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Impaired H-Reflex Adaptations
Following Slope Walking in
Individuals With Post-stroke
Hemiparesis
Jing Nong Liang1* , Yun-Ju Lee2, Eric Akoopie1, Brooke Conway Kleven1, Trisha Koch1

and Kai-Yu Ho1

1 Department of Physical Therapy, University of Nevada, Las Vegas, Las Vegas, NV, United States, 2 Department of Industrial
Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan

Background and Purpose: Short term adaptations in the Ia afferent-motoneuron
pathway, as measured using the H-reflex, in response to altered ground reaction forces
(GRFs) applied at the feet during slope walking have been observed in the non-impaired
nervous system. The ability of the stroke-impaired nervous system to adapt to altered
GRFs have not been examined. The purpose of this study was to examine the acute
effects of altered propulsive and braking forces applied at the feet, which naturally occurs
when walking on different slopes, on adaptations of the H-reflex pathway in individuals
with chronic post-stroke hemiparesis.

Methods: Twelve individuals chronically post-stroke and 10 age-similar non-
neurologically impaired controls walked on an instrumented treadmill for 20 min under
level, upslope and downslope conditions. GRFs were measured during walking and
soleus H-reflexes were recorded prior to and immediately after walking. A 3 (limbs:
paretic, non-paretic, and non-impaired) × 3 (slope: level, upslope, downslope) mixed
factorial ANOVA was conducted on the propulsive and braking forces. A 2 (limb: paretic
and non-impaired) × 2 (time: pre and post) × 3 (slope: level, upslope, and downslope)
mixed factorial ANOVA was conducted to assess the soleus H-reflex amplitudes.

Results: In both post-stroke and non-impaired groups, during downslope walking, peak
propulsive forces decreased, while peak braking forces increased. In contrast, during
upslope walking, peak propulsive forces increased and peak braking forces decreased.
We observed reduced soleus H-reflex amplitudes immediately following 20 min of level,
downslope and upslope walking in non-impaired individuals but not in the paretic legs
of individuals with chronic post-stroke hemiparesis.

Discussion and Conclusion: Similar pattern of change in peak propulsive and braking
forces with respect to different slopes was observed in both individuals post-stroke and
non-impaired individuals, but the magnitude of GRFs were smaller in individuals post-
stroke due to the slower walking speed. Our results suggested that impaired modulation
of the H-reflex pathway potentially underlies the lack of neuroadaptations in individuals
with chronic post-stroke hemiparesis.

Keywords: locomotor control, H-reflex, post-stroke hemiparesis, slope walking, spinal cord plasticity
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INTRODUCTION

Stroke is the leading cause of long-term adult disabilities
(Benjamin et al., 2018). While majority of stroke survivors regain
independent ambulation, there often remains impaired motor
control, and thus limitations in walking, which can present as
a safety concern when participating in daily physical activities
(Olney and Richards, 1996).

To execute successful locomotion, leg muscles have to
be coordinated so as to generate foot forces of appropriate
magnitude and direction to propel the center of mass forward
(Neptune et al., 2001). In individuals with chronic post-stroke
hemiparesis, however, inappropriate direction of foot forces
during locomotion has been reported (Bowden et al., 2006;
Turns et al., 2007; Liang and Brown, 2013, 2014), specifically,
reduced propulsive forces accompanied by exaggerated braking
forces have been observed in paretic legs (Olney and Richards,
1996; Bowden et al., 2006; Turns et al., 2007). Furthermore,
the impaired paretic foot force control capabilities during
locomotion are exacerbated when the stroke-impaired nervous
system is required to control for postures in addition to the
locomotor task. During non-postural loaded locomotion, foot
force directional control was well regulated in individuals post-
stroke, but excessive forward directed shear forces were generated
during postural loaded locomotion, and further exaggerated with
higher postural loads (Liang and Brown, 2013, 2014). It has also
been observed that impaired H-reflex gain was associated with
this defective interaction of postural and locomotor control in
individuals post-stroke (Liang and Brown, 2015). Functionally,
insufficient horizontal forces in the anterior-posterior direction
contribute to reduced propulsion (Bowden et al., 2006), thus
associated with slow walking speeds, and excessive horizontal
forces on low friction surfaces could lead to slips and falls
(Redfern et al., 2001).

Sloped surfaces are routinely encountered in daily activities,
specifically where there is a transition between surfaces of
different elevation, such as ramps. Introduction of sloped
surfaces, both incline and decline, is challenging and present
increased potential for loss of balance and falls compared to level
surfaces (Sheehan and Gottschall, 2012), especially for individuals
with post-stroke hemiparesis.

While the short term H-reflex adaptations in response to
walking under altered propulsive and braking force conditions,
via walking on inclined or declined slopes, have been examined
in non-impaired individuals (Sabatier et al., 2015; Arnold
et al., 2017), little is known about the H-reflex adaptations
following walking on inclined/declined slopes in the stroke-
impaired nervous system. The H-reflex is a commonly used
electrophysiological test to quantify excitatory behavior of the
monosynaptic group Ia afferent volleys in the spinal cord
circuitry (Schieppati, 1987). In the non-impaired nervous system,
the spinal circuitry undergoes acute adaptations in response
to a task or exercise. Soleus (SOL) H-reflex depressions
have been observed following single sessions of level walking
(Sabatier et al., 2015), downslope walking (Sabatier et al., 2015),
downslope running (Bulbulian and Bowles, 1992), and active leg
cycling (Motl and Dishman, 2003; Motl et al., 2003). Increased

presynaptic inhibition resulting from the repetitive stretch-
shortening of the targeted muscle from these cyclical tasks,
reciprocal inhibition from repetitive activation of antagonist
muscle, or prolonged post-activation depression have been
suggested as possible underlying mechanisms (Hultborn et al.,
1996; Motl et al., 2003). In the stroke-impaired nervous system,
the reduction in SOL H-reflexes has been observed after active
pedaling (Tanuma et al., 2017). While this has implications
for therapeutic interventions in people post-stroke, since the
size of the H-reflex has been associated with spasticity in
the neurologically impaired (Levin and Hui-Chan, 1993), it
also suggests that the impaired Ia afferent pathway potentially
has capabilities to adapt in response to external perturbations.
However, active cycling employed by the earlier study is a seated
task requiring minimal control for postural loads. Potential for
adaptation in the stroke-impaired nervous system has not been
examined in locomotor tasks involving postural control.

The primary purpose of this study was to examine the
immediate effects of altered propulsive and braking forces
applied at the feet, which naturally occurs when walking on
different slopes, on adaptations of the Ia afferent pathway, as
measured using the H-reflex, in individuals with chronic post-
stroke hemiparesis. We hypothesized that the ability to modulate
H-reflex excitability in response to altered propulsive and braking
forces would be reduced in the post-stroke nervous system.

MATERIALS AND METHODS

Participants
Twelve individuals (4 females, 8 males; age = 70.54 ± 9.76 years),
who had sustained a single, unilateral cortical or subcortical
stroke, more than 6 months postictus (7.39 ± 8.41 years)
prior to the study, and had residual lower limb hemiparesis,
participated in this study. Ten age-similar non-neurologically
impaired individuals (6 females, 4 males; age 59.36 ± 11.45 years)
were recruited as controls.

Individuals post-stroke were recruited only if they were able
to walk on a treadmill independently without assistive devices
(cane/quadcane/ankle-foot orthosis). Participants were excluded
if they had other neurological conditions, expressive or receptive
aphasia, severe concurrent medical problems such as severe
cardiac disease, history of poorly controlled brittle diabetes, active
cancer, orthopedic conditions affecting the legs, history of hip or
knee replacement, peripheral nerve injury in the lower limb, or
the inability to comprehend verbal instructions. Each participant
received written and verbal information about the experiment
procedures before giving written consent. All participants signed
the informed consent before participation. The protocol was
approved by the Institutional Review Board at the University of
Nevada, Las Vegas.

Procedures
Each participant was tested over 2 sessions separated by at
least 7 days. For each session, each participant either walked
on the level and the upslope, or the level and the downslope
conditions, with at least 2 h in between the conditions. The
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order of upslope and downslope conditions was determined
in an alternate order, such that half the participants walked
level and upslope conditions during their first session, and the
remainder walked level and downslope conditions during their
first session. In the first session, we recorded each participant’s
body weight and quantified the lower extremity functional
motor level using the Fugl-Meyer Assessment of motor function
(Fugl-Meyer et al., 1975).

SOL H-Reflex Elicitation and
Electromyography (EMG) Recordings
The H-reflexes and M waves were recorded before and
immediately after each 20-min walking session. In individuals
with chronic post-stroke hemiparesis, H-reflexes were elicited
from the paretic SOL muscle and in non-impaired individuals,
the right SOL muscle was tested. To elicit SOL H-reflexes and
M-waves, bipolar self-adhesive Ag-AgCl electrodes (2.2 × 2.2 cm
for the cathode and 2.2 × 3.5 cm for the anode, VerMed, Inc.,
Bellows Falls, VT, United States) were placed over the popliteal
fossa to stimulate the tibial nerve, using a constant current
stimulator and isolation unit (DS7A, Digitimer Ltd., Welwyn
Garden City, United Kingdom), with a square pulse stimuli of
1ms duration, a current range of 50 µA∼200 mA, and total
output capability of 400 V. The stimulating electrodes were
placed at a spot where the H-reflex threshold was minimized and
stimulation of other nerves avoided. To avoid between session
variability in placement of electrodes, after the first session, the
electrode positions were mapped relative to bony landmarks,
scars, or moles on the skin. The same trained researcher placed
the electrodes each session for all participants.

The H-reflexes and M-waves were measured while the
participants maintained a natural standing posture with arms
by their sides, and with stable levels of SOL background EMG
activity. An additional electrode was placed over the belly of the
tibialis anterior muscle (TA) to monitor antagonist EMG activity.
Each electrical stimulus would occur only after the participant
had maintained constant level of rectified SOL and TA EMG
activity within a set window of mean background EMG during
static standing ± 5% for at least 2 s, and with at least 8 s inter-
stimulus interval to avoid effects of low frequency depression
(Chang et al., 2013). Prior to and immediately after 20 min of
walking, the intensity of the stimulator was increased in small
increments until the maximal SOL H-reflex and subsequently
the maximal M-wave was obtained, generating a recruitment
curve. Then, 10 maximal SOL H-reflexes were recorded. For
each participant, the 2 sessions were scheduled at same time of
day to avoid diurnal variations in H-reflex sizes (Carp et al.,
2006; Lagerquist et al., 2006). SOL H-reflexes and TA EMG
activity were amplified, band-pass filtered (3–3000 Hz), sampled
at 3200 Hz, and stored for offline analysis.

Slope Walking
Participants wore a safety harness attached to an overhead
support, and walked on a dual belt instrumented treadmill
(Fully Instrumented Treadmill, Bertec Corp., Columbus, OH,
United States) at a sample frequency of 2000 Hz. The safety
harness only served as a safety mechanism in case of a fall and did

not support any body weight during walking. Each participant
walked for 20 min under each of the 3 slope conditions: a level
walking condition with treadmill at 0◦ incline/decline, an upslope
condition with treadmill at 5◦ incline, and a downslope condition
with treadmill at 5◦ decline. This relatively small incline angle
was selected to ensure that individuals post-stroke were able
to complete 20 min of continuous walking. This duration was
selected because previous studies reported that 20 min of walking
was sufficient to induce a change in H-reflex amplitude (Sabatier
et al., 2015; Arnold et al., 2017). We first determined the walking
speed across the 3 conditions by asking participants to walk with
their comfortable speeds for level walking on the instrumented
treadmill. The speed was recorded and used for upslope and
downslope conditions. All self-selected walking speeds were
determined within two 30-s trials. During the 20 min of walking
for each condition, should the participant need to slow down, we
would reduce the speed of the treadmill to accommodate, and the
average walking speed during the 20-min walking session was
reported. Heart rate and blood pressure were monitored prior
to, during and after walking. GRFs were recorded every other
minute for 60 s, for a total of 10 trials per walking condition for
each participant.

Data Processing
All forces and reflex data were processed and analyzed offline
using custom MATLAB scripts (Mathworks, Natick, MA,
United States). The peak-to-peak amplitudes of the maximal
SOL H-reflexes and the maximal M-waves were calculated and
averaged. GRFs were filtered with a 20 Hz low-pass, 2nd order,
zero-lag Butterworth filter. The vertical component of the GRF
was used to determine the stance phase of gait cycle. The time
point where the vertical GRF exceeded zero newton and remained
for a continuous period of at least 50 ms was denoted as heel
contact. Subsequently, the time point where the vertical GRF
reached zero newton and remained for a continuous period of at
least 50 ms was denoted as toe off. The period from heel contact to
toe off was considered the stance phase. The peak propulsive and
braking forces during the stance phase were defined as highest
positive and negative horizontal GRF in the anterior-posterior
detected by the force plates, respectively. For each 60 s trial,
the first and last five stance phases were removed from analysis.
The mean propulsive and braking forces were averaged over the
remaining stance phases, and normalized to the individual’s body
weight. The same procedure was repeated for GRF data from the
other force platform.

Data from the level walking condition during the first session
was used in the analysis for comparison with upslope and
downslope conditions. Level walking condition from the second
session was used for control purposes, to ensure that we were able
to obtain consistent recordings across sessions.

Statistical Analysis
Data were tested for homogeneity and sphericity, and it was
confirmed that no assumptions were violated.

A 2 (limb: paretic and non-impaired) × 2 (time: pre
and post) × 3 (slope: level, upslope, and downslope) mixed
factorial ANOVA was conducted on the Hmax/Mmax. Any
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significant interacting factors were broken down using two-
way ANOVAs and post hoc simple main effects as described
below. Significant main effects were reported if there were no
significant interactions.

A 3 (limb: paretic, non-paretic, and non-impaired) × 3
(slope: level, upslope, downslope) mixed factorial ANOVA was
conducted on the propulsive and braking forces. When there was
a significant interaction effect, we further examined simple main
effects using a repeated measures ANOVA with a Bonferroni
correction for each limb. Significant main effects were reported if
there were no significant interactions. P-values less than or equal
to 0.05 were considered statistically significant.

RESULTS

Participant characteristics are presented in Table 1.
Representative propulsive forces, braking forces, SOL H-reflexes
with control M waves pre/post walking under 3 slope conditions,
and recruitment curves are presented in Figure 1. When
comparing the self-selected walking speeds for each condition
using independent t-tests, non-impaired individuals walked at a
faster speed (Level = 1.07 ± 0.25 m/s; Upslope = 1.00 ± 0.22 m/s;
Downslope = 1.04 ± 0.21 m/s) than individuals post-stroke
(Level = 0.63 ± 0.25 m/s; Upslope = 0.57 ± 0.19 m/s;
Downslope = 0.60 ± 0.24 m/s) for all 3 conditions (p < 0.05).
Walking speeds decreased when comparing upslope with level
walking in both groups (p < 0.05), but no difference when
comparing downslope with level walking. Despite the slower
walking speed for upslope walking, heart rate was higher
following upslope compared to downslope and level, for both
groups (Table 1). For each participant, we successfully obtained
comparable Mmax amplitudes for both sessions (ICC = 0.95,
95% CI), supporting the validity to compare the Hmax/Mmax
ratios recorded. We did not observe a statistically significant
difference when comparing the Hmax/Mmax ratios between

paretic (0.40 ± 0.07) and non-impaired legs (0.37 ± 0.06) using
independent t-tests for pre-walking conditions (p > 0.05).

Hmax/Mmax
For the Hmax/Mmax, the 3-way ANOVA revealed no significant
interaction between limb, slope and time. There was a statistically
significant interaction between limb and time [F(1,19) = 16.84,
p = 0.001], suggesting that the change in Hmax/Mmax after walking
was different for stroke-impaired compared to non-impaired
group. Simple effects analysis showed that in paretic legs, on
average across all slope conditions, post walking Hmax/Mmax
(0.38 ± 0.06) was not different when compared to pre walking
Hmax/Mmax (0.38 ± 0.06) (p = 0.766). In non-impaired legs,
however, on average across all slope conditions, Hmax/Mmax was
reduced after walking (0.33 ± 0.06), compared with pre walking
Hmax/Mmax (0.39 ± 0.06) (p = 0.00) (Figures 2, 3 and Table 2).

Propulsive and Braking Forces
For peak propulsive forces, there was a statistically significant
interaction between slope and limb [F(2.83, 43.88) = 10.14,
p < 0.001]. Simple main effect analysis showed that in non-
impaired and non-paretic legs, peak propulsive forces were
greater in the upslope (non-impaired = 23.20 ± 3.5%BW;
non-paretic = 13.79 ± 4.20%BW) compared to level (non-
impaired = 17.15 ± 3.65%BW; non-paretic = 8.63 ± 5.01%BW)
and greater during level compared to the downslope (non-
impaired = 8.35 ± 4.03%BW; non-paretic = 5.46 ± 4.04%BW)
condition (p < 0.001). In the paretic legs, peak propulsive forces
were greater only when walking upslope (11.67 ± 3.61%BW)
(p < 0.001) compared to level (6.25 ± 2.30%BW) and downslope
(4.42 ± 3.38%BW) conditions (Figure 4A).

For peak braking forces, there was no statistically significant
interaction between slope and limb [F(2.29, 35.46) = 1.63,
p = 0.21]. There was a statistically significant main effect of
slope [F(1.14, 35.46) = 73.77, p < 0.001]. Post hoc analysis
showed that the overall mean peak braking forces across the

TABLE 1 | Characteristics of participants.

Variable Non-impaired (n = 10) Stroke-impaired (n = 12) p

Age (years) (mean ± SD) 59.36 ± 11.45 70.54 ± 9.76 0.03a

Sex (female/male) 6/4 4/8

Time since stroke onset (years) (mean ± SD) 7.39 ± 8.41

Paretic side (left/right) 10/2

F-M score (LE)b (mean ± SD) 28.42 ± 2.15

Self-selected walking speed(m/s) (mean ± SD)

Level 1.07 ± 0.25 0.63 ± 0.25 0.00a

Upslope 1.00 ± 0.22c 0.57 ± 0.19c 0.00a

Downslope 1.04 ± 0.21 0.60 ± 0.24 0.00a

Heart rate (bpm) (mean ± SD)

Level (Pre/Post) 72.89 ± 7.88 / 79.00 ± 8.77 75.33 ± 9.04 / 81.17 ± 10.63

Upslope 72.67 ± 8.89 / 91.67 ± 9.27d 75.75 ± 9.07 / 89.33 ± 10.56d 0.00d

Downslope 73.11 ± 6.64 / 79.67 ± 8.03 74.00 ± 7.77 / 79.83 ± 10.50

Baseline Hmax/Mmax 0.37 ± 0.06 0.40 ± 0.07 >0.05a

aEvaluated by means of independent t-test. bFugl-Meyer Assessment - Lower Extremity motor function (total = 34). cStatistically significant difference compared to level
walking, evaluated by paired t-test. dStatistically significant difference compared to pre walking, evaluated by paired t-test.
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FIGURE 1 | Representative data. (A) Ground reaction force data from a representative non-impaired leg (yellow), non-paretic leg (gray) and paretic leg (red), under
downslope (dotted), level (solid) and upslope (dashed) conditions. (B) Soleus maximal H-reflexes with control M waves from a representative non-impaired (yellow)
and a paretic leg (red) pre (solid) and post (dashed) walking under downslope, level and upslope conditions. (C) Representative recruitment curve from a
non-impaired leg and a paretic leg. Each data point represents a mean of 3 values.
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FIGURE 2 | Hmax/Mmax ratios (mean ± SE) (bar graph) with individual data superimposed for each (A) non-impaired (yellow) and (B) paretic (red) leg pre and post
walking under level (solid line), upslope (dashed) and downslope (dotted) conditions. Each data point represents a mean of 10 values.

3 limbs were significantly greater when walking downslope
(16.60 ± 7.65%BW) compared to level (9.85 ± 5.27%BW) and
upslope (4.54 ± 2.73%BW), and greater during level compared
to upslope conditions (p < 0.001) (Figure 4B).

DISCUSSION

The aim of this study was to examine the acute effects of
altered propulsive and braking GRFs, using upslope, level and
downslope walking, on H-reflex excitability in individuals with
chronic post-stroke hemiparesis. Our main findings were that
immediately following 20 min of walking, regardless of the slope
conditions, we observed reduced SOL H-reflex amplitudes in
non-impaired legs but not in paretic legs of individuals post-
stroke, supporting our hypothesis.

In non-impaired individuals, during downslope walking,
peak propulsive forces decreased while peak braking forces

increased significantly. In contrast, during upslope walking, peak
propulsive forces increased and peak braking forces decreased.
These observations are in line with data reported in the literature
(Lay et al., 2006), thus allowing us to investigate the effects
of altered magnitudes of anterior-posterior GRFs applied at
the feet on H-reflex adaptations. In individuals post-stroke,
we observed a similar pattern of change in both propulsive
and braking forces with respect to different slopes. However,
in terms of magnitude, we observed a smaller magnitude in
propulsive forces generated by non-paretic and paretic limbs,
compared to the non-impaired. This difference in magnitude
is more likely attributable to the difference in walking speed,
where the non-impaired participants walked at a faster self-
selected walking speed than individuals post-stroke, and less
likely attributable to the difference in age between the two groups.
Positive relationship between GRFs and walking speed has been
documented (Peterson et al., 2011). Previous study reported
similar magnitudes of GRFs during slope walking in older adults
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FIGURE 3 | Mean Hmax/Mmax ratios for non-impaired and paretic limbs
across all three walking conditions (level, upslope, and downslope) measured
prior to (Pre) and immediately after (Post) 20 min of walking. ∗ indicates a
significant difference from pre walking (p < 0.00).

compared to the relatively younger non-impaired individuals in
our study (Franz and Kram, 2013).

To minimize confounding effects associated with exercise
intensity and muscle fatigue, we monitored the heart rate
during walking to ensure that a submaximal intensity of exercise
was set for each condition. Both stroke-impaired and non-
impaired groups walked at slower walking speeds during upslope
versus level conditions. This was in accordance with previous
studies where walking speeds decrease with inclination of the
treadmill during the upslope condition (Kawamura et al., 1991;

TABLE 2 | Hmax/Mmax ratios for non-imapried limb and paretic limb for each
walking condition.

Limb Non-impaired n = 10 Paretic n = 12

Time Pre Post Pre Post

Level 0.37 ± 0.06 0.32 ± 0.05 0.40 ± 0.07 0.37 ± 0.06

Downslope 0.40 ± 0.06 0.31 ± 0.06 0.41 ± 0.06 0.41 ± 0.07

Upslope 0.39 ± 0.06 0.35 ± 0.08 0.32 ± 0.06 0.36 ± 0.07

Average 0.39 ± 0.06 0.33 ± 0.06∗ 0.38 ± 0.06 0.38 ± 0.06

∗Denotes statistically significant difference from pre walking conditions (p < 0.00).

Sun et al., 1996). Despite the greater heart rate following upslope
walking, the self-selected walking speeds were also slower than
level and downslope for both groups. This was in agreement
with previous literature reporting lower metabolic cost associated
with eccentric exercises (Minetti et al., 2002), in this case,
downslope walking.

In the non-impaired individuals, excitability of the Ia afferent
pathway, as assessed by the SOL Hmax/Mmax ratio was reduced
immediately after walking, regardless of slope type. This reduced
excitability of H-reflex pathway we observed immediately after
slope walking could be explained by the effects of post-activation
depression, which is when preceding increased activation of the
Ia afferents results in a transmitter depletion, thus resulting in
long-lasting depression of transmission across the motoneuron
synapse (Hultborn et al., 1996). Similar observations of short-
term reductions in H-reflex amplitudes have been previously
reported following single bouts of level (Thompson et al., 2006;
Sabatier et al., 2015) and downslope (Sabatier et al., 2015; Arnold
et al., 2017) treadmill walking, running (Bulbulian and Bowles,
1992), as well as other locomotor tasks, such as active and passive
cycling (Motl et al., 2003).

FIGURE 4 | (A) Peak propulsive force and (B) peak braking force during the stance phase of gait of the 3 legs (paretic limb, non-paretic limb, and non-impaired limb)
during downslope, level, and upslope walking. The error bars indicate the standard errors. ∗ Indicates a significant difference from downslope walking and † indicates
a significant difference from level walking (p < 0.00). Red, gray, and yellow symbols highlight the differences in the paretic, non-paretic, and non-impaired limbs,
respectively. Black symbols highlight the differences across all 3 limbs.
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In contrast, regardless of the slope condition, we did not
observe any changes in paretic SOL Hmax/Mmax following 20 min
of walking. Following non-postural loaded locomotor tasks such
as active pedaling, reduction in paretic SOL H-reflexes have been
observed after 30 min, compared to pre-pedaling conditions
(Tanuma et al., 2017). Impaired post-activation depression or
even facilitation, assessed as frequency related depression of the
SOL H-reflex, has been previously reported in individuals with
central nervous system lesions (Ishikawa et al., 1966; Schindler-
Ivens and Shields, 2000; Masakado et al., 2005; Chang et al.,
2013) as a result of neuromuscular adaptions. Prolonged robotic-
assisted gait training of 4 weeks has been shown to partially
restore the maladapted post-activation depression in individuals
post-stroke (Trompetto et al., 2013). Thus, the intensity of slope
walking in terms of duration or slope elevation, may not be
sufficient to induce adaptations.

While we observed a higher mean Hmax/Mmax ratio in
the paretic legs compared to non-impaired, it did not reach
statistical significance. Previously, conflicting results have been
reported in the stroke-impaired nervous system; while some
observed abnormally increased excitability (Thompson et al.,
2009) in the paretic limbs, compared to the non-impaired, others
reported no difference (Faist et al., 1994) due to the large
variability in type and site of lesions. Furthermore, contrasting
results also exist between different muscles examined (Aymard
et al., 2000). Increased excitability of spinal reflexes has been
associated with spasticity and hypertonia, and negatively impacts
motor function, activity performance and functional status in
neurologically impaired individuals (Pizzi et al., 2005; Zorowitz
et al., 2013). Participants with post-stroke hemiparesis recruited
in this study are skewed toward higher functional status, as
suggested by the high lower extremity F-M scores. Clinically,
restoration of increased H-reflex amplitudes can translate into
reduced spasticity and improvements in functional ability in
the neurologically impaired population (Manella and Field-
Fote, 2013; Manella et al., 2013; Thompson et al., 2013). Thus,
exploring paradigms that could induce this adaptation has
significant clinical impact.

In the current study, because upslope walking is a
metabolically challenging task for individuals post-stroke, in
our attempt to match the elevation angles between upslope and
downslope, we chose an incline/decline of 5 degrees, which
is a smaller elevation than ramps that individuals encounter
in the community. Future studies will examine incline/decline
magnitudes comparable to ramps commonly encountered in
the community on neural adaptations, as well as explore reflex
adaptations during the slope walking task in the stroke-impaired

nervous system. Additionally, walking speed was different in the
non-impaired versus the stroke-impaired group, thus resulting
in different magnitudes of GRFs in the 2 groups. Systematic
exploration of various walking speeds and/or incline/decline
angles would provide further insight.

CONCLUSION

Despite the similar pattern of change in GRFs with respect to
different slopes in both groups, we observed lack of acute slope-
induced H-reflex adaptations in individuals with chronic post-
stroke hemiparesis compared to non-neurologically impaired
individuals. These observations provide early evidence for
activity-dependent spinal plasticity in the non-impaired nervous
system, and that the stroke-impaired nervous system may require
repeated or prolonged exposures to reveal similar adaptations.
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