

Influence of pH Change on the Phosphorus Cycle in Aquaponics

Florentina Gartmann, Zala Schmautz, Ranka Junge

Zurich University of Applied Sciences, Institute of Natural Resource Sciences

INTRODUCTION

In conventional fish farming, large amounts of phosphorus (P) are accumulating in the wastewater [1], which is becoming a big problem world-wide due to the potential for environmental pollution [2,3]. In aquaponics (Fig. 1), the combination of aquaculture (rearing fish) and hydroponics (the soil-less growing of plants), plants are using P for their growth but the P-cycle could be still optimized. It depends on the pH, in which form P is present in nutrient solution [4].

Figure 1: Picture collage of the experiment in "ZHAW Wädenswil aquaponic system, 2017"

METHODS

Three replicates of experimental aquaponic systems (4.5 m³ each) in the foliar greenhouse at Zurich University of Applied Sciences in Wädenswil, CH, were stocked with Nile tilapia (Oreochromis niloticus), planted with lettuce (Salanova® Batavia), and monitored from 22th September to 8th November 2017 (Fig. 2).

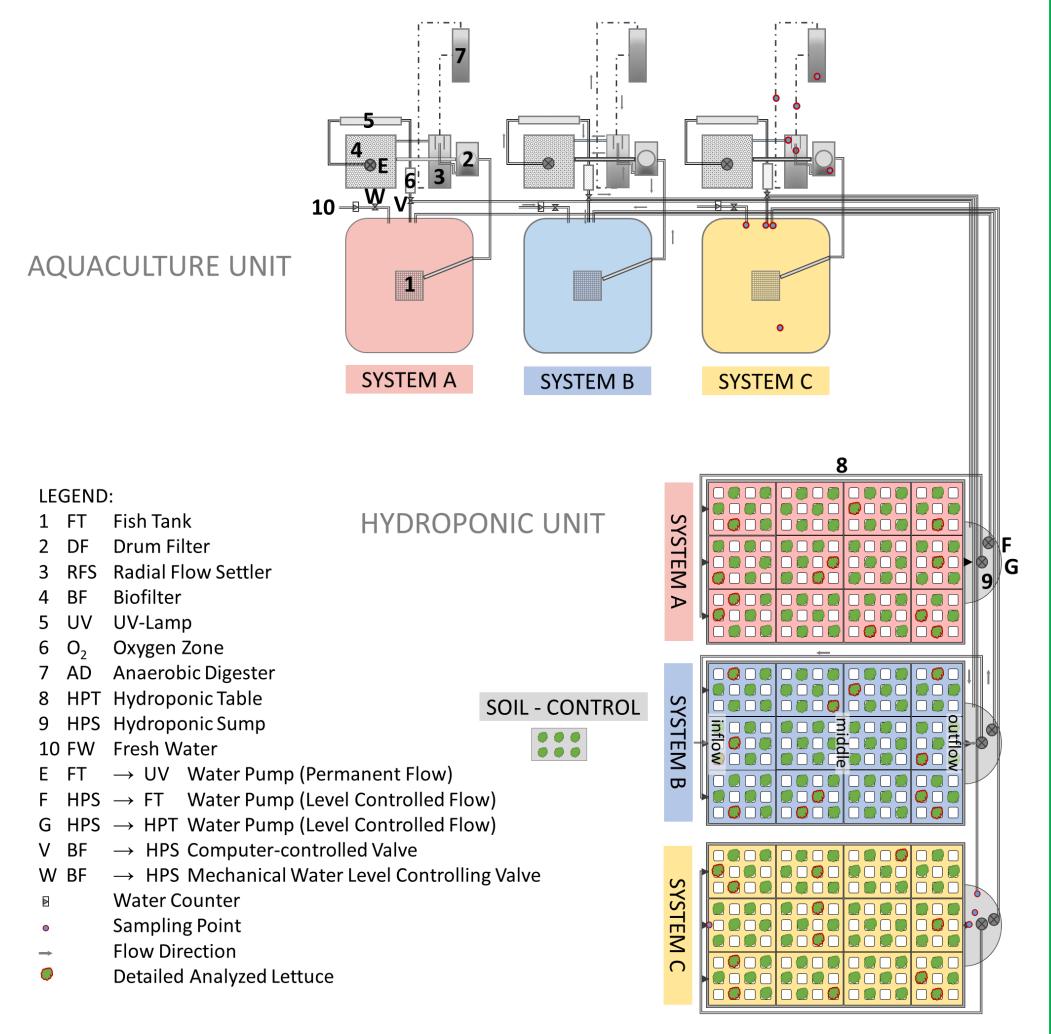


Figure 2: Detailed system set-up; "ZHAW Wädenswil aquaponic system, 2017"

In the first two weeks the pH was adjusted to 6.0 ± 0.15 by adding acid (HCl) and then for another two weeks to 7.3 ± 0.3 by adding bases (KOH and Ca(OH)₂). Ortho-P and total-P from 13 different sampling points in the aquaponic system (system water, sludge, and deposits) were analyzed and P mass balance calculated.

OBJECTIVES

The purpose of this thesis was to

- calculate P mass balance in order to optimize further P use in aquaponics and
- examine pH manipulation effect on P-cycle in the system (Fig. 3)

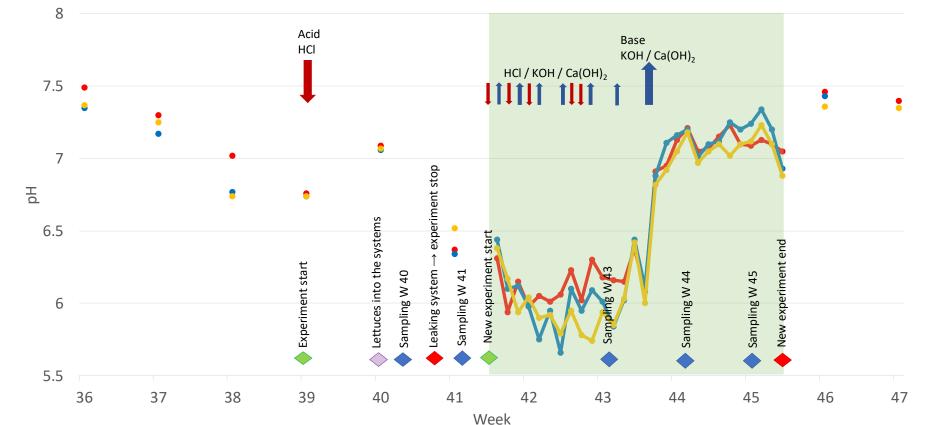


Figure 3: Timeline (week 36 - 47) with green shaded experiment period (week 41 - 45; 11th Oct - 8th Nov 2017) with marked interventions in the system and pH courses of the three replicates; system A, system B and system C in "ZHAW Wädenswil aquaponic system, 2017".

RESULTS

The P balance (Fig. 4) showed, that 41 % of the P inputs (by fish feed and tap fresh water) was absorbed by fish and 8 % by plants, the system water accumulation was 27 % and the P loss in form of deposits (biofilm on sump and fish tank surface and deposits on digester heater) in the system 24 %.

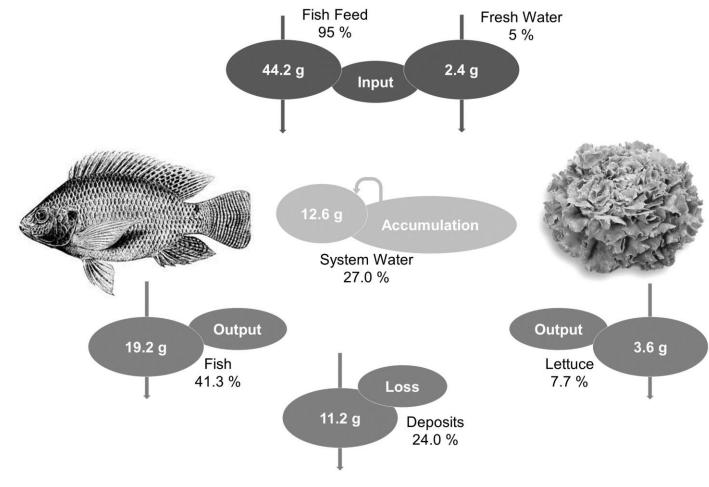


Figure 4: Phosphorus mass balance of the "ZHAW Wädenswil aquaponic system, 2017"

Around 90 % of total-P was present as ortho-P in the system water. Furthermore, the digested sludge contained more ortho-P (14 - 55 % of total-P) than fresh sludge (5 - 10 % of total-P).

DISCUSSION AND CONCLUSION

The ortho-P concentrations after the manipulations of pH in the aquaponic system water surprisingly increased with increasing pH. This is probably due to the complex dynamics between P and Ca. The established P mass balance identified and quantified several P pools, demonstrating that aquaponics systems can maximize overall P utilization if a digester is included into the loop.

LITERATURE

- [1] Wik, T. E. I., Lindén, B. T., & Wramner, P. I. (2009). Integrated dynamic aquaculture and wastewater treatment modelling for recirculating aquaculture systems. Aquaculture, 287(3-4), 361-370.
- [2] Chowdhury, M. A. K., Siddiqui, S., Hua, K., & Bureau, D. P. (2013). Bioenergetics-Based Factorial Model to Determine Feed Requirement and Waste Output of Tilapia Produced under Commercial Conditions. Aquaculture, 410–411, 138–147.
- [3] Rakocy, E. J., Bailey, D. S., Shultz, R. C., & Thoman, E. S. (2010). Update on Tilapia and Vegetable Production in the UVI Aquaponic System.
- [4] Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Update on phosphorus uptake phosphorus uptake by plants: From soil to cell. Molecular And General Genetics, 116(2), 447-453.