
Copyright IEEE. The final publication is available at IEEExplore via https://doi.org/10.1109/SERVICES.2019.00089.

1

Data Distribution and Exploitation in a Global
Microservice Artefact Observatory

Panagiotis Gkikopoulos1

Abstract—Cloud computing and specifically the microservice
architecture pattern is becoming an increasingly prominent
paradigm in computer science. Many modern cloud applications
are composed of a variety of different microservices, each poten-
tially built in different languages, using different technologies
and a different software artefact structure. What is needed
is the capability to monitor this rapidly expanding field and
leverage the data to enable further research and development of
microservice architectures. Drawing inspiration from the global
observatories used in geoscience and astronomy, the aim of this
research initiative is the establishment of a global observatory
for microservice artefacts, allowing the aggregation of data from
different hubs and the execution of dynamic analysis on them.

Index Terms—microservices, software artefacts, data science,
monitoring

I. MOTIVATION

Microservices are becoming a prevalent model for modern
software development as technology is headed more toward
cloud native systems. As is usually the case with new de-
velopments, new ways of implementing and exploiting the
technology are now being released at a rapid pace.

One area of particular interest are the emerging market-
places for microservice software artefacts. In this context the
term artefact entails any pre-made service or even set of
services made publicly available by its developer as a package
to be cloned and deployed through a marketplace.

More and more such packages are made available from
multiple vendors, with leading examples being Amazon’s
AWS, Kubernetes and Docker. However, as with any such new
trending technology, the early steps of development are usually
somewhat chaotic.

Types of ready made deployment blocks like these are
appearing fast and sometimes even failing before receiving
traction and even for established marketplaces quality control
is sometimes problematic or impossible.

There is currently little effort to systematically monitor
these hubs and marketplaces and their contents. However,
this endeavor is scaling up in requirements fast. Where there
used to be a handful of vendors and a few hundred artefacts
to check, there are now several thousand in many cases,
with Docker images being a prime example, with DockerHub
boasting ’over 100000 images’ [1].

For this reason the MAO informal consortium was en-
visioned, as a scientific community effort to monitor and

1P. Gkikopoulos is a research assistant and doctoral candidate at the Service
Prototyping Lab (blog.zhaw.ch/splab/) of the Zurich University of Applied
Sciences, Winterthur Switzerland under the supervision of Dr.-Ing. habil. Josef
Spillner pang@zhaw.ch

document these artefact marketplaces, to provide insight on
them through a combination of metadata checks, code quality
control and dynamic testing.

II. BACKGROUND

Cloud applications based on novel microservice architec-
tures are drawing ever closer to becoming the norm in many
sectors of modern software engineering. Microservices allow
for a complex application to be developed and operated in
a distributed way as well as increasing its resilience and
scalability. Additionally, teams can select the languages and
technologies to be used for each component service with more
freedom, afforded to them by the loosened coupling between
services. These services are loosely connected and typically
interact with each other within their specific architecture using
Representational State Transfer (REST) Application Program-
ming Interfaces (APIs) [2], message queues or the newer
service meshes. A completely separate team of developers
can work independently on individual component services
of a much larger application [3] and some of the resulting
software artefacts can be reusable and thus placed in a hub
or marketplace for other developers to adapt and integrate to
other projects. Hubs, such as Docker Hub [1], Kube Apps Hub
[4] and the AWS Serverless Application Repository [5], offer
a growing collection of available deployment-ready packages.
These repositories of microservice artefacts are still relatively
young, but already contain a wealth of data both in terms
of metadata and runtime characteristics. Some of this data
is versioned, but some can be lost through change, causing
an irreversible loss of valuable data on the evolution of
microservices.

The motivation of this doctorate is exploring mining and
exploitation techniques for taking advantage of this data, as
well as providing a medium for data distribution and storage,
that in unison would act as a catalyst for collaboration and
further research. The main inspiration of this endeavor are
existing global observatories in other fields. Such observatories
are the primary reference point for the entire field, with access
to the latest scientific developments at a glance, as well as a
wealth of documents and data. Such an observatory is needed
to preserve, study and further the rapidly expanding landscape
of mircoservice architecture.

III. STATE-OF-THE-ART

A. Related Work

Various works have delved into the monitoring, testing or
benchmarking of various aspects of microservices and the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/232207788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


application architectures they can be used in. Some approaches
focus on the metadata and logs generated by the microservices
[6], some others are built to benchmark specific architectures
[7], [8] or test dependencies and service to service interactions
[9] and others on runtime monitoring of microservice based
applications [10]. More recently, attempts are being made for
benchmarking architectural models based on microserivces to
study the implications of the design pattern on real world
applications. [11]. Work has been done to extract usable
metrics for developers [12] and corporate managers [13] from
the data obtained by monitoring these software artefacts. Effort
has also been made to set a standard set of requirements for the
orchestration of microservices [14]. From a slightly different
perspective, some surveys have been made to detect the trends
in microservice development [15].

B. MAO and Predecessors

What was missing from prior works is attempts at sys-
tematic monitoring of the microservice-related marketplaces,
from the data science perspective. Preceding this research is
an existing collaboration of researchers in an effort to develop
and operate research infrastructure to assess microservice arte-
facts, named the Microservice Artefact Observatory (MAO).
Researchers at the Service Prototyping Lab (SPLab) of the
Zurich University of Applied Sciences (ZHAW) have made
attempts to crawl through the Helm charts of the Kube Apps
Hub [16] and the Serverless Application Repository [17] for
QA and preservation purposes. The current output of this effort
includes static analysis software tools, as well as experimental
datasets [18], [19] in addition to the research paper preprint.
[20]

However, such a method of data crawling can never be made
truly effective, as there will be breaks in its execution and data
will inevitably be lost. Consequently, what would be needed
is a truly distributed and decentralized architecture, that would
allow the experiment to experience no downtime and grant it
fault tolerance.

Though such a task has not been undertaken before is
this sub-field, some examples of similar infrastructure are
already there. Distributed architecture examples can be seen in
Planetlab, BOINC, Cloudlab, the EGI Federated Cloud, GENI
or EOSC. The existence of Data Management Platforms and
the many Mining Software Repository papers show an insight
in the data mining aspect of this work, though in this case what
would be needed is a continuous stream of data. Experiments
in the field include industry benchmarks like YCSB as well
as others like CloudSim and DockerAnalyser.

IV. OBJECTIVES

A. Problem Statement

In the field of microservice development, there currently
exists no global point of reference and no formalized quality
standards. Moreover, from a research perspective, data on
microservice artefact evolution is continuously lost, as the
technology evolves and older versions of artefacts are being
replaced, often without the older versions being archived. In

contrast, many other fields have established observatory-like
portals, which serve both to provide insight and infrastructure
for current development, and to provide a historical archive,
allowing in-depth analysis of evolutionary data in the field.
In an effort to address this gap in improving, studying and
documenting the evolution of microservice artefacts and ar-
chitectures, the following goals and research topics are posed.

B. Goals

The goals in this research are outlined as follows:
1) The creation of a historical archive for the preservation

of data on microservices, for the purposes of data
science.

2) The setting of a reference point for microservice de-
velopment and by extension the creation of quality
standards.

3) The active improvement of microservice artefacts
through direct feedback to their developers.

4) Gaining an understanding of the metadata-runtime re-
lationship, in particular how quality characteristics are
affected by different architectural setups.

5) Contribution to a global observatory for microservice
artefacts.

C. Research Questions

The methodology of this research endeavor is structured
around the following research questions:

1) RQ1: How can data aggregation on microservice arte-
facts be efficient, relevant and extensible, to accommo-
date new developments?

a) RQ1.1: What kinds of data should be extracted
from the different types of microservice artefacts,
both statically and at runtime?

b) RQ1.2: How should data be formatted for easier
storage and querying across different ecosystems?

c) RQ1.3: How to accommodate the addition of new
sources in the form of new microservice ecosys-
tems and new or improved data crawlers?

2) RQ2: What developer engagement can be observed by
providing feedback generated through the analysis of
their artefacts?

a) RQ2.1: What kind of response is received by the
feedback generated with the developers contacted?

b) RQ2.2: Is the observatory serving one of its pri-
mary goals of presenting a quality standard and
through that, improving the average quality of
microservice artefacts over time?

3) RQ3: What insight can be obtained through the analysis
of the aggregated data?

a) RQ3.1: What can be learned about the current state
of microservice development?

b) RQ3.2: What can be learned from a historical
archive that follows the evolution of microservice
artefacts?



c) RQ3.3 Can knowledge about runtime characteris-
tics, such as security or performance, be inferred
from static (meta)datasets alone?

V. METHODS

The realization of this doctoral work involves both work
on the establishment of the proposed observatory, as well as
in-depth studying of available metrics and comparison data,
in the effort of extracting as much usable data as possible,
to create the most useful framework possible, both from an
archival and from a data analysis perspective.

A. Computer Science Component

The extension of current metadata analysis tools to collect as
much data as possible to monitor the evolution of microservice
artefacts the primary concern of this research. This entails
the collection and aggregation of multiple artefact types to
be processed and analyzed.

One very important part of the data collection aspect that is
really valuable is dynamic execution testing of the artefacts
collected. This will provide a significant amount of data
and information on microservice architectures that simply
examining their metadata will not.

B. Data Science Component

The analysis of the acquired data, to obtain views on meth-
ods and technologies employed in application development
using microservices and understand the trends and method-
ologies of modern cloud-first development with quantifiable,
comparable data. The subjects of this study are components,
applications, services, repositories, code and artefacts. The
extraction of useful and reliable information on microservices
for the purpose of both creating a historical archive of their
evolution and assisting in furthering the technology as a whole,
is the focus of the data analysis component of this proposal.

VI. CURRENT STATUS

The approach to answering the research questions is ’preser-
vation first, infrastructure later’, meaning even before a global
research infrastructure can be established, data collection and
tests already need to be performed to avoid the loss of critical
data on microservices.

A. Short Term Goal

The first stage of this research project was to extend the
capabilities of an already existing tool in the MAO informal
consortium, SAR Analysis. The SAR analysis tools aim to
monitor the AWS Serverless Application Respository and then
collect the software artefacts themselves to analyze the code.
The applications contained in the SAR are based on Amazon’s
Serverless Application Model (SAM) and combine Function
as a Service elements as well as Backend as a Service.

While the data collected by this tool is important, it lacked
the capability to run and test the applications to collect
dynamic runtime data. For this purpose, an extension is being
made, that performs dynamic testing of all artefacts collected
by the existing tool.

Fig. 1. Data collection pipeline

Metadata Analysis

Code checks

Dynamic Testing

Metadata
insights

Code
insights

Benchmarking and 
error reporting

Repository
information

Cloned
Applications

Repository

B. Tool Implementation

The new testing tool aims to be able to run and test as many
applications of the Serverless Application Repository as possi-
ble, and collect as much useful data as possible in the process.
The static code checking tools collect all repositories in the
SAR, and clone them in an easily machine-traversable manner
for the dynamic tool to access them. The dynamic execution
implementation is based on Amazon’s Serverless Application
Model (SAM) local testing suite. An SAM application is
defined in a template manifest, containing Lambda functions,
event triggers and other backend resources. The tools of the
SAM Local suite provide the capability to fire dummy events
that follow the data structure of events produced by real AWS
services, to trigger the functions in the application and test
them, providing basic benchmarking data.

What our new tool is doing, is attempting to test these
applications en masse, by parsing the template files to deter-
mine which test events to fire, and then invoking the serverless
applications themselves in the SAM Local environment.

VII. PRELIMINARY RESULTS

The first version of the SAM testing script was ran against
the code repository dataset from the SAR analysis tools. From
447 applications, 514 function invocations were made, out of
which 115 (22.37%) succeeded. The identified reasons for an
invocation failing can be seen in Table A.

As evident by the results, automating the process of testing
hundreds of applications is a non-trivial task. Some of the
failures can be addressed, for example code being compressed
or simulating backend components using a a solution such as
Localstack [21].

The most important next step beyond improving the suc-
cess rate of function invocations, is obtaining key metrics



TABLE I
SAM MASS-TESTING FIRST RESULTS

Success 115 22.4%
Unsupported code format 96 18.7%

Missing backend component 65 12.6%
Missing template 4 0.8%
Invalid template 3 0.6%
Other failures 231 44.9%

during execution. The SAM test scripts already output some
information like execution time and memory usage, but this
information needs to be parsed and analyzed to differentiate a
successful run (and thus usable data) from unsuccessful runs.

A. Next steps

As this doctoral work is part of a larger research effort,
it is important to report on the state of the current works.
Prior effort has as mentioned focused on static checks. This
is currently growing and effort is being made to extend the
checks to as many properties as possible, many in the form of
code checks and metadata validation.

Currently a significant amount of work is being done to
extend the checks to more marketplaces and more types of
artefacts, including Kubernetes Operators [22], and Cloud
Native Application Bundles [23]. The first steps attempting
to collect static data from metadata and configuration files
are already being taken, to be followed by code checks and
dynamic runtime testing and benchmarking.

VIII. FURTHER STUDY PLAN

The effort so far has been centered on analyzing as much
data as possible from the monitored artefact marketplaces.
Existing research into the metadata and code analysis of
microservice artefacts is now being expanded with dynamic
execution to obtain real test data. At this stage the testing ca-
pabilities are quite limited and current focus is on maximizing
the success rate of the automated testing, which has proved to
be a non-trivial task. Further iterations along this path will also
focus on the generation of key metrics, to accurately report on
the status and quality of the artefacts under examination.

Beyond the current effort on testing SAM artefacts, this
doctoral study will be expanded to the other types of artefacts
that are being monitored by the MAO informal consortium,
such as Kubertetes Helm Charts, Docker images and Compose
files, Operators and others.

We believe that preservation and study of these datasets will
provide key insights on the development of the microservice
architectures and the trends in their development and has
the potential to exact positive influence on the development
of microservice software through developer engagement and
feedback.

REFERENCES

[1] Docker Hub. https://hub.docker.com/. Accessed: 14.02.2019.

[2] Alberto Lluch Lafuente Manuel Mazzara Fabrizio Montesi Ruslan
Mustafin Larisa Safina Nicola Dragoni, Saverio Giallorenzo. Microser-
vices: yesterday, today, tomorrow. arXiv:1606.04036v4.

[3] Johannes Thones. Microservices. IEEE Software, 32(1):116, 2015.
[4] Kube Apps Hub. https://hub.kubeapps.com/. Accessed: 14.02.2019.
[5] AWS Serverless Application Repository.

https://aws.amazon.com/serverless/serverlessrepo/. Accessed:
14.02.2019.

[6] Stephen J. Fink Kerry Shih-Ping Chang. Visualizing Serverless Cloud
Application Logs for Program Understanding. 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC).

[7] Ioannis Papapanagiotou and Vinay Chella. NDBench: Benchmarking
Microservices at Scale. arXiv:1807:10792v1.

[8] Mazedur Rahman and Jerry Gao. A Reusable Automated Acceptance
Testing Architecture for Microservices in Behavior-Driven Develop-
ment. In 2015 IEEE Symposium on Service-Oriented System Engineer-
ing, SOSE 2015, San Francisco Bay, CA, USA, March 30 - April 3,
2015, pages 321–325, 2015.

[9] Yen Chuang Wen-Tin Lee Shin-Jie Lee Nien-Lin Hsueh Shang-Pin Ma,
Chen-Yuan Fan. Using Service Dependency Graph to Analyze and Test
Microservices. 2018 42nd IEEE International Conference on Computer
Software and Applications.

[10] Chadarat Phipathananunth and Panuchart Bunyakiati. Synthetic Runtime
Monitoring of Microservices Software Architecture. In 2018 IEEE 42nd
Annual Computer Software and Applications Conference, COMPSAC
2018, Tokyo, Japan, 23-27 July 2018, Volume 2, pages 448–453, 2018.

[11] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An open-source benchmark suite for microservices and their
hardware-software implications for cloud &#38; edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’19, pages 3–18, New York, NY, USA, 2019. ACM.

[12] Alberto Lluch Lafuente Manuel Mazzara-Fabrizio Montesi Rus-
lan Mustafin Larisa Safina Nicola Dragoni, Saverio Giallorenzo.
Sieve: Actionable Insights from Monitored Metrics in Microservices.
arXiv:1709:0667v1.

[13] Benjamin Mayer and Rainer Weinreich. A Dashboard for Microservice
Monitoring and Management. 2017 IEEE International Conference on
Software Architecture Workshops.

[14] Antonio Brogi, Andrea Canciani, Davide Neri, Luca Rinaldi, and
Jacopo Soldani. Towards a Reference Dataset of Microservice-Based
Applications. In Software Engineering and Formal Methods - SEFM
2017 Collocated Workshops: DataMod, FAACS, MSE, CoSim-CPS, and
FOCLASA, Trento, Italy, September 4-5, 2017, Revised Selected Papers,
pages 219–229, 2017.

[15] Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio Valente,
and Eduardo Figueiredo. Microservices in Practice: A Survey Study.
CoRR, abs/1808.04836, 2018.

[16] Josef Spillner. Quality Assessment and Improvement of Helm Charts
for Kubernetes-Based Cloud Applications. arXiv:1901.00644v1.

[17] Josef Spillner. Quantitative Analysis of Cloud Function Evolution in the
AWS Serverless Application Repository. arXiv:1905.04800.

[18] Josef Spillner. AWS-SAR Dataset.
https://github.com/serviceprototypinglab/aws-sar-dataset. Accessed
13.05.2019.

[19] Josef Spillner. Duplicate refuction in Helm Charts. https://osf.io/5gkxq/.
Accessed 13.05.2019.

[20] MAO-MAO: Microservice Artefact Observatory. https://mao-mao-
research.github.io/. Accessed: 14.02.2019.

[21] Localstack. https://github.com/localstack/localstack. Accessed
13.05.2019.

[22] OperatorHub. https://operatorhub.io/. Accessed 13.05.2019.
[23] CNAB: Cloud Native Application Bundles. https://cnab.io/. Accessed

13.05.2019.


