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Abstract. We investigate the problem of user-based redistribution for free-
floating bike sharing systems (BSS). We present a stochastic model of the bike 
dynamics and we show that the spatial distribution of bikes is correlated. This is 
specific to free-floating systems and it results in a substantially reduced service 
level.  

Offering incentives to users may stimulate them to change their behavior and 
usage pattern. We analyze drop-off incentives, derive an incentive methodology 
and study its potential. We show that by implementing a smart incentive sys-
tem, the number of bikes for establishing a specific service level can be reduced 
significantly, even if only a minority of users participates. Under realistic be-
havioral assumptions, 30-50% reduction of bikes is achievable, which converts 
into substantial costs savings for the operator.  

Our research was carried out in the context of the development of the new e-
bike sharing system “smide” in Zurich, launched in 2017. The incentive ap-
proach has been implemented and tested in a field test.  
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1 Introduction 

Free-floating bike sharing systems (BSS) are relatively new. In such systems, bikes 
can be dropped off at any location within a specified area. Bikes can be located and 
unlocked via smartphone. In recent years, free-floating BSS have been rapidly intro-
duced worldwide, for example by oBike (China) or LimeBike (USA), and it seems as 
if the future of BSS are free-floating systems. In Zurich, the first free-floating e-bike 
system has been launched in 2017 by the insurance company La Mobilière and is now 
being operated by the company smide (www.smide.ch).  

Free-floating systems avoid expensive docking stations and offer more flexibility. 
On the other hand, the redistribution of bikes from areas where they are dropped off 
to areas where they are needed is much more costly than for station-based systems, 
because the bikes are distributed over the complete area rather than concentrated at 
few stations. This is a particular critical issue since redistribution is typically the larg-
est cost factor of a BSS even for station-based BSS (see, e.g. [1]). In order to reduce 
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the redistribution costs, several authors have suggested to transfer at least a part of the 
redistribution task to the users, which is called user-based redistribution. Nearly all of 
the literature, however, is focused on station-based systems [e.g. 2-6], and to our 
knowledge nothing has been published on user-based redistribution for free-floating 
systems.   

In this paper, we study the problem of user-based redistribution for free-floating 
BSS. We study the dynamics of flee-floating systems, and we assess the potential of 
dynamical user incentivation for generating user-based redistribution. The presented 
results have been derived during the development of the smide system, where user-
based redistribution is a core element. Smide has been developed in a cooperation of 
the Zurich University of Applied Sciences and La Mobilière. The incentive approach 
has been tested in a field test in fall 2017, and is implemented in the current smide 
system.  

2 Free-floating BSS: Dynamics and user incentives 

2.1 Basic dynamical model of free-floating BSS 

For analyzing user incentivation in BSS, we study a quadratic area A of 3km x 3km, 
discretized in quadratic cells of width c. We chose c=100m, but a finer grid can be 
used. Locations are specified by indices (i,j). The number of bikes is denoted by N. 
Demand for bikes generally depends on both time and location. For this paper, we 
restrict ourselves to constant and homogenous demand, thus in each cell we have the 
same demand rate.  

If a demand occurs in cell (i,j), the user is willing to walk a certain distance to pick 
up an available bike. Empirical results show that the willingness to walk for picking 
up a bike is about 300-500 m [4]. We use a simple behavioral model assuming that all 
users are willing to walk a maximum distance of 2 cells in each direction. Thus, a user 
in cell (i,j) is willing to pick up a bike within the region U(i,j) consisting of all cells 
(i’,j’) with [ ]' 2, 2i i i∈ − + , and [ ]' 2, 2j j j∈ − + . The user picks the next available 
bike within U. A service violation occurs if U is empty.After the ride, the bike is 
dropped off in a random cell.  

The state of the system is given by the bike distribution n(i,j,t). Its is given by the 
following process: Demand occurs as a Poisson process in a random cell. If a bike in 
the environment is available, it is removed. The destination cell is chosen randomly 
and the bike is dropped off immediately. Incentives might change the drop-off loca-
tion. Similar to [4] and [5], we define the service level β as the probability that a de-
mand is met, i.e. that a bike is available within the walking distance.  

The studied dynamical system is balanced: pick-up rates and drop-off rates are 
equal in each cell. This is unrealistic, of course, but we chose this configuration be-
cause it allows to study the effect of user-based redistribution directly, without the 
need of explicitly modeling the operator’s redistribution activity. The modeled situa-
tion mimics a redistribution strategy where the operator focuses his redistribution 
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activity on counterbalancing macroscopic and systematic flows, but ignores the sto-
chastic fluctuations of the bike distribution.  

 

  

Fig. 1. Left: Service level as a function of number of bikes N with users walking to pick up a 
bike (blue solid line) vs. not walking (orange dotted line).  Right: Sample bike distributions for 

N=200 for walking users (top) vs. non-walking users (bottom). 

2.2 Service level and system dynamics of free-floating BSS without incentives 

As a reference case, we study a system without any user incentives by simulating 
the above specified process with 50000 demand events. The trip time has been set to 
zero for simplicity. In Fig. 1 (left), the service level is shown as a function of the 
number of bikes N. For N=100 bikes (11.1 bikes/km2), the service level is 82%, and it 
approaches 97% for N=400.  

Note that the spatial distribution of bikes shows a strong spatial correlation of 
neighboring cells: The probability of a cell being empty is higher if the neighboring 
cells are empty, and vice versa. A result is the appearance of large starved areas (Fig. 
1 right, top). This is caused by the following mechanism: Users within a starved area 
walk to the border of the area to pick up a bike. Thus, the demand for bikes just out-
side of a starved area is higher than on average, and a starved area tends to grow. In 
addition, if a bike is being dropped in the middle of a starved area, it collects all the 
demand of the neighboring cells, and is being picked up much faster than on average, 
making starved areas more persistent. Thus, the fact that users walk to pick up a bike 
creates a bike distribution that shows large empty areas combined with overpopulated 
areas elsewhere. In Fig. 1, right, bottom, the bike distribution is shown for the case 
where users would not be willing to walk. It can be seen that the distribution is much 
more regular, and there are much fewer areas where no bike can be found within U. 
The corresponding service level is much higher, (Fig. 1, left, orange dotted line). 
Thus, the pick-up walking of users has a significant impact on the service level by 
creating this spatial correlation. It is specific to free-floating BSS, and is not present 
in station-based BSS.  
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2.3 Incentive system: value function 

User incentives for improving the bike distribution may be offered in different ways: 
Users may be motivated to drop off bikes in starved areas, which leads to an immedi-
ate service level improvement, or to pick up bikes in overpopulated areas, hoping that 
the bike increases the service level at the drop-off location, or a combination of both 
(giving incentives for a specific trip). In this paper and as in [5], we only study drop-
off incentives, as they are the most direct way for improving service level.  

The goal of such an incentive system is an improvement of the service level by in-
fluencing where users drop off their bikes after usage. A dropped bike at location (i,j) 
has a positive impact on the service level if and only if it avoids a service failure in 
the future. The earlier the bike is needed, the more value is generated by the drop-off 
in terms of service level. Thus, we base our incentive approach on the time interval 
Z(i,j) until a bike dropped at (i,j) will actually be needed, i.e. the time until a service 
failure would occur if the bike was not dropped.  

Z(i,j) is a random variable and depends on the current bike distribution as well as 
the future demand and the dropping behavior. We define a value function v(i,j) as the 
reciprocal of the expectation value of Z(i,j): ( ) 1( , ) ( ( , ))v i j E Z i j −= . So, v(i,j) is a 
measure that directly reflects the impact of a drop at (i,j) on the service level. Maxim-
izing this value for each ride would lead to a minimization of service failures and, 
equivalently, to an improvement of the service level.  

The quantity E(Z(i,j)) is well defined. It could be determined by forward-
simulating the system starting from the current bike distribution until the next service 
failure occurs due to a demand event at (i',j’), where (i',j’) ϵ U(i,j). By averaging many 
simulation runs, the expectation value E(Z(i,j)) could be determined. This, however, 
is numerically cumbersome. In the following we derive a method of calculating an 
approximation of E(Z(i,j)).  

Let B(i',j’) the time to the next service failure created by a demand event in cell 
(i',j’) ϵ U(i,j). The time to the next service failure that could be avoided by dropping a 
bike at (i,j) is the minimum of all these B(i',j’). If the B(i',j’) were exponentially dis-
tributed random variables, then the minimum of a set of such variables would be the 
exponentially distributed, where the rate is a the sum of the rates of the B(i',j’). This 
motivates setting the value v(i,j) to  

 
( )( ', ') ( , )

1( , )
( ', ')i j U i j

v i j
E B i j∈

= ∑  (1) 

For calculating E(B(i’,j’)), we approximate the dynamics of the full system by re-
stricting the dynamical analysis to the environment U(i’,j’). Let n(t) be the number of 
bikes in this area, with n(0) the current number of bikes, calculated by summing up 
the current bike distribution in U(i’,j’). We assume that n(t) is a stochastic birth-death-
process with a birth rate λU and death rate µU, where λU is the aggregation of the de-
mand in U(i’,j’), and µU=β∙λU, where β is the service level. The expectation value of 
B(i’,j’) can then be calculated as a mean first passage time of an equivalent Markov 
model with absorbing state -1. In general, the transient probabilities can be calculated 
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by integrating the Komogorov forward equations. For the special case of constant 
rates, the expectation value can be calculated analytically [7] 

 ( ) ( )
(0) 1 (0) 1( ', ')

1U U U

n nE B i j
λ µ β λ

− −
= =

− −
 . (2) 

Inserting this in Eq. (1), the value v(i,j) of dropping off a bike at a specific location 
(i,j) can be calculated for each location.  

2.4  Incentive system: rewards for triggering behavioral changes 

The goal of each incentive system is to change the behavior of the users for im-
proving the service level. In this paper, our aim is not to analyze a specific incentive 
system, but to assess the potential of an incentive system based on the value function 
v(i,j) as defined in Section 2.3, in a most general way. We assume that the value map 
v(i,j) is mapped into a reward function r(i,j) where r is strictly monotonically increas-
ing with v, and the re ward function is communicated continuously to all users via 
their smart phone. This is in contrast to [4] and [5], where drop-off rewards are user-
specific and offered only after the true destination is known, which leads to complex 
implementation issues. Our approach offers a reward for each trip in advance, and the 
reward only depends on the dropping location. This leads to additional expenses, as 
rewards are also given if the user does not change her behavior. On the other hand, 
such a system may trigger additional rides to starved areas. Is shown in section 2.5, 
this contributes substantially to the improvement of the service level.  

There are still many degrees of freedom for concrete implementation, for example 
the type of the reward (e.g. monetary refund or free minutes for the next ride), its 
level, and how exactly the mapping between v and r is defined. For our analysis we 
only assume that users are offered more reward if v is higher, and that the reward is 
sufficiently high to influence the users’ behavior. Based on empirical findings in the 
field test of smide, we assume that offering a location-based drop-off incentive has 
two different behavioral effects: (a) Users may drop off their bike somewhere close 
to, but not directly at, their destination, if they can increase their reward by doing so. 
So, they would accept to take a short walk at the end of the trip for increasing their 
reward. (b) The offered rewards might trigger additional trips. For example, users 
may choose to use the BSS instead of public transport, just because they can earn a 
reward which can be used for future BSS trips.  

We assume furthermore that a user either ignores the offered reward altogether, or 
he changes his behavior such that his reward is maximized. For case (a), a user with 
destination (i,j) would drop the bike at the cell (i’,j’) ϵ U(i,j) where v is maximum. For 
case (b), the user would make a trip with a destination corresponding to the global 
maximum of v. Note that, in contrast to [4] and [5], we do not try to calculate explicit-
ly the optimum level of the reward. The percentage of users responding to the incen-
tive system is a model parameter which accounts for the dependence of behavioral 
change on the reward magnitude, averaged over all users. Optimizing the way of set-
ting the height of the rewards with methods like in [4,5] might reduce the costs of the 
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incentive system, but would not substantially change the overall effect of the incen-
tive, which is what we are focusing on in this paper. 

Using these behavioral assumptions, we are able to generate quantitative results 
about the potential of an incentive system based on the value function v, without the 
need to specify exactly how the value map is transferred into corresponding rewards.  

 
2.5 Simulation results 

We simulate the user behavior under the above described incentive scheme. Trips are 
generated as described in section 2.1. With a probability p1, the user is reacting to the 
incentive by dropping the bike in the environment U(i,j) around his destination (i,j), 
choosing the cell with the highest value. In addition, a proportion p2 of additional trips 
are generated. For example, p2=0.1 means that 10% additional trips are generated by 
offering the incentives, compared to not offering incentives at all. For these additional 
trips, we assume that the pick-up distribution is the same as before, but the drop-off 
location is the location with the highest reward within the whole area. This is motivat-
ed by our empirical findings with users of smide, indicating that additional trips are 
generated by high rewards only.   

In Fig. 2, the service level for different parameter values are shown. It can be seen 
that both mechanism of behavioral change lead to substantial increase of the service 
level, and for achieving a given service goal, the number of needed bikes can be 
strongly reduced. For a service level goal of 0.95, without user incentives, around 250 
bikes would be needed for the simulated area of 9 km2. It can be seen that, even with 
a modest reaction of users to the incentives, a reduction of bikes by 50% can be ob-
tained. For example, with 10% additional trips and a 30% user response for drop-off 
displacement of 300m, the number of bikes can be reduced by 50%.  

Of course this depends on the fraction of users that react to the incentives. Many 
parameters might influence this, such as level and type of incentive (e.g. free minutes 
vs. monetary reward), but also the service design and the user communication. In field 
tests of smide during fall 2017 in Zurich, we tested the response of the users to incen-
tives consisting of 5…15 free minutes for future rides, offered at specified locations. 
This generated about 10% additional trips, so p2=0.1 seems realistic.  

No empirical results are yet available for parameter p1. In Fig. 2, right side, a sensi-
tivity analysis with respect to p1 is shown, indicating the number of bikes necessary to 
achieve a service level of 95% as a function of p1, where p2 is set to 0. It can be seen 
that the effect of user participation is highly non-linear: Even a small part of the users 
can have a large impact on the system performance. In our case, a participation of 
20% already yields 50% of the effect. This supports earlier findings (see, e.g. [4]).  

The simulation results indicate that both behavioral effects as described in Section 
2.3 seem to have a similar efficiency, but their mechanisms differ: Effect (a) is effi-
cient because it reduces the spatial correlation. For this, even small changes of the 
dropping location are sufficient. Effect (b), on the other hand, leads to a large-scale 
redistribution of bikes. 
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Fig. 2. Left: Service level as function of number of bikes for different parameter values of p1 

and p2. For a service level goal of 95%, the number of necessary bikes can be reduced by 50% 
with even modest participation of users. Right: Sensitivity analysis for p1 (with p2=0) 

3 Discussion 

Our results suggest that user-based redistribution has a huge potential in free-floating 
BSS. Only considering drop-off incentives, we have shown that even with moderate 
participation of users, the number of necessary bikes to reach a specified service level 
can be substantially reduced. Since the total costs of BSS, to a large extent, are pro-
portional to the number of deployed bikes, this directly translates in huge savings. Of 
course, incentives also incur costs. However, in the smide field test it turned out that 
the savings were a factor 8 higher than the incentive costs.  

In this paper, we only showed results for constant and homogeneous demand and 
dropping patterns. However, the same approach was applied to time-varying and non-
homogeneous patterns with very similar results.  
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