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Energy Efficient Spintronic Device for Neuromorphic Computation 

By Md Ali Azam, M. Sc. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in 

Mechanical and Nuclear Engineering at Virginia Commonwealth University. 

Virginia Commonwealth University, 2019. 

Major Director: Jayasimha Atulasimha, Ph.D. 

                           Professor, 

                           Department of Mechanical and Nuclear Engineering 

 

Future computing will require significant development in new computing device paradigms. This 

is motivated by CMOS devices reaching their technological limits, the need for non-Von Neumann 

architectures as well as the energy constraints of wearable technologies and embedded processors. 

The first device proposal, an energy-efficient voltage-controlled domain wall device for imple-

menting an artificial neuron and synapse is analyzed using micromagnetic modeling. By control-

ling the domain wall motion utilizing spin transfer or spin orbit torques in association with voltage 

generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-

Moriya interaction (DMI), different positions of the domain wall are realized in the free layer of a 

magnetic tunnel junction to program different synaptic weights. Additionally, an artificial neuron 

can be realized by combining this DW device with a CMOS buffer. The second neuromorphic 

device proposal is inspired by the brain. Membrane potential of many neurons oscillate in a sub-

threshold damped fashion and fire when excited by an input frequency that nearly equals their 

Eigen frequency. We investigate theoretical implementation of such “resonate-and-fire” neurons 

by utilizing the magnetization dynamics of a fixed magnetic skyrmion based free layer of a mag-

netic tunnel junction (MTJ). Voltage control of magnetic anisotropy or voltage generated strain 



ix 

results in expansion and shrinking of a skyrmion core that mimics the subthreshold oscillation.  

Finally, we show that such resonate and fire neurons have potential application in coupled nano-

magnetic oscillator based associative memory arrays.



1 

Chapter 1 

 Introduction 

 

1.1.  Nanomagnetic memory, computing and neuromorphic devices 

The increasing demand for computational needs is putting a constant strain on the current CMOS 

technology, which has been delivering the necessary improvements in performance for a long time. 

However, this is about to come to an end. One of the primary reasons for the saturation in perfor-

mance in CMOS technology is the ever-decreasing size of the transistor, which continued for a long 

time as Moore’s law of miniaturization [1] was holding good. However, transistor technology will 

soon reach its physical limits.  One of the primary concerns is the heat management of in electronic 

chips as size of the transistor continues to decrease further. Furthermore, as wearable technology 

and embedded processors becomes more ubiquitous, energy consumed in computation becomes a 

real challenge. Moreover, CMOS devices are very limited in their function as they are best suited 

to function as a binary switch. Thus, it is very difficult to apply it as a basic component in non Von 

Neumann computation with enough efficiency. Keeping all these restrains in mind, a possible so-

lution on the device level needs to have at least two basic characteristics. Either it should be able 

perform the same task as the CMOS transistor with smaller size and energy efficiency or it needs 

to have more functionality that can compensate for space and energy taken up by the device. The 

size of the devices is already restricted due to the physical limitations. That leaves us with the 

second option. Non-Boolean architectures with devices that are energy efficient and provide more 

functionality when compared to CMOS devices are a good fit.  



   2 

A key fundamental aspect that makes spintronic devices such a promising candidate for low energy 

usage is the coherent switching of electronic spin [2]. Due to the exchange coupling [3, 4] all spins 

in a single domain acts like one giant spin. Thus, in spintronics application where single domains 

are used, the number information carriers are lower due to the exchange coupling of magnetic spin. 

In a CMOS device, individual electrons act independently making the number of information carrier 

same as the number of electrons involved in the switching mechanism. The energy required for 

device operation goes down with the number of information carriers [5].    

The simplest conceivable spintronic device is a single domain nanomagnet. Just like the transistor, 

the nanomagnet can be used as a switch. But the scope of nanomagnetic devices can go beyond the 

switching. The orientation of the magnetic domain holds the key information when it acts like a 

switch, i.e. the information is “saved” even when power is switched off. Consider, an elliptical 

nanomagnet with in plane anisotropy. The magnetization direction will always lie along the longer 

axis of the ellipse. If we were to use this as a switch the energy consumption in question should 

arise from the mechanism that we are using to switch it from one orientation to the other. This 

reasoning applies to all sorts of spintronic devices as the magnetization direction is the key infor-

mation holder whether it is applied as a memory device or as a processing unit. All such schemes 

for manipulating the magnetization dynamics can be broadly divided into: Current controlled and 

voltage-controlled mechanisms. We focus on the current controlled mechanisms first and then the 

voltage-controlled mechanisms with each method briefly discussed as reported in Ref. [2]. 

Earliest attempts of manipulating magnetization in magnetic materials involve utilizing a magnetic 

field. Magnetic Field generated by induction method via current flowing through a coil can be con-

trolled very precisely with electronic circuits. This feature though made it a very popular candidate 
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for magnetic field generation on larger scales however is not well suited for nanoscale device ap-

plications due to the high energy requirements (i.e. the 𝐼2𝑅 loss in the coil). Other constrains include 

the limitation on focusing the magnetic field generated in the coil, bulky design and need of mech-

anism to move the coil over the required location of the device (else it would need as many coils as 

the number of individual magnets on the chip).  

 

Figure 1.1. Spin current generation and STT for nanomagnet switching in MTJ 

 

Switching a nanomagnet with spin-transfer-torque (STT) can be obtained by a spin-polarized cur-

rent injected into the magnetic material. This can eliminate the chance of effecting neighboring 

devices while switching any particular device as electrical isolation is very easily achievable even 

at nanoscales. The magnetization direction in the material will switch to the direction of the spin of 

the spin polarized current due to spin angular momentum transfer to the resident electron spins in 

the nanomagnet [6-11]. Spin polarized current can be generated in various ways. Most common is 

the Magnetic Tunnel Junction (MTJ) where the electron passes through hard layer first which has 

very high anisotropy separated from the free layer via a non-magnetic spacer as shown in Figure 

1.1. There is a minimum current required to switch the magnetization of the free layer which de-

pends primarily on the degree of polarization in the hard layer, energy barrier of the free layer 
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between desired magnetic states. This method though provides isolation but has poor performance 

in terms of energy as the study shows a minimum of 100 fJ [12] is achievable which is way more 

compared to the CMOS device we have discussed earlier. 

 

Figure 1.2. Switching of nanomagnet with STT via Giant Spin Hall Effect [2]     

Efforts to reduce the minimal current requirement in STT switching has led to the generation of 

spin polarized current via the Giant Spin Hall Effect (GSHE). The generation of Spin current via 

GSHE is graphically demonstrated in Figure 1.2. As the current passes through the heavy metal 

slab below, electrons go through spin-dependent scattering due to strong spin orbit interaction 

which leads to accumulation of spin of particular direction on top surface of the slab and opposite 

spins on the bottom surface. The spin direction depends on the current direction thus it can be 

manipulated by changing the current polarity. The accumulated spin diffuses through the magnetic 

layer providing torque for the desired switching. Other mechanism of producing spin torque in a 

ferromagnet is the Rashba–Edelstein effect in the ferromagnet [13,14]. In ferromagnet with Rashba 

spin–orbit interaction [15], passing the current can cause spin polarization in a particular direction 

and switch the magnet’s magnetization to that direction. Also, the spin–orbit interaction acts like 

an effective magnetic field [16] and that field will assist the switching of the magnetization by 

delivering a torque. Energy required to produce the desired switching in this method can be reduced 
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further as the spin current is not a direct product of the charge current. The ratio of the spin current 

to the charge current can be increased by modifying the geometry and material with desired spin 

characteristics [12,17]. Experiments has shown as little as 1.6 fJ of energy in switching via the 

GSHE in low loss magnetic materials like CoFeB. Further scaling down with required energy as 

low as 100 aJ is achievable [18]. 

 

 

Figure 1.3. Current flows along the surface of topological insulator, net velocity in the direction of current 

flow creates a spin-polarized surface. Circular nanomagnet spins are coupled to the surface spins 

 

Topological Insulators (TI) are a class of materials that act as insulators in the bulk but has con-

ducting states on the surface [19]. The origin of such properties is credited to non-trivial symmetry-

protected topological order [20, 21]. Topological insulators (TI) [19] can be used in generating spin 

accumulation. As the bulk of the material does not conduct thus requiring less current for generating 

similar effect when compared to GSHE in regular materials with large spin-orbit interaction. The 

interface between the TI and the nanomagnet contains two-dimensional spin electrons with Rashba 

Spin-orbit interaction [22]. The spin accumulation due to the GSHE and the Rashba spin-orbit in-

teractions are given by 〈𝑆𝑦〉|𝐺𝑆𝐻𝐸 =  − 
ħ

2𝑒𝑣𝐹
𝐽𝑥 and 〈𝑆𝑦〉|𝑅𝑎𝑠ℎ𝑏𝑎 =   

ħ𝑚∗𝛼𝑅

4𝑒𝐸𝐹
𝐽𝑥 respectively where ħ is 

reduced Planck’s constant, 𝐽𝑥 is the surface current density, e is the charge of electron, 𝑣𝐹 is the 
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Fermi velocity on the surface, 𝐸𝐹  is the Fermi energy , 𝑚∗ is the effective mass of the electron at 

the interface and 𝛼𝑅 is the Rashba constant. The total spin accumulation is the sum of these two 

terms. Exchange coupling forces the spin in the TI-nanomagnet interface to be parallel with each 

other. As a result, the spin current diffuses into the magnet (into the -z direction of Figure 1.3). One 

drawback for such scheme is that if the magnetic material is conductive it will shunt any surface 

current form TI-nanomagnet interface thus making the whole mechanism less effective. In order to 

have best efficiency it is therefore necessary to have an insulating nanomagnet on top of the TI [23]. 

 

Switching of nanomagnets with interface spin-orbit torques [24,25] have been reported. Rashba 

spin-orbit interaction arises in solids with structural inversion asymmetry. This produces a non-zero 

slope of the conduction band creating an effective electric field which gives rise to the spin-orbit 

interaction [15]. The spin accumulation produced by the Rashba effect can effectively switch mag-

nets with PMA in presence of an in-plane magnetic field. Structural inversion has been achieved in 

a scheme called vertical structural asymmetry by sandwiching the magnetic layer between materials 

of different composition [25]. Elimination of the need of in plane field for switching nanomagnets 

with PMA has been demonstrated via lateral structural asymmetry [26]. Magnetization switching 

using SOT via domain wall motion has also been successfully demonstrated [27, 28]      

 

One of the voltage-controlled energy efficient mechanisms used to manipulate the magnetization 

in a nanomagnet is “Straintronics”. This particular mechanism works with two phase (piezoelec-

tric/magnetostrictive) multiferroic nanomagnet. Such switching involves applying a strain on the 

nano-magnet via the piezoelectric substrate. Due to magnetostriction the anisotropy profile of the 
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magnet can be manipulated by changing the magnitude, direction and nature (tensile or compres-

sive) of the applied stress causing the switching or change in the magnetization direction of the 

magnet [29]. Such schemes have been demonstrated successfully with promising energy efficiency 

and possible application in making computational and memory devices [2, 30-32]. 

 

Voltage control of magnetic anisotropy (VCMA) is another energy efficient method of controlling 

the magnetization in nanomagnetic devices. When magnetic materials are interfaced with non-mag-

netic material the interface may become sensitive to electric field i.e. it may become magnetoelec-

tric (ME) [33-35] depending on the electrical properties (i.e. possible interaction of spin and orbital 

momentum) of the material. Specially in case of oxides such as MgO when interfaced with metallic 

ferromagnets exhibits large perpendicular magnetic anisotropy (PMA) [36-38] and a greater ME is 

observed. This effect has been attributed to spin dependent charge screening and electric field in-

duced modulation of the relative occupancy of the d-orbital at the interface [33-35,39]. Due to the 

interfacial nature of the origin of the ME effect only thin film metallic nanomagnets exhibit VCMA 

effects. The inherent energy efficiency is demonstrated in switching of MTJs [40-42] is largely due 

to the enhanced areal density and the high resistance of the MTJ due to the use of dielectric tunnel 

barrier.  

We have discussed some of the methods for manipulating the magnetization dynamics that are 

supported by significant works to be as effective as described. However, in our discussion so far, 

the primary focus was on the energy efficiency of spintronic devices. There are however other key 

advantages of spintronic devices over conventional CMOS transistors and pure electrical equiva-

lents. As the current computational trend is moving towards the non-Boolean realm devices with 

non-linearity as well as many stable states will become a suitable replacement for the 2-state CMOS 
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device. Neuromorphic computation which is gaining momentum now, due to its primitive nature 

relies more on analog nature of a device thus making it harder to implement such architecture at 

least on hardware with devices that can only provide discreet logic states. Artificial neural networks 

require modifiable nonlinear functionality for neurons as well as synapses with near analog nature 

to provide significant accuracy to be useful in real life applications.  It is however undeniable that 

the CMOS transistors will always remain the best choice for Boolean logic architecture as the 

spintronic devices can hardly be implemented without incorporating certain degree of error in 

switching [43, 44]. 

 

1.2. Neuromorphic Computing 

Neuromorphic computing as concept was developed in early eighties by Carver Mead when devel-

oping very-large-scale integration (VLSI) systems to implement neuro-biological architecture [45].  

In general, it refers to computer architecture that mimics biological brains to provide outstanding 

performance and efficiency in areas where traditional Von Neumann architecture is either too en-

ergy inefficient or does not provide the required functionality. The human brain, when compared 

to traditional CMOS based processors, has some clear advantages like energy efficiency and show-

ing great accuracy at certain tasks which do not involve repeated fast calculation to be performed 

accurately. Tasks like image and pattern recognition, language processing falls into this category. 

Physical devices on the other hand are free from various limitations that human brain is entailed 

with.  Fatigue, poor multi-tasking abilities, slower speed, bias and inconsistency are some of the 

limitations all biological brains have in common. By combining the fast acting, relentless and reli-

able workability of physical devices with the energy efficient and uniqueness of human brain, neu-

romorphic computation holds greater promises in overcoming many challenges faced by traditional 
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computational methods. However, it has been a major challenge to mimic the functionality of brain 

using physical devices. Among the various possible solutions, we briefly explore two very promis-

ing ones here namely Deep Neural Networks and Oscillator Neuromorphic Computing based on 

energy efficient voltage controlled spintronic/nanomagnetic devices. 

a. Deep Neural Networks: 

Deep neural networks are special classes of artificial neural network where the neurons are arranged 

on multiple layers. Each layer progressively extracts higher-level features from the raw input data 

provided. As the complexity of the data starts to buildup, it becomes more and more difficult to 

linearly separate the solution space as a result the general approach of problem-solving neural net-

works with few neurons and few layers start to fail. Due to the nature of the network it is required 

to have a tremendous number of synapses as well as neuronal functionality that supports the exact 

training algorithm that needs to be implemented. Implementing such a scheme on device level thus 

poses two fundamental challenge to begin with. One is the implementing the synapse with a certain 

degree of accuracy and the other is the finding a suitable way of implementing the neuronal func-

tionality. Recent efforts in developing dedicated CMOS neuromorphic processors [46] have been 

successful but cannot perform onboard (real-time) learning/training. Developing energy efficient 

multistate (preferably continuous and therefore analog) but non-volatile synapses would be a key 

enabler in realizing such real time learning for medical processors and sensor networks. In such 

applications energy efficiency is at a premium and synaptic weights of limited accuracy are enough 

[47]. We propose an analog non-volatile synapse using Domains Walls (DWs) clocked with Spin 

Orbit Torque (SOT) and arrested at specific points by voltage induced strain during the learning 

phase of a Deep Neural Network (DNN) [48]. This is discussed in Chapter 2.   
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b. Oscillator Neuromorphic Computing 

One of the reasons for human/biological brains to be so energy efficient other than the fact that 

the biological neurons are extremely efficient electrochemical components is that major portion 

of the neurons are spiking in nature. That means they only fire periodically and firing also depends 

on fulfilment of certain conditions created by the actual network (firing of other neurons and 

synaptic properties). A large portion of the brain therefore is basically a spiking network where 

the actual conduction time is much smaller when compared to a network where continuous signal 

flow is prerequisite to fulfill the information processing.  Other advantage of having such a system 

is that the information now can be decoded into many aspects of the firing pattern namely fre-

quency, phase, duration of firing, amplitude, inter-spike interval, modulation of frequency any so 

on. Spiking neural networks are artificial neural networks that are based on this fundamental na-

ture of biological neurons [49]. In that sense the spiking neural networks are the closest to the 

human brain in terms of working principal when compared to all other types of artificial neural 

networks. First biological model of spiking neuron was proposed by Alan Lloyd Hodgkin and 

Andrew Huxley in 1952 [50] for which they received the Nobel Prize in Physiology in 1963. The 

complex nature of biological neurons has led to many other models but for implementation of 

spiking neural network much simpler versions are enough as it would be unimaginably complex 

to find device equivalents of biological neurons.  In recent years several hardware implementa-

tions have been success fully done including Intel’s LOIHI [51] and IBM’s Truenorth [46] which 

shows the great potential this architecture holds for the future. In any case the challenge for the 

hardware implementation lies in choosing the encoding mechanism whether it’s frequency, phase, 

or the timing interval or any other aspect and finding the proper devices to implement the network. 
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Recent works on spintronic oscillators [52-54] shows great promises and we present our effort in 

implementing a resonate and fire spiking neuron using fixed magnetic skyrmion in chapter 3.   

 

1.3.  Outline of this dissertation 

The thesis is divided in two parts based on two published papers (one posted on arXiv [Chapter 2] 

and one published in the special issue on neuromorphic computing in the Journal of Applied Physics 

in 2018 [Chapter 3]).  

The first part focuses on our work on implementing domain wall device as an artificial neuron as 

well as a synapse. The current state of the art device level implementation of artificial neural net-

work still has some major hurdles to overcome in terms of energy efficiency and on-board/real-

time learning. In order to overcome these issues, we come up with energy efficient neurons as well 

as non-volatile synapses with the ability to be program weights in a deterministic manner. While 

artificial neurons and synapses have been proposed using current-controlled nanomagnets and 

memristors that are potentially more energy efficient than pure CMOS implementations, there is 

still room for increasing the energy efficiency. Therefore, we proposed and comprehensively model 

the Domain Wall (DW) dynamics in magnetostrictive CoFe nanowires that are clocked with current 

in conjunction with an anisotropy gradient. As the domain wall moves controllably due to the cur-

rent and anisotropy gradient, we ensure it gets arrested at discreet locations with the help of notches 

placed in the nanowire. This discreet positioning allows deterministic control of the weights of the 

synapse. We examine the magnetization dynamics of the chiral Néel domain walls in a thin nan-

owire of CoFe with PMA that is modulated by a voltage-induced strain. The CoFe experiences a 

Dzyaloshinskii-Moriya Interaction (DMI) that stabilizes chiral walls, which are translated by STT 
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or SOT to implement energy efficient non-volatile artificial synapses. We also describe the way 

this device, in combination with a CMOS buffer, can also function as a neuron and implement Deep 

Neural Networks (DNNs).  

The second part comprises of our work on implementing an artificial Resonate and Fire Neuron 

with Fixed Magnetic Skyrmions as the free layer of a Magnetic Tunnel Junction. Magnetic skyrmi-

ons have been studied as a potential candidate for memory application [55-57]. The primary moti-

vation in implementing skyrmions for making an artificial neuron was the inherent energy effi-

ciency in manipulating the magnetization dynamics with voltage and also similarity with some bi-

ological neurons. The dynamics of the magnetization of the skyrmion when subjected to a changing 

PMA mimics the behavior of biological neurons with subthreshold damped oscillation. As a result, 

voltage spikes can be used in the same manner as an action potential, which acts as an input for a 

biological neuron.  We propose to employ voltage control of magnetic anisotropy or voltage gen-

erated strain as an input (spike or sinusoidal) signal, which modulates the perpendicular magnetic 

anisotropy (PMA). We backup our claim by rigorous micro magnetic simulation performed using 

Mumax©.   
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Chapter 2 

Voltage control of domain walls in magnetic nanowires for energy ef-

ficient neuromorphic devices 

2.1. Introduction 

There has been considerable recent progress in the development of dedicated CMOS processors for 

neuromorphic computing such as IBM’s TrueNorth that can implement 1 million spiking neurons 

and 256 million configurable synapses [46] while consuming ~70mW power. However, these neu-

romorphic processors have drawbacks such as lack of onboard (real-time) learning/training. More 

importantly, they have poor energy efficiency in comparison to the human brain, which has ~ 100 

billion neurons and ~ 500 trillion synapses and consumes a mere ~ 20 watts of power [47]. Thus, a 

key challenge for hardware implementation of artificial neural networks lies in finding energy effi-

cient hardware implementations of neurons and non-volatile synapses whose weights can be 

changed easily and deterministically with very little energy as the network learns from data in real 

time. While artificial neurons and synapses have been proposed using current-controlled nanomag-

nets [48,58-62] and memristors [63-68] that are potentially more energy efficient than pure CMOS 

implementations, there is still room for increasing the energy efficiency.   

We propose implementing energy efficient artificial synapse using a magnetic tunnel junction 

(MTJ). The free layer of the MTJ comprises a magnetostrictive nanowire racetrack made of CoFe 

or CoFeB for example. Here we model the magnetization dynamics of the domain walls in the 

racetrack. The wall is driven through the racetrack clocked with current passing through the race-

track exerting a spin transfer torque (STT) [69-72], or by spin orbit torque (SOT) due to current 

flowing in a heavy metal layer directly underneath the racetrack [24,73-75]. The heavy metal layer 
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leads to a perpendicular magnetic anisotropy (PMA) in the CoFeB or CoFe layer, and a 

Dzyaloshinskii-Moriya interaction (DMI) which stabilizes chiral domain walls. In order to achieve 

controlled positioning of the DW we propose current clocked DW motion in conjunction with a 

gradient in the PMA [76,77]. Notches are placed at regular intervals to arrest the DW at different 

locations of the racetrack. For the SOT-clocked DW motion [27,28,75,78] instead of using a 

notched race track and PMA gradient, a racetrack of uniform width is used along with modulation 

of the PMA at regular intervals. This modulation (PMA reduction) creates a barrier to the motion 

of the DW, arresting the DW at different locations depending on the voltage applied. We also de-

scribe the manner in which this device, in combination with a CMOS buffer, can also function as a 

neuron and implement Deep Neural Networks (DNNs). Such an implementation is important in 

applications where energy efficiency is at a premium, such as medical processors and sensor net-

works that need to learn from data in real time rather than be trained offline, and where synaptic 

weights of limited accuracy are sufficient [79].  

Section 2.2 describes the working principle of the device and our micromagnetic modeling ap-

proach. Section 2.3 presents and discusses simulation of the DW dynamics in the presence of PMA 

gradients and STT/SOT while Section 2.4 compares the energy efficiency of this approach with 

other spintronic and memristor approaches.    

 

 

2.2. Device working principle and micromagnetic modeling approach 

The working principle of the device (Figure 2.1) is explained in terms of the DW dynamics within 

the magnetic free layer of a magnetic tunnel junction (MTJ). The resistance of the MTJ, which 
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consists of a free layer, a tunnel junction and a fixed layer pinned by a synthetic antiferromagnet 

(SAF), varies with the location of the DW in the free layer. Therefore, the DW position determines 

the non-volatile resistance states of the spintronic synapse and can be programed by a voltage, as 

described below. As the Deep Neural Network (DNN) learns from data in real time, a backpropa-

gation algorithm [80] implemented on a CMOS application-specific co-processor can calculate the 

new weights for different synapses and output these as specific programming voltages (not ad-

dressed in this paper). These voltages should be able to reprogram the resistance states of the syn-

apses to update their resistance values, as described in this work. 

 

Clocking: Consider a perpendicular magnetic anisotropy racetrack consisting of a heavy metal/fer-

romagnet bilayer that could be deposited a piezoelectric film to realize our proposed device as 

shown in Figure 2.1. Such a bilayer (e.g. Pt/CoFe) derives its PMA from interfacial effects and 

exhibits significant DMI that stabilizes the formation of chiral Néel domain walls [75].  

 

SOT clock: SOT acting on the magnetization is generated when current flows in the heavy metal 

layer. The damping like field (DL-field) thus produced is responsible for translating the Néel do-

main wall in the ferromagnetic layer [75]. Reversing the direction of the current in the Pt layer 

reverses the direction of domain wall motion, resets the domain wall position, and hence resets the 

resistance of the DW MTJ device.  
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STT clock: Alternatively, for current clocking by spin transfer torque, electrons passing through 

the domain wall are preferentially polarized along the magnetization orientation of the region 

through which they pass and exert a torque on the magnetization of the subsequent region they enter 

[69-72]. This causes the spins within the wall to rotate thus initiating a domain wall motion in the 

direction of the electron flow.   

 

SOT vs. STT clock: When CoFe is used with a heavy metal (Pt) underlayer that leads to PMA and 

DMI, the ratio of the current flowing through the CoFe that leads to STT and to the current flowing 

through the Pt that leads to SOT depends inversely on the ratio of their resistances. Rather than 

consider the case of mixed STT and SOT, we consider the two extreme cases: pure SOT and pure 

STT in our simulations to understand the domain wall motion with these two clocking mechanisms. We 

Figure 2.1.  Schematic of the spintronic DW-synapse. (a) Top view showing a magnetic tunnel junction 

(MTJ) stack placed adjacent to an electrode on a piezoelectric substrate. The inset shows the PMA as a 

function of distance along the free layer when a voltage is applied to the strain electrode. (b) Front view 

of the stack (top panel). In the bottom panel, which shows just the heavy metal/free layer, the electrons 

on the top surface of the Pt are spin polarized into the plane of the figure and electrons at the bottom are 

spin polarized out of the plane of the figure due to the spin Hall effect.  

 

9.  
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also study the manner in which the DW can be arrested in a specific region of the racetrack by applying a 

voltage-induced strain under these two different clocking mechanisms.  

 

Voltage control of domain wall position: Stopping the domain wall at a specific position along 

the racetrack is accomplished by applying a voltage to the side electrode (Figure 2.1(a)) while the 

DW is being “clocked” by SOT or STT. Consider a domain wall that has been “reset” to one end 

of the racetrack and is moved along the racetrack towards the other end in Figure 2.1 (a) by SOT 

from a current in the adjacent Pt layer or by STT from a charge current through the free layer. 

Application of a voltage between the side electrode and the bottom contact of the piezoelectric layer 

produces an electric field through the piezoelectric thickness, which in turn produces an in-plane 

stress in the manner described in Ref [30]. This leads to a local strain gradient in the piezoelectric, 

which is transferred to the ferromagnetic layer, altering its PMA as shown in Figure 2.1(a). A mod-

ified scheme as shown in Figure 2.4 can also be used as discussed later.  

The mechanism of generation of the strain gradient is explained in detail in Figure 2.2. When a 

voltage is applied to the top electrode, a local electric field is generated through the thickness of the 

piezoelectric between the area directly underneath the top electrode area and the bottom electrode. 

This causes an out of plane expansion of the piezoelectric and consequently an in-plane contraction 

(due to Poisson’s ratio) of the area below the top electrode. This produces a tensile in-plane strain 

in the region of the piezoelectric immediately adjoining the electrode, with a magnitude decreasing 

with distance away from the electrode. This creates a strain gradient as shown in Figure 2.2, upper 

schematic.  While a similar strain gradient is created in the in-plane direction orthogonal to that 

shown in the figure, we are only concerned with the strain gradient along the DW MTJ device. 

Furthermore, if the piezoelectric is deposited on a stiff substrate, the bottom of the piezoelectric is 

clamped but the top part of the piezoelectric can experience the in-plane strain gradient.  
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Figure 2.2. A schematic showing the strain gradient produced on the DW MTJ when a voltage is applied 

to the top strain electrode. The in-plane tensile strain decreases from the right end of the DW MTJ to the 

left producing a PMA gradient.  

 

The benefit of this scheme is that the piezoelectric film develops a strain gradient even though it is 

not patterned provided the in-plane dimension of the electrode is approximately equal to the thick-

ness of the film [30]. The strain gradient will be most significant within a distance of one to two 

times the piezoelectric film thickness [30]. This in-plane strain in turn modulates the perpendicular 

anisotropy of the soft layer and provides a spatial variation of the energy landscape of the Néel DW 

in the racetrack. 

 

Thus, the device relies on stress generated by the electrode to arrest the SOT/STT-induced motion 

of the DW, leaving the DW pinned at a notch or a specific location where there is a PMA barrier 

(Figure 2.4, discussed later). The strain and therefore modulation of PMA is largest at the left end, 

and minimum at the right end (Figure 2.2). This PMA gradient in conjunction with the torque on 

the DW and notches patterned in the wire determines the position where the DW is arrested.  

 

Micromagnetic model: Mumax [81] was used to perform simulations of the domain wall dynamics 

using the Landau-Lifshitz-Gilbert (LLG) equation in the presence of thermal noise at room temper-

ature. The time rate of change of magnetization in a volume element of the magnetic material is 

given by:  
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𝜕�⃗⃗⃗� 

𝜕𝑡
= 𝜏 = (

𝛾

1+𝛼2) (−�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓 + 𝛼 (�⃗⃗� × (�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓)))                                                      (2.1) 

where �⃗⃗�  is the reduced magnetization (�⃗⃗� /Msat), Msat is the saturation magnetization, γ is the gyro-

magnetic ratio and α is the Gilbert damping coefficient. The quantity Heff is the effective magnetic 

field, which is given by:  

 �⃗⃗� 𝑒𝑓𝑓  =  �⃗⃗� 𝑑𝑒𝑚𝑎𝑔 + �⃗⃗� 𝑒𝑥ℎ𝑎𝑛𝑔𝑒 + �⃗⃗� 𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 + �⃗⃗� 𝑡ℎ𝑒𝑟𝑚𝑎𝑙                                                             (2.2) 

Here, Hdemag is the demagnetizing field produced by all the other volume elements of the magnetic 

material, and Hexchange is the effective field due to Heisenberg exchange coupling and DMI [82, 

83]. The DMI contribution to the effective exchange field is given by: 

𝐻𝐷𝑀 =
2𝐷

𝜇0𝑀𝑠
[(�⃗� . �⃗⃗� )�̂� − �⃗� 𝑚𝑧]                                                                                                          (2.3) 

where 𝑚𝑧 is the z-component of magnetization and D is the effective DMI constant. The effective 

field due to the perpendicular anisotropy is: 

�⃗⃗� 𝑎𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 = 
2𝐾𝑢1

µ0𝑀𝑠𝑎𝑡
(�⃗� . �⃗⃗� )�⃗� +

4𝐾𝑢2

µ0𝑀𝑠𝑎𝑡
(�⃗� . �⃗⃗� )3�⃗�                                               (2.4) 

where, 𝐾𝑢1 and 𝐾𝑢2 are first and second order uniaxial anisotropy constants respectively and �⃗�  is 

the unit vector in the out-of-plane direction. Strain effectively modulates the anisotropy energy and 

is incorporated by modulating 𝐾𝑢1 according to Eq. (2.2). We assume 𝐾𝑢2 = 0, as we are not deal-

ing with textured or single crystal materials [84]. 

Thermal noise is modeled by a random, effective magnetic field (Hthermal) applied in the manner 

described in [85, 86] within the micromagnetic framework [81]. Furthermore, the field-like and 

damping-like SOTs and the STT due to charge current are modeled with the appropriate terms [9, 

81] assuming polarization=1, Slonczewski parameter Λ=1 and secondary spin-torque parameter 

έ=0. In our simulations, we do not consider STT and SOT at the same time. Instead, we present two 
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cases: one in which only STT is considered and the other in which only SOT is considered.  This 

leads to an understanding of the clocking of DW motion and its arrest at a specific position using 

voltage induced strain for these two different clocking mechanisms. 

 The discretization cell sizes used for the simulations were 4nm×4nm×1nm and the material param-

eters used for CoFe (soft layer) of the Pt/CoFe/MgO heterostructure is summarized in Table 2.1. 

CoFe has sufficient magnetostriction to produce a PMA gradient that can arrest the DW at specific 

positions in the model.  While Gilbert damping is ~0.01 to 0.03 in these materials, we used a higher 

value (0.1) so the DW exhibits more stable dynamics. In practice, defects and edge roughness are 

likely to impede the DW giving dynamics characteristic of the higher damping.  

 

Table 2.1. Material parameters used for the CoFe soft layer in the Pt/CoFe/MgO heterostructure as com-

piled from previously published works [9,76, 87-89]. A higher value of Gilbert damping is chosen for the 

simulation. 

 

 

 

 

 

 

 

 

 

2.3. Discussion of modeling results  

We discuss the modeling results for nanowires of length 1000 nm and width 100 nm patterned with 

five notches as shown in Figure 2.3. A gradient in PMA caused by the strain gradient drives the 

DW towards the lower PMA region in order to reduce the DW energy, i.e. motion is induced in the 

direction of the negative PMA gradient. We consider the case where the PMA gradient and STT 

Parameters used in simulation Value 

Saturation Magnetization (𝑀𝑠𝑎𝑡) 1× 10
6
  Am

-1
 

Exchange Constant (𝐴𝑒𝑥) 2× 10
-11

  Jm
-1

 

Perpendicular Anisotropy Constant (𝐾𝑢1) 7.5×10
5
 Jm

-3
 

Gilbert Damping (α) 0.1 

DMI Constant (D) 0.001 Jm
-2

 

Saturation Magnetostriction (𝜆𝑠) 250 p.p.m 
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from the charge current drive the DW in the same direction, and then we perform simulation in the 

presence of thermal noise to understand if these DWs can be arrested deterministically at room 

temperature at specific notches.  We subsequently perform another SOT-driven simulation in which 

the DW is arrested in regions of varying PMA produced by an alternative electrode design (Figure 

2.4) and no notches are used.   

 

a. PMA gradient assists STT driven DW motion 

In a MTJ racetrack with CoFe soft layer, the DW motion was assumed to be initiated by STT as-

sisted by a PMA gradient (without including the effect of thermal noise). Given that the current 

pulse acts as the clocking signal, the ON time for current is fixed at 6 ns. This is considered the 

“write time” for reprogramming the synaptic weight and, based on the analysis of the DW motion 

at different currents and PMA gradients, it is sufficient to translate the DW to any possible location 

within this STT clocked device.  

Table 2.2 shows the PMA gradients required to drive the DW from notch 1 to any of the other 

notches in Figure 2.3, if the current density of the clock is kept constant at 8.7 𝑥 1012 𝐴 𝑚−2, which 

is just below the critical current needed to de-pin and initiate the DW motion. For a CoFe layer of 

1 nm thickness and width 100 nm this corresponds to a current of ~1 mA (we do not consider any 

current through the Pt layer and do not consider SOT for this case). We do not account for increase 

in current density at the notches in this simulation. Furthermore, from the point of view of program-

ming the synapse, the voltage required to achieve a certain DW position need not be a linear func-

tion of position, as this is envisaged to be a pre-calculated analog voltage that is output by the co-

processor that implements the learning algorithm. 
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Table 2.2. PMA profile for achieving different positions of the DW. The DW starts at the 1st notch. The sec-

ond column gives the change in PMA over the entire length of the device required to stop the DW at differ-

ent notches. The third column shows the gradient in PMA for a 1 µm long device. 

Final Position of the DW Required ∆PMA 

( Jm−3) over device length 

PMA gradient that 

assists current (Jm−3/𝑛𝑚) 

2nd Notch 0.2 × 104 2.00 

3rd Notch 1.6 × 104 16.00 

4th Notch 3 × 104 30.00 

5th Notch 3.7 × 104 37.00 

 

These results show that at this current density, the current alone cannot drive the DW out of the first 

notch, but a combination of the current and PMA gradient can. The PMA gradient reduces the 

current density required to initiate and sustain the DW motion along the racetrack when compared 

to the case of current only. The DW motion is retarded as it moves into the region of lower PMA, 

helping to arrest the DW at the notches. The synergistic effects of PMA gradient and current lead 

to a lower energy operation. Finally, we confirm through simulation (Figure 2.3) that each of the 

different positions of the DW is achievable deterministically, because at a certain PMA gradient 

the combined strength of the current and PMA gradient is sufficient to move the DW to the desired 

notch during the current ON period. Therefore, for different strengths of the PMA gradient, the DW 

travels different distances even though the application time of the current and PMA gradient is kept 

constant. 

Thermal noise effect at room temperature and scaling issues: The simulations were repeated in 

the presence of thermal noise at 300 K. With thermal noise, the minimum current required to initiate 

the motion of the DW has a lower value when compared to the zero thermal noise case. Moreover, 

there is a reduction in the effectiveness of the notch in arresting the motion of the DW in presence 

of thermal noise. Thus, a slight reduction of current is also required to regain the effectiveness of 
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the notches while keeping it high enough so that DW motion can be initiated. This determined our 

choice of a current density of   8.4  1012 𝐴 𝑚−2 to explore the effect of thermal noise in arresting 

the DW motion at notch 3 with a PMA gradient of 10 Jm−3/𝑛𝑚. This value of the PMA gradient 

is chosen between the PMA gradient required for arresting the DW at the 2nd notch (2 Jm−3/𝑛𝑚) 

and the 3rd notch (16 Jm−3/𝑛𝑚).  The probability distribution of the final position of the DW is 

shown in Figure 2.3(b). The DW was most likely to be found in notches 3 or 4, but there was a 

significant probability of its being in notches 2 or 5.  

This can be attributed to the relatively small change in energy due to PMA modulation through 

strain compared to that of thermal energy (kbT= 4.14×10-21 J). To illustrate the energy scales, con-

sidering a 10 Jm−3/𝑛𝑚 PMA gradient (i.e. a total PMA modulation of 10 kJm-3 over the length of 

1 µm nanowire), this energy change, ∆E= (∆PMA/L) × notch spacing × Volume = (10 Jm-3/nm) × 

167 nm ×16700 nm3=26×10-21 J≈ ~6.5 kbT. Here (∆PMA/L) is the PMA gradient (∆ PMA over 1 

micron length), the volume corresponds to the volume of free layer between two notches, kb is the 

Boltzmann constant and T is room temperature in Kelvin. This shows that the change in PMA is 

modest and hence the PMA gradient does not have deterministic control in positioning the DW in 

the presence of thermal noise. To circumvent this issue, a higher PMA gradient could be used, 

though this would require a greater strain gradient, or a greater thickness free layer could be used 

with its PMA derived from bulk effects (e.g. magnetoelastic) instead of interfacial anisotropy.  This 

analysis has not considered edge roughness [90], which can provide additional pinning sites and 

even remove the need for lithographic patterning of notches. 
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Figure 2.3 (a) Micromagnetic model showing the final DW positions in the free layer of the MTJ along 

with the PMA gradients applied for a synergistic PMA gradient and current driven operation of the synap-

tic weight adjustment. A clear monotonically increasing PMA gradient profile is required to translate the 

DW from notch ① to notch ②, ③, ④ or ⑤. Both current and DW motion are left to right. NOTE: Sup-

plementary Video 1 a, b, c and d shows a movie of the DW dynamics for each of the above PMA gradients. 

(b) Stochastic behaviour of the DW position due to thermal noise depicted by the widely dispersed distri-

bution of the final DW position.  The strain profiles and PMA variations are idealized assumptions and not 

calculated with detailed finite element analysis.  They are estimated based on [30] and scaling arguments 

discussed later in section 2.4. 

 

b. SOT-driven DW motion with pinning of the DW achieved by spatial PMA mod-

ulation  

We also simulated DW motion clocked by SOT without including the effect of thermal noise in an 

MTJ racetrack with CoFe soft layer and no notches. Here we assume no current flows in the CoFe 

layer and hence there is no STT. We found that discrete PMA variation as shown in Figure 2.4 was 

more suitable to control DW in this case with SOT , instead of using notches and a uniform PMA 

gradient as in the previous case with STT. The electrode arrangement shown in Figure 2.4 alters 

the PMA at specific regions of the racetrack between the electrodes enabling creation of regions of 
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 different PMA. Moreover, due to the different spacing between the pairs of electrodes, the one with 

smaller gap will create a larger decrease in PMA due to higher stress. However, the PMA profiles 

in Figure 2.4(b) are ideal representation of the actual PMA profile based on scaling arguments 

presented in section 2.4 and prior work [30]. Determination of the real stress and PMA profile with 

detailed finite element analysis is beyond the scope of this paper. 

The SOT clock was simulated with a current density Jc ~ 0.7×1011 Am-2 through the Pt layer of 

length 1000 nm, width 100 nm and thickness 1 nm for a clocking period of 20 ns. For lower voltage 

applied to the strain electrode the PMA reduction is small at the left end. Therefore, the DW expe-

riences smaller barriers and can be translated further to the right. With increasing voltage, barriers 

at the left increase, thus arresting the DW closer to the left end as shown in Figure 2.4(b). The 

Figure 2.4.  Schematic of the spintronic DW-synapse. (a) Top view showing a magnetic tunnel junction (MTJ) 

stack placed adjacent to the electrodes on a piezoelectric substrate for SOT driven DW with PMA modulation at 

regular intervals due to voltage applied to the piezoelectric locally by the electrodes. (b) Different position of the 

DWs achieved shown in the bottom figure by different PMA profiles created as shown in the upper panel. Initial 

position of the DW was 180 nm from left (not shown here). The strain profiles and PMA variations are assump-

tions that were estimated based on [30] and scaling arguments discussed in section 2.4. 
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geometric arrangement of the electrodes will ensure that the PMA decrease due to adjacent elec-

trodes varies in a linear fashion. In this case, the ratio between the maximum and minimum PMA 

change between right most and left most electrode position is kept at 3. This will ensure by only 

varying the voltage the DW can be arrested at all electrode location without requiring a very large 

stress to be applied to the piezoelectric. The maximum PMA change for each case of the DW posi-

tion is shown in Table 2.3.  The DW would eventually drift to the center of the racetrack to minimize 

magnetostatic energy once the applied voltage is removed. However, with realistic edge roughness 

the DW is pinned [90] and hence implements a non-volatile synapse. 

Table 2.3. PMA profile for arresting the DW at different electrode position with SOT clocking, showing 

the PMA decrease at the rightmost electrode. The decrease in the leftmost electrode is 1/3 of this value, 

and intermediate electrodes change the PMA in a linear fashion as shown in Figure 2.4(b) 

Final Position of the DW (Electrode po-
sition starting from left) 

Maximum ∆PMA ( Jm−3) at the right-
most electrode 

2nd 0.36 × 105 

3rd 0.30 × 105 

4th 0.24 × 105 

5th 0.18 × 105 
 

 

2.4. Energy Efficiency of Deep Neural Networks (DNNs) with Voltage Control 

of Domain Walls (VC-DW)  

While we have discussed the DW dynamics and operation of the non-volatile voltage programmed 

synapse in detail, Figure 2.5(a) shows the manner in which this device can be adapted to form a 

hybrid DW-CMOS neuron. The CMOS buffer implements the threshold functionality of a neuron 

(Figure 2.5 (a)) as well as the ability of the neuron output of one stage to drive inputs to various 

neurons of the next stage (high fan-out of the CMOS stage) via synapses. In order to reset the 
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neuron, the current/SOT clock is used with current flowing in the opposite direction. Thereafter, 

the clock is used to synchronize the information flow from one state of the DNN to the next. Figure 

2.5 describes the manner in which the outputs of one set of neurons can be multiplied by the synaptic 

weights and input to a neuron at the next stage.   

 

 

 
 

 

 

 

 

 

 

Energy efficiency and area-density of the voltage control DW DNN implementation vs. other 

implementation schemes 

The energy dissipation in the device can be divided into two parts. One part consists of charging 

the piezoelectric layer for stress generation, which is essentially the energy lost in charging the 

capacitor  
1

2
CV2, C = capacitance of the piezoelectric layer between the metal contacts, V= voltage 

applied).  The other part is the 𝐼2𝑅 loss of the clocking current through the magnetic layer of the 

racetrack or current through the platinum layer.  

For the device simulated in the previous sections, the maximum ∆PMA was 0.37 × 105 𝐽𝑚−3 

across the length of the device. The stress required to obtain this may be estimated as σ =
∆𝑃𝑀𝐴
3

2⁄ 𝜆
 

Figure 2. 5. Left: Schematic of the spintronic DW-neuron implemented with SOT. Right: Hybrid neuron 

synapse. 
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where λ is the magnetostriction. For CoFeB, with λ ~ 30 10-6, an unreasonably high stress of ~800 

MPa would be required, but for CoFe with λ ~ 250 10-6 a stress of order ~100 MPa can produce 

the needed ∆PMA. From the Young’s modulus of CoFe of ~ 2.0 × 105 MPa, a strain of ~5 10-4 

is required (or more specifically a strain gradient of 5 10-4 over 1 micron distance). Reference [30] 

shows that with a 500 µm thick lead zirconate titanate (PZT) substrate and electrodes of side 600 

µm, a strain gradient of ~10-3 over a distance of 500 µm is feasible with application of 1.5 kV.  This 

suggests that a strain gradient of ~10-3 (~5×10-4 if a single electrode is considered) over 1000 nm 

distance is possible with application of 3 V. The effective capacitance, C= ~26 fF, assuming relative 

permittivity of 3000. Hence, the energy dissipated is  
1

2
CV2  ~117 fJ for the electrical control of a 

scaled DW nanowire device with a footprint of 1000 nm × 100 nm and electrode of footprint 1000 

nm × 1000 nm. In the SOT-clocked case, considering 70 nm square electrodes and 100 nm thick 

PZT, the total capacitance is C ~18 fF while voltage needed for strain generation is 0.3 V following 

Ref [30]. This results in an energy dissipation of ~1 fJ. 

  For the charge current through the CoFe layer with resistivity of 280 Ω.nm [91] and a current 

density of  Jc ~ 8.7×1012 Am-2 with a dimension of 1000 nm length, 100 nm width and 1 nm thick-

ness for a clocking period of 6 ns the energy dissipated due to I2R loss is ~ 15 pJ. For the SOT 

scheme, considering the resistivity of Pt to be 100 Ω.nm and charge current density J ~ 0.7×1011 

Am-2 through the Pt layer of length 1000 nm, width 100 nm and thickness 1 nm for a clocking 

period of 20 ns, the I2R loss is ~ 100 fJ. Therefore, energy consumption in the device is dominated 

by the current that produces the SOT. This can be further reduced if low damping materials such as 

iron garnets are used [92], which have the further advantage of avoiding current shunting through 

the magnetic layer. The difficulty will lie in optimizing the edge roughness and geometrical design 

of the racetrack to provide controllability at such low Gilbert damping. In summary, this clocked 
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domain wall device concept provides a pathway to realize novel energy efficient DW neuromorphic 

devices where reprogramming of synaptic weights can be performed at ~100 fJ per synapse  during 

the learning phase and similarly small ~100 fJ per neuron during the inference phase of the neural 

network. In fact, during the inference phase, a neuron implemented with only CMOS devices (not 

a hybrid DW–CMOS device) would only need ~ few fJ per neuron and the synapses would consume 

no energy as they are non-volatile.  

It is interesting to compare these numbers with alternative implementations of artificial neurons and 

synapses. The most important benefit of our approach for artificial synapses is the large reduction 

in energy consumption. The use of voltage control in conjunction with SOT drastically reduces the 

energy requirements versus purely spin torque domain wall-based devices [93]. Non-spintronic 

nanodevices can also provide multilevel synapses, such as oxide-based memristors [94] and phase 

change memories [79]. Programming such devices requires the physical motion of atoms in order 

to create or dissolve conductive filaments (oxide-based memristor) or to crystalize amorphous vol-

umes of chalcogenide materials (phase change memory), which has an inherent energy cost, usually 

higher than picojoules even in highly scaled devices. On the other hand, these alternative technol-

ogies may provide more compact synapses than spintronic ones.  Our solution therefore offers an 

extremely energy efficient approach to potentially implement real time learning-capable systems.  

In contrast, the benefits of our approach for implementing artificial neurons is reduction in area 

(density). As neurons do not require non-volatility, CMOS-based solutions are typically used for 

neurons and have comparable energy consumption with ours. On the other hand, they typically 

require multiple transistors and several micrometre square of area [95]. 
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2.5. Conclusion 

The feasibility of an energy efficient voltage-controlled DW implementation of an artificial neuron 

and synapse was demonstrated using micromagnetic simulations. In this approach, modulation of 

perpendicular anisotropy with stress in combination with SOT or STT is used to program different 

synaptic weights as well as to mimic a neuron. Scaling this device to smaller dimensions (for ex-

ample, ~500 nm × 50 nm × 1 nm) could result in much lower energy dissipation as well as high 

densities for comparable energy dissipation (for implementing neurons) compared to competing 

approaches.  However, to avoid loss of controllability in deterministic positioning of the DW in the 

presence of thermal noise, careful optimization of material and device geometry are necessary. In 

summary, this work provides a pathway to the realization of energy efficient voltage controlled 

artificial neuron networks with real time learning capability and could stimulate more experimental 

work in this direction. 
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Chapter 3 

 Resonate and Fire Neuron with Fixed Magnetic Skyrmion  

 

3.1. Introduction 

Following the pioneering vison of Carver Mead [45], neuromorphic computing has garnered con-

siderable interest in recent times due to its potential advantage in dealing with computational prob-

lems with ill conditioned input data, adaptive nature of these systems to mitigate the effect of com-

ponent failure and efficiency compared to fully Boolean logic based computation [52, 46, 96, 97]. 

Due to the complex and mixed analog-digital nature of the brain, a major hurdle towards developing 

neuromorphic computation platforms has been finding materials and devices to mimic brain like 

behavior and developing architectures based on such systems. Current hardware artificial neural 

networks are mostly implemented with purely CMOS circuits and require large number of compo-

nents to ensure robustness [46, 98]. This poses a major challenge for the scaling and energy effi-

ciency of neuromorphic computation.  

Nanomagnetic devices are one of the promising alternatives to implement neuromorphic computing 

and other non-von-Neumann like architectures due to their low energy consumption, nonlinear dy-

namics, and non-volatility. Many nanomagnetic devices that can potentially form the building blocks 

of neuromorphic computing: artificial neurons and synapses, have been proposed [52, 62, 99-105]. 

Among artificial neurons, most emulate the behavior of (leaky) integrate and fire type neurons [46,101]. 

In an integrate and fire type neuron, the membrane potential increases in response to an input spike and 

fires if it reaches a certain threshold [106]. Therefore, the firing frequency depends only on the strength 

of the stimulus in such integrate and fire neurons. However, in the brain, many neurons also feature 
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damped or sustained subthreshold oscillation [107-110] of membrane potential. Such neurons there-

fore show sensitivity towards the timing of stimulus. Consequently, a strong stimulus may not pro-

duce a spiking output if the incoming stimulus is not in phase with the oscillation of membrane 

potential, thus providing an inhibitory function. It also leads to many interesting phenomena such 

as fluctuation of spiking probability and selective communication [111]. Such “resonate-and-fire” 

neurons could also be useful in different neural networks where computation involves synchronized 

oscillation of several spin torque nano-oscillators (SNTOs) for pattern recognition [112]. Such net-

works come in different versions: for example, in ref. [112] patterns are encoded by frequency-shift 

keying (FSK) whereas in most other work [113-115] patterns are encoded with phase shift keying 

(PSK), but all of them could benefit from circuits able to detect synchrony through resonance.  

In this work, we investigate the implementation of an artificial resonate-and-fire neuron by utilizing 

the magnetization dynamics of a fixed magnetic skyrmion in the free layer of a magnetic tunnel 

junction.  Magnetic skyrmions (Figure 3.1(a)) are topologically protected spiral spin textures 

[116,117], which can be translated by applying small current [118,119] or reversed (in patterned 

dots) using a small voltage that controls the magnetic anisotropy [120,121]. Until now, this behavior 

has been leveraged to propose logic and memory devices based on magnetic skyrmions [57,122-

125].  

While nanomagnetic device based integrate and fire type neurons have been studied extensively, 

the resonate and fire type neuron proposed using nanomagnetic devices in this work, is unique to 

this paper and would be essential to compare the synchronization in arrays of nanomagnetic oscil-

lators as described above for applications such as pattern recognition. While various schemes mim-

icking neuron and synapse activities have also been proposed utilizing current induced motion of 

skyrmions [126-129], neuromorphic devices based on moving skyrmions could have a large foot 
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print and are dissipative as they use current to move the skyrmions. We previously proposed nano-

magnetic memory devices utilizing voltage control of fixed magnetic skyrmions in the free layer of 

a MTJ structure [120,130,131] that can alleviate these issues. In this paper, we use such a voltage 

control of a fixed skyrmion based scheme to achieve the functionality of resonate and fire neurons.  

The next section describes two “resonate and fire” neuron devices based on the novel mechanism 

of resonant oscillations of a skyrmion core due to voltage control of anisotropy: direct voltage con-

trol of magnetic anisotropy (VCMA) and strain mediated voltage control of anisotropy in magne-

tostrictive materials. This is followed by a section explaining the modeling of voltage induced mag-

netization dynamics, followed by a discussion of skyrmion core oscillation, resonant behavior and 

application of the “resonate and fire” functionality for detection of phase and frequency synchroni-

zation.  

 

3.2. Device 

Our proposed device is an MTJ structure in which the circular free layer hosts a fixed skyrmion. 

We propose two different devices where application of a voltage modulates the perpendicular ani-

sotropy of the free layer through two different physical mechanisms. The anisotropy can be modu-

lated via voltage control of magnetic anisotropy [39,56,132,133] in the device shown in Figure 

3.1(b) and voltage generated strain [32,134] in the device shown in Figure 3.1(c). Modulation of 

perpendicular anisotropy in the system induces breathing of skyrmions. In other words, the skyr-

mion core increases and decreases in size. This mimics the subthreshold damped oscillations of 

resonate and fire neurons. The electrical resistance of the MTJ layer (R2) depends on the magneti-

zation orientation of the free layer (i.e. the size of the skyrmion core) relative to that of the fixed 
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layer. For the sake of explanation, let us assume that the orientation of the magnetization of the 

fixed layer is antiparallel with respect to the one of the skyrmion core. As the skyrmion core ex-

pands during the breathing, more spins in the free layer will be antiparallel with respect to the fixed 

layer spins. Therefore, the resistance of the MTJ structure will increase. We thus propose to use a 

voltage divider consisting of a fixed resistor and the voltage controlled MTJ resistance to drive a 

CMOS buffer from OFF to ON state as shown in Figure 3.1. 

 

Figure 3.1. (a) A core-up skyrmion, color code on the right shows the direction of the spin, (b) Proposed 

device structure operated with voltage control of magnetic anisotropy (VCMA) (c) MTJ structure stacked 

on PZT layer for strain control of magnetic anisotropy. Note that, CMOS buffer is driven by the MTJ re-

sistance. Therefore, fixed layer magnetization needs to be opposite to that of skyrmion core. The resonate 

and fire behavior of this device is described by the simulations in Figure 3.3. 

 

If the resistance of the MTJ stack increases during skyrmion expansion, potential drop across the 

MTJ resistance (R2) will be higher. We can choose the ratio between R1 and R2 such that, at a given 

threshold this increase causes the transistor T1 to be turned on and generate a firing pulse. (NOTE: 

A similar behavior can be achieved by choosing the fixed layer magnetization orientation to be 

parallel with respect to the magnetization orientation of the skyrmion core and driving the CMOS 

=
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buffer by the potential drop across resistance R1). In short, if the skyrmion core size increases be-

yond a threshold, potential drop across the MTJ stack will produce an input voltage to the CMOS 

circuit that will exceed the threshold voltage, causing the buffer to “fire”, i.e. produce a high output. 

In ref. [135] resistance-area product of MTJ was found to be in the range of 225-650 Ω.μm2 and 

typical tunnel magneto-resistance ratio between parallel and antiparallel configuration is 100% 

[135]. However, in this case, magnetization is oscillating between a skyrmionic state and a quasi-

antiparallel state. Typical CMOS buffer have gating voltage in the range of 1 V. Hence, we can 

design a bias voltage (Vbias) and appropriate ratio for R1 to R2. It would be preferable to maximize 

R1 and R2 (to minimize standby power dissipation due to Vbias) while ensuring reasonable RC time 

constant for resonant operation of the device.  In this work, for the sake of simplicity, we do not 

model the magnetoresistance change due to skyrmion breathing and the circuit dynamics of the 

CMOS buffer.  Furthermore, at the scale of integrated circuits envisioned here, inductive effects 

are weak and not a concern for frequencies below 10 GHz and are therefore not modeled.  In other 

words, in Figure 3.1 (corresponding to both device implementations for the resonate and fire neu-

ron), we only model the magnetization dynamics of the skyrmions and set a threshold value of 

average magnetization along the z-axis (mz_threshold=0.8, magnetization is almost antiparallel to the 

free layer). For mz_free> mz_threshold, we consider the CMOS buffer to be in the ‘ON’ or “high” state 

and “OFF” or “low” otherwise. This naturally gives rise to a firing output.  
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3.3. Methods 

Micromagnetic simulation software MuMax3 [81] was used to perform the simulations where the 

magnetization dynamics is found by solving the Landau-Lifshitz-Gilbert (LLG) equation, 

𝜕�⃗⃗⃗� 

𝜕𝑡
= 𝜏 = (

−𝛾

1+𝛼2) (�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓 + 𝛼 (�⃗⃗� × (�⃗⃗� × �⃗⃗� 𝑒𝑓𝑓)))                              (3.1) 

where �⃗⃗�  is the reduced magnetization (�⃗⃗� /Ms), Ms is the saturation magnetization, γ is the gyro-

magnetic ratio and α is the Gilbert damping coefficient. The effective magnetic field �⃗⃗� 𝑒𝑓𝑓  is given 

by, 

                                �⃗⃗� 𝑒𝑓𝑓 = �⃗⃗� 𝑑𝑒𝑚𝑎𝑔 + �⃗⃗� 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 + �⃗⃗� 𝑎𝑛𝑖𝑠 + �⃗⃗� 𝑡ℎ𝑒𝑟𝑚𝑎𝑙                                     (3.2) 

Here, �⃗⃗� 𝑑𝑒𝑚𝑎𝑔  is the effective field due to demagnetization energy, �⃗⃗� 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒  is the effective field 

due to Heisenberg exchange coupling and Dzyaloshinskii-Moriya Interaction (DMI). The DMI con-

tribution to �⃗⃗� 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒 is given by [81]: 

�⃗⃗� 𝐷𝑀 =
2𝐷

𝜇0𝑀𝑠
[
𝜕𝑚𝑧

𝜕𝑥
,
𝜕𝑚𝑧

𝜕𝑦
, −

𝜕𝑚𝑥

𝜕𝑥
−

𝜕𝑚𝑦

𝜕𝑦
]                                             (3.3) 

where 𝑚𝑧 is the z-component of magnetization and D is the effective DMI constant. 

 The effective field due to the perpendicular anisotropy, �⃗⃗� 𝑎𝑛𝑖𝑠, is expressed as [81],  

                              �⃗⃗� 𝑎𝑛𝑖𝑠 =
2𝐾𝑢1

𝜇0𝑀𝑠
(u⃗ . �⃗⃗� )u⃗ +

4𝐾𝑢2

𝜇0𝑀𝑠
(u⃗ . �⃗⃗� )3u⃗                    (3.4) 

where 1uK and 2uK are first and second order uniaxial anisotropy constants and u⃗  is the unit vector in 

the direction of the anisotropy (i.e. perpendicular anisotropy in this case). VCMA/strain effectively 

modulates the anisotropy energy density. The resultant change in uniaxial anisotropy due to 

VCMA/strain is incorporated by modulating 1uK while keeping 2uK = 0. For VCMA, this change is 
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given by  ∆𝑘𝑢1 = ∆PMA = 𝑎E. Here, 𝑎 and E are respectively the coefficient of electric field con-

trol of magnetic anisotropy and the applied electric field. On the other hand, for strain,  

Table 3.1. Magnetic parameters used 

 

 

 

 

this is given by ∆𝑘𝑢1 = ∆PMA =
3

2
𝜆𝜎, where 𝜆 and 𝜎 are respectively the magnetostriction coeffi-

cient and the applied stress. 

In order to reduce the effect of VCMA/strain on the fixed layer, the thickness of the fixed layer can 

be made lower compared to that of the free layer. This lower thickness ensures a high perpendicular 

magnetic anisotropy. Materials with low VCMA/magnetostriction co-efficient can be chosen for 

the fixed layer so that effect of voltage application is minimal. Additionally, one can use a synthetic 

antiferromagnetic [136] layer to increase magnetic stability of the fixed layer.  These ensure the 

magnetization of the fixed magnetic layer does not rotate much due to VCMA or due to strain (if 

any) transferred to it.  Therefore, we only simulate the magnetization dynamics of the free layer. 

The synthetic antiferromagnetic layer also offsets the dipolar interaction between the fixed and the 

free layer. Hence, we ignore anti-symmetric modification effects due to dipolar effects in our model. 

Exchange interaction and DMI can be modulated when an electric field is applied. However, these 

effects are minimal [131] and will only result in a small change in the breathing frequency and will 

not change the key results of our work significantly. 

Parameters Value 

Saturation Magnetization (𝑀𝑠𝑎𝑡) 1× 10
6
 A/m 

Exchange Constant (𝐴𝑒𝑥) 2× 10
-11

 J/m 

Perpendicular Anisotropy Constant (𝐾𝑢1) 6×10
5
 J/m

3
 

Gilbert Damping (α) 0.03 

DMI Constant (D) 3 mJ/m
2
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3.4.  Results 

a. Damped Oscillatory Behavior of Skyrmions  

We simulated the magnetization dynamics in a 100 nm diameter nanodisk with thickness of 1 nm. 

Our geometry was discretized into 1× 1× 1 𝑛𝑚3 cells. Using the parameter values in Table 3.1, the 

ground magnetization state was found to be a skyrmion. A triangular input spike of ∆PMA=1×105 

J/m3 was applied with 50 ps rise and 50 ps fall time (NOTE: We use fast rise and fall time in the 

triangular pulse to simulate response to a near ideal pulse whereas sinusoidal inputs are used later  

 

 

 

for more realistic device simulations). Furthermore, we are mostly interested in frequency or phase 

synchronization of sinusoidal waveforms, but nevertheless choose triangular spikes initially due to 

similarity to actual spike like stimulus available in real neurons (though time scales for biological 

and artificial skyrmions resonate and fire neurons are vastly different). The momentary change in 

anisotropy causes the core of the skyrmions to expand and oscillate about the equilibrium state. 

Figure 3.2. (a) Damped oscillation of a fixed skyrmion’s core due to stimulation with a single pulse [Red 

color line: Input spike, Blue color line: Output average magnetization along the perpendicular direction (z-

axis) (b) Modulation of breathing frequency by varying the interfacial parameters. 

(a) (b)
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The oscillatory behavior can be seen from the net magnetization curve in Figure 3.2 (a). This imi-

tates the subthreshold neuron oscillation of a resonant neuron. From this magnetization dynamics, 

the breathing frequency of the skyrmion can be determined. This is analogous to the eigen fre-

quency (i.e. damped oscillation frequency) of the neuron. This information is important as an input 

spike train or sinusoid should have a frequency that nearly equals the eigen frequency to cause a 

neuron to resonate and spike. This breathing frequency strongly depends on the parameters of the 

system. Here, we determine the breathing frequency as a function of interfacial parameters PMA 

and DMI (Figure 3.2 (b)). This frequency can be easily tuned in the range of 1.8 GHz to 5.75 GHz. 

In addition to interfacial parameters, one can use a DC bias voltage to change the PMA which will 

subsequently tune the frequency about which the skyrmion oscillates but this is not discussed here 

as it is beyond the scope of this paper. 

b. Resonant behavior of Skyrmions 

The skyrmion breathing frequency estimated in the last sub-section is now utilized to drive the 

skyrmion into resonance and show the resonate and fire behavior is very sensitive to this excitation 

frequency. We again start with triangular input pulses for reasons mentioned in the prior sub-sec-

tion. Triangular pulses of ∆PMA=1.5×105 J/m3 of time interval in a range of 0.35-0.50 ns was ap-

plied to the system.  At the PMA chosen (in the absence of voltage applied) the core had a breathing 

frequency of approximately 2.86 GHz (T=0.35 ns). Skyrmion breathing of significant amplitude 

was observed when two input spikes were separated by an interval that falls in the range 0.43 ns to 

0.46 ns. Breathing with diminishing amplitude was observed in other cases. The example in Figure 

3. 3(a) shows cases for 3 different time intervals between two successive input spikes: 0.35 ns, 0.45 

ns and 0.50 ns. 
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Considering M_z_threshold = 0.8, a spiking output can be found for time interval of 0.45 ns, while no 

output spikes are found when the time interval was 0.35 ns and 0.50ns. Other than the dependency 

on time interval the skyrmion core resonance is significantly sensitive to the amplitude of the input 

impulse. Lowering ∆PMA to 1.4×105 J/m3 failed to produce any output as expected due to sub-

Figure 3.3. Resonant behavior: (a) Spike input (b) sinusoidal input 
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threshold oscillation. However, increasing the ∆PMA to 1.75×105 J/m3 lowered (instead of increas-

ing) the firing rate from 4 for first 10ns to just 2. This is because we consider M_z_threshold=0.8, 

which occurs when ~80% of the spins point upwards. As the core size is very large, peripheral 

(boundary) effects strongly influence the breathing dynamics which makes the behavior strongly 

nonlinear. Due to this, the correlation between the change of input magnitude and the spiking be-

havior is hard to predict at these limits. Hence, for triangular input with T=0.45ns, ∆PMA of 1.5×105 

J/m3 resulted in the best firing behavior.  

While triangular spikes were used to illustrate the spiking behavior, a sinusoidal input pulse is more 

useful for many practical applications. Appropriate frequency sinusoidal inputs can also result in 

firing due to the same principle, i.e. a sinusoid of given amplitude, whose frequency is resonant 

with the eigen frequency produces the strongest spiking behavior. Sinusoids of different frequencies 

with peak to peak ∆PMA=0.96×105 J/m3 were used as inputs. Strongest firing (4 spikes over 6 ns) 

was found around 2.86 GHz (time period of 0.35 ns) input frequency. Higher frequency (3 GHz or 

time period of 0.33 ns) and lower frequency (2.5 GHz or time period of 0.4 ns) resulted in weaker 

spiking behavior (less than 4 spikes over the same 6 ns). Further deviation in frequency from reso-

nance: 3.3 GHz (time period of 0.3 ns) and 2.38 GHz (time period of 0.42 ns) resulted in no spiking 

behavior at all.  

We note that the eigen frequency (for single triangular pulse) and resonant frequency for triangular 

and sinusoidal inputs all appear to be different. This is because the ∆PMA produced by the input 

voltage leads to a variation in the net PMA experienced by the breathing skyrmion, which in turn 

changes its frequency.  

The change in perpendicular anisotropy is given by ∆PMA = 𝑎E. The VCMA co-efficient was 

found to be as large as 290 fJ/Vm experimentally [137] and 1800 fJ/Vm theoretically[138]. Using 
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a= 100 fJ/Vm, peak to peak ∆PMA=0.96×105 J/m3 can be achieved using a peak voltage of 0.48 V, 

considering the MgO layer to be of 1 nm thickness. Energy dissipation per cycle will be 
1

2
CV2 

considering energy dissipation is dominated by the energy required to charge the capacitive MgO 

layer. The capacitance of the MgO layer C= 0.487 fF for relative permittivity of 7 [139]). This 

translates into an energy dissipation of 56 aJ. 

On the other hand, change in PMA achieved via strain is given by ∆𝑃𝑀𝐴 =
3

2
𝜆𝜎. Magnetostrictive 

coefficient 𝜆 is 37 ppm for CoFeB [140]. Stress cycles with magnitude ~1 GPa will be needed to 

drive this system to resonance, which is not practical. Materials with higher magnetostrictive coef-

ficients exist. For example, FeGa has a coefficient of 300 ppm [141] while 𝜆 can be as high as 1000 

ppm for Terfenol-D [142,143]. The requirement of stress will be correspondingly lower (respec-

tively ~167 MPa and ~50MPa) assuming that such material systems with such highly magentostric-

tive materials also exhibit DMI (has not been studied so far).  To generate 50 MPa stress, required 

voltage is 83.375 mV. We again consider energy dissipation is dominated by the energy required 

to charge the capacitive piezoelectric layer. The relative permittivity of the piezoelectric layer is 

taken to be 1000. Considering 100 nm thick PZT layer, capacitance C=0.695 fF. This gives rise to 

an energy dissipation of mere 2.4 aJ. 

We note that, energy dissipation ~ femto-Joules (fJ) in the resistive elements (due to Vbias) will 

dominate energy dissipated in the scaled MTJ (~10-100 aJ) as well as the CMOS buffer (each 

CMOS device typically require ~100 aJ per switching event [17]). Thus, the total energy require-

ment will be ~ femto-Joule/spiking event. 

These values are highly attractive in comparison to a purely CMOS implementation of the resonate 

and fire neuron. In reference [144], CMOS implementation of a resonate-and-fire neuron involves 
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capacitors approaching pico-Farad, leading to an energy consumption per firing event in the range 

of pico-Joules, an area of many micrometer square and resonant frequency of a few 10s of Hz. In 

fact, the proposed hybrid skyrmion-MTJ and CMOS buffer implementation of the resonate and fire 

neuron, is capable of resonant frequencies ~few GHz and is potentially 3 orders of magnitude more 

energy efficient/spiking event and potentially has 2 orders of magnitude higher density than that 

the all CMOS implementation [144] as shown in Table 3.2.  

Table 3.2. Performance comparison of proposed hybrid nanomagnet-CMOS vs. all CMOS resonate and 

fire neuron [144]. 

Performance metric Hybrid fixed skyrmion-

MTJ and CMOS buffer 

All CMOS [144] 

Energy dissipation/spiking event ~ femto-Joule ~pico-Joule 

Density (area per device) ~0.01 micron2 ~micron2 

Resonance frequency ~ GHz ~10s Hz (can be designed to be much 

faster) 

 

c. Frequency and Phase synchronization detection of STNO oscillators 

Frequency and phase synchronization detection of coupled spin torque nano-oscillators (STNO) is 

an important component is neuromorphic computing schemes that implement associative 

memory[113-115]. However, in this work we do not investigate the mechanism of synchronization 

of such a system of oscillators which has been explored elsewhere (see for example, Ref [145-

147]). Here, we show that our proposed device (single voltage controlled oscillator) can be used to 

detect the relative degree of phase and frequency synchronization of the outputs of two coupled 

STNOs (and, in general, any coupled oscillators). Thus, this work is focused on detection of phase 

locking and frequency synchronization of STNOs rather than exploring the mechanisms by which 

the synchronization is achieved. In this subsection, we consider the outputs of two STNOs (or two 

coupled oscillators) in general have been added together as: 
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𝑉 = 𝑉1 sin(2𝜋𝑓1 + ∅1) + 𝑉2 sin(2𝜋𝑓2 + ∅2) 

Here V1 (V2), f1  (f2) and Φ1 (Φ2) are respectively the voltage, frequency and phase of the first and 

second oscillator output.  

Case I: Phase differs, frequency synchronized 

 

Here the two signals have no difference in frequency but have a phase difference (Δ∅) of pi/18 

(10⁰), pi/4(45⁰), pi/3 (60⁰).  We also include a random phase noise as follows: 

∅1 = ∅10
+ ∅𝑟𝑎𝑛𝑑𝑜𝑚,1 

∅2 = ∅20
+ ∅𝑟𝑎𝑛𝑑𝑜𝑚,2 

∆∅ = ∅1 − ∅2 

 

 

Figure 3.4. Phase detection: As the phase difference increases the amplitude of the input decreases thus 

making it harder for the magnetization to reach the threshold limit for firing 
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The random phase noise added here is white noise. In addition to phase noise, coupling between 

the radial and in-plane modes of titling of spins in the skyrmions and additionally boundary effects 

(if the core oscillations have a large amplitude) could also lead to amplitude noise. This is intrinsi-

cally accounted for in our micromagnetic modeling of the skyrmion oscillations in the presence of 

thermal noise. However, for inputs to our “resonate and skyrmion” device we would need to include 

amplitude noise (in addition to phase noise we already include), if we are comparing nano-oscilla-

tors that are based on skyrmion oscillations. However, investigating this is beyond the scope of this 

paper. 

In Figure 3.4 we show that output spikes several times when the phase difference is below a certain 

limit (e.g. 45⁰ and below) and when the phase difference is larger (60⁰) the output fails to spike.  

 

Case II: Frequency differs, (we assume that at t=0, ∆∅ =0) 

 

 

Figure 3.5. Frequency synchronization detection  
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Here the two signals have different frequency but have no phase difference at t=0.  Both signals are 

subjected to phase noise and the spiking output is analyzed over 10 ns. A signal with a frequency 

of 2.7 GHz (T=0.37ns) is chosen as the base signal. This frequency is slightly lower than the actual 

resonance frequency (2.86GHz) and intentionally chosen so to demonstrate robustness of the fre-

quency synchronization detection to frequencies that are slightly off resonance. Successive signals 

added to it have frequencies of 5 GHz, 3.33 GHz, 2.7 GHz, 2.22 GHz and 1.82 GHz. When both 

frequencies are equal (2.7 GHz) 4 spikes are produced in 10 ns; when mismatched by ~20% (e.g. 

the 3.33 GHz and 2.22 GHz cases), less than 4 spikes are produced in 10 ns and finally with signif-

icant deviation (e.g. 5 GHz and 1.82 GHz) no output spike is produced. This suggests that further 

investigation into the skyrmion magnetization dynamics may reveal an appropriate input amplitude 

(and other conditions) where the number of output spikes over a given time window can provide an 

estimate of the degree of synchronization.  

 

3.5.  Conclusion 

In this work, we studied novel nonlinear resonant dynamics of the core of a fixed skyrmion and 

showed that it has potential to lead to an energy efficient hybrid voltage controlled nanomagnetic 

device – CMOS device based circuit that can implement a “resonate and fire” neuron whereas prior 

work studied magnetic tunnel junctions (MTJs) hosting skyrmions primary for memory applica-

tions [120,121,132,148]. The energy dissipation of such a device per spiking event can potentially 

be ~femto-Joules, which is 3 orders of magnitude (1000 times) less than an all CMOS implemen-

tation [144]. It can scale to much higher densities (~100 times less area) than an all CMOS imple-

mentation [144], while being able to exhibit resonance frequencies in the range of a few Giga-Hertz 
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Furthermore, future work on combining such voltage controlled nanomagnetic frequency and phase 

synchronization detectors with voltage controlled nanomagnetic oscillators (not discussed in detail 

this paper) can lead to all voltage controlled-nanomagnetic devices (with some CMOS devices) 

based neuromorphic circuits that are potentially very energy efficient, dense and fast. 
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Chapter 4 

Summary and Future Work 

In summary, we have proposed and simulated two energy efficient voltage controlled spintronic/na-

nomagnetic device concepts that can (i) Implement Deep Neural Networks (DNNs) capable of real 

time learning and (ii) Form building blocks for oscillatory neuromorphic computing.  

This could stimulate future experimental work in fabrication and demonstration of such spintronic 

neuromorphic devices and evaluation of such proof-of-concept devices for practical applications.  
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