydrological information.

The reconstruction has also been compared with the independent 

gaged data from 1900 to 1929 that was not used in any calibration (Table 

1, Fig. 3). Although this early runoff data may be systematically biased 

relative to the post-1929 data, it can still be useful for independent 

verification of the reconstruction. All verification tests are passed, 

although the correlations are lower than found for 1930-1951 and 1952- 

1980, and the RE is low, but still positive (Table 1).

The descriptive statistics in Table 2 indicate that the reconstruc­

tion reproduces the mean and variance properties of the independent run­

off data reasonably well, but examination of Fig. 3 reveals specific 

limitations of the regression estimates. The reconstructed runoff series
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TABLE 2. Statistical characteristics of observed and reconstructed annual runoff of the White River 
at Clarendon, Arkansas.

Statistic
Observed 

1900 - 1980
Observed 

1930 - 1980
Reconstructed

1900 - 1980
Reconstructed 

1930 - 1980
Reconstructed 

1700 - 1980

Number of years 81 51 81 51 281

Meana 27.22 25.97 26.55 25.97 26.29

Standard deviationa 10.99 10.83 8.83 7.61 7.69

Maximuma 68.05 55.37 44.61 44.61 45.69

Minimuma 10.27 10.27 6.61 11.53 6.61

Range3 57.78 45.10 38.00 33.08 39.08

Mediana 25.81 24.38 27.48 26.41 26.79

Coefficient of Variation 40.4% 41.7$ 33.3$ 29.3$ 29.3$

Serial Correlation 0.22nsb 0.17nsb 0.16nsb 0.09nsb 0.20***

Skewness 1.03 0.85 -0.18 0.22 -0.03

Kurtosis 1.58 0.39 -0.54 -0.38 -0.37

Distribution Normal Yesc Yes Yes Yes Yes

a km3 year-1.
b Not significant, P > 0.05 
c P < 0.08.
*** P < 0.001.
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does not fully reproduce the extremes apparent in the gaged data, par­

ticularly positive extremes. The worst estimated annual runoff value 

is 1927, which is the largest annual runoff amount ever measured in the 

White River Basin. This indicates that the tree-ring estimates of the 

magnitude of high runoff periods contain the greatest errors, probably 

due largely to inability of trees to respond linearly to very wet con­

ditions [Fritts, 1976]. Fortunately, the point at which estimation er­

rors become large appears to be well above the surplus threshold set 

at 120 percent of the mean (Fig. 3). This indicates that the recon­

struction should be useful for investigations of the history and timing 

of surplus flows defined conservatively as less than 130 percent of the 

long-term mean. Of course, the surplus issue also involves interest 

in the absolute magnitude of surplus flows, but reconstruction errors 

associated with the largest runoff amount (Fig. 3) indicates that the 

reconstruction should be interpreted cautiously in terms of the abso­

lute magnitude of surplus flows.

PRINCIPAL FINDINGS AND SIGNIFICANCE

A. Reconstructed White River Runoff: 1700 to 1980

The reconstructed annual runoff for the White River at Clarendon 

from 1700 to 1980 is. presented in Fig. 4 and Appendix 2. The descript­

ive statistics for the gaged and reconstructed series are presented in 

Table 2. The variance and range statistics are highest for the gaged 

data, illustrating the underestimation of runoff extremes by the recon­

struction. The skewness and kurtosis of the gaged runoff are also both 

larger than for the reconstruction, but both series approximate a normal
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Figure 4. Reconstructed annual runoff plotted with a low-pass filter that removes variance at 
frequencies of less than eight years (Fritts, 1976). The solid horizontal line is 
the 1700-1980 reconstructed mean, and the two horizontal dashed lines are the thresh­
old used in the analysis of surplus and deficit runoff (120 percent and 80 percent of 
the mean, respectively).
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distribution. The gaged and reconstructed mean runoff for the period 

1930 to 1980 are less than the reconstructed long-term mean from 1700 to 

1980, but these differences are not statistically significant [Steel 

and Torrie, 1980].

Examination of Fig. 4 suggests a long-term trend in annual runoff 

from 1800 to 1900, but there is no significant linear trend from 1700 

to 1980. There does appear to be a substantial increase in runoff 

variance around 1900, which is statistically confirmed by an F-test on 

the ratio of reconstructed variances from 1700 to 1899 and 1900 to 1988 

(P<0.05) [Steel and Torrie, 1980]. The four lowest, and two of the 

four highest reconstructed annual runoff values occur in the twentieth 

century. Assuming that the ratio of actual to reconstructed runoff 

variance is time stable, the White River appears to have experienced 

more variable runoff during the twentieth century than over the preced­

ing 200 years. This apparent change in runoff variability may be due 

to an actual climate change [e.g., Kutzbach, 1970], may reflect anthro­

pogenic disturbances to the remnant old-growth forests sampled, or may 

reflect large scale anthropogenic disturbances to the watershed (e.g., 

regional land clearing, acid rain deposition, or CO2 fertilization). 

Efforts to detrend the variance of the tree-ring time series could also 

cause an increase in twentieth century variance [Biasing, et al., 1988] 

but our variance detrending was cautious and is probably not responsible.

The filtered reconstruction (Fig. 4) suggests that prolonged (5- 

to 10-year) low and high runoff departures tend to alternate in an os­

cillatory manner, but these oscillations are too irregular for direct
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extrapolation into the future. Spectral and cross-spectral analyses 

were used to test this possibility [Jenkins and Watts, 1968]. Cross- 

spectral analysis from 1900 to 1980 showed some frequency domain prob­

lems with the heterogeneous gaged series, including being out of phase 

at low frequencies. The period 1930 to 1980 was tested and demons­

strated that the reconstructed series is coherent with the gaged run­

off over most of the spectrum. The coherency between the gaged and 

reconstructed series drops below the 95 percent confidence level only 

in one frequency band, between 0.0 and 0.063 cycles year-1 ∞ to 

years period, lags=8, bandwith=0.157 cycles year -1, Hamming Window) 

[IMSL Inc., 1982]. The two series are in phase at all frequencies, and 

the gain function is relatively flat [Jenkins and Watts, 1968]. These 

results confirm that the reconstruction provides a largely unbiased 

estimate of the actual runoff data in the frequency domain, and should 

be suitable for investigating possible periodic components in annual 

runoff.

None of the spectral peaks in the gaged or reconstructed runoff 

series from 1930 to 1980 are significant. However, the spectral dens­

ity of reconstructed runoff achieves statistical significance (P<0.05) 

between periods of 14.0 and 18.67 years (lags=28, degrees of freedom 

=25, bandwidth=0.045 cycles year-1, Hamming Window) [IMSL Inc., 1982]. 

Because this periodicity only explains 16 percent of the reconstructed 

runoff variance and is not clearly duplicated in the gaged record, it 

must be viewed with caution. It should be noted, however, that Stahle 

and Cleaveland [1988] found similar spectral peaks in reconstructed
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Texas climate, and that Currie (1981, 1984) has defined an 18.6 year 

lunar nodal periodicity in climate data.

B. Analysis of Surplus and Deficit Runoff

Fig. 3 indicates that the relationship between tree growth and
3 -1runoff is approximately linear up to about 40 km year . If the 

threshold value for surplus (or deficit) runoff is set below this value, 

the long-term reconstruction can be used to analyze the history and 

dependability of surplus flow, which are practical issues with obvious 

relevance to the management of surface water supplies in the White River 

Basin. A statutory definition of the concept of surplus water has been 

established by the Arkansas Legislature [1985], incorporating forecasts 

of future demand and the satisfaction of several preconditions before 

interbasin transfers can be considered. This statutory definition is 

too complex for operational application in this analysis, so we simply 

defined surplus as runoff > 120 percent of the long-term mean runoff. 

This is meant to be a conservative estimate, recognizing that the thresh­

old could be set higher or lower (e.g., a draft study of the Upper White 

River Basin [U. S. Army Corps of Engineers, 1988] identifies runoff > 

approximately 90 percent of the mean annual runoff as surplus by the 

statutory definition). We find that the conclusions of our study are not 

strictly linked to any particular definition of surplus or deficit runoff.

When the surplus criterion is set at 120 percent of the mean, this
3 -1represents 31.48 km year for the reconstruction (1700 to 1980), and

3 -132.66 km year for the gaged data (1900 to 1980). These levels are 

well below the point where tree-ring estimation error increases substan -
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tially (suggested by Fig. 3), and should provide some insight into the 

secular variability of surplus flows in the White River system.

If the intervals between surplus flows are randomly distributed, 

they should approximate an exponential distribution, and this hypothesis 

can be tested with the Li­ lliefors criterion [Conover, 1980]. The dis­

tribution of intervals between surplus years (> 120 percent of the mean) 

fail the test of randomness for gaged runoff from 1900 to 1980 (P<0.05) 

and for reconstructed runoff from 1700 to 1980 (P<0.01). The recon­

structed data also fail when tested from 1900 to 1980 (P<0.01). Inspec­

tion of test results indicates that the gaged series fails Lilliefors 

test primarily because surplus runoff events tend to cluster into suc­

cessive years (high incidence of one year intervals between surplus run­

off). Three consecutive years of surplus occur three times (1927-1929, 

1949-1951, and 1973-1975). In the reconstruction, four consecutive 

years of surplus occur (1774-1777, 1891-1894), and six of nine years are 

estimated to have had surplus runoff from 1774 to 1782.

The longest interval without surplus runoff in the gaged series was 

11 years, occurring from 1957 to 1968, and ten consecutive years, from 

1935 to 1945, were also recorded (Fig. 4). The reconstructed runoff 

series indicates that prolonged periods of 27 years (1717 to 1744), 20 

years (1823 to 1843), and 11 years (1811 to 1822) without surplus runoff 

have occurred in the White River Basin since 1700. The underestimation 

of actual runoff amounts by the reconstruction is a potential problem to 

a threshold analysis of surplus or deficit flow, but does not appear to 

be a serious limitation to this study because (i) estimation error
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between the runoff and tree-ring data is not serious below 140 percent 

of the long-term mean; (ii) the non-random distribution of surplus and 

deficit discharge found in the long reconstruction is also present in 

the gaged data from 1900 to 1980; and (iii) the non-random behavior 

of gaged and reconstructed surplus runoff does not appear to be sensi­

tive to the specific thresholds employed in this analysis. Lilliefors 

test indicates that reconstructed surplus flows are non-randomly dis­

tributed (P < 0.05) when surplus is defined as 110%, 115%, 125% and 

130% of mean runoff, or when deficit flow is defined as 70%, 75%, 85%, 

and 90% of the mean, for the same reasons as the 120% and 80% defini­

tions (i.e., clustering of events, and the presence of long intervals 

without surplus or deficit runoff).

The potential recurrence of periods of a decade or longer without 

any surplus flows has profound consequences for the possible applica­

tion of surplus water. The periods when surplus flows are frequent may 

be equally important from a managerial perspective. Any control struc­

tures, contractual arrangements, or application of surplus water should 

be designed in part to reflect the high degree of temporal variability 

in this particular component of surface water supply.

A similar analysis of intervals between years of low flow or def­

icit runoff (defined arbitrarily as 80 percent of the long-term mean) 

was also conducted. Using this criterion, low flows in the gaged data 

(1900 to 1980) are ≤ 21.78 km3 year-1, and are ≤ 20.99 km3 year-1 for 

the 281-year reconstructed series. The intervals between both gaged 

and reconstructed deficit runoff years were also non-randomly distrib-
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uted when compared to an exponential distribution with Lilliefors test 

(P<0.01). The clustering of low runoff years also appears to explain 

this non-randomness, with several examples of successive drought years 

lasting from two to five years in the period from 1700 to 1980. During 

the driest periods the reconstruction indicates that deficit flows oc­

curred in as many as six of seven years from 1868 to 1874, and six of 

10 years from 1785 to 1794. The recurrence of these historic dry peri­

ods over the White River Basin would no doubt place severe strain on 

the highly developed surface water supply system, even though this sys­

tem has been designed and managed with severe short-term drought as a 

primary consideration. On the positive side, the longest interval be­

tween deficit runoff was seven years in the observed data (1947 to 1954) 

and 12 years in the reconstructed data prior to the twentieth century 

(1708 to 1720 and 1841 to 1853) (Fig. 4). Most of these periods without 

deficit flow were characterized by a high incidence of surplus runoff.

The non-random interannual distribution of surplus and deficit run­

off events in the White River Basin appears to be a product of large 

scale climatic variability. Some of this variability may eventually be 

tied to more slowly changing boundary conditions of the atmosphere such 

as sea surface temperatures, or the El Niño/Southern Oscillation. If 

such associations can be demonstrated, they may permit some improvement 

in long-term hydrological forecasts once a change in the related boundary 

condition is detected. In lieu of a better understanding of the atmo­

spheric conditions sesponsible for extended periods of surplus or deficit 

runoff in the White River Basin, we have attempted to identify statistica
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associations in the reconstructed runoff series that may have some 

actuarial value.

Interannual persistence of drought and wetness extremes has been 

identified in observed and dendrochronologically reconstructed June 

Palmer Drought Severity Index (PDSI) in Texas [Stahle and Cleaveland, 

1988], and the same statistic was used to test for possible interannual 

persistence of surplus and deficit runoff in the White River. The ob­

served and reconstructed runoff series were divided into four equally 

probable groups [SAS Institute Inc., 1985]. The highest reconstructed 

group equalled the defined surplus runoff group (both >31.48 km3 year-1) 

and the lowest (<20.23 km year ) was approximately equivalent to the 

80 percent critical runoff level. When the test for joint occurrence 

was applied to reconstructed runoff from 1700 to 1980, the null hypo­

thesis of random occurrence of both extreme high and low flows was re­

jected (P<0.01). When gaged runoff from 1900 to 1980 was divided into 

four equally probable groups, the hypothesis of randomness was rejected 

for the highest class (P<0.05), but could not be rejected for the lowest 

category (P>0.10). These results tend to confirm the non-random nature 

of surplus and deficit flows indicated in a more general way by the 

Lilliefors test. However, the statistically significant interannual 

persistence further indicates that once a surplus annual runoff year is 

recorded, the probability increases that the following year will also 

experience surplus and/or above average flow.

CONCLUSIONS

Analyses of both gaged and reconstructed White River annual runoff
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data indicate that surplus and deficit flows are not randomly distrib­

uted through time. This implies that regimes of unusually low or high 

flows can become established and persist for two or more years, as has 

been witnessed during the twentieth century (e.g., low runoff was re­

corded for three consecutive years in 1900-1902, 1954-1956, and 1963- 

1965; high runoff occurred three consecutive years in 1927-1929, 1949- 

1951, and 1973-1975). Periods as long as 27 years without surplus run­

off occur in the reconstructed record. Non-random occurrence of sur­

plus and deficit runoff years may also imply a systematic component to 

the atmospheric conditions that govern discharge in the White River and 

elsewhere in the Southcentral United States (e.g., Stahle and Cleave­

land, 1988). This interannual persistence of low and high runoff re­

gimes, and the presence of spectral peaks in the 14.0 to 18.67 year 

period range, were both also detected in independent climate and tree­

ring data sets from Texas [Stahle and Cleaveland, 1988] and suggest a 

large-scale macroclimate control. If the physical mechanism (or mech­

anisms) responsible for this apparent persistence of climate indices 

and runoff in the Southcentral United States can be identified, it 

could lead to improved forecasting of runoff extremes.

This study demonstrates that tree-ring data can be useful for ap­

plied hydrological analysis in the Central United States, including 

detection of inhomogeneity in gaging records. With the extensive net­

work of existing chronologies, and the development of longer red cedar 

and baldcypress chronologies, there is considerable potential to extend 

these hydrological applications in both time and space.
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APPENDIX 1

Table 1-1. Clarendon, Arkansas, Monthly and Annual Mean Dally Discharge (ft3 sec-1).

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

1900 16400 25000 41400 22300 29100 24100 14300 6500 7900 6900 15600 29100 19900

1901 20000 23400 36800 39100 27800 7900 4500 3700 3300 2800 2900 7000 14900

1902 6200 17800 37000 34800 15500 10700 13400 5400 5500 5100 7500 49100 17400

1903 45100 54000 132100 65400 34900 75100 17300 10400 6000 6500 5100 5200 38000

1904 13000 31100 30100 82100 39200 30500 22100 10300 6700 4900 3900 4200 23000

1905 7200 9500 30800 41300 80900 62700 29800 47200 20200 14700 19000 31700 33100

1906 61600 77800 42800 122000 49000 22800 14300 18800 18100 37500 27100 69300 46500

1907 147800 58400 57700 41900 122200 73800 23100 10200 8000 6600 10500 12300 36500

1908 26100 41300 77500 78200 127900 53500 16200 11400 8200 7700 7000 20700 29900

1909 12000 29700 88600 47800 50600 36700 25500 10900 6400 5300 7500 14500 28000

1910 15000 12300 34100 35100 29200 41900 31800 16600 9500 30800 10300 6900 22900

1911 15100 18500 26500 53400 54800 8800 7000 39600 45300 13500 9600 25200 26500

1912 39400 35300 77900 127200 96500 25600 25000 8800 6400 6800 10600 6400 38800
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Table 1-1, Continued

Year Jan Feb Mar

1913 67000 77900 33700

1914 21900 33100 45100

1915 18800 45000 75000

1916 101400 164800 46500

1917 26200 15200 29000

1918 8200 31400 19600

1919 66400 28400 43200

1920 47100 57700 40700

1921 26700 32800 54400

1922 24800 18200 58800

1923 22200 97000 80200

1924 36900 26500 23400

1925 14300 16400 24800

1926 22000 41700 40800

1927 71800 125800 63400

Apr May Jun Jul  Aug

90900 33700 9700 7000 7500

43600 51700 11900 6800 5500

34500 25100 44200 26300 29900

42700 32900 23900 15300 7400

52000 43800 41300 17000 12400

29400 76200 53900 9400 5900

34400 34200 49300 22900 7700

80300 78000 65400 14700 11300

106000 107800 24300 15200 11500

136600 75900 15400 9800 6600

63400 80200 115000 22500 9800

24800 33600 57700 25700 17100

15600 21100 8100 6200 5100

50000 19000 10000 6600 10300

207000 138400 107800 32800 40100

Sep Oct Nov Dec Annual

6800 13500 25400 31700 33400

14500 9600 6500 15700 22100

99900 18100 14400 35200 38700

6200 5600 5300 12400 38200

7400 5200 4700 8900 21900

8300 7300 12800 27800 24100

5900 17500 47600 62600 35100

16000 10300 12000 18600 37500

7800 6600 10700 30100 36200

4900 4600 5000 7400 30700

10700 7600 12100 29800 45900

9000 7100 6200 12000 23300

5500 40100 74400 34200 22200

16000 31400 33900 44400 27200

25000 34200 26700 41700 76200
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Table 1-1, Continued

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct  Nov Dec Annual

1928 54400 34200 33300 81800 81800 91600 107800 18000 15000 10000 13400 32000 47800

1929 36400 81800 81800 104200 127600 89800 25800 11000 7800 7200 14300 15600 50300

1930 77400 97000 43500 21300 33100 17700 6800 5800 8200 12300 11200 19000 29400

1931 10300 24200 46900 38000 28100 17000 9800 14200 8900 6100 6600 24900 19600

1932 72700 77900 31000 30600 11600 8900 14800 6500 4700 4400 6000 7000 23000

1933 56000 42900 36000 54500 84000 35600 8500 8800 12300 9400 9600 13700 30900

1934 19700 9700 20800 72500 16400 8200 5200 4500 8300 6400 6400 15400 16100

1935 23000 35200 56000 99200 64400 97600 46400 11200 6600 6600 13200 20200 40000

1936 10400 8200 12400 21900 13200 5700 5200 3100 4400 16200 22300 14700 11500

1937 96400 102000 35000 23400 42600 23200 14500 7700 8100 11400 11300 16900 32400

1938 29700 77800 82300 86700 44600 44400 14200 10100 5500 4500 12500 8500 34700

1939 15500 69900 84300 64600 61500 40600 20800 7900 5500 4600 5200 5800 31900

1940 7300 11400 14900 36600 40200 10500 7600 7500 6000 4400 5500 15500 14000

1941 26000 29100 15400 23300 27400 8700 6300 5200 5600 20000 46400 23100 19600

1942 39100 41000 49000 60500 49500 24900 12400 11300 11100 6100 28200 31500 30300
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Table 1-1, Continued.

Year Jan Feb Mar Apr May Jun Jul  Aug Sep Oct Nov Dec Annual

1943 65600 15400 22400 38400 75900 73800 11700 6000 4400 4200 5000 4700 27300

1944 6300 20600 47600 57600 54100 18900 7200 5300 5000 5600 4800 12700 20500

1945 20800 18600 139300 215100 93500 116800 56100 10500 10500 24600 22300 15800 62000

1946 60700 61600 64900 41000 59000 83400 14200 12400 8000 6500 33800 56400 41700

1947 35800 17000 13700 34800 48900 29000 13200 6900 5800 6000 12300 18400 20200

1948 35000 29900 64900 48100 22900 18700 30100 16100 8500 6300 10700 24300 26300

1949 58300 156000 79500 66200 25700 32300 30100 12100 9400 30400 22800 28000 45100

1950 114000 121000 67900 54100 83200 61100 23600 28500 39900 15900 17300 16600 53200

1951 32800 42100 81100 46200 37400 21100 46200 24700 15400 11300 30500 72400 38400

1952 65500 38300 56600 74200 46800 14900 8600 7400 6800 5500 7900 26700 29900

1953 18200 31000 53700 55800 66800 24400 10800 9500 8600 8700 8800 7100 25200

1954 15200 20500 15900 17700 30800 11600 8200 7300 4700 4100 4000 5400 12100

1955 12100 12100 30300 45200 28600 31800 19100 11400 9000 7700 7000 7500 18500

1956 7500 59500 33100 17000 21600 14500 11900 9300 7900 7000 7400 9800 17000

1957 14200 44400 32900 78400 99400 86700 46500 49800 35500 26100 53500 52500 51600
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Table 1-1, Continued

Year Jan Feb  Mar. Apr May Jun  Jul Aug Sep Oct  Nov Dec Annual

1958 34500 28400 39300 67300 91200 36000 25200 27400 17400 13600 24100 26900 35800

1959 21000 38100 38900 26400 18100 18000 12100 10700 10600 13200 17100 25600 20700

1960 37400 32300 35200 22600 36000 41400 22000 12400 9900 8200 8500 17600 23600

1961 16100 19300 51000 82400 85900 46500 31200 24400 10100 8200 10100 29800 34700

1962 32500 42200 58100 49200 32500 12700 13100 10500 15200 13000 9000 10400 24700

1963 9900 9900 26800 14100 10800 23600 12100 10000 7400 7000 7300 8100 12300

1964 6200 8800 50500 59100 24300 10600 10200 11200 9700 10000 8800 19200 14000

1965 24100 34900 29800 40800 23200 20200 15900 13600 18500 14800 10000 11000 21400

1966 52500 47000 42400 29100 79000 30300 17100 20400 14700 10700 10200 10900 30400

1967 17300 18100 21100 15500 32600 19300 19500 14100 9700 11800 16300 36900 19400

1968 41800 47900 39300 66100 78800 40200 26700 17300 13000 17200 21900 47200 38100

1969 74100 112800 60800 66600 46100 19800 14900 12400 11000 10500 9800 12400 37200

1970 27700 18300 29800 28700 63900 21100 14300 20800 16600 23700 32000 31800 27600

1971 44500 41500 38900 15200 18200 15600 10900 14500 10000 9600 8100 24500 21000

1972 19800 12900 13800 22600 41500 13800 14500 13800 11000 15700 55800 50700 23900
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Table 1-1, Continued.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

1973 47400 65800 75100 107900 136100 52500 34500 32700 32500 19300 20800 95700 60100

1974 60000 70700 67000 53400 50200 56600 29200 24300 22600 18500 28000 32500 42600

1975 53600 54200 74000 114900 65300 23200 15900 17700 18400 14400 13100 21500 40400

1976 27200 24200 24800 23200 20000 25600 34600 19900 12200 13900 11800 8900 20600

1977 12900 12200 27300 58200 20700 10600 11800 10000 13900 20900 23900 35100 21500

1978 30500 27300 43200 53800 49400 26000 15400 10300 16700 8600 15000 50300 28900

1979 40600 31000 77400 100400 96000 50500 29500 27800 21600 17300 15800 18600 43900

1980 23900 18200 26200 40200 24400 17600 14100 10000 7700 7500 10900 12800 17800
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APPENDIX 2

Table 2-1. Clarendon, Arkansas, Reconstructed Annual Runoff (km3 year-1).

Decade 0 1 2 3 4 5 6 7 8 9

1700 24.34 29.52 23.98 18.74 25.27 19.52 31.63 45.45 20.05 21.35

1710 28.07 31.53 22.04 35.90 36.17 25.39 31.64 32.27 26.56 25.90

1720 14.66 19.96 27.12 20.23 29.46 26.79 27.58 27.91 15.00 27.52

1730 24.03 29.55 28.54 30.40 16.29 29.78 15.17 12.10 28.47 27.51

1740 29.03 17.48 13.55 22.24 33.62 40.63 30.23 39.14 16.43 17.93

1750 33.07 23.12 22.91 25.44 20.06 17.29 22.37 33.50 27.23 32.69

1760 24.23 33.46 24.99 22.09 38.39 26.08 17.72 11.62 26.38 31.11

1770 27.15 27.17 15.98 23.32 35.44 33.21 36.43 42.19 25.47 30.67

1780 19.72 37.23 34.39 28.17 21.55 19.60 29.47 22.43 33.66 20.48

1790 19.86 20.02 19.61 27.19 18.81 28.90 32.06 35.29 28.07 20.88

1800 14.54 10.62 18.23 24.86 33.65 30.73 28.50 35.49 22.86 28.36

1810 27.78 45.69 16.83 28.32 24.45 27.27 13.92 14.65 17.58 28.43

1820 22.94 29.02 34.37 31.83 28.40 22.89 30.64 28.98 29.16 15.97

1830 30.51 25.08 21.86 27.69 11.43 17.32 30.16 25.40 13.41 20.88
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Table 2-1, Continued.

Decade 0 1 2 3 4 5 6 7 8 9

1840 22.82 15.91 24.05 33.67 37.62 25.81 30.39 25.21 23.57 39.66

1850 27.49 23.43 26.15 20.16 33.56 17.38 20.07 14.22 28.44 24.83

1860 20.52 31.61 30.33 36.19 28.71 26.92 37.18 37.70 17.50 31.14

1870 17.05 17.52 19.75 18.11 11.85 25.04 36.22 24.90 31.23 16.72

1880 26.81 21.15 36.35 39.50 31.97 30.71 22.40 18.55 19.08 29.80

1890 26.76 34.61 41.99 39.80 31.49 19.16 23.68 25.37 29.55 29.33

1900 21.90 10.31 18.76 38.70 38.93 29.07 32.40 39.42 38.14 44.15

1910 35.02 6.61 38.45 10.48 7.01 31.95 27.48 23.03 22.35 27.90

1920 28.92 29.44 24.11 35.07 29.26 12.37 15.65 35.14 38.14 35.78

1930 17.97 15.69 23.16 18.51 15.06 38.23 11.53 23.48 25.67 27.19

1940 23.66 18.13 27.61 34.65 23.32 44.61 29.92 29.22 28.22 29.14

1950 37.66 35.18 16.75 15.91 13.80 23.69 17.59 33.44 22.51 26.59

1960 25.56 26.03 30.04 20.57 22.21 31.48 21.78 28.66 27.95 31.61

1970 30.92 26.41 20.42 40.85 33.80 38.34 34.24 17.63 26.41 27.60

1980 13.69
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