
UNIVERSITY OF THE WESTERN CAPE

Quality of Service in Cloud Computing:
Data Model; Resource Allocation; and

Data Availability and Security

by

Samson Busuyi Akintoye

A thesis submitted in fulfillment of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science

Faculty of Science
Department of Computer Science

August 2019

http://etd.uwc.ac.za/

http://www.uwc.ac.z
http://www.cs.uwc.ac.za/~sakintoye/
http://www.cs.uwc.ac.za
http://www.cs.uwc.ac.za

Declaration of Authorship

I, Samson Busuyi Akintoye, declare that this thesis Quality of Service in Cloud Com-
puting: Data Model; Resource Allocation; and Data Availability and Security is my own
work, that it has not been submitted for any degree or assessment at any other Univer-
sity, and that all the sources I have used or quoted have been indicated and acknowledged
by means of complete reference.

Signed:

SAMSON BUSUYI AKINTOYE

Date:

i

http://etd.uwc.ac.za/

UNIVERSITY OF THE WESTERN CAPE

Abstract
Faculty of Science

Department of Computer Science

Doctor of Philosophy

by Samson Busuyi Akintoye

http://etd.uwc.ac.za/

http://www.uwc.ac.z
http://www.cs.uwc.ac.za
http://www.cs.uwc.ac.za
http://www.cs.uwc.ac.za/~sakintoye/

iii

Recently, massive migration of enterprise applications to the cloud has been recorded in
the Information Technology (IT) world. The number of cloud providers offering their
services and the number of cloud customers interested in using such services is rapidly
increasing. However, one of the challenges of cloud computing is Quality-of-Service
management which denotes the level of performance, reliability, and availability offered
by cloud service providers. Quality-of-Service is fundamental to cloud service providers
who find the right tradeoff between Quality-of-Service levels and operational cost. In
order to find out the optimal tradeoff, cloud service providers need to comply with service
level agreements contracts which define an agreement between cloud service providers
and cloud customers. Service level agreements are expressed in terms of quality of service
(QoS) parameters such as availability, scalability performance and the service cost. On
the other hand, if the cloud service provider violates the service level agreement contract,
the cloud customer can file for damages and claims some penalties that can result in
revenue losses, and probably detriment to the provider’s reputation. Thus, the goal of
any cloud service provider is to meet the Service level agreements, while reducing the
total cost of offering its services.

In cloud computing, quality of service management includes: (i) adoption of appropri-
ate methods for allocating cloud-user applications to the virtual resources, and virtual
resources to the physical resources. (ii) choosing an efficient database management sys-
tem for cloud services brokerage to administer cloud resources. (iii) deployment of the
protocol that will alleviate the security, availability and latency issues in the the cloud
computing environment.

In light of the above, this study reviewed existing related works to provide more back-
ground on QoS in cloud computing. It also proposed three models to improve the per-
formance of cloud services: First, a novel data model for cloud services brokerage which
supports the allocation, control and management of a virtual system based on a bro-
kering function between cloud customers and cloud service providers by integrating and
managing cloud resources in a heterogeneous cloud environment. The model is imple-
mented on a private lightweight cloud testbed using three types of database management
systems, which are: relational; graph; and document-oriented databases. Second, for-
mulate and present the task allocation and virtual machine placement problems in a
single cloud computing environment and propose a Hungarian Algorithm Based Binding
Policy (HABBP) and Genetic Algorithm Based Virtual Machine Placement (GABVMP)
as solutions for optimizing the task allocation and virtual machine placement models
respectively. Lastly, a fog-based Multi-Phase Data Security and Availability (MDSA)
protocol aiming at securing and improving the availability of customer’s data in cloud
storages by using cryptography and data redundancy concepts in storage systems.

The performance of the models is evaluated and compared with the some existing related
works. The experiment results indicate that the models improve QoS in cloud computing
such that the document-oriented model has better performance in a cloud computing

http://etd.uwc.ac.za/

iv

environment than relational and graph models in terms of queries processing time, the
HABBP and GABVMP provide better performance in term of resource allocation cost,
and the MDSA is effective and efficient for achieving data security and availability in
cloud storage.

Supervisor: Prof. Bigomokero Antoine Bagula
Co-supervisors: Prof. Noureddine Boudriga

http://etd.uwc.ac.za/

Acknowledgments

I would like to express my profound gratitude to God Almighty, the owner of the universe

for giving me the opportunity and good health to complete this work successfully.

This thesis could never have been completed without the support from many other peo-

ple. First and foremost, I would like to express my sincere gratitude to my supervisor,

Professor Antoine Bagula, for his significant support and guidance which enabled me to

complete my research work successfully.

I would also like to acknowledge Prof. Noureddine Boudriga, Dr. Yacine Djemaiel and

Dr. Omowumi E. Isafiade for their input, which resulted into some of the publications.

To my colleagues in the ISAT Lab, Dr. Hope Marwa, Emmanuel Tuyishimire, and Taha

Mahommed, we spent many hours working on problems together. It was a great expe-

rience. To the entire Computer Science Department personnel at UWC, your support

cannot go unnoticed. I really appreciate the support and study environment that was

created to make this study a success.

Finally, I am indebted to thank my nuclear family and siblings, thank you all for your

patience, understanding, outstanding support and encouragement during the study.

v

http://etd.uwc.ac.za/

List of Publications

Journal articles

Samson B. AKINTOYE, Antoine BAGULA, Yacine DJEMAIEL and Noureddine

BOUDRIGA. "A Survey on Storage Techniques in Cloud Computing". International

Journal of Computer Applications (0975-8887), Volume 163, No. 2, April 2017.

Samson B. AKINTOYE, and Antoine BAGULA. "Lightweight Cloud Storage Sys-

tems: Analysis and Performance Evaluation". International Journal of Scientific and

Engineering Research (IJSER) - (ISSN 2229-5518), Volume 9, Issue 12, December 2018.

Samson B. AKINTOYE, and Antoine BAGULA. "Improving Quality-of-Service in

Cloud/Fog Computing Through Efficient Resource Allocation". Published in MDPI Sen-

sors, 2019.

Samson B. AKINTOYE, and Antoine BAGULA. "Data Security and Availability in

Cloud/Fog Computing". Submitted to MDPI Sensors.

Refereed conference publications

Samson B. AKINTOYE, Antoine BAGULA, Yacine DJEMAIEL, and Noureddine

BOUDRIGA. "Lightweight Cloud Computing for Development: A Graph Based Data

Model". Proceedings of IST-Africa 2017 IEEE Conference, Windhoek, Namibia, 2017.

Samson B. AKINTOYE and Antoine BAGULA. "Optimization of Virtual Resources

Allocation in Cloud Computing Environment". Proceedings of 13th edition of IEEE

AFRICON , Cape Town, South Africa, 2017.

Samson B. AKINTOYE, Antoine BAGULA and Omowunmi Elizabeth ISAFIADE.

"Towards Fog-based Cyber-Healthcare Data Storage Security and Availability" Proceed-

ings of IST-Africa 2018 IEEE Conference, Botswana, 2018.

vi

http://etd.uwc.ac.za/

vii

Samson B. AKINTOYE, Antoine BAGULA, Omowunmi Elizabeth ISAFIADE, Yacine

Djemaiel and Noureddine Boudriga. "Data Model for Cloud Computing Environment"

Proceedings of 10th EAI international Conference on e-Infrastructure and e-services for

Developing Countries, Africomm 2018, Dakar, Senegal, 2018.

http://etd.uwc.ac.za/

Contents

Declaration of Authorship i

Abstract ii

Acknowledgment v

List of Publications vi

List of Figures xii

List of Tables xiv

Abbreviations xv

1 Introduction 1
1.1 Introduction . 1

1.1.1 Characteristics of Cloud Computing 2
1.1.2 Service models of Cloud Computing 3
1.1.3 Deployment models of Cloud Computing 4
1.1.4 Benefits of Cloud Computing . 4

1.2 Motivation . 5
1.3 Research questions . 6
1.4 Research aims and objectives . 7
1.5 Research Methodology . 8
1.6 Declaration of publications . 8
1.7 Thesis outline . 9

2 Literature Review 11
2.1 Introduction . 11
2.2 Concept of Virtualization . 11

2.2.1 Full Virtualization . 12
2.2.2 Para Virtualization . 12
2.2.3 Native Virtualization . 13
2.2.4 Operating System-level Virtualization 13

viii

http://etd.uwc.ac.za/

Table of Contents ix

2.3 Cloud Storage . 13
2.3.1 Methods and Techniques in Cloud Storage 13

2.4 Fog Computing . 17
2.4.1 Fog Computing Characteristics . 19
2.4.2 Applications of fog computing . 20

2.4.2.1 HealthCare . 20
2.4.2.2 Connected Vehicles . 21
2.4.2.3 Smart Living and Smart Cities 21

2.5 Resource Allocation in Cloud Computing 22
2.6 Security in Cloud Computing . 27

2.6.1 Cloud Computing Security Threats 27
2.6.1.1 Data Breaches . 27
2.6.1.2 Data Loss . 27
2.6.1.3 System Vulnerabilities . 27
2.6.1.4 Account Hijacking . 28
2.6.1.5 Denial of Service . 28
2.6.1.6 Malicious Insiders . 28

2.6.2 Security Requirements in a Cloud Computing Environment 28
2.6.2.1 Data Confidentiality . 28
2.6.2.2 Data Integrity . 30
2.6.2.3 Data Availability . 31

2.7 Chapter summary . 33

3 Database Management System for Cloud Services Brokerage 34
3.1 Introduction . 34

3.1.1 Contribution and Outline . 35
3.2 Cloud Services Brokerage . 36
3.3 Data model of Cloud computing environment 38
3.4 Representation of Explored Databases . 39

3.4.1 Relational Model . 39
3.4.2 Graph Model . 41
3.4.3 Document-oriented Model . 43

3.5 Experiments . 45
3.5.1 Implemention of Graph Database 48
3.5.2 Relational Database . 50
3.5.3 Document-Oriented database . 52

3.6 Experimental Results . 54
3.7 Chapter summary . 55

4 Resources Allocation in a Cloud Computing Environment 57
4.1 Introduction . 57

4.1.1 Cloud/Fog Computing Resource Management Framework 58
4.1.2 Contributions . 59
4.1.3 Chapter Organization . 59

4.2 Task allocation Problem Model . 60
4.3 Task Allocation Algorithmic Solution . 62

4.3.1 Notation . 62

http://etd.uwc.ac.za/

Table of Contents x

4.3.2 The algorithm . 62
4.3.3 Example . 63

4.4 Virtual Machine Placement Problem . 67
4.4.1 Parameters . 68
4.4.2 Assumptions . 69
4.4.3 The mathematical model . 69

4.5 Virtual Machine Placement Algorithmic Solution 71
4.5.1 Genetic Algorithm Based Virtual Machine Placement 71
4.5.2 Initialization . 71
4.5.3 Fitness Evaluation . 73
4.5.4 Generating the next population . 73

4.5.4.1 Selection process . 74
4.5.4.2 Crossover operator . 74
4.5.4.3 Mutation Operator . 75
4.5.4.4 Replacement . 75
4.5.4.5 Stopping criterion . 75

4.6 Experiments and Results . 75
4.6.1 Implementation of the Proposed HABBP 76
4.6.2 Implementation of the Proposed GABVMP 82

4.7 Chapter summary . 85

5 Data Storage Security and Availability 86
5.1 Introduction . 86
5.2 Problem formulation . 88

5.2.1 System architecture of cloud computing 88
5.2.2 Intruder Attack models . 89

5.2.2.1 Storage attack model . 89
5.2.2.2 Privacy attack model . 90

5.2.3 Protocol design goals . 90
5.3 Preliminaries and notation . 91

5.3.1 Bilinear pairing . 91
5.3.2 Reed-Solomon codes . 91
5.3.3 Homomorphic Encryption Scheme 92

5.3.3.1 Additive Homomorphic Encryption 92
5.3.3.2 Multiplicative Homomorphic Encryption 93
5.3.3.3 Fully Homomorphic Encryption 93

5.3.4 Securing Inter-Entity Communication 93
5.4 Multi-Phase Data Security and Availability (MDSA) protocol 94

5.4.1 Data owner registration . 95
5.4.2 Data outsourcing . 96
5.4.3 Secured data processing . 98

5.5 Experiments . 100
5.6 Performance Evaluation . 101

5.6.1 Impact of latency and bandwidth 101
5.6.2 Impact of security overhead . 102
5.6.3 Impact of encoding operation . 103
5.6.4 Overall performance comparison 104

http://etd.uwc.ac.za/

Table of Contents xi

5.7 Chapter summary . 104

6 Conclusion and recommendations 106
6.1 Introduction . 106
6.2 Summary of the chapters . 107

6.2.1 Chapter 1 . 107
6.2.2 Chapter 2 . 107
6.2.3 Chapter 3 . 107
6.2.4 Chapter 4 . 108
6.2.5 Chapter 5 . 108

6.3 Recommendations for future work . 108

A Source codes 110

Bibliography 115

http://etd.uwc.ac.za/

List of Figures

1.1 Service models of Cloud Computing [1] 3
1.2 Challenges in cloud computing [2] . 7

2.1 Fog-based architecture . 18
2.2 Symmetric encryption . 29
2.3 Asymmetric encryption . 30

3.1 Cloud Computing Environment . 38
3.2 Relational model for Cloud Computing Environment 40
3.3 Graph Model for Cloud Computing Environment 41
3.4 1:1 relationship modeled in MongoDB . 44
3.5 1:M relationship modeled in MongoDB 45
3.6 PubNub/OpenStack testbed setup . 45
3.7 N:M relationship modeled in MongoDB 46
3.8 Document oriented Model for Cloud Computing Environment 47
3.9 publish/subscribe script . 48
3.10 Sample of requests from the cloud user to the cloud broker through a

PubNub channel . 48
3.11 Query processing times for case 1 . 53
3.12 Query processing times for Case 2 . 55

4.1 Cloud computing resource management framework. 58
4.2 Physical machines and switches in a tree network topology 68
4.3 Genetic Algorithm Based Virtual Machine Placement 72
4.4 midpoint crossover . 74
4.5 Inversion mutation operation . 75
4.6 CloudSim Life cycle with HABBP . 76
4.7 CloudSim User Interface . 76
4.8 Execution time of the cloudlets of Jobs 1, 2, 3 4 and 5 80
4.9 Policies computational time . 81
4.10 Mapping cloudlets to VMs using HABBP 81
4.11 Mapping cloudlets to VMs using conventional binding policy 82
4.12 GABVMP vs. Random Placement vs. First Fit Placement 83
4.13 GABVMP for α and β values . 84
4.14 Energy Consumption vs. Number of VMs 84

5.1 System architecture . 89
5.2 Data source and Trusted authority security model 95
5.3 Trusted authority and cloud security model 97

xii

http://etd.uwc.ac.za/

List of Figures xiii

5.4 Cloud/Fog testbed setup . 101
5.5 Impact of security overhead . 102
5.6 Impact of encoding operation with security overhead 103
5.7 Overall systems performance . 105

http://etd.uwc.ac.za/

List of Tables

2.1 Comparison of related VM placement problems 26

3.1 Cloud Computing Entities . 54
3.2 Comparison of Relation, Graph and Document-oriented Databases 54

4.1 Cloudlet specifications . 65
4.2 Virtual machine specifications . 65
4.3 Initialize CostMatrix . 65
4.4 Row reducedCostMatrix . 65
4.5 Column reducedCostMatrix . 65
4.6 reducedCostMatrix . 65
4.7 Optimal Allocation . 66
4.8 Phase 1 final Tableau . 67
4.9 Final optimal Tableau . 67
4.10 List of Jobs . 77
4.11 List of Virtual Machines . 77
4.12 Results of conventional binding policy in CloudSim 78
4.13 Results of HABBP in CloudSim . 79
4.14 Policies computational time . 79

5.1 Comparison of Latency and Bandwidth 102

xiv

http://etd.uwc.ac.za/

Abbreviations

HDFS Hadoop Distributed File System

CDMI Cloud Data Management Interface

QoS Quality of Service

SLAs Service Level Agreements

NIST National Institute Standards and Technology

CSP Cloud Service Provider

MDSA Multi-Phase Data Security and Availability

SDSA Single-Phase Data Security and Availability

HABBP Hungarian Algorithm Based Binding Policy

CSB Cloud Service Brokage

GABVMP Genetic Algorithm Based Virtual Machine Placement

VM Virtual Machine

PM Physical Machine

xv

http://etd.uwc.ac.za/

The PhD work is dedicated to my parents, Late Pa Gabriel Adejola
Akintoye and late Mrs Comfort Ayodele Akintoye for their sacrificial
love and efforts towards seeing me achieving greatness in life. May

the Good God continue to grant them enternal rest.

xvi

http://etd.uwc.ac.za/

Chapter 1

Introduction

1.1 Introduction

Cloud computing has recently emerged as one of the most promising and challenging

technologies. It is based on a computing paradigm where a large pool of computing

resources are connected in private, public or hybrid networks, to provide dynamically

scalable infrastructure for computing resources. The computing resources are available

to the users via the Internet [3]. It alleviates the burdens of customers for managing in-

formation systems by themselves and breaks the bottlenecks of restricted local resources.

Furthermore, cloud computing offers customers a more flexible way to obtain storage

resources on demand rather than buying and maintaining large and expensive IT hard-

ware. Customers can now rent the necessary resources when need arises [4]. With the

advent of this technology, the cost of computation, application hosting, content storage

and delivery is reduced significantly [5]. There are several definitions of cloud computing.

For instance, cloud computing has been defined [6] as a systematically devised mecha-

nism wherein the users can use the computing applications as and when they need and

they are made accessible in "cloud" through a browser or any other web-based tools.

However, the definition provided by the National Institute of Standards and Technology

(NIST) seems to cover all its essential characteristics: "Cloud computing is a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool of config-

urable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service

provider interaction."[7], [8]. The characteristics of cloud computing include on-demand

self-service, broad network access, resource pooling, rapid elasticity and measured ser-

vice.

1

http://etd.uwc.ac.za/

Chapter 1. Introduction 2

1.1.1 Characteristics of Cloud Computing

Cloud computing has some interesting characteristics that bring benefits to both cloud

customers and cloud service providers [4], [1]. The fundamental characteristics of cloud

computing are listed below [9], [10]:

• On-demand self-service: On-demand self-service means that organizations can

access and manage their own computing resources. In other words, a cloud con-

sumer can provision computing resources such as storage and network as needed

automatically without involving human interaction with a service provider. To sup-

port this expectation, clouds must allow self-service access so that customers can

request, customize, pay, and use services without intervention of human operators

[8].

• Broad network access: Broad network access allows services to be offered over

the Internet or private networks from a broad range of devices such as PCs, laptops,

and mobile devices.

• Resource pooling or shared Infrastructure: Cloud computing allows cus-

tomers to draw from a pool of computing resources. The computing resources of

cloud service providers are pooled to serve multiple consumers using a multi- tenant

model, with different physical and virtual resources dynamically assigned and reas-

signed according to consumer demand. The resources include storage, processing,

memory, network bandwidth, and virtual machines.

• Rapid elasticity: Computing resources can be rapidly and elastically provisioned

automatically. This makes consumers feel that the capabilities available for provi-

sioning are unlimited and can be purchased in any quantity at any time.

• Measured Service: Service Level Agreements (SLAs) between the cloud service

provider and the cloud user must be defined when offering services in pay per use

mode. Cloud services must be priced on a short-term basis, allowing users to offer

resources as soon as they are not needed [11]. As result of this, cloud providers must

implement features to allow efficient trading of service such as pricing, accounting,

and billing. Metering should be done accordingly for different types of service (e.g.,

storage, processing, and bandwidth) and usage promptly reported, thus providing

greater transparency [12].

http://etd.uwc.ac.za/

Chapter 1. Introduction 3

1.1.2 Service models of Cloud Computing

Cloud computing services are classified into three business models as shown in Figure 1.1.

They are Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-

as-a-Service (SaaS) [13],[14].

Figure 1.1: Service models of Cloud Computing [1]

• Software as a Service (SaaS): In this model, the cloud customers use the

provider’s applications running on a cloud infrastructure. The application is of-

fered to the customer as a service on demand. A single instance of the service runs

on the cloud and multiple end users are serviced. Examples of Saas are Salesforce

[15] and GoogleDocs [16].

• Platform-as-a-Service (PaaS): In PaaS model users are allowed to rent virtu-

alized software development to run their own applications or services [17]. Many

organizations use PaaS to speedily and efficiently develop and deploy new ap-

plications without having to procure expensive hardware or software, or manage

computing infrastructure. The example of PaaS are Google App Engine [18] and

Microsoft [19]. Google App Engine allows developers to create and run Web appli-

cations that run on top of a custom Google platform and use Google’s computing

resources.

• Infrastructure-as-a-Service (IaaS): In this type of service model, customers

are provided with processing power, storage, network bandwidth, and other com-

puting resources and are able to reconfigure them as needed. In IaaS customers do

not manage or control the infrastructure of the remaining cloud, paying only for

http://etd.uwc.ac.za/

Chapter 1. Introduction 4

what is used. Amazon Elastic Compute Cloud (Amazon EC2) [20], GoGrid [21],

Flexiscale [22], Redplaid [23], Eucalyptus [24], OpenNebula [24] and OpenStack

[25] are examples of IaaS.

1.1.3 Deployment models of Cloud Computing

The Cloud Computing model has four main deployment models which are:

• Private Cloud: The cloud infrastructure is maintained and operated for a specific

organization. It may be managed by the organization or a third party and may exist

on premise or off premise. Only the organization and authorized stakeholders may

have access to operate on a specific private cloud. Private Cloud is less vulnerable,

higher security, higher energy efficiency, more reliable, cost reduction and lower

complexity [26].

• Public Cloud: The cloud infrastructures are made available to the public on a

pay-as-you-use basis by the CSP. A consumer can develop and deploy a service

in the cloud with very little financial outlay compared to the capital expenditure

requirements normally associated with other deployment options.

• Community Cloud: The cloud infrastructures are owned and shared by various

organizations and supports a specific community that has similar operations. Also,

it may be managed by the organizations or a third party within the premise or off

premise [27].

• Hybrid Cloud: The cloud infrastructure is a combination of two or more clouds

such as public, private and community that remain unique entities but are bound

together by standardized or proprietary technology that enables data and applica-

tion portability.

1.1.4 Benefits of Cloud Computing

The importance of cloud computing in business can not be over-emphasised. Reza et

al [28] identified cloud computing as an innovative technology that assists the organiza-

tion to stay competitive among others. Some benefits of cloud computing include the

followings:

• Reduced Cost: The major reason why organizations adopt cloud computing in

their business operations is cost reduction [29]. The organization does not need

http://etd.uwc.ac.za/

Chapter 1. Introduction 5

to procure hardware used to host the cloud services. The organizations rent the

necessary resources when need arises [4] and pay only for what they use.

• Flexibility: In recent times, many organizations adopt cloud computing because

it increases their business flexibility. Cloud computing improves employees perfor-

mances. It allows the employees to share data and information among themselves

over the Internet [30]. This benefit allows organizations to conduct businesses in

different locations due to the fact that data and files are stored virtually on the

Internet. Thus, employees can access the same resources simultaneously.

• Scalability: Cloud computing provides cloud users the capabilities to update

the resources based on the business needs. This can be done by expanding the

computing infrastructure as most of the cloud computing interface is user-friendly

[21]. Cloud computing helps smaller organizations because they can expand the

resources when necessary [4]. In addition, cloud computing allows the cloud users

to analyse big data in just a few minutes as a result of its processing power [31].

• Agility: One of the benefits of cloud computing to organizations is its ability to

be quick changing and responding to variety and changes. It helps organizations

to deliver the services in the shortest time, hence it can be used as a competitive

tool for rapid development [32].

• Interoperability: Cloud interoperability implies the ability of applications to

move from one cloud environment to another or the ability of applications running

in different clouds to share information.

Based on the background of the study as presented above, the motivation for the study

is discussed in the next section.

1.2 Motivation

Despite the enormous benefits of cloud computing, it is evident that cloud adoption and

usage remains lower than many providers anticipated in their business plans. Many or-

ganizations are sceptical about adoption of this paradigm because of its challenges that

need to be addressed [33]. These benefits become a problem for latency-sensitive appli-

cations, which require nodes in the vicinity to meet their delay requirements [34]. When

techniques and devices of IoT become more involved in people’s lives, the current cloud

computing paradigm can hardly satisfy their requirements of mobility support, location

awareness and low latency. The latest trend of computing paradigm is to move elastic

http://etd.uwc.ac.za/

Chapter 1. Introduction 6

resources such as computation and storage to the edge of networks, which motivates the

promising computing paradigm of fog computing as a result of the prevalence of ubiq-

uitously connected smart devices relying on cloud services. Fog computing moves data

and computation closer to end users at the edge of network, and thus provides a new

breed of applications and services to end users with low latency, high bandwidth, and

location-awareness, and thus gets the name as fog is a cloud close to the ground.

Furthermore, according to a survey conducted by International Data Corporation (IDC)

in 2008 [2] and research works in Chang et al. [35], Al-Hujran et al. [36] and Bhandari

et al. [37], security was rated as the greatest factor for holding back organizations

from adopting cloud computing and quality of service aspects including performance,

latency, and availability as shown in figure 1.2. Other challenges for cloud computing are

integration, adaptation, agility, and the possible relocation of the solution play a major

role during and after the implementation phase.

In addition, Yang et al. [38] and Kobusińska et al.[39] itemized issues of cloud computing

as privacy, reliability, availabilty and performance, etc. Data security and availability,

performance and resource allocation remain the greatest obstacles towards actualizing

the dream of exploring the full benefit of cloud. A cloud-based environment that is

deteriorating in terms of performance, constrains and limits the rate of adopting cloud by

organizations while a non-availability cloud-based environment reduces the throughput

level of the organisation. The goal of availability for cloud computing systems is to ensure

its services are available to use at any time [40].

Finally, cloud with a poor access control scheme poses a great security challenge since

customer data should be accessed by only authorized parties, thus there is a need for

appropriate access control scheme to achieve data confidentiality and privacy in the cloud.

In order to mitigate these problems, a lightweight data model, optimized resource al-

location models and a fog-based multi-phase data security and available protocol were

proposed and implemented on a private cloud test bed built by OpenStack technology

and CloudSim simulator. Furthermore, the models were evaluated and compared with

the existing solutions.

1.3 Research questions

To investigate the challenges as posed by Quality-of-Service (QoS) of cloud computing,

the following questions are articulated:

http://etd.uwc.ac.za/

Chapter 1. Introduction 7

Figure 1.2: Challenges in cloud computing [2]

(i) What data model can be used by cloud brokers to improve Quality-of-Services

(QoS) rendering to the cloud users and cloud service providers (CSPs)?

(ii) What mechanism can be used to improve the resources allocation process in the

cloud computing environment?

(iii) How efficient security and availability protocol should be administered for the en-

tities in the cloud/fog computing environment in order to enforce access control on

the cloud user’s data and computations?

1.4 Research aims and objectives

The aim of this research is to investigate and develop models that will improve Quality

of service (QoS) in cloud computing. The aim of the research is addressed through the

following specific objectives:

(i) To present an efficient Database management system for cloud services brokerage

that supports the allocation, control and management of the virtual system based

on brokering function between cloud service providers (CSPs)

(ii) To develop and implement optimization models for resources allocation in the cloud

computing environment using task allocation and virtual machine placement algo-

rithmic solutions.

http://etd.uwc.ac.za/

Chapter 1. Introduction 8

(iii) To develop a fog-based Multi-Phase Data Security and Availability (MDSA) pro-

tocol and Secure Lightweight Data Processing scheme aiming at securing and im-

proving the availability of customer data in cloud storage.

1.5 Research Methodology

In order to achieve the objectives stated in Section 1.4, the following research approaches

are adopted:

Literature review, experimental measurements and simulations. An explanation of where

each of the research methodologies is used in the research is as follows:

1. A thorough literature review of the proposed approaches to the quality of service in

the cloud computing environment, which include a data model, resources allocation

and data security and availability. This is carried out in order to have a better

understanding of these approaches, while laying down the foundation for this proposal.

2. Use a private cloud test bed built by openstack technology to implement the propose

data model and data security and availability model.

3. Use cloudsim simulator to simulate the proposed resource allocation model in the

cloud computing environment.

4. Quantitative analysis of the experimental and simulation findings.

1.6 Declaration of publications

Some ideas and figures in the thesis have appeared in the following articles published

from recent research work.

Journal articles

Samson B. AKINTOYE, Antoine BAGULA, Yacine DJEMAIEL and Noureddine

BOUDRIGA. "A Survey on Storage Techniques in Cloud Computing". International

Journal of Computer Applications (0975-8887), Volume 163, No. 2, April 2017.

Samson B. AKINTOYE, and Antoine BAGULA. "Lightweight Cloud Storage Sys-

tems: Analysis and Performance Evaluation". International Journal of Scientific and

http://etd.uwc.ac.za/

Chapter 1. Introduction 9

Engineering Research (IJSER) - (ISSN 2229-5518), Volume 9, Issue 12, December 2018.

Samson B. AKINTOYE, and Antoine BAGULA. "Improving Quality-of-Service in

Cloud/Fog Computing Through Efficient Resource Allocation". Published in MDPI Sen-

sors, 2019.

Samson B. AKINTOYE, and Antoine BAGULA. "Data Security and Availability in

Cloud/Fog Computing". Submitted to MDPI Sensors.

Refereed conference publications

Samson B. AKINTOYE, Antoine BAGULA, Yacine DJEMAIEL and Noureddine

BOUDRIGA. "Lightweight Cloud Computing for Development: A Graph Based Data

Model". Proceedings of IST-Africa 2017 IEEE Conference, Windhoek, Namibia, 2017.

Samson B. AKINTOYE and Antoine BAGULA. "Optimization of Virtual Resources

Allocation in Cloud Computing Environment". Proceedings of 13th edition of IEEE

AFRICON , Cape Town, South Africa, 2017.

Samson B. AKINTOYE, Antoine BAGULA and Omowunmi Elizabeth ISAFIADE.

"Towards Fog-based Cyber-Healthcare Data Storage Security and Availability" Proceed-

ings of IST-Africa 2018 IEEE Conference, Botswana, 2018.

Samson B. AKINTOYE, Antoine BAGULA, Omowunmi Elizabeth ISAFIADE, Yacine

Djemaiel and Noureddine Boudriga. "Data Model for Cloud Computing Environment"

Proceedings of 10th EAI international Conference on e-Infrastructure and e-services for

Developing Countries, Africomm 2018, Dakar, Senegal, 2018.

1.7 Thesis outline

In chapter 2, the literature related to this study is reviewed. The various concepts of

cloud computing: virtualization, cloud storage and fog computing are discussed. Fur-

thermore, the related work to the database model, resource allocation and data security

http://etd.uwc.ac.za/

Chapter 1. Introduction 10

and availability in cloud computing are presented and discussed. Finally, the chapter

reviews a survey of some proposed cloud storage methods and techniques, their advan-

tages and drawbacks and stresses the current requirements for storage techniques in cloud

computing.

Chapter 3 presents a novel data model for cloud services brokerage that supports the

allocation, control and management of a virtual system based on brokering function

between cloud service providers (CSPs) and cloud users by integrating and managing

cloud resources in a heterogeneous cloud environment. The model is implemented on the

private lightweight cloud network test bed built by in an OpenStack technology.

The tasks-to-virtual machines and virtual machines-to-physical machine allocation prob-

lem in the cloud computing environment are formulated and presented in chapter 4.

In chapter 5, the issue data security and availability in cloud strorage with cyber-

healthcare as a case study are investigated and propose a fog based Multi-Phase Data

Security and Availability (MDSA) protocol aimed at securing and improving the avail-

ability of cloud user data by using cryptography and data redundancy concepts in storage

systems.

Finally, in chapter 6, conclusions are drawn and recommendations made for future work.

http://etd.uwc.ac.za/

Chapter 2

Literature Review

2.1 Introduction

In the previous chapter, the motivation of the study and research background is sketched.

The chapter concludes by stating aims and objectives of the research and presenting the

research methodology.

This chapter presents a review of literature related to the study. The focus is on the

quality of service in cloud computing environment and research work addresses issues

related to performance, resources allocation and data security on the cloud. The chapter

is divided into two sections. The first section presents a review with respect to the key

concepts in the field of study. while the second covers the review of literature based

on the research question posed in chapter one, and thereafter addresses: performance,

resources allocation and data security and availability.

2.2 Concept of Virtualization

One of the important technologies used in cloud computing is virtualization. Infrastructure-

as-a-Service (IaaS) provides on-demand virtual machine instances with virtualization

technologies. Virtualization is an abstraction of computer resources. The abstracted

resources are not limited by implementation, geographical location or the underlying

physical configuration. Cloud computing makes use of various virtualization technolo-

gies such as compute, network, and storage to offer users an abstraction layer that

provides a uniform and consistent computing platform by hiding the underlying hard-

ware heterogeneity, geographic boundaries, and internal management complexities [41].

In cloud computing, cloud customers have full control of their Virtual Machines (VMs),

11

http://etd.uwc.ac.za/

Chapter 2. Literature review 12

determining which operating system (OS) to use, access control and permissions of OS

users, and applications to install [42]. A VM is an abstract but a complete computer

system containing basic (OS) and application software running isolated from the Pysical

Machine (PM) OS [43], [44]. Virtualization technology can be categorized in four groups.

They are:

2.2.1 Full Virtualization

Full Virtualization is a technique that provides full image of the underlying hardware

and initiates the creation of complete virtual machines in which guest operating systems

can execute. In full virtualization, the guest operating system is not aware of being

virtualized, and there is no modification required to the operating systems and appli-

cations if they are compatible with the underlying hardware [45]. Full Virtualization is

divided into: Bare metal and Hosted Virtualization. Bare metal Virtualization has no

host operating system. The hypervisor runs directly on the underlying hardware and

uses Type 1 Hypervisor, hypervisor (also referred as virtual machine monitor (VMM))

enables communication between hardware and a virtual machine. In Hosted Virtual-

ization, there is a host operating system such as Linux, Windows etc. on which the

hypervisors runs and uses Type 2 Hypervisor. The major difference between Bare metal

and Hosted Virtualization is that Hosted virtualization architectures give users the ca-

pability to run applications such as web browsers and email clients together with the

hosted virtualization application while in bare metal architectures, users can only run

applications within virtualized systems.

2.2.2 Para Virtualization

In contrast to full virtualization, para virtualization is a type of virtualization where the

running guest operating system is modified and is able to speak directly to the hypervisor.

The guest operating systems are aware that they are running in a virtual environment

[46]. The paravirtualized virtual machines perform better than fully virtualized virtual

machines because Para Virtualization minimizes the virtualization overheads and elimi-

nates the conformity of the guest machine with the host due to the limited communication

between the guest and the host [47]. However, there may be limited number of operating

systems available for guest usage due to the availability of para virtualization- aware

driver kits that must be used to ensure compatibility with the hypervisor [47]. Examples

of paravirtualization technologies are Xen [48], Denali [49] and User-Mode Linux (UML)

[50].

http://etd.uwc.ac.za/

Chapter 2. Literature review 13

2.2.3 Native Virtualization

Native Virtualization virtualized guests OS on a host system. In this type of virtual-

ization, the guest and host use the same hardware and the guest software (hypervisor)

must be compatible with that of host. It does not need to modify the native virtualized

virtual machine/operating system to be hypervisor-aware. It allows multiple unmodified

guests to run concurrently, provided that all guests are capable of running on the host

processor directly. VMware [51], [52] and Microsoft Virtual PC [53] are examples of

native virtualization technologies.

2.2.4 Operating System-level Virtualization

Operating System-level Virtualization does not depend on a hypervisor rather it modifies

the operating system to securely isolate multiple instances of an operating system within

a single host machine. The overhead operating system-level virtualization is very limited

due to the benefits of running under operating systems with a shared kernel. Emulating

devices or communicating with VMM is not necessary. The guest and the host should

have the same OS or kernel.

2.3 Cloud Storage

Recently, the processing and the storage of huge volumes of data have been enhanced

enormously due to the emergence of cloud computing. One of the important services

provided by cloud computing is cloud storage, which is a service where data is remotely

maintained, managed, and backed up. The service is available to users over a network,

which is usually the Internet. It allows the user to store files online on a "pay-as-you

go" or subscription basis so that the user can access them from any location via the

Internet. There is no need to purchase storage before storing data. Only the amount of

storage the data actually consumes is paid [54]. Furthermore, accessing the cloud storage

service through the Internet and pay-as-you-go subscription have been the reasons for

the emergence of methods and techniques to effectively store data and reduce storage

security vulnerabilities in the cloud storage.

2.3.1 Methods and Techniques in Cloud Storage

In this section, some existing techniques used to store data in cloud storage were re-

viewed. Leesakul et al., [55] proposed a dynamic deduplication scheme for cloud storage,

http://etd.uwc.ac.za/

Chapter 2. Literature review 14

to improve storage efficiency and maintaining data redundancy for fault tolerance. Data

deduplication is a technique used to reduce storage space and network bandwidth. In

existing deduplication systems duplicated data chunks identify and store only one replica

of the data in storage and logical pointers are created for other copies instead of stor-

ing redundant data. The existing deduplication schemes may prevent the system fault

tolerance since it may be that several files refer to the same data chunk which may be

unavailable due to failure. The dynamic deduplication scheme was proposed to balance

between storage efficiency and fault tolerance requirements and address limitation of a

static deduplication scheme that cannot cope with changing user behavior. For instance,

data usage in cloud changes overtime; some data chunks may be read frequently in a pe-

riod of time, but may not be used in another period. The dynamic deduplication scheme

has the capability to adapt to various access patterns and changing user behavior in

cloud storages. The proposed system is based on client-side deduplication using whole

file hashing. The hashing process is performed at the client, and connects to any one

of the deduplicators according to their loads at that time then identifies the duplication

by comparing with the existing hash values in the Metadata Server. The system is com-

posed of the following components: a load balancer that requests from clients sending to

any one of the deduplicators according to their loads at that time; Deduplicators which

identify the performed duplication; Cloud Storage, a Metadata Server to store metadata

and File Servers to store actual files and their copies; and a Redundancy Manager to

identify the initial number of copies, and monitor the changing level of Quality of Ser-

vice (QoS). The system model was implemented using Hadoop Distributed File System

(HDFS) with one Metadata server and five File servers. Three events were simulated:

upload, update, and delete. The upload event is when the file is first uploaded to the

system. If files already exist in the system, and have been uploaded again, the number of

copies of the files will be recalculated according to the highest level of QoS. For a delete

file event, users can delete their files, but the files will not be permanently deleted from

the system if there are any other users referring to the same files. The number of copies

of files is changed dynamically according to the changing level of QoS. The experimental

results show that, the proposed system performs well and can deal with the scalability

problem.

In a similar vein, Liu et al., [56] propose a data deduplication private cloud storage

system with Cloud Data Management Interface (CDMI) standard based on the concept

of DFS. A data deduplication scheme is implemented in the proposed system to reduce

cost and increase the storage efficiency and the standard interface CDMI is implemented

in the proposed system to increase interoperability. In addition, Gluster is chosen as

the basic for DFS to implement proposed private cloud storage system. The proposed

private cloud storage system consists of five components: a Client which communicates

http://etd.uwc.ac.za/

Chapter 2. Literature review 15

with Controller in Front-end node and exchange information; a Front-end node contains

Apache server that redirects the requests which are sent from CDMI request sender to

enhance load balance; a Adaptor node receives CDMI request and stores files via Gluster

client; and Storage nodes contains GlusterFS server, which can create different types of

volume for different purposes. The proposed system provides the following three main

functionalities: upload file, download file, and delete file. The advantage of the proposed

system is that it is efficient for data transmission, in spite of the overhead times caused by

data deduplication mechanisms. However, the proposed system degrades in performance

when handling bigger files since the file level deduplication is adopted.

HDFS is an open-source software framework developed for reliable, scalable, distributed

computing and storage [57]. It performs better for small size files than large files. How-

ever, there are some reasons for small file problems of native HDFS: large numbers of

small files impose a huge load on NameNode of HDFS, and the optimization mechanism

is not provided to enhance I/O performance. In order to solve the problems of small

files of HDFS, Dong et al., [58] propose an optimized model to improve the performance

of storing and accessing small files on HDFS. The cut-off point between large and small

files is measured in HDFS by an experiment. Performance analysis indicated that the

proposed model improves the storage and access efficiencies of small files, compared with

native HDFS and a Hadoop file archiving facility.

In order to improve data retrieval from the cloud storage, Prabavathy et al.,[59] propose a

multi-index technique for metadata management of chunks stored in private cloud storage

to improve the performance of duplicate detection and retrieval of the file. This technique

aims to remove the redundant data and utilize the storage space in an optimized manner.

It divides the file into several chunks and computes the hash value for those chunks.

The hash value of a chunk is known as its chunkID. A chunk index contains chunkID

and the location of the corresponding actual chunk. When a chunk of a file enters the

storage, its chunkID is compared against the chunk index to determine whether it is

a duplicate chunk. Chunk index entries of the entire storage cluster are divided into

several indices based on the types of files. If files are mutable, content based chunking is

used to divide the file to identify the duplicates. If files are less mutable, duplicates are

identified by performing fixed size chunk. Traceability is supported for a large number

of users without affecting the performance of the verification process. Here, traceability

means that the original user can trace a signature on a block and reveal the identity

of the signer. Despite providing privacy, duplicates of immutable files are identified by

comparing the entire files as the content of the files is not modified. The indices are

distributed across different storage nodes and experiments are carried out to select a

suitable index structure to organize the chunk entries for their quick retrieval. Workload

consisting of different types of files with various sizes are deduplicated and stored in the

http://etd.uwc.ac.za/

Chapter 2. Literature review 16

storage cluster. The retrieval times for different types of files are computed with the

distributed multi-index and are compared against the time taken with the sequential

index. Results show that the distributed multi-index out performs the sequential index.

Similarly, [60] propose a novel efficient multi-dimensional index structure, the KR+-

index, on cloud data managements (CDMs) for retrieving skewed spatial data efficiently.

KR+-index is used for multi-dimensional range queries and nearest neighbor queries and

KR+ is used to build the index structure and design the key for efficient accessing of

data. New efficient spatial query algorithms, range queries and k-NN queries for the

proposed KR+-index are redefined. To insert a new datapoint, the algorithm first loops

up the key of the node corresponding to the node to which the point belongs, then inserts

the data point into the node. Since there is an upper bound to the number of points

in the node, the insertion algorithm checks the current size of the node to determine

if a split is needed. For a deletion event, the algorithm first loops up the key of the

node corresponding to the node to which the point belongs, and then deletes the data

point from the node. The experiments to implement the KR+-index on Cassandra using

spatial data is carried out. The results show that KR+-index is better than the additional

methods under the skew data distributions.

In [61], the authors propose top-n multi keyword retrieval over encrypted cloud data using

the vector space model and the Two Round Searchable Encryption scheme. The protocol

was developed to address the limitations of existing searching schemes. In the traditional

searchable encryption schemes, users are allowed to search in the encrypted cloud data

through keywords, which support only the Boolean search. In the Single keyword ranked

search, searching of data in the cloud results too coarse output and the data privacy is

opposed using server side ranking based on order-preserving encryption (OPE). The aim

of the proposed system is threefold: (1) protection of sensitive information by encrypting

cloud data at the administrator side; (2) authentication of the multi users; and (3)

retrieving top-n files matching the multi keywords and preserving privacy of encrypted

data using the Two round searchable encryption method. In the proposed scheme, the

data owner encrypts the file using RSA encryption and also, encrypts the searchable

index using Homomorphic encryption. The cloud storage server computes the scores

from the encrypted index stored on cloud and returns the encrypted file with its scores

to the user as the server receives a query consisting of multi-keywords from the user.

Once the scores are received, the user decrypts the scores and selects the files and sends

the respective file IDs to the server. The server sends the encrypted file to the user and

then the user decrypts the file using the private key sent by the administrator. There

is two-round communication between the cloud server andthe data user to retrieve the

top-n files; calculation is performed at the server side and the ranking is ensured at the

http://etd.uwc.ac.za/

Chapter 2. Literature review 17

user end. The proposed system avoids overloads by ranking the files at the user side,

reducing bandwidth and protecting document frequency.

In securing cloud data, the data owner can encrypt its data content before outsourcing

rather than leaving it in the plaintext form. However, typical encryption would not

be suitable for cloud information retrieval systems because the CSP cannot retrieve en-

crypted contents from a plaintext query without the decryption keys. To provide an

information retrieval function while addressing the security and privacy issues, Koo et

al. [62] propose a searchable encryption scheme using Attribute-Based Encryption(ABE)

with scrambled attributes to handle the presence of redundant encrypted data for the

same message, poor expressiveness regularly access policy and the concentration of com-

putational overhead on the searching entity. In this scheme, the data owner can specify

both fine-grained access policy and searching keyword set which is required to retrieve its

data under the access policy. In order to retrieve the encrypted content in cloud storage,

the retriever makes index terms from its private key satisfying the access policy made up

of keywords associated with the contents where these index terms are only used for data

accessing in the cloud storage system. This scheme has the advantage of one-to-many

content distribution without sacrificing the nature of ABE.

In order to address the integrity and confidentiality issues in cloud storage, Zhou et al.

[63] propose a Role-Based Encryption (RBE) scheme that integrates the cryptographic

techniques with role-based access control (RBAC) to control and prevent unauthorized

access to data stored in the cloud. This work also presents a RBAC based cloud storage

architecture which allows an organization to store data securely in a public cloud, while

maintaining the sensitive information related to the organization’s structure in a private

cloud. The proposed RBE-based architecture is implemented and the performance results

show that encryption and decryption computations are efficient on the client side, and

decryption time at the cloud can be reduced by having multiple processors, which is

common in a cloud environment. The advantage of the proposed system is that it has

the potential to be useful in commercial situations as it captures practical access policies

based on roles in a flexible manner and provides secure data storage in the cloud enforcing

these access policies.

2.4 Fog Computing

Cloud computing has several inherent capabilities such as scalability, on-demand re-

source allocation, reduced management efforts, flexible pricing model (pay-as-you-go),

and easy applications and services provisioning. However, despite the wide acceptance

and utilization of cloud computing, some applications and services still cannot benefit

http://etd.uwc.ac.za/

Chapter 2. Literature review 18

from this computing paradigm due to unresolved problems of cloud computing such as

high latency, lack of mobility support and location-awareness. In order to overcome these

issues, fog computing [64] has emerged as a promising infrastructure to provide elastic

resources such as computation and storage at the edge of the network . Bonomi et al.

[64] defined fog computing as a highly virtualized platform that provides computing,

storage, and networking services between end devices and traditional Cloud Computing

Data Centers, typically, but not exclusively located at the edge of the network. Fog

computing is usually cooperated with cloud computing. As a result, edge devices, fog

and cloud together form a three layer service delivery model, as shown in Figure 2.1.

Figure 2.1 also depicts fog computing in the broader context of a cloud-based system

serving edge devices.

Fog network consists of different fog nodes which are intermediatary computing elements

between the Cloud and the edge devices. Fog nodes usually provide data management

and communication services between edge devices and the Cloud. Fog nodes may be

either physical or virtual elements, often fog nodes, especially virtual ones also referred

as cloudlets [65], [66], [67], [68], which can be federated to provide horizontal expansion

of the functionality over wide geo-locations.

Figure 2.1: Fog-based architecture

http://etd.uwc.ac.za/

Chapter 2. Literature review 19

2.4.1 Fog Computing Characteristics

There are many features that distinquish fog computing from other computing paradigms.

The features include [68], [69]:

1. Contextual location awareness, and low latency. The basic concept of Fog comput-

ing is to support endpoints with rich services at the edge of the network, including

applications with low latency requirements (e.g. gaming, video streaming, and aug-

mented reality). In addition, Fog nodes analyse and respond to data generated by

the endpoints much quicker than from a centralized cloud because latency between

the fog nodes and IoT endpoints is lower than cloud and IoT endpoints.

2. Wide-spread geographical distribution: In contrast to the more centralized Cloud,

the services and applications targeted by the Fog demand widely distributed de-

ployments. For example, the Fog plays an active role in delivering high quality

streaming services to moving vehicles, through proxies and access points positioned

along highways and tracks [70].

3. Mobility-based services: the possibilities of interoperability and federation across

different domains and the chance to seamlessly move computation from one fog

node to another one.

4. Large number of nodes: Large number of end devices can be served in the fog

architecture.

5. Huge wireless access: The wireless network has provided the advantage of accessing

the fog services.

6. Device heterogeneity: As a result of the heterogeneity nature of fog node and

client, the same abstracts are provided to top layer applications and services for

fog clients.

7. Real-time interactions. Important Fog applications involve real-time interactions

rather than batch processing.

8. Interoperability and federation: Usually seamless support of certain services such

as real-time streaming, requires the cooperation of different providers. Hence, Fog

components must be able to interoperate, and services must be federated across

domains.

http://etd.uwc.ac.za/

Chapter 2. Literature review 20

2.4.2 Applications of fog computing

This section provides an overview of various Internet-of-Things (IoT) applications that

can benefit from fog computing and their related exsiting works.

2.4.2.1 HealthCare

Fog computing plays an important role in healthcare applications which are latency-

sensitive in nature. Fog provides real-time processing and responses to data generated

by healthcare devices [71]. There are several architectures proposed for healthcare appli-

cations, among them are: In [72], the authors propose an IoT-based health monitoring

architecture which exploits the fog and its advantages such as bandwidth, QoS assurance,

and emergency notification. The ECG feature extraction at the edge of the network is

used as a case study to help diagnose cardiac diseases. The IoT/end-users layer consists of

several physical devices including implantable and wearable sensors. These sensors gen-

erate different types of data such as temperature, ECG, and Electromyography (EMG).

The sensed data is then sent to the fog layer where smart gateways act as fog nodes

which connect the sensors to the cloud nodes. The architecture proposed at the fog layer

consists of three layers: The hardware layer, the embedded operating system, and the fog

computing service layer. The study met the heterogeneity criterion through the Hetero-

geneity and Interoperability module. Also, the proposed architecture provides real-time

notifications when it detects any abnormal situations of the patient. However, the study

does not discuss how QoS is managed in terms of latency when the deployment of the

applications’ components between the cloud and the fog changes.

Furthermore, Monteiro et al. [73] propose a fog-driven IoT interface (FIT). The protocol

processes and analyzes the clinical speech data of patients with Parkinson’s disease and

speech disorders. The architecture consists of an IoT/end-users layer, fog layer and

cloud layer. In the IoT/end-users layer, an Android smartwatch is used to acquire the

clinical speech data of the patients. In the fog layer, application components responsible

for collecting and analyzing the speech data from the smartwatches are deployed. In

the cloud layer, additional components store the data so that they can be accessed by

clinicians to monitor the progress of their patients. The drawbacks of the proposed

architecture are: (i) it does not consider the heterogeneity of the involved cloud and fog

nodes; (ii) the authors do not consider the application QoS when there are changes in

the component placement between the cloud and the fog.

http://etd.uwc.ac.za/

Chapter 2. Literature review 21

2.4.2.2 Connected Vehicles

Fog computing is used as an efficient solution for all Internet-connected vehicles, since it

provides a high level of real-time interaction. The use of the fog rather than cloud reduces

collisions and other accidents as fog does not suffer from the latency of the centralized

cloud approach, enabling it to start literally saving lives [74]. Several works have used

the fog in the context of connected vehicles.

Hou et al. [75] propose an architecture called Vehicular Fog Computing (VFC) for

vehicular applications. It uses vehicles as the infrastructure for communication and

computation. The authors discuss the communication and computational capability of

the vehicles and conduct an empirical analysis to study the impact of the mobility of

vehicular network on its connectivity and computational capacity. The advantage of

the study is that it enhances the communication and computation capacity that can be

provided by VFC compared to Vehicular Cloud Computing (VCC). However, the study

does not discuss the heterogeneousness of the fog nodes. Also, the study doesn’t mention

QoS in terms of latency.

Similarly, in [70], the authors propose Vehicular Adhoc Networks (VANETs) which make

use of Fog and Software Defined Networking (SDN). The IoT/end-users layer consists

of SDN-based vehicles that act as end-users as well as the forwarding elements. The

fog layer consists of an SDN Controller and several fog domains. Each fog domain

consists of SDN Remote Service Units (RSUs) , cellular Base Station (BS), and SDN

RSU Controller. The SDN controller is responsible for coordinating the RSU Controllers

and BSs. In the fog layer, application components handle storing local road system

information and forwarding the required data to the cloud layer. The resource manager

sets up the execution of different components running on BSs and RSUCs. The fog

controller is responsible for functionalities such as migrating virtual machines between

the fog nodes. In the cloud layer, the components responsible for storing the data for long

terms are deployed. The study dicusses QoS in terms of latency when the application

components are distributed across the cloud and the fog layers. However, the study does

not discuss the scalability of the proposed architecture in terms of the supported number

of connected vehicles and the fog nodes.

2.4.2.3 Smart Living and Smart Cities

Beside the healthcare and connected vehicular applications of fog computing, many re-

search works have done in fog computing relating to smart environments such as smart

living and smart cities. For instance, authors [76] propose fog-based architecture to

http://etd.uwc.ac.za/

Chapter 2. Literature review 22

support smart living applications such as smart healthcare and smart energy. The ar-

chitecture consists of three layers: IoT/end-users layer, fog layer and cloud layer. The

IoT/end-users layer consists of smart objects (e.g sensors, mobile phones and laptops).

The fog layer contained two types of fog nodes: The fog server and the fog edge nodes.

The fog server includes the following modules: application deployment, network config-

uration, and billing while the fog edge node provides computing, storage, and communi-

cation capabilities to smart objects. Also, the fog edge includes a module called foglet

which is responsible for orchestration, Service Level Agreement (SLA) management and

communication between the fog edge nodes and the fog servers. The cloud layer con-

sists of components that handle functionalities such as backup of the data received from

the fog layer. In this work, the fog servers are responsible for routing communications

between the fog edge nodes and the cloud nodes. The drawbacks of the study are as

follows: (i) the authors do not consider the heterogeneity of fog nodes and the nodes

in the cloud layer. (ii) though the inclusion of fog reduces the latency by 73%, there is

fluctuation in the total latency due to the absence of the QoS manager. (iii) The work

lacks an architectural module that can facilitate the mobility of the fog nodes and the

IoT/end-users devices.

Furthermore, the authors [77] propose fog-based architecture to support huge number

of infrastructures and services in future smart cities. The architecture consists of three

layers. The IoT/end-users layer contains many sensor nodes which forward their raw

data to the fog layer. Fog layer consists of edge node and computing nodes. Edge nodes

have the responsibility for grouping sensors locally while the computing nodes connect

to a group of edge nodes. The fog layer contains modules that are responsible for quick

reponses to control the infrastructure when dangerous events occur and are detected.

The cloud layer is responsible for very high-latency computing tasks such as long-term

natural disaster detection and prediction.

2.5 Resource Allocation in Cloud Computing

In cloud computing, resource allocation is the process of assigning available resources to

the needed cloud applications over the internet. These resources are allocated based on

cloud user request and pay-per-use method. Resources in cloud computing could be either

virtual resources or physical resources. Cloud service providers must effectively manage,

provide, and allocate these resources to provide services to cloud consumers based on

service level agreements (SLAs). Therefore, the appropriate allocation of resources in

cloud data centers is also one of the important optimisation problems in cloud computing

especially when the cloud infrastructure is made of lightweight computing devices.

http://etd.uwc.ac.za/

Chapter 2. Literature review 23

The quality of service in cloud computing is based on its resource allocation process, and

the cloud service provider should assign the resource to the cloud users in an optimal way.

The result of any optimal resource allocation strategies must consider certain parameters

such as latency, throughput, reduction of energy consumption, minimization of allocation

cost and response time. There are many existing works relating to resource allocation in

cloud computing.

Maguluri et al. [78] propose a stochastic model for resource allocation in cloud com-

puting in which jobs arrive according to a stochastic process and request a variety of

virtual machines. The authors use a non-pre-emptive for load balance among the cloud

servers and to schedule VM configurations. In order to minimize the communication

complexity, the authors consider a distributed system such that each server maintains

its own queues. The experimental evaluations reveal that there is only a small difference

in delay performance between distributed and centralized queueing systems. Further-

more, the evaluations show that the non-pre-emptive algorithm adopted in this work

outperforms the Best-fit scheduling algorithm in terms of throughput.

Baker et al. [79] present a requirements model for the runtime execution and control

of an intention-oriented Cloud-Based Application. The requirements modelling process

known as Provision, Assurance and Auditing, and an associated framework are defined

and developed where a given system’s functional and non-functional requirements are

modelled in terms of intentions and encoded in a standard open mark-up language. An

autonomic intention-oriented programming model, using the Neptune language, then

handles its deployment and execution.

In [80] the author investigates existing resource scheduling algorithms, and classfies them

according to some determining factors, such as cost, energy and time. The advantage

of the study is that it helps CSPs in the adoption of appropriate scheduling algorithms

based on their ultimate goals.

Liu et al. [81] propose an earliest finish time duplication algorithm to schedule multiple

tasks in heterogeneous data centres. The algorithm can also be referred to as a directed

acyclic graph based scheduling algorithm. The performance evaluation of the study

reveals that the combination of pre-processing the cloud resources before scheduling

and the proposed algorithm, performs better than the heterogeneous earliest finish time

algorithms, in terms of task scheduling time.

In [82] the authors propose a virtual cloud resource allocation model based on constraint

programming to improve the Quality-of-Service (QoS) in cloud computing and decrease

the cost of resource utilization.

http://etd.uwc.ac.za/

Chapter 2. Literature review 24

Moreover, the authors [83] propose a VM Repacking Scheduling Problem (VRSP) to

minimise the energy consumption while placing VM in the data centres. The benefit

of the study is that it is flexible; it enables users to generate automatically the SLA

constraints; and it reduces energy utilization.

In order to address the VM placement problem in a data centre, the authors [84] propose

a greedy-based algorithm to reduce resource usage, the network traffic and the number

of cloud servers. The work divides traffic flows and routes them through two link-disjoint

paths to decrease congestion, at the same time meeting the requirements for protection

grade as well as bandwidth.

Furthermore, the authors [85] propose an online heuristic-based VM placement algorithm

which is based on a multi-dimensional space partition model. The objective of the work

is to make a trade-off between balancing multi-dimensional resource usage and reducing

the number of the PMs used for VM placement. The advantage of the algorithm is

that it reduces the number of running PMs as well as the total energy consumption.

In [86], authors propose an ant-colony based optimization model with the aim to optimize

resource utilization and total power consumption concurrently. The model performs

better than the previous multi-objective VM placement algorithm.

Pascual et al. [87] propose multi-objective evolutionary algorithms to solve the place-

ment problem. The objectives of work are: (i) the consolidation of VMs on a small

set of processors; (ii) the minimization of associated energy costs for servers and net-

work equipment. The performance of the algorithms were carried out using a Flat Tree

topology and tiered applications, such as a web server with an associated database. The

major advantage of the algorithms is that they enhance the application performance and

energy consumption.

The work in [88] proposes algorithms for the placement of precedence-constrained parallel

virtual machines. The aim of the work is to reduce energy consumption by consolidating

virtual machines on the available physical machines yet not degrading the makespan.

The algorithms are evaluated using benchmarks of real-world distributed applications

and achieved efficient results.

Georgiou et al. [89] propose VM placement algorithms for the Portland network architec-

ture with the aim to allocate communicating virtual machines in physical proximity to

avoid the creation of network bottlenecks. The authors propose two algorithms: the first

algorithm is proposed for rapid placement of closely located virtual machines, while the

second algorithm is designed to identify network regions that can best host the virtual

machines and then, using the first algorithm, maps these virtual machines on the servers.

http://etd.uwc.ac.za/

Chapter 2. Literature review 25

The benefit of the approach is that it has the capability to reduce the intensity of traffic

in the links of top-level switches.

Meng et al. [90] propose Cluster-and-Cut algorithm to improve the scalability of data cen-

ter networks with traffic-aware VM placement. The goal of the algorithm is to reduce net-

work traffic among VMs and related communication cost by placing inter-communicating

VMs in the same PM. The VM placement problem is formulated as a quadratic assign-

ment problem (QAP) to find a suboptimal placement which minimizes network traffic,

considering the associated communication cost and a static-single path routing. The

allocation cost is defined as the number of switches between two inter-communicating

VMs and each PM is divided by slots with the capacity to accommodate a single VM

with the assumption of an equal number of VMs and slots. If the number of VMs is

lower than the number of slots, dummy VMs are introduced with zero traffic which has

no significant effect on the solution of the problem. The performance evaluations of

the algorithm show a significant performance improvement compared to existing genetic

algorithmic methods.

Breitgand et al. [91] investigate the problem of placing images and VM instances on the

servers with the aim to increase the affinity between them to mitigate communication

overhead and latency. The problem is modelled as an extension of the Class Constrained

Multiple Knapsack problems (CCMK) and present a polynomial time local search algo-

rithm for the same size images. Specifically, this model focuses on an off-line placement

problem, where there are a given set of demands and available servers. In order to solve

this problem, the local search algorithm was applied as a basis for ongoing optimization

which periodically improves the VM placement and greedy placement of a new set of

VM instances by allowing migrations of the VMs.

Vakilinia et al. [92] propose a platform for virtual machine (VM) placement/migration

to minimize the total power consumption of cloud data centers (DCs). The platform

is divided into two parts. Firstly, an estimation module is introduced to predict the

incoming load of the DC. Secondly, two schedulers are designed to determine the optimal

assignment of VMs to the PMs. The proposed schedulers apply column generation

method to solve the large-scale optimization problem in conjunction with the cut-and-

solve-based algorithm and the call back method to decrease the complexity and the time

to obtain the optimal solution. The trade-off between optimality and time is investigated.

The numerical results show that the proposed platform produces the optimal solution

for a limited time-frame.

Selmy et al. [93] present virtual machines migration and selection policies to reduce

the power consumption of servers in the cloud computing environment. The authors

propose neural networks for classification and prediction, Self Organizing Map (SOM)

http://etd.uwc.ac.za/

Chapter 2. Literature review 26

Table 2.1: Comparison of related VM placement problems

Paper Latency-
aware

Energy-
aware

Network-
aware

Internal
traffic

Flow path
allocation

Method adopted

[88] No Yes No Yes No Scheduling algo-
rithms

[84] No No Yes Yes Yes Greedy method
[85] No Yes No No No EAGLE algorithm
[86] No Yes No No No Ant-colony based

algorithm
[90] No No Yes Yes Yes Cluster-and-Cut

algorithm
[87] No Yes Yes Yes No Multi-objective

evolutionary
algorithms

[89] No No Yes Yes Yes Virtual Infrastruc-
ture Opportunis-
tic fit (VIO) and
VIcinity-BasEd
Search (VIBES)

[91] Yes No Yes Yes No local search algo-
rithm

[92] No Yes No No No Column genera-
tion method, cut
and solve based
algorithm and call
back method

[93] No Yes No No No Neural networks,
Self Organizing
Map (SOM) and
K-Means Cluster-
ing algorithms

GABVMP Yes Yes Yes Yes Yes Genetic algorithm

and K-Means Clustering algorithms for the policies. The results of implementation of

the proposed policies show significant reduction of energy consumption of the servers in

the data center.

All the works mentioned above have been able to solve one or two problems of VM

placement in the cloud computing environment. However, there is still much to be done

to mitigate the effect of these problems. Thus, this work propose the Genetic Algorithm

Based Virtual Machine Placement (GABVMP). The comparison of the GABVMP and

the existing related VM placement approaches as mentioned above is presented in Table

2.1. The comparison parameters include: latency awareness; energy awareness; network

awareness; Internal traffics; flow path allocation and the method adopted to solve the

VM placement problem.

http://etd.uwc.ac.za/

Chapter 2. Literature review 27

2.6 Security in Cloud Computing

There are numerious obstacles hindering the acceptability of cloud computing among

organizations. Armbrust et al. [4] highlighted ten obstacles to the growth of cloud

computing together with potential opportunities for recovery. One of the obstacles is

security which is considered to be a critical barrier for cloud computing in its path to

success [94]. Security of cloud can be regarded as a means of protecting information and

resources from unathorized access. Generally, security is a very crucial concept that has

been a serious research area in computing because of its effect on all resources. In cloud

computing, many organizations share resources which might lead to data privacy and

integrity issues. In order to avoid these issues, it is imperative to secure data repositories,

data communication and data processing.

2.6.1 Cloud Computing Security Threats

There are many security threats to cloud computing, some of which are as follows:

2.6.1.1 Data Breaches

A data breach refers to a situation where confidential, protected or sensitive information

stolen and used by an unauthorised party. Data breaches can sometimes occur due to the

following factors: (i) lack of scalable identity access management systems; (ii) inability to

use multi-factor authentication; (iii) using weak passwords; and (iv) absence of ongoing

automated rotation of cryptographic keys, passwords and certificates [95].

2.6.1.2 Data Loss

In a cloud computing environment, data is outsourced by the owners to the cloud storage

that is untrustworthy and unprotected from malicious attackers. Subsequently, the data

might be lost or modified by third parties who are unauthorized to have access to the

cloud. Sometimes, data could be altered deliberately or accidentally by unautorized

users. Invariably, there could be administrative errors which may eventually lead to data

loss such as taking or restoring invalid backups.

2.6.1.3 System Vulnerabilities

System vulnerabilities are bugs in computer programs that attackers can use to gain

access to a computer system for the purpose of stealing data, taking control of the

http://etd.uwc.ac.za/

Chapter 2. Literature review 28

system or disrupting normal service operations [96]. This type of threat usually occurs

due to multi-tenancy in cloud computing that allows systems from many organizations to

be placed in closeness and giving them access to shared memory and resources, thereby

creating a new attack surface.

2.6.1.4 Account Hijacking

Account hijacking is a critical threat in cloud computing in which malicious attackers can

use stolen passwords to gain access to the data in the cloud. Thereafter, the attackers

can provide invalid information or divert users to the wrong web-sites in order to steal

user’s information which may result to loss of user’s goods and services.

2.6.1.5 Denial of Service

This threat denies users from getting access to the cloud services or from gaining access

to their accounts which may discourage the authorized users due to poor response time

of cloud services. In this type of threat, users are always at the receiving end as they

subscribe to the cloud service according to the time spent or storage used.

2.6.1.6 Malicious Insiders

A malicious insider such as a system administrator has administration access to all the

cloud servers [96], [97]. This threat affects all the three service models (IaaS, PaaS and

SaaS) of cloud computing which results in the loss of organization reputation, financial

loss and diminished productivity.

2.6.2 Security Requirements in a Cloud Computing Environment

In order to protect outsourced data in the cloud from being attacked by adversaries, it is

important to provide authentication, authorization and access control to the outsourced

data in the cloud [98]. The major data security requirement in the cloud computing are:

2.6.2.1 Data Confidentiality

The goal of data confidentiality is to protect data from being disclosed to the unatho-

rised parties [99]. One of the techniques to achieve data confidentiality is cryptography.

Cryptography is the mathematical science of sending information in such a way that

http://etd.uwc.ac.za/

Chapter 2. Literature review 29

only the intended recipient is able to retrieve the information [100]. Cryptography is the

process that involves encryption and decryption of text using a cryptographic algorithm.

A cryptographic algorithm is a mathematical function that can be used in the process

of encryption and decryption. Encryption is the process of converting plain text into

an unreadable form called a cipher while decryption is the reverse process of encryp-

tion. Decryption is a process of converting cipher text into plain text. Cryptography is

classified as Symmetric cryptography and Asymmetric cryptography techniques.

Symmetric Cryptography

In symmetric cryptography, the same key is used by both encryption and decryption.

The sender uses this key and an encryption algorithm to encrypt data; the receiver uses

the same key and the corresponding decryption algorithm to decrypt the data. Examples

of symmetric systems are the data encryption standard (DES)

Figure 2.2: Symmetric encryption

As illustrated in Figure 2.2, symmetric encrption involves the follwing stages:

1. The ciphertext message is created by the sender (message source) through the

encryption of a plaintext with the assistance of a symmetric encryption algorithm

as well as a shared key.

2. The ciphertext message is sent to the recipient (message destination) by the sender

3. The ciphertext message is decrypted back into plaintext by the recipient

Asymmetric Cryptography

Asymmetric cryptography also known as public-key cryptography has two keys: a private

http://etd.uwc.ac.za/

Chapter 2. Literature review 30

key and a public key. The public key is used by the sender to encrypt plaintext to

ciphertext and private key is used by the recipient to decrypt ciphertext to plaintext [101].

Some commonly used asymmetric cryptography techniques are RSA (Rivest Shamir and

Adleman) [102], Diffie-Hellman, DSA (Digital Signature Algorithm) and ECC (Elliptic

curve cryptography).

As illustrated in Figure 2.3, symmetric encryption involves the following stages:

1. The ciphertext message is created by the sender (message source) through the

encryption of a plaintext with the assistance of an asymmetric encryption algorithm

and the recipient’s public key.

2. The ciphertext message is sent to the recipient (message destination) by the sender

3. The ciphertext message is decrypted back into a plaintext by the recipient’s private

key

Figure 2.3: Asymmetric encryption

2.6.2.2 Data Integrity

Data Integrity is one of the important challenges in the cloud computing environment

[103]. After outsourcing data to the cloud, users depend on the cloud service providers

to provide a mechanism that would ensure their data and applications are secure. Unfor-

tunately, user’s data may be altered or deleted due to the negligence of the cloud service

providers. Data Integrity gives the guarantee that only the authorized party is allowed

http://etd.uwc.ac.za/

Chapter 2. Literature review 31

to modify the transmitted information, no third party in between the sender and receiver

is allowed to alter the given message.

In order to solve the problem of data integrity checking, many researchers have proposed

different systems and security models. These authors [104] propose a light-weight and

provably secure Provable Data Possession (PDP) scheme based entirely on symmetric

key cryptography without requiring any bulk encryption. The scheme guarantees data

integrity over remote servers. However, since the scheme is based on symmetric key

cryptography, it is unsuitable for third-party verification.

Similarly, Zhu et al. [105] design high security, high performance, and transparent ver-

ification for the PDP model in the context of multi-cloud. This scheme is based on

homomorphic verifiable response (HVR) and hash index hierarchy (HIH), and presents

a cooperative PDP (CPDP) scheme using bilinear pairings. It supports all characteris-

tics of data integrity schemes such as blockless verification, unforgeability, unbounded

queries, data recovery, public auditing, privacy protection and data dynamic operations.

The authors [106] propose HAIL, the high-availability and integrity layer for cloud stor-

age which allows the users to store their data on multiple servers in a redundancy manner.

HAIL uses message authentication codes (MACs), the pseudorandom function, and uni-

versal hash function to ensure the integrity process. The goal of this method is to ensure

data integrity of a file via data redundancy. However, the method is only applicable for

the static data and requires more computation power.

The authors [107] propose public verifiability for remote outsourced storage shared by

multiple users in a privacy-preserving manner. The scheme uses group signatures for

homomorphic authenticators and homomorphic MACs to support public auditing. How-

ever, the scheme is unable to identify small corruptions with sampling and computation

cost increases with the increase of sampled blocks.

2.6.2.3 Data Availability

Data availability means that data is available when the need arises. In cloud computing,

data availability is usually achieved through redundancy which specifies how data is

stored and retrieved. In [108], a novel model for the storage allocation scheme in cloud

storage systems is proposed aiming to minimize the data redundancy while achieving a

given (high) data reliability.

Abu-Libdeh et al. [109] propose Redundant Array of Cloud Storage (RACS), a proxy-

based system that transparently stripes data across multiple cloud storage providers.

The protocol allows customers to avoid vendor lock-in, reduces the cost of switching

http://etd.uwc.ac.za/

Chapter 2. Literature review 32

providers, and better tolerates provider failures. It retrieves data from the cloud that

is about to fail and moves the data to a new cloud. However, this protocol is unable

to recover data lost when permanent cloud failure occurs, and it does not address data

integrity and confidentiality challenges in cloud storage.

In [110], Bessani et al. propose Depsky: dependable and secure storage in a cloud-of-

clouds to address two security requirements in their storage system, which are confiden-

tiality and availability of data. They combined the byzantine quorum protocol, secret

sharing cryptographic and erasure codes.

In [106], Bowers et al propose a HAIL (High Availability and Integrity Layer) to ad-

dress the threat caused by a service provider being unavailable. A HAIL distributes the

data across many cloud service providers using RAID technique to keep customer’s data

available all the time. However, it does not detect the corruption but it remedies it by

avoiding this corruption in a subset of storage providers by using the data in the other

cloud service providers.

Fawaz, et al [111], [112] propose a storage architecture that can be regarded as a Single

phase Data Security and Availability (SDSA) protocol. The protocol uses a storage

method based on Redundant Array of Independent Disks (RAID) 10 and consists of

three cloud servers. The protocol enforces a single security check on the data to be

outsourced using the cryptography process, strips the encrypted data to two servers and

the parity bits to the third server. The authors store data sequentially after encrypting

it and dividing the cipher into blocks. One block is in one cloud server, while the next

block is in the next cloud server and the parity bit in the third cloud server. A parity

bit can be in any cloud server while the other is in the other cloud server. The protocol

ensures no data is lost in case there is a permanent failure in any of the cloud servers.

In order to move a customer’s data closer to the data users, improve the protection of

the customer’s data against intruders and prevent permanent loss of outsourced data, in

case there is a permanent failure in any of the cloud servers in cloud storage, this work

proposes a fog-based Multi-Phase Data Security and Availability (MDSA) protocol. The

scheme provides multiple security checks and availability of the outsourced data in the

cloud storage. The first security check is performed by the data owners while the second

security check and the data availability process are performed within the cloud storage

environment.

http://etd.uwc.ac.za/

Chapter 2. Literature review 33

2.7 Chapter summary

This chapter provides a detailed literature review of the research aim and objectives

posed in Chapter one. The concept of virtualization, cloud storage and fog computing

are presented and discussed. This chapter has also explained in detail different security

requirements as well as data availability in a cloud computing environment.

In the next chapter, the effective data models for the cloud services brokerage are pre-

sented, implemented and evaluated using PubNub/OpenStack testbed and databases:

Neo4j; MySQL; and MongoDB.

http://etd.uwc.ac.za/

Chapter 3

Database Management System for

Cloud Services Brokerage

3.1 Introduction

Cloud Computing provides computing resources, platform and software on on-demand

self service. One of the important components of cloud computing is cloud services

brokerage (CSB). CSB plays the role of a third party between cloud service providers

(CSPs) and customers. It manages and monitors inflow of requests from customers

and maps these requests to virtual machines and cloud infrastructures. As the cloud

computing market expands and the number of users and cloud service providers increases,

there is a need for a centralised system [113] called cloud services brokerage (CSB) to

optimize resource allocation by managing and monitoring the activities of cloud users and

cloud service providers. For the CSB to work efficiently, a reliable database management

system needs to be implemented at the CSB site to keep and update customer requests

and cloud infrastructures status. Relational database management systems (RDBMS)

otherwise known as the SQL database cannot cope with the unprecedented scale factors

that modern cloud-based applications have introduced. The cloud applications need

to support large numbers of concurrent users and be able to handle unstructured and

semi-unstructured data. To solve these problems, NoSQL (Not Only SQL) databases

emerge to support large-scale application demands. In addition, previous studies have

shown that NoSQL databases perform better than SQL databases especially in the cloud

computing environment where there is a huge volume of data [114].

There are many existing works relating to the database model in cloud computing. For

instance, Goli-Malekabadi et al. [115] propose an effective database model for storing

and retrieving big health data in cloud computing. The study presents the model based

34

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 35

on NoSQL databases for the storage of healthcare data and is implemented in the cloud

environment for gaining access to distribution properties. The experimental results of

the model are evaluated with the relational database model in terms of query execution

time, data preparation, flexibility and extensibility parameters. The results show that the

proposed model outperforms the relational database. In [116], the researchers propose

a novel protocol to enable secure and efficient database outsourcing. First, the authors

propose a new cloud database model by introducing computation service providers, which

can accommodate the conventional DBaaS model, and introduce a proposed database

outsourcing protocol secureDBS which uses a secret sharing mechanism. The experiments

conducted show that the proposed model is reliable, secure and efficient. In [117], the

authors proposes a novel management scheme that enables the representation and the

retrieval of (structured or unstructured) big data using conceptual graphs and structured

marks. Curino et al. [118] propose a relational database as-a-service for the cloud.

This work describes the challenges and requirements of a large-scale, multi-node DBaaS

and presents the design principles and implementation status of relational cloud. The

advantage of this work is that it addresses three significant challenges, which are: (i)

efficient multi-tenancy; (ii) elastic scalability; and (iii) database privacy. MapReduce

provides a framework for large data processing in the cloud. However, it has a higher

learning curve than SQL-like language and the codes are hard to maintain and reuse.

On the other hand, traditional SQL-based data processing is well known to users, but is

limited in scalability. Hsieh at al. [119]propose a hybrid solution to fill the gap between

SQL-based and MapReduce data processing. The solution comprises a data management

system for cloud, named SQLMR which translates SQL-like queries to a sequence of

MapReduce jobs. The advantage of the solution is that users of SQLMR can write data

management programs with familiar query language or run existing programs without

need for modification. The experimental results demonstrate that SQLMR achieves

significant improvement in query processing time.

3.1.1 Contribution and Outline

This chapter uses an exploratory approach to present an efficient data model for the

cloud computing environment, to elucidate how the CSB can effectively support the allo-

cation, control and management of virtual resources between CSPs and cloud users. The

model is implemented using the relation database (MySQL), graph database (Neo4j) and

document-oriented database (mongodb) on the private lightweight cloud testbed using

database language syntax to store, update and retrieve the customer requests and cloud

infrastructures status in the database. Building upon the free and open source OpenStack

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 36

software platforms for cloud computing, the model is intended to provide infrastructure-

as-a-service(IaaS) in community sensor networks [120] for applications such as drought

mitigation for small scale farming [121], [122] and cyber healthcare [123], [124] in the

rural areas of the developing countries. Potential applications which might also benefit

from this model include smart parking [125], pollution monitoring [126] and public safety

[127] in emerging smart cities. The rest of this chapter is organized as follows; section 3.2

describes the concept of the cloud service brokerage system. Section 3.3 presents a data

model for the cloud computing environment. The representation of explored databases

is presented in section 3.4. Implementation of the models and Experimental results are

found in section 3.5 and 3.6. Finally, section 3.7 concludes the chapter.

3.2 Cloud Services Brokerage

As depicted in figure 3.1, the cloud computing environment considered in this paper

consists of user, virtual machine repository (VMR), and cloud services broker (CSB)

and CSP which consists of physical machines (PM) and data center (DC). CSB is a

third-party individual or business acting as a middle man between cloud service users

and CSPs.The CSB has a database containing data of provider’s capabilities, including

functional, technical and location data. This knowledge is highly important for discern-

ing which characteristics some providers support but others do not, and provide the

means to better advise users with a filtered set of providers matching their application

requirements [128]. CSBs rent different types of cloud resources from many cloud service

providers and sublet these resources to the requesting cloud users. The cloud service

broker performs the following functions: (i)optimal placement of the virtual resource

of a virtual infrastructure across multiple cloud service providers, (ii) management and

monitoring of these virtual resources and (iii) aggregation of multiple cloud services into

one or more customer-tailored cloud services. OPTIMIS [129] identifies requirement and

capabilities that a cloud service broker needs to have in order to play the role of brokerage

services:

• Effectively match the requirements of the cloud user with the service provided by

the CSPs.

• Negotiate with CSPs and cloud users over service level agreements (SLA).

• Effectively deploy services of CSP onto the cloud users

• Maintain performance check on these SLA’s and take actions against SLA viola-

tions.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 37

• Ensure data confidentiality and integrity of CSP’s service.

• Enforce access control decisions uniformly across multiple CSPs.

• Securely map identity and access management systems of the CSPs.

One of the challenges encountered by cloud customers is how to identify the best cloud

services which can satisfy their QoS requirements in terms of parameters such as perfor-

mance and security.

Heilig et al. [130] propose a cloud brokerage approach to solve the Cloud Resource

Management Problem in multi-cloud environments with the aim to reduce the monetary

cost and the execution time of consumer applications using Infrastructure as a Service of

multiple cloud providers. In [131], the authors propose a broker-based architecture and

algorithm for placing and migrating virtual resources to physical machines. In [132], the

authors propose a federated cloud computing environment in which a cloud broker has

the ability to interface more than one cloud provider to support several users. These users

access cloud services via the web interface. The cloud service broker pays the usage of the

cloud resources to the cloud service provider, and charges the user for these resources. In

[133], a solution to manage the information of a large number of cloud service providers

via a unique indexing technique is proposed. STRATOS [134] proposes a cloud brokerage

service that solves a Resource Acquisition Decision (RAD) problem in the selection of n

resources from m cloud services. [135] develops a cloud brokerage service for measuring

the performance of a range of cloud services including; elastic compute clusters, persistent

storage, intra-cloud networking and wide-area networking. [136] proposes a novel secure

sharing mechanism for a secure cloud bursting and aggregation operation in which the

cloud resources are shared in a confidential manner among different cloud environments.

Furthermore, Garg et al. [137] propose SMICloud, a framework and a mechanism to

measure quality and prioritize cloud services such that the framework can make sig-

nificant impact and create a healthy competition among cloud service providers. This

will ensure that they comply with their Service Level Agreement (SLA) and improve

Quality of Services (QoS). In [138], the author proposes a cloud service broker system

that helps consumers in selecting the right SaaS provider that can fulfill their functional

and quality-of-service (QoS) requirements. Its Selection Manager component ranks SaaS

providers by matching their QoS offerings against the QoS requirements of the service

consumer. The system negotiates on behalf of the cloud customers the SLA terms using

a multi-attributes negotiation model with a selected SaaS provider, and monitors the

compliance to the SLA during the contract.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 38

Figure 3.1: Cloud Computing Environment

3.3 Data model of Cloud computing environment

In this section, the system model for our cloud computing environment is introduced.

As depicted in figure (1), the cloud computing environment consists of User, Virtual

Machine Repository (VMR), Cloud Service Provider (CSP), Physical Machines (PM),

Data Center (DC) and Cloud Services Broker (CSB).

Let us consider a set CSP,

CSP = {csp1, csp2....cspn} (3.1)

Where n is the number of CSPs managed by the CSB. Each CSP consists of DC,

DC = {dc1, dc2....dcm} (3.2)

where m is the number of DCs in a CSP and each DC contains a member of PMs,

PM = {pm1, pm2....pmq} (3.3)

where q is the number of PM in a DC and each PM hosts t number of VMs as expressed

by the set

VM = {vm1, vm2....vmt} (3.4)

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 39

Also, let us consider that K jobs need to be allocated to CSPs. Each job k requires wj
number of virtual machines. The CSB allocation is expressed by the notation

k −→ vmwj (3.5)

subject to wj = 1 or wj ≤ t. Each vm is placed in one pm,

vm −→ pm (3.6)

Each pm is hosted by one data center dc,

pm −→ dc (3.7)

Finally, each data center is owned by one cloud service provider (csp),

dc −→ csp (3.8)

3.4 Representation of Explored Databases

In this section, the deployment of relational, graph and document-oriented models for

cloud computing environments is presented.

3.4.1 Relational Model

In a relational model, data and relations between them are organized into tables. A

table is a collection of records and each record in a table contains the same fields. The

properties of a relational model include:

• Data is presented as a collection of relations.

• Each relation is depicted as a table.

• Columns are attributes that belong to the table

• Each row represents a single record

• Every table has a set of attributes and a primary key uniquely identifies each table

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 40

Figure 3.2: Relational model for Cloud Computing Environment

The relational model for cloud computing environment is represented using the following

schema:

• CLOUDPROVIDER { cspid, name, cost, costPerMem, costPerStorage, costPerBw}

• DATACENTER { name, centerid, location, arch, os, time_zone}

• PHYSICALMACHINE { name, pmid, mips, ram, bw, storage}

• VIRTUALMACHINE { name, vmid, mips, ram}

• JOB { job_id, name, length, filesize }

The corresponding relational model diagram is shown in figure 3.2.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 41

Figure 3.3: Graph Model for Cloud Computing Environment

3.4.2 Graph Model

The graph data model encodes entities and relationships between entities using directed

graph structure [139]. It is a set of vertices and edges where vertices denote nodes

and edges represent relationship between these nodes. Graphs are data structures for

storing data that are heterogeneously structured. Graphs can be directed or undirected.

Undirected graphs can be traversed in both directions, while directed graphs can be

traversed only in one direction. The properties of a graph model include the following

[140];

• It contains nodes and relationships.

• Nodes contain properties (key-value pairs).

• Nodes can be labelled with one or more labels.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 42

• Relationships are named and directed, and always have a start and end node.

• Relationships can also contain properties.

Algorithm 1: Mapping relational tables to graph database
input : T = {(x, y)} : relational tables,

G = {(v, e)|v ∈ V), e ∈ E} : a graph where V and E are set of nodes and
relationships
output: G(V,E): mapping of relational tables to a graph database

1 let each tuple t be a table in a set of relational tables T for (each tuple t ∈ T) do
2 v ← t
3 ; where a node v ∈ V . Each node v is identified by its table name and primary

key: id(v) = {name(T), x}.
4 end
5 if (y is a foreign key) then
6 a relationship e ∈ E is created between v and u such that id(u) =

{name(ty), y}, ty is a table where y is its primary key. else
7 y becomes a property of a node n where id(v) = {name(T), x}
8 end
9 end

10 for (a set of keys in t) do
11 maps each pairwise relationship to edge between the corresponding vertices.
12 end
13 return G(V,E)

Algorithm 1 describes the mapping of relation tables in figure 3.2 to a graph model.

Each primary key in a table t is converted to a node v. For example, a vmid in

V IRTUALMACHINE table maps to a vm node. A foreign key pmid in a table

V IRTUALMACHINE is connected to primary key pmid in a table, PHY SICALMACHINE

creates relationship between the nodes vm and pm in graph model. Non-key elements in

CLOUDPROV IDER,DATACENTER, PHY SICALMACHINE, V IRTUALMACHINE

and JOB tables become properties of csp, dc, pm, vm and job nodes respectively in the

graph model.

Thus, the graph model of cloud computing environment can be represented mathemat-

ically as a graph G(V,E) where V is the set of resource nodes and E is the set of

relationships between the nodes such that,

{CSP,DC,PM, VM,K} ⊂ V (3.9)

Constrained by the notation:

|DC|≥ |CSP | (3.10)

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 43

|VM |≥ |PM | (3.11)

|K|≥ |VM | (3.12)

The relationships between the nodes of the graph (V,E) are defined as follows:

• csp → dc represents the relationship between cloud service provider and data

center.

• dc→ pm represents the relationship between data center and physical machine.

• pm → vm represents the relationship between physical machine and virtual ma-

chine.

• vm→ k represents the relationship between virtual machine and job.

Such that,

csp→ dc, dc→ pm, pm→ vm, vm→ k ⊂ E (3.13)

The graph is illustrated by figure 3.3.

3.4.3 Document-oriented Model

In a document-oriented model, data objects are stored as documents; each document

stores data which can be updated or deleted. Instead of columns with names and data

types, data is described in the document, and provide the value for that description.

The difference between a relational model and a document-oriented model is as follows:

in a relational model, data is added by modifying the database schema to include the

additional columns and their data types while in document-based data, additional key-

value pairs will be added into documents to represent the new fields. One of the popular

document database management systems is MongoDB.

MongoDB is a document-oriented NoSQL DBMS written in C++ and developed by

10gen. Its attractive features which include easy data model and data query with

high performance make it more popular to the developer [141]. The main concepts

in MongoDB are collection and object(document). The collection is a group of Mon-

goDB documents and corresponds to the table in the relational database. In MongoDB,

the relational database remains a database. A relational table is mapped to a MongoDB

collection. The tuples or rows become documents inside MongoDB collections.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 44

To transform the relational tables into MongoDB database, the relationships among the

table must be taken into consideration. The steps considered in mapping relational tables

into MongoDB database are as follows:

1. The one-to-one (1:1) relationship describes a relationship between two tables. For

example a job runs on a single virtual machine. The 1:1 relationship can be modeled

in mongoDB by embedding the "virtualmachine" document in "Job" document as

shown in Figure 3.4.

{
id: ObjectId("5b49f98787d1b663189040c8"),
name: "job1",
length: "4000",
file-size: "24",
virtualmachine:{
name: "vm1",
mips: "250",
ram: "20148",
pm_id: "1",
}
}

Figure 3.4: 1:1 relationship modeled in MongoDB

2. The one-to-many (1:M) relationship is where one record in a table relates to many

records in another table. For example a physical machine hosts many virtual

machines but a virtual machine is mapped to a single physical machine. The 1:M

relationship can be modeled in mongoDB by embedding the many "virtualmachine"

documents in a "physicalmachine" document as shown in Figure 3.5.

3. The many-to-many (N:M) relationship occurs when multiple records in a table

are associated with multiple records in another table. For example, a many-to-

many relationship exists between physical machines and virtual machines: physical

machines can host many virtual machines, and virtual machines can be mapped

to many physical machines. The N:M relationship can be modeled in mongoDB

by embedding the many "virtualmachine" documents in many "physicalmachine"

documents or vice versa as shown in Figure 3.7.

Thus, the document-oriented model for the cloud computing environment is represented

in Figure 3.8.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 45

{
id: ObjectId("5b49f98456d1b663047040d4"),
name: "job1",
length: "4000",
file-size: "24",
virtualmachine:[{
name: "vm1",
mips: "250",
ram: "20148",
pm_id: "1",
}
{
name: "vm2",
mips: "500",
ram: "1024",
pm_id: "1",
}
]
}

Figure 3.5: 1:M relationship modeled in MongoDB

Figure 3.6: PubNub/OpenStack testbed setup

3.5 Experiments

The experiment to implement the cloud brokeage architecture and data models is carried

out using PubNub technology [142] as shown in the Figure 3.6. PubNub is an API of

global Data Stream Network (DSN) which is used to provide real-time interaction with

Web users as the data arrives into the cloud [143]. The communication is enabled using

publish/subscribe communication design over a channel through PubNub servers. In

this work, cloud users and a cloud broker can either be a message publisher or subcriber.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 46

Figure 3.7: N:M relationship modeled in MongoDB

The Figures 3.9 and 3.10 show the sample of python script to publish and subscribe

messages between cloud user and cloud broker as well as a sample of requests from the

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 47

Figure 3.8: Document oriented Model for Cloud Computing Environment

cloud user to the cloud broker. The cloud broker denotes the proxy node of the private

lightweight cloud testbed running on Openstack architecture. The proxy node is a Linux

Machine with an Inter(R) core(TM) i5-4590, 3.30Ghz CPU, 8GB RAM and serves as a

cloud brokerage system which initiates upload and download operations across multiple

storage nodes. The CSB receives requests from cloud users through the pubnub channel

and updates the cloud resources status in the different databases either manually or

through a real-time process by building Application Protocol Interface (API) connecting

cloud infrastructures to the databases.

The performance of three different databases is evaluated in terms of query response

times. The databases considered in this work are: (i) relational database: MySQL; (ii)

graph databse: Neo4j; and (iii) document-oriented databse: MongoDB.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 48

Figure 3.9: publish/subscribe script

Figure 3.10: Sample of requests from the cloud user to the cloud broker through a
PubNub channel

3.5.1 Implemention of Graph Database

One of the examples of graph database is Neo4j and it can be accessed using cypher

query language. In this work, the graph database is implemented using Neo4j Commu-

nity version 3.0.1. The database contains nodes with labels, properties and relationship

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 49

between them is as follows:

• csp(’CLOUDPROVIDER’, cspid, name, cost, costPerMem, costPerStorage, cost-

PerBw)

• dc(’DATACENTER’, name, centerid, location, arch, os, time_zone)

• pm(’PHYSICALMACHINE’, name, pmid, mips, ram, bw, storage)

• vm(’VIRTUALMACHINE’, name’, vmid, mips, ram)

• job(’JOB’, job_id, name, length, filesize)

The nodes and relationships are created in graph database by using cypher query lan-

guage as follows:

(i) Cypher syntax to create Nodes and relationship.

(a) Create Datacenter, Cloud provider nodes and relationship between them.

CREATE (dc1:DATACENTER{ name=’dc1’, centerid=1, location=’Capetown’,

arch = "x86", os = "Linux", time-zone = 10.0 }) -[:OWNED-BY]-> (csp:CLOUDPROVIDER

{ name=’csp1’,cspid=0, cost = 3.0, costPerMem = 0.05, costPerStorage =

0.001, costPerBw = 0.0 })

(b) Create Datacenter, Physical Machine nodes and relationship between them.

CREATE (pm:PHYSICALMACHINE{ name=’pm1’, pmid=0, mips=1000,

ram=20148, bw=1000, storage=1000000 }) -[:DEPLOYED-IN]-> dc1:DATACENTER

{ name=’dc1’, centerid=1, location=’Capetown’, arch = "x86", os = "Linux",

time-zone = 10.0 })

(c) Create Virtual Machine, Physical Machine nodes and relationship between

them.

CREATE (vm:VIRTUALMACHINE{ name=’vm1’, vmid=0, mips=250, ram=20148

} -[:HOSTED-BY]-> dc1:DATACENTER { name=’dc1’, centerid=1, loca-

tion=’Capetown’, arch = "x86", os = "Linux", time-zone = 10.0 })

(d) Create Virtual Machine, Job nodes and relationship between them.

CREATE (job:JOB{ app_id=0, name=’job1’, length=4000, filesize=24 -[:RUNS-

ON]-> vm:VIRTUALMACHINE { name=’vm1’, vmid=0, mips=250, ram=20148

})

(ii) Cypher queries to retrieve information from graph database.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 50

(a) Query 1: Find all Virtual Machines assigned to Jobs.

MATCH (a)-[:RUNS_ON]->(b) RETURN a.name as JOB, b.name as VIR-

TUALMACHINE;

(b) Query 2: Find name of resources owned by Cloud Service Providers.

MATCH (b)-[:HOSTED_BY]->

(c)-[:DEPLOYED_IN]-> (d)-[:OWNED_BY]->

(e) RETURN b.name as VIRTUALMACHINE, c.name as PHYSICALMA-

CHINE,

d.name as DATACENTER, e.name as CLOUDPROVIDER;

(c) Query 3: Find all resources used by job 1.

MATCH (a:JOB{name:’job1’})-[:RUNS_ON]->(b)-[:HOSTED_BY]->(c) -

[:DEPLOYED_IN]->(d)-[:OWNED_BY]->(e) RETURN a as JOB, b as VIR-

TUALMACHINE, c as PHYSICALMACHINE, d as DATACENTER, e as

CLOUDPROVIDER;

3.5.2 Relational Database

A relational database is a collection of multiple data sets organized into tables, records

and columns. The databases supporting the relational model are known as relational

databases and are usually accessed using Structure Query Language (SQL) as standard

query language. The two most extensively used relational databases are MySQL and

Oracle. In this work, the relational database is implemented using MySQL version 3.0.1.

The database contains the following schema:

• CLOUDPROVIDER (cspid, name, cost, costPerMem, costPerStorage, costPerBw)

• DATACENTER (name, centerid, location, arch, os, time_zone)

• PHYSICALMACHINE (name, pmid, mips, ram, bw, storage)

• VIRTUALMACHINE (name, vmid, mips, ram)

• JOB (job_id, name, length, filesize)

The Structured Query Language (SQL) to create and retrieve a table in MySQL database

is discussed below:

(i) SQL syntax to create Tables.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 51

(a) Create CLOUD PROVIDER table.

CREATE TABLE CLOUDPROVIDER(csp_id int, name varchar(15) NOT

NULL, cost_per_BW int, cost_per_storage int, cost int, center_id int, PRI-

MARY KEY (csp_id), FOREIGN KEY (center’_id) REFERENCES DAT-

ACENTER(center’_id))

(b) Create DATA CENTER table.

CREATE TABLE DATACENTER (center_id int , name varchar(15) NOT

NULL, os varchar(30), location varchar(30), arch varchar(15), time_zone

varchar(30), pm_id int, csp_id int, PRIMARY KEY (center_id), FOREIGN

KEY (pm_id) REFERENCES PHYSICALMACHINE(pm_id), FOREIGN

KEY (csp_id) REFERENCES CLOUDPROVIDER(csp_id))

(c) Create PHYSICAL MACHINE table.

CREATE TABLE PHYSICALMACHINE (pm_id int, name varchar(15)

NOT NULL, mips int, ram int, storage int, vm_id int, center_id int, PRI-

MARY KEY (pm_id), FOREIGN KEY (center_id) REFERENCES DATA-

CENTER(center_id), FOREIGN KEY (vm_id) REFERENCES VIRTUAL-

MACHINE(vm_id))

(d) Create VIRTUAL MACHINE table.

CREATE TABLE VIRTUALMACHINE (vm_id int, job_id int , name var-

char(15) NOT NULL, mips int, ram int, pm_id int, PRIMARY KEY (vm_id),

FOREIGN KEY (pm_id) REFERENCES PHYSICALMACHINE(pm_id),

FOREIGN KEY (job_id) REFERENCES JOB(job_id)

(e) Create JOB table.

CREATE TABLE JOB (job_id int , name varchar(15) NOT NULL, length

int, filesize int, vm_id int, PRIMARY KEY (job_id),FOREIGN KEY (vm_id)

REFERENCES VIRTUALMACHINE(job_id))

(ii) SQL queries to retrieve information from relational database.

(a) Query 1: Find all Virtual Machines assigned to Jobs.

SELECT p1.name, p2.name FROM JOB p1, VIRTUALMACHINE p2 where

p2.job_id = p1.job_id

(b) Query 2: Find name of resources owned by Cloud Service Providers.

SELECT b.name, c.name, d.name, e.name FROM VIRTUALMACHINE b,

PHYSICALMACHINE c, DATACENTER d, CLOUDPROVIDER e WHERE

b.pm_id=c.pm_id and c.center_id=d.center_id and d.csp_id=e.csp_id

(c) Query 3: Find all resources used by job 1.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 52

SELECT * FROM JOB a, VIRTUALMACHINE b, PHYSICALMACHINE

c, DATACENTER d, CLOUDPROVIDER e WHERE a.vm_id=b.vm_id and

b.pm_id=c.pm_id and c.center_id=d.center_id and d.csp_id=e.csp_id and

a.name=’job1’

3.5.3 Document-Oriented database

A document-oriented database is designed for storing, retrieving, and managing document-

oriented, or semi structured data. Document-oriented databases are one of the NoSQL

databases. The main concept of a document-oriented database is the notion of a Doc-

ument. MongoDB, CouchDB and Terrastore are examples of the Document-oriented

databases. In this work, a document-oriented database is implemented using the Mon-

goDB shell version: 2.4.9. In MongoDB, data is grouped into sets that are called collec-

tions. Each collection has a unique name in the database, and can contain an unlimited

number of documents. Collections are similar to tables in a relational database, except

that they don’t have any defined schema.

The Queries to create and retrieve collections in MongoDB are discussed below:

(i) Commands to create Collections. In MongoDB, there is no need to create collection.

MongoDB creates collection automatically, when inserting document.

(a) Create JOB collection

db.JOB.insert({ job_id : 0, name : ’app1’, length : 4000, file-size : 24,

vm_id : 0 })

(b) Create Virtual Machine collection

db.VIRTUALMACHINE.insert({ vm_id : 0,job_id : 0, name : ’vmm1’,

mips : 250, ram : 20148, pm_id : 0 })

(c) Create Physical Machine collection

db.PHYSICALMACHINE.insert({ pm_id : 0,job_id : 0, name : ’pm1’,

mips : 1000, ram : 20148, storage : 10000, vm_id : 0, center_id : 0 })

(d) Create Data center collection

db.DATACENTER.insert({ center_id : 0, pm_id : 0, name : ’dc1’, OS :

Linux, location : ’Durban’, arch : ’x86’, time_zone : 10, csp_id : 0 })

(e) Create Cloud Provider collection

db.CLOUDPROVIDER.insert(csp_id : 0, center_id : 0, name : ’csp1’,

cost_per_BW : 0, cost_per_storage : 1, cost : 3 })

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 53

(ii) Mongodb queries to retrieve information from relational database.

(a) Query 1: Find all Virtual Machines assigned to Jobs.

db.VIRTUALMACHINE.find({ JOB: { vm_id: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] } })

(b) Query 2: Find name of resources owned by Cloud Service Providers.

SELECT b.name, c.name, d.name, e.name FROM VIRTUALMACHINE b,

PHYSICALMACHINE c, DATACENTER d, CLOUDPROVIDER e WHERE

b.pm_id=c.pm_id and c.center_id=d.center_id and d.csp_id=e.csp_id

(c) Query 3: Find all resources used by job 1.

SELECT * FROM JOB a, VIRTUALMACHINE b, PHYSICALMACHINE

c, DATACENTER d, CLOUDPROVIDER e WHERE a.vm_id=b.vm_id and

b.pm_id=c.pm_id and c.center_id=d.center_id and d.csp_id=e.csp_id and

a.name=’job1’

(a) Query 1 (b) Query 2

(c) Query 3

Figure 3.11: Query processing times for case 1

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 54

Table 3.1: Cloud Computing Entities

Case 1 Case 2
Number of Cloud Service Providers (CSP) 2 5
Number of Data Centers (DC) 4 20
Number of Physical Machines (PM) 12 80
Number of Virtual Machines (VM) 24 250
Number of Jobs 48 500

Table 3.2: Comparison of Relation, Graph and Document-oriented Databases

Queries Databases Processing Times (ms)
Case 1 Case 2

1 Neo4j 10.26 18.39
Mongodb 7.28 13.48
MySQL 16.54 26.77

2 Neo4j 8.62 17.24
Mongodb 6.38 12.07
MySQL 12.50 26.13

3 Neo4j 35.92 70.65
Mongodb 26.44 50.86
MySQL 53.34 112.72

3.6 Experimental Results

In this section, we provide experimental results based on our two cases as shown in Table

3.1. where the number of cloud infrastructures are varied. Three queries is set for each

case and run each query 100 times on the databases. Processing times are recorded and

all times are measured in milliseconds. The average processing times are calculated for

each query as presented in Table II.

The processing times against 100 runs are ploted in Figures 3.11 and 3.12. It can be

observed from the values in Table 3.2 and Figures 3.11 and 3.12 that the times taken

to process queries for MongoDB are less when compared to that of Neo4j. Furthermore,

the times taken to process queries for Neo4j are less when compared to that of MySQL.

For instance, in the case 1 and query 2, MongoDB takes 6.36ms, Neo4j takes 8.62ms

and MySQL takes 16.54ms. Further analysis of the results show that the time taken to

process case 1 and query 2 on MongoDB is less by 26% and 62% than that of Neo4j and

MySQL respectively.

It can also be deduced from the results that as the number of cloud computing elements

increases, the query processing time becomes increased manifoldly. More specifically, the

time taken to process queries for case 2 is higher than that of case 1 due to the varied

increased parameters in case 2 as opposed to lower parameter values in case 1.

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 55

(a) Query 1 (b) Query 2

(c) Query 3

Figure 3.12: Query processing times for Case 2

3.7 Chapter summary

The cloud service brokerage system is a third party system that acts as a middleman

between users and cloud service providers. However, for cloud service brokers to remain

relevant in the cloud computing era, there is need to adopt an effective database model

that can withstand the unprecedented demand from cloud users and providers. Hence

in this research, we explore the suitability of three database models in a cloud comput-

ing environment, the models are: (i) graph; (ii) relational; and (iii) document-oriented

models. The models is implemented on the private cloud network testbed using Neo4j,

MySQL and MongoDB databases respectively. Also, the procedural mapping of the re-

lational database into object oriented and document-oriented models is provided, and

presents query syntax to retrieve information from the databases. Finally, the efficience

of the three database models in terms of query processing time is compared, and var-

ied the experimental parameters in order to establish the suitability of the models in a

cloud computing environment. The experiment results show that the document-oriented

model has better performance in a cloud computing environment than relational and

http://etd.uwc.ac.za/

Chapter 3. Database Management System for Cloud Services Brokerage 56

graph models in terms of queries processing time. Ultimately, MongoDB emerges as the

most suitable database model with respect to flexibility, elastic scalability, high perfor-

mance, and availability [144], [145], [146].

In the next chapter, the models to improve the resources allocation in a single cloud

computing environment are presented and simulated.

http://etd.uwc.ac.za/

Chapter 4

Resources Allocation in a Cloud

Computing Environment

4.1 Introduction

In cloud computing, the allocation of resources plays a key role in determining the

quality of service such as performance, resource utilization and power consumption of

the data center. The appropriate allocation of virtual machines in cloud data centers

is one of the important optimization problems in cloud computing, especially when the

cloud infrastructure is made of lightweight computing devices. Virtualization offers the

capability of pooling computing resources from clusters of servers and assigning VMs to

jobs on-demand. For each task received, either a new VM is initialized or it is assigned

to an existing VM of the same user [147]. Once the task is executed, all the acquired

resources are released to become parts of the free resource pool. However, due to the

limited amount of physical resources available, resource allocation becomes a challenging

issue for the cloud service providers (CSPs). A CSP decides on the number of VMs

to be created based on the cloud user’s request. In a cloud computing environment,

resource allocation range from mapping tasks to VMs and placement of VMs to Physical

Machines (PMs). The resource is allocated based on the Service Level Agreement (SLA)

between the CSP and the cloud user. The SLA contains information about quality of

service (QoS) to be provided to the user in terms of various performance parameters such

as throughput, reliability, blocking probability and response time, the payment process

and SLA violation penalty [148]. The goal of the CSP is to maximize profit and resource

utilization while the goal of the cloud user is to minimize the cost of leasing the resources.

57

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 58

Figure 4.1: Cloud computing resource management framework.

4.1.1 Cloud/Fog Computing Resource Management Framework

The resource management framework in Fig. 4.1 summarizes the work described in this

chapter. The multi-layer framework includes:

1. A physical resource layer which is composed of data centres that host PMs in the

form of host machines. The PMs are interconnected by switches (SWs).

2. A virtual resource layer is layered above the physical resource layer to virtualize

the physical resources as VMs for better resource management.

3. An application layer which is layered above the virtual resource layer to provide

different services to the users. These include Software-as-a-Service, Platform-as-a-

Service and Infrastructure-as-a-Service.

When considered from a service perspective, the framework in Fig. 4.1 can be presented

as a two-layer architecture including:

1. A virtual resource scheduling module, where a mapping between physical machines

and the virtual machines is made. In this chapter, it is assumed that each physical

machine (host machine) provides at least one virtual machine.

2. A task allocation management module enabling the virtual resources to be allocated

to the users in a cost effective way.

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 59

4.1.2 Contributions

This chapter presents an implementation of the framework by assuming that: i) the tasks

and virtual resources are heterogeneous and physical resources are homogeneous, and ii)

the number of available physical resources are limited compared to the number of cloud

user on-demand requests. It also presents a model for mapping the tasks, i.e., cloudlets,

to VMs, and VM placement with the aim of improving quality of service in the cloud

computing environment. The main contributions of this chapter are outlined as follows:

• Mathematical modelling. The task allocation and VM placement problem mod-

els in the cloud computing environment are formulated and presented. These mod-

els aim to minimize the resource allocation cost in a setting where multiple cloud

user requests have to be processed on a limited number of physical resources.

• A task binding policy. The Hungarian Algorithm Based Binding Policy (HABBP)

as a heuristic solution to the linear programming model is proposed and uses the

algorithm to implement a novel binding policy for the popular CloudSim simulator.

Also, the HABBP module is proposed as a contributed module to CloudSim which

comprises: i) a graphical user interface as a front-end component enabling cloud

users to interact with CloudSim and to configure the parameters for tasks, VM and

PM from the interface rather than embedding parameters in the CloudSim source

code and ii) a novel binding method as a back-end component.

• VMs placement solution. A Genetic Algorithm Based Virtual machine Place-

ment (GABVMP) is proposed to solve and optimize the VM placement problem

in the cloud computing environment.

• Performance evaluation. The proposed binding policy is compared with the

conventional binding policy implemented by the CloudSim simulator and bench-

mark both solutions against the Simplex algorithm commonly used as a linear

programming solver. The proposed GABVMP solution is also compared with the

greedy heuristics: Random Placement and First Fit Placement.

4.1.3 Chapter Organization

The remainder of the chapter is organized as follows. The linear programming model for

task allocation is proposed in Section 4.2. Section 4.3 presents a Hungarian Algorithm

Based Binding Policy (HABBP) as solution for the optimization of the model. Section 4.4

describes the VM placement problem. In Section 4.5, the VM placement problem is solved

using GABVMP. Section 4.6 describes the implementation of HABBP and GABVMP

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 60

for task allocation and VM placement respectively. Summary of the chapter is presented

in Section 4.7.

4.2 Task allocation Problem Model

A linear programming problem model for binding tasks, also known as cloudlets, to

virtual resources known as VMs is formulated. Lets consider a set of VMs denoted by

vmi for i ≤ n and n > 1. Lets also consider a set of tasks (cloudlets) associated with

each on-demand user request (job) denoted by tj for j ≤ m and m > 1. Lets assume a

one-to-one allocation model where each virtual machine executes only one cloudlet and

each cloudlet needs to be allocated to only one virtual machine. However, a many-to-one

allocation model may also be considered where several tasks are allocated to a single

virtual machine. The many-to-one allocation model is not considered here.

Let n = m and C = [cij] be an n× n matrix in which cij is the cost of allocating virtual

machine i to cloudlet j, i.e.,

cij =
tj
vmi

. (4.1)

Let X = [xij] be the n× n matrix where

xij =

{
1, if VM i is allocated to cloudlet j,

0, if VM i is not allocated to cloudlet j.
(4.2)

The objective is to optimize the total cost p(X), defined as the sum of the cost of

allocating cloudlets to the available virtual machines. An optimization problem as a

linear programming model is formulated in terms of a function p as:

minimize p(X) =
m∑
j=1

n∑
i=1

cijxij (4.3)

subject to the constraints

n∑
i=1

xij = 1 for j = 1, 2,. . . n, (4.4)

and
m∑
j=1

xij = 1 for i = 1, 2,. . .m, (4.5)

where

xij = 0 or 1. (4.6)

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 61

Hence any matrix satisfying 4.4 and 4.5 is a solution and corresponds to a permutation

σ of of a set N = {1, 2, . . . , n} derived by setting σ(i) = j if and only if xij = 1. Also, if

X is a solution corresponding to σ, then

n∑
j=1

cijxij = ciσ(i). (4.7)

Summing over i from 1 to n, we obtain

n∑
i=1

ciσ(i) =
n∑
i=1

n∑
j=1

cijxij . (4.8)

Thus, any solution X on which p(X) is minimal is known as an optimal solution. We

can transform a given allocation problem specified by C into another one specified by

a matrix C = [cij], such that cij ≥ 0, for all pairs i, j, where the two problems have

the same set of optimal solutions. If X∗ is an optimal solution to the problem specified

by C, then it must also be an optimal solution to the one specified by C. Theorem 1

explains how we can transform a matrix into another one which has the same set of

optimal solutions.

Theorem 4.1. 1 A solution X is an optimal solution for p(X) =
n∑
i=1

n∑
j=1

cijxij if and

only if it is an optimal solution for p(X) =
n∑
i=1

n∑
j=1

cijxij where cij = cij −ui− vj for any

of u1, . . . , un and v1, . . . , vn and ui and vj are real numbers for all i and j.

Proof: We establish that the difference between the functions p(X) and p(X) is constant
n∑
i=1

ui +
n∑
j=1

vj .

p(X) =
n∑
i=1

n∑
j=1

cijxij ,

=
n∑
i=1

n∑
j=1

(cij − ui − vj)xij ,

=
n∑
i=1

n∑
j=1

cijxij −
n∑
i=1

n∑
j=1

uixij −
n∑
i=1

n∑
j=1

vjxij ,

=

n∑
i=1

n∑
j=1

cijxij −
n∑
i=1

n∑
j=1

uixij −
n∑
j=1

n∑
i=1

vjxij ,

= p(X)−
n∑
i=1

ui

n∑
j=1

xij −
n∑
j=1

vj

n∑
i=1

xij .

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 62

From 4.4 and 4.5,

= p(X)−
n∑
i=1

ui −
n∑
j=1

vj .

This shows that, p(X)− p(X) =
n∑
i=1

ui +
n∑
j=1

vj . Therefore, a solution X minimizes p(X)

if and only if it minimizes p(X).

4.3 Task Allocation Algorithmic Solution

In this section, a task allocation algorithmic solution that is based on the Hungarian

algorithm [149], [150] known as the Hungarian Algorithm Based Binding Policy (HABBP)

is presented to solve the task allocation problem in the cloud computing environment.

4.3.1 Notation

• Given a cost matrix cm of size n×m,

• n is the number of VMs,

• m is the number of cloudlets and

• cmij denotes the time required to complete cloudlet i by virtual machine j.

4.3.2 The algorithm

Algorithm 2 shows the pseudo-code of the HABBP for task allocation in a cloud com-

puting environment. First, initialize different variables (Steps 1-4). Then calculate Cost-

Matrix by dividing the cloudlet length with the MIPS of virtual machine. In the case of

many-to-one allocations where the number of cloudlets and number of virtual machines

are not the same, then add the dummy cloudlets/virtual machines to turn CostMatrix

into a square matrix.

Then compute the reducedCostMatrix from the CostMatrix by subtracting the minimum

value of each row from the elements of its row, turning each minimum value into zero,

and by subtracting the minimum value from the elements of each column turning the

minima into zeros. After that, compute lineCostMatrix. If the number of lines is not

equal to the number of virtual machines, then subtract the minimum uncovered element

to every covered element. If an element is covered twice, add the minimum element to

it.

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 63

Finally, apply the mapping to the original matrix, disregarding dummy rows, and add

the cost of binding cloudlets to virtual machines to give total minimum cost C.

4.3.3 Example

Through an example the concept of the HABBP is illustrated and how it can be used

to optimize the allocation of virtual resources in the cloud computing environment. Ta-

ble 4.1 shows three cloudlets in the queue with broker and Table 4.3 shows virtual

machines created in the cloud computing environment.

The algorithm works as follows: We initialize CostMatrix by dividing the cloudlet length

with the MIPS of the virtual machine as shown in Table 4.3. In this case, the number

of cloudlets is equal to the number of virtual machines. Therefore, there is no need

to add the dummy cloudlet/virtual machine values to turn CostMatrix into a square

matrix. The reducedCostMatrix is computed by subtracting minimum value of each row

and column from the row and column CostMatrix to give Tables 4.4 and 4.5 respectively.

Furthermore, The lineCostMatrix is computed, this denotes lines that cover all zeros

in reducedCostMatrix. In this example, there are two lines. The lines are on column 1

and row 2 of reducedCostMatrix. Since the number of lines is not equal to the number of

virtual machines, the minimum of all uncovered elements is subtracted from all uncovered

elements as indicated in Table 4.6. Again, the minimum number of lines required to

cover all zeros in the matrix is computed. The lines are on column 1, row 2 and row 3

of reducedCostMatrix. Since number of lines equals the number of virtual machines, an

optimal allocation exists among the zeros in the reducedCostMatrix. Therefore, Cloudlet

1 is allocated to Virtual machine 1, Cloudlet 3 is allocated to Virtual machine 2, and

Cloudlet 2 is allocated to Virtual machine 3 as indicated in Table 4.7.

The total cost of the optimal allocation of cloudlets to virtual machine is to 100 s +

120 s + 160 s = 380 s.

Alternatively, we solve the example mentioned above using Simplex method [151], [152]

and compare the result with the one that is already generated using HABBP. Using the

equations 4.3, 4.4, 4.5 and 4.6, the optimization objective function can be formulated as:

minimize ρ(χ) = 100α11+200α12+300α13+40α21+80α22+120α23+80α31+160α32+40α33

(4.9)

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 64

Algorithm 2: Calculate total allocation cost C
1: input:
2: n: number of virtual machines
3: m: number of cloudlets
4: ti : list of cloudlets i ∈ [1..m]
5: vmj : list of virtual machines j ∈ [1..n]
6: output:
7: C: total allocation cost
8: /* Initialize and populace CostMatrix */
9: for all i ∈ [1..n] do

10: for all j ∈ [1..m] do
11: cmij = ti / vmj

12: end for
13: end for
14: if n 6= m then
15: add dummy cloudlets with 0 execution time value to make CostMatrix square

matrix
16: end if
17: mr = minimum row element
18: mc = minimum column element
19: /* compute the reduced CostMatrix */
20: for all j ∈ [1..n] do
21: cmnj = cmnj −mr
22: end for
23: for all i ∈ [1..n] do
24: cmni = cmni −mc
25: end for
26: /* compute the lineCostMatrix */
27: ln = minimum-number-line()
28: if ln < m then
29: for all j ∈ [1..n] do
30: for all j ∈ [1..n] do
31: if element are uncovered then
32: cmij = cmij −min(uncoveredElement)
33: else if element are covered by two line then
34: cmij = cmij + min(uncoveredElement)
35: end if
36: end for
37: end for
38: end if
39: /* find the mapping */
40: apply the matching to the original matrix, disregarding dummy rows.
41: adding the costs will give the total minimum cost

return total allocation cost C

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 65

Table 4.1: Cloudlet specifications

Cloudlet 1 Cloudlet 2 Cloudlet 3

ID 0 1 2
file-size 500 1000 1000
length 40000 80000 120000

output-size 500 2048 2048

Table 4.2: Virtual machine specifications

Virtual machine 1 Virtual machine 2 Virtual machine 3

VMid 0 1 2
size 1000 1000 1000
mips 400 1000 500
ram 2048 2048 2048

pes-number 1 2 2
bandwidth 500 500 500

Table 4.3: Initialize CostMatrix

Cloudlet 1 Cloudlet 2 Cloudlet 3

VM 1 100 200 300
VM 2 40 80 120
VM 3 80 160 240

Table 4.4: Row reducedCostMatrix

Cloudlet 1 Cloudlet 2 Cloudlet 3

VM 1 0 100 200
VM 2 0 40 80
VM 3 0 80 160

Table 4.5: Column reducedCostMatrix

Cloudlet 1 Cloudlet 2 Cloudlet 3

VM 1 0 60 120
VM 2 0 0 0
VM 3 0 40 80

Table 4.6: reducedCostMatrix

Cloudlet 1 Cloudlet 2 Cloudlet 3

VM 1 0 20 80
VM 2 0 0 0
VM 3 0 0 40

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 66

Table 4.7: Optimal Allocation

Cloudlets Virtual machines

Cloudlets 1 VM 1
Cloudlets 2 VM 3
Cloudlets 3 VM 2

subject to the following constraints

α11 + α12 + α13 = 1,

α21 + α22 + α23 = 1,

α31 + α32 + α33 = 1,

α11 + α21 + α31 = 1,

α12 + α22 + α32 = 1,

α13 + α23 + α33 = 1

(4.10)

and

α11, α12, α13, α21, α22, α23, α31, α32, α33 > 0 (4.11)

Since the objective function is in minimization form, then we convert it into maximization

form and add the artificial variables as:

maximize ρ(χ) = −100α11−200α12−300α13−40α21−80α22−120α23−80α31−160α32−40α33

(4.12)

α11 + α12 + α13 + S6 = 1,

α21 + α22 + α23 + S5 = 1,

α31 + α32 + α33 + S4 = 1,

α11 + α21 + α31 + S3 = 1,

α12 + α22 + α32 + S2 = 1,

α13 + α23 + α33 + S1 = 1

(4.13)

and

α11, α12, α13, α21, α22, α23, α31, α32, α33, S1, S2, S3, S4, S5, S6 > 0 (4.14)

In Phase 1 of two-phase simplex method, we remove the artificial variables and find an

initial feasible solution of the original problem which gives final Tableau in the table 4.8.

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 67

Table 4.8: Phase 1 final Tableau

Tableau 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1
Base Cb P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P2 0 0 1 1 0 0 0 -1 0 0 -1 -1 0 0 0 0 1
P3 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0
P13 -1 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 1 1 1
P7 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 -1 -1
P4 0 0 1 0 0 1 0 0 0 -1 -1 -1 -1 0 0 1 1
P5 0 1 -1 0 0 0 1 1 0 1 1 1 1 0 0 0 -1
ρ(χ) 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0

The basic feasible solution at the end of Phase 1 computation is used as the initial basic

feasible solution of the problem. The original objective function is introduced in Phase

2 computation and the usual simplex procedure is used to solve the problem. The Phase

2 gives final optimal value in table in 4.9

Table 4.9: Final optimal Tableau

Tableau -100 -200 -300 -40 -80 -120 -80 -160 -240
Base Cb P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P2 -200 0 0 1 1 -1 0 0 -1 0 0
P9 -240 0 0 0 1 -1 -1 0 0 0 1
P13 -1 0 0 0 0 0 0 0 0 0 0
P8 -160 1 0 0 -1 1 1 0 1 1 0
P1 -100 1 1 0 0 1 0 0 1 0 0
P6 -120 1 0 0 0 1 1 1 0 0 0
ρ(χ) -380 0 0 20 100 40 0 20 0 0

Similar to the HABBP, the simplex method gives the total optimal cost of assigning

cloudlets to virtual machines as 100 s + 120 s + 160 s = 380 s. That is, Cloudlet 1 is

assigned to Virtual machine 1 , Cloudlet 3 is assigned to Virtual machine 2, and Cloudlet

2 is allocated to Virtual machine 3.

4.4 Virtual Machine Placement Problem

In this section, the problem of optimally placing a set of VMs into a set of PMs in the

single cloud environment is formulated. As depicted in Fig. 4.2, the tree network topology

consists of five PMs and connection points called switches (SWs). The placement of any

VM in a PM will be determined by at least a switch node in the figure. In the light of

that, there will be huge end-to-end traffic between a given VM and the switch which the

VM is dependent on.

It is assumed that the intensity of communication between PMs is negligible compared

to the intensity of communication between PMs and SWs. Placing the VMs in PMs that

offer an optimal placement cost according to the demands of the VMs will be a major

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 68

Figure 4.2: Physical machines and switches in a tree network topology

determinant factor in this work. Each PM-SW pair is associated with a cost. Thus, it

will not be a good idea to place a VM with intensive demand for switch in a PM that

has a high cost associated with that switch.

The VM placement problem in the data center network can be represented mathemati-

cally as a graph G(P, S,E), where P is a set of PMs, S is a set of SWs, and E is a set of

links between the PMs and SWs. The links are weighted and represent the cost between

any PM-SW pair. In addition, it is also assumed that there is no congestion in the links

between the PMs and SWs. The links have enough capacity to handle the switch flow

demands of VMs appropriately. More information about the network is as follows:

4.4.1 Parameters

• P = {p1, p2, . . . , pn} be a set of PMs.

• V = {v1, v2, . . . , vm} be a set of VM requests.

• S = {s1, s2, . . . , sk} be a set of switches.

• lshpi be latency between pi and sh.

• bshpi be bandwidth for pi − sh link

• δj represents MIPS of each vj ∈ V

• µi represents MIPS of each pi ∈ P

• Ui represents utilization of pi

• Eidlei be the power consumed by pi when it is doing nothing but powered on.

• Epeaki be power consumed when the pi is fully loaded/utilized or at the peak load.

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 69

4.4.2 Assumptions

Consider a VM to be placed into PM through the SW in a data center network, the

following assumptions are made.

• Each PM has different latency to all SWs in the network

• Each PM has one and only one link to the SW in the network.

• Each PM can accommodate more than one VM depending on the capacity of the

PM

• Each link between PMs and SWs has enough capacity and there is no congestion

on the links

• The number of VMs, PMs and SWs are equal i.e n = m = k.

4.4.3 The mathematical model

The cost in terms of the time taken to use the pi − sh link is defined as:

cshpi =
vmsize(j)

bshpi
. (4.15)

Where vmsize(j) denotes size (MB) of the vj routed through the pi − sh link.

The placement of a vj into a pi depends on the latency between vj and sh, and the cost

associated with the pi − sh link. Thus, the total cost to place vj into pi through sh is

computed as,

tpivj = βcpish + αlshvj (4.16)

Where β and α ∈ {0, 1} is the weighting for the link and latency.

The goal is to place VMs into PMs such that the total placement cost for the PM-SW

links consumption and latency between VM and SW is minimized. Thus, an optimization

model is defined as follows:

min
n∑
i=1

n∑
j=1

tpivjxvjpi =
n∑
i=1

n∑
j=1

(βcpisj + αlsivj)xvjpi (4.17)

where

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 70

xvjpi =

{
1, if vj is placed into pi ,

0, otherwise.
(4.18)

Subject to

n∑
i=1

xvjpi = 1,∀j = 1, 2, . . . n, (4.19)

xvjpi ∈ {0, 1}, for i = 1, 2, . . . n, and j = 1, 2, . . . n. (4.20)

u∑
j=1

δj ≤ µi, for i = 1, 2, . . . n, and u < n. (4.21)

β + α = 1 (4.22)

csjpi ≥ 0 (4.23)

lsivj ≥ 0 (4.24)

Equation 4.19 assures that each VM is mapped to one PM and all VMs are placed. Also,

Equation 4.21 assures that the total MIPS of VMs placed on a PM should not exceed

its capacity. For a given PM, the sum of the MIPS requirements of all VMs placed on it

should be less than or equal to the total available capacity of the PM.

Furthermore, there is the assumption that there is a linear relationship between the

power consumption and utilization of a physical machine in a data center. The energy

consumed, Ei, by a PM pi ∈ P can be calculated as shown in [153]:

Ei = Eidlei + (Epeaki − Eidlei)Ui (4.25)

where,

Ui =

∑
j∈γi

δj

µi
(4.26)

Where,

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 71

γi is a set of virtual machines placed on the pi.

Thus, the total energy consumed by the PMs after VMs placement can be calculated as

n∑
i=1

Ei =
n∑
i=1

Eidlei + (Epeaki − Eidlei)Ui (4.27)

4.5 Virtual Machine Placement Algorithmic Solution

The section presents the Genetic Algorithm Based Virtual machine Placement (GAB-

VMP) for solving the Virtual Machine Placement problem in the cloud computing envi-

ronment.

4.5.1 Genetic Algorithm Based Virtual Machine Placement

Genetic algorithm (GA) is a computerized search and optimization algorithm based

on the mechanics of natural genetics and natural selection. The GA is proposed by

John Holland [154] where each potential solution is encoded in the form of a string

and a population of strings is created which is further processed by three operators:

Reproduction, Crossover, and Mutation. Reproduction is a process in which individual

strings are copied according to their fitness function. Crossover is the process of swapping

the content of two strings at some point(s) with a probability. Lastly, Mutation is the

process of flipping the value at a particular location in a string with a very low probability.

Figure 4.3 describes the Genetic-based Virtual machine Placement Algorithm (GAB-

VMP). The algorithm consists of four parts: input, initialization, looping and output.

In the initialization part, the set of physical machine chromosomes which are also known

as population, is generated randomly. The looping part contains fitness evaluation and

checks if the optimal solution condition is met according to the optimization objectives.

If not, the looping continues, the selection, crossover, mutation and replace functions are

applied sequentially. At the end of the loop, the optimal solution will be produced as

the output.

4.5.2 Initialization

Each chromosome in the Genetic based virtual machine placement algorithm contains

genes which represent the allocated physical resources and switches to the virtual re-

sources. The value of a gene positive integer representing the identity of the VM being

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 72

Start

Input: sizes
and parameters
of VMs, PMs
and SWs

Initialization:
Generate randomly
initial placement

Fitness: compute
the fitness value of
each chromosome
(βcpisj + αlsjpi)

Satisfied?

Selection: choose
the two chro-
mosomes based
on fitness value

Crossover and
Mutation: create

new chromo-
somes from old
chromosomes.

Replacement:
replace old chro-
mosomes with

new chromosomes

Total cost:
compute total cost
of a chromosome
with highest
fitness value

Output: return
total cost

Stop

yes

no

Figure 4.3: Genetic Algorithm Based Virtual Machine Placement

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 73

placed in the PM through SW. For Example, let v1, v2, v3, v4, v5, v6, v7, v8 be a set of VM

to be placed in the p1, p2, p3, p4, p5, p6 a set of PM through s1, s2, s3 a set of SW in a

data center network. Let assume that p1s1, p2s1, p3s2, p4s3, p5s3, p6s3, p7s2, p8s1 be links

between PMs and SWs which is one of the factors to be considered while placing VMs

on the PMs. The initial population contains a set of PM-SW link chromosomes where

the genes represent the identity of VMs. The initial population is generated randomly

by using Algorithm 3.

Algorithm 3: initial population algorithm
input : a set of links between the PMs and SWs

a set of VMs with corresponding latency between the VM and SW
output: initial population

1 counter = 0;
2 while (counter ≤ 5) do
3 for (all VMs) do
4 randomize the set of VM identities into number of the PM - SW links

according to network topology
5 end
6 counter = counter + 1;
7 end
8 return initial population

4.5.3 Fitness Evaluation

The objective is to minimise the total cost of placing VMs on the PMs through SWs. As

defined in Section 4.4, The VM placement cost consists of the cost of PM-SW link usage

and the latency between the VM and SW. The objective function used by the GABVMP

is the same objective function as that of the mathematical model. Thus, the fitness value

of each chromosome is calculated as,

Fitness(chromosome) = βcpisj + αlsjpi (4.28)

4.5.4 Generating the next population

A new population is generated from an initial population of solutions using their fitness

values and genetic operators: selection, crossover, mutation, and reproduction. In order

to generate a new population, individuals are selected for participation and the genetic

operators are applied as follows.

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 74

4.5.4.1 Selection process

To select the best chromosomes that would pass their genes into the next generation,

the fitness proportionate selection approach is implemented using roulette wheel selec-

tion. The fitness function is the total cost of the VM placement represented by each

chromosome. The lower the total cost, the fitter the VM placement represented by

that chromosome [155]. Thus, the chromosomes with lower values are selected for the

generation of the next population.

4.5.4.2 Crossover operator

The crossover operator works on two parent chromosomes and produces a new individ-

ual. In GABVMP, a midpoint crossover with crossover probability 0.8 is adopted and

crossover operator process is described in Algorithm 4. Figure 4.4 shows two parent and

offspring chromosomes before and after mid crossover respectively.

Algorithm 4: Crossover function
input : Q1, Q2 : two parent chromosomes
output: Qλ1, Qλ2 : two offspring chromosomes

1 Φ = length(Q1);
2 cp = Q1

2
3 mid cross point;
4 Qλ1 = Q1(1 : cp)UP2(cp : Φ);
5 Pλ2 = Q1(cp : Φ)UQ2(1 : cp);
6 return Qλ1, Qλ2

Figure 4.4: midpoint crossover

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 75

Figure 4.5: Inversion mutation operation

4.5.4.3 Mutation Operator

In the GABVMP, the next operation is mutation of the offspring. Mutation helps to

prevent premature convergence and promote diversity in the population. In other words,

it helps to avoid getting trapped in local solutions. In this work, inversion mutation is

adopted where a subset of genes in a chromosome is selected and inverted to form mutated

offspring. Figure 4.5 illustrates the inversion mutation operation on the offspring 1. In

offspring 1, a subset of genes (1, 5, 2, 6) in chromosome (7, 8, 1, 5, 2, 6, 4, 3) are selected

and inverted to give a new chromosome (7, 8, 6, 2, 5, 1, 4, 3).

4.5.4.4 Replacement

The replacement operator replaces old chromosomes in the current population with the

new chromosomes to form a new population.

4.5.4.5 Stopping criterion

GABVMP stops either when the maximum number of generations is reached or the

optimal total placement cost is obtained.

4.6 Experiments and Results

This section presents the experimental results obtained by testing the models on an In-

tel(R) Core(TM) i5-4590 machine with 3.30 GHz CPU and 8 GB RAM.

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 76

Figure 4.6: CloudSim Life cycle with HABBP

Figure 4.7: CloudSim User Interface

4.6.1 Implementation of the Proposed HABBP

The experiments are based on the open-source cloud simulator called CloudSim [156]

and Netbeans IDE 8.2. CloudSim is an extensible Java-based open source simulation

toolkit that provides support for modelling and simulation of cloud computing environ-

ments. CloudSim is an advanced simulator for cloud computing environments with great

properties such as scaling well and has a low simulation overhead [157]. It provides

classes for data centers, virtual machines, applications, users, computational resources,

and scheduling policies. As shown in Fig. 4.6, there are different stages of the CloudSim

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 77

Table 4.10: List of Jobs

Job 1 Job 2 Job 3 Job 4 Job 5
Cloudlet ID (Length) (Length) (Length) (Length) (Length)

0 20000 30000 150000 40000 200000
1 60000 50000 80000 20000 80000
2 90000 110000 130000 80000 160000
3 40000 10000 90000 30000 20000
4 120000 70000 10000 10000 40000
5 200000 20000 40000 90000 90000
6 70000 80000 120000 110000 120000
7 80000 40000 60000 60000 10000
8 50000 160000 20000 150000 130000
9 10000 90000 70000 200000 100000
10 150000 350000 45000 75000 5000
11 250000 250000 250000 300000 25000
12 45000 100000 85000 450000 155000
13 25000 95000 140000 87000 95000
14 75000 25000 100000 250000 4000
15 30000 85000 35000 50000 110000
16 300000 180000 130000 100000 210000
17 55000 35000 75000 130000 55000
18 65000 15000 95000 95000 85000
19 85000 9000 200000 400000 350000

Table 4.11: List of Virtual Machines

VM ID MIPS Parameter
0 1000
1 500
2 200
3 2000
4 250
5 100
6 50
7 125
8 150
9 400
10 1500
11 350
12 450
13 600
14 700
15 850
16 900
17 550
18 1200
19 300

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 78

Table 4.12: Results of conventional binding policy in CloudSim

Job 1 Job 2 Job 3 Job 4 Job 5
Cloudlet

ID
VM
ID

Exec.
Time

VM
ID

Exec.
Time

VM
ID

Exec.
Time

VM
ID

Exec.
Time

VM
ID

Exec.
Time

0 0 20 0 30 0 150 0 40 0 200
1 1 120 1 100 1 160 1 40 1 160
2 2 450 2 550 2 650 2 400 2 800
3 3 20 3 5 3 45 3 15 3 10
4 4 480 4 280 4 40 4 40 4 160
5 5 2000 5 200 5 400 5 900 5 900
6 6 1400 6 1600 6 2400 6 2200 6 2400
7 7 640 7 320 7 480 7 480 7 80
8 8 333 8 1066 8 133 8 1000 8 866
9 9 25 9 225 9 175 9 500 9 250
10 10 100 10 233 10 30 10 50 10 3
11 11 714 11 714 11 714 11 857 11 71
12 12 100 12 222 12 189 12 1000 12 344
13 13 42 13 158 13 233 13 145 13 158
14 14 107 14 36 14 143 14 357 14 6
15 15 35 15 100 15 41 15 59 15 129
16 16 333 16 200 16 144 16 111 16 233
17 17 100 17 64 17 136 17 236 17 100
18 18 54 18 13 18 79 18 79 18 71
19 19 283 19 30 19 667 19 1333 19 1167

Total
Execution

Time

7356 6147 7009 9842 8109

life cycle ranging from initialization of cloud infrastructures to the simulation results.

The goal is to validate the performance gains derived from the HABBP policy compared

to the conventional task binding policy implemented in CloudSim.

The major drawback of the current CloudSim is the lack of a graphical user interface

(GUI) that allows cloud users to configure cloudlets and the cloud infrastructure parame-

ters and the lack of optimal cloudlets-to-virtual machines binding policies. In the present

work, CloudSim is extended to: i) implement and integrate a graphical user interface

using a java Jframe class as shown in Fig. 4.7 and ii) introduce a new cloudlets-to-virtual

machines binding policy in the cloud computing environment by creating a new method

called HungarianAlgorithmBinding() in the DatacenterBroker class of CloudSim.

The experiments are conducted by allocating each virtual machine to different host ma-

chines of the same capacity and all host machines are located in the same datacenter.

Thereafter, five jobs are simulated using HABBP, conventional binding policy and the

Simplex algorithm to allocate cloudlets to VMs in CloudSim. Each job has 20 cloudlets

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 79

Table 4.13: Results of HABBP in CloudSim

Job 1 Job 2 Job 2 Job 4 Job 5
Cloudlet

ID
VM
ID

Exec.
Time

VM
ID

Exec.
Time

VM
ID

Exec.
Time

VM
ID

Exec.
Time

VM
ID

Exec.
Time

0 5 200 4 120 18 125 8 267 18 167
1 9 150 9 125 9 200 5 200 11 229
2 15 106 15 129 15 153 11 229 0 160
3 2 200 5 100 1 180 7 240 8 133
4 16 133 12 156 6 200 6 200 4 160
5 18 167 8 133 8 267 9 225 12 200
6 1 140 1 160 14 171 13 183 14 171
7 13 133 11 114 4 240 4 240 7 80
8 19 167 0 160 5 200 15 176 15 153
9 6 200 13 150 19 233 16 222 17 182
10 0 150 3 175 2 255 19 250 5 50
11 10 167 10 167 3 125 18 250 2 125
12 4 180 16 111 12 189 3 225 16 172
13 7 200 14 136 0 110 12 193 1 190
14 17 136 2 125 17 182 0 250 6 80
15 8 200 17 155 7 280 2 250 13 183
16 3 150 18 150 16 144 17 182 10 140
17 11 157 19 117 11 214 14 186 19 183
18 12 144 7 120 13 158 11 190 9 213
19 14 121 6 180 10 133 10 267 3 175

Total
Execution

Time

3201 2783 3759 4425 3146

Table 4.14: Policies computational time

HABBP Conventional Simplex algorithm
0.0157 0.0019 0.0198
0.0216 0.0182 0.0318
0.0178 0.0097 0.0290
0.0166 0.0042 0.0200
0.0174 0.0073 0.0256

and they are assigned to heterogeneous VMs. Each cloudlet and VM has different lengths

and MIPS values. Other specifications such as file size, output size values of all cloudlets,

size, ram, bandwidth and pesNumber of all VMs are constant as shown in Tables 4.10

and 4.11.

The simulation results are presented in Tables 4.12 and 4.13, Figs. 4.10 and 4.11, and

plotted in Fig. 4.8 and 4.9. In Job 1, under the conventional binding policy, cloudlets

are mapped to the VMs sequentially, that is Cloudlet ID 0 to VM ID 0, Cloudlet ID

1 to VM ID 1, Cloudlet ID 2 to VM ID 2, Cloudlet ID 3 to VM ID 3 , Cloudlet ID 4

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 80

(a) Job 1 (b) Job 2

(c) Job 3 (d) Job 4

(e) Job 5 (f) Comparison between Conventional Policy and
HABBP

Figure 4.8: Execution time of the cloudlets of Jobs 1, 2, 3 4 and 5

to VM ID 4, etc. On the other hand, HABBP allocates cloudlets to VMs based on the

operations in HABBP. For example, Cloudlet ID 0 is allocated VM ID 4, Cloudlet ID 1

to VM ID 9, Cloudlet ID 2 to VM ID 15, Cloudlet ID 3 to VM ID 5, Cloudlet ID 4 to

VM ID 12, etc. in Job 2; see Fig. 4.10.

Furthermore, the overall performance of HABBP is compared with the conventional

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 81

Figure 4.9: Policies computational time

Figure 4.10: Mapping cloudlets to VMs using HABBP

binding policy and benchmarked both solutions against the Simplex algorithm in terms

of the execution time of cloudlets in each job and total execution time of individual jobs.

In Figs. 4.8(a), 4.8(b), 4.8(c), 4.8(d) and 4.8(e), some cloudlets take a slightly longer time

to complete in HABBP than in the conventional policy. While some other cloudlets take

a significantly longer time to complete under conventional policy than under HABBP.

However, Fig. 4.8(f) where the total execution time performance of different jobs for

HABBP and conventional policy is presented, shows that HABBP constantly outper-

forms the conventional policy. Take Job 2 as an example, the total execution time for

HABBP is reduced by 54.73% compared with that of the default policy. HABBP and the

Simplex algorithm give the same job execution time. However, HABBP outperforms the

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 82

Figure 4.11: Mapping cloudlets to VMs using conventional binding policy

Simplex algorithm in terms of computational time as shown in Table 4.14 and Fig. 4.9.

4.6.2 Implementation of the Proposed GABVMP

In this section, the efficiency of the proposed GABVMP as discussed in Section 4.5 is

evaluated. For the simulation, the mininet module in python3 is used to model the tree

topology of the PMs and SWs interconnected in the datacenter. The network topology

consists of equal pairs of PMs and SWs. Each PM-SW link in the network topology has

a different capacity in terms of Mbps. The proposed GABVMP and greedy heuristics:

Random Placement and First Fit Placement are implemented and their behaviors are

compared on the topology with different sizes of PMs and SWs.

Three experiments were carried out. In the first experiment, 5, 10, 15, 20, 25, 30, 35,

40 VMs were placed on 5, 10, 15, 20, 25, 30, 35, 40 PMs interconnected with the same

number of switches using GABVMP with different values of α and β. In the second

experiment, 5, 10, 15, 20, 25, 30, 35, 40 VMs were placed on 5, 10, 15, 20, 25, 30, 35, 40

PMs interconnected with the same number of switches using Random Placement with

different values of α and β.

In the last experiment, 5, 10, 15, 20, 25, 30, 35, 40 VMs were placed on 5, 10, 15, 20,

25, 30, 35, 40 PMs interconnected with the same number of switches using First Fit

Placement with different values of α and β.

re

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 83

(a) α = 0.2, β = 0.8 (b) α = 0.5, β = 0.5

(c) α = 0.8, β = 0.2

Figure 4.12: GABVMP vs. Random Placement vs. First Fit Placement

Fig. 4.12 shows the experimental results of total placement cost in terms of time to

implement the proposed GABVMP and other two existing assignment methods in a

data center network with tree topology consisting of 5, 10, 15, 20, 25, 30, 35, 40 of PMs

and SWs at different values of of α and β. The GABVMP has a lower cost to place

VMs on PMs than the random placement and first fit placement. For instance, at α

= 0.2 and β = 0.8, the random placement has a total placement cost of 266 s and the

first fit placement has a total placement cost of 205 s while GABVMP takes a total

placement cost of 116s to place 5 VMs on 5 PMs interconnected with 5 SWs. For α =

0.5 and β = 0.5, the random placement has a total placement cost of 275 s and the first

fit placement has a total placement cost of 235 s while GABVMP takes total cost of

125s to place 5 VMs on 5 PMs interconnected with 5 SWs. For α = 0.8 and β = 0.2,

the random placement has a total cost of 284 s and the first fit placement has a total

placement cost of 216 s while GABVMP takes a total cost of 134s to place 5 VMs on 5

PMs interconnected with 5 SWs.

In addition, Fig. 4.13 illustrates the impact of latency on the total assignment cost of

the proposed GABVMP. The higher the value of α which denotes the weight of latency,

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 84

(a) Total cost for α and β values (b) Relationship between latency cost, link cost and total
cost

Figure 4.13: GABVMP for α and β values

Figure 4.14: Energy Consumption vs. Number of VMs

the higher the total placement cost. For instance, when α = 0.2, the total placement

cost is 1947 s, when α = 0.5, the total placement cost is 1970 s and α = 0.8, the total

placement cost is 1992 s to place 20 VMs into 20 PMs.

Finally, Fig. 4.14 shows the plot for energy consumption vs. number of VMs. The value

of Epeaki and Eidlei is set to 300 Joules and 200 Joules respectively [153]. It is observed

from the figure that, when the number of VMs is increased, energy consumed by the

used PMs is also increased. However, energy consumption in the proposed GABVMP is

lower than the random placement method. This is because the number of PMs required

to place a given number of VMs is less in GABVMP than the random placement and

First fit placement.

http://etd.uwc.ac.za/

Chapter 4. Resources Allocation 85

4.7 Chapter summary

The level of quality-of-service in cloud computing is determined to a large extent by

the resource allocation strategy adopted. In this work, the issue of quality-of-service in

cloud computing environments has been revisited. Two solution models have been pro-

posed. Firstly, the tasks-to-virtual machines allocation problem as a linear-programming

problem model is formulated and proposed HABBP, a load balancing policy for bind-

ing cloudlets to virtual machines. The simulation results produced by the contributed

code to the CloudSim simulation revealed the relative efficiency of the newly proposed

HABBP policy in solving and optimizing the virtual resources allocation problem in

the cloud computing environment. Secondly, the virtual machine placement problem

is presented and proposed a GABVMP as the solution for optimizing the model. The

simulation results show that the GABVMP performs better than the greedy heuristics:

Random Placement and First Fit Placement in terms of PM-SW links consumption which

corresponds to the cost of placing VMs on PMs in the data center.

In the next chapter, a scheme to protect and improve availability of the cloud user’s data

in the cloud storage is presented and implemented using OpenStack technology.

http://etd.uwc.ac.za/

Chapter 5

Data Storage Security and

Availability

5.1 Introduction

In recent years, cloud computing has proven its potential to reshape the way IT infras-

tructure is designed and procured. It provides users with a long list of benefits, such as

on-demand self-service; broad, heterogeneous network access; resource pooling and rapid

elasticity with measured services [8]. Furthermore, cloud computing offers customers a

more flexible way to obtain storage resources on demand rather than buying and main-

taining large and expensive IT hardware. It is a service where data is remotely stored

and backed up over the Internet. It allows the user to store files on-line so that the

user can access them any time and from any location via the Internet. The provider

company makes them available to the users on-line by keeping the uploaded files on an

external server. However, these benefits become a problem for latency-sensitive applica-

tions, which require nodes in the vicinity to meet their delay requirements [64]. When

techniques and devices of IoT are becoming more involved in people’s live, the current

Cloud computing paradigm can hardly satisfy their requirements of mobility support,

location awareness and low latency. The latest trend of computing paradigm is to move

elastic resources such as computation and storage to the edge of networks, which moti-

vates the promising computing paradigm of fog computing as a result of prevalence of

ubiquitously connected smart devices relying on cloud services. Fog computing moves

data and computation closer to end users at the edge of network, and thus provides a

new breed of applications and services to end users with low latency, high bandwidth,

and location-awareness, and thus gets the name of fog - a cloud close to the ground[64].

86

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 87

Futhermore, desipte the benefits of adapating a cloud computing paradigm, data secu-

rity has been identified as one of the major challenges which lessen wide acceptability

of the cloud storage in practice [158],[159]. There are two major security concerns while

outsourcing data to clouds. Firstly, unsecure cloud services will be vulnerable to the

internal and external adversaries, who may maliciously damage or corrupt customer’s

data. Secondly, cloud service providers may not disclose data loss or corruption for rep-

utation or monetary reasons. The integrity of data storage might be compromised due

to the lack of control of data security by data owners. Moreover, outsourcing the data

storage to a single cloud provider raises concerns such as having a single point of fail-

ure [4], [160], while distributing data across many servers will promote data availability

[109]. In order to protect data in a cloud computing environment, encryption techniques

may be an effective way of enforcing data security in a cloud. Encryption is the process

of using an algorithm to transform information to make it unreadable for unauthorized

users. However, most common encryption techniques require data to first be decrypted

before performing compuatation analysis on them, thereby constituting vulnerability of

the data during computation of the decrypted data. Homomorphic encryption makes

it possible to perform computations on encrypted data without decryption, the encr-

pyted results can only be decrypted by a cloud user who has made service requests.

Homomorphic encryption is a form of encryption which allows specific types of compu-

tations to be carried out on ciphertexts and generate an encrypted result which, when

decrypted, matches the result of operations performed on the plaintexts [161]. The main

contribution of this chapter is as follows:

1. It proposes a fog-based storage architecture, which provides low latency, location

awareness and improves the quality of services rendered to data users.

2. It integrates a trusted authority into the cloud computing environment to protect

outsourced data against intruder attacks. This also acts as a middleman between

the data owners and the cloud service provider.

3. It proposes Multi-Phase Data Security and Availability (MDSA) protocol, a novel

protocol to secure and improve availability of outsourced data in cloud storage.

This also includes adoption of the additive and mutiplicative privacy homomor-

phism (PH) scheme proposed in [162] to protect the processing of outsourced data

against intruders.

4. It implements the proposed Multi-Phase Data Security and Availability (MDSA)

protocol in the cloud/fog architecture test bed built using OpenStack technology.

5. It evaluates the performance of the proposed MDSA protocol and compares it with

existing protocol.

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 88

The remainder of the chapter is organized as follows. System protocol architecture, model

formulation and design goals are presented in section 5.2. Preliminaries and notations

in section 5.3. Section 5.4 presents the detail of the Multi-Phase Data Security and

Availability (MDSA) protocol. Section 5.5 presents the implementation of the proposed

protocol. Section 5.6 contains performance evaluation of the protocol. Summary of the

chapter is presented in section 5.7.

5.2 Problem formulation

In this section, the system protocol architecture, model formulation and design goals are

presented.

5.2.1 System architecture of cloud computing

This section considers a cloud and fog computing-based environment comprising many

cloud servers {CS1, CS2, ..., CSm}, which are under the control of one Public Cloud (PC),

a number of fog {fog1, fog2, ..., fogn}, Trusted Authority (TA), Fog Nodes (FNs), Data

owners (DOs) and Data Users (DUs) as shown in Figure 5.1. The detailed description

of the system components is as follows:

1. TA is an independent, trusted authority. It is responsible for the registration of

DO and manages the DO’s data, issuing anonymous credentials to regulate access

to the PC.

2. PC contains interconnected cloud servers CSs that can be accessed via TA. TA

manages fogs connectivity via internet and divides data into smaller units (blocks)

before distributing across multiple CSs by means of customized Service Level Agree-

ments implemented by a Cloud Service Provider (CSP) [163]. PC has a large stor-

age space and a strong computing capacity to store data coming from DOs. FNs

are connected to PC through TA.

3. Fog is a highly virtualized computing system, which is deployed at the edge of net-

works, and has direct communication with PC through TA. Similar to a lightweight

cloud server, FN is equipped with an on-board large volume data storage, comput-

ers and wireless communication facility [164].

4. DO and DU: Data can come from different owners and can also be used by many

users. For instance, in the healthcare sector, data can come from the patient’s

laboratory tests, patient’s medical details, medical sensors, medical practitioners,

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 89

Figure 5.1: System architecture

medical information records, etc. These data sources have smaller storage resources

to compute and store data being generated. Each data source could submit storage

service requests through the TA to the PC

5.2.2 Intruder Attack models

An Intruder could corrupt cloud user data on a small set of cloud servers and control

these servers to launch various attacks. These attacks are classified as follows:

5.2.2.1 Storage attack model

When the attacks are towards data storage security in the cloud, for example, the intruder

would arbitrarily modify the stored data to compromise the data integrity maliciously

or reveal the confidential data to purchase interest or both. In the malicious case, the

compromised cloud servers would simply reply to the cloud user’s storage queries with

a random number. It is a great challenge for cloud users due to the lack of physical

possession of the potentially large size of outsourced data. We assume that if the request

data set is R, the honest returned data set is R′ and the invalid returned data set is

R−R′.

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 90

5.2.2.2 Privacy attack model

The attacks towards the privacy issue of the cloud can be viewed as another kind of

storage attack, where it is assumed that the intruder may compromise the cloud user’s

privacy by exposing their confidential data to others, e.g. health condition to public

or auction price to business competitors, which would lead to serious consequences. To

provide data confidentiality, one straightforward approach is to save encrypted data in

the cloud servers. Thus, such an approach may prevent the regular cloud computation

from being further processed. Besides, if the data is stored in plain text in the cloud

servers, the intruder may break into and leak sensitive data to the public.

5.2.3 Protocol design goals

The proposed protocol is expected to achieve the following data security, availability and

performance goals:

1. Data storage security: To make sure that the outsourced data are securely stored in

both fog and cloud, the proposed protocol implements a two-phase security control

mechanism on the data. The first security check is done at the DO side while the

second security check one is implemented at TA in the PC. This mechanism will

make it very difficult for intruders to have full data details, even if the intruders

have access to the cloud servers.

2. Data availability: To ensure data is protected against cloud server failure, the

proposed protocol should be able to encode, decode and strip data across CSs

via PS. In addition, it should be able to recover data loss due to temporary or

permanent failure in any of the CS.

3. Privacy Control: The proposed protocol should ensure that only authorized parties

such as TA and DO could encrypt and authenticate the stored data, which can

discourage the CSP from compromising user’s privacy, even if the CSs are attacked

by intruders.

4. Performance evaluation: The computation and transmission overhead of the data

security and availability should be reduced, as it is best to meet the minimum

requirements.

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 91

5.3 Preliminaries and notation

This section describes some notations and cryptographic primitives that are adopted in

the proposed scheme.

5.3.1 Bilinear pairing

Let G1 be a cyclic additive group with an operation (+) and G2 be a cyclic multiplicative

group with an operation (.) both of prime order q with a bilinear map ẽ : G1XG2 having

the following properties:

• Bilinearity: For all g1 ∈ G1 and a, b ∈ Zq, ẽ(ag1, bg2) = ẽ(g1, g1)
ab

• Non-degeneracy: There exists g1 ∈ G1 such that ẽ(g1, g1) 6= 1

• Computability: A mapping is said to be computable if an algorithm exists which

can efficiently compute ẽ(g1, g2) for any g1, g2 ∈ G1. If G1 = G2, then the pairing

is said to be symmetric. Otherwise it is said to be asymmetric.

In this work, two pairings which will enforce the security in the public cloud layer of the

proposed scheme is considered.

5.3.2 Reed-Solomon codes

Reed-Solomon (RS) codes is one of the implementations of erasure coding. In RS coding,

the code is constructed over a Galois Field using a Vandermonde matrix. A Galois Field

is a finite field of q elements. It is denoted by GF (q). The RS Code is constructed as

follows: SupposeD = (d0, d1, d2, ..., dk−1) be a set of data to encode, with each coordinate

taken from GF (q). Let a primitive polynomial P (x) over GF (q) be defined as:

P (x) = d0 + d1x+ d2x
2+, ...,+dk−1x

k−1. (5.1)

Each code c is generated by evaluating the polynomial by each member of GF (q) as,

c = (c0, c1, ..., cq−1) = P (0), P (α), ..., P (αq−1) (5.2)

The complete code C is constructed by selecting d over all possible values. Thus it follows

that there are qk code in C. And since any two polynomials of degree (k− 1) is another

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 92

polynomial of degree less than or equal to (k − 1), then C is linear. Also, the code is of

length n = q and dimension k and denote it by RS(n, k).

5.3.3 Homomorphic Encryption Scheme

Basically a public-key encryption scheme consists of three algorithms Key Generation,

Encryption and Decryption. A homomorphic encryption scheme additionally includes

homomorphic operations on ciphertexts such as Addition, Multiplication etc.

• KeyGen (1λ). Given a security parameter λ, output a public and private key pair

(u, r), where u is a public key, and r is a private key.

• E(u, d ∈ ZN). Given a public key u and a plaintext message d ∈ ZN , output

ciphertext c ∈ C, where C is ciphertext space.

• D(r, d ∈ ZN). Given a private key r and a ciphertext c = D(u, d), output original

plaintext message d ∈ ZN .

• Add (u, c1 ∈ C, c2 ∈ C) (resp. Mult). Given a public key u and two ciphertexts

c1 = E(u, d1 ∈ ZN) and c2 = E(u, d2 ∈ ZN), output ciphertext c∗ ∈ C.

Homomorphic encryption is a special kind of encryption that allows operating on en-

crypted data (ciphertexts) without decrypting them; in fact, without even knowing the

decryption key. An encryption is homomorphic, if: from E(d1) and E(d2) where d1, d2 ∈
ZN , it is possible to compute E(f(d1, d2)), where f can be: +, ⊕ and without using the

private key. There are three types of homomorphic encryption: Additive, multiplicative

and fully homomorphic encryption.

5.3.3.1 Additive Homomorphic Encryption

Homomorphic encryption is additive if addition operation (+) can be performed on

the two encrypted data. Paillier [165] and Goldwasser-Micalli [166] cryptosystems are

the existing additive homormorphic encryption. Let N be encrypted data under same

public key u, which can be represented as [di]u where i = 1, 2, 3....N . The Additive

Homomorphic encryption satisfies the follwing equation:

Dr(
N∏
i=1

[di]u) =
N∑
i=1

di (5.3)

where Dr is the homomorphic decryption algorithm with secret key r.

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 93

5.3.3.2 Multiplicative Homomorphic Encryption

RSA [167] and El Gamal [168] cryptosystems are the most important multiplicative ho-

momorphic encryption. The multiplicative homomorphic encryption satisfies the follwing

equation:

Dr(

N∏
i=1

[di]u) =

N∏
i=1

di (5.4)

where Dr is the homomorphic decryption algorithm with secret key r, i = 1, 2, 3....N

and u is public key.

5.3.3.3 Fully Homomorphic Encryption

A given cryptosystem is considered fully homomorphic if it exhibits both additive and

multiplicative homomorphism [169], that is satisfies (1) and (2). If it view the elements

of ZN as bits, then addition in ZN is equivalent to taking the xor of the input bits

or values. Similarly, multiplication in ZN corresponds to evaluating the and of the

input bits. Thus, if an encryption scheme is homomorphic with respect to addition

and multiplication in ZN and it view the ciphertexts as encryptions of bits, then the

homomorphic operations enable the evaluation of and and xor gates over the input bits.

Since and and xor gates are universal for the class of Boolean circuits, this means that

using only the homomorphic operations, an arbitrary Boolean circuit can be evaluated

over the encrypted input bits. Thus, a fully homomorphic encryption scheme enables

arbitrary computation on encrypted data.

5.3.4 Securing Inter-Entity Communication

Let A and B be two distributed entities. The public key of A is u while the private key

of A is r. The similar notation can be used for entity B. The symmetric key K shared

between the entities A and B is denoted as KA,B. The encryption E() and decrpyption

D() functions are expressed in 5.5 and 5.6.

C = E(KA,B, D) (5.5)

D = D(KA,B, C) (5.6)

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 94

where D and C are Plaintext and Ciphertext repectively.

Furthermore, hashing function is another operation used in securing messages being

transmitted among the entities. Let’s consider a variable-length message M , the h value

is the fixed-length hash achieved from hashing function H, that is:

h = H(M) (5.7)

The H() function is a one-way operation such that the message M cannot be reclaimed

with h value. More specifically, effective security tasks can be accomplished by combining

encryption, decryption and hashing functions. Let’s use the private key of A, r with the

hashing of a transmitted message Mt, It is possible to achieve Signature DS of Mt

satisfying (4) such that,

DSMt = E(r,H(Mt)) (5.8)

The aftermath of the Signature process DSMt is attached to the original message for

enforcing its privacy and integrity. The receiver B receives a valid message MB such

that if:

D(u,DSMt) = H(MB) (5.9)

Then,

Mt = MB = M (5.10)

5.4 Multi-Phase Data Security and Availability (MDSA)

protocol

To achieve data security and availability, a basic protocol which relies on the cryptogra-

phy and RS codes is proposed. The proposed protocol consists of three layers: The data

sources layer, Fog layer and Public cloud layer. Fig. 5.1 illustrates an overview of data

and service flows in the protocol.

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 95

Figure 5.2: Data source and Trusted authority security model

5.4.1 Data owner registration

Before DO makes use of cloud services, they must first register with CSP through TA in

the cloud layer as shown in Figure 5.2. The DO submits its identity, id to TA, then DO

receives system parameters and a secret key sktd from TA through Secure Sockets Layer

(SSL) or Transport Layer Security (TLS) such as;

skid = s.Qid (5.11)

where s.Qid = H1(id)

Subsequently, DO performs the first phase of security by encrypting the generated data

using Homomorphic Encryption (HE) before sending, storing and retrieving queries from

the PC. The additive and mutiplicative privacy homomorphism (PH) scheme [162] is

adopted for the encryption and decryption operations. In PH, there are two pairs of

public parameters (m,u) and private parameters (m′
, r). The two public parameters

denote a large integer with many divisors m and a small integer that determines a

vector space u which represents ciphertext of a plaintext. Also, the two pair of secret

parameters represent a small divisor of m, m′ where m′
> 1 and r ∈ Zm such that

r−1modm exist. The DO performs two operations on the plaintext: First, transform

plaintext into plaintext value d ∈ Zm′ and randomly split it into secret d1, d2,, du
where u is a number of elements in a vector for each transformed plaintext value. After

transformation of plaintext, the next operation is to encrypt the vector elements such

that

d =

u∑
j=1

dj mod m
′
. (5.12)

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 96

where dj ∈ Zm′

The encryption operation for the vector elements is performed as follows:

E(d) = (d1r mod m, d1r
2 mod m,, dur

u mod m) (5.13)

The decryption operation is performed by computing a scalar product of the jth element

of a vector by r−1 mod m to find d1 mod m as follows:

E(d) = (d1r
−1 mod m, d1r

−2 mod m,, dur
−u mod m) (5.14)

From equation 5.12, aggregate vector elements and calculate a plaintext value of E(d)

as follows:

d =

u∑
j=1

dj mod m (5.15)

Algorithms 5 and 6 describe the encryption and decryption operations adopted by DO

respectively.

Algorithm 5: Encryption operation
input : a plaintext value (d), m, m′ , u, r
output: c : ciphertext inform of a vector

1 r−1 mod m exists
2 c = (0, 0,, 0); // set c as an empty vector
3 c = (d1, d2....., du); // randomly generated
4 c = E(d) = (d1r mod m, d1r

2 mod m,, dur
u mod m)

c = (E(d1), E(d2),, E(du))
5 return c

5.4.2 Data outsourcing

The TA in the cloud layer carries out the second phase of data security by encrypting

the encrypted data using Elliptic Curve Cryptography(ECC) [170], [171]. It also does an

audit check to ensure the data stored in the public cloud have not been compromised as

shown in the Figure 5.3. TA generates system parameters and secret keys. It selects two

groups G1 and G2 and admissible pairing ẽ : G1×G1 → G2; thus it chooses cryptographic

hash functions H : {0, 1} → Z1, H1 : {0, 1} → G1 and H2 : {0, 1} → Zq, H3 : G2 → Zq.
After system parameter setting, TA chooses a random number s ∈ Zq as its secret key

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 97

Algorithm 6: Decryption operation
input : (E(d1), E(d2),, E(du)), r, m, m′ , u
output: d : a plaintext value

1 sum = 0
2 j = 1
3 d = E(d) = (d1r mod m, d1r

2 mod m,, dur
u mod m)

4 d = (E(d1), E(d2),, E(du))
5 while j 6 u do
6 sum = sum+ E(dj)
7 j = j + 1

8 end
9 d = sum mod m

′

10 return d

Figure 5.3: Trusted authority and cloud security model

and chooses an arbitrary generator P ∈ G1 and set its public key as Kpub = s.P . The

system parameters are defined as:

params = (G1,G2, q, ê,Kpub, P,H,H1,H2,H3) (5.16)

TA sends these parameters to fog and DO in a secure manner.

In addition, public cloud layer through TA performs encoding and decoding operations.

In the encoding operation, the erasure codes based on the Reed-Solomon(RS) codes [172]

is used to distribute the complete data over a cloud server in a redundant manner. This

guarantees that the data is available, avoiding data loss. A RS code generates a set of

parity blocks from data blocks so that the original data can be reconstructed from the

current data blocks. Thus, the original data will be saved from getting lost along with

any lost in data. The algorithms that operate on encoding and decoding operations are

given in Algorithm 7 and 8 respectively.

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 98

Algorithm 7: encoding procedure of MDSA
input : multi-phase encrypted original data
output: encoded data

1 C(0) = d0
2 for i in set (1..k) do
3 for j in set (1..q − 1) do
4 C(αj) = C(0)

⊕
di ∗ αj(i−1)

5 end
6 end

Algorithm 8: decoding procedure of MDSA
input : multi-phase encrypted original data
output: decoded data

1 R(0) = C(0)
2 for i in set (1..k) do
3 for j in set (1..q − 1) do
4 R(αj) = R(0)

⊕
di ∗ αj(i−1)

5 end
6 end

5.4.3 Secured data processing

DUs usually make requests and use the data outsourced to the PC by the DO. In this

scheme, the request for the information is made through the fog layer because the fog

layer is closer to DUs than PC. The fog layer acts as an intermediary between the DUs

and PC. Subsequently, fog asks and receives requested ciphertexts (encrypted data) from

PC and decrypts it using security parameters in 5.16 and ECC algorithm. The arith-

metric operations are performed on the homomorphically encrypted data as requested

by DUs. To perform any arbitrary operation on encrypted data, the encrypted data is

transformed into the basic evaluation operations and then evaluated. Let f be arith-

metric computations on encrypted data over Zu
m′ in a fog layer. The expresssion Y ←−

Eval(f, d1, d2...du) performs computation f on operands d1, d2...du). The evaluation

function does not require any evaluation key parameter and all arithmetric operations

are performed within the Zu
m′ by the CN in the fog layer. The addition and subtraction

between two ciphertexts can be done componentwise between the vector element with

the same degree. The algorithm 9 and 10 illustrate addition and subtraction operations

on the ciphertexts. For instance, the two ciphertexts can be added or subtracted where

vector space u = 3 as follows:

Let E(d) = (d1, d2, d3) and E(e) = (e1, e2, e3)

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 99

Then,

E(d) + E(e) = ((d1 + e1) mod m, (d2 + e2) mod m, (d3 + e3) mod m) (5.17)

and,

E(d)− E(e) = ((d1 − e1) mod m, (d2 − e2) mod m, (d3 − e3) mod m) (5.18)

Algorithm 9: Addition operation
1 inputs:
2 c1, c2: ciphertexts
3 u: vector space
4 m:public parameters
5 output:
6 (E(r1), E(r2),, E(ru)) // ciphertexts as a vector

1: c1 + c2 = ((d1 + e1) mod m, (d2 + e2) mod m,, (du + eu) mod m)
2: (E(r1), E(r2),, E(ru)) = c1 + c2
3: return (E(r1), E(r2),, E(ru)

The multiplication operation between two ciphertexts works as polynomials. Let d and

e ∈ Zm with vector space u = 2. The mutilplication operation is cross mutilplication of

all elements in Zm and it’s illustrates in algorithm 11 as follows:

Algorithm 10: Subraction operation
1 inputs:
2 c1, c2: ciphertexts
3 u: vector space
4 m:public parameters
5 output:
6 (E(r1), E(r2),, E(ru)) //ciphertexts as a vector

1: c1 − c2 = ((d1 − e1) mod m, (d2 − e2) mod m,, (du − eu) mod m)
2: (E(r1), E(r2),, E(ru)) = c1 − c2
3: return (E(r1), E(r2),, E(ru))

E(d) = (d1, d2), E(e) = (e1, de) (5.19)

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 100

c1 ⊕ c2 = (E(0), E(d1)⊕ E(e1) mod m, ((E(d1)⊕ E(e2))

+(E(d2)⊕ E(e1))) mod m, (E(d1)⊕ E(e2)) mod m) (5.20)

Algorithm 11: Multiplication operation
input : c1, c2: ciphertexts

u: vector space
m: public parameters

output: (E(r1), E(r2),, E(ru)) // ciphertexts as a vector
1 output:
2 (E(r1), E(r2),, E(ru)) //ciphertexts as a vector u = 2
3 c1 ⊕ c2 = (E(0), E(d1)⊕ E(e1) mod m, ((E(d1)⊕ E(e2)) + (E(d2)⊕

E(e1))) mod m, (E(d1)⊕ E(e2)) mod m)
4 (E(r1), E(r2), E(r3), E(r4)) = c1 ⊕ c2
5 return (E(r1), E(r2), E(r3), E(r4))

5.5 Experiments

In this section, the experiment is conducted with the proposed scheme in the cloud/fog-

testbed running on the OpenStack architecture as shown in Figure 5.4. OpenStack [25],

[173] is an open source collection of software components that enables one to leverage

the power of resources like computing power, memory, and other specialized storage

structures such as object storage and block storage distributed across data centers. The

OpenStack consists of four modules, which are: (i) Nova (compute); (ii) Swift (object

storage); (iii) Keystone (authentication and authorization) and (iv) Glance (VM reposi-

tory).

As illustrated in Figure 5.4,the testbed consists of three layers: cloud, fog, and clients

layer to implement the concept of the fog computing platform depicted in Figure 5.1.

Three OpenStack systems are set up, one represents PC while the remaining two rep-

resent fogs. PC is composed of a proxy node and four storage nodes. The proxy node

serves as a TA that performs various operations such as data security, encoding, de-

coding, upload and download data across multiple storage nodes. The proxy node also

serves as an intermediary between the DOs and PC. Storage nodes consist of a swift

(object storage) service to store data in such a way that the data will be secured and

recoverable in case there is an occurrence of adversary attack and cloud server failure.

Each object storage node contains the disks that the object storage service uses for stor-

ing accounts, containers, and objects. Both proxy and storage nodes are Linux machine

with an Inter(R) core(TM) i5-4590, 3.30Ghz CPU, 8GB RAM. Each fog has one router

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 101

Figure 5.4: Cloud/Fog testbed setup

and three servers which represent FNs. The routers are connected to the PC through

the Wide Area Network (WAN), as well as connected with each other though the Local

Area Network (LAN). The routers are also integrated with a wireless AP function, so

that clients can access the fog as well as PC through them. In the end, MDSA scheme

is deployed and implemented on the testbed with the series of experiments as proposed

in section 5.4.

5.6 Performance Evaluation

The experiment is carried out by observing the system performance under various traffic

load varying from 100MB to 1000MB. The four cases are considered, which include: (i)

impact of latency and bandwidth; (ii) impact of traffic load brought by security overhead;

(iii) impact of traffic load brought by availability (encoding and decoding) overhead; and

(iv) overall performance comparison.

5.6.1 Impact of latency and bandwidth

The performance evaluations of the fog and PC are measured and compared in terms of

latency and bandwidth. The Round Trip Time (RTT) is used as the metric of latency

while uplink and downlink are used for the bandwith. The results in Table 5.1 shows

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 102

Table 5.1: Comparison of Latency and Bandwidth

Fog Public Cloud
Data Sizes

(mb)
Round
Trip
Time
(ms)

upload and
download links

Bandwidth
(MBps)

Round
Trip
Time
(ms)

upload and
download links

Bandwidth
(MBps)

100 0.984 56.921/58.034 6.975 1.266/1.289
200 1.234 60.021/61.213 7.864 1.524/1.478
300 1.563 65.251/64.012 9.963 1.754/1.692
400 1.712 68.036/67.294 12.753 1.845/1.793
500 1.983 70.076/69.645 13.873 1.895/1.954
600 2.012 70.965/71.543 15.302 1.994/1.895
700 4.358 73.743/72.986 17.325 2.054/2.146
800 5.389 75.167/76.975 18.975 2.256/2.215
900 7.046 79.084/80.543 22.954 2.546/2.471
1000 8.012 85.961/103.764 24.385 2.872/2.906

Figure 5.5: Impact of security overhead

that fog computing has a better performance in terms of low latency and high bandwith

for DUs.

5.6.2 Impact of security overhead

The impact of traffic load to system performance is measured by the uploading speed

as shown in Figure 5.5. The uploading performance is measured in terms of speed

for two different cases: Firstly, uploading data with security guarantee in MDSA; and

secondly, uploading data without security guarantee in MDSA. It is observed that the

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 103

Figure 5.6: Impact of encoding operation with security overhead

uploading speed with security guarantee in MDSA is higher than that of the original

protocol without the security addons. For example, for the larger data size of 700 MB,

the uploading speed is 19.1 Mb/s, which is faster than that of the original protocol by

0.7 Mb/s. For smaller files, the difference in speed are insignificant due to the session

establishment delay.

5.6.3 Impact of encoding operation

Similarly, the uploading performance of the MDSA protocol is measured for two scenarios;

uploading encoded data with security guarantee and uploading non-encoded encrypted

data. It was found that the performance of uploading encoded data with security guar-

antee is better than that of non-encoded data as shown in Figure 5.6. For example, for

data size of 700 MB, the uploading encoded data takes 35.3s to complete while that of

non-encoded data takes 38.7s. Furthermore, the percentage variation is calculated to

justify the uploading performance of the MDSA protocol. The percentage variation is

the absolute value of the change in value, divided by the average of the 2 numbers, all

multiplied by 100 and is expressed as:

Percentage V ariation =
|4V |∑

V

2

× 100 (5.21)

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 104

=
|V1 − V2|
V1 + V2

2

× 100 (5.22)

Using equation 5.22 and data size 700MB, the encoding operation proposed in the MDSA

protocol and non-encoding operation have a percentage variation of 9.2%. This indicate

that the encoding operation is 9.2% performs better than the non-encoding operation

for uploading data with a size of 700MB to the loud servers.

Finally, considering the data sizes as indicated in Figure 5.6, the analysis shows that the

encoding operation is 10.5% which on average performs better than the non-encoding

operation.

5.6.4 Overall performance comparison

To consider the overall performance, the MDSA protocol is compared with a Single Phase

Data Security and Availability (SDSA) protocol as proposed by [111] and [112]. The

total time of uploading files in both cases are recorded for comparison. Figure 5.7 shows

the total uploading time comparison of the MDSA, SDSA and Replication with security

guarantees. It is observed that the time MDSA takes to complete the uploading operation

is lower than both SDSA and Replication with security guarantees. The MDSA is on

average 12.3% and 24.1% better than the SDSA and Replication with security guarantees.

The latter can be explained since the MDSA performs two encryption processes, which

eventually reduces the size of the original data by 48.5% and 53.6% lower than the SDSA

and Replication with security guarantees.

5.7 Chapter summary

Cloud computing is a promising paradigm which has emerged to expand the business

of organizations. Despite its numerous advantages, many organisations are skeptical

about these benefits due to possible security compromises because they have little or

no control over their data being stored in the cloud storage. As a result, the MDSA is

proposed, a multi-phase data security and availability protocol to provide two levels of

security guarantee for cloud user’s data. Furthermore, this protocol offers cloud users the

confidence to recover their lost data when permanent server failure occurs. The proposed

scheme is implemented in the cloud/fog testbed running on OpenStack architecture and

the experiments are performed with different scenarios to validate the efficiency and

reliability of the proposed protocol. The experimental results show that the proposed

http://etd.uwc.ac.za/

Chapter 5. Data Storage Security and Availability 105

Figure 5.7: Overall systems performance

scheme is effective and efficient for achieving data security and availability in cloud

storage.

The next chapter summarises the thesis and discusses future research to follow the re-

search work that has been done in this project.

http://etd.uwc.ac.za/

Chapter 6

Conclusion and recommendations

6.1 Introduction

As mentioned earlier, there are many challenges facing cloud computing since it came into

existence. However, the greatest challenges are: Security, availability, resource allocation

and performance. These challenges effect on the QoS in cloud computing. QoS denotes

the level of performance, reliability, availability offered by an application and by the

platform or infrastructure that hosts it. QoS is fundamental to cloud users, who expect

providers to offer the services as they are contained in the Service Level Agreements

(SLAs), and cloud providers, who need to find the right tradeoff between QoS levels and

operational cost.

Thus, the research presented in this thesis has focused mainly on four different challenges

confronting and challenging the usage of cloud computing. The challenges identified are

four even though there are other challenges considered to be confronting full optimization

of this form of computing.

The four identified challenges (Security, availability, resource allocation and perfor-

mance) are view as core challenges that need immediate attention. In a bid to find

solutions to the above named challenges, system architectures, models and algorithms

are designed and developed. Five different tools are used for implementing the system ar-

chitectures, models and algorithms. The tools are: MySQL, Neo4j, MongoDB, CloudSim

3.0.3 and OpenStack technology.

106

http://etd.uwc.ac.za/

Chapter 6. Conclusion and future research 107

6.2 Summary of the chapters

In order to have a clear understanding of what has been discussed in the previous chap-

ters, this section summarizes, repeats and recaps the content of this thesis.

6.2.1 Chapter 1

This chapter provides background, statement and analysis of the problem. It also

presents the following:

1. Research questions

2. The aim and objectives of the research work

3. Research methodology

4. Declaration of publications

5. Thesis outline

6.2.2 Chapter 2

Chapter 2 provides a comprehensive backgound into research that has been carried out in

terms of cloud storage, data security and availabily, resource allocation, and performance

in a single cloud computing environment. It presents literature review in terms of the

research objectives dicussed in chapter 1

6.2.3 Chapter 3

This chapter uses an exploratory approach to present an efficient data model for the

cloud computing environment, to elucidate how the CSB can effectively support the

allocation, control and management of virtual resources between CSPs and cloud users.

The model is implemented using the relation databse (MySQL), graph database (Neo4j)

and document-oriented database (mongodb) on the private lightweight cloud testbed

using database language syntax to store, update and retrieve the customer requests and

cloud infrastructures status in the database. The performance evaluation of the models

reveals that the document-oriented model has better performance in a cloud computing

environment than the relation and graph modes in terms of queries processing time.

Ultimately, MongoDB emerges as the most suitable database model with respect to

flexibility, elastic scalability, high performance, and availability.

http://etd.uwc.ac.za/

Chapter 6. Conclusion and future research 108

6.2.4 Chapter 4

This chapter presents an implementation of the framework by assuming that: i) the

tasks and virtual resources are heterogeneous and physical resources are homogeneous,

and ii) the number of available physical resources are limited compared to the number

of cloud user on-demand requests. It also presents a model for mapping the tasks, i.e.,

cloudlets, to VMs, and VM placement with the aim of improving quality of service in

the cloud computing environment. The major contributions of this chapter includes:

mathematical modelling of the problems; a task binding policy; VMs placement solution

and performance evaluation.

The simulation results produced by the contributed code to the CloudSim simulation

reveal the relative efficiency of the newly proposed HABBP policy in solving and op-

timizing the virtual resources allocation problem in the cloud computing environment.

Also, the simulation results show that the GABVMP performs better than greedy heuris-

tics: Random Placement and First Fit Placement in terms of the total placement cost

which corresponds to the cost of placing VMs on PMs in the data center .

6.2.5 Chapter 5

In order to protect the cloud user’s data and improve the accessibility of the cloud services

in the cloud computing environment, this chapter presents a fog-based storage architec-

ture, which provides low latency, location awareness and improves the quality of services

rendered to data users. It also presents a Multi-Phase Data Security and Availability

(MDSA) protocol, a novel protocol to secure and improve availability of outsourced data

in cloud storage. This also includes adoption of the additive and mutiplicative privacy

homomorphism (PH) scheme to protect the processing outsourced data against intrud-

ers. The experiment results show that the proposed scheme is effective and efficient for

achieving data security and availability in cloud storage.

6.3 Recommendations for future work

It is evident from the thesis that all the challenges addressed are very crucial to cloud

computing and cannot be ingored either by the cloud service providers or the cloud users.

However, since the architectural models are not implemented on a real cloud computing

environment, thus it is recommended that in the near future, the models are embedded in

a real cloud architecture to give room for cloud expansion in terms of resources allocation

and performance, and to ensure that the cloud user’s data are proctected from intruders

http://etd.uwc.ac.za/

Chapter 6. Conclusion and future research 109

and are available when needed. Specifically, the future works are recommeded according

to the models presented in Chapters 3, 4, and 5.

In chapter 3, it is recommeded that an optimization module can be developed on top

of mongoDB database in the cloud service brokerage system. The module will interface

system with cloud service providers and update the status of cloud resources in the

database.

In chapter 4, the proposed solutions can be used to optimize resource allocation in

federated lightweight cloud computing infrastructures targeting drought mitigation [174],

[175] in the rural areas of Africa and healthcare following the framework proposed in [176]

and [177]. For such deployments, the policy will be extended to account for traffic

engineering characteristics of the cloud computing network for both local traffic [178]

and inter-Africa traffic [179] as they can heavily impact the access to the cloud nodes

and thus influence the QoS provided by the cloud. The implementation of the newly

proposed policy in a real cloud environment such as Amazon EC2 is another avenue for

future work.

In chapter 5, the proposed scheme can be implemented in the real commercial cloud

storage platform such as Amazon EC2.

Futhermore, aside from resources allocation, data security and availability, and per-

formance addressed by this thesis, there are other problems currently confronting the

optimal benefits of cloud computing. Some other areas calling for urgent attention and

immediate solutions in a cloud environment include: cloud maintenance, cloud interoper-

ability, service pricing, governance and control, incorporating existing infrastructure, etc.

All these challenges remain important areas of research in cloud computing that deserve

attention for any future work. Addressing them will undoubtedly improve, enhance and

solidify the application of cloud computing in all organization operations.

http://etd.uwc.ac.za/

Appendix A

Source codes

#-----GABVMP.py ------#

import sys

import math

import random

import time

import numpy as np

class GABVMP(object):

def __init__(self , file=None , pop_size =100, gen=200, \

p_x=0.8, p_m=0.2, popu=5, use_popu=False):

self.pop_size = pop_size

self.gen = gen

self.p_x = p_x

self.p_m = p_m

self.popu = popu

self.use_popu = use_popu

self.counter = 0

self.best_fit = math.inf

if file is not None:

with open(file) as fp:

for i, line in enumerate(fp):

if i == 0:

self.n = int(line [2:])

self.cost_matrix = np.empty ((0, self.n), int)

self.latency_matrix = np.empty ((0, self.n), int)

elif 1 < i < self.n + 2:

loading the latency matrix

self.latency_matrix = np.append(self.latency_matrix ,\

[list(map(int , line [2:]. split(’ ’)))], axis =0)

elif self.n + 2 < i < (2 * self.n) + 3:

loading the Link cost matrix

self.cost_matrix = np.append(self.cost_matrix ,\

[list(map(int , line [2:]. split(’ ’)))], axis =0)

if i == (2 * self.n) + 3:

break

110

http://etd.uwc.ac.za/

Appendix A. GABVMP 111

else:

sys.exit("Error! no file is provided , please provide \

input file and run the program again")

#sys.exit("Error !")

self.cur_pop = None

self.evaluated_pop = None

self.selected_pop = None

self.min_fitness = None

self.max_fitness = math.inf

self.evaluation_difference_sum = 0

self.new_pop = None

self.sum_of_probabilities = 0.0

self.pop_probabilities = np.array ([])

self.worst_history = np.array ([])

self.avg_history = np.array ([])

self.best_history = np.array ([])

pass

def initialize(self):

start_pop = np.array([np.arange(1, self.n+1) for i in range(self.pop_size)])

for i in start_pop:

np.random.shuffle(i)

self.cur_pop = start_pop

def evaluate(self , chromosome):

return sum(sum ((0.5* self.latency_matrix[i]) + \

(0.5 *self.cost_matrix[chromosome[i] - 1]) for i in range(self.n)))

def evaluation(self):

self.evaluated_pop = np.array([self.evaluate(i) for i in self.cur_pop])

self.max_fitness = np.amin(self.evaluated_pop) if np.amin(

self.evaluated_pop) < self.max_fitness else self.max_fitness

self.min_fitness = np.amax(self.evaluated_pop)

self.evaluation_difference_sum = sum(self.min_fitness - self.evaluated_pop)

self.worst_history = np.append(self.worst_history , np.amax(self.evaluated_pop))

self.avg_history = np.append(self.avg_history , np.average(self.evaluated_pop))

self.best_history = np.append(self.best_history , np.amin(self.evaluated_pop))

def roulette_prob(self , cur_fitness):

return (self.min_fitness - cur_fitness) / self.evaluation_difference_sum

def selection(self):

self.selected_pop = np.empty((0, self.n), int)

if self.use_popu:

for j in range(self.pop_size):

popu_members = np.empty ((0, self.n), int)

for i in random.sample(range(0, self.pop_size), self.popu):

chromosome = self.cur_pop[i]

popu_members = np.append(popu_members , np.array ([chromosome]), axis =0)

evaluated_popu_members = np.array ([self.evaluate(i) for i in popu_members])

self.selected_pop = np.append(self.selected_pop , np.array([popu_members[\

np.argmin(evaluated_popu_members)]]), axis =0)

else:

self.pop_probabilities = np.array ([])

http://etd.uwc.ac.za/

Appendix A. GABVMP 112

self.sum_of_probabilities = 0.0

for j in self.evaluated_pop:

probability = self.sum_of_probabilities + self.roulette_prob(j)

self.pop_probabilities = np.append(self.pop_probabilities , probability)

self.sum_of_probabilities += self.roulette_prob(j)

for i, obj in enumerate(self.pop_probabilities):

if obj >= random.random ():

self.selected_pop = np.append(self.selected_pop ,\

np.array([self.cur_pop[i]]), axis =0)

def ox_crossover(self , parent_a , parent_b):

a = random.randint(1, len(parent_a) - 3)

b = random.randint(a + 1, len(parent_a) - 2)

child_a = np.zeros(self.n, int)

child_b = np.zeros(self.n, int)

injection of a fragment of the second parent ’s genotype

for i in range(a, b + 1):

np.put(np.asarray(child_a), i, parent_b[i])

np.put(np.asarray(child_b), i, parent_a[i])

gene replacement

for j in range(len(parent_a) - (b - a)):

repairing_index = b + j + 1

if repairing_index > (len(parent_a) - 1):

repairing_index = (repairing_index % len(parent_a)) - 1

replenishing child_a genes

for k in range(len(parent_a)):

parent_index = repairing_index + k

if parent_index > (len(parent_a) - 1):

parent_index = (parent_index % len(parent_a))

if not np.asarray(parent_a)[parent_index] in np.asarray(child_a):

np.put(child_a , repairing_index , parent_a[parent_index])

break

gene replication child_b

for l in range(len(parent_b)):

parent_index = repairing_index + l

if parent_index > (len(parent_b) - 1):

parent_index = (parent_index % len(parent_b))

if not np.asarray(parent_b)[parent_index] in child_b:

np.put(child_b , repairing_index , parent_b[parent_index])

break

return child_a , child_b

def crossover(self):

self.new_pop = np.array ([])

parent_1 = None

for i in self.selected_pop:

if np.random.random () <= self.p_x:

if parent_1 is not None:

child_1 , child_2 = self.ox_crossover(parent_1 , i)

self.new_pop = np.append(self.new_pop , child_1 , axis =0)

http://etd.uwc.ac.za/

Appendix A. GABVMP 113

self.new_pop = np.append(self.new_pop , child_2 , axis =0)

parent_1 = None

else:

parent_1 = i

self.new_pop = np.reshape(self.new_pop , [int(len(self.new_pop) / self.n), self.n])

replenishment of missing individuals in the population

while len(self.new_pop) < self.pop_size:

self.new_pop = np.append(self.new_pop , np.array([self.cur_pop[\

np.random.randint(0, self.pop_size)]]), axis =0)

recognition of the new generation as present

self.new_pop = self.new_pop.astype(int)

self.cur_pop = np.copy(self.new_pop)

self.new_pop = None

def mutation(self):

for chromosome in self.cur_pop:

for i, gene in enumerate(chromosome):

if np.random.rand() <= self.p_m:

changing_gene = random.choice ([j for j in range(0, self.n) if j != i])

chromosome[i], chromosome[changing_gene] = \

chromosome[changing_gene], chromosome[i]

def run(self):

best_fitnesses = np.array ([])

times = np.array ([])

for j in range (10):

start_time = time.time()

self.initialize ()

self.evaluation ()

for i in range(self.gen):

self.selection ()

self.crossover ()

self.mutation ()

self.evaluation ()

print("The best adaptation: " + str(self.max_fitness))

times = np.append(times , time.time() - start_time)

best_fitnesses = np.append(best_fitnesses , self.max_fitness)

self.max_fitness = math.inf

print("Total cost: " + str(np.average(best_fitnesses)))

print("Average calculation time: " + str(np.average(times)))

return np.average(best_fitnesses)

def run_line_chart(self):

start_time = time.time()

self.initialize ()

self.evaluation ()

for i in range(self.gen):

self.selection ()

self.crossover ()

self.mutation ()

self.evaluation ()

elapsed_time = time.time() - start_time

print("Calculation time: " + str(elapsed_time))

generations = np.arange(self.gen+1)

http://etd.uwc.ac.za/

Appendix A. GABVMP 114

return self.worst_history , self.avg_history , self.best_history , generations

gabvmp = GABVMP.GABVMP(file="Had40.txt", pop_size =10, gen =200,\

use_popu=True , popu=5, p_x=0.8, p_m =0.2)

avg_gabvmp = gabvmp.run()

http://etd.uwc.ac.za/

Bibliography

[1] M. Sajid and Z. Raza. Cloud computing: Issues and challenges. In Proceed-

ings of the 10th IEEE International Conference on High Performance Computing

and Communications (HPCC 2008, IEEE CS Press, Los Alamitos, CA, USA),

Dalian,China, September 25–27 2008.

[2] T. Dillon, C. Wu, and E. Chang. Cloud computing: Issues and challenges. In 24th

IEEE International Conference on Advanced Information Networking and Appli-

cations(AINA), pages 27–33, April 20-23 2010.

[3] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing

360-degree compared. In Proceedings of Grid Computing Environments Workshop

(GCE), 2008.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica, , and M. Zaharia. A view of cloud computing.

Communications of the ACM, 53(4):50–58, 2010.

[5] M. VERAS. Cloud computing: new it architecture. Rio de Janeiro: Brasport,

2012.

[6] E. B. K. Manash and T. U. Rani. Cloud computing- a potential area for research.

Journal of Computer Trends and Technology (IJCTT), 25(1):10–11, 2015.

[7] A. Kumar. Nist- the definition of cloud computing. Asian Journal of Multidisci-

plinary Studies, 2(1), 2014.

[8] P. Mell and T. Grance. Draft nist working definition of cloud computing.

http://csrc.nist.gov/groups/SNS/cloud-computing/index.html, June 2009.

[9] F. Alfifi, W. Wang, G. A. Davis, P. J. Kovacs, and S.Q. Al-Maliki. Cloud com-

puting: A cross-cultural comparative study between computer and information

systems faculty at a university in the united states and a university in saudi ara-

bia. Issues in Information Systems, 16(1), 2015.

115

http://etd.uwc.ac.za/

Bibliography 116

[10] P. Sasikala. Research challenges and potential green technological applications in

cloud computing. International Journal of Cloud Computing, 2(1):1–19, 2013.

[11] D. C. Plummer, D. Smith, T. J. Bittman, D. W. Cearley, D. J. Cappuccio, D. Scott,

R. Kumar, and B. Robertson. Gartner highlights five attributes of cloud comput-

ing,gartner report. Asian Journal of Multidisciplinary Studies, G00167182:1–5,

May 2009.

[12] R. Buyya, C. S. Yeo, and S Venugopal. Market-oriented cloud computing: Vi-

sion,hype, and reality for delivering it services as computing utilities. In Proceed-

ings of the International Conference on Cloud, Big Data and Trust, Nov. 13-15

2013.

[13] R. BUYYA, J. BROBERG, and A. M. GOSCISNSKI. Cloud computing: Principles

and paradigms. John Wiley and Sons: San Francisco, 2011.

[14] L. Badger, T Grance, R. P. Comer, and J. Voas. Draft cloud computing synopsis

and recommendations. Recommendations of National Institute of Standards and

Technology (NIST), May 2012.

[15] Salesforce. Crm-salesforce.com. http://www.salesforce.com/. [Online; accessed

12-October-2015].

[16] Google. Googledocs. http://docs.google.com, . [Online; accessed 20-November-

2015].

[17] D. Assante, M. Castro, I. Hamburg, and S. Martin. The use of cloud computing

in smes. Journal of Information Technology Management, 83(1):1207–1212, 2016.

[18] Google. Google app engine. http://code.google.com/appengine/, . [Online;

accessed 19-October-2015].

[19] Microsoft. Windows azure platform. http://www.microsoft.com/windowsazure/,

. [Online; accessed 23-October-2015].

[20] Amazon. Amazon elastic compute cloud(amazon ec2). http://aws.amazon.com/

ec2/. [Online; accessed 12-October-2015].

[21] GoGrid. Gogrid. http://www.gogrid.com/. [Online; accessed 12-October-2015].

[22] Flexiscale. Flexiscale. http://www.flexiscale.com. [Online; accessed 12-

October-2015].

[23] Redplaid. Redplaid managed hosting. http://www.redplaid.com. [Online; ac-

cessed 12-October-2015].

http://etd.uwc.ac.za/

http://www.salesforce.com/
http://docs.google.com
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.gogrid.com/
http://www.flexiscale.com
http://www.redplaid.com

Bibliography 117

[24] S. Zhang, S. F. Zhang, X. B. Chen, and X. Z. Huo. Cloud computing research and

development trend. pages 93–97, September 25–27 2010.

[25] OpenStack. Openstack cloud platform. http://www.openstack.org. [Online;

accessed 10-November-2015].

[26] G. Hamoun, S. Bradley, L. Marin, and I. Gabriel. Feedback-based optimization of

a private cloud. Future Generation Computer Systems, 28(1):104–111, 2012.

[27] S. Arnold. Cloud computing and the issue of privacy."km world. Available:

www.kmworld.com, pages 14–22, Aug. 19 2009.

[28] S. Reza, A. Adel, and O. M. Justice. Cloud computing from smes perspective: A

survey based investigation. Journal of Information Technology Management, 24

(1):1–2, 2013.

[29] O. Tiago, T. Manoj, and E. Mariana. Assessing the determinants of cloud comput-

ing adoption: An analysis of the manufacturing and services sectors. Information

and Management, 51(5):497–510, 2014.

[30] L. Y. Astri. A study literature of critical success factors of cloud computing in

organizations. Procedia Computer Science, 59(1):188–194, 2015.

[31] A. Charu. Concepts, challenges and opportunities of cloud computing for business

analyst. AKGEC International Journal of Technology, 2(2):25–30, 2011.

[32] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud computing

- the business perspective. Decision Support Systems, 51(1):176–189, 2010.

[33] K. H. Ali, G. David, and S. Ian. Cloud migration: A case study of migrating an

enterprise it system to iaas. In CLOUD ’10 Proceedings of the 2010 IEEE 3rd

International Conference on Cloud Computing, pages 450–457, July 05-10 2010.

[34] F. Bonomi, R. Milito andJ. Zhu, and S. Addepalli. Fog computing and its role in

the internet of things. In Proceedings of the First Edition of the MCC Workshop on

Mobile Cloud Computing, MCCâĂŹ12, ACM, Ambleside, United Kingdom, pages

13–16, 2012.

[35] L. Ti. Chang, L. Chin, A. Y. Chang, and J. C. Chun. Information security is-

sue of enterprises adopting the application of cloud computing. In IEEE 2010

Sixth International Conference on Networked Computing and Advanced Informa-

tion Management (NCM), page 645, August 2010.

[36] O. Al-Hujran, E. M. Al-Lozi, M. M. Al-Debei, and M. Maqableh. Challenges

of cloud computing adoption from the toe framework perspective. International

http://etd.uwc.ac.za/

http://www.openstack.org

Bibliography 118

Journal of E-Business Research (IJEBR), 14(3):18, 2018. URL http://dx.doi.

org/10.4018/IJEBR.2018070105.

[37] G. P. Bhandari and R. Gupta. An overview of cloud and edge computing ar-

chitecture and its current issues and challenges. Advancing Consumer-Centric

Fog Computing Architectures, page 37, 2019. URL http://dx.doi.org/10.4018/

978-1-5225-7149-0.ch001.

[38] J. F. Yang and Z. B. Chen. Cloud computing research and security issues. In IEEE

International Conference on Computational Intelligence and Software Engineering

(CiSE), Wuhan, pages 1–3, Dec 10-12 2010.

[39] A. Kobusińska, C. Leung, C. Hsu, S. Raghavendra, and V. Chang. Emerging

trends, issues and challenges in internet of things, big data and cloud computing.

Future Generation Computer Systems, 87:416–419, 2018. ISSN 0167-739X. doi:

https://doi.org/10.1016/j.future.2018.05.021. URL http://www.sciencedirect.

com/science/article/pii/S0167739X18311270.

[40] S. Kumar and R. H. Goudar. Cloud computing âĂŞ research issues, challenges,

architecture, platforms and applications: A survey. International Journal of Future

Computer and Communication, 1(4), December 2012.

[41] Q. ZHANG, L. CHENG, and R. BOUTABA. Cloud computing: State-of-the-art

and research challenges. Journal of Internet Services and Applications, 1.

[42] M. C. Silva Filho, C. C. Monteiro, Pedro R.M. Inácio, and Mário M. Freire. Ap-

proaches for optimizing virtual machine placement and migration in cloud envi-

ronments: A survey. Journal of Parallel and Distributed Computing, 111:222–250,

jan 2018. doi: 10.1016/j.jpdc.2017.08.010. URL https://doi.org/10.1016%2Fj.

jpdc.2017.08.010.

[43] G. Kousiouris, A. Menychtas, D. Kyriazis, S. Gogouvitis, and T. Varvarigou. Dy-

namic, behavioral-based estimation of resource provisioning based on high-level

application terms in cloud platforms. Future Generation Computer Systems, 32:

27–40, 2012. URL http://dx.doi.org/10.1016/j.future.2012.05.009.

[44] G. Sun, D. Liao, V. Anand, D. Zhao, and H. Yu. A new technique for efficient live

migration of multiple virtual machines. Future Generation Computer Systems, 55:

74–86, 2016. URL http://dx.doi.org/10.1016/j.future.2015.

[45] K. Scarfone, M. Souppaya, and P. Hoffman. Guide to security for full virtualization

technologies. NIST Special Publication, pages 125–800, 2011.

http://etd.uwc.ac.za/

http://dx.doi.org/10.4018/IJEBR.2018070105
http://dx.doi.org/10.4018/IJEBR.2018070105
http://dx.doi.org/10.4018/978-1-5225-7149-0.ch001
http://dx.doi.org/10.4018/978-1-5225-7149-0.ch001
http://www.sciencedirect.com/science/article/pii/S0167739X18311270
http://www.sciencedirect.com/science/article/pii/S0167739X18311270
https://doi.org/10.1016%2Fj.jpdc.2017.08.010
https://doi.org/10.1016%2Fj.jpdc.2017.08.010
http://dx.doi.org/10.1016/j.future.2012.05.009
http://dx.doi.org/10.1016/j.future.2015

Bibliography 119

[46] J. Sahoo, S. Mohapatra, and R. Lath. Virtualization: A survey on con-

cepts,taxonomy and associated security issues. In 2nd International Conference

on Computer and Network Technology, IEEE, 2010.

[47] V. Chaudhary, Cha Minsuk, J. P. Walters, S. Guercio, and S. Gallo. A compar-

ison of virtualization technologies for hpc. In 22nd International Conference on

Advanced Information Networking and Applications, pages 861–868, March 2008.

[48] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings of the

19th ACM Symposium on Operating Systems Principles, pages 164–177, 2003.

[49] A. Whitaker, M. Shaw, and S. D. Gribble. Denali: Lightweight virtual machines

for distributed and networked applications. In Proceedings of the USENIX Annual

Technical Conference, June 2002.

[50] J. Dike. A user-mode port of the linux kernel. In Proceedings of the 4th Annual

Linux Showcase and Conference, 2001.

[51] J. Sugarman, G. Venkitachalam, and B. Lim. Virtualizing i/o devices on vmware

workstation’s hosted virtual machine monitor. In Proceedings of the 2001 USENIX

Annual Technical Conference, June 2001.

[52] VMware. Vmware products. http://www.vmware.com/products/home.html. [On-

line; accessed 19-October-2017].

[53] Microsoft. Microsoft virtual pc. https://www.microsoft.com/en-gb/download/

details.aspx?id=3702, . [Online; accessed 12-July-2017].

[54] M. Fallah, M. G. Arani, and M. Maeen. Nasla: Novel auto scaling approach

based on learning automata for web application in cloud computing environment.

International Journal of Computer Applications, 113(2):18–23, 2015.

[55] W. Leesakul, P. Townend, and J. Xu. Dynamic data deduplication in cloud storage.

In IEEE 8th International Symposium on Service Oriented System Engineering,

2014.

[56] X. Liu, R. Sheu, S. Yuan, and Y. Wang. A file-deduplicated private cloud stor-

age service with cdmi standard. Computer Standards and Interfaces,Published by

Elsevier Inc http://dx.doi.org/10.1016/j.csi.2015.09.01044, pages 18–27, 2016.

[57] Hadoop Archives. Hadoop archives guide. /http://hadoop.apache.org/common/docs/current/hadoop_archives.htmlS,

2011.

http://etd.uwc.ac.za/

http://www.vmware.com/products/home.html
https://www.microsoft.com/en-gb/download/details.aspx?id=3702
https://www.microsoft.com/en-gb/download/details.aspx?id=3702

Bibliography 120

[58] B. Dong, Q. Zheng, F. Tian, K. Chao, R. Ma, and R. Anane. An optimized

approach for storing and accessing small files on cloud storage. Journal of Network

and Computer Applications, pages 1847–1862, 2012.

[59] B. Prabavathy, D. M. Subha, and B. Chitra. Multi-index technique for meta-

data management in private cloud storage. In International Conference on Recent

Trends in Information Technology (ICRTIT), Chennai, India, 25-27 July 2013.

[60] Ling-Yin Wei, Ya-Ting Hsu, Wen-Chih Peng, and Wang-Chien Lee. Indexing spa-

tial data in cloud data managements. Pervasive and Mobile Computing, Published

by Elsevier, http://dx.doi.org/10.1016/j.pmcj.2013.07.001, 15(8):48–61, 2014.

[61] D.Pratiba, G.Shobha, and Vijaya Lakshmi.P.S. Efficient data retrieval from cloud

storage using data mining technique. International Journal on Cybernetics, 4(2),

2015.

[62] K. Dongyoung, H. Junbeom, and Y. Hyunsoo. Secure and efficient data retrieval

over encrypted data using attribute-based encryption in cloud storage. Comput.

Electr. Eng., 39(1):34–46, January 2013.

[63] L. Zhou, V. Varadharajan, and M. Hitchens. Secure role-based access control on

encrypted data in cloud storage. Journal of IEEE Transactions on Information

Forensics and Security archive, 8(12):1947–1960, 2013.

[64] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in

the internet of things. In Proceedings of the 2012 ACM first edition of the MCC

workshop on Mobile cloud computing. ACM, pages 13–16, 2012.

[65] M. Whaiduzzaman, A. Naveed, and A. Gani. Mobicore: Mobile device based

cloudlet resource enhancement for optimal task response. In IEEE Transactions

on Services Computing, 2016.

[66] Y. Chen, Y. Chen, Q. Cao, and X. Yang. Packetcloud: A cloudlet-based open

platform for in-network services. In IEEE Transactions on Parallel and Distributed

Systems, volume 27, pages 1146–1159, 2016.

[67] M. Ebling G. Fettweis H. Flinck K. Joshi M. Satyanarayanan, R. Schuster and

K. Sabnani. An open ecosystem for mobile-cloud convergence. In IEEE Commu-

nications Magazine, 2015.

[68] M. Iorga, Larry Feldman, Robert Barton, Michael J. Martin, Nedim Goren, and

Charif Mahmoudi. The nist definition of fog computing. NIST Special Publication

800-191, March 2018.

http://etd.uwc.ac.za/

Bibliography 121

[69] S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog computing: Platform and applications. In

Proceedings of the 3rd Workshop on Hot Topics in Web Systems and Technologies,

HotWeb 2015, pages 73–78, October 2016.

[70] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane. Software defined networking-

based vehicular adhoc network with fog computing. In 2015 IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM), pages 1202–1207,

2015.

[71] Y. Nikoloudakis, E. Markakis, G. Mastorakis E. Pallis, and C. Skianis. An nf v-

powered emergency system for smart enhanced living environments. In Proceedings

of the 2017 IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN), Berlin, Germany, pages 258–263, November 2017.

[72] T. N. Gia, M. Jiang, A. M. Rahmani, T. Westerlund, P. Liljeberg, and H. Ten-

hunen. Fog computing in healthcare internet of things: A case study on ecg fea-

ture extraction. In 2015 IEEE International Conference on Computer and In-

formation Technology; Ubiquitous Computing and Communications; Dependable,

Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/I-

UCC/DASC/PICOM), volume 2, pages 356–363, 2015.

[73] A. Monteiro, H. Dubey, L. Mahler, Q. Yang, and K. Mankodiya. Fit:a fog com-

puting device for speech tele-treatments. In 2016 IEEE International Conference

on Smart Computing (SMARTCOMP), pages 1–3, 2016.

[74] S. S. Adhatarao, M. Arumaithurai, and X. Fu. Fogg: A fog computing based

gateway to integrate sensor networks to internet. In In Proceedings of the 29th

International Teletraffic Congress, Genoa, Italy, volume 2, pages 42–47, September

2017.

[75] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen. Vehicular fog computing:

A viewpoint of vehicles as the infrastructures. IEEE Trans. Veh. Technol., 65(6):

3860–3873, June 2016.

[76] J. Li, J. Jin, D. Yuan, M. Palaniswami, and K. Moessner. Ehopes:data-centered

fog platform for smart living. In Telecommunication Networks and Applications

Conference (ITNAC), 2015 International, pages 308–313, 2015.

[77] B. Tang, Z. Chen, G. Hefferman, T. Wei, H. He, and Q. Yang. A hierarchical

distributed fog computing architecture for big data analysis in smart cities. In

Proceedings of the ASE BigData and SocialInformatics 2015, New York, NY, USA,,

pages 1–28, 2015.

http://etd.uwc.ac.za/

Bibliography 122

[78] S. T. Maguluri, R. Srikant, and L. Ying. Stochastic models of load balancing and

scheduling in cloud computing clusters. In Proceedings of IEEE INFOCOM, pages

702–710, 2012.

[79] T. Baker, M. MacKay, M. Randles, and A. Taleb-Bendiab. Intention-oriented

programming support for runtime adaptive autonomic cloud-based applications.

Computers and Electrical Engineering, http://researchonline.ljmu.ac.uk/, 39(7).

[80] C. T. Lin. Comparative based analysis of scheduling algorithms for rm in cloud

computing environment. International Journal of Computer Science Eng., 1(1):

17–23, 2013.

[81] Z. Liu, W. Qu, W. Liu, Z. Li, and Y. Xu. Resource preprocessing and optimal

task scheduling in cloud computing environments. Concurrency Computat.: Pract.

Exper., pages 1–22, 2014.

[82] L. Zhang, Y. Zhuang, and W. Zhu. Constraint programming based virtual cloud re-

sources allocation model. International Journal of Hybrid Information Technology,

6(6):333–344, 2013.

[83] C. Dupont, G. Giuliani, F. Hermenier, T. Schulze, and A. Somov. An energy aware

framework for virtual machine placement in cloud federated data centres. In Future

Energy Systems: Where Energy, Computing and Communication Meet (e-Energy),

IEEE, pages 1–10, 2012.

[84] R. Kanagavelu, Bu-SungLee, N. The DatLe, L. NgMingjie, and K. Mi MiAung.

Virtual machine placement with two-path traffic routing for reduced congestion in

data center networks. Journal of Computer Communications, 53:1–12, 2014.

[85] X. Li, Z. Qiana, S. Lu, and J. Wub. Energy efficient virtual machine placement

algorithm with balanced and improved resource utilization in a data center. Journal

of Mathematical and Computer Modelling, 58(5):1222–1235, 2013.

[86] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu. A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing. Journal of Comput.

Syst. Sci., 79(8):1230–1242, 2013.

[87] J. Pascual, T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano. Towards a greener

cloud infrastructure management using optimized placement policies. Journal of

Grid Computing, 13:375, 2015.

[88] V. Ebrahimirad, M. Goudarzi, and A. Rajabi. Energy-aware scheduling for

precedence-constrained parallel virtual machines in virtualized data centers. Jour-

nal of Grid Computing, pages 1–21, 2015.

http://etd.uwc.ac.za/

Bibliography 123

[89] S. Georgiou and K. Tsakalozos A. Delis. Exploiting network-topology awareness

for vm placement in iaas clouds. In 2013 Third International Conference on Cloud

and Green Computing (CGC), pages 151–158, 2013.

[90] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center

networks with traffic-aware virtual machine placement. In Proceedings - IEEE

INFOCOM, IEEE, San Diego, CA, pages 1–9, 2010. URL http://dx.doi.org/

10.1109/INFCOM.2010.5461930.

[91] D. Breitgand, A. Epstein, A. Glikson, A. Israel, and D. Raz. Network aware virtual

machine and image placement in a cloud. In Proceedings of the 9th International

Conference on Network and Service Management (CNSM 2013), pages 9–17, Oct

2013.

[92] S. VAKILINIA, B. HEIDARPOUR, and M. CHERIET. Energy efficient resource

allocation in cloud computing environments. IEEE Access, 4, December .

[93] H. K. Mohamed, Y. Alkabani, and H. Selmy. Energy efficient resource management

for cloud computing environment. In 9th International Conference on Computer

Engineering and Systems (ICCES), volume 1, December 2014. doi: DOI:10.1109/

ICCES.2014.7030997.

[94] T.M. Khorshed, A.B.M.S. Ali, and S.A. Wasimi. A survey on gaps, threat re-

mediation challenges and some thoughts for proactive attack detection in cloud

computing. Future Generation Computer Systems, 28:833–851, 2012.

[95] R Wynn. The 2016 dirty dozen: 12 cloud security threats. Cloud Security Alliance

Southwest Chapter meeting, April 2016.

[96] Cloud security alliance. The treacherous 12 - cloud computing top hreats

in 2016. https://cloudsecurity alliance.org/download/the-treacherous-twelve-cloud-

computing-top-threats-in-2016, 2016.

[97] Cloud Security alliance guidance version 3.0. Security guidance for critical areas of

focus in cloud computing. http://www. Cloud security alliance .org /guidance/c-

saguide.pdf, 2011.

[98] P. Kapoor. Security attacks and countermeasures. International Journal of Science,

Engineering & Computer Technology, 2013.

[99] Z. Shen, L. Li, F. Yan, and X. Wu. Cloud computing system based on trusted com-

puting platform. In Proceedings of the 2010 International Conference on Intelligent

Computation Technology and Automation, pages 942–945, 2010.

http://etd.uwc.ac.za/

http://dx.doi.org/10.1109/INFCOM.2010.5461930
http://dx.doi.org/10.1109/INFCOM.2010.5461930

Bibliography 124

[100] Y. Wang and M. Hu. Timing evaluation of the known cryptographic algorithms.

In 2009 International Conference on Computational Intelligence and Security, vol-

ume 2, pages 233–237, Dec 2009.

[101] Z. Cai, M. Liu, X. Guo, Q. Zhang, and F. Geng. A password-based authorization

management system using ake protocol in grid systems. In 2009 International

Conference on New Trends in Information and Service Science, pages 546–551,

June 2009.

[102] C. M. Kota and C. Aissi. Implementation of the rsa algorithm and its cryptanalysis.

In proceedings of the 2002 ASEE Gulf-Southwest Annual Conference, pages 20–22,

March 2002.

[103] S. Chandran and M. Angepat. Cloud computing:analyzing the risks involved in

cloud computing environments. In Proceedings of Natural Sciences and Engineer-

ing, Sweden, 2010.

[104] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik. Scalable and efficient

provable data possession. In Proceedings of the 4th international conference on

Security and privacy in communication netowrks, number 9, pages 122–129, 2008.

[105] Y. Zhu, H. Hu, G. Ahn, and M. Yu. Cooperative provable data possession for

integrity verification in multicloud storage. IEEE Transactions on Parallel and

Distributed Systems, 23(12):2231–2244, Dec 2012.

[106] K.D. Bowers, A. Juels, and A. Oprea. Hail: A high-availability and integrity layer

for cloud storage. In in Proceedings of 16th ACM conference on Computer and

communications security, 2009.

[107] Wang B., Li B., and Li H. Knox: Privacy-preserving auditing for shared data with

large groups in the cloud. in Proceedings of the 10th International Conference on

Applied Cryptography and Network Security, Springer-Verlag, Berlin, Heidelberg,

7341, 2012.

[108] Z. Huang, J. Chen, Y. Lin, P. You, and Y. Peng. Minimizing data redundancy for

high reliable cloud storage systems. journal of Computer Networks, Published by

Elsevier Inc, http://dx.doi.org/10.1016/j.comnet, 81:164–177, 2015.

[109] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. Racs: A case for cloud

storage diversity. In Proc. of the 1st ACM Symposium on Cloud Computing, pages

229–240, June 2010.

[110] A. Bessani, M. Correia, B. Quaresma, F. Andre, and P. Sousa. Depsky:dependable

and secure storage in a cloud-of-clouds. ACM Transactions on Storage (TOS), 9

(4):12, 2013.

http://etd.uwc.ac.za/

Bibliography 125

[111] F. S. Al-Anzi, A. A. Salman, and N. K. Jacob. New proposed robust, scalable

and secure network cloud computing storage architecture. Journal of Software

Engineering and Applications, 7:347–353, 2014.

[112] F. S. Al-Anzi, A. A. Salman, N. K. Jacob, and J. Soni. Towards robust, scalable

and secure network storage in cloud computing. In Digital Information and Com-

munication Technology and it’s Applications (DICTAP), 2014 Fourth International

Conference on. IEEE, pages 51–55, 2014.

[113] J. Perry, A. Ousterhout, H. Balakrishnan, and D. Shah. Fastpass: A centralized

zero-queue datacenter network. ACM SIGCOMM’14, Aug. 2014.

[114] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins. A comparison

of a graph database and a relational database: a data provenance perspective. In

Proceedings of the 48th Annual Southeast Regional Conference, Oxford, Mississippi,

April 2010.

[115] Z. Goli-Malekabadi, M. Sargolzaei-Javan, and M. K. Albari. An effective model

for store and retrieve big health data in cloud computing. Journal of computer

methods and programs in biomedicine, 132:75–82, April 2016.

[116] T. Xiang, X. Lib, F. Chenc, S. Guob, and Y. Yang. Processing secure, verifiable

and efficient sql over outsourced database. Journal of Information Sciences, 348:

163–178, June 2016.

[117] Y. Djemaiel, N. Essaddi, and N. Boudriga. Optimizing big data management using

conceptual graphs: A mark-based approach. In proceedings of the 17th Interna-

tional Conference on Business Information Systems (BIS 2014), Larnaca, Cyprus,

2014.

[118] C. Curino, E. Jones, R. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan,

and N. Zeldovich. Relational cloud: A database service for the cloud. In CIDR,

pages 235–240, 2011.

[119] M. J. Hsieh, C. R. Chang, L. Y. Ho, J. J. Wu, and P. Liu. Sqlmr : A scalable

database management system for cloud computing. In 2011 International Confer-

ence on Parallel Processing, pages 315–324, Sept 2011.

[120] M. Zennaro, B. Pehrson, and A.B. Bagula. Wireless sensor networks: a great oppor-

tunity for researchers in developing countries. In the Proceedings of WCITD’2008

Conference, Pretoria, South Africa, October 2008.

[121] M. Masinde and A. Bagula. A framework for redirecting droughts in developing

countries using sensor networks and mobile phones. In Proceedings of the 2010

http://etd.uwc.ac.za/

Bibliography 126

Annual Research Conference of the South African Institute of Computer Scientists

and Information Tech nologists, pages 390–393, 2010.

[122] M. Masinde, A. Bagula, and N. J. Muthama. The role of icts in downscaling and

up-scaling integrated weather forecasts for farmers in sub-saharan africa. In Pro-

ceedings of the Fifth International Conference on Information and Communication

Technologies and Development, pages 122–129, 2012.

[123] A. Bagula and al. Cloud based patient prioritization as service in public health

care. In Proceedings of the ITU Kaleidoscope, IEEE, Bangkok, Thailand, pages

14–16, November 2016.

[124] M. Mandava and al. Cyber-healthcare for public healthcare in the developing world.

In proceedings of the 2016 IEEE Symposium on Computers and Communication

(ISCC), ACM, Messina-Italy, pages 14–19, June 2016.

[125] A. Bagula, L. Castelli, and M. Zennaro. On the design of smart parking networks

in the smart cities: An optimal sensor placement model. Sensors, 15:15443-15467,

2015.

[126] A. Bagula, M. Zennaro, G. Inggs, S. Scott, and D. Gascon. Ubiquitous sensor net-

working for development (usn4d): An application to pollution monitoring sensors.

Sensors, 12:391-414, 2012.

[127] O. E. Isafiade and A. Bagula. Data mining trends and applications in criminal

science and investigations. IGI Global, 2016.

[128] C. Gonc
¯
alves, D. Cunha, P. Neves, P. Sousa, and J. Barraca. Towards a cloud

service broker for the meta-cloud. In CRC 2012, Construction Research Congress,

West Lafayette, IN, U.S.A., 2012.

[129] OPTIMIS. Optimized infrastructure service. http://optimis-project.eu/. [On-

line; accessed 23-May-2016].

[130] L. Heilig, E. Lalla-Ruiz, and S. Vob. cloud brokerage approach for solving the

resource management problem in multi-cloud environments. Journal of Computers

and Industrial Engineering, 95:16–26, Feb. 2016.

[131] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase. Virtual machine hosting for

networked clusters: Building the foundations for .autonomic. orchestration. In

proceeding of IEEE International Workshop on Virtualization Technology in Dis-

tributed Computing (VTDC), November 2006.

http://etd.uwc.ac.za/

http://optimis-project.eu/

Bibliography 127

[132] S. K. Nair, S. Porwal, T. Dimitrakos, M. Rajarajan, and A. U. Khan. Towards

secure cloud bursting, brokerage and aggregation. In proceeding of IEEE 8th Eu-

ropean Conference on Web Services, ECOWS, IEEE, pages 189–196, 2010.

[133] S. Sundareswaran, A. Squicciarini, and D. Lin. A brokerage-based approach for

cloud service selection. In proceeding of IEEE 5th International Conference on

Cloud Computing, CLOUD, IEEE, pages 558–565, 2012.

[134] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski. Introducing stratos:

A cloud broker service. In Cloud Computing (CLOUD),IEEE 5th International

Conference, pages 891–898, June 2012.

[135] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp:comparing public cloud

providers. In Proceedings of the 10th ACM SIGCOMM Conference on Internet

Measurement, IMC, New York, USA, pages 1–14, June 2010.

[136] P. Jain, D. Rane, and S. Patidar. A novel cloud bursting brokerage and aggregation

(cbba) algorithm for multi cloud environment. In Proceedings of IEEE Second In-

ternational Conference on Advanced Computing and Communication Technologies,

ACCT, IEEE, pages 383–387, 2012.

[137] S. K. Garg, S. Versteeg, and R. Buyya. Smicloud: A framework for comparing

and ranking cloud services. In in 2011 Fourth IEEE International Conference on

Utility and Cloud Computing, 2011.

[138] E. Badidi. A cloud service broker for sla-based saas provisioning. In International

Conference on Information Society (i-Society 2013), pages 61–66, June 2013.

[139] R.Angles and C.Gutierrez. Survey of graph database models. Journal of ACM

Computing Surveys (CSUR), 40(1), February 2008.

[140] I. Robinson, J. Webber, and E. Eifrem. Graph databases. Book published by

O’Reilly Media, Inc, 2015.

[141] C. J. M. Tauro, B. R. Patil, and K.R. Prashanth. Nosql databases on data model,

query model and replication model. In Proceedings of International Conference

on "Emerging Research in Computing, Information, Communication and Applica-

tions" ERCICA. Elsevier, 2013.

[142] PubNub. Pubnub url. https://www.pubnub.com/company/. [Online; accessed

23-July-2018].

[143] A. Neyem, M. J. Carrillo, C. Jerez, and et al. Improving healthcare team collabora-

tion in hospital transfers through cloud-based mobile systems. Mobile Information

Systems, 2016:14, 2016.

http://etd.uwc.ac.za/

https://www.pubnub.com/company/

Bibliography 128

[144] C. Octavian Truica, A. Boicea, and I. Trifan. Crud operations in mongodb. In

International Conference on Advanced Computer Science and Electronics Informa-

tion (ICACSEI 2013), 2013.

[145] S. Kanoje, V. Powar, and D. Mukhopadhyay. Using mongodb for social network-

ing website. In IEEE Sponsored 2nd International Conference on Innovations in

Information Embedded and Communication Systems ICIIECS’15, 2015.

[146] C. Gyorodi, I. Andrada Olah, R. Gyorodi, and L. Bandici. A comparative study

between the capabilities of mysql vs. mongodb as a back-end for an online platform.

(IJACSA) International Journal of Advanced Computer Science and Applications,

7(11), 2016.

[147] B. P. Rimal, E. Choi, and I. Lumb. A taxonomy and survey of cloud computing

systems. In Fifth international joint conference on INC, IMS and IDC, pages

44–51, June 2009.

[148] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and

emerging it platforms: vision,hype and reality for delivering computing as the 5th

utility. Future Generation Computer System, pages 559–616, 2009.

[149] H. W. Kuhn. The hungarian method for the assignment problem. Nav. Res. Logist.

Q., 2:83–97, 1955.

[150] J. Munkres. Algorithms for the assignment and transportation problems. J. Soc.

Indust. Appl. Math, 5:32–38, 1957.

[151] G. B. Dantzig. Programming in a linear structure. Comptroller, USAF, Washing-

ton, D.C., 1948.

[152] G. B. Dantzig. Linear programming and extensions. Princeton University Press,

Princeton, NJ, 4, December 1946.

[153] Y.C. Lee and A.Y. Zomaya. Energy efficient utilization of resources in cloud com-

puting systems. The Journal of Supercomputing, 60(2):268–280, 2012.

[154] J. Holland. The grid: Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence. Ann Arbor:

University of Michigan Press, 1975.

[155] F. Su, F. Zhu, Z. Yin, H. Yao, Q. Wang, and W. Dong. New crossover operator

of genetic algorithms for the tsp. In 2009 International Joint Conference on Com-

putational Sciences and Optimization, volume 1, pages 666–669, April 2009. doi:

10.1109/CSO.2009.422.

http://etd.uwc.ac.za/

Bibliography 129

[156] R. N. Calheiros, R. Ranjan, and A. Belo. Cloudsim: a toolkit for modeling and sim-

ulation of cloud computing environments and evaluation of resource provisioning

algorithms. Softw. Pract. Exper, 41:23–50, 2011.

[157] S.K. Garg and R. Buyya. Networkcloudsim: modelling parallel applications in

cloud simulations. in: Fourth IEEE International Conference on Utility and Cloud

Computing (UCC), pages 105 – 113, 2011.

[158] H. Takabi, J. Joshi, and G. Ahn. Security and privacy challenges in cloud comput-

ing environments. IEEE Security and Privacy, 8(6):24–31, 2010.

[159] S. Subashini and V. Kavitha. A survey on security issues in

service delivery models of cloud computing. J. Netw. Comput.

Appl.http://dx.doi.org/10.1016/j.jnca.2010.07.006., 34(1):1–11, 2011.

[160] C. Preimesberger. Many data centers unprepared for disasters: In-

dustry group. http://www.eweek.com/c/a/ITManagement/Many-Data-Centers-

Unprepared-for-Disasters-Industry-Group-772367/, March 2011.

[161] X. Yi, R. Paulet, and E. Bertino. Homomorphic encryption and applications.

http://www.springer.com/978-3-319-12228-1, page 126, 2014.

[162] J. Domingo-Ferrer. A provably secure additive and multiplicative privacy homo-

morphism. In Information Security, 5th International Conference,ISC 2002 Sao

Paulo, Brazil, pages 471–483, 2002.

[163] P. Patel, A. Ranabahu, and A. Sheth. Service level agreement in cloud computing.

In Cloud Workshops at OOPSLA09, Orlando, Florida, USA, pages 25–29, October

2009.

[164] T.H.Luan, L. Gao, Z. Li, Y. Xiang, G. Wei, and L. Sun. Fog computing: Focusing

on mobile users at the edge. arXiv:1502.01815, 2015.

[165] P. Paillier. Public key cryptosystems based on composite degree residuosity classes.

In Advances in Cryptology EUROCRYPT 99, volume 1999, pages 223–238, 1999.

[166] C. Boyd K. Peng and E. Dawson. A multiplicative homomorphic sealed-bid auction

based on goldwasser-micali encryption. Springer, 2016:374–388, 2005.

[167] A. Shamir R. Rivest and L. Adleman. A method for obtaining digital signatures

and public key cryptosystems. Communications of the ACM, 21(1):120–126, 1999.

[168] T. Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In IEEE Trans. Inf. Theory, volume 31, pages 469–472, 1985.

http://etd.uwc.ac.za/

Bibliography 130

[169] C. Gentry. Fully homomorphic encryption using ideal lattices. In in: Proc. of

Annual ACM Symposium on Theory of Computing, volume 9, pages 169–178, 2009.

[170] O. D. Alowolodu, B. K. Alese, A. O. Adetunmbi, O. S. Adewale, and O. S. Ogun-

dele. Elliptic curve cryptography for securing cloud computing applications. In-

ternational Journal of Computer Applications, 66(23):887–975, March 2013.

[171] S. Singh, Y. S. Jeong, and J. H. Park. A survey on cloud computing security:

Issues,threats, and solutions. Journal of Network and Computer Applications, 75

(23):200–222, 2016.

[172] H. Xu and D. Bhalerao. Reliable and securing distributed cloud data storage using

reed-solomon codes. International Journal of Software Engineering and Knowledge

Engineering, 25:1611–1632, 2015.

[173] M. AISSAOUI O. SEFRAOUI and M. ELEULDJ. Openstack: Toward an open-

source solution for cloud computing. International Journal of Computer Applica-

tions, 55(3):0975–8887, October 2012.

[174] M. Masinde and A. Bagula. A framework for predicting droughts in developing

countries using sensor networks and mobile phones. In Proceedings of the 2010

Conference of the South African Institute of Computer Scientists and Information

Technologists, pages 390–399, 2010.

[175] M. Masinde, A. Bagula, and T. N. Muthama. The role of icts in downscaling

and upscaling integrated weather forecasts for farmers in sub-saharan africa. In

Proceedings of ICTD’12, pages 122–129, 2012.

[176] A. Bagula, M. Mandava, and H. Bagula. A framework for supporting healthcare

in rural and isolated areas. Elsevier Journal of Network and Communication Ap-

plications, 2018.

[177] A. Bagula, C. Lubamba, M. Mandava, H. Bagula, M. Zennaro, and E. Pietrosemoli.

Cloud based patient prioritization as service in public health care. In Proceedings

of the ITU Kaleidoscope 2016, Bangkok, Thailand, number November, 2016.

[178] A. Bagula. Hybrid traffic engineering: The least path interference algorithm. In

Proceedings of the SAICSIT 2004, Cape Town, South Africa., pages 89–96, October

2004.

[179] J. Chavula, H. Suleman, and A. Bagula. Quantifying the effects of circuitous routes

on the latency of intra-africa internet traffic: A study of research and education

networks. In Proceedings of the e-Infrastructure and e-Services for Developing

Countries, Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, volume 147, pages 64–73, 2014.

http://etd.uwc.ac.za/

	Declaration of Authorship
	Abstract
	Acknowledgment
	List of Publications
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Introduction
	1.1.1 Characteristics of Cloud Computing
	1.1.2 Service models of Cloud Computing
	1.1.3 Deployment models of Cloud Computing
	1.1.4 Benefits of Cloud Computing

	1.2 Motivation
	1.3 Research questions
	1.4 Research aims and objectives
	1.5 Research Methodology
	1.6 Declaration of publications
	1.7 Thesis outline

	2 Literature Review
	2.1 Introduction
	2.2 Concept of Virtualization
	2.2.1 Full Virtualization
	2.2.2 Para Virtualization
	2.2.3 Native Virtualization
	2.2.4 Operating System-level Virtualization

	2.3 Cloud Storage
	2.3.1 Methods and Techniques in Cloud Storage

	2.4 Fog Computing
	2.4.1 Fog Computing Characteristics
	2.4.2 Applications of fog computing
	2.4.2.1 HealthCare
	2.4.2.2 Connected Vehicles
	2.4.2.3 Smart Living and Smart Cities

	2.5 Resource Allocation in Cloud Computing
	2.6 Security in Cloud Computing
	2.6.1 Cloud Computing Security Threats
	2.6.1.1 Data Breaches
	2.6.1.2 Data Loss
	2.6.1.3 System Vulnerabilities
	2.6.1.4 Account Hijacking
	2.6.1.5 Denial of Service
	2.6.1.6 Malicious Insiders

	2.6.2 Security Requirements in a Cloud Computing Environment
	2.6.2.1 Data Confidentiality
	2.6.2.2 Data Integrity
	2.6.2.3 Data Availability

	2.7 Chapter summary

	3 Database Management System for Cloud Services Brokerage
	3.1 Introduction
	3.1.1 Contribution and Outline

	3.2 Cloud Services Brokerage
	3.3 Data model of Cloud computing environment
	3.4 Representation of Explored Databases
	3.4.1 Relational Model
	3.4.2 Graph Model
	3.4.3 Document-oriented Model

	3.5 Experiments
	3.5.1 Implemention of Graph Database
	3.5.2 Relational Database
	3.5.3 Document-Oriented database

	3.6 Experimental Results
	3.7 Chapter summary

	4 Resources Allocation in a Cloud Computing Environment
	4.1 Introduction
	4.1.1 Cloud/Fog Computing Resource Management Framework
	4.1.2 Contributions
	4.1.3 Chapter Organization

	4.2 Task allocation Problem Model
	4.3 Task Allocation Algorithmic Solution
	4.3.1 Notation
	4.3.2 The algorithm
	4.3.3 Example

	4.4 Virtual Machine Placement Problem
	4.4.1 Parameters
	4.4.2 Assumptions
	4.4.3 The mathematical model

	4.5 Virtual Machine Placement Algorithmic Solution
	4.5.1 Genetic Algorithm Based Virtual Machine Placement
	4.5.2 Initialization
	4.5.3 Fitness Evaluation
	4.5.4 Generating the next population
	4.5.4.1 Selection process
	4.5.4.2 Crossover operator
	4.5.4.3 Mutation Operator
	4.5.4.4 Replacement
	4.5.4.5 Stopping criterion

	4.6 Experiments and Results
	4.6.1 Implementation of the Proposed HABBP
	4.6.2 Implementation of the Proposed GABVMP

	4.7 Chapter summary

	5 Data Storage Security and Availability
	5.1 Introduction
	5.2 Problem formulation
	5.2.1 System architecture of cloud computing
	5.2.2 Intruder Attack models
	5.2.2.1 Storage attack model
	5.2.2.2 Privacy attack model

	5.2.3 Protocol design goals

	5.3 Preliminaries and notation
	5.3.1 Bilinear pairing
	5.3.2 Reed-Solomon codes
	5.3.3 Homomorphic Encryption Scheme
	5.3.3.1 Additive Homomorphic Encryption
	5.3.3.2 Multiplicative Homomorphic Encryption
	5.3.3.3 Fully Homomorphic Encryption

	5.3.4 Securing Inter-Entity Communication

	5.4 Multi-Phase Data Security and Availability (MDSA) protocol
	5.4.1 Data owner registration
	5.4.2 Data outsourcing
	5.4.3 Secured data processing

	5.5 Experiments
	5.6 Performance Evaluation
	5.6.1 Impact of latency and bandwidth
	5.6.2 Impact of security overhead
	5.6.3 Impact of encoding operation
	5.6.4 Overall performance comparison

	5.7 Chapter summary

	6 Conclusion and recommendations
	6.1 Introduction
	6.2 Summary of the chapters
	6.2.1 Chapter 1
	6.2.2 Chapter 2
	6.2.3 Chapter 3
	6.2.4 Chapter 4
	6.2.5 Chapter 5

	6.3 Recommendations for future work

	A Source codes
	Bibliography

