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ABSTRACT

Categorical closure operators were introduced by Dikranjan and Giuli in [DG87] and then developed by
these authors and Tholen in [DGT89]. These operators have played an important role in the development
of Categorical Topology by introducing topological concepts, such as connectedness, separatedness and
compactness, in an arbitrary category and they provide a unified approach to various mathematical
notions. Motivated by the theory of these operators, the categorical notion of interior operators was
introduced by Vorster in [Vor00]. While there is a notational symmetry between categorical closure and
interior operators, a detailed analysis shows that the two operators are not categorically dual to each
other, that is: it is not true in general that whatever one does with respect to closure operators may be
done relative to interior operators. Indeed, the continuity condition of categorical closure operators can
be expressed in terms of images or equivalently, preimages, in the same way as the usual topological
closure describes continuity in terms of images or preimages along continuous maps. However, unlike the
case of categorical closure operators, the continuity condition of categorical interior operators can not
be described in terms of images. Consequently, the general theory of categorical interior operators is not
equivalent to the one of closure operators. Moreover, the categorical dual closure operator introduced in
[DT15] does not lead to interior operators. As a consequence, the study of categorical interior operators
in their own right is interesting.

Most studies of categorical interior operators have been largely restricted to point set topology; see
[CR10, CM13]. A deeper categorical insight into interior operators and their applications beyond the
category of topological spaces is still lacking. In this thesis, we conduct a systematic study of categorical
interior operators on category C supplied with an (E ,M)-factorization structure for morphisms such
that M is a fixed class of monomorphisms. We study the notions of closed, open, initial and final
morphisms with respect to an interior operator on C. These morphisms defined via interior operators
are shown to have the cancellation, composition and pullback stability properties. Moreover, they are
(partially) characterized in terms of open subobjects, for an idempotent interior operator. In particular,
open M-morphisms with respect to any interior operator are shown to be the morphisms whose image
commutes with the interior. Some properties of the notion of codenseness with respect to an interior
operator are also introduced. Indeed, the codenseness is preserved by both images underM-morphisms
and dual images under E-morphisms. We also introduce and study a notion of quasi open morphisms
with respect to a given interior operator i. More specifically, it is shown that these morphisms are
precisely the morphisms which reflect i-codensity. We then introduce a notion of hereditary interior
operators on C using the right adjoint of the preimage of a given morphism and discuss their properties.
We show that these operators behave as well as hereditary closure operators. Notably, we obtain a
characterization of heredity of a given interior operator i in terms of “initial embeddings” with respect
to i. Moreover, we study the relationship between our hereditary and Castellini’s (strongly) hereditary
interior operators. Furthermore, inspired by the works of [Cle01], we use a concept of interior operators
and a relative notion of constant morphisms to investigate the general notions of connectedness and
disconnectedness on C. We show that these notions act in the same manner as the notion of connect-
edness and disconnectedness with respect to closure operators studied in [Cle01] and extend most of the
results of [CR10] to a more general categorical setting. The thesis is concluded with interior theoretic
approaches of the notion of compactness on C in which each preimage preserves arbitrary joins. It is
shown that under appropriate hypotheses, most classical results about topological compactness can be
generalized to these settings.
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Introduction

Closure operators were first introduced in Analysis by [Moo09, Rie09] and since then they have been
defined, studied and intensively used in Logic [Her22, Tar29], Algebra [Bir37, Pie72], Topology [Kur22,
Čec37] and Lattice theory [Bir40]. A categorical closure operator on an arbitrary category is a family
of functions which are expansive, order preserving and compatible with taking images or equivalently,
preimages, in the same way as the usual topological closure is compatible with continuous maps. The
formal theory of categorical closure operators was introduced by Dikranjan and Giuli in [DG87] and then
developed by these authors and Tholen in [DGT89]. The theory was largely inspired by Salbany’s paper
[Sal76], where regular closure operators on the category of topological spaces and continuous maps were
introduced. This categorical notion generalizes both the lattice theoretic closure operations and universal
closure operations of Topos- and Sheaf theory. In fact, it has unified various important concepts and has
led to interesting examples and applications in diverse areas of Mathematics. Since their introduction,
categorical closure operators have played a crucial role in the development of Categorical Topology.
They have been employed to characterize epimorphisms and investigate cowellpoweredness in certain
categories; see for example, [DG84, DG85, Dik92]. These operators led to an extensive programme
of research introducing and studying classical topological notions such as separation, compactness,
regularity and connectedness in abstract categories and simultaneously expanding categorical insights
into general topology; see in particular the monographs [DT95, Cas03] and the references therein.

The subsequent introduction of categorical interior operators in [Vor00] has only recently received atten-
tion and a few papers are published on the subject; see [CR10, Cas11, LTOC11, CM13, Cas15, RH14,
Cas16]. An interior operator i on C is a family of functions which are contractive, order preserving
and only compatible with taking preimages. While there is a notational symmetry between categorical
closure and interior operators, the two operators are not “dual” to each other. Categorical interior
operators are not compatible with taking images unlike closure operators. As a consequence, interior
operators cannot be seen as endofunctors on a suitable class M of embeddings, hence the preservation
property of interior operators fails (see Remark 2.1.2(a)). Contrary to this a similar property which is
called functorial property holds true for closure operators. This property plays a significant role in the
development of closure operators and enables each closure operator to give rise to an endofunctor of
the arrow category M; see [Cas03]. Furthermore, the dual closure operator introduced in [DT15] is a
categorical dual to closure operator and does not lead to interior operators. Therefore, a categorical
understanding of interior operators in their own right makes sense.

The majority of the studies of categorical interior operators have been largely restricted to point set
topology. In fact, in [CR10] and [CM13] interior operators are used to study notions of connectedness
and separation on the category of topological spaces and continuous maps. A deeper categorical insight
into interior operators and their applications beyond the category of topological spaces is still lacking.
This thesis takes a further step in the study of categorical interior operators. Indeed, as the title
of the thesis suggests our aim is to conduct a systematic study of categorical interior operators and
their applications in a more general categorical setting. To this purpose, we consider an M-complete
category C supplied with an (E ,M)-factorization structure for morphisms such that M is a fixed class
of monomorphisms. We further assume that the preimage f∗(−) preserves arbitrary joins for every
morphism f in C and consider an interior operator i on C with respect to M. In fact, the interior
operator i provides enough structure for the abstract category C to be able to regard its objects as
spaces and establish a general theory of some topological notions. We first start with further studies
of interior operators on C with respect to M; we discuss some of their properties, study their relations
with the other operators such as closure, dual closure, neighbourhood operators and topogenous orders
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and present some examples. We then investigate the notions of closed, open, initial and final morphisms
with respect to the interior operator i on the category C. We also introduce and study a notion of
hereditary interior operators on the abstract category C using the right adjoint of the preimage of a
given morphism that improves the Castellini notion of hereditary interior operators presented in [Cas11].
We demonstrate that these operators behave as well as hereditary closure operators. Moreover, inspired
by the works of [Cle01], we explore the general notions of connectedness and disconnectedness in the
abstract category C by using a concept of interior operators and a relative notion of constant morphisms.
We show that this notion behaves like the notion of connectedness via closure operators given in [Cle01]
and extend most of the results of [CR10] to a wider categorical setting. The thesis is concluded with
the interior theoretic approaches to the notions of compactness. Our consideration generalizes the usual
approach to topological spaces with respect to the classical interior operator.

We now provide a survey of each chapter:

Chapter 1 establishes the categorical framework for subsequent chapters. A brief overview of some cat-
egorical concepts such as Galois connections, factorization structures, subobjects, images and preimages
is given. We conclude the chapter by introducing a notion of dual images.

Chapter 2 deals with a further study of categorical interior operators. We present useful character-
izations of the continuity condition of an interior operator. These characterizations are essential to
explicitly define the notion of closed, open, initial and final morphisms with respect to an interior oper-
ator. Further properties of the notions of openness and codenseness with respect to an interior operator
are given. Indeed, the codenseness is preserved by both images under M-morphisms and dual images
under E-morphisms. We also show that the conglomerate of all interior operators on C with respect to
M together with composition is a monoid which is compatible with its lattice structure and then present
some properties of openness and codenseness relative to composites of interior operators. Moreover,
we give a (partial) characterization of M (E)-morphism in terms of a given interior operator. We con-
clude the chapter by investigating the relationships between interior operators with closure, dual closure,
neighbourhood operators and topogenous orders and providing some examples of interior operators. We
show that interior operators are special types of neighbourhood operators (or topogeneous orders) and
under some natural conditions one can nicely move from a closure operator to an interior operator and
vice versa.

Chapter 3 is devoted to the study of classes of morphisms with respect to an interior operator on an
arbitrary category in which the preimage functor for any given morphism preserves arbitrary joins. By
using the equivalent descriptions of the continuity condition of an interior operator i, we first explicitly
define closed, open, initial and final morphisms relative to i. These morphisms defined via interior
operators play a vital role throughout the investigation of the topological notions like connectedness,
separatedness and compactness. They are shown to have their respective cancellation, composition and
pullback stability properties. We give a (partial) characterization of each of these morphisms in terms
of i-open subobjects, for an idempotent interior operator i. We also show that open M-morphisms
with respect to an interior operator i are the morphisms whose image commutes with the interior i.
We then introduce and study a notion of quasi open morphisms with respect to i. In particular, it is
shown that these morphisms are precisely the morphisms which reflect i-codensity and they generalize
the i-open morphisms that are studied in [Cas15]. We also explore a notion of quotient maps by using
interior operators. Indeed, their fundamental properties are presented. We show that the class of these
maps ascends along both open and closed monomorphisms with respect to an interior operator. We
conclude the chapter by investigating classes of morphisms with respect to dual closure operators and
show that these classes of morphisms behave nearly like the classes of morphisms with respect to an
interior operator.
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Chapter 4 introduces a general notion of hereditary interior operators in terms of “dual images” on
an arbitrary category in which the preimage functor for any given morphism preserves arbitrary joins.
In [Cas11], the study of hereditary interior operators was proposed by a direct adaptation from the
hereditary behaviour of the classical interior operator in general topology. However, these operators
do not lead themselves to a natural and general construction in an abstract category. Furthermore,
they do not act in the same manner as hereditary closure operators in the sense of [DG87]; see in
particular, [Cas11, Examples 3.8. (b) and (c)], [Cas15, Corollary 2] and they can not be characterized
as in Proposition 4.1.16. To this end, we introduce and study the notion of hereditary interior operators
using the right adjoint of the preimage of a given morphism by assuming that each preimage commutes
with the join of subobjects, as in [LTOC11]. In particular, we show that hereditary interior operators are
the counterpart of the notion of hereditary closure operators. We obtain a characterization of heredity
of a given interior operator i in terms of “initial embeddings” with respect to i. Moreover, we study the
relationship between our hereditary and Castellini’s (strongly) hereditary interior operators. The notion
of dense morphisms with respect to an interior operator is also introduced and studied. We prove that
the class of dense morphisms with respect to a hereditary interior operator is left cancellable with respect
to the class M and the class of dense morphisms with respect to an idempotent interior operator is
stable under composition. The chapter is concluded with the investigation of maximal interior operators.

Chapter 5 presents general interior theoretic approaches to connectedness in an arbitrary category
C in which the preimage functor for any given morphism preserves arbitrary joins. We develop two
possible notions of connectedness by using a concept of categorical interior operators in a more general
categorical setting. The first section investigates the notion of connectedness and disconnectedness
with respect to a given interior operator via a relative notion of constant morphisms. Indeed, by
introducing the concept of coarse and fine objects with respect to a given interior operator i and a relative
notion of constant morphisms we investigate the notions of connectedness and disconnectedness with
respect to i on abstract categories in a fashion similar to [Cle01]. We show that our notion generalizes
the notions of connectedness and disconnectedness with respect to a given interior operator on the
category of topological spaces and continuous maps presented in [CR10]. Furthermore, we construct
two Galois connections between the conglomerate of all interior operators on C with respect to M
with the reverse order, the conglomerate of all full subcategories of C with inclusion order and the
dual of the conglomerate of all full subcategories of C and prove that the Herrlich-Preuß-Arhangel’skii-
Wiegandt (HPAW) “(left-constant, right-constant)” correspondence is the composition of the two Galois
connections, under mild conditions on C. In the second section we study connectedness with respect to
a given interior operator based on using pseudocomplements in subobject semilattices. We use quotient
maps, dense, open and final morphisms with respect to an interior operator to investigate this notion
of connectedness. In fact, we show that under some natural conditions the connectedness defined is
preserved by preimages of subobjects under quotient maps with respect to an interior operator.

Chapter 6 investigates categorical notions of compactness via interior operators in an arbitrary category
C in which the preimage functor for any given morphism preserves arbitrary joins. We use interior
operators to provide two possible categorical approaches of studying compactness such that both ways
yield a number of results of the classical theory of compactness in topology as special cases. In the first
section, following [Tho99, CGT04], we use closed morphisms with respect to a given interior operator i
to study firstly stably i-closed morphisms, thence a notion of compactness relative to i on an arbitrary
category C. We establish properties similar to those of compactness with respect to a given closure
operator studied in [CGT96]. Moreover, we present a relative notion of Hausdorff separation with respect
to i on C and provide a property which links the two notions. The second section invesigates an internal
notion of compact objects with respect to an interior operator following the Borel-Lebesgue definition
of compact topological spaces. We define compactness of objects of the category C in a natural way
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and study some of its properties.

Some of the results presented in this thesis have been discussed in [AH19a, AH19b].

Prerequisites for reading this thesis include a basic knowledge of Topology, Algebra, Category Theory
and Order and Lattice theory. For further references, we suggest the reader consult [Eng89, DF04,
AHS90, DP02].
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1. Preliminaries

Throughout the thesis, we consider a fixed finitely complete category C (in particular, C has a terminal
object and admits finite products). Unless stated otherwise, all the objects and morphisms to be
considered are assumed to belong to the category C; X ∈ C and f in C will be used to denote X
is an object of C and f is a morphism of C, respectively. We use general categorical terminologies
from [AHS90], while for categorical closure operators we refer to [DT95] or [Cas03] or [CGT04]. In
this chapter, we discuss the concept of Galois connections, factorization structures, subobjects, images,
preimages and dual images, which are required throughout the thesis. We start with the notion of Galois
connections.

1.1 Galois connections

A Galois connection is a particular correspondence between preoreded sets or classes. Galois connections
are generalizations of the correspondence between subgroups and subfields investigated in Galois the-
ory. They enable us to move back and forth between two different structures. They also enable many
proofs to be short, elegant and transparent and are effective tools for research. We recall that a reflexive
and transitive relation is a preorder. As a result we have the following definition which is given in [DT95].

Definition 1.1.1. Given preordered classes P and Q, a Galois connection between P and Q is a pair
of mappings f : P → Q and g : Q→ P such that f(x) ≤ y ⇔ x ≤ g(y) for all x ∈ P, y ∈ Q.

Remark 1.1.2. The maps f and g in Definition 1.1.1 are order preserving. Indeed, for x, x′ ∈ P such
that x ≤ x′ we have that x′ ≤ g(f(x′)), since f(x′) ≤ f(x′). Consequently, x ≤ g(f(x′)) and hence
f(x) ≤ f(x′). Similarly, we can show that g is an order preserving map.

Since a preordered class can be viewed as a category, a Galois connection between two preordered classes
is a special case of a pair of adjoint functors between two categories. In this context for the maps f
and g which are given in Definition 1.1.1, we say that f is left adjoint of g or g is right adjoint of f and

write f a g. We also use the notation P
f−⇀↽−g Q or (f, g) to denote a Galois connection between P and

Q. Furthermore, the corresponding fixed points of the Galois connection P
f−⇀↽−g Q are p ∈ P and q ∈ Q

such that f(p) = q and p = g(q). More precisely, p and q are the left and right fixed points, respectively.

Remark 1.1.3. [Cas03]

(a) Adjoints determine each other uniquely, up to the equivalence relation given by
p ∼= q ⇔ p ≤ q and q ≤ p. Indeed, if (f, g) and (f, g

′
) are Galois connections between P

and Q then for any q ∈ Q one has g(q) ≤ g(q) ⇔ f(g(q)) ≤ q ⇔ g(q) ≤ g
′
(q). Moreover,

g
′
(q) ≤ g

′
(q) ⇔ f(g

′
(q)) ≤ q ⇔ g

′
(q) ≤ g(q). Therefore, we deduce that g(q) ∼= g

′
(q). Dual

reasoning yields the uniqueness of the left adjoint.

(b) The composition of Galois connections is a Galois connection.

Note that for a Galois connection P
f−⇀↽−g Q of preodred classes P and Q with the least elements 0P in P

and 0Q in Q and the largest elements 1P in P and and 1Q in Q, one has f(0P ) ∼= 0Q and g(1Q) ∼= 1P
since 0P ≤ g(0Q) and f(1P ) ≤ 1Q. Therefore, the left adjoint is bottom-preserving and the right

5
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Section 1.1. Galois connections Page 6

adjoint is top-preserving. The following lemma gives characterizations of Galois connections.

Lemma 1.1.4. [DT95] Let f : P → Q and g : Q → P be an arbitrary pair of maps of preodered
classes. Then the following are equivalent:

(a) f a g;

(b) f and g are monotone, and p ≤ (g ◦ f)(p) and (f ◦ g)(q) ≤ q for all p ∈ P and q ∈ Q;

(c) f is monotone and g(q) ∼= max{p ∈ P : f(p) ≤ q} for all q ∈ Q;

(d) g is monotone and f(p) ∼= min{q ∈ Q : p ≤ g(q)} for all p ∈ P .

Proof. (a)⇒ (b): By Remark 1.1.2, both f and g are monotone. Furthermore, since f(p) ≤ f(p),
one has p ≤ (g ◦ f)(p), since g(q) ≤ g(q), one has (f ◦ g)(q) ≤ q for all p ∈ P and q ∈ Q.

(b) ⇒ (c): Since (f ◦ g)(q) ≤ q for all q ∈ Q, one has g(q) ∈ {p ∈ P : f(p) ≤ q}, hence
g(q) ≤ max{p ∈ P : f(p) ≤ q}. Furthermore, for all p ∈ P such that f(p) ≤ q, one has
p ≤ (g ◦ f)(p) ≤ g(q), hence max{p ∈ P : f(p) ≤ q} ≤ g(q). Therefore, g(q) ∼= max{p ∈ P :
f(p) ≤ q}.

(c) ⇒ (d): Let q ≤ q
′

in Q. Then {p ∈ P : f(p) ≤ q} ⊆ {p ∈ P : f(p) ≤ q
′}, hence

g(q) ∼= max{p ∈ P : f(p) ≤ q} ≤ max{p ∈ P : f(p) ≤ q
′} ∼= g(q

′
). Thus g is monotone.

Furthermore, for all q ∈ Q such that p ≤ g(q), one has f(p) ≤ f(g(q)) ≤ q since f is monotone
and g(q) ∈ {p ∈ P : f(p) ≤ q} ⇔ (f ◦ g)(q) ≤ q, hence f(p) ≤ min{q ∈ Q : p ≤ g(q)}. One
also has min{q ∈ Q : p ≤ g(q)} ≤ f(p) since f(p) ∈ {q ∈ Q : p ≤ g(q)} as p ≤ (g ◦ f)(p) ∼=
max{x ∈ P : f(x) ≤ f(p)}. Therefore, f(p) ∼= min{q ∈ Q : p ≤ g(q)}.

(d)⇒ (a): Suppose f(x) ≤ y for x ∈ P, y ∈ Q. Then since g is monotone and f(x) ∈ {q ∈ Q :
x ≤ g(q)}, one has x ≤ (g ◦ f)(x) ≤ g(y). Furthermore, for x ∈ P, y ∈ Q such that x ≤ g(y),
one has f(x) ≤ (f ◦ g)(y) ≤ y since f is monotone and f(g(y)) ∼= min{q ∈ Q : g(y) ≤ g(q)}.
Hence, f(x) ≤ y ⇔ x ≤ g(y) for all x ∈ P, y ∈ Q.

As an immediate consequence of Lemma 1.1.4 (d) one has (f ◦g◦f)(p) ∼= f(p) and (g◦f ◦g)(q) ∼= g(q)
for all p ∈ P, q ∈ Q. As a result, f and g give a bijective correspondence between f(P ) and g(Q). It
turns out that every Galois connection gives rise to an isomorphism of certain sub-preorders. We are
now ready to show that left adjoints preserve arbitrary joins and right adjoints preserve arbitrary meets.

Proposition 1.1.5. [DT95] Let f a g. Then f(
∨
i∈I
xi) ∼=

∨
i∈I
f(xi) and g(

∧
i∈I
yi) ∼=

∧
i∈I
g(yi).

Proof. Since g is monotone and
∧
i∈I
yi ≤ yi for all i ∈ I, one has g(

∧
i∈I
yi) ≤ g(yi) for all i ∈ I,

hence g(
∧
i∈I
yi) ≤

∧
i∈I
g(yi). Furthermore, since f a g and

∧
i∈I
g(yi) ≤ g(yi) for all i ∈ I, one has

f(
∧
i∈I
g(yi)) ≤ yi for all i ∈ I, hence f(

∧
i∈I
g(yi)) ≤

∧
i∈I
yi. Consequently,

∧
i∈I
g(yi) ≤ g(

∧
i∈I
yi). Therefore,

g preserves meets. Dually, f preserves joins.

The following result shows the conditions under which the converse of the above proposition is true.

Theorem 1.1.6. [DT95] Let P and Q be preordered classes.

http://etd.uwc.ac.za/
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(a) If arbitrary joins exist in P . Then any map f : P → Q that preserves arbitrary joins has a right
adjoint.

(b) If arbitrary meets exist in Q. Then any map g : Q→ P that preserves arbitrary meets has a left
adjoint.

Proof. (a) Since arbitrary joins exist in P define g by g(q) ∼=
∨
{p ∈ P : f(p) ≤ q}. Then one

obtains f(g(q)) ∼=
∨
{f(p) ∈ Q : f(p) ≤ q} ≤ q and p

′ ≤ g(f(p
′
)) ∼=

∨
{p ∈ P : f(p) ≤ f(p

′
)}.

Furthermore, since f preserves suprema, for p ≤ p
′

in P one has p
′

= p ∨ p′ , hence f(p
′
) =

f(p ∨ p′) ∼= f(p) ∨ f(p
′
). Thus f(p) ≤ f(p

′
), that is: f is monotone. For q ≤ q

′
in Q one also

has {p ∈ P : f(p) ≤ q} ⊆ {p ∈ P : f(p) ≤ q′}, hence g(q) ∼=
∨
{p ∈ P : f(p) ≤ q} ≤

∨
{p ∈ P :

f(p) ≤ q′} ∼= g(q
′
), that is: g is monotone. Therefore, by Lemma 1.1.4, f a g.

(b) It follows by dualizing (a).

1.2 Factorization structures

In the category of Sets every function f : X → Y can be expressed as the composite of a surjective
function e followed by an injective function m

X
f
//

e
!!

Y

f [X]

m

OO

where f [X] is the image of f , e(x) = f(x) for all x ∈ X and m is an inclusion map. Factorization
structures are a generalization of this situation in category theory and allow us to define “image, preim-
age, dual image of a subobject ”. In the sequel we use Mor(C), Sect(C), Mono(C), Retr(C), Epi(C)
and Iso(C) to denote the classes of all morphisms, sections, monomorphisms, retractions, epimorphisms
and isomorphisms in C.

Definition 1.2.1. [AHS90] A factorization structure for morphisms in C is a pair (E ,M) of any mor-
phism classes in C such that

(a) E and M are closed under composition with isomorphisms from the left and right, respectively;
that is: Iso(C) ◦ E ⊆ E , M◦ Iso(C) ⊆M,

(b) C has (E ,M)-factorizations of morphisms; that is: f factors into an E-morphism e followed by
an M-morphism m (f = m ◦ e ⇔ Mor(C) =M◦ E), and

(c) C has the unique (E ,M)-diagonalization property; that is: for each commutative solid-arrow
square

· e //

v

��

·
d

��

u

��
· m

// ·

with e ∈ E and m ∈M, there exists a unique diagonal d such that d ◦ e = v and m ◦ d = u.
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If (E ,M) is a factorization structure for morphisms in C then C is called (E ,M)-structured.

Remark 1.2.2. As a consequence of the above Definition one has the following facts.

(a) The notion of factorization structure is self-dual in the sense that C is (E ,M)-structured if and
only if Cop is (M, E)-structured.

(b) (E ,M)-factorizations are unique up to isomorphism (essentially unique), that is: if f ∈ C has
(E ,M)-factorizations given by f = m ◦ e = m

′ ◦ e′ then there exists a unique isomorphism d
such that m = m

′ ◦ d and e
′

= d ◦ e; in particular, m ∼= m
′
. Indeed, this follows from the unique

(E ,M)-diagonalization property.

Examples 1.2.3. [AHS90]

(a) Both (Iso(C),Mor(C)) and (Mor(C), Iso(C)) are trivial factorization structures for morphisms in
C.

(b) (regular epimorphism,monomorphism) is a factorization structure for morphisms for categories
Set, Vect, Grp, Mon.

(c) (surjection, embedding) and (quotient, injection) are factorization structures for morphisms in Top,
but (surjection, injection) is not.

Lemma 1.2.4. [AHS90] Let C be (E ,M)-structured with e ∈ E and m ∈M such that the diagram

· e //

1
��

·
d

��

m

��
· g

// ·

commutes. Then e is an isomorphism and g ∈M.

Proof. Since the diagram

· e //

e

��

·
d
′

��

m

��
· m

// ·

commutes for d
′

= e◦d and d
′

= 1 then the unique diagonalization property yields e◦d = 1. Therefore,
e ∈ Iso(C). Consequently, by Definition 1.2.1 (a), one has g ∈ E ∩M.

Before we move to the next proposition let us recall the following from [Cas03].

Definition 1.2.5. A multiple pullback of a sink (ri : Ri → X)i∈I is a pair (r, S) consisting of a morphism

r : R → X and a source S = (
ji

R→ Ri)i∈I in C such that r = ri ◦ ji for all i ∈ I and for each pair

(r
′
,S′) with r

′
: R

′ → X a morphism and S′ = (

j
′
i

R
′ → Ri)i∈I a source in C for which r

′
= ri ◦ j

′
i for

all i ∈ I, there exists a unique morphism u : R
′ → R with r

′
= r ◦ u and j

′
i = ji ◦ u for all i ∈ I.

We have the following properties of the class M and E .
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Proposition 1.2.6. [AHS90] Let C be equipped with (E ,M)-factorization structure for morphisms.

(a) E ∩M = Iso(C).

(b) Both M and E are closed under composition.

(c) M is weakly left-cancellable (g ◦ f, g ∈ M ⇒ f ∈ M), left-cancellable with respect to Mon(C)
(g ◦ f ∈ M and g ∈ Mon(C)⇒ f ∈ M) and right-cancellable with respect to Retr(C) (g ◦ f ∈
M and f ∈ Retr(C)⇒ g ∈M).

(d) M is stable under pullback, that is: for any pullback diagram

P
q
//

p

��

Y

g

��

Z
f
//W

f ∈M⇒ q ∈M.

(e) M is stable under multiple pullback, that is: for any multiple pullback diagram

R

ji
��

r

  

Ri ri
// X

one has r ∈M whenever ri ∈M for all i ∈ I.

(f) M is closed under products, that is: if ri ∈ M for each i ∈ I then
∏
i∈I
ri ∈ M (if the products

exist).

Proof. The proof can be found in [AHS90].

The dual properties to (c) to (f) are possessed by the class E .

The following theorem whose dual result is given in [AHS90] deals with the existence of factorization
structures.

Theorem 1.2.7. Let M be a class of morphisms in C such that it

(a) contains isomorphisms and is contained in Mono(C),

(b) is closed under composition,

(c) is stable under pullback, and

(d) is stable under multiple pullback (= intersection).

Then there is a uniquely determined class E of sinks in C for which (E,M) is a factorization system
for sinks in C. Consequently, there is a uniquely determined class E of C-morphisms that (considered
as 1-sinks) belong to E such that C is (E ,M)-structured.
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Following [DT95], for a fixed class M of C-monomorphisms we say that C has M-pullbacks if M is
stable under pullback, that is: pullbacks of M-morphisms along C-morphisms exist and belong to M.
We also say that C hasM-intersections ifM is stable under multiple pullback. Furthermore, C is called
M-complete if C has both M-pullbacks and M-intersections.

Remark 1.2.8. In order to develop the theory of interior operators in the following chapters of the
thesis we need a fixed class M of C-monomorphisms, which is closed under composition and contains
all C-isomorphisms and the assumption that C is M-complete. Consequently, by Theorem 1.2.7, there
is a uniquely determined class E of morphisms in C such that C is (E ,M)-structured. Indeed, hereafter
throughout the thesis, unless stated otherwise, we work with anM-complete category C equipped with
(E ,M)-factorization structure for morphisms such that M is a fixed class of monomorphisms. This in
turn implies the features of M and E listed in Proposition 1.2.6.

1.3 Subobjects, Images, Preimages

A subobject of an object in a category is a concept analogous to the concept of a substructure of a
mathematical structure. It generalizes concepts such as subsets from set theory, subgroups from group
theory, subspaces from topology. Let us now formally define subobject of an object in C.

Definition 1.3.1. [DT95] For a given X ∈ C, subobjects of X is a class given by

subX := {r ∈M : r : R→ X}.

Objects of subX are known as M-subobjects of X. subX is a preordered class with order r ≤ s ⇔
r = s ◦ t for some morphism t (which we shall denote by rs);

R
t=rs //

r
  

S

s
��

X

In fact, since s is monic, rs is unique; since M is weakly left-cancellable, rs ∈ M. Furthermore, if
r ≤ s and s ≤ r then rs is an isomorphism between the domains R of r and S of s, hence r and s
are isomorphic and we write r ∼= s. We do not distinguish between isomorphic subobjects. In fact, the
preorder relation “ ≤ ” induces an equivalence relation “ ∼= ” between M-subobjects of X, which is
given by r ∼= s ⇔ r ≤ s and s ≤ r. Thus subX modulo ∼= is a partially ordered class and we use the
usual lattice theoretic terminology and notations such as ∧,∨,

∧
,
∨
, etc in subX. As a consequence

of the above assumptions and terminologies one has, for each X ∈ C, subX is a complete lattice with
0X : OX → X and 1X : X → X as the least and greatest member of the lattice, respectively.

Definition 1.3.2. [Cas03] A subobject r : R → X is called an M-intersection of a family (ri : Ri →
X)i∈I in subX provided that r is the meet of (ri)i∈I , that is: r ≤ ri for all i ∈ I and any morphism
that factors through each ri must also factor through r.

As the consequence of the definition, r ∼=
∧
i∈I
ri :

∧
i∈I
Ri → X. One can also notice that intersections are

unique up to isomorphism and categorically characterized as a multiple pullback.
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Definition 1.3.3 (image, preimage). [CGT04] For f : X → Y in C, r ∈ subX and n ∈ subY .

(a) The image f(r) of r under f is the M-component of the (E ,M)-factorization of f ◦ r, which is
described by the commutative diagram below.

R
e∈E
//

r

��

f [R]

f(r)∈M
��

X
f
// Y

(b) The preimage f∗(n) of n under f is the pullback of n along f , which is shown by the commutative
diagram below. The pullback f̂ of f is also called a restriction of f .

f∗[N ]
f̂
//

f∗(n)
��

N

n

��

X
f
// Y

The fact that (E ,M)-factorizations and pullbacks are unique up to isomorphism implies both image
and preimage are uniquely defined, up to isomorphism. As a consequence of the definition one has a
pair of adjoint functors given as follows:

Proposition 1.3.4. [CGT04] Every morphism f : X → Y in C induces an image-preimage adjunction:

subX ⊥
f(−)

//
subY

f∗(−)
oo , that is: f(r) ≤ n⇔ r ≤ f∗(n) for all r ∈ subX and n ∈ subY .

Proof. Let r ∈ subX and n ∈ subY and (e, f(r)) be the (E ,M)-factorization of f ◦ r.
(⇒) Assume f(r) ≤ n. Then ∃! w : f [R]→ N such that f(r) = n◦w. Consequently, f ◦r = f(r)◦e =
n ◦ w ◦ e. Hence the solid arrow right diagram below

R
e //

f̂◦w1

��

f [R]

f(r)

���� ��

N n
// Y

R
w◦e

%%

r

��

u1

""

f∗[N ]

f∗(n)
��

f̂
// N

n

��

X
f
// Y

commutes. Thus, by the pullback property ∃! u1 : R→ f∗[N ] such that r = f∗(n)◦u1 and w◦e = p◦u1.
Hence r ≤ f∗(n).
(⇐) Suppose r ≤ f∗(n). Then ∃! w1 : R → f∗[N ] such that r = f∗(n) ◦ w1. As a result one has
f(r) ◦ e = f ◦ r = f ◦ f∗(n) ◦w1 = n ◦ f̂ ◦w1 and hence the left diagram above commutes. Therefore,
∃! d : f [R]→ N such that f(r) = n ◦ d and f̂ ◦ w1 = d ◦ e. Thus f(r) ≤ n.

The following statements follow from Section 1.1 and Proposition 1.3.4.
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Remark 1.3.5. Let f : X → Y be any morphism in C, r, s ∈ subX and n, k ∈ subY . Then since subX
and subY are preordered classes one has

(a) r ≤ s⇒ f(r) ≤ f(s);

(b) n ≤ k ⇒ f∗(n) ≤ f∗(k);

(c) r ≤ f∗(f(r)) and f(f∗(n)) ≤ n;

(d) f(
∨
i∈I

ri) =
∨
i∈I

f(ri), where ri ∈ subX for all i ∈ I;

(e) f∗(
∧
i∈I

ni) =
∧
i∈I

f∗(ni) , where ni ∈ subY for all i ∈ I;

(f) f(0X) ∼= 0Y and f∗(1Y ) ∼= 1X .

Next we see that the image of a subobject under a morphism in M can be described in terms of com-
position.

Remark 1.3.6. [DT95] Let f : X → Y be any morphism in C. Then, the following statements hold.

(a) f : X → Y ∈M⇒ f(r) ∼= f ◦ r for all r ∈ subX. Indeed, if f ∈M then for any r ∈ subX, one
has both (1, f ◦ r) and (e, f(r)) for some e ∈ E are (E ,M)-factorizations of f ◦ r. Therefore, by
Remark 1.2.2, one has f(r) ∼= f ◦ r.

(b) f : X → Y ∈ E ⇔ f(1X) ∼= 1Y . Indeed, if f ∈ E then both (f, 1Y ) and (e, f(1X)) for some
e ∈ E are (E ,M)-factorizations of f ◦1X = f . Therefore, by Remark 1.2.2, one has f(1X) ∼= 1Y .
Conversely, if f(1X) ∼= 1Y then f = f ◦ 1X = f(1X) ◦ e ∼= 1Y ◦ e = e ∈ E . Therefore,
f ∈ E ⇔ f(1X) ∼= 1Y .

Remark 1.3.7. For each object X ∈ C, subX has binary meets. Indeed, the meet of s : S → X and
t : T → X in subX is given by s∧ t ∼= s◦s∗(t) ∼= t◦ t∗(s), which is the diagonal of the pullback diagram

S ∧ T //

s∗(t)
��

T

t
��

S s
// X

Note that sinceM is stable under pullback, one has s∗(t) ∈M. Consequently, sinceM is closed under
composition, one has s ∧ t ∼= s ◦ s∗(t) ∈M.

More generally, as a consequence of our assumption onM, for each X ∈ C, subX is a complete lattice,
infima are formed via intersections and suprema are formed via (E ,M)-factorizations. Indeed, the join
of (ri)i∈I in subX can be seen as the meet of all upper bounds of (ri)i∈I . In fact, the categorical
property of join is given as follows.

Definition 1.3.8. [DT95] A subobject r : R → X is called an M-union of a family (ri : Ri → X)i∈I
in subX provided that ri ≤ r for all i ∈ I and any morphism m in subX such that ri ≤ m for all i ∈ I
must satisfy the relation r ≤ m, that is:

(a) there are morphisms ti : Ri → R, i ∈ I with the property ri = r ◦ ti for all i ∈ I, and
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(b) for any commutative solid diagram

Ri
vi //

ti
��

M

m

��

>>

d

R

r
��

X
1X // X

in C with m ∈M ∃! d : R→M with r = m ◦ d and vi = d ◦ ti for all i ∈ I.

Consequently, we write r ∼=
∨
i∈I
ri :

∨
i∈I
Ri → X. The following are formulas for images and preimages of

composites.

Proposition 1.3.9. [DT95] For morphisms f : X → Y and g : Y → Z in C, one has

(a) (g ◦ f)(r) ∼= g(f(r)) for all r ∈ subX;

(b) (g ◦ f)∗(k) ∼= f∗(g∗(k)) for all k ∈ subZ.

Proof. (a) Let r ∈ subX. Then by Definition 1.3.3 (a), one has f ◦r = f(r)◦e, g◦f(r) = g(f(r))◦e′

and g ◦ f ◦ r = (g ◦ f)(r) ◦ e′′ for some e, e
′
, e
′′ ∈ E . Consequently, (g ◦ f)(r) ◦ e′′ = g ◦ f ◦ r =

g ◦ f(r) ◦ e = g(f(r)) ◦ e′ ◦ e. Hence, both (e
′′
, (g ◦ f)(r)) and (e

′ ◦ e, g(f(r))) are (E ,M)-
factorizations of g◦f◦r. Note that E is closed under composition. Therefore, (g◦f)(r)) ∼= g(f(r))
since by Remark 1.2.2 (E ,M)-factorizations are unique up to isomorphism.

(b) Let k ∈ subZ. Then by Definition 1.3.3 (b), one has (g ◦ f)∗(k) as the pullback of k along g ◦ f
and the two pullback squares

f∗[g∗[K]] //

f∗(g∗(k))
��

g∗[K] //

g∗(k)
��

K

k
��

X
f

// Y g
// Z

Consequently, the outer rectangle is a pullback since the composition of pullbacks is a pullback.
Hence, f∗(g∗(k)) is also the pullback of k along g ◦ f . Therefore, (g ◦ f)∗(k) ∼= f∗(g∗(k)) since
pullbacks are unique up to isomorphism.

In the sequel we use E ′ and E∗ to denote the class of morphisms in E that are stable under pullback
along M-morphisms and the largest pullback-stable subclass of E , respectively. Hence, if E is stable
under pullback then E is stable under pullback along M-morphisms. Therefore, f ∈ E = E∗ ⇒ f ∈ E ′ ,
that is: E = E∗ ⊆ E ′ . The following result shows the image-preimage functors are partially inverse to
each other under particular conditions.

Proposition 1.3.10. [GT00] For any f : X → Y in C, one has:

(a) f∗(f(r)) ∼= r for all r ∈ subX provided that f ∈M (or f is monic and E is stable under pullback
along monomorphisms);

(b) f(f∗(k)) ∼= k for all k ∈ subY provided that f ∈ E ′ .
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Proof. (a) Suppose f ∈M. Then f ∈ Mono(C), hence the diagram

R
1R //

r
��

R

f◦r
��

X
f
// Y

is a pullback. In particular, r is the pullback of f ◦r along f , that is: r ∼= f∗(f ◦r). Consequently,
by Remark 1.3.6 (a), r ∼= f∗(f ◦ r) ∼= f∗(f(r)). For the case f is monic and E is stable under
pullback along monomorphisms, see [GT00].

(b) Suppose f ∈ E ′ and k ∈ subY . Then

f∗[K]
f̂
//

f∗(k)
��

K

k
��

X
f
// Y

is a pullback diagram with f̂ ∈ E . Hence (f̂ , k) is the (E , M)-factorization of f ◦ f∗(k).
Consequently, k ∼= f(f∗(k)) since the image of f∗(k) under f is the M part of the (E , M)-
factorization of f ◦ f∗(k) (see Definition 1.3.3).

Corollary 1.3.11. Let f : X → Y be in C.

(a) f ∈M⇒ f∗(0Y ) ∼= 0X .

(b) f ∈ E ′ ⇒ f(1X) ∼= 1Y . Furthermore, if E ⊆ E ′ then the converse is also true.

Proof. (a) Suppose f ∈M then Remark 1.3.5 and Proposition 1.3.10 (a) yield f∗(0Y ) ∼= f∗(f(0X)) ∼=
0X .

(b) Suppose f ∈ E ′ then by Remark 1.3.5 and Proposition 1.3.10 (b), one obtains f(1X) ∼= f(f∗(1Y )) ∼=
1Y . Conversely, if f(1X) ∼= 1Y then by Remark 1.3.6(b) one has f ∈ E , hence f ∈ E ′ since E ⊆ E ′ .

1.4 Dual images

This section is devoted to the notion of dual images. In order to deal with this concept we need to make
the following further assumption. We assume that the preimage f∗(−) : subY → subX preserves arbi-
trary joins for every morphism f : X → Y in C, as in [LTOC11], throughout the section. Consequently,
by Theorem 1.1.6 (a), f∗ has a right adjoint f∗, which is given by f∗(r) =

∨
{u ∈ subY : f∗(u) ≤ r}.

Hence, one has f∗(k) ≤ r if and only if k ≤ f∗(r) for all r ∈ subX and k ∈ subY .

Definition 1.4.1. Let f : X → Y be a morphism in C and r ∈ subX. The dual image f∗(r) of r is
the greatest subobject t : T → Y such that the pullback f∗(t) : f∗(T )→ X factors throuh r.
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Remark 1.4.2. [RH14] The assumption that each preimage commutes with joins is not restrictive. Such
a condition naturally arises in topological categories C over Set. Indeed, in a such category C, for any
map f : X → Y , the preimage f∗(−) : P (Y )→ P (X), which is given by f∗(N) = {r ∈ R : f(r) ∈ N}
for all N ⊆ Y , where P (X) is the power set of X, commutes with joins. Consequently, f∗(−) admits
a right adjoint (or dual image) f∗(−) : P (X) → P (Y ), which is given by f∗(R) =

⋃
{N ∈ P (Y ) :

f∗(N) ⊆ R} = {y ∈ Y : f∗(y) ⊆ R} = Y \ f(X \R) for any R ⊆ X. Note that f∗(R) is the
largest subset of Y whose preimage by f is contained in R. In fact, f−1 also admits left adjoint
f : P (X)→ P (Y ) given by f(R) = {f(r) : r ∈ R} for all R ⊆ Y .

As the consequence of the above assumption on preimages and Section 1.1 one has:

Remark 1.4.3. Let f : X → Y be any morphism in C.

(a) f induces a preimage-dual image Galois connection: subY ⊥
f∗(−)

//
subX

f∗(−)
oo .

(b) n ≤ f∗(f∗(n)) for all n ∈ subY and f∗(f∗(r)) ≤ r for all r ∈ subX.

(c) f∗(0Y ) ∼= 0X and f∗(1X) ∼= 1Y .

(d) f∗ preserves meets. On the other hand,
∨
k∈K

f∗(rk) ≤ f∗
(∨

rk
k∈K

)
for any family (rk)k∈K in subX.

(e) f∗(r) ∨ n ≤ f∗(r ∨ f∗(n)) for all r ∈ subX and n ∈ subY .

One says that a morphism f : X → Y reflects the least subobject 0Y if f∗(0Y ) ∼= 0X , or equivalently,
f(m) ∼= 0Y ⇔ m ∼= 0X (see [HŠ11]). Consequently, by Remark 1.4.3 (c), any morphism in C reflects
the least subobject. However, by Corollary 1.3.11, each subobject morphism reflects the least subobject
without assuming that joins commute with preimage. Moreover, the above assumption on preimages
produces the following.

Proposition 1.4.4. Let f : X → Y in C, r ∈ subX and n ∈ subY .

(a) If f ∈M (or f is monic and E is stable under pullback along monomorphisms) then f(r) ≤ f∗(r)
and f∗(f∗(r)) ∼= r.

(b) If f ∈ E ′ then f∗(f
∗(n)) ∼= n and f∗(r) ≤ f(r).

(c) f ∈ E ′ ⇒ f∗(0X) ∼= 0Y .

Proof. (a) Let f ∈M (or f is monic and E is stable under pullback along monomorphisms). Then by
Proposition 1.3.10 (a), one has f∗(f(r)) ≤ r, hence f∗ a f∗ gives f(r) ≤ f∗(r). Consequently,
r ∼= f∗(f(r)) ≤ f∗(f∗(r)). Therefore, f∗(f∗(r)) ∼= r since by Remark 1.4.3 (b), f∗(f∗(r)) ≤ r.

(b) Let f ∈ E ′ . Then for any k ∈ subY such that f∗(k) ≤ f∗(n), one has f(f∗(k)) ≤ f(f∗(n)).
Consequently, by by Proposition 1.3.10 (b), one has k ∼= f(f∗(k)) ≤ f(f∗(n)) ∼= n. Hence,
f∗(f

∗(n)) =
∨
{k ∈ subY : f∗(k) ≤ f∗(n)} ≤ n. Therefore, this together with Remark 1.4.3

(b) imply f∗(f
∗(n)) ∼= n. Moreover, by Remark 1.3.5 (c), r ≤ f∗(f(r)). Hence, f∗(r) ≤

f∗(f
∗(f(r))) ∼= f(r).

(c) Suppose f ∈ E ′ then for any n ∈ subY such that f∗(n) ≤ 0X , one has n ∼= f(f∗(n)) ≤ f(0X) =
0Y . Consequently, f∗(0X) =

∨
{n ∈ subY : f∗(n) ≤ 0X} ∼= 0Y . Of course, the assertion in (c)

follows from (b) by setting r = 0X .
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The next corollary gives some characterizations of morphisms in the class E ′ .

Corollary 1.4.5. The following three conditions are equivalent for a morphism f : X → Y in C:

(a) f ∈ E ′ ;

(b) f∗(r) ≤ f(r) for all r ∈ subX;

(c) f∗(r) ∼= f(f∗(f∗(r))) for all r ∈ subX provided that E ⊆ E ′ .

Proof. (a)⇒ (b): follows from Proposition 1.4.4(b).

(b)⇒ (c): Suppose f∗(m) ≤ f(m) for all m ∈ subX and r ∈ subX. Then, in particular for m =
f∗(f∗(r)), one has f∗(r) ≤ f∗(f

∗(f∗(r))) ≤ f(f∗(f∗(r))). Consequently, f∗(r) ∼= f(f∗(f∗(r)))
since one always has f(f∗(f∗(r))) ≤ f∗(r).

(c) ⇒ (a): Suppose f∗(r) ∼= f(f∗(f∗(r))) for all r ∈ subX. Then, in particular for r = 1X ,
1Y ∼= f∗(1X) ∼= f(f∗(f∗(1X))) ∼= f(f∗(1Y )) ∼= f(1X) and hence by Corollary 1.3.11(b), f ∈ E ′ .

Remark 1.4.6. Let f : X → Y and g : Y → Z be morphisms in C. Then, from the general theory of
Galois connections one has that (g ◦ f)∗ ∼= g∗ ◦ f∗ is the right adjoint of (g ◦ f)∗ ∼= f∗ ◦ g∗.

Recall that a complement of m ∈ subX is an m ∈ subX such that m ∧m ∼= 0X and m ∨m ∼= 1X . If
such an m exists then m is said to be complemented in subX. In the sequel we use m to denote the
complement of m ∈ subX. In categories with complemented subobjects one can express the dual image
in terms of image which is given as follows.

Lemma 1.4.7. Let f : X → Y be any C-morphism, subX be a Boolean algebra for each X ∈ C.

(a) f∗ preserves complements, that is: f∗(n) ∼= f∗(n) for all n ∈ subY .

(b) f∗(m) =
∨
{n ∈ subY | f∗(n) ≤ m} ∼= f(m) for all m ∈ subX.

Proof. (a) Let n ∈ subY . Then by the assumption on f∗(−) and Remarks 1.4.3 (c) and 1.3.5 (c), one
has f∗(n)∧ f∗(n) ∼= f∗(n∧ n) ∼= f∗(0Y ) ∼= 0X and f∗(n)∨ f∗(n) ∼= f∗(n∨ n) ∼= f∗(1Y ) ∼= 1X .

(b) Let m ∈ subX. Then by (a), one has f∗(f(m)) ∼= f∗(f(m)) ≤ m = m. Hence, f(m) ∈ {n ∈
subY | f∗(n) ≤ m}. Consequently, f(m) ≤

∨
{n ∈ subY | f∗(n) ≤ m} = f∗(m). Moreover, for

n ∈ subY such that f∗(n) ≤ m, one has by (a), m ≤ f∗(n) ∼= f∗(n). This in turn together with
Remark 1.3.5 (c) implies f(m) ≤ f(f∗(n)) ≤ n. Consequently, n = n ≤ f(m) for all n ∈ subY .
Therefore, f∗(m) =

∨
{n ∈ subY | f∗(n) ≤ m} ≤ f(m).

Remark 1.4.8. For each X ∈ C, subX has a structure of a frame. Indeed, as is mentioned before

each subX is a complete lattice. Moreover, one has m ∧
∨
i∈I
ri ∼= m ◦m∗

(∨
i∈I
ri

)
∼= m ◦

∨
i∈I
m∗(ri) ∼=

m

(∨
i∈I
m∗(ri)

)
∼=
∨
i∈I
m(m∗(ri)) ∼=

∨
i∈I
m ◦ m∗(ri) ∼=

∨
i∈I

(m ∧ ri) for all m, ri ∈ subX, i ∈ I by

Proposition 1.1.5 and Remarks 1.3.6(a), 1.3.7, hence meets distribute over arbitary joins in each subX.
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2. Interior Operators

In general topology, the complement of the interior is the closure of the complement and the comple-
ment of the closure is the interior of the complement. More generally, closure and interior operators
characterize each other in a category with categorical transformation operator (see [Vor00]). In fact,
there is a bijective correspondence between closure and interior operators on a category having a cate-
gorical transformation operator. Consequently, most of the theory of interior operators can be derived
from that of closure operators and vice versa. But in general, it is not true that whatever one does
with respect to closure operators may be done relative to interior operators and vice versa. Indeed, it is
shown in [Vor00] that the category of groups does not have a categorical transformation, hence the two
notions are not necessarily equivalent. Moreover, in any category for which all subobjects are normal,
in particular, in all abelian categories (such as the category of modules over a ring, or the category of
all abelian groups), while there is an abundance of closure operators there is a unique interior oper-
ator, which is the discrete one (see [DT15]). As a consequence the study of a categorical notion of
interior operators for its own sake is interesting enough. In this chapter, we further study categorical
interior operators which are introduced by S.J.R. Vorster in [Vor00]. We give important equivalent
characterizations of the continuity condition of a given interior operator i and discuss some properties
of the notions of openness and codenseness relative to i. By investigating the interaction of interior (or
closure) operators with neighbourhood operators and topogenous orders, we also provide a nice way of
moving from a given closure operator to an interior operator and vice versa. We close the chapter by
looking at the relationship between interior and dual closure operators. As already mentioned in Re-
mark 1.2.8, throughout this chapter (with the exception of Section 2.4) we work with an M-complete
category C equipped with an (E ,M)-factorization structure for morphisms such thatM is a fixed class
of monomorphisms. Consequently, for each morphism f in C, the image f(−) is a left adjoint to the
preimage f∗(−) (see Proposition 1.3.4).

2.1 Basic properties of interior operators

The following definition of an interior operator in an arbitrary category was introduced by S.J.R. Vorster
[Vor00].

Definition 2.1.1. An interior operator i on C with respect to M is a family

i = (iX : subX → subX)X∈C

of functions which are

(I1) contractive: iX(r) ≤ r,

(I2) monotone: if r ≤ s then iX(r) ≤ iX(s), and which satisfy

(I3) the continuity condition: f∗(iY (k)) ≤ iX(f∗(k)),

for all f : X → Y in C and r, s ∈ subX and k ∈ subY .

From now on throughout the thesis, unless stated otherwise, we use i to denote an interior operator i on

17
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C with respect to M. As a consequence of the contraction property one has a canonical factorization

iX [R]
jr

//

iX(r)
""

R

r

��

X

with iX(r) ∈M and jr ∈M for every interior operator i on C and for every M-subobject r : R→ X.
The prototypical example of an interior operator is the Kuratowski interior operator kin in the category
Top, which assigns the usual topological interior R◦ to each subspace R of a topological space X, that
is: kinX(R) =

⋃
{O open in X : O ⊆ R}. The operator given by

k∗inX (R) =
⋃
{C closed in X : C ⊆ R} = {x ∈ R : kX({x}) ⊆ R}, where kX({x}) is the Kuratowski

closure of {x} in the topology of X is also an interior operator in Top. k∗in is called the inverse
Kuratowski interior operator. Note that the interior operator kin (k∗in, resp.) are induced from the Ku-
ratowski k (inverse Kuratowski k∗) closure operator given in [DT95] via set theoretic complementation.
We will include additional examples later towards the end of this chapter.

Remark 2.1.2. Let i be an interior operator on C with respect to M, f : X → Y be any morphism in
C, r ∈ subX and n ∈ subY .

(a) Recall from [Cas03] that for a given categorical closure operator c, the continuity condition of c:
f(cX(r)) ≤ cY (f(r)) yields the functorial property of closure operators (also called the diago-
nalization lemma in [DT95]). This property has played a crucial role in the development of the
theory of closure operators and is essential in proving that any closure operator gives rise to an
endofunctor of the arrow categoryM, whose objects are theM-morphisms. Unlike the categorical
closure operator case, the continuity condition of i can not be described in terms of direct images,
that is: the inequality f(iX(r)) ≤ iY (f(r)) is not true in general. Indeed, in the category of Top,
for the set < of real numbers with the usual Euclidean topology with f(x) = x2 + 1, R = [−2, 2]
and i be the interior operator induced by the topology then f(i(R)) = f((−2, 2)) = [1, 5) and
i(f(R)) = i(f [−2, 2]) = i[1, 5] = (1, 5).Thus f(i(R)) * i(f(R)). Consequently, the functorial
property (also called the preservation property in [Cas15, Cas16]) does not hold for interior opera-
tors. Note that the preservation property of i holds true if and only if f is an open morphism with
respect to i (see Remark 3.1.18(a)). Moreover, the inequality iY (f(r)) ≤ f(iX(r)) is not also
true in general. In fact, if we consider A = {0, 1}, the two element indiscrete topological space,
B = {1}, the singleton topological space, r : R = {0} → A as inclusion map and g : A → B
as the only possible function then i(g(R)) = B, g(i(R)) = ∅ and hence i(g(R)) * g(i(R)); see
[Cas11].

(b) The continuity condition of i: f∗(iY (n)) ≤ iX(f∗(n)) is equivalent to [f∗(n) ≤ r ⇒ f∗(iY (n)) ≤
iX(r)]. Furthermore, the latter is equivalent to [n ≤ f∗(r) ⇒ iY (n) ≤ f∗(iX(r))] provided that
each preimage preserves arbitrary joins in the category C.

(c) If C-morphisms reflect 0 then tin = (tinX)X∈C with tinX(r) ∼= 0X for all r ∈ subX is an interior
operator on C with respect to M. We call tin the trivial interior operator.

We recall the following definition from [Vor00, Cas11, Cas15] which will be used in the sequel.

Definition 2.1.3. Given an interior operator i on C with respect to M, we call

(a) an M-subobject r : R→ X i-open (in X) if jr : iX [R]→ R is an isomorphism,
that is: iX(r) ∼= r;
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(b) i idempotent if for each X ∈ C and r ∈ subX, iX(r) is i-open in X, that is: iX(iX(r)) ∼= iX(r);

(c) i standard if for all X ∈ C, 1X is i-open subobject of X, that is: iX(1X) ∼= 1X and

(d) i additive if iX(r ∧ s) ∼= iX(r) ∧ iX(s) for all r, s ∈ subX and X ∈ C.

In the sequel, we use Oi to denote the class of i-open M-subobjects, respectively.

Remark 2.1.4. Let i be an interior operator on C with respect to M.

(a) The contraction property produces iX(0X) ∼= 0X , that is: 0X is i-open in X for all X ∈ C.

(b) The continuity condition of i implies the preimage of an i-open M-subobject is an i-open M-
subobject, that is: Oi is stable under M-pullback. In particular, f∗(0Y ) is i-open in X since
by (a) one has 0Y is i-open in Y . Furthermore, Oi satisfies the left cancellation condition:
s ◦ t ∈ Oi, s ∈M⇒ t ∈ Oi. In particular, the first factor of an i-open M-subobject is i-open.

(c) The monotonicity condition of i yields arbitrary joins of i-open M-subobjects are i-open M-
subobjects, that is: if rk ∈ OiX for all k ∈ K then

∨
k∈K

rk ∈ OiX , where OiX denotes the class of

i-open M-subobjects of X ∈ C.

(d) Let i be an idempotent interior operator. Then i is additive if and only if Oi is closed under binary

meets. Moreover, i induces a Galois connection OiX
� � //

subX,⊥
i

oo that is: the class OiX of i-open

subobjects of X ∈ C is a coreflective subcategory of subX.

One easily sees that the trivial interior operator tin is not standard unless OX ∼= X for all X ∈ C. On
the other hand, the following result shows that there is a smallest standard interior operator on C with
respect to M.

Proposition 2.1.5. Suppose each preimage preserves arbitrary joins in the category C. The operator

s = (sX : subX → subX)X∈C defined by sX(r) =
∨
{e∗(1E) :

e
X → E ∈ E , e∗(r) ∼= 1E} for all r ∈

subX is the smallest standard interior operator on C with respect to M.

Proof. (a) Let e : X → E ∈ E such that e∗(r) ∼= 1E for all r ∈ subX. Then e∗(1E) ∼= e∗(e∗(r)) ≤ r
for all r ∈ subX. Thus sX(r) =

∨
{e∗(1E) :

e
X → E ∈ E , e∗(r) ∼= 1E} ≤ r.

(b) Let m ≤ r in subX. Then for all e : X → E ∈ E such that e∗(m) ∼= 1E , one has 1E ∼=
e∗(m) ≤ e∗(r), hence sX(m) =

∨
{e∗(1E) :

e
X → E ∈ E , e∗(m) ∼= 1E} ≤

∨
{e∗(1E) :

e
X → E ∈

E , e∗(r) ∼= 1E} = sX(r).

(c) Let f : X → Y be a morphism in C, r ∈ subX and n ∈ subY such that n ≤ f∗(r). Then we
need to show that sY (n) ≤ f∗(sX(r)). To this end, let g : Y → Z ∈ E with g∗(n) ∼= 1Z and
(e,m) with e : X → E ∈ E and m : E → Z ∈ M be the (E ,M)-factorization of g ◦ f . Then
1Z ∼= g∗(n) ≤ g∗(f∗(r)). Consequently, e∗(r) ∼= m∗(m∗(e∗(r))) ∼= m∗(g∗(f∗(r))) ∼= m∗(1Z) ∼=
1E . Moreover, 1Z ∼= m∗(1E) ≤ m∗(e∗(e

∗(1E))) ∼= g∗(f∗(e
∗(1E))), hence g∗(1Z) ≤ f∗(e

∗(1E)).
Thus, for all g : Y → Z ∈ E with g∗(n) ∼= 1Z there exists e : X → E ∈ E with e∗(r) ∼= 1E such
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that g∗(1Z) ≤ f∗(e∗(1E)). As a consequence,

sY (n) =
∨
{g∗(1Z) :

g

Y → Z ∈ E , g∗(n) ∼= 1Z}

≤
∨
{f∗(e∗(1E)) :

e
X → E ∈ E , e∗(r) ∼= 1E}

≤ f∗(
∨
{e∗(1E) :

e
X → E ∈ E , e∗(r) ∼= 1E})

∼= f∗(sX(r)).

Therefore, by Remark 2.1.2(b), f is s-continuous. Hence, by (a), (b) and (c), s is an interior
operator.

(d) Since 1X ∈ E and (1X)∗(1X) ∼= 1X , one has 1X ∼= 1∗X(1X) ≤
∨
{e∗(1E) :

e
X → E ∈ E , e∗(1X) ∼=

1E} = sX(1X), hence s = (sX)X∈C is standard.

(e) Let i be any other standard interior operator. Then for all e : X → E ∈ E with e∗(r) ∼= 1E for all
r ∈ subX, one has e∗(1E) ∼= e∗(iE(1E)) ≤ iX(e∗(1E)) ∼= iX(e∗(e∗(r))) ≤ iX(r). Consequently,

sX(r) =
∨
{e∗(1E) :

e
X → E ∈ E , e∗(r) ∼= 1E} ≤ iX(r). Therefore, s is the least standard

interior operator.

Remark 2.1.6. (a) In Top with M the class of embeddings, the indiscrete interior operator given
by iX(X) = X and iX(R) = ∅ for all R ⊂ X ∈ Top is the smallest standard interior operator.
We also note that this operator is the smallest standard interior operator on Set with respect to
M = the class of injective maps.

(b) Let each preimage preserves arbitrary joins in the category C. Then C has at least three interior
operators, namely the trivial tin, the indiscrete s and the discrete din interior operators such that
tin ≤ s ≤ din. We call an interior operator proper pin if it is not isomorphic to any of these.

A useful characterization of the continuity condition of an interior operator i is given in the following
proposition.

Proposition 2.1.7. Let f : X → Y be any morphism in C, m ∈ subX and n ∈ subY . If preimages
commute with the joins in the category C then for a given interior operator i on C with respect to M,
the following statements are equivalent:

(a) f is i-continuous, that is: f∗(iY (n)) ≤ iX(f∗(n));

(b) iY (f∗(m)) ≤ f∗(iX(m));

(c) f∗(iY (f∗(m)) ≤ iX(m);

(d) iY (n) ≤ f∗(iX(f∗(n))).

Proof. Let m ∈ subX and n ∈ subY .

(a) ⇒ (b): Suppose f∗(iY (n)) ≤ iX(f∗(n)) then the adjointness of preimage and dual image
(f∗, f∗) yields f∗(iY (f∗(m))) ≤ iX(f∗(f∗(m))) ≤ iX(m), hence iY (f∗(m)) ≤ f∗(iX(m)).

(b)⇒ (c): This follows from the fact that f∗ a f∗.
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(c) ⇒ (d): Putting m := f∗(n) in c, one obtains f∗(iY (f∗(f
∗(n)))) ≤ iX(f∗(n)). Therefore,

iY (n) ≤ iY (f∗(f
∗(n))) ≤ f∗(iX(f∗(n))) by adjointness.

(d)⇒ (a): This is obtained from adjointness of (f∗, f∗).

We obtain the following property of M (E ′)-morphisms from Propositions 1.4.4 and 2.1.7.

Corollary 2.1.8. Let preimages commute with arbitrary joins in the category C, f : X → Y be a
morphism in C and i be an interior operator on C with respect to M.

(a) f ∈M⇒ iY (f(m)) ≤ f∗(iX(m)) ≤ f∗(m) for all m ∈ subX.

(b) f ∈ E ′ ⇒ iY (f∗(m)) ≤ f(iX(m)) ≤ f(m) (or f∗(iY (f∗(m))) ≤ iX(m) ≤ m) for all m ∈ subX.
In particular, one has iY (f∗(0X)) ∼= 0Y for all f ∈ E . Furthermore, if i is standard and E ⊆ E ′

then the converse is true.

Proof. (a) Suppose f ∈ M. Then by Propositions 1.4.4(a) and 2.1.7 and the contraction property
of i one has iY (f(m)) ≤ iY (f∗(m)) ≤ f∗(iX(m)) ≤ f∗(m) for all m ∈ subX.

(b) Suppose f ∈ E . Then by Propositions 1.4.4(b) and 2.1.7 and the contraction property of i one
has iY (f∗(m)) ≤ f∗(iX(m)) ≤ f(iX(m)) ≤ f(m) for all m ∈ subX. The converse follows by
setting m = 1X . Conversely, assume that iY (f∗(m)) ≤ f(iX(m)) for all m ∈subX. Since i is
standard then for m = 1X one has 1Y ∼= iY (1Y ) ∼= iY (f∗(1X)) ≤ f(iX(1X)) ∼= f(1X), hence
f(1X) ∼= 1Y . Consequently, by Remark 1.3.6(b) f ∈ E . Therefore, f ∈ E ′ since E ⊆ E ′ .

Next we introduce some basic properties of the notion of codenseness with respect to an interior oper-
ator i on C with respect to M. We begin with the following:

Remark 2.1.9. Recall from [Eng89] that a subset R of a topological space X is called codense in X
if the complement X \ R of R in X is dense in X, that is: if kX(X \ R) = X, which is equivalent to
kinX(R) = ∅, where k and kin are the Kuratowski closure and interior operators, respectively.

The above description of codenseness in terms of the Kuratowski interior operator motivates the fol-
lowing:

Definition 2.1.10. Given an interior operator i, we say that an M-subobject r : R → X is i-codense
(also called i-isolated in [CR10, Cas11]) in X if its i-interior is isomorphic to 0X , that is: if iX(r) ∼= 0X .

iX [R]
jr

//

iX(r)
""

R

r

��

X

A notion of i-codense subobjects was used in [CR10] to define indiscrete objects with respect to an in-
terior operator i in the category Top of topological spaces. We use Ci to denote the class of i-codense
M-subobjects.
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Remark 2.1.11. (a) An M-subobject r : R→ X is i-codense in X if and only if jr : iX [R]→ R is
isomorphic to 0R. Indeed, iX(r) ∼= 0X ⇔ r ◦ jr ∼= 0X ∼= r(0R) ∼= r ◦ 0R ⇔ jr ∼= 0R since r is
monic.

(b) An i-codense and i-open subobject is a least subobject. Indeed, let m be an i-open and i-codense
subobject of X then m ∼= iX(m) ∼= 0X . Note that since iX(0X) ∼= 0X , 0X is both i-open and
i-codense subobject of X.

(c) The monotonicity condition of i also yields arbitrary meets of i-codense M-subobjects are i-
codense M-subobjects, that is: if rk ∈ CiX for all k ∈ K then

∧
k∈K

rk ∈ CiX , where CiX denotes

the class of i-codense M-subobjects of X ∈ C (see [Cas11]).

(d) Let subX be a Boolean algebra for every C-object X and for every C-morphism f let f∗ pre-
serve complements. Let c be a closure operator and ic be the induced interior operator from c
given by icX(m) = cX(m) for all m ∈ subX, where m denotes the complement of m. Then an
M-subobject r : R→ X is ic-codense in X if and only if r is c-dense in X; see for example [DT95].

Examples 2.1.12. (a) In the category Top, Q and < \ Q are codense with respect to the interior
operator induced by the Euclidean topology. In fact, for the Kuratowski interior operator kin of
Top, kin-codense for a subspace inclusion R ↪→ X means codense in the usual topological sense.

(b) Consider the normal interior operator n given by nG(H) =
∨
{N E G : N ≤ H} on the category

Grp. Then every subgroup H 6= G of a simple group G is n-codense in G. On the other hand, a
Dedekind group G has only the trivial subgroup {eG} which is n-codense in G.

(c) For any category C, the least subobject 0X of X ∈ C is the only subobject which is codense in
X with respect to the discrete interior operator on C.

The following partial characterization of M-morphisms will be used in our next proof.

Lemma 2.1.13. Let i be an interior operator on C with respect to M and let f : X → Y be a
morphism in M. Then iY (f(m)) ≤ f(iX(m)) for all m ∈ subX.

Proof. Since f(m) ∼= f ◦ m ≤ f , one has iY (f(m)) ≤ iY (f) ≤ f . Consequently, iY (f(m)) ∼=
f ∧ iY (f(m)) ∼= f ◦ f∗(iY (f(m))) ≤ f ◦ iX(f∗(f(m))) ∼= f ◦ iX(m) ∼= f(iX(m)).

For any given interior operator i, i-codenseness is preserved by images under M-morphisms:

Proposition 2.1.14. Let f : X → Y be a morphism in C, r ∈ subX and n ∈ subY .

(a) If r is i-codense in X and f ∈ M, then f(r) is i-codense in Y . That is: M-morphisms map
i-codense M-subobjects to i-codense M-subobjects.

(b) If f∗(n) is i-codense in X and f ∈ E ′ , then n is i-codense in Y .

Proof. (a) Indeed, since f ∈ M, one has iY (f(r)) ≤ f(iX(r)) by Lemma 2.1.13, hence iY (f(r)) ≤
f(iX(r)) ∼= f(0X) ∼= 0Y .

(b) If iX(f∗(n)) ∼= 0X and f ∈ E ′ , then iY (n) ∼= f(f∗(iY (n))) ≤ f(iX(f∗(n))) ∼= f(0X) ∼= 0Y .

Remark 2.1.15. Let i be an interior operator on C with respect to M.
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(a) The class of i-codense subobjects is stable under composition with the class M from the left.
Indeed, let t : T → S be an i-codense M-subobject of S and s : S → X be an M-subobject of
X. Since s ◦ t ∼= s(t), by Proposition 2.1.14(a), one has s ◦ t is an i-codense M-subobject of X.

(b) The class of i-codense subobjects is stable under composition with the class M from the right.
To this end, let s : S → X be an i-codense subobject of X and t : T → S be a subobject of S.
Then s ◦ t ≤ s, hence iX(s ◦ t) ≤ iX(s) ∼= 0X . Therefore, iX(s ◦ t) ∼= 0X .

(c) Let r and s be subobjects of X such that r ≤ s. If s is i-codense in X then so is r. Indeed, this
is clearly equivalent to (b).

(d) Let preimages commute with arbitrary joins in the category C, f : X → Y be a morphism in C,
m ∈ subX and n ∈ subY . Since f∗(f∗(m)) ≤ m and n ≤ f∗(f∗(n)), it follows from (c) that the
statements

(i) if f∗(n) is i-codense in X, then n is i-codense in Y ,

(ii) if m is i-codense in X, then f∗(m) is i-codense in Y

are equivalent. Consequently, Proposition 2.1.14(b) yields that i-codenseness is preserved by dual
images under E ′-morphisms, that is: if f ∈ E ′ then (ii) holds. Of course, Propositions 2.1.7(b)
and 1.4.4(c) imply that E ′-morphisms map i-codense subobjects to i-codense subobjects.

Some additional properties of the notion of codenseness with respect to i will be discussed later in this
section, section 3.2 and section 4.1.

In the remainder of this section we focus on operations on interior operators. We use INT(C,M) to
denote the conglomerate of all interior operators on C with respect to M. INT(C,M) is preordered
as follows. For i, j ∈ INT(C,M), i ≤ j ⇔ iX(m) ≤ jX(m) for all m ∈ subX,X ∈ C, where ≤ is the
order on subobjects. Consequently, meets and joins of non-empty families of interior operators exist and
are formed “pointwise”, which is shown in the following result (see [Cas11]).

Proposition 2.1.16. INT(C,M) is a large complete lattice.

Proof. Let (il)l∈L be a non-empty family of interior operators. Define

(∧
l∈L
il

)
X

(m) :=
∧
l∈L

(il)X (m)

for all m ∈ subX, X ∈ C. Then one can observe that
∧
l∈L
il ∈ INT(C,M) and is the infimum of the

family (il)l∈L in INT(C,M). Consequently, by the general property of a preordered class,
∨
l∈L
il exists

in INT(C,M).

The discrete interior operator din given by dinX(r) ∼= r for all r ∈ subX is the largest element in
INT(C,M). In fact, din is the greatest standard interior operator. If C-morphisms reflect 0 then
the trivial interior operator tin is the least element in INT(C,M). Furthermore, if preimages com-
mute with the joins in the category C then the joins of the family (il)l∈L are explicitly expressed as:(∨
l∈L
il

)
X

(m) :=
∨
l∈L

(il)X (m) for all m ∈ subX, X ∈ C. Below we list some properties which are

stable under meet or join.
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Remark 2.1.17. (a) The property of being standard (additive, resp.) is stable under arbitrary meet,
that is: for any family (ik)k∈K of standard (additive, resp.) interior operators

∧
k∈K

ik is also

standard (additive, resp.). On the other hand, if ∃k ∈ K such that ik is standard interior operator
then so is

∨
k∈K

ik.

(b) The property idempotency is stable under arbitrary join (see [Cas11]).

Definition 2.1.18. [Cas11] The composite of two interior operators i and j on C with respect toM is
given by composing the maps iX and jX : (j ◦ i)X(r) := jX(iX(r)) for all r ∈ subX.

One readily checks that the composition j ◦ i of two interior operators i and j on C with respect to
M is in fact an interior operator on C with respect to M. Consequently, (INT(C,M), ◦) is a monoid
which is compatible with its lattice structure. More precisely, one has the following properties:

Lemma 2.1.19. Let i, j, k ∈ INT(C,M).

(a) The composition ◦ is associative, that is: (k ◦ j) ◦ i = k ◦ (j ◦ i);

(b) The discrete interior operator d is an identity element for the composition ◦, that is: d◦i = i = i◦d;

(c) If preimages commute with the joins in the category C then the trivial interior operator t is
absorbing, that is: i ◦ t ∼= t ∼= t ◦ i;

(d) If i ≤ j then the monotonicity properties i ◦ k ≤ j ◦ k and k ◦ i ≤ k ◦ j hold;

(e) (
∧
l∈L
jl)◦i ∼=

∧
l∈L
jl◦i and if preimages commute with the joins in the category C, (

∨
l∈L
jl)◦i ∼=

∨
l∈L
jl◦i;

(f) j ◦ (
∧
l∈L
il) ≤

∧
l∈L
j ◦ il and j ◦ (

∨
l∈L
il) ≤

∨
l∈L
j ◦ il.

Remark 2.1.20. (a) If both i and j are standard (additive, resp.) interior operators then j ◦ i is
also standard (additive, resp.). However, the composite of idempotent interior operators need not
be idempotent. Indeed, both the inverse Kuratowski interior operator k∗in and the Kuratowski
interior operator kin are idempotent interior operators in Top but the composition k∗in ◦kin is not
idempotent. To see this, consider (X = {1, 2, 3}, τX = {∅, {2}, {2, 3}, {1, 2}, X}) in Top. Then
for R = {1, 2}, one has kinX(R) = R, hence k∗inX (kinX(R)) = k∗inX (R) = {1}. On the other hand,
k∗inX (kinX(k∗inX (kinX(R)))) = k∗inX (kinX({1})) = k∗inX (∅) = ∅.

(b) Let i, j, k ∈ INT(C,M). If k is additive then one has the distributive law: k◦(j∧i) ∼= (k◦j)∧(k◦i).

The following facts follow immediately from the respective definitions.

Proposition 2.1.21. Let i, j ∈ INT(C,M) such that i ≤ j and r ∈ subX.

(a) If r is j-codense then it is i-codense, that is: i ≤ j ⇒ Cj ⊆ Ci.

(b) If r is i-open then it is j-open, that is: i ≤ j ⇒ Oi ⊆ Oj .

and for (il)l∈L ⊆ INT(C,M), as is observed in [Cas11], one has:

(c) r is
∧
l∈L
il-open if and only if r is il-open for all k;
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(d) If preimages commute with the joins in the category C, then r is
∨
l∈L
il-codense if and only if r is

il-codense for all l.

The following lemma deals with openness and codenseness for composites.

Lemma 2.1.22. Let i, j ∈ INT(C,M).

(a) Oi = Oi◦i.

(b) Ci ⊆ Cj◦i.

(c) i ◦ j ≤ j ∧ i. Furthermore, j ∧ i ≤ j ∨ i, provided that preimages commute with arbitrary joins in
the category C.

Proof. (a) Since i ◦ i ≤ i then by Proposition 2.1.21(b) one obtains Oi◦i ⊆ Oi. On the other hand,
r ∼= iX(r) implies r ∼= iX(r) ∼= iX(iX(r)), hence Oi ⊆ Oi◦i.

(b) Since j ◦ i ≤ i then by Proposition 2.1.21(a) one obtains Ci ⊆ Cj◦i.

(c) From Lemma 2.1.19(b) and (f), we obtain i ◦ j = i ◦ (j ∧ d) ≤ (i ◦ j) ∧ (i ◦ d) ≤ j ∧ i ≤ j ∨ i.

Given an interior operator i, Lemma 2.1.22(b) gives Ii ⊆ Ii◦i. However, Ii◦i is not equal to Ii in
general. Indeed, for (X = {1, 2, 3}, τX = {∅, {1}, {2}, {1, 2}, X}) ∈ Top and the interior operator
Θin
X(R) = {r ∈ R : ∃ a open neighbourhood Ur of r in X such that kX(Ur) ⊆ R}, where kX(Ur) is

the Kuratowski closure of Ur, defined in [CR10], one has θinX({1, 3}) = {1} and θinX
(
θinX({1, 3})

)
=

θinX({1}) = ∅. Therefore, {1, 3} is θin ◦ θin-codense but not θin-codense in X.

Theorem 2.1.23. Let i, j ∈ INT(C,M). Then

(a) Oi◦j = Oj◦i = Oi∧j = Oi ∩Oj .

(b) Ci∨j = Ci ∩ Cj , provided that preimages commute with arbitrary joins in the category C.

Proof. (a) From i ◦ j ≤ j ∧ i (see Lemma 2.1.22(c)), we obtain Oi◦j ⊆ Oj∧i. On the other hand,
let r be j ∧ i-open in X ∈ C. Then r ∼= (j ∧ i)X (r) = jX(r) ∧ iX(r) ≤ jX(r), iX(r), hence
r ∼= iX(r) ∼= jX(r). Consequently, (j ◦ j)X (r) ∼= r. Thus Oj∧i ⊆ Oi◦j .

(b) From i, j ≤ i ∨ j, we obtain Ci∨j ⊆ Ci, Cj (see Proposition 2.1.21(a)), hence Ci∨j ⊆ Ci ∩ Cj .
The other inclusion is obvious.

2.2 Interior, neighbourhood operators and topogenous orders

Inspired by the categorical study of convergence, a notion of neighbourhood with respect to a categorical
closure operator was introduced in [GŠ05] and then subsequently studied in [Šla08, GŠ09, Šla11]. The
formal theory of categorical neighbourhood operators was introduced by Holgate and Šlapal [HŠ11].
Since then, these operators were used to study a categorical notion of convergence, separation and
compactness. The following is a list of some of the papers that have contributed to the development
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of neighbourhood operators: [HŠ11, Raz12, RH14, RH17]. In this section we discusss the relation
between interior and neighbourhood operators (or topogenous orders). We show that interior operators
are special types of neighbourhood operators (or topogeneous orders). For X ∈ C, we use P(subX) to
denote the class of subclasses of subX.

Definition 2.2.1. [Raz12] A neighbourhood operator on C with respect to M is a family

ν = (νX : subX → P(subX))X∈C

of functions which are

(N1) stack: if s ≤ t and s ∈ νX(r) then t ∈ νX(r),

(N2) antimonotone: if m ≤ r then νX(r) ⊆ νX(m), and which satisfy

(N3) the property: if s ∈ νX(r) then r ≤ s and

(N4) the continuity condition: f∗(νY (k)) ⊆ νX(f∗(k)), that is: if n ∈ νY (k) then f∗(n) ∈ νX(f∗(k)),

for all f : X → Y in C and m, r, s, t ∈ subX and k, n ∈ subY .

We note that f∗(νY (k)) = {f∗(n)| n ∈ νY (k)}. Consequently, by applying the antimonotonicity prop-
erty of ν (see Definition 2.2.1(c)) and the adjointness property (see Remark 1.3.5), one can equivalently
describe the continuity condition of ν as follows.

Proposition 2.2.2. [Raz13] Let f : X → Y be any morphism in C, m ∈ subX and n ∈ subY . Then
for a given neighbourhood operator ν, the following statements are equivalent:

(a) f is ν-continuous, that is: f∗(νY (n)) ⊆ νX(f∗(n));

(b) νY (f(m)) ⊆ f(νX(m));

(c) f∗(νY (f(m)) ⊆ νX(m);

(d) νY (n) ⊆ f(νX(f∗(n))).

We use NBH(C,M) to denote the conglomerate of all neighbourhood operators on C with respect to
M. As for INT(C,M), NBH(C,M) is ordered pointwise, ν ≤ ν

′
if and only if νX(r) ⊆ ν

′
X(r) for

all r ∈ subX and X ∈ C. Consequently, NBH(C,M) is a large complete lattice, that is: arbitrary
meets and joins of neighbourhood operators exist in NBH(C,M). Indeed, the meeet and join of the
family (νk)k∈K is given by

⋂
k∈K

(νk)X(r) and
⋃
k∈K

(νk)X(r) for all r ∈subX and X ∈ C, respectively

(see [Raz12]). Next we focus on special classes of neighbourhood operators which are stable under join.
To this end, let ν be a neighbourhood operator on C with respect to M and G ⊆ subX, X ∈ C. We
observe that ν satisfies the property: if p ∈ νX(m) for all m ∈ G then p ∈ νX(

∨
G) if and only if ν

has a right adjoint. This motivates the following definition.

Definition 2.2.3. [RH14] A neighbourhood operator ν on C with respect to M is a left adjoint
neighbourhood operator if it satisfies the property: if p ∈ νX(m) for all m ∈ G then p ∈ νX(

∨
G).

The conglomerate of all left adjoint neighbourhood operators on C with respect to M is denoted by
LNBH(C,M). Like the NBH(C,M), LNBH(C,M) is ordered pointwise and is a complete lattice with
set theoretic union and intersection yielding join and meet, respectively. The next proposition states
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that every interior operator induces a left adjoint neighbourhood operator and each left adjoint neigh-
bourhood operator induces an interior operator.

Proposition 2.2.4. [HŠ11, Raz12, RH14] LNBH(C,M) is order isomorphic to INT(C,M).

Proof. For ν ∈ LNBH(C,M) and i ∈ INT(C,M) define iνX(r) :=
∨
{k ∈ subX : r ∈ νX(k)} and

νiX(r) := {k ∈ subX : r ≤ iX(k)} for all r ∈ subX. Then, r ∈ νX(k)⇒ k ≤ iνX(r) and k ∈ νiX(r)⇔
r ≤ iX(k).
Claim-1: iν ∈ INT(C,M). In order to show this,

(I1) let r ∈ subX. Then for all k ∈ {k ∈ subX : r ∈ νX(k)}. By (N3), one has k ≤ r, hence
iνX(r) =

∨
{k ∈ subX : r ∈ νX(k)} ≤ r.

(I2) let r, s ∈ subX such that r ≤ s. Then for all k ∈ subX with r ∈ νX(k), one has s ∈ νX(k) by
(N1). Consequently, {k ∈ subX : r ∈ νX(k)} ⊆ {k ∈ subX : s ∈ νX(k)}, hence
iνX(r) =

∨
{k ∈ subX : r ∈ νX(k)} ≤

∨
{k ∈ subX : s ∈ νX(k)} = iνX(s), and

(I3) for any f : X → Y ∈ C and n ∈ subY , one has iνY (n) =
∨
{p ∈ subY : n ∈ νY (p)}. Hence

n ∈ νY (
∨
{p ∈ subY : n ∈ νY (p)}) = νY (iνY (n)) since ν is a left adjoint neighbourhood oper-

ator. Consequently, with the continuity condition (N4) one has f∗(n) ∈ νX(f∗(iνY (n))), hence
f∗(iνY (n)) ∈ {k ∈ subX : f∗(n) ∈ νX(k)}. Therefore,
f∗(iνY (n)) ≤

∨
{k ∈ subX : f∗(n) ∈ νX(k)} = iνX(f∗(n)).

Claim-2: νi ∈ LNBH(C,M). To this end,

(N1) let k ≤ m in subX such that k ∈ νiX(r). Then r ≤ iX(k) ≤ iX(m). Consequently, m ∈ νiX(r),

(N2) let m ≤ r in subX. Let k ∈ νiX(r). Then m ≤ r ≤ iX(k), hence k ∈ νiX(m). Therefore,
νiX(r) ⊆ νiX(m),

(N3) let r, s ∈ subX such that s ∈ νiX(r). Then r ≤ iX(s) ≤ s, and

(N4) for any f : X → Y in C and n, k ∈ subY such that n ∈ νiY (k), one has k ≤ iY (n). Consequently,
with the continuity condition of i one has f∗(k) ≤ f∗(iY (n)) ≤ iX(f∗(n)).
Hence f∗(n) ∈ νiX(f∗(k)).

Claim-3: The assignments ν 7→ iν and i 7→ νi are monotone and inverse to each other. Indeed,

(a) let i, j ∈ INT(C,M) such that i ≤ j. Then for k ∈ νiX(r), one has r ≤ iX(k) ≤ jX(k), hence

k ∈ νjX(r). Therefore, i ≤ j ⇒ νi ≤ νj , that is: i 7→ νi is a monotone map,

(b) let ν, ν
′ ∈ LNBH(C,M) such that ν ≤ ν ′ . Then {k ∈ subX : r ∈ νX(k)} ⊆

{
k ∈ subX : r ∈ ν ′X(k)

}
,

hence iνX(r) =
∨
{k ∈ subX : r ∈ νX(k)} ≤

∨{
k ∈ subX : r ∈ ν ′X(k)

}
= iν

′

X (r).

Therefore, ν ≤ ν ′ implies iν ≤ iν
′
, that is: the map ν 7→ iν is monotone,

(c) let r ∈ subX. Then iν
i

X (r) =
∨{

k ∈ subX : r ∈ νiX(k)
}

=
∨
{k ∈ subX : k ≤ iX(r)} ∼=

iX(r), and

(d) let k ∈ νX(r). Then r ∈ {p ∈ subX : k ∈ νX(p)}, hence
r ≤

∨
{p ∈ subX : k ∈ νX(p)} = iνX(k). Consequently, k ∈ νiνX (r) = {p ∈ subX : r ≤ iνX(p)}.

Hence νX(r) ⊆ νi
ν

X (r). On the other hand, let k ∈ νi
ν

X (r). Then r ≤ iνX(k), hence by the
animonocity property of ν one has νX(iνX(k)) ⊆ νX(r). Consequently, k ∈ νX(r) since k ∈
νX(iνX(k)).
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The previous proposition shows that interior operators are special neighbourhood operators which re-
spect joins. Indeed, INT(C,M) ∼= LNBH(C,M) is reflective in NBH(C,M), which is shown below.

Proposition 2.2.5. [Raz12] INT(C,M) ∼= LNBH(C,M) is reflective in NBH(C,M) and the reflection

of a neighbourhood operator ν is ν+ =
⋂{

ν
′ ∈ LNBH(C,M) : ν ≤ ν ′

}
.

Proof. As stated above, an arbitrary intersection of left neighbourhood operators is a left adjoint neigh-
bourhood operator, hence ν+ ∈ LNBH(C,M). Consequently, one has the adjunction

NBH(C,M) ⊥
//

LNBH(C,M) ∼= INT(C,M)? _oo .

Therefore, the inclusion functor ν
′
↪→ ν

′
has a left adjoint. Therefore, INT(C,M) ∼= LNBH(C,M) is

reflective in NBH(C,M).

Remark 2.2.6. If preimages commute with the joins in the category C then for any neighbourhood oper-
ator (not only left adjoint neighbourhood operator) ν, the assignment iνX(r) :=

∨
{k ∈ subX : r ∈ νX(k)}

is an interior operator. Indeed, for any f : X → Y in C and n ∈ subY the continuity condition (N4) of
ν yields

f∗(iνY (n)) = f∗(
∨
{p ∈ subY : n ∈ νY (p)})

∼=
∨
{f∗(p) ∈ subX : n ∈ νY (p)}

≤
∨
{f∗(p) ∈ subX : f∗(n) ∈ νX(f∗(p))}

≤
∨
{k ∈ subX : f∗(n) ∈ νX(k)}

∼= iνX(f∗(n)).

In the remainder of this section we discuss the relation between interior operators and topogenous orders.
Topogenous orders on an arbitrary category were introduced in [HIR16] with the assistance of both cate-
gorical closure and interior operators, inspired by the works of Császár on syntopogenous structures and
spaces presented in [Csá63]. These orders provide a unified categorical framework for closure, interior
and neighbourhood operators and are defined as follows.

Definition 2.2.7. [HIR16] A topogenous order on C with respect to M is a family

v= (vX)X∈C

of relations which satisfy the properties

(T1) if r vX s then r ≤ s,

(T2) if r ≤ s vX p ≤ q then r vX q, and

(T3) the continuity condition: if n vY k then f∗(n) vX f∗(k)

for all f : X → Y in C and r, s, p, q ∈ subX and k, n ∈ subY .
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The conglomerate TORD(C,M) of all topogenous orders on C with respect toM is a preordered class
and ordered by the relation v⊆v′ if and only if r vX s implies r v′X s for all r, s ∈ subX and X ∈ C.
Consequently, TORD(C,M) is a large complete lattice, that is: arbitrary meets and joins of topogenous
orders exist in TORD(C,M). Indeed, the meeet and join of the family (vk)k∈K is given by

⋂
k∈K

vk

and
⋃
k∈K
vk, respectively (see [HIR16]). In the next proposition we see that every neighbourhood oper-

ator ν induces a topogenous order vν and each topogenous order v induces neighbourhood operator νv.

Proposition 2.2.8. [HIR16] TORD(C,M) ∼= NBH(C,M).

Proof. Let ν ∈ NBH(C,M) and v ∈ TORD(C,M). Then the order relation vν given by
r vνX s ⇔ s ∈ νX(r) is a topogenous order and the class νvX(r) = {k ∈ subX : r vX k} is a
neighbourhood operator. Indeed, these are consequences of (N3) ⇔ (T1), (N1) and (N2) ⇔ (T2) and
(N4)⇔ (T3). Furthermore, it is clear that both v7→ νv and ν 7→vν are monotone and inverse to each
other.

Consequently, topogenous orders are precisely neighbourhood operators.

Definition 2.2.9. [HIR16] Let X ∈ C, s ∈ subX and {rk : k ∈ K} ⊆ subX. A topogenous order v
with the property:

if rk vX s for all k ∈ K then
∨
k∈K

rk vX s

is called a topogenous order which respects joins.

The conglomerate of all topogenous orders on C with respect to M which respect joins is denoted by∨
-TORD(C,M). Similar to TORD(C,M),

∨
-TORD(C,M) is stable under arbitrary intersections.

The following proposition shows that topogenous orders which respect joins are precisely the interior
operators, that is: every topogenous order which respect joins induces an interior operator and each
interior operator induces a topogenous order which respect joins.

Proposition 2.2.10. [HIR16]
∨

-TORD(C,M) ∼= INT(C,M).

Proof. Let v ∈
∨

-TORD(C,M) and i ∈ INT(C,M).

(a) The order relation given by r viX s ⇔ r ≤ iX(s) for all r ∈ subX is a topogenous order
which respects joins. Indeed, this is due to (I1) ⇒ (T1), (I2) ⇒ (T2) and (I3) ⇒ (T3) and
(∀k ∈ K)

(
rk viX s⇒ rk ≤ iX(s)

)
, hence

∨
k∈K

rk ≤ iX(s). Therefore,
∨
k∈K

rk vi s.

(b) The operator given by ivX(r) :=
∨
{k ∈ subX : k vX r} is an interior operator. Indeed,

(T1)⇒ (I1), (T2)⇒ (I2) and for any f : X → Y in C and n ∈ subY , one has
ivY (n) =

∨
{p ∈ subY : p vY n}, hence ivY (n) vY n since v ∈

∨
-TORD. Consequently, with

(T3) one obtains f∗(vY (n)) vX f∗(n). Therefore,

f∗(vY (n)) ≤ iX(f∗(n)) =
∨
{k ∈ subX : k vX f∗(n)}.

(c) It is clear that both v7→ iv and i 7→vi are monotone and inverse to each other.
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Consequently, one has the following proposition.

Corollary 2.2.11. [HIR16] INT(C,M) ∼=
∨

-TORD(C,M) is reflective in TORD(C,M) and the re-

flection of a topogenous order v is v+=
⋂{
v′∈

∨
-TORD(C,M) : v⊆v′

}
.

Analogous to Remark 2.2.6, one obtains the following.

Remark 2.2.12. If preimages commute with the joins in the category C then any topogenous order
(not only topogenous order which respect joins) v, the assignment ivX(r) :=

∨
{k ∈ subX : k vX r}

is an interior operator. Indeed, for any f : X → Y in C and n ∈ subY the continuity condition (T3) of
v yields

f∗(ivY (n)) = f∗(
∨
{p ∈ subY : p vY n})

∼=
∨
{f∗(p) ∈ subX : p vY n}

≤
∨
{f∗(p) ∈ subX : f∗(p) vX f∗(n)}

≤
∨
{k ∈ subX : k vX f∗(n)}

∼= ivX(f∗(n)).

The remark certainly should not surprise us as topogenous orders are essentially the same as neighbour-
hood operators (see Proposition 2.2.8).

Definition 2.2.13. [HIR16] A topogenous order v with the property: for all r vX s in subX there
exists p ∈ subX such that r vX p vX s for all X ∈ C is called interpolative topogenous order.

The conglomerate INTORD(C,M) of all interpolative topogenous orders on C with respect to M is
stable under arbitrary unions. Hence, INTORD(C,M) is coreflective in TORD(C,M). Furthermore,
we do have the following relation.

Corollary 2.2.14. [Ira16] Idempotent interior operators are precisely interpolative topogenous orders
which respect joins.

Proof. Let i be an idempotent interior operator. Then by Proposition 2.2.10 the relation given by
r viX s ⇔ r ≤ iX(s) for all X ∈ C is a topogenous order in

∨
-TORD(C,M). Moreover, since i is

idempotent one has iX(s) ∼= iX(iX(s)), hence

r viX s⇔ r ≤ iX(s) ∼= iX(iX(s))

⇔ r ≤ iX(iX(s))

⇔ r viX iX(s) ≤ iX(s)

⇔ r viX iX(s) viX s.

So, there exists p = iX(s) in subX such that r viX p viX s. Therefore, vi is an interpolative topoge-
nous order. On the other hand, if v is an interoplative topogenous order then by Proposition 2.2.10
the operator given by ivX(r) =

∨
{k ∈ subX : k vX r} is an interior operator. Furthermore, since v is

an interoplative topogenous order, for k ∈ subX such that k vX r, one has the existence of p ∈ subX
such that k vX p vX r, hence k ≤ k vX p ≤ ivX(r). Consequently, by (T2), k vX ivX(r). Therefore,

{k ∈ subX : k vX r} ⊆
{
q ∈ subX : q vX ivX(r)

}
. Thus,
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ivX(r) =
∨
{k ∈ subX : k vX r} ≤

∨{
q ∈ subX : q vX ivXr

}
= ivX(ivX(r)). Hence, iv is an idem-

potent interior operator.

The following diagram summarizes the relation of interior operators with neighbourhood operators and
topogenous orders.

TORD(C,M) ∼= NBH(C,M) ⊥
//

LNBH(C,M) ∼=
∨

-TORD(C,M) ∼= INT(C,M)? _oo .

2.3 “Duality” between interior and closure operators

Although the associated closure and interior operators provide equivalent descriptions of the topology
for a given topological space, categorical closure and interior operators are not “dual” to each other.
This is due to the fact that categorical interior operators are only compatible with taking preimages
unlike closure operators (see Remark 2.1.2(a)). As a consequence, the preservation property, which is
the symmetric counter part of the functorial property of closure operators, does not hold for interior
operators, hence results which are analogous to results involving the functorial property of closure op-
erators may not hold (see [CM13, Cas15, Cas16]).

Definition 2.3.1. [DG87] A closure operator c on C with respect to M is a family

c = (cX : subX → subX)X∈C

of functions which are

(C1) extensive: r ≤ cX(r),

(C2) monotone: if r ≤ s then cX(r) ≤ cX(s),

(C3) and which satisfy the continuity condition: f(cX(r)) ≤ cY (f(r)),

for all f : X → Y in C and r, s ∈subX.

The image-preimage adjunction allows us to equivalently describe the continuity condition (C3) as
cX(f∗(n)) ≤ f∗(cY (n)) or f(cX(f∗(n))) ≤ cY (n) or cX(r) ≤ f∗(cY (f(r))) for all f : X → Y in C
and n ∈ subY and r ∈ subX.

Definition 2.3.2. [DG87, DT95] Let c be a closure operator.

(a) An M subobject r ∈ subX is called c-closed if cX(r) ∼= r.

(b) An M subobject r ∈ subX is called c-dense if cX(r) ∼= 1X .

(c) A morphism f : X → Y in C is called c-dense if cY (f(1X)) ∼= 1Y .

(d) c is called idempotent if cX(r) is c-closed in X, that is: cX(cX(r)) ∼= cX(r) for all r ∈ subX,
X ∈ C.

(e) c is hereditary if cX(rs) ∼= s∗(cX(r)) ∼= s∗(cX(s(rs))) for all r ≤ s in subX, X ∈ C.

We use CLOS(C,M) to denote the conglomerate of all closure operators on C with respect toM. Like
INT(C,M), CLOS(C,M) is preordered by ≤. For c, c

′ ∈ CLOS(C,M) one defines c ≤ c′ ⇔ cX(m) ≤
c
′
X(m) for all m ∈ subX,X ∈ C, where ≤ is the order on subobjects. Consequently, meets and joins of
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non-empty families of closure operators exist and are formed “pointwise” (see [DT95]). In order to see
the relationship between closure operator and topogenous order and hence interior operator let us first
recall the following definition from [HIR16].

Definition 2.3.3. Let X ∈ C, s ∈ subX and {rk : k ∈ K} ⊆ subX. A topogenous order v with the
property: if s vX rk for all k ∈ K then s vX

∧
k∈K

rk is called a topogenous order which respects meets.

The conglomerate of all topogenous orders on C with respect to M which respect meets is denoted by∧
-TORD(C,M). Similar to

∨
-TORD(C,M),

∧
-TORD(C,M) is stable under arbitrary intersections

and hence reflective in TORD(C,M). The following proposition shows that topogenous orders which
respect meets are precisely the closure operators.

Proposition 2.3.4. [HIR16]
∧

-TORD(C,M) ∼= CLOS(C,M).

Proof. We observe that the proof is similar to the proof of Proposition 2.2.10. Let v ∈
∧

-TORD(C,M)
and c ∈ CLOS(C,M).

(a) The order relation given by r vcX s ⇔ cX(r) ≤ s for all r ∈ subX is a topogenous order
which respects meets. Indeed, this is due to (C1) ⇒ (T1), (C2) ⇒ (T2), (C3) ⇒ (T3) and
(∀k ∈ K) (s vcX rk ⇒ cX(s) ≤ rk). Hence cX(s) ≤

∧
k∈K

rk. Therefore, s vc
∧
k∈K

rk.

(b) The operator given by cvX(r) =
∧
{k ∈ subX : r vX k} is a closure operator.

Indeed, (T1) ⇒ (C1), (T2) ⇒ (C2) and for any f : X → Y in C and n ∈ subY , one has
cvY (n) =

∧
{p ∈ subY : n vY p}. Hence n vY cvY (n) since v ∈

∧
-TORD. Consequently, with

(T3) one obtains f∗(n) vX f∗(cvY (n)). Therefore,

cvX(f∗(n)) =
∧
{k ∈ subX : f∗(n) vX k} ≤ f∗(cvY (n)).

(c) It is clear that both v7→ cv and c 7→vc are order reversing and inverse to each other.

Remark 2.3.5. As pointed out in [HIR16], because f∗ commutes with meets one always obtains the
continuity condition (C3) of a closure operator c, hence cv is a closure operator for any topogenous
order (not only for topogenous orders which respect meets) v.

As a consequence of Proposition 2.3.4, one has the following corollary.

Corollary 2.3.6. [HIR16] CLOS(C,M) ∼=
∧

-TORD(C,M) is reflective in TORD(C,M) and the

reflection of a topogenous order v is v+=
⋂{
v′∈

∧
-TORD(C,M) : v⊆v′

}
.

Analogous to Corollary 2.2.14 one has the following.

Corollary 2.3.7. [Ira16] Idempotent closure operators are precisely interpolative topogenous orders
which respect meets.

The following diagram summarizes the relation of closure operators with neighbourhood operators and
topogenous orders.

NBH(C,M) ∼= TORD(C,M) ⊥
// ∧

-TORD(C,M) ∼= CLOS(C,M)? _oo .

If preimages commute with joins in the category C then combinining Propositions 2.2.10 and 2.3.4 and
Remarks 2.2.12 and 2.3.5 one has a natural correspondence between closure and interior operators, that
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is: every closure operator gives rise to an interior oparator and vice versa. More precisely, one has the
following theorem.

Theorem 2.3.8. Let c ∈ CLOS(C,M) and i ∈ INT(C,M).

(a) The family (cX)X∈C, where ciX(r) :=
∧
{k ∈ subX : r ≤ iX(k)} for all r ∈ subX, is a closure

operator.

(b) If each preimage commutes with the joins in the category C then the family (iX)X∈C,
where icX(r) :=

∨
{k ∈ subX : cX(k) ≤ r} is an interior operator.

(c) The maps i 7→ ci and c 7→ ic are order reversing between INT(C,M) and CLOS(C,M).

Proof. This follows by composing the maps

CLOS ∼=
∧

-TORD � � ⊥ // TORD ∼= NBH
oo

⊥
//
LNBH ∼=

∨
-TORD ∼= INT.? _oo

Theorem 2.3.8 deals with general method of constructing interior operators from closure operators and
vice versa.

Remark 2.3.9. The correspondence in Theorem 2.3.8 states that for any interior operator i, the com-
position i 7→vi 7→ cv

i
is a closure operator and if each preimage commutes with the joins in the category

C, then for each closure operator c, the composition c 7→vc 7→ iv
c

is an interior operator.

As a consequence of Corollaries 2.2.14 and 2.3.7 and Theorem 2.3.8 one has the following.

Corollary 2.3.10. If preimages commute with the joins in the category C then each idempotent interior
operator induces an idempotent closure operator and vice versa.

The maps i 7→ ci and c 7→ ic in Theorem 2.3.8 are neither Galois connections nor inverse to each other
but they are a natural way of moving between interior and closure operators. Consequently, the maps
yield a certain “duality” between INT(C,M) and CLOS(C,M). They become inverse to each other if
for each X, subX is a Boolean algebra. Indeed, we obtain the following consequence of Lemma 1.4.7(a)
and Proposition 1 of [HŠ11].

Proposition 2.3.11. If subX is a Boolean algebra for every C-object X and for every C-morphism f ,
f∗(−) preserves complements. Then interior operators i on C with respect to M are in bijective cor-
respondence with closure operators c on C with respect to M, via ciX(m) = iX(m), icX(m) = cX(m),
for all m ∈ subX, X ∈ C.

Remark 2.3.12. Recall from Lemma 1.4.7(a) that if subX is a Boolean algebra for every C-object X
and the preimage f∗(−) preserves arbitrary joins for every morphism f in C then each f∗ preserves
complements, hence by the above Proposition there is a bijective correspondence between interior and
closure operators on C with respect to M, via ciX(m) = iX(m), icX(m) = cX(m), for all m ∈ subX,
X ∈ C.

Let us also note that the following is a generalization of Proposition 2.3.11 proved in [Vor00].

Proposition 2.3.13. If the category C admits a transformation operator there is a bijective correspon-
dence between interior and closure operators on C with respect to M.
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In [HŠ18], by using the notion of relative closed and open they estabilished possible correspondences
between closure and interior operators. But unless the subobject lattices are Boolean algebras the cor-
respondences do not yield a satisfactory way of moving from one operator to the other. The situation is
discussed in the remainder of this section. Given an interior operator i, based on the topological notion
we define closed subobjects with respect to i as follows.

Definition 2.3.14. [HŠ18] Let i ∈ INT(C,M), X ∈ C. An M-subobject r : R→ X is called:

1. Ai-closed if for all s ∈ subX, iX(r ∨ s) ≤ r ∨ iX(s);

2. Bi-closed if for all s ∈ subX, r ∨ s ∼= 1X ⇒ r ∨ iX(s) ∼= 1X ;

3. Ci-closed if r is pseudocomplemented and rc ∼= iX(rc), where the pseudocomplement of r is an
M-subobject rc : Rc → X such that for any m ∈ subX, m ≤ rc ⇔ m ∧ r ∼= 0X .

One readily sees that when the subobject lattices are Boolean algebras the above three definitions
coincide. One can also derive some relations in between them under some conditions (see [HŠ18]).
Furthermore, the three definitions induce three types of closure operators as discussed below.
To this end, we construct the smallest pullback stable class F∗ containing a given a class F ⊆ M.
Indeed, F∗ is given by F∗ = {f∗(n) : n ∈ F , f in C} (see [CH03a, HŠ18]).

Proposition 2.3.15. [CH03a, HŠ18] The family (cFX)X∈C, where cFX(r) :=
∧
{r′ ∈ F∗ : r ≤ r′}, is an

idempotent closure operator.

Proof. (a) Let r ≤ r′ for all r′ ∈ F . Then r ≤
∧
{r′ ∈ F∗ : r ≤ r′} = cFX(r).

(b) Let r ≤ s in subX. Then {r′ ∈ F∗ : s ≤ r′} ⊆ {r′ ∈ F∗ : r ≤ r′}, hence
cFX(r) =

∧
{r′ ∈ F∗ : r ≤ r′} ≤

∧
{r′ ∈ F∗ : s ≤ r′} = cFX(s).

(c) Let f : X → Y ∈ C and n ∈ subY . Then

cFX(f∗(n)) =
∧
{k ∈ F∗ : f∗(n) ≤ k}

≤
∧
{f∗(n′) ∈ F∗ : f∗(n) ≤ f∗(n′)}

≤
∧
{f∗(n′) ∈ F∗ : n ≤ n′} ∼= f∗(

∧
{n′ ∈ F∗ : n ≤ n′}) = f∗(cFY (n)).

(d) Since cFX(r) ≤ cFX(r), one has cFX(cFX(r)) =
∧
{r′ ∈ F∗ : cFX(r) ≤ r′} ≤ cFX(r). Furthermore,

cFX(r) ≤ cFX(cFX(r)) by (a). Consequently, cFX(cFX(r)) ∼= cFX(r).

Note that cFX(r) ∼= r for all r ∈ F , that is each r ∈ F is cF -closed. Consequently, cF is the largest
closure operator satisfying this property.

Definition 2.3.16. [HŠ18] Let i be an interior operator. By considering the class of Ai-closed, Bi-
closed, Ci-closed subobjects for the class F , we define closure operators αi, βi and γi, respectively.

Consequently, one has the following.

Remark 2.3.17. [HŠ18]

(a) The maps i 7→ βi and i 7→ γi are order reversing maps from INT(C,M) to CLOS(C,M).

http://etd.uwc.ac.za/



Section 2.4. Interior and dual closure operators Page 35

(b) The map i 7→ αi does not respect order. Indeed, if we assume C-morphisms reflect 0, then
both the trivial tin and discrete din interior operator induce the same closure operator given by
αt

in
(r) ∼= r ∼= αd

in
(r).

By assuming preimages commute with the joins in the category C one obtains an interior operator
analogous to the construction of the above closure operator as follows (see also [HŠ18]).

Proposition 2.3.18. Let preimages commute with the joins in the category C and F ⊆M. The family
(iFX)X∈C, where iFX(r) :=

∨
{r′ ∈ F∗ : r′ ≤ r}, is an idempotent interior operator.

Observe that iFX(r) ∼= r for all r ∈ F , that is each r ∈ F is iF -open. Consequently, iF is the smallest
operator satisfying this property. By defining open subobjects with respect to a given closure operator
one obtains three types of interior operators. To see this, we start by recalling the following definition
from [HŠ18].

Definition 2.3.19. Given a closure operator c, an M-subobject r : R→ X is called:

1. Ac-open if for all s ∈ subX, r ∧ cX(s) ≤ cX(r ∧ s);

2. Bc-open if for all s ∈ subX r ∧ s ∼= 0X ⇒ r ∧ cX(s) = 0X ;

3. Cc-open if r is pseudocomplemented and rc = cX(rc).

Definition 2.3.20. [HŠ18] Let c be a closure operator. By considering the class of Ac-open, Bc-open,
Cc-open subobjects for the class F , we define interior operators ac, bc and cc, respectively.

The maps c 7→ bc and c 7→ cc are order reversing while c 7→ ac does not respect the order. Furthermore,
the pairs (α, a), (β, b) amd (γ, c) form Galois connections if the subobject lattices are Boolean algebras
(see [HŠ18]).

2.4 Interior and dual closure operators

In this section we first discuss dual closure operators in an arbitrary category and we then compare
them with interior operators. Dual closure operators are defined for an arbitrary category with a suitable
quotient object structure. Throughout this section we consider a finitely cocomplete category C with
(E ,M)-factorization systems for morphisms such that E is a fixed class of epimorphisms. We begin
the section by defininig E-quotient objects.The notion of quotient objects provides the categorical for-
mulations for structures such as quotient sets in set theory, quotient groups in group theory, quotient
rings in ring theory, quotient modules in module theory and quotient spaces in topology. In an arbitrary
category we define dual closure operators on a suitable axiomatically defined class of quotient objects.
Quotient objects are described by special morphisms in C which may be thought of as quotient maps.
It is a dual concept to subobjects.

Definition 2.4.1. For a given X ∈ C, quotX := {e ∈ E| domain of e is X}.

Remark 2.4.2. (a) quotX is naturally ordered by p ≤ q ⇔ ∃e (p = e ◦ q) as shown in the diagram
below (see [AHS90]). The fact that q is epic ensures that e is unique. Also, since p is epic we
have e is also epic. Geometrically this ordering makes sense as the codomain of p is “smaller”
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than the codomain of q.

P Q
eoo

X

p

__

q

OO

Indeed, the relation “ ≤ ”, which is defined above is reflexive and transitive. Hence quotX is a
preordered class.

(b) If p ≤ q and q ≤ p then codom(p) ∼= codom(q) and we write p ∼= q. We do not distinguish
between isomorphic quotient objects. We shall assume that quotX is a set or a small class, i.e.
C is E-cowell-powered.

(c) Every object X has at least one E-quotient object, namely 1X . Since p = p ◦ 1X ⇔ p ≤ 1X for
all p ∈ quotX, one has 1X is the largest quotient object of X.

(d) In the categories of Ab, Grp, ModR, and Rng, each quotient object
X → P ∼= X → X�ker(X → P ). Indeed , this is due to the first isomorphism theorem in the
respective categories.

Definition 2.4.3 (Left E-factorization). [DT95] Let f : X → Y be in C with e : X → M ∈ E and
m : M → Y in C. Then any factorization f = m ◦ e such that for any commutative diagram

N
u //

n

��

X

e
��

M

m
��

Z v
// Y

in C with n ∈ E there exists a unique w : Z → M with v = m ◦ w, e ◦ u = w ◦ n is called a left
E-factorization of f . The property of existence of w is called the diagonalization property of the factor-
ization.

Remark 2.4.4. (a) A left E-factorization of f in C is a right E-factorization of f in Cop. Indeed, we
reverse the arrows and interchange the roles of e and m.

(b) Let E be closed under composition. Then C has (E ,M) factorizations if and only if every morphism
has a factorization which is simultaneously a left E-factorization and a right M-factorization.

(c) If C has (E ,M)-factorizations then Cop has (M, E)-factorizations. Thus if a property holds for
M then its dual is also true for E and vice versa.

The following is dual to the image-preimage definition given in Definition 1.3.3.

Definition 2.4.5 (co-image/co-preimage). For f : X → Y in C, p ∈ quotX and q ∈ quotY we define
the co-image f◦(q) ∈ quotX of q under f as the E-component of the left E factorization of q ◦f , which
is described by the left commutative diagram below, and the co-preimage f◦(p) ∈ quotY of p under f

http://etd.uwc.ac.za/



Section 2.4. Interior and dual closure operators Page 37

as the pushout of p along f , which is shown by the right commutative diagram below.

X
f
//

f◦(q) ""

Y
q
// Q

f◦[Q]
fQ

==
X

f
//

p

��

Y

f◦(p)
��

P
fP
// f◦[P ]

As a result of the co-image/co-preimage definition we get for every morphism f : X → Y there is
co-image/co-preimage adjunction f◦ a f◦ : quotX → quotY . That is, for q ∈ quotY and p ∈ quotX
one has f◦(q) ≤ p if and only if q ≤ f◦(p). In the sequel we use M′

to denote the class of morphisms
inM that are stable under pushout along morphisms in E andM∗ to denote the largest pushout stable
class in M. Consequenlty, one has the following dual results given in Remark 1.3.5.

Remark 2.4.6. Let f : X → Y be any morphism in C and p, pi ∈ quotX and q, qi ∈ quotY for all
i ∈ I then since quotX and quotY are preordered classes, one has the following properties:

(a) q ≤ f◦(f◦(q)) and f◦(f◦(p)) ≤ p;

(b) f◦(
∨
i∈I

qi) =
∨
i∈I

f◦(qi) and f◦(
∧
i∈I

pi) =
∧
i∈I

f◦(pi),

(c) f ∈M if and only if f◦(1Y ) ∼= 1X ;

(d) If f ∈ E , or f is epic and M is stable under pushout along epimorphisms then f◦(f
◦(q)) ∼= q;

(d) If f ∈M′
then f◦(f◦(p)) ∼= p;

(e) f ∈ E then f◦(q) ∼= q ◦ f . In particular, we have p◦(1P ) ∼= 1P ◦ p ∼= p.

Now we are ready to define dual closure operators. A dual closure operator d on C with respect to
(E ,M) factorization system is defined as a closure operator on Cop with respect to (Eop,Mop) = (M, E)
factorization system. As a result we have the following definition.

Definition 2.4.7. [DT15] A dual closure operator d on C with respect to E is a family

(dX : quotX → quotX)X∈C

of functions which are

(D1) extensive: p ≤ dX(p),

(D2) monotone: if p ≤ p′ , then dX(p) ≤ dX(p
′
),

(D3) and which satisfy the continuity condition: f◦(dY (q)) ≤ dX(f◦(q)),

for all f : X → Y ∈ C and p, p
′ ∈ quotX and q ∈ quotY .

The above definition of a dual closure operator is basically equivalent to the one which is given in [DT15]
with the order relation reversed. Since the dual closure operator is acting on the quotient objects rather
than subobjects the choice of our order makes sense geometrically, as mentioned at the beginning of
this section. Let us also note that a very early attempt to introduce a notion of dual closure operators
in the categories of groups was made by [Cas86] and it was termed coclosure operators.

http://etd.uwc.ac.za/



Section 2.4. Interior and dual closure operators Page 38

The extension condition (D1) implies that for every E-quotient object p : X → P has a canonical
factorization

P DX [P ]
δPoo

X

p

cc

dX(p)

OO

That is: p = p ◦ 1X = δP ◦ dX(p).

Remark 2.4.8. Let sub
′
X be the subobjects of X in the opposite category. Then d is a family of

functions {dX : sub
′
X → sub

′
X|X ∈ C} such that for all X in C we have:

(a) (∀pop ∈ sub
′
X)(pop ≤ dX(pop)) if and only if (∀p ∈ quotX)(p ≤ dX(p));

(b) (∀pop, top ∈ sub
′
X)(pop ≤ top ⇒ dX(pop) ≤ dX(top)) if and only if

(∀p, t ∈ quotX)(p ≤ t⇒ dX(p) ≤ dX(t)) and

(c) (∀qop ∈ sub
′
Y and ∀fop : Y → X ∈ Cop)(fop(dY (qop)) ≤ dX(f(qop))) if and only if

(∀q ∈ quotY and ∀f : X → Y ∈ C)(f◦(dY (q)) ≤ dX(f◦(q))) .

Lemma 2.4.9. The continuity condition of a dual closure operator d can be expressed as

f◦(dY (q)) ≤ dX(f◦(q))⇔ dY (f◦(p)) ≤ f◦(dX(p)) for all q ∈ quotY and p ∈ quotX.

Proof. (⇒) Let q ∈ quotY such that f◦(dY (q)) ≤ dX(f◦(q)). Then for p ∈ quotX since (f◦, f◦) is a
Galois connection we have f◦(p) ∈ quotY and hence we get f◦(dY (f◦(p))) ≤ dX(f◦(f◦(p))) ≤ dX(p).
Thus dY (f◦(p)) ≤ f◦(dX(p)).
(⇐) Let p ∈ quotX such that dY (f◦(p)) ≤ f◦(dX(p)). Then for q ∈ quotY since (f◦, f◦) is a Galois
connection we have f◦(q) ∈ quotX and hence we get dY (q) ≤ dY (f◦(f

◦(q))) ≤ f◦(dX(f◦(q))). Thus
f◦(dY (q)) ≤ dX(f◦(q)).

Furthermore, one has the following:

Remark 2.4.10. The following are also equivalent descriptions of the continuity condition of a dual
closure operator. Let q ∈ quotY and p ∈ quotX. Then f◦(dY (q)) ≤ dX(f◦(q)) ⇔ dY (q) ≤
f◦(dX(f◦(q)))⇔ f◦(dY (f◦(p)) ≤ dX(p).

Before we consider examples, let us recall the following terminologies from [DT95].

Definition 2.4.11. A preradical on Ab (Grp, ModR, resp.) is a subfunctor of the identity functor of
Ab (Grp, ModR, resp.); that is, rX is a subgroup (subgroup, submodule, resp.) of X for every X ∈
Ab (Grp, ModR, resp.) and for every homomorphism f : X → Y , f(rX) ≤ rY . r is called radical if
r(X/rX) = 0, idempotent if r(rX) = rX, hereditary if rM = M ∩ rX, for every subgroup (subgroup,
submodule, resp.) M of X and cohereditary if for every subgroup (subgroup, submodule) M of X,
r(X/M) = (M + rX)�M .

Examples 2.4.12. [DT15]

(a) Consider the category Ab of abelian groups and group homomorphisms with (surjective homo-
morphisms, injective homorphisms)-factorization. We have the following prototypical dual closure
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operator dt. Let A ≤ X ∈ Ab and tA = {a ∈ A : (∃n ∈ Z+)(na = 0)} be the torsion subgroup
of A. Define dtX(X → X/A) = X → X/tker(X → X/A) = X → X/tA. Then

(i) Since tA ≤ A we have X → X/A ≤ X → X/tA = dtX(X → X/A);

(ii) Suppose X → X/B ≤ X → X/A then A ≤ B and hence tA ≤ tB. As a result,
dtX(X → X/B) = X → X/tB ≤ X → X/tA = dtX(X → X/A);

(iii) Let f : X → Y be any homomorphism and X → X/A ∈ quotX. Then since f(tA) ≤ tf(A)
and the pushout of X → X/A is Y → Y/f(A), we have

dtY (f◦(X → X/A)) = dtY (Y → Y/f(A)) = Y → Y/tf(A)

≤ Y → Y/f(tA) = f◦(X → X/tA) = f◦(d
t
X(X → X/A))

Therefore by (i), (ii), (iii) we have dt is a dual closure operator on Ab.

(b) Consider the category ModR of R modules and R-linear maps, for a commutative unital ring
R, with (surjective linear maps, injective linear maps)-factorization. One can have the following
dual closure operators induced by preradicals. Recall that a preradical r in ModR is a subfunctor
of the identity functor 1ModR

of ModR. That is, r is a functor on ModR such that r assigns
to every R-module M a submodule rM of M (i.e. rM ≤ M) and f(rM) ≤ rN for every
R-linear map f : M → N . Now, let M ≤ X ∈ ModR and r be a preradical in ModR. Define
(dr)X(X → X/M) = X → X/rker(X → X/M) = X → X/rM and
drX(X → X/M) = X → X/ker(X → X/M) ∩ rX = X → X/M ∩ rX. Then

(i) Since rM ≤M and M ∩ rX ≤M one has
X → X/M ≤ X → X/rM = (dr)X(X → X/M) and
X → X/M ≤ X → X/M ∩ rX = drX(X → X/M) ;

(ii) Suppose X → X/N ≤ X → X/M . Then M ≤ N and hence for the injection
i

M↪→N we
get rM = i(rM) ≤ rN and M ∩ rX ≤ N ∩ rX. As a result,
(dr)X(X → X/N) = X → X/rN ≤ X → X/rM = (dr)X(X → X/M) and
drX(X → X/N) = X → X/N ∩ rX ≤ X → X/M ∩ rX = drX(X → X/M) ;

(iii) Let f : X → Y be any homomorphism and X → X/M ∈ quotX. Then since

f(rM) ≤ rf(M) (because
f

M → f(M) can be considered as linear map),
f(M ∩rX) ≤ f(M)∩f(rX)) ≤ f(M)∩rY (because M ∩rX ≤M, rX and f(rX) ≤ rY )
and the pushout of X → X/M is Y → Y/f(M), hence

(dr)Y (f◦(X → X/M)) = (dr)Y (Y → Y/f(M)) = Y → Y/rf(M)

≤ Y → Y/f(rM) = f◦(X → X/rM) = f◦((dr)X(X → X/M)) and

drY (f◦(X → X/M)) = (dr)Y (Y → Y/f(M)) = Y → Y/f(M) ∩ rY

≤ Y → Y/f(M ∩ rX) = f◦(X → X/M ∩ rX) = f◦(d
r
X(X → X/M)).

Therefore by (i), (ii), (iii) we have dr and dr are a dual closure operators on ModR.

(c) Consider the category Grp of groups and surjective group homomorphisms with (RegEpi, mono)-
factorization. Let N E G ∈ Grp. Then
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(i) (dr)G(G→ G/N) = G→ G/rker(G→ G/N) = G→ G/rN and
drG(G→ G/N) = G→ G/ker(G→ G/N)∩rG = G→ G/N∩rG, where r is a preradical in
Grp, are dual closure operators on Grp. Indeed, since r is a subfunctor of an identity functor
1Grp of Grp we have rG ≤ G and for any automorphism of G, f(rG) ≤ rG and hence
rG is a characterstic subgroup of G, denoted by rG char G, hence rG E G. Consequently,
rN char N E G implies rN E G. Therefore, (dr)G(G → G/N) = G → G/rN and
drG(G → G/N) = G → G/N ∩ rG are well defined. Furthermore, for any surjective
homomorphism f : G → H, we have N E G ⇒ f(N) E H. We also have f(rG) ≤ rH
which in turn implies f(N ∩ rG) ≤ f(N) ∩ f(rG) ≤ f(N) ∩ rH and hence the continuity
conditions of the two dual closure operators hold true. The extension and order preservation
properties are trivially true for the two operators.

(ii) (dc)G(G→ G/N) = G→ G/cker(G→ G/N) = G→ G/cN and
dcG(G → G/N) = G → G/ker(G → G/N) ∩ cG = G → G/N ∩ cG, where cN is the
commutator subgroup of N in Grp, are dual closure operators on Grp. In fact, cG ≤ G and
for any group homomorphism f : G→ H we have f(cG) ≤ cH. Hence, assigning to G its
commutator subgroup cG defines a preradical of G. Therefore, by (a), dc and dc are dual
closure operators.

(d) Consider the category Rng of unital rings and surjective ring homomorphisms with (RegEpi,
mono)-factorization. Let I C R ∈ Rng. Then dnR(R → R/I) = R → R/In, where In is finite
sums of n-fold products of elements in I, defines a dual closure operator. Here, I = ker(R →
R/I). Note that In C I, I1 ⊆ I2 ⇒ In1 ⊆ In2 and for any surjective ring homomorphism
f : R→ S we have f(I) C S and f(In) C (f(I))n.

(d) Consider the category Top with (quotient, injection)-factorization. Let A be the class of all non-
empty connected subset of X ∈ Top and p : X → P be a quotient map then
ewA(X → P ) = X → X/ ∼, where x ∼ y ⇔ [p(x) = p(y)]&[(∃A ∈ A)(A ⊆ p−1({p(x)}))]
with x, y ∈ A defines a dual closure operator.The construction of this dual closure operator leads
to (A-monotone, A-light)-factorization of morphisms whose codomain is T1.

We define closed and sparse quotient objects as in [DT15].

Definition 2.4.13. An E-quotient object p : X → P of X is said to be

(a) d-closed if pop : P → X is closed with respect to d as a closure operator in Cop, that is:
dX(p) ∼= p⇔ δp : dX [P ]→ P is an isomorphism;

(b) d-sparse if pop is dense with respect to d as a closure operator in Cop, that is:
dX(p) ∼= 1X ⇔ dX(p) : X → dX [P ] is an isomorphism.

Proposition 2.4.14. Let f : X → Y be a morphism in C.

(a) If p : X → P ∈ quotX is a d-closed then f◦(p) is a d-closed quotient object of Y .

(b) If q : Y → Q ∈ quotX is a d-sparse and f ∈M then f◦(q) is a d-sparse quotient object of X.

(c) If each pi : X → Pi is a d-closed quotient object of X then
∧
i∈I

pi is a d-closed quotient object of

X.

(d) If each qi : X → Qi is a d-sparse quotient object of Y then
∨
i∈I

qi is a d-sparse quotient object of

Y .
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Proof. The dual proof can be found in [Cas03, Lemmas 4.11 and 4.13].

Remark 2.4.15. In the last section of the next chapter, we will see that a closed morphism in E is a
closed quotient object.

Corollary 2.4.16. Let p be an epimorphism such that q ◦ p is a d-closed E-quotient then q is d-closed.

Proof. Since p is an epimorphism the diagram

• p
//

q◦p
��

•
q

��
•

1
// •

is a pushout, hence q ◦ p is d-closed implies q is d-closed.

Hereafter, we use Cd and Sd to denote the class of d-closed and the class of d-sparse morphisms in E
respectively. The dual of the next definition is given in [DT95].

Definition 2.4.17. A morphism f : X → Y is d-sparse if f◦(1Y ) is a d-sparse quotient object of X.
That is, dX(f◦(1Y )) ∼= 1X .

Remark 2.4.18. (a) f : X → Y in C is d-sparse if fop : Y → X in Cop is dense dense with
respect to d as a closure operator in Cop. That is, fop(1Y ) is dense in Y , which is equivalent to
dX(fop(1Y )) ∼= 1X .

(b) M is a subclass of Sd.

(c) Sd is closed under limits in C2. In particular, if for any morphisms p and q, q◦p ∈ Sd, then p ∈ Sd.

Examples 2.4.19. [DT15]

(a) Consider the dual closure operator dt defined by dtX(X → X/A) = X → X/tA,
where A ≤ X ∈ Ab. Then

(i) If A is a torsion subgroup then tA = A and hence
dtX(X → X/A) = X → X/tA = X → X/A. Therefore, X → X/A is dt-closed quotient
object of X.

(ii) If A is a torsion-free subgroup then tA = {0} and hence
dtX(X → X/A) = X → X/tA = X → X/{0} ∼= X → X ∼= 1X . Consequently, X → X/A
is dt-sparse quotient object of X.

(b) Consider the dual closure operator dc defined by (dc)G(G → G/N) = G → G/cN , where
N E G ∈ Grp. Then

(i) If N is a perfect subgroup then cN = N . Consequently,
(dc)G(G → G/N) = G → G/cN = G → G/N . Therefore, G → G/N is dc-closed
quotient object of G.

(ii) If N is an abelian subgroup then cN = {eG}. Consequently,
(dc)G(G→ G/N) = G→ G/cN = G→ G/{eG} ∼= G→ G ∼= 1G. Therefore, G→ G/N
is dc-sparse quotient object of G.
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(c) Consider the dual closure operators(dr)X(X → X/M) = X → X/rM and
drX(X → X/M) = X → X/M ∩ rX, where M ≤ X ∈ ModR. Then

(i) X → X/M is dr-closed (dr-sparse) quotient object of X if and only if M ⊆ rM (rM = {0}),
respectively;

(ii) X → X/M is dr-closed (dr-sparse) quotient object of X if and only if M ⊆ rX (M ∩rX =
{0}), respectively.

The following lemma is a dual of the Diagonalization Lemma given in [DT95].

Lemma 2.4.20 (Dual Diagonalization Lemma (DDL)). For any commutative left diagram below

X
u //

p

��

Y

q

���� ��

P v
// Q

X
u //

dX(p)
��

Y

dY (q)
��

dX [P ]
w //

δp
��

dY [Q]

δq
��

P v
// Q

with p, q ∈ E , there is a unique morphism w : dX [P ] → dY [Q] such that the above right diagram
commutes.

Proof. By the diagonalization property of left E-factorizations one has u◦(q) ≤ p in quotX. Hence by
the order preservation and continuity condition of a dual closure operator we get u◦(dY (q)) ≤ dX(p).
Therefore, w is the composite dX [P ]→ u◦[dY [Q]]→ dY [Q].

Corollary 2.4.21. (a) If q in (DDL) is d-sparse then there exists a unique t : dX [p] → Y such that
t ◦ dX(p) = u and v ◦ δp = q ◦ u;

(b) If p in (DDL) is d-closed then there exists a unique s : P → dY [Q] such that s ◦ p = dY (q) ◦ u
and v = δq ◦ s;

(c) In (DDL) if q is d-sparse and p is d-closed then there exists a unique d : P → Y such that d◦p = u
and q ◦ d = v, that is: we have the following commutative diagram.

X
p
//

u
��

P
d

��

v
��

Y q
// Q

(d) Cd ∩ Sd is the class of isomorphisms in C

Definition 2.4.22. [DT15] The dual closure operator d is

(a) idempotent if it is idempotent as a closure operator in Cop, that is, dX(dX(p)) ∼= dX(p) for all
p : X → P ∈ E ;

(b) weakly cohereditary (wch) if it is weakly hereditary as a closure operator in Cop, that is, δp :
dX [P ]→ P is d-sparse, which is equivalent to ddX [P ](δp) ∼= 1dX [P ] for all p : X → P ∈ E ;
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(c) cohereditary (ch) if it is hereditary as a closure operator in Cop, that is, for every pair of E-quotient
objects p, q of X ∈ C with p ≤ q one has dQ(pq) ∼= q◦(dX(p)), where pq is the unique morphism
such that p = pq ◦ q, shown in the commutative diagram below. We observe that pq ∼= q◦(p).

P Q
pq
oo

X

p

__

q

OO

(d) maximal if it is minimal as a closure operator in Cop, that is, dX(q) ∼= q ∨ dX(p) for all p ≤ q in
quotX.

As a consequence of Definition 2.4.22 we have the following remarks, which are dual to the results given
in [DT95].

Remark 2.4.23. (a) For an idempotent dual closure operator d, every morphism has a left Cd-
factorization and Sd is closed under composition.

(b) For a weakly cohereditary dual closure operator d, every morphism has a right Sd-factorization
and Cd is closed under composition.

Remark 2.4.24. The following assertions are equivalent for a dual closure operator d:

1. d is idempotent and wch;

2. d is idempotent and Cd is closed under composition;

3. d is wch and Sd is closed under composition;

4. C has (Cd,Sd)-factorizations.

As a consequence one has:

Remark 2.4.25. Let d be a dual closure operator.

(a) d is ch if and only if d is wch and Sd is right cancellable with respect to E (q ◦ p ∈ Sd ⇒ q ∈ Sd).
Consequently, using Remark 2.4.24 we also have d is ch and idempotent if and only if d is wch,
Sd is right cancellable with respect to E and Sd is closed under composition.

(b) d is maximal if and only if d is idempotent and Cd is left cancellable with respect to E (q ◦ p ∈
Cd ⇒ p ∈ Cd). Consequently, using Remark 2.4.24 we also obtain d is maximal and wch if and
only if d is idempotent, Cd is left cancellable with respect to E and Cd is closed under composition.

Examples 2.4.26. [DT15]

(a) Consider the dual closure operator dt defined by
dtX(X → X/A) = X → X/tA, where A ≤ X ∈ Ab. Then

(i) Since t(tA) = tA we have dt(dtX(X → X/A)) = dt(X → X/tA) = X → X/t(tA) = X →
X/tA = dtX(X → X/A) and hence dt is idempotent.

(ii) Since ker(X/tA → X/A) = A/tA and t(A/tA) = {0A} we have dX/tA(X/tA → X/A) ∼=
dX/tA(X/tA→ (X/tA)�(A/tA)) ∼= X/tA→ (X/tA)�t(A/tA) ∼= X/tA→ (X/tA)�{0A} ∼=
X/tA→ X/tA ∼= 1X/tA ∼= 1dX [x→X/A]. Thus dt is a wch dual closure operator.
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(iii) dt is maximal by Remark 2.4.25(b). Indeed, by (ii), dt is idempotent and for A ≤ B ≤ X

and X
p
// X/A

q
// X/B , if q ◦ p ∈ Cd then B is a torsion subgroup and hence A is a

torsion subgroup and this in turn implies p ∈ Cd.

(iv) dt is not cohereditary by Remark 2.4.25(a). Indeed, forA ≤ B ≤ X and X
p
// X/A

q
// X/B ,

if q ◦ p ∈ Sd then B is torsion free and this may not imply kerq = B/A is torsion free and
hence q ∈ Sd.

(b) Consider the dual closure operators(dr)X(X → X/M) = X → X/rM and drX(X → X/M) =
X → X/M ∩ rX, where M ≤ X ∈ ModR. Then

(i) dr is idempotent and maximal;

(ii) dr is idempotent if r is idempotent;

(c) (dc)G(G → G/N) = G → G/cN , where N E G ∈ Grp is wch but not idempotent (hence not
maximal).

(d) Let H ≤ G ∈ Ab and m ∈ Z+ then dmG (G → G/H) = G → G/mH is a dual closure operator,
which is cohereditary (hence wch).

In what follows we compare dual closure operators with interior operators. In Definitions 2.1.1 and 2.4.7
we have seen that interior operators act on subobjects while dual closure operators act on the dual
of subobjects, quotient objects rather than subobjects. We also know that the notion of dual closure
operators is the categorical dual of the notion of closure operators and the notion of interior operator is
an order dualization of the notion of closure operators. In fact, in any category where all the subobjects
are normal (= their morphisms are equivalently described by their kernels), that is, when E is the class
of regular epimorphisms of the category, for example in all abelian categories, one can redefine dual
closure operators on subobjects rather than on quotient objects as given below.

Definition 2.4.27. A dual closure operator d on C with respect to M is a family

(dX : subX → subX)X∈C

of functions which are

(D1) contractive: dX(r) ≤ r,

(D2) monotone: if r ≤ s, then dX(r) ≤ dX(s),

(D3) and which satisfy the continuity condition: dX(f◦(n)) ≤ f◦(dY (n)),

for all f : X → Y ∈ C and r, s ∈ subX and n ∈ subY .

Consequently, we can study the relationship between dual closure and interior operators. Indeed, they
share two of the three characteristic properties (order preservation and contraction conditions), but the
continuity condition of each is different, and this difference is significant: in all abelian categories we
have abundant dual closure operators and contrary to this there is only one, discrete interior operator.
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2.5 Some Examples of Interior operators

Most of the examples given in this section will be used throughout the thesis.

Examples 2.5.1. (a) [CR10, Cas11, CM13] Let C be the category Top of topological spaces and
continuous maps with (Surjections, Embeddings)-factorization system and R ⊆ X ∈ Top. We
define the following interior operators on C =Top with respect to M = Embeddings.

(i) The Kuratowski interior operator given by kinX(R) =
⋃
{O open in X : O ⊆ R}.

(ii) The inverse Kuratowski interior operator given by k∗inX (R) =
⋃
{C closed in X : C ⊆ R} =

{x ∈ R : kX({x}) ⊆ R}, where kX({x}) is the Kuratowski closure of {x} in the topology
of X.

(iii) The Θin-interior given by Θin
X(R) = {r ∈ R : ∃ a open neighbourhood Ur of r in X such

that kX(Ur) ⊆ R}, where kX(Ur) is the Kuratowski closure of Ur. With the trivial obser-
vations that Θin

X(R) =
⋃
{kinX(C) : C ⊆ R,C closed in X}.

(iv) The quasicomponent interior operator given by qinX(R) =
⋃
{O clopen in X : O ⊆ R}. Note

that, by Proposition 2.3.11 and the Theorem in [DT95, p. 87], the quasicomponent interior
operator qin is the smallest proper interior operator of Top and satisfies tin ≤ s ≤ qin ≤
pin ≤ din for any proper interior operator pin (see also Remark 2.1.6(b)).

(v) The bin-interior (or front interior) defined by binX(R) = {r ∈ R : ∃ a open neighbourhood Ur
of r in X such that kX({r}) ∩ Ur ⊆ R}, where kX({r}) is the Kuratowski closure of {r}.

(vi) The lin-interior defined by linX(R) = {r ∈ X : Cr ⊆ R}, where Cr denotes the connected
component of r ∈ X.

(vii) The sequential interior operator given by sX(R) = {r ∈ R : there does not exist a sequence
(xn) in X \R converging to r}.

(viii) The zero-interior operator zin defined by zinX(R) =
⋃
{Q ⊆ X : Q ⊆ R and X \Q is a zero

set}. Note that a zero set S is the preimage of zero under a continuous function from X to
<, that is: S = f−1(0) = {x ∈ X : f(x) = 0}, with f : X → < continuous.

(b) Let C be the category SGph of directed spatial graphs and graph homomorphisms with the
(Surjective homorphisms, Embeddings)-factorization system, where a directed spatial graph (G,R)
consists of a set G of vertices and a reflexive relation R ⊆ G×G of edges of the graph (there is a
loop at each vertex/point of the directed graph). We use g → g

′ ⇔ (g, g
′
) ∈ R to describe there

is an edge from g to g′. A graph homomorphism f : (G,R) → (G
′
, R
′
) is an edge preserving

map, that is, f : G → G
′

such that g → g
′

implies f(g) → f(g
′
) for all g, g

′ ∈ G. For H ⊆ G,
we have (H,R ∩ (H ×H)) is a subgraph (an embedding) of a directed spatial graph (G,R) and
for the class M of all embeddings, SGph is M-complete and hence finitely M-complete; see
[DT95]. For each directed spatial graph (G,R) and a subset H of G, consider the assignments
↑in and ↓in given as follows:

(i) the up-interior ↑inG (H) = {h ∈ H :6 ∃g ∈ G \ H such that g → h} = {h ∈ H : (∀g ∈
G \H) there is no edge g → h};

(ii) the down-interior ↓inG (H) = {h ∈ H :6 ∃g ∈ G \ H such that h → g} = {h ∈ H : (∀g ∈
G \H) there is no edge h→ g};
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Both ↑in and ↓in are standard and non-idempotent interior operators of SGph.

(c) Let C be the category Unif of uniform spaces and uniformly continuous maps with (Surjections,
Uniform embeddings)-factorization system, where a uniform space (X,U) comprises a set X and
a filter U of reflexive relations on X such that for every U ∈ U there exists V,W ∈ U with V −1 =
{(y, x) : (x, y) ∈ V } ⊆ U , W ◦W = {(x,w) : (∃y ∈ X)(x, y), (y, w) ∈W} ⊆ U . A uniformly
continuous map f : (X,U)→ (Y,V) is a map f : X → Y such that for every V ∈ V there is U ∈ U
such that f : (X,U)→ (Y, V ) is a spatial graph homomorphism, that is: (f×f)(U) ⊆ V and for
the classM of all uniform embeddings, Unif isM-complete; see [DT95]. For each uniform space
(X,U) and subset R of X define quinX (R) =

⋃
{U ⊆ X : U ⊆ R,X \ U uniformly clopen}. Then

quin =
(
quinX
)
X∈Unif

is a standard, idempotent and additive interior operator. Note that a subset R
of a uniform space X is called uniformly clopen if the characterstic function χR : X → D = {0, 1}
with D discrete uniform space is uniformly continuous.

(d) Let C be the category QUnif of quasi-uniform spaces and uniformly continuous maps with (Sur-
jections, Quasi-uniform embeddings)-factorization system, where a uniform space (X,U) com-
prises of a set X and a filter U of reflexive relations on X such that for every U ∈ U there
exists V ∈ U with V ◦ V ⊆ U . A uniformly continuous map f : (X,U) → (Y,V) is a map
f : X → Y such that for every V ∈ V there is U ∈ U such that f : (X,U) → (Y, V ) is
a spatial graph homomorphism and for the class M of all quasi-uniform embeddings, QUnif is
M-complete; see [FL82, DT95, DK00]. Let (X,U) be a uniform space and R ⊆ X. Then
αin
X(R) =

⋃
{X \ U−1[X \R] : U ∈ U}, βinX(R) =

⋃
{X \ (U ∩ U−1)[X \R] : U ∈ U} and

γ inX(R) =
⋃
{X \U [X \R] : U ∈ U}, where U [R] denotes {y ∈ X : (x, y) ∈ U for some x ∈ R},

are standard, idempotent and additive interior operators on QUnif with respect to M. More-
over, for a subcategory A of QUnif, regintAX(R) =

⋃
{Sep(f, g) ⊆ R : f, g : X → A,A ∈ A},

where Sep(f, g) = {x ∈ X : f(x) 6= g(x)} is an idempotent interior operator. In fact, there are
abundant interior operators of QUnif.

The above examples of interior operators all are obtained from their corresponding well known closure
operators by applying Proposition 2.3.11. Indeed, by Proposition 2.3.13 every closure operator gives rise
to an interior operator on a category C having a categorical transformation operator.

(e) [Cas11] Let C be the category Grp of groups and group homomorphisms with the (Surjective ho-
momorphisms, Injective homomorphisms)-factorization system. Let H be a subgroup of G ∈Grp.
Define nG(H) =

∨
{N E G : N ≤ H} with N ≤ H standing for “N subgroup of H” and N E G

for “N normal subgroup of H”, which is the subgroup generated by all the normal subgroups in
G contained in H. Then for a group homomorphism f : G1 → G2 and K subgroup of G2 we
obtain nG2(K) E G2 as the subgroup generated by the family of normal subgroups is normal.
Also, since the inverse image of a normal subgroup is normal we get f−1(nG2(K)) is a normal
subgroup contained in f−1(K). Hence f−1(nG2(K)) ≤ nG1(f−1(K)). We can easily verify the
other two conditions of interior operators. Therefore, nG(H) is an interior operator in Grp and n
is called the normal interior operator. Note that if G is a Dedekind group (a group in which every
subgroup is normal), then the normal and discrete interior operators coincide.

(f) [Cas16] Consider the category Rng of rings and ring homomorphisms with the (Surjective ho-
momorphisms, Injective homomorphisms)-factorization system. The ideal operator J , defined for
S ≤ R ∈ Rng by jR(S) =

∨
{I an ideal of R : I ≤ S} is an interior operator on Rng with

respect to injective homorphisms since ideals are preserved under suprema and preimages. Note
that even if R has a unity, its subrings need not contain this. Let us also note that if R is a cyclic
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ring (a ring in which its additive group is cyclic, hence each of its subrings is an ideal), then the
ideal and discrete interior operators coincide.

(g) [DT15] In the category R-Mod of modules over a commutative ring R and module homomor-
phisms with the (Surjective homomorphisms, Injective homomorphisms)-factorization system, one
only has the discrete interior operator. Indeed, for N ≤ M ∈ R-Mod let iM : subM → subM
be an interior operator. Then for any module homomorphism f : M →M ′ and N ′ ≤M ′, by the
continuity condition (I3), f−1(iM ′(N

′)) ≤ iM (f−1(N ′)). In particular, for the quotient module
homomorphism f : M →M/N , one has N = kernel of f = f−1(0M/N ) = f−1(iM/N (0M/N )) ≤
iM (f−1({0M/N})) = iM (N). Therefore, iM (N) = N for all N ≤M , that is, the interior operator
i is discrete.

Remark 2.5.2. (a) [DT15] As a generalization of the Example (g), in any category where all the
subobjects are normal (= their morphisms are equivalently described by their kernels), for example
in all abelian categories including the category Ab of abelian groups and group homorphism, the
category F -Vect of vector spaces over a field F and linear transformations, R-Mod and so on,
one only has the discrete interior operator.

(b) The category Set with M the class of injective maps has no proper interior operators. Indeed,
this follows readily from Proposition 2.3.11 and the Lemma in [DT95, p. 87].

By considering a pseudofunctor S : C → Pos, where Pos is the category of partially ordered sets and
monotone maps, such that for any f : X → Y in C one can assign an adjoint pair

SY ⊥
f∗(−)

//
SX

f∗(−)
oo .

one can have further examples. As pointed out in [RH17], considering a category C with the pseud-
ofunctor S is opening up a wider range of examples of interior operators operating on SX instead of
subX for each X ∈ C without requiring the structure of a factorization system.

Examples 2.5.3. [RH17] Let C =Loc be the category of locales and locale maps. Then its dual Frm
is the category of frames and frame homomorphisms. Indeed, for each locale map f : X → Y one has
an adjunction

OY ⊥
f∗(−)

//
OX

f∗(−)
oo .

where OX is the lattice of “open sets” of a locale X and f∗ is the frame homomorphism. Since f∗

preserves joins it has right adjoint f∗ given by f∗(x) =
∨
{y : f∗(y) ≤ x}. Therefore S = O is the

required pseudofunctor. Define iX(m) =
∨
{x ∈ OX : x ≺ m}, where ≺ is the rather below or

completely below or proximity relation on frames. Then as a result of the properties of ≺ we have
i = {iX : X ∈ Loc} is an interior operator on C with respect to O.

Next we study interior operators induced by reflections.

Proposition 2.5.4. Let S be a full reflective subcategory of C, X ∈ C and
rX

X → rX be the reflection
morphism. Then jSX(m) = r∗X((rX)∗(m))) defines an idempotent and standard interior operator jS on
C with respect to M.
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Proof. It is obvious that jS is contractive and monotone and jSX(1X) = 1X . To show the remaining
property, let f : X → Y be a morphism in C and n ∈ subY . Then there exist reflection morphisms

rX : X → rX and rY : Y → rY with rX, rY ∈ S such that for morphism
rY ◦f

X → rY , ∃!g : rX → rY in
S such that the diagram

X
rX //

rY ◦f !!

rX

g

��

rY

commutes. That is, g ◦ rX = rY ◦ f . Consequently,
f∗(jSY (n)) = f∗(r∗Y ((rY )∗(n))) ≤ f∗(r∗Y ((rY )∗(f∗(f

∗(n))))) = (rY ◦ f)∗((rY ◦ f)∗(f
∗(n))) =

(g ◦ rX)∗((g ◦ rX)∗(f
∗(n))) = r∗X(g∗(g∗((rX)∗(f

∗(n))))) ≤ r∗X((rX)∗(f
∗(n)))) = jSX(f∗(n)).

Thus jS is an interior operator. Moreover, since r∗X a (rX)∗ one obtains
jSX(m) = r∗X((rX)∗(m))) ≤ r∗X(rX)∗(r

∗
X((rX)∗(m))))) = r∗X(rX)∗(j

S
X(m)) = jSX(jSX(m)). Therefore,

jS is idempotent.

In fact, if S is M-reflective subcategory then jS coincides with a discrete interior operator.

Remark 2.5.5. For a full reflective subcategory S of C with X ∈ S and m ∈subX one has 1X as
reflection morphism. Consequently, jSX(m) ∼= m ∼= d(S)X(m).

As a generalization of Proposition 2.5.4 one has:

Proposition 2.5.6 (Lifting of an interior operator). Let S be a reflective subcategory of C and i
be an interior operator on S with respect to M. If preimages commute with arbitrary joins in the
category C then the family (i(S)X : subX → subX)X∈C such that for all X ∈ C, i(S)X(m) =

r∗X(irX((rX)∗(m))), where
rX

X → rX is the S-reflection morphism, is an interior operator on C with
respect to M.

Proof. (a) Let m ∈ subX. Then r∗X(irX((rX)∗(m))) ≤ r∗X((rX)∗(m))) ≤ m;

(b) Let m,n ∈ subX such that m ≤ n then (rX)∗(m) ≤ (rX)∗(n). Hence irX((rX)∗(m)) ≤
irX((rX)∗(n)). Therefore i(S)X(m) = r∗X(irX((rX)∗(m))) ≤ r∗X(irX((rX)∗(n))) = i(S)X(n).

(c) Let f : X → Y be a morphism in C and n ∈ subY . Then since rX : X → rX and rY : Y → rY
are reflection morphisms ∃!g : rX → rY in S such that g ◦ rX = rY ◦ f . Consequently,
f∗(i(S)Y (n)) = f∗(r∗Y (irY ((rY )∗(n)))) = r∗X(g∗(irY ((rY )∗(n)))) ≤ r∗X(irX(g∗((rY )∗(n)))) ≤
r∗X(irX(g∗((rY )∗(f∗(f

∗(n)))))) = r∗X(irX(g∗(g∗((rX)∗(f
∗(n)))))) ≤ r∗X(irX((rX)∗(f

∗(n)))) =
i(S)X(f∗(n)).

We call the interior operator i(S) a lifted interior operator on C from S. The lifted interior operator is
a counterpart of the lifted closure operator, found in [Cas03].

Corollary 2.5.7. Let i be an interior operator on a reflective subcategory S of the category C such that
preimages commute with arbitrary joins in C and i(S) be a lifted interior operator on C from S. Then
the following assertions hold.
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(a) An M-subobject m is i(S)-open in X implies (rX)∗(m) is i-open M-subobject in rX, provided
that S is E ′-reflective.

(b) An M-subobject n is i-open in rX implies r∗X(n) is i(S)-open in X.

(c) 1rX is i-open in rX implies 1X is i(S)-open in X. Furthermore, if S is E ′-reflective then the
converse is true.

(d) If i is idempotent and S is E ′-reflective then i(S) is idempotent.

(e) If i is additive then so is i(S). Moreover, if i is standard then so is i(S).

Proof. (a) Suppose m is i(S)-open in X and rX ∈ E
′

then
irX((rX)∗(m)) ∼= (rX)∗(r

∗
X(irX((rX)∗(m)))) ∼= (rX)∗(i(S)X(m)) ∼= (rX)∗(m).

(b) Assume n is i-open in rX then r∗X(n) ∼= r∗X(irX(n)) ≤ r∗X(irX((rX)∗(r
∗
X(n)))) ∼= i(S)X(r∗X(n)).

(c) Suppose 1rX is i-open in rX then
i(S)X(1X) ∼= r∗X(irX((rX)∗(1X))) ∼= r∗X(irX(1rX)) ∼= r∗X(1rX) ∼= 1X . On the other hand
assume 1X is i(S)-open in X and rX ∈ E

′
then

irX(1rX) ∼= (rX)∗(r
∗
X(irX((rX)∗(1rX))))

∼= (rX)∗(r
∗
X(irX((rX)∗((rX)∗(1X))))) ∼= (rX)∗(i(S)X(1X)) ∼= (rX)∗(1X) ∼= 1rX .

(d) Suppose i is idempotent and rX ∈ E
′

then for all m ∈ subX,

i(S)X(i(S)X(m)) ∼= r∗X(irX((rX)∗(i(S)X(m))))
∼= r∗X(irX((rX)∗(r

∗
X(irX((rX)∗(m)))))))

∼= r∗X(irX(irX((rX)∗(m)))) ∼= r∗X(irX((rX)∗(m))) ∼= i(S)X(m).

(e) This follows from the fact that both r∗X and (rX)∗ commute with arbitray meets (hence with
binary meets) and additivity of i. In fact, the standardness of i(S) follows from Remarks 1.3.5(f)
and 1.4.3(c).
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3. Special Morphisms with Respect to an
Interior Operator

In the first three sections of this chapter, as in the previous chapters we work with an M-complete
category C equipped with (E ,M)-factorization structure for morphisms such that M is a fixed class of
monomorphisms (see Remark 1.2.8) and we consider an interior operator i on C with respect to M.

3.1 Classes of morphisms with respect to an interior operator

In this section we investigate the four classes of morphisms (initial, closed, open and final morphisms)
with respect to a given interior operator. We study cancellation and stability (under composition and
pullback) properties of each of the four classes of morphisms. We also discuss the interrelationships
between these morphisms. These classes of morphisms are essential tools for understanding topological
constructions. Indeed, in the coming chapters we use these morphisms to investigate categorical notions
of connectedness and compactness. To this end, as in the case of Section 1.4, we further assume that
the preimage f∗(−) preserves arbitrary joins for every morphism f in the category C. Consequently,
as already mentioned in Section 1.4, the preimage f∗(−) has a right adjoint f∗(−) : subX → subX,
as the right adjoint of a frame homomorphism. Then, by looking at the equivalent descriptions of the
i-continuity condition given in Proposition 2.1.7(a), (b), (c) and (d) one would ask when do we have
“ ∼= ” instead of “ ≤ ”. In such cases we obtain the notions of open, closed, initial and final morphisms
with respect to i, respectively. These notions are studied for closure and neighbourhood operators;
see, for example, [DT95, GT00, CGT01, Raz13, RH17]. In [Cas15], the notion of open morphism with
respect to an interior operator is introduced.

Definition 3.1.1. A C-morphism f : X → Y is called

(a) [Cas15] i-open if iX(f∗(n)) ∼= f∗(iY (n)) for all n ∈ subY , that is: the preimage f∗(−) commutes
with the interior operator i;

(b) i-closed if f∗(iX(m)) ∼= iY (f∗(m)) for all m ∈ subX, that is: the dual image f∗(−) commutes
with the interior operator i;

(c) [LTOC11] i-initial if iX(m) ∼= f∗(iY (f∗(m))) for all m ∈ subX;

(d) i-final if f∗(iX(f∗(n))) ∼= iY (n) for all n ∈ subY .

Of course, as is studied in [Cas15], the notion of i-open morphism does not need the assumption that
each preimage preserves arbitrary joins. In [HIR16], it is shown that i-open morphisms are precisely
vi-strict morphisms. From now on we use O(i),K(i), I(i), and F(i) to denote the class of all i-open,
i-closed, i-initial, and i-final morphisms, respectively.

Remark 3.1.2. Let f : X → Y be a morphism in C, m ∈ subX and n ∈ subY . Then the equivalent
formulations of the continuity condition of i yield:

(a) f ∈ O(i)⇔ iX(f∗(n)) ≤ f∗(iY (n));

(b) f ∈ K(i)⇔ f∗(iX(m)) ≤ iY (f∗(m));

50
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(c) f ∈ I(i)⇔ iX(m) ≤ f∗(iY (f∗(m)));

(d) f ∈ F(i)⇔ f∗(iX(f∗(n))) ≤ iY (n).

Using the relationship between interior operator i and left neighborhoud operator ν given in Proposition
2.2.10, one has i-initial (i-open, i-closed, i-final, resp.) morphisms are precisely νi-initial (νi-open,
νi-closed, νi-final, resp.) morphisms (see [Raz13, RH17]). Moreover, since here the preimage functor
for any given morphism is assumed to preserve arbitrary joins (hence binary joins), Lemma 1.4.7(b) and
Remark 2.3.12 yield the following:

Proposition 3.1.3. Let subX be a Boolean algebra for every C-object X, c be a closure operator and
ic be the induced interior operator from c given by icX(m) = cX(m), where m denotes the complement
of m. Then a morphism f is ic-initial (ic-open, ic-closed, ic-final, resp.) if and only if f is c-initial
(c-open, c-closed, c-final, resp.); see for example [GT00, CGT01].

Next we discuss some basic properties of i-closed morphisms and their “duals”, i-open morphisms. The
class K(i) of i-closed morphisms has the following fundamental properties which are called basic stability
properties.

Proposition 3.1.4. The class K(i)

(a) is stable under composition,

(b) is left-cancellable with respect to M, that is: if g ◦ f ∈ K(i) and g ∈M then f ∈ K(i),

(c) contains all the isomorphisms and

(d) is right-cancellable with respect to E ′ , that is: if g ◦ f ∈ K(i) and f ∈ E ′ then g ∈ K(i).

Proof. Consider morphisms f : X → Y and g : Y → Z in C.

(a) Suppose f, g ∈ K(i). Then for any m ∈ subX we have

(g ◦ f)∗(iX(m)) ∼= (g∗ ◦ f∗)(iX(m))
∼= g∗(f∗(iX(m)))
∼= g∗(iY (f∗(m))) (f i-closed)
∼= iZ(g∗(f∗(m))) (g i-closed)
∼= iZ((g ◦ f)∗(m)).

(b) Suppose g ◦ f ∈ K(i) and g ∈M. Then for any m ∈ subX we have

f∗(iX(m)) ∼= g∗(g∗(f∗(iX(m)))) (g ∈M)
∼= g∗((g ◦ f)∗(iX(m)))
∼= g∗(iZ((g ◦ f)∗(m))) (g ◦ f ∈ K(i))

≤ iY (g∗(g∗(f∗(m)))) (g is i-continuous )
∼= iY (f∗(m)) (g ∈M).

(c) If f : X → Y is an isomorphism with inverse f−1 : Y → X then f−1 ◦ f = 1X is obviously
i-closed and f−1 ∈M. Consequently, (b) implies f ∈ K(i).
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(d) Suppose g ◦ f ∈ K(i) and f ∈ E ′ . Then for any n ∈ subY we have

g∗(iY (n)) ∼= g∗(f∗(f
∗(iY (n))))

∼= (g ◦ f)∗(f
∗(iY (n)))

≤ (g ◦ f)∗(iX(f∗(n))) (f is i-continuous )
∼= iZ((g ◦ f)∗(f

∗(n)) (g ◦ f i-closed)
∼= iZ(g∗(n)).

A straight application of Proposition 3.1.4 gives the following corollary:

Corollary 3.1.5. Let f = m ◦ e with m ∈M and e ∈ E ′ . f ∈ K(i) if and only if m, e ∈ K(i).

Remark 3.1.6. In the category of Top, closed morphisms with respect to the Kuratowski closure
operator k are exactly the closed maps (see [GT00]). Consequently, by Proposition 3.1.3 the kin-closed
morphisms are precisely the closed maps.

There is the following interaction of an i-closed morphism with i-open subobjects.

Proposition 3.1.7. Let f : X → Y be an i-closed morphism. Then the right adjoint f∗ of the preimage
f∗ maps i-openM-subobjects into i-openM-subobjects. Moreover, if i is idempotent then the converse
is true.

Proof. Let f : X → Y be an i-closed morphism such that m is an i-open subobject of X. Then

f∗(m) ∼= f∗(iX(m)) (m i-open in X)
∼= iY (f∗(m)) (f ∈ K(i)).

Therefore, f∗(m) is an i-open subobject of Y . Conversely, if i is an idempotent and f∗ maps i-open
subobjects into i-open subobjects then iX(m) is an i-open subobject of X and hence f∗(iX(m)) is
an i-open subobject of Y . Consequently, f∗(iX(m)) ∼= iY (f∗(iX(m))) ≤ iY (f∗(m)). Hence f is
i-closed.

Corollary 3.1.8. Let f : X → Y be an i-closed morphism inM. Then every i-open subobject m of X
is of the form f∗(n) for some i-open subobject n of Y .

Proof. Let m be an i-open subobject of X. Then by the above proposition, f∗(m) is an i-open subobject
of Y . Consequently, with Remark 2.1.2(b), m ∼= f∗(f∗(m)) is an i-open subobject n of Y since f ∈M.
Therefore, m ∼= f∗(n) with n = f∗(m) i-open subobject of Y .

Corollary 3.1.9. Let f : X → Y be an i-closed morphism in E ′ . Then n is an i-open subobject of Y
if and only if f∗(n) is an i-open subobject of X.

Proof. The necessary part is true by the Remark 2.1.4 (b). To show the sufficient condition let f∗(n)
is be an i-open subobject of X. Then since f ∈ E ′ , by Proposition 3.1.7, one has n ∼= f∗(f

∗(n)) is an
i-open subobject of Y .
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The following is a characterization of closed morphisms with respect to an interior operator.

Proposition 3.1.10. Let i be idempotent. A morphism f : X → Y ∈ K(i) if and only if for every
i-open subobject m of X and for every subobject n of Y such that f∗(n) ≤ m, there exists an i-open
subobject k of Y such that n ≤ k and f∗(k) ≤ m.

Proof. (⇒) Suppose f : X → Y ∈ K(i), n ∈ subY and m is an i-open subobject of X such that
f∗(n) ≤ m. Then, there exists k = f∗(m) such that n ≤ f∗(m) = k and k = f∗(m) is an i-open
subobject of Y by Proposition 3.1.7. Moreover, f∗(k) = f∗(f∗(m)) ≤ m.

(⇐) Suppose f : X → Y satisfies the condition in the proposition and let m be an i-open subobject of
X. Then, for n = f∗(m), one has f∗(n) = f∗(f∗(m)) ≤ m. Consequently, there exists an i-open
subobject k of Y such that [n = f∗(m) ≤ k and f∗(k) ≤ m]⇔ [n = f∗(m) ≤ k and k ≤ f∗(m)].
As a result, f∗(m) ∼= k and hence f∗(m) is an i-open subobject of Y . Therefore, by Proposition
3.1.7, f is i-closed.

Similar to the class of i-closed morphisms we have the following properties of the class of i-open mor-
phisms.

Proposition 3.1.11. [Cas15] The class O(i)

(a) is stable under composition,

(b) is left-cancellable with respect to M, that is: if g ◦ f ∈ O(i) and g ∈M then f ∈ O(i),

(c) contains all the isomorphisms and

(d) is right-cancellable with respect to E ′ , that is: if g ◦ f ∈ O(i) and f ∈ E ′ then g ∈ O(i).

Proof. Given the role of adjunctions, the proof is computationally analogous to that of Proposition
3.1.4.

From Proposition 3.1.11 one deduces the following corollary:

Corollary 3.1.12. Let f = m ◦ e with m ∈M and e ∈ E ′ . f ∈ O(i) if and only if m, e ∈ O(i).

In the following proposition we discuss interaction of an i-open morphism with i-open subobjects. In-
deed, for an idempotent interior operator i, i-open morphisms are characterized by preservation of i-open
subobjects.

Proposition 3.1.13. Recently in [Cas15] it was proved that:

(a) f ∈ O(i) if and only if f(iX(m)) ≤ iY (f(m)) for all m ∈ subX.

(b) If f : X → Y is i-open morphism then f maps i-open M-subobjects into i-open M-subobjects.
Moreover, if i is idempotent then the converse is true.

Consequently, with Lemma 2.1.13, one has:

Proposition 3.1.14. Let i be any interior operator on C with respect to M. Then the following
statements hold for an M-morphism f : X → Y :
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(a) f ∈ O(i)⇔ f(iX(m)) ∼= iY (f(m)) for all m ∈ subX. That is: the image f(−) commutes with
the interior i for any i-open M-morphism f ;

(b) If f ∈ O(i) then every i-open subobject m of X is of the form f∗(n) for some i-open subobject
n of Y ;

(c) If f ∈ O(i) and i is idempotent then jf : iY [X]→ X is an i-open subobject (see [Cas15]).

iY [X]
jf

//

iX(f)
""

X

f
��

Y

Proof. (a) Let m ∈ subX. Since f ∈ O(i), from the above proposition one obtains f(iX(m)) ≤
iY (f(m)), and since f ∈ M, one has iY (f(m)) ≤ f(iX(m)) by Lemma 2.1.13. Consequently,
f(iX(m)) ∼= iY (f(m)). In fact, the converse is true by the above proposition.

(b) Let m be an i-open subobject of X. Then by the above proposition, f(m) is i-open subobject of
Y . Consequently, with Remarks 1.3.10(a) and 2.1.4(b), m ∼= f∗(f(m)) is i-open subobject n of
Y since f ∈M. Therefore, m ∼= f∗(n) with n = f(m) is an i-open subobject of Y .

(c) Let f be an i-open morphism inM. Then (a) and idempotency of i yield f◦iX(jf ) ∼= f(iX(jf )) ∼=
iY (f(jf )) ∼= iY (f ◦ jf ) ∼= iY (iY (f)) ∼= iY (f) ∼= f ◦ jf . Consequently, iX(jf ) ∼= jf since f is
monic.

Proposition 3.1.14(a) states that i-openM-morphisms are the morphisms whose image commutes with
the interior i.

Corollary 3.1.15. Let rs : R → S be an i-open M-subobject and s : S → X be an i-open morphism
in M. Then r = s ◦ rs is an i-open M-subobject of X.

Proof. Since s is an i-open morphism and rs is an i-open subobject, Proposition 3.1.13 (b) yields s(rs)
is an i-open subobject. Consequently, with Remark 1.3.6 one derives r = s ◦ rs ∼= s(rs) ∼= iX(s(rs)) ∼=
iX(s ◦ rs) ∼= iX(r).

Similar to Corollary 3.1.9 we also have the following.

Corollary 3.1.16. Let f : X → Y be an i-open morphism in E ′ . Then n is an i-open subobject of Y
if and only if f∗(n) is an i-open subobject of X.

Proof. The necessary part is true by the Remark 2.1.4 (b). To show the sufficient condition let f∗(n)
be an i-open subobject of X. Since f ∈ E ′ , by Proposition 3.1.13 (b), one has n ∼= f(f∗(n)) is an
i-open subobject of Y .

The following is a characterization of open morphisms with respect to an interior operator.

Proposition 3.1.17. Let i be idempotent. A morphism f : X → Y ∈ O(i) if and only if for every
i-open subobject m of X and for every subobject n of Y such that m ≤ f∗(n), there exists an i-open
subobject k of Y such that k ≤ n and m ≤ f∗(k).
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Proof. (⇒) Suppose f : X → Y ∈ O(i), n ∈ subY and m is an i-open subobject of X such that
m ≤ f∗(n). Then, there exists k = f(m) such that k = f(m) ≤ n and k = f(m) is i-open
subobject of Y by Proposition 3.1.13(b). Moreover, m ≤ f∗(f(m)) = f∗(k).

(⇐) Suppose f : X → Y satisfies the condition in the proposition and let m be an i-open subobject of
X. Then, for n = f(m), one has m ≤ f∗(f(m)) = f∗(n). Consequently, there exists an i-open
subobject k of Y such that k ≤ f(m) = n and m ≤ f∗(k)] ⇔ [k ≤ f(m) and n = f(m) ≤ k].
As a result, f(m) ∼= k and hence f(m) is an i-open subobject of Y . Therefore, by Proposition
3.1.13(b), f is i-open.

We note that for the normal interior operator n, which is idempotent on the category Grp of groups
and group homomorphisms with the (surjective homomorphism, injective homorphisms)-factorization
system, the n-open morphisms are precisely group homomorphisms which preserve normal subobjects.
In fact surjective group homomorphisms preserve normal subobjects.

Remark 3.1.18. Let i be a standard interior operator and f : X → Y ∈ O(i). Then f(1X) is an
i-open subobject of Y . Indeed, by Proposition 3.1.13(a), f(1X) ∼= f(iX(1X)) ≤ iY (f(1X)). This is of
course an immediate consequence of Proposition 3.1.13(b). Note that for a standard interior operator
i, 1X is an i-open subobject of X.

Remark 3.1.19. Let i be an interior operator on C with respect to M and

M
u //

m
��

N

n
��

X
f
// Y

with m,n ∈M be a commutative diagram. Then:

(a) f ∈ O(i) if and only if there is a uniquely determined morphism w : iX [M ]→ iX [N ] making the
diagram

iX [M ]
w //

jm
��

iX [N ]

jn
��

M
u //

m
��

N

n
��

X
f

// Y

commutative: that is: the preservation property of i holds if and only if f ∈ O(i) (see [Cas15,
Cas16]).

(b) If f ∈ O(i) and n is i-open subobject, then there is a uniquely determined morphism
s : iX [M ]→ N with s = 1N ◦ s = u ◦ jm and n ◦ s = f ◦ iX(m).

(c) If f ∈ O(i) and m is i-codense subobject, then there is a uniquely determined morphism t :
OM → iX [N ] with u ◦ 0M = jm ◦ t and f ◦ 0X = iX(m).

(d) If f ∈ O(i), m is i-codense subobject and n is i-open subobject, then there is a uniquely deter-
mined morphism d : OM → N with u ◦ 0M = d and n ◦ d = f ◦ 0X .
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Indeed, (b), (c) and (d) are direct consequences of (a).

We now turn to some properties of i-initial morphisms and their “duals”, i-final morphisms. The class
I(i) of i-initial morphisms behaves as follows.

Proposition 3.1.20. The class I(i)

(a) is stable under composition,

(b) is left-cancellable, that is: if g ◦ f ∈ I(i) then f ∈ I(i),

(c) contains all the isomorphisms and

(d) is right-cancellable with respect to E ′ , that is: if g ◦ f ∈ I(i) and f ∈ E ′ then g ∈ I(i).

Proof. Consider morphisms f : X → Y and g : Y → Z in C.

(a) Suppose f, g ∈ I(i). Then for any m ∈ subX we have

iX(m) ∼= f∗(iY (f∗(m))) (f is i-initial )
∼= f∗(g∗(iZ(g∗(f∗(m))))) (g is i-initial )
∼= (g ◦ f)∗(iZ((g ◦ f)∗(m))).

(b) Suppose g ◦ f ∈ I(i). Then for any m ∈ subX we have

iX(m) ∼= (g ◦ f)∗(iZ((g ◦ f)∗(m))) (g ◦ f is i-initial )
∼= f∗(g∗(iZ(g∗(f∗(m)))))

≤ f∗(iY (g∗(g∗(f∗(m))))) (g is i-continuous )

≤ f∗(iY (f∗(m))) (g∗ a g∗).

(c) If f : X → Y is an isomorphism with inverse f−1 : Y → X then f−1 ◦ f = 1X is obviously
i-initial. Consequently, (b) implies f ∈ I(i).

(d) Suppose g ◦ f ∈ I(i) and f ∈ E ′ . Then for any n ∈ subY we have

iY (n) ≤ f∗(f∗(iY (n))) (f∗ a f∗)
≤ f∗(iX(f∗(n))) (f is i-continuous )
∼= f∗((g ◦ f)∗(iZ((g ◦ f)∗(f

∗(n))))) (g ◦ f is i-initial)
∼= f∗(f

∗(g∗(iZ(g∗(f∗(f
∗(n)))))))

∼= g∗(iZ(g∗(n))) (f ∈ E ′).

As an immediate consequence of Proposition 3.1.20 we obtain:

Corollary 3.1.21. Let i be an interior operator.

(a) Let f = m ◦ e with e ∈ E ′ . f ∈ I(i) if and only if m, e ∈ I(i).

(b) Every section or split monomorphism is i-initial.
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Proof. (a) It follows immediately from Proposition 3.1.20.

(b) Let s : X → Y be a section. Then ∃r : Y → X such that r ◦ s = 1X . But since 1X ∈ I(i) then
by Proposition 3.1.20 (b) we have that s ∈ I(i).

Remark 3.1.22. (a) Let Γf = 〈1X , f〉 : X → X × Y be the graph of f : X → Y in C. Then
πX ◦ Γf = 1X , hence Γf is a section. Consequently, by Corollary 3.1.21(b), Γf is i-initial. That
is: iX(m) ∼= Γ∗f (iX×Y ((Γf )∗(m))) for all m ∈ subX.

(b) Let δX = 〈1X , 1X〉 : X → X × X be the diagonal of X ∈ C. Then πX ◦ δX = 1X ,
hence δX is a section. Consequently, by Corollary 3.1.21(b), δX is i-initial. That is: iX(m) ∼=
δ∗X(iX×X((δX)∗(m))) for all m ∈ subX.

Note that from the adjointness property, one has f : X → Y ∈ I(i) ⇔ f(iX(m)) ≤ iY (f∗(m). Let i
be an idempotent interior operator. Then we have the following characterization of i-initial morphisms
in an arbitrary category.

Proposition 3.1.23. Let i be idempotent. A morphism f : X → Y in C is i-initial if and only if for
every i-open subobject m of X, there exists an i-open subobject n of Y such that m ∼= f∗(n).

Proof. (⇒) Suppose f is an i-initial morphism and m is an i-open subobject of X. Then m ∼= iX(m) ∼=
f∗(iY (f∗(m))) ∼= f∗(n), where n is iY (f∗(m)) such that iY (n) = iY (iY ((f∗(m)))) ∼= iY (f∗(m)) = n.
Thus m ∼= f∗(n) with n as i-open subobject of Y .

(⇐) From idempotency of i, for all m ∈ subX, iX(m) is an i-open subobject of X and as a result there
exists an i-open subobject n of Y such that iX(m) ∼= f∗(n). Hence,

iX(m) ∼= f∗(n) (Assumption and i-idempotent)
∼= f∗(iY (n)) (n i-open )

≤ f∗(iY (f∗(f
∗(n)))) (f∗ a f∗)

∼= f∗(iY (f∗(iX(m)))) (iX(m) ∼= f∗(n))

≤ f∗(iY (f∗(m))) (i-contractive).

Therefore, f ∈ I(i).

Definition 3.1.24. An interior operator i is said to be initial with respect to a reflective subcategory S of

C if for every X ∈ C the reflection morphism
rX

X → rX is i-initial, that is, iX(m) ∼= r∗X(irX((rX)∗(m)))
for all m ∈subX.

Consequently, one has the next remark.

Remark 3.1.25. Let S and S′ be reflective subcategories of C and i, i
′ ∈ INT (C,M).

(a) If i and i
′

are initial with respect to S and i ≤ i′ on S, then i ≤ i′ .

(b) If S ⊆ S′ and i is S-initial then i is also S′-initial. Indeed, for any X ∈ C there exist S-reflection

morphism
rX

X → rX and S′-reflection morphism

r
′
X

X → r
′
X. Besides, the fact that S ⊆ S′ implies
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∃g : r
′
X → rX such that rX = g ◦ r′X . Consequently,

iX(m) ∼= r∗X(irX((rX)∗(m))) (i S-initial)

∼= r
′∗
X(g∗(irX(g∗((r

′
X)∗(m)))))

≤ r′∗X(ir′X(g∗(g∗((r
′
X)∗(m))))) (g i-continuous)

≤ r′∗X(ir′X((r
′
X)∗(m))) (g∗ a g∗).

Analogous to the class of i-initial morphisms we have the following properties of the class of i-final
morphisms.

Proposition 3.1.26. The class F(i)

(a) is stable under composition,

(b) is right-cancellable, that is: if g ◦ f ∈ F(i) then g ∈ F(i),

(c) contains all the isomorphisms and

(d) is left-cancellable with respect to M, that is: if g ◦ f ∈ F(i) and g ∈M then f ∈ F(i).

Proof. Consider morphisms f : X → Y and g : Y → Z in C.

(a) Suppose f, g ∈ F(i). Then for any p ∈ subZ we have

(g ◦ f)∗(iX((g ◦ f)∗(p))) ∼= g∗(f∗(iX(f∗(g∗(p)))))
∼= g∗(iY (g∗(p))) (f i-final )
∼= iZ(p) (g i-final ).

Therefore, g ◦ f ∈ F(i).

(b) Suppose g ◦ f ∈ F(i). Then for any p ∈ subZ we have

g∗(iY (g∗(p))) ≤ g∗(f∗(f∗(iY (g∗(p))))) (f∗ a f∗)
≤ g∗(f∗(iX(f∗(g∗(p))))) (f i-continuous)
∼= (g ◦ f)∗(iX((g ◦ f)∗(p)))
∼= iZ(p) (g ◦ f i-final).

(c) If f : X → Y is an isomorphism with inverse f−1 : Y → X then f ◦f−1 = 1X is obviously i-final.
Consequently, (b) implies f ∈ F(i).

(d) Suppose g ◦ f ∈ F(i) and g ∈M. Then for any n ∈ subY we have

f∗(iX(f∗(n))) ∼= g∗(g∗(f∗(iX(f∗(g∗(g∗(n))))))) (g ∈M)
∼= g∗(g ◦ f)∗(iX((g ◦ f)∗(g∗(n))))
∼= g∗(iZ(g∗(n))) (g ◦ f i-final)

≤ iY (g∗(g∗(n))) (g i-continuous)
∼= iY (n) (g ∈M).
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Of course, given the role of adjunctions, the proof of the above proposition is computationally the same
as that of Proposition 3.1.20.

Corollary 3.1.27. (a) Let f = m ◦ e with m ∈M. f ∈ F(i) if and only if m, e ∈ F(i).

(b) Every retraction or split epimorphism is i-final.

Proof. (a) It is a consequence of Proposition 3.1.26.

(b) Let r : Y → X be a section. Then ∃s : X → Y such that r ◦ s = 1X . But since 1X ∈ F(i) then
by Proposition 3.1.26 (b) we have that r ∈ F(i).

Proposition 3.1.28. Let i be an interior operator.

(a) f : X → Y ∈ F(i)⇔ f∗(iX(m)) ≤ iY (f(m)).

(b) If i is a standard interior operator then F(i) ⊆ E .

(c) If i is a standard interior operator then M∩F(i) is a class of isomorphisms.

Proof. (a) If f : X → Y ∈ F(i) then for n = f(m), where n ∈ subY and m ∈ subX the in-
equality f∗(iX(f∗(n))) ≤ iY (n) implies f∗(iX(f∗(f(m)))) ≤ iY (f(m)). This turns out to be
f∗(iX(m)) ≤ f∗(iX(f∗(f(m)))) ≤ iY (f(m)), since f a f∗. Hence, f∗(iX(m)) ≤ iY (f(m)).
Conversely, for m = f∗(n) the inequality f∗(iX(m)) ≤ iY (f(m)) gives that f∗(iX(f∗(n))) ≤
iY (f(f∗(n))) ≤ iY (n) and hence f∗(iX(f∗(n))) ≤ iY (n). Therefore, f∗(iX(f∗(n))) ≤ iY (n) if
and only if f∗(iX(m)) ≤ iY (f(m)).

(b) Let f ∈ F(i). Then by (a) we get f∗(iX(m)) ≤ iY (f(m)). In particular, for m = 1X one has
f∗(iX(1X)) ≤ iY (f(1X)). This turns out to be 1Y = f∗(1X) = f∗(iX(1X)) ≤ iY (f(1X)) ≤
f(1X) ≤ 1Y and hence 1Y ∼= f(1X). Thus f ∈ E .

(c) This is an immediate consequence of (b).

In the following proposition we give a partial characterization of final morphisms.

Proposition 3.1.29. Let f : X → Y be an i-final morphism. Then a subobject n of Y is i-open if and
only if f∗(n) is i-open in X.

Proof. Since the necessary part is well known we focus on the sufficient condition. Suppose f∗(n) is
i-open. Then since f is i-final and f∗ a f∗ we obtain n ≤ f∗(f

∗(n)) ≤ f∗(iX(f∗(n))) ≤ iY (n), as
desired.

Definition 3.1.30. A C-morphism f : X → Y is called weakly i-final if n∧ f∗(iX(f∗(n))) ∼= iY (n) for
all n ∈ subY .

We use WF(i) to denote the class of all weakly i-final morphisms. Clearly, finality implies weak finality
since if n ∈ subY then iY (n) ≤ n, hence n ∧ iY (n) ∼= iY (n) and consequently, for f : X → Y ∈ F(i),
one has f∗(iX(f∗(n))) ∼= iY (n). Therefore, n∧ f∗(iX(f∗(n))) ∼= n∧ iY (n) ∼= iY (n).Thus f ∈ WF(i).
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Remark 3.1.31. Let f : X → Y in C and n ∈ subY .

(a) f ∈ WF(i)⇔ n∧f∗(iX(f∗(n))) ≤ iY (n). Indeed, since iY (n) ≤ n and iY (n) ≤ iY (f∗(f
∗(n))) ≤

f∗(iX(f∗(n))), one always has iY (n) ≤ n ∧ f∗(iX(f∗(n))).

(b) WF(i) ∩ E ′ ⊆ F(i). Indeed, if f ∈ E ′ then f∗(iX(f∗(n))) ≤ f∗(f∗(n)) ∼= n. Consequently, with
f ∈ WF(i), one has f∗(iX(f∗(n))) ∼= n ∧ f∗(iX(f∗(n))) ≤ iY (n).

It is also routine to verify the following.

Proposition 3.1.32. The class WF(i)

(a) is stable under composition,

(b) is right-cancellable, that is: if g ◦ f ∈ WF(i) then g ∈ F(i),

(c) contains all the isomorphisms and

(d) is left-cancellable with respect to M, that is: if g ◦ f ∈ WF(i) and g ∈M then f ∈ WF(i).

We obtain the following corollary from Proposition 3.1.32.

Corollary 3.1.33. Let f = m ◦ e with m ∈M. f ∈ WF(i) if and only if m, e ∈ WF(i).

Definition 3.1.34. Let i be an interior operator.

(a) A cone S := (fi : X → Xi)i∈I is called i-initial (or the fi’s are jointly i-initial) if iX(m) ∼=∨
i∈I
f∗i (iXi((fi)∗(m))) for all m ∈subX.

(b) A cocone (fi : Xi → X)i∈I is called weakly i-final (or the fi’s are jointly weakly i-final) if
iX(m) ∼= m ∧

∧
i∈I

(fi)∗(iXi(f
∗
i (n))) for all m ∈subX.

As a generalization of Propositions 3.1.20 and 3.1.32 we have the following.

Proposition 3.1.35. (a) Let S := (fi : X → Xi)i∈I be a cone and u : Z → X be a morphism such
that (fi ◦ u : Z → Xi)i∈I is i-initial. Then

(i) u is i-initial;

(ii) (fi : X → Xi)i∈I is i-initial provided that u ∈ E ′ .

(b) Let (fi : Xi → X)i∈I be a cocone and u : X → Z be a morphism such that (u ◦ fi : Xi → Z)i∈I
is weakly i-final. Then

(i) u is weakly i-final;

(ii) (fi : Xi → X)i∈I is weakly i-final provided that u ∈M.

The following proposition shows connections of i-initial morphisms with the other three morphism classes.

Proposition 3.1.36. Let i be an interior operator.

(a) K(i) ∩M ⊆ I(i).

(b) O(i) ∩M ⊆ I(i).
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(c) I(i) ∩ E ′ ⊆ K(i) ∩ O(i) ∩ F(i).

Proof. (a) Suppose f : X → Y ∈ K(i) ∩M. Then for any m ∈ subX one has

iX(m) ∼= f∗(f∗(iX(m))) (f ∈M)
∼= f∗(iY (f∗(m))) (f i-closed)

⇒ f ∈ I(i).

(b) Suppose f : X → Y ∈ O(i) ∩M. Then for any m ∈ subX one has

iX(m) ∼= iX(f∗(f∗(m))) (f ∈M)
∼= f∗(iY (f∗(m))) (f i-open)

⇒ f ∈ I(i).

(c) Suppose f : X → Y ∈ I(i) ∩ E ′ . Then for any m ∈ subX and n ∈ subY one has

f∗(iX(m)) ∼= f∗(f
∗(iY (f∗(m)))) (f ∈ I(i))

∼= iY (f∗(m)) (f ∈ E ′)
⇒ f ∈ K(i),

iX(f∗(n)) ∼= f∗(iY (f∗(f
∗(n)))) (f ∈ I(i))

∼= f∗(iY (n)) (f ∈ E ′)
⇒ f ∈ O(i) and

f∗(iX(f∗(n))) ∼= f∗(f
∗(iY (f∗(f

∗(n))))) (f ∈ I(i))

∼= iY (n) (f ∈ E ′)
⇒ f ∈ F(i).

Similar to the proposition above there are the following immediate connections between i-final and the
other three morphism classes.

Proposition 3.1.37. Let i be an interior operator.

(a) K(i) ∩ E ′ ⊆ F(i).

(b) O(i) ∩ E ′ ⊆ F(i).

(c) F(i) ∩M ⊆ K(i) ∩ O(i) ∩ I(i).

Proof. (a) Let f : X → Y ∈ K(i) ∩ E ′ . Then f∗(iX(f∗(n))) ∼= iY (f∗(f
∗(n))) ∼= iY (n) for all n ∈

subY . Therefore, f ∈ F(i).

(b) Let f : X → Y ∈ O(i) ∩ E ′ . Then f∗(iX(f∗(n))) ∼= f∗(f
∗(iY (n))) ∼= iY (n). Consequently,

f ∈ F(i).
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(c) Suppose f : X → Y ∈ F(i) ∩M. Then for any m ∈ subX and n ∈ subY one has

f∗(iX(m)) ∼= f∗(iX(f∗(f∗(m)))) (f ∈M)
∼= iY (f∗(m)) (f ∈ F(i))

⇒ f ∈ K(i) ,

iX(f∗(n)) ∼= f∗(f∗(iX(f∗(n)))) (f ∈M)
∼= f∗(iY (n)) (f ∈ F(i))

⇒ f ∈ O(i) and

iX(m) ∼= f∗(f∗(iX(f∗(f∗(m))))) (f ∈M)
∼= f∗(iY (f∗(m))) (f ∈ F(i))

⇒ f ∈ I(i).

In the remainder of this section we focus on the pullback behaviour of i-closed, i-open, i-initial and
i-final morphisms. We begin with the following equivalent descriptions of the Beck-Chevalley Property
(BCP) using the right adjoints of preimages.

Lemma 3.1.38. For a commutative diagram

A
g
//

a
��

B

b
��

X
f
// Y

one always has:

(a) For all t in subB, f∗(b∗(t)) ≤ a∗(g∗(t))

(b) For all m in subX, b∗(f∗(m)) ≤ g∗(a∗(m))

Proof. (a) Let t in subB. Then

f∗(b∗(t)) ≤ a∗(a∗(f∗(b∗(t)))) (a∗ a a∗)
∼= a∗((f ◦ a)∗(b∗(t)))
∼= a∗((b ◦ g)∗(b∗(t))) (f ◦ a = b ◦ g)
∼= a∗(g

∗(b∗(b∗(t))))

≤ a∗(g∗(t)) (b∗ a b∗).

(b) follows from (a).

Remark 3.1.39. [DT95]
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(a) We say that the commutative diagram in Lemma 3.1.38 satisfies the Beck-Chevalley’s Property
(BCP) if for every m ∈ subX, g(a∗(m)) ∼= b∗(f(m)). In fact, we also have for every n ∈
subB, a(g∗(n)) ∼= f∗(b(n)).

(b) Every pullback diagram in C satisfies the Beck-Chevalley Property (BCP) if and only if E is sta-
ble under pullback. Indeed, consider the pullback diagram in Lemma 3.1.38 with f ∈ E . Then
by Remark 1.3.6, 1B ∼= b∗(1Y ) ∼= b∗(f(1X)) ∼= g(a∗(1X)) ∼= g(1A). Consequently, g ∈ E .
The converse follows from the pullback property. Further, let the diagram above be a pullback
with b ∈M and E be stable under pullback alongM-morphisms then the diagram satisfies (BCP).

Lemma 3.1.40. If the commutative diagram in Lemma 3.1.38 is a pullback and satisfies the Beck-
Chevalley’s Property (BCP) then

(a) a∗(g
∗(t)) ∼= f∗(b∗(t)) for all t in ∈ subB and

(b) g∗(a
∗(m)) ∼= b∗(f∗(m)) for all m in subX.

Proof. (a) Let t ∈ subB. Then

a∗(g
∗(t)) ≤ f∗(f(a∗(g

∗(t)))) (f a f∗)
≤ f∗(b∗(b∗(f(a∗(g

∗(t)))))) (b∗ a b∗)
∼= f∗(b∗(g(a∗(a∗(g

∗(t)))))) (BCP )

≤ f∗(b∗(g(g∗(t)))) (a∗ a a∗)
≤ f∗(b∗(t)) (g a g∗)
≤ a∗(g∗(t)) (Lemma 3.1.38).

Therefore, a∗(g
∗(t)) ∼= f∗(b∗(t)).

(b) This follows from (a).

Remark 3.1.41. The converse of Lemma 3.1.40 holds, that is: if (a) or (b) is true then the pullback
diagram of Lemma 3.1.40 satisfies the Beck-Chevalley’s Property (BCP). Indeed, suppose a∗(g

∗(t)) ∼=
f∗(b∗(t)) for all t ∈ subB. Then for any m ∈ subX one has:

b∗(f(m)) ≤ b∗(f(a∗(a
∗(m)))) (a∗ a a∗)

≤ b∗(f(a∗(g
∗(g(a∗(m)))))) (g a g∗)

∼= b∗(f(f∗(b∗(g(a∗(m)))))) (a∗(g
∗(t)) ∼= f∗(b∗(t)))

≤ b∗(b∗(g(a∗(m)))) (f a f∗)
≤ g(a∗(m)) (b∗ a b∗).

Therefore, g(a∗(m)) ∼= b∗(f(m)) for all m ∈ subX since one always has g(a∗(m)) ≤ b∗(f(m)).
Furthermore, a similar argument yields that a(g∗(t)) ∼= f∗(b(t)) ⇒ b∗(f∗(m)) ∼= g∗(a

∗(m)) for all
t ∈ subB and m ∈ subX.

The following theorem shows i-initial, i-open, i-closed and i-final morphisms ascend along i-initial mor-
phisms and they descend along i-final morphisms.
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Theorem 3.1.42 (Pullback ascent and descent). Assume that E is stable under pullback and consider
the pullback diagram

A
g
//

a
��

B

b .
��

X
f
// Y

Then:

(a) [a ∈ I(i) and f ∈ I(i)(O(i),K(i),F(i), resp.)] ⇒ g ∈ I(i)(O(i),K(i),F(i), resp.). Moreover,
b ∈ I(i).

(b) [b ∈ F(i) and g ∈ F(i)(O(i),K(i), I(i), resp.)] ⇒ f ∈ F(i)(O(i),K(i), I(i), resp.). Moreover,
a ∈ F(i).

(c) [a ∈ I(i), b ∈M and f ∈ WF(i)]⇒ g ∈ WF(i).

(d) [b ∈ WF(i), f ∈M and g ∈ I(i)]⇒ f ∈ I(i).

Proof. Note that the assumption E is stable under pullback implies the above pullback diagram satisfies
the Beck-Chevalley Property (BCP) by Remark 3.1.39(b).

(a) Suppose a is i-initial.

(i-initial): If f is i-initial then

a, f ∈ I(i)⇒ f ◦ a ∈ I(i)

⇒ b ◦ g ∈ I(i) (f ◦ a = b ◦ g).

Therefore, by Proposition 3.1.20(b), g ∈ I(i).

(i-open): If f is i-open and t ∈ subA then

g(iA(t)) ∼= g(a∗(iX(a∗(t)))) (a ∈ I(i))
∼= b∗(f(iX(a∗(t) ( BCP )
∼= b∗(iY (f(a∗(t)))) (f ∈ O(i))

≤ iB(b∗(f(a∗(t)))) (b i-continuous)
∼= iB(g(a∗(a∗(t)))) ( BCP)

≤ iB(g(t)) (a∗ a a∗).
Hence, g ∈ O(i).

(i-closed): If f is i-closed and t ∈ subA then

g∗(iA(t)) ≤ g∗(a∗(iX(a∗(t)))) (a ∈ I(i))
∼= b∗(f∗(iX(a∗(t) ( Lemma 3.1.40 )
∼= b∗(iY (f∗(a∗(t)))) (f ∈ K(i))

≤ iB(b∗(f∗(a∗(t)))) (b i-continuous)
∼= iB(g∗(a

∗(a∗(t)))) ( Lemma 3.1.40 )

≤ iB(g∗(t)) (a∗ a a∗).
Hence, g ∈ K(i).
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(i-final): If f is i-final and p ∈ subB then

g∗(iA(g∗(p))) ∼= g∗(a
∗(iX(a∗(g

∗(p))))) (a ∈ I(i))
∼= b∗(f∗(iX(a∗(g

∗(p))))) ( Lemma 3.1.40 )
∼= b∗(f∗(iX(f∗(b∗(p))))) ( Lemma 3.1.40 )
∼= b∗(iY (b∗(p))) (f ∈ F(i))

≤ iB(b∗(b∗(p))) (b i-continuous)

≤ iB(p) (b∗ a b∗).
Hence, g ∈ F(i).

Furthermore, b is i-initial. Indeed, since g∗ a g∗ and g is i-continuous we get

iB(p) ≤ iB(g∗(g
∗(p))) ≤ g∗(iA(g∗(p)))

∼= g∗(a
∗(iX(a∗(g

∗(p)))))
∼= b∗(f∗(iX(a∗(g

∗(p)))))
∼= b∗(f∗(iX(f∗(b∗(p)))))
∼= b∗(iY (b∗(p))).

(b) Suppose b is i-final.

(i-final): If g is i-final then

b, g ∈ F(i)⇒ b ◦ g ∈ F(i)

⇒ f ◦ a ∈ F(i) (f ◦ a = b ◦ g).

Therefore, by Proposition 3.1.26 (b), f ∈ F(i).

(i-open): If g is i-open and m ∈ subX then

f(iX(m)) ≤ b∗(b∗(f(iX(m)))) (b∗ a b∗)
∼= b∗(g(a∗(iX(m)))) ( BCP )

≤ b∗(g(iA(a∗(m)))) (a i-continuous)
∼= b∗(iB(g(a∗(m)))) (g ∈ O(i))
∼= b∗(iB(b∗(f(m)))) ( BCP)
∼= iY (f(m)) (b ∈ F(i)).

Hence, f ∈ O(i).

(i-closed): If g is i-closed and m ∈ subX then

f∗(iX(m)) ≤ b∗(b∗(f∗(iX(m)))) (b∗ a b∗)
∼= b∗(g∗(a

∗(iX(m)))) ( Lemma 3.1.40 )

≤ b∗(g∗(iA(a∗(m)))) (a i-continuous)
∼= b∗(iB(g∗(a

∗(m)))) (g ∈ K(i))
∼= b∗(iB(b∗(f∗(m)))) ( Lemma 3.1.40 )
∼= iY (f∗(m)) (b ∈ F(i)).

Hence, f ∈ K(i).

http://etd.uwc.ac.za/



Section 3.1. Classes of morphisms with respect to an interior operator Page 66

(i-initial): If g is i-initial and m ∈ subX then

iX(m) ≤ iX(a∗(a
∗(m))) (a∗ a a∗)

≤ a∗(iA(a∗(m))) (a i-continuous)
∼= a∗(g

∗(iB(g∗(a
∗(m))))) (g ∈ I(i))

∼= f∗(b∗(iB(b∗(f∗(m))))) ( Lemma 3.1.40 )
∼= f∗(iY (f∗(m))) (b ∈ F(i)).

Hence, f ∈ I(i).

Furthermore, a is i-final. Indeed, since f∗ a f∗ and f is i-continuous we get

a∗(iA(a∗(m))) ∼= a∗(g
∗(iB(g∗(a

∗(m)))))
∼= f∗(b∗(iB(b∗(f∗(m)))))
∼= f∗(iY (f∗(m)))

≤ iX(f∗(f∗(m))) ≤ iX(m).

(c) Let p ∈ subB.

p ∧ g∗(iA(g∗(p))) ∼= p ∧ g∗(a∗(iX(a∗(g
∗(p))))) (a ∈ I(i))

∼= b∗(b∗(p)) ∧ b∗(f∗(iX(a∗(g
∗(p))))) (b ∈M and Lemma 3.1.40 )

∼= b∗(b∗(p) ∧ f∗(iX(f∗(b∗(p))))) (b∗ a b∗ and Lemma 3.1.40 )
∼= b∗(iY (b∗(p))) (f ∈ WF(i))

≤ iB(b∗(b∗(p))) (b i-continuous)
∼= iB(p) (b ∈M).

Hence, g ∈ WF(i).

(d) Let m ∈ subX.

iX(m) ≤ iX(a∗(a
∗(m))) (a∗ a a∗)

≤ a∗(iA(a∗(m))) (a i-continuous)
∼= a∗(g

∗(iB(g∗(a
∗(m))))) (g ∈ I(i))

∼= f∗(b∗(iB(b∗(f∗(m))))) ( Lemma 3.1.40 ).

Consequently,

iX(m) ≤ m ∧ f∗(b∗(iB(b∗(f∗(m)))))
∼= f∗(f∗(m)) ∧ f∗(b∗(iB(b∗(f∗(m)))))
∼= f∗(f∗(m) ∧ b∗(iB(b∗(f∗(m)))))
∼= f∗(iY (f∗(m))) (b ∈ WF(i)).

Hence, f ∈ I(i).
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In Top, kin-open morphisms (or the usual open maps) are stable under pullback, hence the assumption
that a ∈ I(kin) is not needed in Theorem 3.1.42 (see [DT95]).

Examples 3.1.43. (a) Consider the Kuratowski interior operator kin on the category Top of topo-
logical spaces with (surjective, embedding)-factorization structure and a continuous function
f : X → Y .

(i) f is kin-initial if and only if M ⊆ X is open if and only if M = f−1(N) for some N ⊆ Y
is open. Since kin is idempotent and by Proposition 3.1.23, f is kin-initial if and only if X
carries the initial topology with respect to f .

(ii) f is kin-final if and only if f is surjective and for any N ⊆ Y one has M ⊆ N is open if and
only if f−1(M) ⊆ f−1(N) is open (every subspace N ⊆ Y carries the final topology with
respect to the restriction f−1(N) → N of f). That is, the kin-final maps are precisely the
hereditary quotient maps. Note that hereditary quotient maps are surjective maps f : X → Y
for which every restriction f−1(N)→ N of f with N ⊆ Y is a quotient map.

(iii) f ∈ O(kin) if and only if f is an open map, that is: O ⊆ X is open⇒ f(O) ⊆ Y is open.

(b) Consider the up-interior ↑inG (H) = {h ∈ H : (∀g ∈ G \ H) there is no edge g → h} on the
category SGph of spatial graphs with (surjective, embedding)-factorization structure.
The ↑in-initial morphisms f : G→ G

′
are characterized by the condition g → g

′ ⇔ f(g)→ f(g
′
)

for all g, g
′ ∈ G and the ↑in-final morphisms are precisely the surjections f : G → G

′
such that

k → k
′ ⇔ ∃g, g′ ∈ G with g → g

′
, f(g) = k and f(g

′
) = k

′
.

(c) Let i be an interior operator on a reflective subcategory S of the category C such that preimages
commute with arbitrary joins in C and let i(S) be a lifted interior operator on C from S. Then

(i) Each S-reflection morphism is i(S)-initial,

(ii) Each S-reflection morphism is i(S)-open, i(S)-closed and i(S)-final provided that S is E ′-
reflective.

(d) Let tin be the trivial interior operator on C such that C-morphisms reflect 0. Then f∗(0Y ) ∼= 0X ,
hence for f ∈ E ′ , one has f∗(0X) ∼= f∗(f

∗(0Y )) ∼= 0Y . Consequently, every morphism is both
tin-initial and tin-open and every morphism in E ′ is both tin-closed and tin-final. Let din be the
discrete interior operator on C with respect to M. Then every morphism is both din-open and
din-closed, every morphism in M is din-initial and every morphism in E ′ is din-final.

In this section, due to the role of the adjunctions, we have seen that a lot of results (and proofs) are
mirror to each other. Moreover, since we assume that the preimage f∗(−) preserves arbitrary joins for
every morphism f in the category C, this allows f∗(−) to have both left f(−) and right f∗(−) adjoints.
Consequently, some of the results (and proofs) with respect to interior operators are similar to that of
closure operators. Indeed, this is should not come as a surprise since by Theorem 2.3.8 we know that
there is a natural way of moving from closure to interior operators and vice versa. Our results provide
interior-theoretic descriptions of the notions. Furthermore, there are new insights and importantly some
things that can only be done with interior operators. Note that the assumption that arbitrary joins are
preserved by each preimage is essential and enables us to explicitly define the notions of closed, initial
and final morphisms in terms of dual images. In fact, one can not deal with these notions without
having this assumption.
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3.2 Quasi open, codense morphisms with respect to an interior opera-
tor

In this section we introduce a notion of quasi open morphisms with respect to an interior operator i on
an arbitrary category C and discuss some of their properties. In particular, it is shown that the quasi
i-open morphisms of C are characterized as the morphisms which reflect i-codensity. We also introduce
a general notion of i-codense subobjects. We begin with the following definition and proposition which
motivate the notion of quasi i-open morphisms.

Definition 3.2.1. A morphism f : X → Y is said to reflect i-codensity if f∗(−) maps i-codense
subobjects of Y to i-codense subobjects of X.

Consequently, every i-open morphism reflects i-codensity:

Proposition 3.2.2. Suppose f : X → Y ∈ O(i) reflects the least subobject. Then f reflects i-codensity.

Proof. Let n be an i-codense subobject of Y . Then, one has

iX(f∗(n)) ∼= f∗(iY (n)) (f ∈ O(i))
∼= f∗(0Y ) (n i-codense)
∼= 0X (f reflects 0Y ).

Note that in any category in which the preimage functor for any given morphism preserves arbitrary
joins (in particular, in topological categories C over Set), each morphism reflects the least subobject
(see Remark 1.4.3(c)).

Remark 3.2.3. (a) Let subX be a Boolean algebra for every C-object X and suppose complements
are preserved by preimages. Let c be a closure operator and ic be the induced interior operator
from c given by icX(m) = cX(m) for all m ∈ subX, where m denotes the complement of m.
Then a C-morphism f reflects ic-codensity if and only if it reflects c-density.

(b) A morphism which reflects i-codensity need not be i-open. Indeed, in Top the embedding r of
[0, 1] into < reflects codensity with respect to the Kuratowski interior operator kin induced by the
Euclidean topology but r is not kin-open map (see [CGT04]).

In the above proposition we showed that every i-open morphism which reflects the least subobject
reflects i-codensity. However, a morphism which reflects i-codensity may not be i-open by Remark
3.2.3(b). These observations motivate the following notion:

Definition 3.2.4. A morphism f : X → Y is said to be quasi i-open if the interior of each subobject
of X is the least subobject of X whenever the interior of its image under f is the least subobject of Y ,
that is: (∀m ∈ subX) (iY (f(m)) ∼= 0Y ⇒ iX(m) ∼= 0X).

In Top, the quasi open morphisms with respect to the Kuratowski interior operator kin are precisely the
quasi open maps studied in [MP62, Kao83, Kim98]. Such maps are also called semi-open in [HS68].
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Consequently, the above definition provides a generalization to an arbitrary category C of the notion of
quasi open maps in topology in terms of interior operators.

The following is a handy characterization of quasi i-open morhisms in terms of i-codensity.

Proposition 3.2.5. For a morphism f : X → Y in C, the following are equivalent:

(a) f is quasi i-open;

(b) each subobject of X is i-codense in X whenever its image under f is i-codense in Y , that is:
(∀m ∈ subX) (f(m) is i-codense in Y ⇒ m is i-codense in X);

(c) f reflects i-codensity, that is: if n is i-codense in Y then f∗(n) is i-codense in X.

Proof. (a)⇒ (b) follows immediately from the definitions.

(b)⇒ (c) Let n be an i-codense in Y . Since f(f∗(n)) ≤ n, one has f(f∗(n)) is i-codense in Y
by Remark 2.1.15(c). Consequently, f∗(n) is i-codense in X.

(c) ⇒ (a) Let m ∈ subX such that iY (f(m)) ∼= 0Y . Then f(m) is i-codense in Y , hence
f∗(f(m)) is i-codense in X by hypothesis. Consequently, by Remark 2.1.15(c), m is i-codense in
X since m ≤ f∗(f(m)). Therefore, iX(m) ∼= 0X .

Proposition 3.2.5 states that the quasi i-open morphisms of C are precisely the morphisms which reflect
i-codensity. Next we show that quasi i-open morphisms are a generalization of i-open morphisms.

Proposition 3.2.6. If f is an i-open morphism and reflects the least subobject, then f is a quasi i-open.

Proof. Let m ∈ subX such that iY (f(m)) ∼= 0Y . Since f is an i-open morphism, one has f(iX(m)) ≤
iY (f(m)) ∼= 0Y . Consequently, iX(m) ≤ f∗(0Y ) ∼= 0X since f reflects 0Y . Therefore, f is a quasi
i-open morphism.

Of course, the above proposition is a direct consequence of Propositions 3.2.2 and 3.2.5(c).

Corollary 3.2.7. Every i-open morphism in the class M is quasi i-open.

Proof. follows from the above proposition since each subobject morphism reflects the least subobject.

Remark 3.2.8. (a) The class Ci of i-codense M-subobjects is stable under pullback along QO(i)-
morphisms since, by Proposition 3.2.5, quasi i-open morphisms reflect i-codensity.

(b) The class Ci of i-codense M-subobjects is left-cancellable with respect to the class of i-open
morphisms in M. Indeed, for s, t ∈ M such that s ◦ t ∈ Ci and s ∈ O(i), one has the pullback
diagram

· 1 //

t
��

·
s◦t
��

· s
// ·
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with s ∈ QO(i) by Corollary 3.2.7. Consequently, by (a), t ∈ Ci since t is a pullback of s◦ t ∈ Ci
along s ∈ QO(i).

As a consequence of Propositions 2.1.14 and 3.2.5 the following corollaries are now evident.

Corollary 3.2.9. The following statements are equivalent for an M-morphism f : X → Y :

(a) f is quasi i-open;

(b) (∀m ∈ subX) (f(m) is i-codense in Y ⇔ m is i-codense in X)

Corollary 3.2.10. The following statements are equivalent for an E ′-morphism f : X → Y :

(a) f is quasi i-open;

(b) (∀n ∈ subY ) (f∗(n) is i-codense in X ⇔ n is i-codense in Y )

In what follows we use QO(i) to denote the class of quasi i-open morphisms. The class QO(i) has the
following stability properties:

Proposition 3.2.11. The class QO(i)

(a) is closed under composition,

(b) is left-cancellable with respect to M, that is: if g ◦ f ∈ QO(i) and g ∈M then f ∈ QO(i),

(c) contains all the isomorphisms and

(d) is right-cancellable with respect to E ′ , that is: if g ◦ f ∈ QO(i) and f ∈ E∗ then g ∈ QO(i).

Proof. Consider the morphisms f : X → Y and g : Y → Z in C.

(a) Suppose f, g ∈ QO(i). Let m ∈ subX such that (g ◦ f)(m) is i-codense in Z. Then:

g(f(m)) is i-codense in Z ((g ◦ f)(m) ∼= g(f(m)))

⇒ f(m) is i-codense in Y (g ∈ QO(i))

⇒ m is i-codense in X (f ∈ QO(i)).

Therefore, g ◦ f ∈ QO(i).

(b) Suppose g ◦ f ∈ QO(i) and g ∈M. Let m ∈ subX such that f(m) is i-codense in Y . Then:

g(f(m)) is i-codense in Z (Proposition 2.1.14(a))

⇒ (g ◦ f)(m) is i-codense in Z ((g ◦ f)(m) ∼= g(f(m)))

⇒ m is i-codense in X (g ◦ f ∈ QO(i)).

Therefore, f ∈ QO(i).

(c) Let f : X → Y be an isomorphism. Then f has an inverse f−1 : Y → X such that f−1 ◦ f = 1X .
Consequently, (b) implies f ∈ QO(i) since 1X is obviously quasi i-open and f−1 ∈ Iso(C) ⊆M.

(d) Suppose g ◦ f ∈ QO(i) and f ∈ E ′ . Let n ∈ subY such that g(n) is i-codense in z. Since f ∈ E ′ ,
one has g(f(f∗(n))) ∼= g(n). Hence g(f(f∗(n))) ∼= (g ◦ f)(f∗(n)) is i-codense in Z. Consequently,
f∗(n) is i-codense in X since g ◦ f ∈ QO(i). This in turn implies n is i-codense in Y since f ∈ E ′ .
Therefore, g ∈ QO(i).
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As an immediate consequence of the above proposition, one has:

Corollary 3.2.12. Let f = m ◦ e with m ∈M and e ∈ E ′ . f ∈ QO(i) if and only if m, e ∈ QO(i).

Corollary 3.2.13. Let i be any interior operator and f : X → Y ∈ QO(i). If m : M → X ∈ M is an
i-open morphism, then f ◦m ∈ QO(i).

Proof. This is an immediate consequence of Corollary 3.2.7 and Proposition 3.2.11(a).

Let us denote by QO(i)∗ the class {f ∈ C : every pullback of f reflects i-codensity}. Then, by Propo-
sition 3.2.11 and properties of pullbacks, QO(i)∗ satisfies the following fundamental stability properties.

Proposition 3.2.14. The class QO(i)∗

(a) contains all the isomorphisms, is closed under composition and stable under pullback,

(b) is left-cancellable with respect to M, that is: if g ◦ f ∈ QO(i)∗ and g ∈ M then f ∈ QO(i)∗

and

(c) is right-cancellable with respect to E∗, that is: if g ◦ f ∈ QO(i)∗ and f ∈ E∗ then g ∈ QO(i)∗.

In the remainder of this section we introduce a notion of codense morphisms with respect to an interior
operator i, which are generalizations of i-codense subobjects.

Definition 3.2.15. A morphism f : X → Y is an i-codense if the M-part f(1X) of the (E ,M)-
factorization of f is an i-codense subobject of Y , that is: iY (f(1X)) ∼= 0Y .

We use CD(i) to denote the class of i-codense morphisms.

Remark 3.2.16. (a) i-codense M-morphisms are precisely i-codense M-subobjects.

(b) For a standard interior operator i, E-morphisms with non-trivial codomain can not be i-codense.
Note that a trivial object Y is an object in C with 0Y ∼= 1Y , that is: 0Y is an isomorphism, hence
subY having exactly one member, up to isomorphism.

(c) A morphism f : X → Y is i-codense if and only if f(m) is an i-codense subobject of Y for all
m ∈ subX. Indeed, this follows from f(m) ≤ f(1X).

(d) Let preimages commute with arbitrary joins in the category C. If f : X → Y ∈ CD(i) and
g : Y → Z ∈ E ′ then g∗(f(1X)) is an i-codense subobject of Z. Indeed, by the above definition
f(1X) is i-codense in Y . Consequently, by Remark 2.1.15(d), g∗(f(1X)) is i-codense in Z.

Examples 3.2.17. (a) In the category Top each non-surjective continuous function with indiscrete
topological space codomain is a codense morphism with respect to kin.

(b) In the category Grp, the i-codense morphisms are exactly the non-surjective group homomorphisms
f : G→ H for which their image f(G) do not contain proper normal subgroups of H. In particular,

(i) the trivial group homorphism f : G → H given by f(g) = eH for all g ∈ G is a codense
morphism with respect to any interior operator i on Grp.
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(ii) any non-surjective group homomorphism f : G → S, where S is a simple group is codense
with respect to the normal interior operator on Grp.

(c) Any non-surjective ring homomorphism f : R → S, where S is a cyclic ring is codense with
respect to the ideal interior operator on Rng.

(d) In the category of R-Mod, the zero maps are din-codense morphisms.

Consequently, one has the following stability properties of CD(i).

Proposition 3.2.18. The class CD(i)

(a) is stable under composition with C-morphisms from the right, that is: if g ∈ CD(i) and f in C
then g ◦ f ∈ CD(i),

(b) is right-cancellable with respect to E , that is: if g ◦ f ∈ CD(i) and f ∈ E then g ∈ CD(i),

(c) is left-cancellable with respect to QO(i), that is: if g◦f ∈ CD(i) and g ∈ QO(i) then f ∈ CD(i),

(d) is stable under composition with M-morphisms from the left, that is: if g ∈ M and f ∈ CD(i)
then g ◦ f ∈ CD(i).

Proof. Let f : X → Y and g : Y → Z be morphisms in C such that:

(a) g ∈ CD(i). Then g(1Y ) is an i-codense subobject of Z. Consequently, since (g ◦ f)(1X) ∼=
g(f(1X)) ≤ g(1Y )), Remark 2.1.15(c) yields (g◦f)(1X) is an i-codense subobject of Z. Therefore,
g ◦ f ∈ CD(i).

(b) g ◦ f ∈ CD(i) and f ∈ E . Then Remarks 1.3.6(b) and 1.3.9 and Definition 3.2.15 yield
iZ(g(1Y )) ∼= iZ(g(f(1X))) ∼= iZ((g ◦ f)(1X)) ∼= 0Z .

(c) g ◦ f ∈ CD(i) and g ∈ QO(i).Then g(f(1X)) ∼= (g ◦ f)(1X) is an i-codense subobject of Z.
Hence, by Proposition 3.2.5, g∗(g(f(1X))) is an i-codense subobject of Y . Consequently, by
Remark 2.1.15(c), f(1X) is an i-codense subobject of Y since f(1X) ≤ g∗(g(f(1X))). Therefore,
f ∈ CD(i).

(d) This follows from Proposition 2.1.14(a).

3.3 Quotient maps with respect to an interior operator

In the category Top of topological spaces and continuous maps, a quotient map is just an epimorphism
f : X → Y for which B ⊆ Y is open whenever f∗(B) is open. In this section we make use of
this concept and the idea of the paper [CGT01] to introduce and study the notion of quotient maps
with respect to an interior operator in the category C. We use these maps to investigate a notion of
connectedness with respect to a given interior operator in Section 5.2. We start with the next definition.

Definition 3.3.1. A morphism f : X → Y in C is said to reflect i-open subobjects if each subobject n
of Y is i-open provided that f∗(n) is i-open in X.
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Definition 3.3.2. A morphism f : X → Y in C is said to be an i-quotient if it lies in E and reflects
i-open subobjects.

Remark 3.3.3. Let Q(i) be the class of all i-quotient morphisms. Then

(a) In Definition 3.3.2 we can replace the statement f∗(n) is i-open in X implies n is i-open in Y by
f∗(n) is i-open in X if and only if n is i-open in Y . Indeed, if n is i-open in Y then one always
has f∗(n) is i-open in X.

(c) Let i be a standard interior operator. Then as a consequence of Proposition 3.1.28(b) and
Proposition 3.1.29 one always has that an i-final morphism is an i-quotient, with the converse
statement failing already for C = Top, i = kin (see [CGT01]).

We discuss some important properties of i-quotient maps in the following proposition.

Proposition 3.3.4. The class Q(i)

(a) is stable under composition,

(b) is right-cancellable, that is: if g ◦ f ∈ Q(i) then g ∈ Q(i),

(c) contains all the isomorphisms and

(d) is left-cancellable with respect to M provided that E ⊆ E ′ , that is: if g ◦ f ∈ Q(i) and g ∈ M
and E ⊆ E ′ then f ∈ Q(i).

Proof. (a) Suppose f : X → Y, g : Y → Z ∈ Q(i). Then f, g ∈ E and both f and g reflect i-open
subobjects. Hence, g◦f ∈ E and for u ∈ subZ since f is an i-quotient. Consequently, (g◦f)∗(u) =
f∗(g∗(u)) is i-open in X implies g∗(u) is i-open in Y . This in turn implies u is i-open in Z as g
is also an i-quotient map. Therefore, g ◦ f ∈ E and (g ◦ f)∗(u) is i-open in X implies u is i-open
in Z, as desired.

(b) Suppose for f : X → Y, g : Y → Z, g ◦ f ∈ Q(i). Then g ◦ f ∈ E and as result g ∈ E . And also
g ◦ f reflects i-open subobjects. Now, consider an i open subobject g∗(n) of Y . Then

f∗(g∗(n)) is i-open in X (i-open subobjects are stable under pullback )

⇒ (g ◦ f)∗(n) is i-open in X (g ◦ f)∗(n) = f∗(g∗(n))

⇒ n i-open in Z (g ◦ f ∈ Q(i)).

Therefore, g ◦ f ∈ E and g∗(n) is i-open in Y implies n is i-open in Z, as desired.

(c) If f : X → Y is an isomorphism with inverse f−1 : Y → X then f ◦ f−1 = 1X is obviously
i-quotient. Consequently, (b) implies f ∈ Q(i).

(d) Suppose for f : X → Y, g : Y → Z, g ◦ f ∈ Q(i). Then g ◦ f ∈ E and g ◦ f reflects i-open
subobjects. Since g ∈M and E is stable under pullback along M-morphisms , g ◦ f ∈ E ⇒ f ∈
E . Also consider an i open subobject f∗(n) of X. Then

f∗(n) is i-open in X

⇒ (g ◦ f)∗(g(n)) ∼= f∗(g∗(g(n))) ∼= f∗(n) is i-open in X, since g ∈M
⇒ g(n) is i-open in Z, since g ◦ f ∈ Q(i)

⇒ n ∼= g∗(g(n)) is i-open in Y, since i-open subobjects are stable under pullback and g ∈M.
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Thus, f ∈ E and f∗(n) is i-open in X implies n is i-open in Y, as desired.

The following two propositions show the connection between i-quotient maps with i-open (or i-closed)
morphisms.

Proposition 3.3.5. (a) O(i) ∩ E ′ ⊆ Q(i).

(b) Let preimages commute with joins in the category C. Then K(i) ∩ E ′ ⊆ Q(i).

That is, every i-open (or i-closed) morphism in E ′ is an i-quotient.

Proof. (a) Suppose f : X → Y and f ∈ O(i) ∩ E ′ such that f∗(n) is i-open in X. Then

n ∼= f(f∗(n)) (f ∈ E ′)
∼= f(iX(f∗(n))) (f∗(n) i-open )
∼= f(f∗(iY (n))) (f ∈ O(i))

∼= iY (n) (f ∈ E ′)
⇒ n i-open in Y.

Therefore, f∗(n) is i-open in X implies n is i-open in Y and clearly E ′ ⊆ E . Hence, f ∈ E and
f reflects i-open subobjects. Consequently, f ∈ Q(i).

(b) Suppose f : X → Y and f ∈ K(i) ∩ E ′ such that f∗(n) is i-open in X. Then

n ∼= f∗(f
∗(n)) (f ∈ E ′)

∼= f∗(iX(f∗(n))) (f∗(n) i-open )
∼= iY (f∗(f

∗(n))) (f ∈ K(i))

∼= iY (n) (f ∈ E ′)
⇒ n is i-open in Y.

Therefore, f ∈ E and f∗(n) is i-open in X implies n is i-open in Y and clearly E ′ ⊆ E . Hence,
f ∈ E and f reflects i-open subobjects. Consequently, f ∈ Q(i).

Proposition 3.3.6. Let f : X → Y be an i-quotient morphism.

(a) If f is an i-open morphism then for each i-open subobject m of X, the subobject f∗(f(m)) is
i-open in X. Moreover, if i is idempotent the converse is true.

(b) Let preimages commute with joins in the category C. If f is an i-closed morphism then for each
i-open subobject m of X, the subobject f∗(f∗(m)) is i-open in X. Moreover, if i is idempotent
the converse is true.

Proof. (a) Let f : X → Y be an i-open morphism such that m is i-open subobject of X. Then by
Remark 3.1.13(b), f(m) is an i-open subobject of Y . Hence, f(m) ∼= iY (f(m)). Consequently,
since f ∈ O(i)), one obtains f∗(f(m)) ∼= f∗(iY (f(m))) ∼= iX(f∗(f(m))). Therefore, f∗(f(m))
is i-open in X. On the other hand assume that i is idempotent and that for each i-open subobject
m of X, the subobject f∗(f(m)) is i-open in X. Then, since i is idempotent, we have that
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iX(m) is i-open in X and hence by assumption, f∗(f(iX(m))) is i-open in X. Consequently,
f(iX(m)) is i-open in Y , since f ∈ Q(i). That is, iY (f(iX(m))) ∼= f(iX(m)). Therefore,
f(iX(m)) ∼= iY (f(iX(m))) ≤ iY (f(m)), since iX(m) ≤ m and hence f ∈ O(i). In fact we can
apply the converse part of Remark 3.1.13(b).

(b) Let f : X → Y be an i-closed morphism such that m is an i-open subobject of X.

f∗(f∗(m)) ∼= f∗(f∗(iX(m))) (m i-open )
∼= f∗(iY (f∗(m))) (f ∈ K(i))

≤ iX(f∗(f∗(m))) (f i-continuous )

⇒ iX(f∗(f∗(m))) ∼= f∗(f∗(m)) (i-contractive ).

Thus, f∗(f∗(m)) is i-open in X. On the other hand assume that i is idempotent and that for each
i-open subobject m of X, the subobject f∗(f∗(m)) is i-open in X. Then, since i is idempotent,
we have that iX(m) is i-open in X and hence by assumption, f∗(f∗(iX(m))) is i-open in X.
Consequently, f∗(iX(m)) is i-open in Y , since f ∈ Q(i). That is, iY (f∗(iX(m))) ∼= f∗(iX(m)).
Therefore, f∗(iX(m)) ∼= iY (f∗(iX(m))) ≤ iY (f∗(m)), since iX(m) ≤ m and hence f ∈ K(i). In
fact we can apply Proposition 3.1.7.

We now turn to pullbacks of i-quotients and show that the class of i-quotient maps ascends along both
i-open and i-closed monomorphism.

Theorem 3.3.7. Given a pullback diagram

A
g
//

a
��

B

b
��

X
f
// Y

such that a and b are monomorphisms and E is stable under pullback along monomorphisms, one has:

(a) If f is an i-quotient morphism and a is an i-open morphism, then g is an i-quotient morphism.
Furthermore, b is an i-open morphism provided that i is idempotent.

(b) Let preimages commute with joins in the category C. If f is an i quotient morphism and a is
an i-closed morphism, then g is an i-quotient morphism. Furthermore, b is an i-closed morphism
provided that i is idempotent.

Proof. The fact that f ∈ E and E is stable under pullback along monomorphisms implies g ∈ E .
Moreover,

(a) Suppose for t ∈ subB we have that g∗(t) is i-open subobject of A. Then

a(g∗(t)) ∼= a(iA(g∗(t))) (g∗(t) is i-open in A)
∼= iX(a(g∗(t))) (a ∈ O(i))

⇒ iX(a(g∗(t))) ∼= a(g∗(t))

⇒ f∗(b(t)) ∼= a(g∗(t)) is i-open in X (BCP)

⇒ b(t) is i-open in Y (f ∈ Q(i))

⇒ iY (b(t)) ∼= b(t).
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Consequently, t ≤ b∗(b(t)) ∼= b∗(iY (b(t))) ≤ iX(b∗(b(t))) ∼= iX(t), since b a b∗, b is i-continuous,
b is monic and E is stable under pullback along monomorphisms. Therefore, iX(t) ∼= t and hence
t is i-open in B. As a result g ∈ Q(i). On the other hand suppose t is i-open in B. Then g∗(t) is
i-open in A. Consequently, the fact that a ∈ O(i) together with Remark 3.1.13 implies a(g∗(t))
is i-open in X. As a result of BCP, we have that f∗(b(t)) ∼= a(g∗(t)) is i-open in X. This implies
b(t) is i-open in X, since f ∈ Q(i). Consequently by Remark 3.1.13(b) we have that b is i-open
morphism.

(b) Suppose for t ∈ subB we have that g∗(t) is an i-open subobject of A. Then

a∗(g
∗(t)) ∼= a∗(iA(g∗(t))) (g∗(t) is i-open in A)

∼= iX(a∗(g
∗(t))) (a ∈ K(i))

⇒ iX(a∗(g
∗(t))) ∼= a∗(g

∗(t))

⇒ f∗(b∗(t)) ∼= a∗(g
∗(t)) is i-open in X (Lemma 3.1.40)

⇒ b∗(t) is i-open in Y (f ∈ Q(i))

⇒ iY (b∗(t)) ∼= b(t).

Therefore, t ∼= b∗(b∗(t)) ∼= b∗(iY (b∗(t))) ≤ iX(b∗(b∗(t))) ≤ iX(t), since b∗ a b∗, b is i-continuous,
b is monic and E is stable under pullback along monomorphisms. Hence iX(t) ∼= t, that is,
t is i-open in B. Thus g ∈ Q(i). On the other hand suppose t is i-open in B. Then g∗(t) is
i-open in A and hence a∗(g

∗(t)) is i-open in X, since a ∈ K(i)) and Proposition 3.1.7. As a result
of Lemma 3.1.40, we have that f∗(b∗(t)) ∼= a∗(g

∗(t)) is i-open in X. This implies b∗(t) is i-open
in X, since f ∈ Q(i). Consequently by Proposition 3.1.7 we have that b is an i-closed morphism.

Examples 3.3.8. (a) In the category Top of topological spaces with the usual (surjective, embedding)
factorization structure, surjective kin-closed (or kin-open) morphisms are i-quotient morphisms.

(b) Let n be the normal interior operator on the category Grp of groups and group homomorphisms
with the (surjective homomorphism, injective homorphisms)-factorization system then the n-
quotient morphisms are precisely surjective group homomorphisms. Note that surjective group
homomorphisms preserve normal subobjects.

3.4 Some remarks on the classes of a dual closure operator

In this section similar to what we have done in Section 3.1 we study four classes of morphisms with
respect to a dual closure operator. We discuss their behaviour under composition, cancellation and
pushout. In order to do this as in the Section 2.4 we consider a finitely cocomplete category C with
(E ,M)-factorization systems for morphisms such that E is a fixed class of epimorphisms. Analogous
to the class of morphisms with respect to an interior operator we define d-closed, d-open, d-initial and
d-final morphisms by replacing ≤ by ∼= in the equivalent descriptions of the continuity condition with
respect to a dual closure operator given in Lemma 2.4.9 and Remark 2.4.10. Of course this notion is a
dual notion to classes of morphisms with respect to closure operators (see [GT00, CGT01]).
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Definition 3.4.1. A morphism f : X → Y ∈ C is said to be

(a) d-closed if for all q ∈ quotY one has dX(f◦(q)) ∼= f◦(dY (q)), that is: f is d-closed if the left
adjoint commutes with the dual closure operator;

(b) d-open if for all p ∈ quotX one has f◦(dX(p)) ∼= dY (f◦(p)), that is: f is d-open if the right
adjoint commutes with the dual closure operator;

(c) d-final if for all p ∈ quotX one has dX(p) ∼= f◦(dY (f◦(p)));

(d) d-initial if for all q ∈ quotY one has f◦(dX(f◦(q))) ∼= dY (q).

For the remainder of this section, we use O(d),K(d), I(d) and F(d) to denote the class of all d-open,
d-closed, d-initial and d-final respectively.

Remark 3.4.2. The formulas for d-closed, d-open, d-final and d-initial morphisms are the same as the
formulas for i-open, i-closed, i-initial and i-final morphisms, respectively, except for the fact that the
former ones act on quotientobjects while the latter ones act on subobjects.

Consequently, Propositions 3.1.11, 3.1.13 (b), 3.1.4, 3.1.20, and 3.1.26 yield the following propositions,
respectively.

Proposition 3.4.3. (a) K(d) is stable under composition and contains all the isomorphisms.

(b) g ◦ f ∈ K(d) and g ∈M′ ⇒ f ∈ K(d).

(c) g ◦ f ∈ K(d) and f ∈ E ⇒ g ∈ K(d).

Proposition 3.4.4. Let f : X → Y be a d-closed morphism. Then f◦ maps d-closed E-quotient objects
into d-closed E-quotient objects. Moreover, if d is idempotent then the converse is true.

Corollary 3.4.5. A d-closed morphism p : X → P in E gives a d-closed quotient object. The converse
is true if d is weakly cohereditary.

Proof. If p in E is d-closed morphism then dX(p◦(q)) ∼= p◦(dP (q)) for all q : P → Q. In particular for
q = 1P we obtain dX(p) ∼= dX(1P ◦ p) ∼= dX(p◦(1P )) ∼= p◦(dP (1P )) ∼= p◦(1P ) ∼= 1P ◦ p ∼= p. By the
Dual Diagonalization Lemma the converse is also true.

Proposition 3.4.6. (a) O(d) is stable under composition and contains all the isomorphisms.

(b) g ◦ f ∈ O(d) and g ∈M′ ⇒ f ∈ O(d).

(c) g ◦ f ∈ O(d) and f ∈ E ⇒ g ∈ O(d).

Proposition 3.4.7. Let d be a dual closure operator.

(a) F(d) is stable under composition and contains all the isomorphisms.

(b) g ◦ f ∈ F(d)⇒ f ∈ F(d).

(c) g ◦ f ∈ F(d) and f ∈ E ⇒ g ∈ F(d).

Remark 3.4.8. (a) Every section is d-final. Indeed, this follows from Proposition 3.4.7(b).
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(b) Every d-final morphism belongs toM. Indeed, 1X ∼= dX(1X) ∼= f◦(dY (f◦(1X))) ∼= f◦(dY (1Y )) ∼=
f◦(1Y ).

Proposition 3.4.9. Let d be a dual closure operator.

(a) I(d) is stable under composition and contains all the isomorphisms.

(b) g ◦ f ∈ I(d)⇒ g ∈ I(d).

(c) g ◦ f ∈ I(d) and g ∈M′ ⇒ f ∈ I(d).

Remark 3.4.10. (a) Every retraction is d-initial. Indeed, this is an immediate consequence of Propo-
sition 3.4.9(b).

(b) The dual closure operator is cohereditary if and only if every morphism in E is d-initial. Indeed, for
e : X → P ∈ quotX and p : E → P ∈ quotE, one has dE(p) ∼= e◦(dX(p ◦ e)) ∼= e◦(dX(e◦(p))).

Analogous to Proposition 3.1.29 we have the following partial characterization of d-final morphisms.

Proposition 3.4.11. Let f : X → Y be a d-final morphism. Then a quotient object p of X is d-closed
if and only if f◦(p) is d-closed in Y .

Proof. (⇒) Suppose p is d-closed in X. Then the continuity condition of dual closure operator implies
dY (f◦(p)) ≤ f◦(dX(p)) ∼= f◦(p).

(⇐) Suppose f◦(p) is d-closed in Y . Then dY (f◦(p)) ∼= f◦(p). Hence, d-finality of f and f◦ a f◦
implies dX(p) ≤ f◦(dY (f◦(p))) ∼= f◦(f◦(p)) ≤ p. Therefore, the right adjoint f◦ preserves
d-closed quotient objects.

Let d be an idempotent dual closure operator. Then similar to Proposition 3.1.23 we have the following
characterization of d-initial morphisms in an arbitrary category.

Proposition 3.4.12. Let d be idempotent. Then f : X → Y is d-initial if and only if for every d-closed
quotient object q of Y there exists a d-closed quotient object p of X such that q ∼= f◦(p).

Proof. (⇐) Suppose f is a d-initial morphism and q is a d-closed quotient object of Y . Then q ∼=
dY (q) ∼= f◦(dX(f◦(q))) ∼= f◦(p), where p ∼= dX(f◦(q)) such that dX(p) ∼= dX(dX(f◦(q))) ∼=
dX(f◦(q)) ∼= p. Thus q ∼= f◦(p) with p as a d-closed quotient object of X.

(⇐) From idempotency of d, for all q ∈ quotY , dY (q) is a d-closed quotient object of Y and as a
result there exists a d-closed quotient object p of X such that dY (q) ∼= f◦(p). Hence,

f◦(dX(f◦(q))) ≤ f◦(dX(f◦(dY (q)))) (d-expansive)

≤ f◦(dX(f◦(f◦(p)))) (dY (q) ∼= f◦(p) and d-idempotent)

≤ f◦(dX(p)) (f◦ a f◦)
∼= f◦(p) (p d-closed).

Therefore, f ∈ I(d).
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The following proposition shows connections of d-final morphisms with the other three morphism classes
and immediately follows from Proposition 3.4.7 and Remark 3.4.2.

Proposition 3.4.13. (a) O(d) ∩M′ ⊆ F(d).

(b) K(d) ∩M′ ⊆ F(d).

(c) I(d) ∩M′ ⊆ F(d).

(d) F(d) ∩ E ⊆ K(d) ∩ O(d).

Corollary 3.4.14. Let f : X → Y be a d-closed (or open) morphism in M′
. Then p ∈ quotX is

d-closed if and only if f◦(p) ∈ quotY is d-closed.

The following proposition shows us some additional properties of d-initial morphisms and follows from
Proposition 3.4.9 and Remark 3.4.2.

Proposition 3.4.15. (a) O(d) ∩ E ⊆ I(d).

(b) K(d) ∩ E ⊆ I(d).

(c) F(d) ∩ E ⊆ I(d).

(d) I(d) ∩M′ ⊆ K(d) ∩ O(d).

We now deal with the pushout behaviour of d-closed, d-open, d-initial and d-final morphisms.

Lemma 3.4.16. For a commutative diagram

X
f
//

a
��

Y

b
��

A g
// B

one always has:

(a) For all r in quotA, b◦(g◦(r)) ≤ f◦(a◦(r)).

(b) For all s in quotB, g◦(b◦(s)) ≤ a◦(f◦(s)).

Proof. (a)

b◦(g◦(r)) ≤ f◦(f◦(b◦(g◦(r)))) (f◦ a f◦)
∼= f◦((b ◦ f)◦(g◦(r)))
∼= f◦((g ◦ a)◦(g◦(r))) (b ◦ f = g ◦ a)
∼= f◦(a

◦(g◦(g◦(r))))

≤ f◦(a◦(r)) (g◦ a g◦).

(b) follows from (a).
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We say that the commutative diagram in Lemma 3.4.16 satisfies the dual Beck-Chevalley’s Prop-
erty (BCP) if for every r ∈ quotA, b◦(g◦(r)) ∼= f◦(a

◦(r)). In fact, we also have for every s ∈
quotB, g◦(b◦(s)) ∼= a◦(f

◦(s)). The following theorem shows that d-open, d-closed and d-initial mor-
phims ascends along d-final morphisms and d-open, d-closed and d-final morphisms descend along
d-initial morphisms. This is again an immediate consequence of Theorem 3.1.42 and Remark 3.4.2.

Theorem 3.4.17 (Pushout ascent and descent). Let d be a dual closure operator on C with respect to
E and consider the above pushout diagram satisfying the dual Beck-Chevalley’s Property (BCP). That
is, if M⊆M′

then

(a) [a ∈ F(d) and g ∈ F(d)(O(d),K(d), I(d), resp.)]⇒ f ∈ F(d)(O(d),K(d), I(d), resp.)

(b) [b ∈ I(d) and f ∈ I(d)(O(d),K(d),F(d), resp.)]⇒ g ∈ I(d)(O(d),K(d),F(d), resp.)

Corollary 3.4.18. Let d be a cohereditary dual closure operator (or f◦(p) : Y → f◦[P ] is a retraction).
Then the coresriction P → f◦[P ] of d-initial (d-open, d-closed, d-final, resp.) along p : X → P in E is
d-initial (d-open, d-closed, d-final, resp.).

Examples 3.4.19. (a) Consider the dual closure operator dt defined by
dtX(X → X/A) = X → X/tA, where A ≤ X ∈ Ab. Then a homomorphism f : X → Y is

(i) dt-closed if f−1(tB) = tf−1(B) for all B ≤ Y ;

(ii) dt-open if f(tA) = tf(A) for all A ≤ X;

(iii) dt-final if tA = f−1(tf(A)) for all A ≤ X;

(iv) dt-initial if f(tf−1(B)) = tB for all B ≤ Y .

(b) Consider the dual closure operator (dr)X(X → X/M) = X → X/rM,
where M ≤ X ∈ ModR. Then an R-linear map f : X → Y is

(i) dr-closed if f−1(rN) = rf−1(N) for all N ≤ Y ;

(ii) dr-open if f(rM) = rf(M) for all M ≤ X;

(iii) dr-final if rM = f−1(rf(M)) for all M ≤ X;

(iv) dr-initial if f(rf−1(N)) = rN for all N ≤ Y .

(c) Consider the dual closure operator (dr)X(X → X/M) = X → X/(M ∩ rX)
where M ≤ X ∈ ModR. Then an R-linear map f : X → Y is

(i) dr-closed if f is r-reflecting, that is: f−1(rX) = rY ;

(ii) dr-open if and only if dr-closed;

(iii) dr-final if f is injective and r-reflecting;

(iv) dr-initial if f is r-preserving, that is: f(rX) = rY .

http://etd.uwc.ac.za/



4. Hereditary Interior Operators

Hereditary closure operators were introduced by Dikranjan and Giuli in [DG87] on an arbitrary category
and have been investigated and used by several authors; see [DT95, Cas03]. More recently, hereditary
interior operators have been introduced by Castellini in [Cas11]. His notion of hereditary interiors is a
direct translation of the hereditary behaviour of the usual interior operator induced by the topology, but
does not lend itself to a natural and general notion in an arbitrary category. In this chapter, we begin by
introducing a notion of hereditary interior operators using the right adjoint of the preimage of a given
morphism by assuming that each pullback commutes with the join of subobjects, as in [LTOC11]. In
particular, we show that these operators behave as well as hereditary closure operators, discuss some of
their basic properties and present some examples. Moreover, we prove that specific interior operators of
these kind are Castellini’s hereditary interior operators. We then introduce a concept of dense morphisms
with respect to an interior operator and study their basic properties. In particular, we show that the
class of dense morphisms with respect to a hereditary interior operator is left cancellable with respect
to the class M and for an idempotent interior operator i, the class E i of i-dense morphisms is closed
under composition. We conclude the chapter by providing a few remarks on maximal interior operators.
In order to be able to develop the theory of hereditary interior operators, as in the previous chapter, we
consider anM-complete category C with (E ,M)-factorization systems for morphisms such thatM is a
fixed class of monomorphisms and further assume (with the exception of Section 4.3) that the preimage
f∗(−) preserves arbitrary joins for every morphism f in the category C.

4.1 Heredity

Recall that a categorical closure operator c in the sense of [DG87] is hereditary if s∧cX(r) ∼= s◦cS(rs)⇔
s∗(cX(r)) ∼= s∗(cX(s(rs))) ∼= cS(rs)⇔ s∗(cX(s(rs))) ≤ cS(rs) for any two subobjects r : R→ X and
s : S → X of X such that r ≤ s⇔ r = s ◦ rs.

R
rs //

r
  

S

s
��

X

On the other hand, hereditary interior operators have been introduced more recently in [Cas11]. The
author calls an interior operator i hereditary if s ◦ iS(rs)∧ iX(s) ≤ iX(r)⇔ s ◦ iS(rs)∧ iX(s) ∼= iX(r)
for any two subobjects r : R → X and s : S → X of X such that r ≤ s. This property, which
we term C-hereditary, is a direct translation of the hereditary behaviour of the usual interior operator
on a topological space. In fact, in the category Top of topological spaces and continuous maps, i is
C-hereditary if iS(R)∩ iX(S) = iX(R) for any X ∈ Top and R ⊆ S ⊆ X, in particular, the Kuratowski
interior operator kin enjoys this property. Consequently, these operators do not lend themselves to a
natural and general notion in an arbitrary category and do not behave as well as hereditary closure
operators (see in particular, [Cas11, Examples 3.8.(b) and (c)], [Cas15, Corollary 2] and they can not
be characterized as in Proposition 4.1.16).

Moreover, one might be tempted to define a hereditary interior operator i by replacing c by i and
reversing the order (replacing “ ≤ ” by “ ≥ ”) in the definition of hereditary closure operator c, that
is: i is “hereditary” if it satisfies the property iS(rs) ≤ s∗(iX(s(rs))) ∼= s∗(iX(r)) ⇔ s ◦ iS(rs) ≤
s◦s∗(iX(r)) ∼= s∧ iX(r) ∼= iX(r)⇔ s◦ iS(rs) ∼= iX(r). However, this definition does not give the right
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notion for heredity. The Kuratowski interior operator kin, which is obtained by set complementation
from the Kuratowski closure operator k (which is hereditary) on the category Top, does not satisfy the
property. In fact, for R = {2} ⊆ {2, 3} = S ⊆ (X = {1, 2, 3}, τX = {∅, {1}, {1, 2}, X}) ∈ Top we
have kinS (R) = R 6⊆ ∅ = kinX(R). In both categories Top and Grp, only the discrete interior operator
enjoys this property. These interior operators are called strongly hereditary and were studied in [Cas16].
Note that C-hereditary interior operators are obtained by modifying the above property.

In this section, we introduce and study a general notion of hereditary interior operators using the right
adjoint of the preimage of a given morphism in an arbitray category C. In particular, we prove that
hereditary interior operators behave as well as hereditary closure operators. The notions of initiality,
finality, openness and closedness with respect to a hereditary interior operator behave in a similar fashion
to the respective notions with resect to a hereditary closure operator in [GT00]. Indeed, we obtain a
characterization of heredity of a given interior operator i in terms of “initial embeddings” with respect
to i. Moreover, we study the relationship between our hereditary and Castellini’s (strongly) hereditary
interior operators. To this purpose we start with the following observation:

Remark 4.1.1. Let r : R → X and s : S → X be subobjects of X ∈ C such that r ≤ s. Then
the continuity of s with respect to an interior operator i in terms of the dual image s∗ implies that
s∗(iX(s∗(rs))) ≤ iS(s∗(s∗(rs))) ∼= iS(rs).

Remark 4.1.1 together with the above definition of hereditary closure operators motivates the following
definition:

Definition 4.1.2. An interior operator i on C with respect toM is said to be hereditary if for all r ≤ s
in subX and X ∈ C, one has

iS(rs) ∼= s∗(iX(s∗(rs))).

Since from the above observation one always has s∗(iX(s∗(rs))) ≤ iS(rs), to prove that i is hereditary,
it is sufficient to show that iS(rs) ≤ s∗(iX(s∗(rs))). But with the adjointness property this is equivalent
to s ◦ iS(rs) ≤ iX(s∗(rs)). In fact, in a topological category C over Set, i is hereditary if iS(R) ⊆
iX(R ∪ (X \ S)) for all R ⊆ S ⊆ X ∈ C.

The following remark will be useful in deriving some of the results that we are going to present.

Remark 4.1.3. Let i be an interior operator on C, r ≤ s in subX and X ∈ C. Then one has the
following properties of i:

(a) By Proposition 1.4.4(a) one has r = s ◦ rs ∼= s(rs) ≤ s∗(rs). Consequently, the monotonicity
property of i yields iX(r) ≤ iX(s∗(rs)).

(b) By Proposition 1.4.4(a), one has s∗(s∗(rs)) ∼= rs, hence s ∧ s∗(rs) ∼= s ◦ s∗(s∗(rs)) ∼= s ◦ rs = r.
Therefore, iX(s ∧ s∗(rs)) ∼= iX(r).

(c) The contraction and monotonicity property of i imply iX(r) ≤ iX(s) ≤ s. Thus, with the conti-
nuity condition of i, (a) and (b), one has iX(r) ∼= s∧iX(r) ∼= s◦s∗(iX(r)) ≤ s◦s∗(iX(s∗(rs))) ≤
s ◦ iS(s∗(s∗(rs))) ∼= s ◦ iS(rs). Note that s ◦ iS(rs) ≤ s trivially.

(d) From (a) and (c) one obtains iX(r) ≤ iX(s) ∧ iX(s∗(rs)).

(e) s ∧ iX(s∗(rs)) ∼= s ◦ s∗(iX(s∗(rs))) ≤ s ◦ iS(s∗(s∗(rs))) ∼= s ◦ iS(rs). Indeed, this follows from
the continuity condition of i and (b).
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(f) It follows from (e) that iX(s) ∧ iX(s∗(rs)) ∼= iX(s) ∧ s ∧ iX(s∗(rs)) ≤ iX(s) ∧ s ◦ iS(rs).

(g) Since s a s∗ a s∗ one has s ◦ iS(rs) ≤ iX(s∗(rs)) ⇔ iS(rs) ≤ s∗(iX(s∗(rs))) ⇔ s ◦ iS(rs) ≤
s ∧ iX(s∗(rs)).

As a consequence of Definition 4.1.2 and the previous remark one directly obtains the following handy
characterizations of heredity.

Proposition 4.1.4. Let i be an interior operator then the following are equivalent:

(a) i is hereditary;

(b) s ◦ iS(rs) ≤ iX(s∗(rs)) for all r ≤ s in subX and X ∈ C;

(c) s ◦ iS(rs) ≤ s ∧ iX(s∗(rs)) for all r ≤ s in subX and X ∈ C;

(d) s ◦ iS(rs) ∼= s ∧ iX(s∗(rs)) for any pair of M-subobjects r, s of X in C such that r ≤ s;

(e) s∗ preserves the interior of s∗(rs), that is: iS(s∗(s∗(rs))) ∼= s∗(iX(s∗(rs))) for all r ≤ s in subX
and X ∈ C.

As mentioned before, a strongly hereditary (C-hereditary, resp.) interior operator i is just an interior
operator such that s◦iS(rs) ∼= iX(r) (iX(s) ∧ s ◦ iS(rs), resp.) for all r ≤ s in subX and X ∈ C. With
these definitions in mind, we investigate the relationship between hereditary, C-hereditary and strongly
hereditary interior operators as follows.

Proposition 4.1.5. We have the following relations:

(a) Every strongly hereditary interior operator is in fact hereditary.

(b) Every additive and hereditary interior operator is C-hereditary.

Proof. Let r, s ∈ subX such that r ≤ s and i be an interior operator on C.

(a) Suppose i is strongly hereditary. Then s ◦ iS(rs) ∼= iX(r). Consequently, with Remark 4.1.3(a)
one obtains s ◦ iS(rs) ∼= iX(r) ≤ iX(s∗(rs)). Therefore, i is hereditary.

(b) Assume i is an additive and hereditary interior operator. Then

iX(s) ∧ s ◦ iS(rs) ∼= iX(s) ∧ s ∧ iX(s∗(rs)) (i hereditary)
∼= iX(s) ∧ iX(s∗(rs)) (i contractive)
∼= iX(s ∧ s∗(rs)) (i additive)
∼= iX(r) (Remark 4.1.3(b)).

In the following result, we give a condition which ensures that a C-hereditary interior operator is (strongly)
hereditary.

Proposition 4.1.6. Let r ≤ s in subX and X ∈ C. If i is a C-hereditary interior operator on C
satisfying the property s ◦ iS(rs) ≤ iX(s) then i is (strongly) hereditary.
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Proof. Let r ≤ s in subX and X ∈ C. Then

s ◦ iS(rs) ∼= s ◦ iS(rs) ∧ iX(s) (hypothesis on i)
∼= iX(r) (i C-hereditary ).

Consequently, i is strongly hereditary and it turns out that by Proposition 4.1.5(a) i is hereditary.

The following result provides a partial characterization of hereditary and C-hereditary interior operators.

Proposition 4.1.7. Consider the following properties of an interior operator i on C:

(a) i is hereditary.

(b) i is C-hereditary.

(c) iX(s) ∧ iX(s∗(rs)) ∼= iX(s) ∧ (s ◦ iS(rs)) for all r ≤ s in subX and X ∈ C.

Then (a)⇒ (c) and (b)⇒ (c). Furthermore, if i is additive then one also has (c)⇒ (b).

Proof. (a) ⇒ (c): Let i be an hereditary interior operator. Then s ◦ iS(rs) ∼= s ∧ iX(s∗(rs)).
Consequently, iX(s)∧ s◦ iS(rs) ∼= iX(s)∧ s∧ iX(s∗(rs)) ∼= iX(s)∧ iX(s∗(rs)) by the contraction
property of i.

(b) ⇒ (c): Let i be a C-hereditary interior operator. Then iX(s) ∧ s ◦ iS(rs) ∼= iX(r). Hence
iX(s) ∧ s ◦ iS(rs) ∼= iX(r) ≤ iX(s) ∧ iX(s∗(rs)) follows with Remark 4.1.3(d). Consequently,
with Remark 4.1.3(f) the property in (c) holds.

(c)⇒ (b): Let i be an additive interior operator satisfying the property in (c). Then for all r ≤ s
in subX and X ∈ C one obtains:

iX(s) ∧ s ◦ iS(rs) ∼= iX(s) ∧ iX(s∗(rs)) ((c))
∼= iX(s ∧ s∗(rs)) (i additive)
∼= iX(r) (Remark 4.1.3(b)).

Therefore, i is C-hereditary.

In fact, strongly hereditary interior operators satisfy the above property (c) since they are hereditary by
Proposition 4.1.5(a).

As a consequence of Lemma 1.4.7(b) and Definition 4.1.2, one has:

Remark 4.1.8. Let i be an interior operator on a topological category C over Set and r : R → X, s :
S → X be embeddings in C. Then we may assume R ⊆ S ⊆ X ∈ C. Furthermore,

(a) Since s∗(rs) = s(rs), where r = s◦rs and rs denotes the complement of rs, the domain of s∗(rs)
is X \ s(S \R) = R ∪ (X \ S).

(b) i is hereditary if iS(R) ⊆ iX(R ∪ (X \ S)).

(c) If iS(R) ⊆ iX(R) then i is strongly hereditary and hence hereditary.
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We now present some of the motivating examples of hereditary interior operators. Further examples will
appear later.

Examples 4.1.9. (a) The prototypical example of a hereditary interior operator is the Kuratowski
interior operator kin in the category Top, which assigns the usual topological interior R◦ to each
subspace R of a topological space X, that is: kinX(R) =

⋃
{O open in X : O ⊆ R}. Indeed, let

r ∈ kinS (R). Then there exists U = S ∩ O ∈ τS , where O ∈ τX , such that r ∈ U = S ∩ O ⊆ R.
But S ∩O ⊆ R implies that O∪ (X \S) = X ∩ (O∪ (X \S)) = (S ∪ (X \S))∩ (O∪ (X \S)) =
(S ∩ O) ∪ (X \ S) ⊆ R ∪ (X \ S). Consequently, r ∈ O ⊆ O ∪ (X \ S) ⊆ R ∪ (X \ S). This
yields r ∈ kinX(R ∪ (X \ S)), hence kin is hereditary. Furthermore, since kin is additive, it follows
from Proposition 4.1.5(b) that it is C-hereditary.

(b) The inverse Kuratowski interior operator in the category Top which is given by k∗inX (R) =⋃
{C closed in X : C ⊆ R} = {x ∈ R : kX({x}) ⊆ R}, where kX({x}) is the Kuratowski closure

of {x} in the topology of X, is hereditary. Indeed, let x ∈ k∗inS (R) = {r ∈ R : kS({x}) ⊆ R},
where kS({x}) is the Kuratowski closure of {x} in the topology of S. Then x ∈ R and
kS({x}) ⊆ R. We claim that kX({x}) ⊆ kS({x}). In fact, let y ∈ kX({x}). Then every
τX -open set Oy containing y has a nonempty intersection with {x}. That is, any open set in X
containing y contains x. Now let Uy be any τS-open set containing y. Then y ∈ Uy = S ∩ O
for some O ∈ τX . This in turn implies y ∈ S and y ∈ O ∈ τX . Consequently, x ∈ O. Hence
x ∈ R ⊆ S and x ∈ O. This turns out that x ∈ S ∩ O = Uy and hence Uy ∩ {x} 6= ∅.
Therefore, y ∈ kS({x}). Thus, kX({x}) ⊆ kS({x}). As a result x ∈ R and kS({x}) ⊆ R
implies x ∈ R and kX({x}) ⊆ kS({x}) ⊆ R ⊆ R ∪ (X \ S). Hence x ∈ k∗inX (R). Therefore,
k∗inS (R) ⊆ k∗inX (R ∪ (X \ S)) and hence k∗in is hereditary. Furthermore, since k∗in is additive, it
follows from Proposition 4.1.5(b) that it is C-hereditary.

Remark 4.1.10. Recall from [Cas11] that the composition of interior operators is an interior oper-
ator. However, heredity is not stable under composition of interior operators, that is: the compos-
ite of two hereditary interior operators need not be hereditary. Indeed, in the category of Top with
(Surjections, Embeddings)-factorization system we have seen that the Kuratowski interior operator kin

and the inverse Kuratowski interior operator k∗in are hereditary but the composition k∗in ◦kin fails to be
hereditary. To see this, let R = {2} ⊆ S = {1, 2} ⊆ X = {1, 2, 3} with τX = {∅, {1}, {2}, {1, 2}, X}
then kinS (R) = R = k∗inS (R). Consequently, k∗inS (kinS (R)) = k∗inS (R) = R. But k∗inX (kinX(R∪ (X \ S))) =
k∗inX (kinX({2, 3})) = k∗inX ({2}) = ∅. Therefore, k∗inS (kinS (R)) * k∗inX (kinX(R ∪ (X \ S))). Hence k∗in ◦ kin
is not hereditary.

In what follows we establish a natural relationship between hereditary interior and hereditary closure
operators.

Proposition 4.1.11. Suppose subX is a Boolean algebra for every C-object X. If c is a hereditary
closure operator then the induced interior operator ic given by icX(m) = cX(m) for all m ∈ subX, where
m denotes the complement of m, is hereditary. Similarly, if i is a hereditary interior operator then the
closure operator ci given in the previous proposition is hereditary.

Proof. Let r : R → X and s : S → X be subobjects of X such that r ≤ s. Assume c is a hereditary
closure operator. Then since here the preimage functor for any given morphism is assumed to preserve
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arbitrary joins (hence binary joins), Lemma 1.4.7 and Remark 2.3.12 yield

s∗(cX(s(rs))) ≤ cS(rs)

⇒ cS(rs) ≤ s∗(cX(s(rs))) ∼= s∗(cX(s(rs)))

⇒ icS(rs) ≤ s∗(iX(s(rs))) ∼= s∗(icX(s∗(rs)))

⇒ ic is hereditary.

Analogously if i is a hereditary interior operator then ci is hereditary.

The above proposition enables us to establish a bijective correspondence between hereditary closure and
hereditary interior operators. Consequently, with the examples of hereditary closure operators which are
found in [DT95] and [Cas03] we obtain the following additional examples.

Examples 4.1.12. (a) Let C be the category Top with (Surjections, Embeddings)-factorization sys-
tem and R ⊆ S ⊆ X ∈ Top.

(i) The Θin-interior operator given by
Θin
X(R) = {x ∈ R : ∃ an open neighbourhood Ux of x in X such that kX(Ux) ⊆ R},

where kX(Ux) is the Kuratowski closure of Ux, is not hereditary. This interior operator
can be obtained from Θ-closure operator, which is not hereditary, via set-theoretic comple-
mentation. Hence by Proposition 4.1.11 Θin-interior is not hereditary. On the other hand
this interior operator is shown to be C-hereditary (see [Cas11]).

(ii) The quasicomponent interior operator qinX(R) =
⋃
{O clopen in X : O ⊆ R} is not hered-

itary. This interior operator can be obtained from quasicomponent closure operator, which
is not hereditary, via set-theoretic complementation. Hence by Proposition 4.1.11 the quasi-
component interior is not hereditary. On the other hand this interior operator is not known
whether C-hereditary or not, that is, this problem is unsettled in [Cas11].

(b) Let C be the category PreTop of pretopological spaces and continuous functions with the
(Surjections, Embeddings)-factorization system. činX(R) =

⋃
{O open in X : O ⊆ R} is heredi-

tary. This operator is called the Čech interior operator.

(c) Let C be the category SGph of directed spatial graphs and graph homomorphisms with the
(Surjective homorphisms, Embeddings)-factorization system and let (G,R) be a directed spatial
graph and H ⊆ G. Then both the up-interior given by ↑inG (H) = {h ∈ H : (∀g ∈ G \
H) there is no edge g → h} and the down-interior given by ↓inG (H) = {h ∈ H : (∀g ∈ G \
H) there is no edge h→ g} are hereditary interior operators of SGph.

In the following lemma we prove that heredity is stable under arbitrary meet and join.

Lemma 4.1.13. Let (ik)k∈K ⊆ INT (C,M) be a nonempty family such that each ik is hereditary.
Then so are

∧
k∈K

ik and
∨
k∈K

ik.

Proof. Let r : R → X and s : S → X be subobjects of X such that r ≤ s. Suppose each interior
operator ik, k ∈ K is hereditary. Then (ik)S(rs) ∼= s∗((ik)X(s∗(rs))). Now if we set i? =

∧
k∈K

ik and

i� =
∨
k∈K

ik then
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(a) i?S(rs) = (
∧
k∈K

ik)S(rs) ∼=
∧
k∈K

(ik)S(rs) ∼=
∧
k∈K

s∗((ik)X(s∗(rs))) ∼= s∗(
∧
k∈K

(ik)X(s∗(rs))) ∼=

s∗((
∧
k∈K

ik)X(s∗(rs))) ∼= s∗(i?X(s∗(rs))). Indeed, this follows from the fact that “ limits com-

mute with limits”, hence meets commute with preimages.

(b) Since we assumed that each preimage preserves arbitrary joins we have that
i�S(rs) = (

∨
k∈K

ik)S(rs) ∼=
∨
k∈K

(ik)S(rs) ∼=
∨
k∈K

s∗((ik)X(s∗(rs))) ∼= s∗(
∨
k∈K

(ik)X(s∗(rs))) ∼=

s∗((
∨
k∈K

ik)X(s∗(rs))) ∼= s∗(i�X(s∗(rs))).

Consequently, each interior operator has both a hereditary core and hull as shown below. To this end,
let HEINT(C,M) denote the conglomerate of hereditary interior operators on C with respect to M.
The previous lemma motivates the following definition:

Definition 4.1.14. The hereditary hull
∧
i and hereditary core

∨
i of an interior operator i is defined by

∧
i =

∧
{j ∈ HEINT(C,M) : i v j} and

∨
i =

∨
{j ∈ HEINT(C,M) : j v i}, respectively.

As a consequence, the following result is obtained.

Theorem 4.1.15. The conglomerate HEINT(C,M) is both reflective and coreflective in INT (C,M).

The reflection and coreflection of i ∈ INT(C,M) are its hereditary hull
∧
i and its hereditary core

∨
i ,

respectively.

Proof. Let i ∈ INT(C,M). Since
∧
i and

∨
i are hereditary hull and hereditary core one has that i v

∧
i

and
∨
i v i, respectively. Consequently, we do have the following Galois connections.

HEINT(C,M) � � ⊥ // INT(C,M)
oo

⊥
//
HEINT(C,M)? _oo

In what follows we want to investigate the notions of initial, final, open and closed morphisms with
respect to a hereditary interior operator. We begin with the following characterization of heredity in
terms of the notion of initiality.

Proposition 4.1.16. An interior operator i is hereditary if and only if every morphism in M is i-initial.

Proof. Suppose i is hereditary. Let s : S → X be a morphism in M and t : T → S be a subobject of
S. Then iS(t) ∼= s∗(iX(s∗(t))) since s ◦ t ≤ s. Therefore, s is i-initial.

On the other hand, assume that every morphism inM is i-initial. Let r ≤ s ∈ subX ⊆M and X ∈ C.
Then s is i-initial, hence iS(rs) ∼= s∗(iX(s∗(rs))).

The following lemma provides conditions of heredity for free.

Lemma 4.1.17. Let i be any interior operator. Then iS(rs) ∼= s∗(iX(s∗(rs))) for all r ≤ s in subX
and X ∈ C with s
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(a) an i-open morphism or;

(b) an i-closed morphism or;

(c) an i-final morphism or;

(d) a section.

Proof. It follows from the fact that any section is i-initial and each i-open(or i-closed or i-final) morphism
in M is i-initial.

We recall the following definition from [Cas16].

Definition 4.1.18. An interior operator i on C is said to be modal if and only if every morphism in C
is i-open.

Consequently, with Lemma 4.1.17(a) we obtain the following result:

Proposition 4.1.19. Every modal interior operator is hereditary.

Proof. Let i be a modal interior operator, r : R → X and s : S → X be subobjects of X ∈ C such
that r ≤ s. Since every morphism is i-open, s is an open morphism. Hence, by Lemma 4.1.17(a), one
has iS(rs) ∼= s∗(iX(s∗(rs))). Consequently, i is hereditary.

The previous proposition can also be obtained as a consequence of [Cas16, Proposition 3.15.(a)] and
Proposition 4.1.5(a).

Remark 4.1.20. For a modal interior operator i, the class of i-codense subobjects is stable under

pullback. Indeed, let
f

X → Y be a morphism in C and n be an i-codense subobject of Y . Since i is
modal, f is i-open. Consequently, iX(f∗(n)) ∼= f∗(iY (n)) ∼= f∗(0Y ) ∼= 0X since each morphism in C
reflects the least subobject. Therefore, f∗(n) is i-codense in X.

The following result shows that for additive hereditary interior operator i, the class of i-open subobjects
is closed under composition.

Proposition 4.1.21. For any additive and hereditary interior operator i, composites of i-open subobjects
are i-open.

Proof. Let i be an additive hereditary interior operator, t : T → S and s : S → X be i-open subobjects
of S and X, respectively. Since s◦ t ≤ s, by Remark 4.1.3(b), one has s◦ t ∼= s◦ iS(t) ∼= s∧ iX(s∗(t)) ∼=
iX(s) ∧ iX(s∗(t)) ∼= iX(s ∧ s∗(t)) ∼= iX(s ◦ t). Therefore, the composite s ◦ t is i-open.

We now show:

Lemma 4.1.22. Let i be an interior operator and s : S → X be a subobject of X ∈ C. Then the
following statements hold.

(a) Suppose that i is additive. If s is an i-open subobject and i-initial then it is an i-open morphism.

(b) [Cas15] Suppose that i is standard. If s is an i-open morphism then it is an i-open subobject.
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(c) If s is an i-open morphism then it is i-initial.

(d) Suppose that i is both standard and additive. s is an i-open subobject and i-initial if and only if
it is an i-open morphism.

Proof. (a) Let t ∈ subS. Then

s(iS(t)) ∼= s ◦ iS(t) (Remark 1.3.6(a))
∼= s ◦ s∗(iX(s∗(t))) (s-initial)
∼= s ∧ iX(s∗(t))
∼= iX(s) ∧ iX(s∗(t)) (s i-open subobject)
∼= iX(s ∧ s∗(t)) (i additive)
∼= iX(s ◦ t) (Remark 4.1.3(b))

≤ iX(s(t)) (s ◦ t = s(t) ◦ e, e ∈ E).

(b) s = s ◦ 1S ∼= s ◦ iS(1S) ∼= s(iS(1S)) ≤ iX(s(1S)) ∼= iX(s ◦ 1S) ∼= iX(s).

(c) iS(t) ∼= iS(s∗(s∗(t))) ∼= s∗(iX(s∗(t))) for all t ∈ subS.

(d) This is just (a), (b) and (c) together.

The following are properties of open subobjects with respect to a hereditary interior operator.

Proposition 4.1.23. Let i be an additive interior operator and s : S → X be a subobject of X ∈ C.
Then the following statements hold.

(a) Suppose that i is hereditary. If s is an i-open subobject then it is an i-open morphism.

(b) Suppose that i is standard and hereditary. s is an i-open morphism if and only if it is an i-open
subobject.

Proof. This follows from Proposition 4.1.16 and Lemma 4.1.22.

Corollary 4.1.24. Let i be an additive and hereditary interior operator. Then:

(a) If m is an i-open subobject of X and f : X → Y ∈ QO(i), then f ◦m ∈ QO(i).

(b) The class of i-codenseM-subobjects is left-cancellable with respect to the class of i-open subob-
jects.

Proof. (a) is an immediate consequence of Corollary 3.2.13 and Proposition 4.1.23(a).

(b) follows from Remark 3.2.8(b) and Proposition 4.1.23(a).

In what follows we deal with the pullback behaviour of open, closed, initial and final morphisms with
respect to a hereditary interior operator. Recall that each of the notions of initial, open, closed and final
morphism with respect to an interior operator i ascends along i-initial morphisms and descends along
i-final morphisms. In particular, each of the class of initial, final, open, closed morphisms with respect
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to a hereditary interior operator is stable under pullback along M-morphisms. More precisely:

Proposition 4.1.25. Let i be a hereditary interior operator and E be stable under pullback along M-
morphisms. Then for every n : N → Y in M the restriction f∗(N) → N (which is understood to
be the pullback of f along n, i.e., the C-morphism f̂ in the pullback diagram below) of the i-initial
(i-final, i-open, i-closed, resp.) morphism f : X → Y is i-initial (i-final, i-open, i-closed, resp.). In
fact, heredity is not needed if the pullback of the given M -morphism is a section.

f∗[N ]
f̂
//

f∗(n)
��

N

n

��

X
f
// Y

Proof. This is a consequence of Proposition 4.1.16, Remark 3.1.39(b) and Theorem 3.1.42.

As an immediate consequence of Propositions 3.2.6 and 4.1.25, one obtains:

Corollary 4.1.26. Let i be a hereditary interior operator and E be stable under pullback along M-
morphisms. If f is an i-open morphism then any of its pullback alongM-morphisms reflects i-codensity.

Note that since we assume each preimage commutes with joins in the category C, each morphism re-
flects the least subobject.

Definition 4.1.27. Let i be an interior operator. A morphism f is stably i-closed (i-open, i-initial,
i-final, resp.) if every pullback of f is i-closed (i-open, i-initial, i-final, resp.).

Remark 4.1.28. Let i be an additive and hereditary interior operator and s : S → X be a subobject of
X ∈ C. If s is an i-open subobject then s is stably i-open morphism. Indeed, this is a consequence of
the fact the class of all i-open M-subobject is stable under pullback and Proposition 4.1.23.

In the following proposition, for a given hereditary interior operator i we provide sufficient conditions on
the objects involved for each of the classes of i-morphisms to be stable under pullback.

Proposition 4.1.29. Let i be a hereditary interior operator and let E be stable under pullback along
M-morphisms. A morphism f : X → Y in C is stably i-closed (i-open, i-initial, i-final, resp.) if and
only if f × 1V is i-closed (i-open, i-initial, i-final, resp.) for every object V ∈ C.

Proof. Since the verifications of the statements for i-initiality, i-finality and i-openness are very similar
to the proof of the assertion for i-closedness, the following proves the claim. Suppose f×1V : X×V →
Y × V is i-closed for all V ∈ C. Let f̂ : U → V be a pullback of f along v : V → Y , as in the left
diagram below. Then one can factorize this pullback diagram, as in the right diagram below with both
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the outer rectangle and the lower square pullbacks.

U
f̂
//

u

��

V

v =

���� ��

X
f
// Y

U
f̂

//

〈u,f̂〉
��

V

〈v,1V 〉
��

X × V f×1V //

πX
��

Y × V
pY
��

X
f

// Y

Consequently, the upper square of the right above diagram is a pullback, hence f̂ is a pullback of f×1V .
The fact that M is stable under pullback and 〈v, 1V 〉 is a section (hence a regular monomorphism)
implies 〈v, 1V 〉 ∈ M. Consequently, by Proposition 4.1.25, f̂ ∈ K(i). The other part follows from
straightforward verification.

Proposition 4.1.16 leads us to the following definition:

Definition 4.1.30. Given an interior operator i, we call i cohereditary if and only if every morphism in
E is i-final.

Consequently, with Proposition 3.1.42 one deduces the following:

Proposition 4.1.31. Let i be a cohereditary interior operator. If the pullback g : A→ B of f : X → Y
along b : B → Y ∈ E is an i-initial (i-final, i-open, i-closed, resp.) morphism then f itself is i-initial
(i-final, i-open, i-closed, resp.). In fact, coheredity is not needed if b is a retraction.

In the remainder of this section we shall deal with weakly hereditary interior operators. Recall from
[DG87] that a closure operator c is weakly hereditary if ccX [M ](jm) ∼= 1cX [M ] for all m : M → X ∈ M
withm = cX(m)◦jm. This is equivalent to ccX [M ](jm) ∼= (cX(m))∗(cX(m)) = (cX(m))∗(cX (cX(m) ◦ jm))
for all m : M → X ∈ M with m = cX(m) ◦ jm. In fact, this is also equivalent to the property
cS(rs) ∼= s∗(cX(s(rs))) holds for r = m ≤ s = cX(m) in subX and X ∈ C, that is: c satisfies
the heredity condition for r = m ∈ subX and s = cX(m) with m ∈ subX and X ∈ C. On the
other hand, for a hereditary interior operator i, one has iM (jm) ∼= m∗(iX(m∗(jm))) for all m ∈ subX
and X ∈ C since the subobjects r and s in Definition 4.1.2 are arbitary which satisfy r ≤ s one may
take r = iX(m) and s = m ∈ subX with m ∈ subX and X ∈ C. This motivates the following definition:

Definition 4.1.32. An interior operator i is weakly hereditary if iR(jr) ∼= r∗(iX(r∗(jr))) for all r ∈
subX and X ∈ C.

Clearly, heredity implies weak heredity and hence all examples of hereditary interior operators are weakly
hereditary. The adjunction r∗ a r∗ and continuity condition of i give the following:

Remark 4.1.33. (a) An interior operator i is weakly hereditary if r ◦ iR(jr) ≤ iX(r∗(jr)) ⇔ r ◦
iR(jr) ≤ (or ∼=) r ∧ iX(r∗(jr)) for all r ∈ subX.

(b) Let i be an interior operator on topological category C over Set then i is weakly hereditary if
iR(iX(R)) ⊆ iX (iX(R) ∪ (X \R)) for all R ⊆ X ∈ C.

Weak heredity is stable under both arbitrary meet and join analogously to heredity. More precisely:
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Lemma 4.1.34. Let (ik)k∈K ⊆ INT (C,M) be a nonempty family such that each ik is weakly heredi-
tary. Then so are

∧
k∈K

ik and
∨
k∈K

ik.

Consequently, each interior operator has both a weakly hereditary core and hull as shown below. To this
end, let WHEINT(C,M) denote the conglomerate of weakly hereditary interior operators on C with
respect to M. The previous lemma motivates the following definition:

Definition 4.1.35. A weakly hereditary hull
�
i and weakly hereditary core

⊕
i of an interior operator i is

defined by
�
i =

∧
{j ∈WHEINT(C,M) : i v j} and

⊕
i =

∨
{j ∈WHEINT(C,M) : j v i}, respectively.

As a consequence, the following result is obtained.

Theorem 4.1.36. The conglomerate WHEINT (C,M) of weakly hereditary interior operators on C
with respect to M is both reflective and coreflective in INT (C,M). The reflection and coreflection of

i ∈ INT (C,M) are its hereditary hull
�
i and its hereditary core

⊕
i , respectively.

4.2 Dense morphisms with respect to an interior operator

In this section we consider an interior operator i on C with respect to M and introduce a notion of
dense morphisms with respect to i. We use these morphisms in the second section of the next chapter
to investigate a notion of connectedness with respect to i. In [DT95], a subobject m : M → X is
dense with respect to a closure operator c if cX(m ◦ 1M ) ∼= cX(m) ∼= 1X . Now, if we assume subX
is a Boolean algebra for every C-object X then m : M → X is c-dense if iX(m∗(0M )) ∼= 0X . This
observation yields the following definition.

Definition 4.2.1. An M-subobject m : M → X is called i-dense in X if iX(m∗(0M )) ∼= 0X .

Remark 4.2.2. In the category of Top if m : M → X is a dense subobject with respect to the
Kuratowski closure operator k then m is a dense subobject with respect to the Kuratowski interior
operator k∗.

As a generalization of the above definition a morphism f : X → Y in an arbitrary category is dense with
respect to a closure operator c if cY (f(1X)) ∼= 1Y (see [DT95]). Now, if we assume subX is a Boolean
algebra for every C-object X then by Remark 2.3.12 we have that (∀m ∈ subX)(iX(m) = cX(m)),
where m denotes the complement of m. Consequently, f is c-dense if iY (f∗(0X)) ∼= 0Y . Indeed, this
motivates us to have the following definition.

Definition 4.2.3. A morphism f : X → Y is said to be i-dense if f∗(0X) is i-dense in Y . That is,
iY (f∗(0X)) ∼= 0Y .

Remark 4.2.4. (a) If m : M → X inM is an i-dense morphism then m is i-dense as a subobject of
X.

(b) Let f : X → Y be a k-dense morphism in the category of Top, where k is the Kuratowski closure
operator. Then kY (f(X)) = Y ⇔ k∗Y (f∗(∅)) = ∅. Hence, f is k∗-dense.

(c) Let f : X → Y be a dense morphism in the category of Loc and (iX : OX → OX)X∈Loc be an
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interior operator. Then since the right adjoint of a dense frame homorphisms maps the bottom
element to the bottom we have that f is i-dense.

Remark 4.2.5. Let E i be the class of i-dense morphisms in C. Then E ′ is a subclass of E i. Indeed, let
f ∈ E ′ . Then by Proposition 1.4.4(c) one has that iY (f∗(0X)) ∼= iY (0Y ) ∼= 0Y .

This leads us to the following observation.

Proposition 4.2.6. Let f : X → Y be a morphism in E ′ and m : M → X be an i-dense subobject of
X. Then f ◦m is an i-dense morphism.

Proof. iY ((f ◦ m)∗(0M )) ∼= iY (f∗(m∗(0M ))) ≤ f∗(iX(m∗(0M ))) ∼= f∗(0X) ∼= 0Y , by Proposition
1.4.4(c).

In the next result we discuss stability and cancellation properties of the class E i.

Proposition 4.2.7. Let f : X → Y and g : Y → Z be morphisms in C. Then

(a) E i is right cancellable, that is: g ◦ f ∈ E i ⇒ g ∈ E i.

(b) g ∈ E ′, f ∈ E i ⇒ g ◦ f ∈ E i, that is: E i is stable under composition with the class E ′ from the
left.

(c) f ∈ E ′, g ∈ E i ⇒ g ◦ f ∈ E i, that is: E i is stable under composition with the class E ′ from the
right.

(d) If g ◦ f ∈ E i, g ∈M and i is hereditary then f ∈ E i, that is: for hereditary interior operators the
class E i is left cancellable with respect to M.

Proof. (a) iZ(g∗(0Y )) ≤ iZ(g∗(f∗(f
∗(0Y )))) ∼= iZ(g ◦ f)∗(0X) ∼= 0Z .

(b) iZ((g ◦ f)∗(0X)) ∼= iZ(g∗(f∗(0X))) ≤ g∗(iY (f∗(0X))) ∼= g∗(0Y ) ∼= 0Z .

(c) iZ((g ◦ f)∗(0X)) ∼= iZ(g∗(f∗(0X))) ∼= iZ(g∗(0Y )) ∼= 0Z .

(d) Since i is hereditary then by the Proposition 4.1.16 we have that every morphism inM is i-initial.
In particular, g is i-initial here. Consequently, since f∗(0X) ∈ subY one has that
iY (f∗(0X)) ∼= g∗(iZ(g∗(f∗(0X)))) ∼= g∗(iZ((g ◦ f)∗(0X))) ∼= g∗(0Z) ∼= 0Y .

The following proposition shows that for a hereditary interior operator i the class of i-dense subobjects
is left cancellable with respect to M.

Proposition 4.2.8. Let i be a hereditary interior operator and r ≤ s in subX. If r is an i-dense
subobject of X, then rs is an i-dense subobject of S.

Proof. The fact that i is hereditary implies every morphism inM, in particular s, is i-initial. Moreover,
subobjects (and hence s) reflect least subobjects. Consequently, iS((rs)∗(0R)) ∼= s∗(iX(s∗((rs)∗(0R)))) ∼=
s∗(iX((s ◦ rs)∗(0R))) ∼= s∗(iX(r∗(0R))) ∼= s∗(0X) ∼= 0S .
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Of course, the above Proposition can be considered as a corollary to Proposition 4.2.7(d).

Proposition 4.2.9. Let i be an idempotent interior operator. Then composites of i-dense subobjects
are i-dense.

Proof. Suppose r, s ∈subX such that the diagram

R
rs //

r
  

S

s
��

X

.

commutes, rs is an i-dense subobject of S and s is an i-dense subobject of X. Then the continuity
condition of i yields iX(r∗(0R)) ∼= iX((s ◦ rs)∗(0R)) ∼= iX(s∗((rs)∗(0R))) ≤ s∗(iS((rs)∗(0R))) ∼=
s∗(0S). This combined with the idempotency property of i produce iX(r∗(0R)) ∼= iX(iX(r∗(0R))) ≤
iX(s∗(0S)) ∼= 0X . Thus, iX(r∗(0R)) ∼= 0X . Therefore, r is an i-dense subobject of X.

The above Proposition can be generalized as follows.

Proposition 4.2.10. For any idempotent interior operator i, the class E i of i-dense morphisms in C is
stable under composition.

Proof. Let
f

X → Y
g

→ Z such that both f, g ∈ E i. Then since f ∈ E i we have that iZ((g ◦ f)∗(0X)) ∼=
iZ(g∗(f∗(0X))) ≤ g∗(iY (f∗(0X))) ∼= g∗(0Y ). This together with idempotency of i, monotoncity of
i and g ∈ E i implies iZ((g ◦ f)∗(0X)) ∼= iZ(iZ((g ◦ f)∗(0X))) ≤ iZ(g∗(0Y )) ∼= 0Z . Therefore,
iZ((g ◦ f)∗(0X)) ∼= 0Z and hence g ◦ f ∈ E i.

4.3 Maximal interior operators

In this section we study maximal interior operators. To do this, let i be an interior operator throughout
this section and consider the following stability property of Oi under composition with M from the
right:

(RCO) For all rs : R → S and s : S → X in M, if s is i-open then r = s ◦ rs is i-open, that is:
Oi ◦M ⊆ Oi. Consequently, we have the following lemma:

Lemma 4.3.1. For any idempotent interior operator i, (RCO) yields that r ≤ iX(1X) if and only if r
is i-open.

Proof. (⇒): Suppose r ≤ iX(1X). Then since i is idempotent, one has iX(1X) is i-open. Hence
(RCO) gives r = iX(1X) ◦ riX(1X) is i-open.

(⇐): Suppose r is i-open. Then the fact that r ≤ 1X implies r ∼= iX(r) ≤ iX(1X).

Lemma 4.3.2. If i is an idempotent interior operator and (RCO) holds for X ∈ C then
iX(r) ∼= r ∧ iX(1X).
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Proof. Since r ∧ iX(1X) ≤ iX(1X) then idempotency of i and (RCO) imply r ∧ iX(1X) is i-open.
Consequently, one has r∧ iX(1X) ∼= iX(r∧ iX(1X)) ≤ iX(r)∧ iX(iX(1X)) ∼= iX(r)∧ iX(1X) ∼= iX(r).
Moreover, one always has iX(r) ≤ r and r ≤ 1X . As a result, iX(r) ≤ r ∧ iX(1X). Therefore,
iX(r) ∼= r ∧ iX(1X).

Consequently, one has the following definition.

Definition 4.3.3. An interior operator i is called maximal if iX(r) ∼= r ∧ iX(1X) for all r ∈ subX and
X ∈ C.

Proposition 4.3.4. Let i ∈ INT(C,M). i is maximal if and only if iX(r) ∼= r ∧ iX(s) for all r ≤ s in
subX and X ∈ C.

Proof. (⇒) Suppose i is maximal and r ≤ s in subX. Then iX(r) ∼= r ∧ iX(1X) and iX(s) ∼=
s ∧ iX(1X). Consequently, r ∧ iX(s) ∼= r ∧ s ∧ iX(1X) ∼= r ∧ iX(1X) ∼= iX(r).

(⇐) Let X ∈ C and r ∈ subX. Then since r ≤ 1X we obtain iX(r) ∼= r ∧ iX(1X).

An interior operator i is fully additive if iX(
∧
i∈I
mi) ∼=

∧
i∈I
iX(mi) for all mi ∈ subX, X ∈ C and

i ∈ I 6= ∅. Consequently, with Proposition 4.3.4 one has:

Corollary 4.3.5. Every maximal interior operator is fully additive.

Proof. Suppose i is a maximal interior operator. Then since for all i ∈ I,
∧
i∈I
mi ≤ mi, one has∧

i∈I
iX(mi) ∼=

∧
i∈I
iX(mi) ∧

∧
i∈I
mi ≤ iX(mi) ∧

∧
i∈I
mi
∼= iX(

∧
i∈I
mi).

Proposition 4.3.6. Every maximal interior operator is idempotent.

Proof. Let i be a maximal interior operator and m ∈ subX. Since iX(m) ≤ m then setting r = iX(m)
and s = m Proposition 4.3.4 yields iX(iX(m)) ∼= iX(m) ∧ iX(m).

Proposition 4.3.7. If i is maximal then Oi satisfies (RCO).

Proof. Let s : S → X ∈ Oi and rs : R → S ∈ M. Since r = s ◦ rs ≤ s, maximality of i gives
iX(r) ∼= r ∧ iX(s) ∼= r ∧ s ∼= r. Consequently, r = s ◦ rs ∈ Oi. Therefore, Oi ◦M ⊆ Oi, hence Oi

satisfies (RCO).

Theorem 4.3.8. An interior operator i is maximal if and only if i is idempotent and (RCO) holds for
all X ∈ C.

Proof. The necessary conditions hold by Propositions 4.3.6 and 4.3.7. Conversely, assume that i is
idempotent and (RCO) holds for all X ∈ C. Then for r ≤ s in subX and X ∈ C, one has iX(s) is
i-open. Consequently, by (RCO), r ∧ iX(s) is i-open since r ∧ iX(s) ≤ iX(s). Hence, r ∧ iX(s) ∼=
iX(r ∧ iX(s)) ≤ iX(r)∧ iX(iX(s)) ∼= iX(r)∧ iX(s) ∼= iX(r). Moreover, one always has iX(r) ≤ r and
iX(r) ≤ iX(s) and hence iX(r) ≤ r ∧ iX(s). Thus iX(r) ∼= r ∧ iX(s).

Proposition 4.3.9. Let i, j ∈ INT(C,M) such that j is maximal. Then j ◦ i ∼= j ∧ i.
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Proof. Let r ∈ subX. Since iX(r) ≤ r maximality of j gives (j◦i)X(r) ∼= jX(iX(r)) ∼= iX(r)∧jX(r) ∼=
(j ∧ i)X(r). Therefore, j ◦ i ∼= j ∧ i.

Proposition 4.3.10. Maximality is stable under arbitrary meet, that is: for a non-empty family (ik)k∈K
with each ik maximal, one has

∧
k∈K

ik is maximal.

Proof. Let r ≤ s in subX. Since “meets commute with meets” one has:
(
∧
k∈K

ik)X(r) ∼=
∧
k∈K

(ik)X(r) ∼=
∧
k∈K

r ∧ (ik)X(s) ∼= r ∧
∧
k∈K

(ik)X(s) ∼= r ∧ (
∧
k∈K

ik)X(s). Hence
∧
k∈K

ik

is maximal.

Let MAXINT(C,M) denote the conglomerate of maximal interior operators on C with respect to M.
Since the arbitrary meet of maximal interior operators is maximal one obtains the following.

Definition 4.3.11. Given an interior operator i, its maximal hull ima is defined by

ima :=
∧
{j ∈ MAXINT(C,M) : i v j}.

As a result,

Theorem 4.3.12. The conglomerate MAXINT(C,M) is reflective in INT(C,M) and the reflection of
i ∈ INT(C,M) is its maximal hull.

Proof. INT(C,M)
i 7→ima−⇀↽−
j←↩j

MAXINT(C,M).

Proposition 4.3.13. Assume in the category C that preimages commute with arbitrary joins. If both i
and j are maximal interior operators then i ∨ j is maximal.

Proof. Let r ≤ s in subX. Since by Remark 1.4.8 each subX, where X ∈ C, is a frame (hence a
distributive lattice), one has (i ∨ j)X(r) ∼= iX(r) ∨ jX(r) ∼= (r ∧ iX(s)) ∨ (r ∧ jX(s)) ∼= r ∧ (iX(s) ∨
jX(s)) ∼= r ∧ (i ∨ j)X(s).

Proposition 4.3.14. In any category, the only maximal standard interior operator is the discrete one.

Proof. Let i be a maximal and standard interior operator. Then for any r ∈ subX, one has iX(r) ∼=
r ∧ iX(1X) ∼= r ∧ 1X ∼= r. Hence i is discrete.

Recall that in [Cas16], it was shown that the non-trivial examples of interior operators in the categories
Top and Grp are standard. Therefore, by Proposition 4.3.14, in Top only the trivial and discrete interior
operators are maximal while the discrete one is the only maximal interior operator in Grp. Even though,
we are not sure whether non-trivial examples of maximal interior operators exist in other categories,
from a theoretical point of view maximal interior operators may look interesting.
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5. Connectedness via an Interior Operator

The foundation of the general theory of topological connectedness was begun with Preuß in [Pre71] and
Herrlich in [Her68]. Thereafter the categorical notion of connectedness on an arbitrary category has
been studied by using closure and neighbourhood operators; see [CH94, CT97, Cas01, Cle01, CH03b,
Šla09, Raz12]. In most of these papers, the property that every morphism X → D with D discrete
object relative to a given closure c has to be constant is taken as a definition for the object X to be
c-connected. More recently, in [CR10], Castellini and Ramos studied the notion of connectedness in the
category of topological spaces and continuous maps by using interior operators. In this chapter, we use
the concept of categorical interior operators to study two possible general notions of “connectedness”
in an arbitrary category. To this end, as in the case of the previous two chapters, we work in an M-
complete category C supplied with an (E ,M)-factorization structure for morphisms such that M is a
fixed class of monomorphisms and assume that the preimage f∗(−) preserves arbitrary joins for every
morphism f in the category C. We also consider an interior operator i on C with respect to M.

5.1 Connectedness via constant morphisms

In this section, following the ideas of [Cle01] we first introduce the concept of coarse and fine objects
with respect to a given interior operator and a relative notion of constant morphisms. We then use
these notions to investigate the notions of connectedness and disconnectedness with respect to interior
operators on C in a more general categorical setting. Our notion generalizes the work given in [CR10],
extending the concept to a suitable arbitrary category. Furthermore, under mild conditions on C, we
construct a commutative diagram of Galois connections between the conglomerate of all interior oper-
ators on C with the reverse order, the conglomerate of all full subcategories of C and the dual of the
conglomerate of all full subcategories of C to relate our notions to the Herrlich-Preuß-Arhangel’skii-
Wiegandt (HPAW) connectedness-disconnectedness Galois connection. In the sequel we denote the
terminal object by 1 and the unique terminal morphism X → 1, where X ∈ C, by !X . Let us recall the
following definition from [CT97].

Definition 5.1.1. An object X ∈ C is preterminal if !X : X → 1 is monic.

1 is a preterminal object, since !1 : 1 → 1 is an isomorphism we have that !1 : 1 → 1 is monic. In the
category of Sets, Top, Pos, objects with the empty underlying set and the one element underlying set
are preterminal and in a poset considered as a category every object is preterminal. We use P to denote
the full subcategory of preterminal objects of C.

Remark 5.1.2. Let E be stable under pullback along monomorphisms. Then

P ⊆ {X ∈ C : !∗X((!X)∗(m)) ∼= m for all m ∈ subX}.

The following result describes the construction of an interior operator of interest associated with P.

Proposition 5.1.3. The operator j = (jX : subX → subX)X∈C defined by

jX(r) =
∨
{g∗(g∗(r)) :

g

X → P , P ∈ P}

for all r ∈ subX is a standard and idempotent interior operator on C.
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Proof. One can easily verify that j satisfies the contractiveness and monotonocity property. To prove
the continuity condition, let f : X → Y be a morphism in C. Then for all n ∈ subY one obtains

f∗(jY (n)) ∼= f∗(
∨
{h∗(h∗(n)) :

h
Y → P , P ∈ P})

∼=
∨
{f∗(h∗(h∗(n))) :

h
Y → P , P ∈ P}

∼=
∨
{(h ◦ f)∗(h∗(n)) :

h
Y → P , P ∈ P}

≤
∨
{(h ◦ f)∗(h∗(f∗(f

∗(n)))) :
h

Y → P , P ∈ P}

∼=
∨
{(h ◦ f)∗((h ◦ f)∗(f

∗(n))) :
h

Y → P , P ∈ P}

∼=
∨
{(h ◦ f)∗((h ◦ f)∗(f

∗(n))) :
h◦f

X → P , P ∈ P}

≤
∨
{g∗(g∗(f∗(n))) :

g

X → P , P ∈ P} ∼= jX(f∗(n)).

To show idempotency, let g : X → Q,Q ∈ P. Then for all r ∈ subX we have that

g∗(r) ∼= 1∗Q((1Q)∗(g∗(r))) ≤
∨
{f∗(f∗(g∗(r))) :

f

Q→ P , P ∈ P} = jQ(g∗(r))

⇒ g∗(r) ∼= jQ(g∗(r))

⇒ g∗(g∗(r)) ∼= g∗(jQ(g∗(r))) ≤ g∗(g∗(jX(r)))

⇒ jX(r) =
∨
{g∗(g∗(r)) :

g

X → Q,Q ∈ P} ≤
∨
{g∗(g∗(jX(r))) :

g

X → Q,Q ∈ P} = jX(jX(r))

⇒ jX(r) ∼= jX(jX(r)).

We now show that j is standard. Let g : X → P, P ∈ P. Then g∗(g∗(1X)) ∼= g∗(1P ) ∼= 1X .

Consequently, jX(1X) ∼=
∨
{g∗(g∗(1X)) :

g

X → P , P ∈ P} ∼=
∨
{1X} ∼= 1X . Therefore, jX(1X) ∼=

1X .

Note that the fact that j is standard implies j is different from the trivial interior operator tX(r) ∼= 0X
for all r ∈ subX.

Definition 5.1.4. The operator j in Proposition 5.1.3 is called the indiscrete (coarse) interior operator.

Remark 5.1.5. (a) Let P ∈ P. Then jP (r) ∼= r for all r ∈ subX. Indeed, since P ∈ P we have that
1P

P → P is one of the g’s in the class {
g

P → Q,P ∈ P}. So, r = 1∗P ((1P )∗(r)) ≤
∨
{g∗(g∗(r)) :

g

P → Q,Q ∈ P} = jP (r). Hence, r ∼= jP (r);

(b) In a category C in which the preimage functor for any given morphism preserves arbitrary joins,
the indiscrete interior operator j always exists (see Proposition 5.1.3);

(c) The discrete interior (or fine) operator d can be described by dX(r) ∼= r ∧
∧
{f∗(jP (f∗(r))) :

f

P → X,P ∈ P} ∼= r ∧
∧
{f∗(f∗(r)) :

f

P → X,P ∈ P} for all X ∈ C and r ∈ subX.

The following result depicts under what condition the indiscrete interior operator is induced by the
terminal object 1.

http://etd.uwc.ac.za/



Section 5.1. Connectedness via constant morphisms Page 99

Proposition 5.1.6. Let E be stable under pullback along monomorphisms. Then jX(r) ∼=!∗X((!X)∗(r))
for all X ∈ C and r ∈ subX.

Proof. Let r ∈ subX and g : X → P with P ∈ P be any morphism. Then the diagram

X
g
//

!X   

P

!P
��

1

commutes and !P is monic and since E is stable under pullback along monomorphisms we have that
!∗P ((!P )∗(g∗(r))) ∼= g∗(r). Consequently, !∗X((!X)∗(r)) ∼= (!P ◦g)∗((!P ◦g)∗(r)) ∼= g∗(!∗P ((!P )∗(g∗(r)))) ∼=
g∗(g∗(r)). This in turn implies jX(r) =

∨
{g∗(g∗(r)) :

g

X → P , P ∈ P} ∼=
∨
{!∗X((!X)∗(r))} ∼=

!∗X((!X)∗(r)).

Throughout the remainder of this chapter unless otherwise specified, we assume that E is stable under
pullback along monomorphisms and j denotes the indiscrete interior operator on C with respect to M.

Corollary 5.1.7. The indiscrete interior operator j is hereditary.

Proof. Let r ≤ s in subX. Then the diagram

R
rs //

r
��

S

!S
��

s

��

X
!X
// 1

commutes. Consequently, by Proposition 5.1.6, jS(rs) ∼=!∗S((!S)∗(rs)) ∼= (!X ◦ s)∗((!X ◦ s)∗(rs)) ∼=
s∗(!∗X((!X)∗(s∗(rs)))) ∼= s∗(jX(s∗(rs))).

Proposition 5.1.8. Let f : X → Y be any morphism in C. Then

(a) f ∈ I(j);

(b) f ∈ E ⇒ f ∈ F(j) ∩ K(j) ∩ O(j).

Proof. (a) Let f : X → Y be any morphism in C and r ∈ subX. Then the diagram

X
f
//

!X   

Y

!Y
��

1

commutes and since E is stable under pullback along monomorphisms we have by Proposition
5.1.6, jX(r) ∼=!∗X((!X)∗(r)) ∼= (!Y ◦ f)∗((!Y ◦ f)∗(r)) ∼= f∗(!∗Y ((!Y )∗(f∗(r)))) ∼= f∗(jY (f∗(r))).

(b) Let f : X → Y be a morphism in E , r ∈ subX and k ∈ subY . Then, since M is a subset
of the class of monomorphisms, we have that stability of E under pullback along monomor-
phisms implies that E is stable under pullback along M (and hence along subobjects). Hence,
f∗(f

∗(k)) ∼= k for all k ∈ subY . Consequently, we have by Proposition 5.1.6, f∗(jX(f∗(k))) ∼=
f∗(!

∗
X((!X)∗(f

∗(k)))) ∼= f∗((!Y ◦f)∗((!Y ◦f)∗(f
∗(k)))) ∼= f∗(f

∗(!∗Y ((!Y )∗(f∗(f
∗(k)))))) ∼=!∗Y ((!Y )∗(k)) ∼=
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jY (k). Therefore, f ∈ F(j) and one also has f∗(jX(r)) ∼= f∗(!
∗
X((!X)∗(r))) ∼= f∗((!Y ◦ f)∗((!Y ◦

f)∗(r))) ∼= f∗(f
∗(!∗Y ((!Y )∗(f∗(r))))) ∼=!∗Y ((!Y )∗(f∗(r))) ∼= jY (f∗(r)), hence f ∈ K(j). Moreover,

f ∈ O(j), since jX(f∗(k)) ∼=!∗X((!X)∗(f
∗(k))) ∼= f∗(!∗Y ((!Y )∗(f∗(f

∗(k))))) ∼= f∗(!∗Y ((!Y )∗(k))) ∼=
f∗(jY (k)). Of course, this is true by (a). Indeed, f is j-initial and hence being in E implies f is
j-final, closed and open by Proposition 3.1.36(c).

One can easily observe that any morphism in C is open and closed with respect to a discrete interior
operator d, and morphisms inM are d-initial while morphisms in E are d-final. Next, we use the discrete
interior operator and a newly defined indiscrete interior operator to introduce our notion of i-fine and
i-coarse objects with respect to a given interior operator i.

Definition 5.1.9. Let i ∈ INT (C,M). Then an object X ∈ C is

(a) i-coarse (or i-indiscrete) object if iX ≤ jX ;

(b) i-fine (or i-discrete) object if dX ≤ iX .

Let i ∈ INT (C,M). Then in the sequel we use J(i) and D(i) to denote the class of all i-coarse and
i-fine objects, respectively, that is: J(i) := {X ∈ C : iX ≤ jX} and D(i) := {X ∈ C : dX ≤ iX} =
{X ∈ C : iX(m) ∼= m for all m ∈ subX}.

Proposition 5.1.10. For any interior operator i and any morphism f : X → Y ∈ F(j) with X ∈ J(i)
we have that Y ∈ J(i), that is: the subcategory J(i) is closed under j-final morphisms.

Proof. Let X ∈ J(i) and n ∈ subY . Then iY (n) ≤ jY (n). Thus, the continuity condition of i and the
j-finality of f yield iY (n) ≤ iY (f∗(f

∗(n))) ≤ f∗(iX(f∗(n))) ≤ f∗(jX(f∗(n))) ∼= jY (n).

Corollary 5.1.11. Let i be any interior operator and f : X → Y be any morphism in E . Then
X ∈ J(i)⇒ Y ∈ J(i), that is: J(i) is closed under E-images.

Proof. Let f : X → Y ∈ E . Then the stability of E under pullback along monomorphisms and
Proposition 5.1.8 implies f ∈ F(j). Furthermore, Proposition 5.1.10 provides X ∈ J(i) ⇒ Y ∈
J(i).

Proposition 5.1.12. Let i be any interior operator and f : X → Y be any morphism in I(i). Then
Y ∈ J(i)⇒ X ∈ J(i).

Proof. Let m ∈ subX. Then since f ∈ I(i) and Y ∈ J(i) we obtain iX(m) ∼= f∗(iY (f∗(m))) ≤
f∗(jY (f∗(m))) ∼= f∗(!∗Y ((!Y )∗(f∗(m)))) ∼=!∗X((!X)∗(m)) ∼= jX(m). Hence iX(m) ≤ jX(m) for all m ∈
subX.

Proposition 5.1.13. Let i be any interior operator and f : X → Y be any morphism in I(din). Then
Y ∈ D(i)⇒ X ∈ D(i).

Proof. Let Y ∈ D(i) and r ∈ subX. Then din-initiality of f and the continuity condition of i implies
dinX(r) ∼= f∗(dinY (f∗(r))) ≤ f∗(iY (f∗(r))) ≤ iX(f∗(f∗(r))) ≤ iX(r).

Corollary 5.1.14. For any interior operator i, D(i) is closed under M-subobjects.
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Proof. Let
m

M → X be in subX such that X ∈ D(i). Then since the discrete interior operator din

is hereditary we have that every morphism in M, in particular, m is din-initial. One obtains with
Proposition 5.1.13, M ∈ D(i).

Remark 5.1.15. Let i be an interior operator on C with respect to M and f : X → Y be a morphism
in C. If Y ∈ D(i) then f∗(n) is i-open in X for all n ∈ subY . Indeed, let Y ∈ D(i). Then each
subobject n of Y is i-open in Y . Consequently, by Remark 2.1.4(b), f∗(n) is i-open in X. This in
turn of course implies the above corollary. In fact, for m : M → X ∈ subX with X ∈ D(i), one has
t ∼= m∗(m(t)) is i-open in M for all t ∈ subM . Therefore, M ∈ D(i).

Proposition 5.1.16. Let i be an interior operator and a morphism f : X → Y ∈ F(i). Then
X ∈ D(i)⇒ Y ∈ D(i).

Proof. Let n ∈ subY . Then the i-initiality of f and X ∈ D(i) implies dY (n) ≤ dY (f∗(f
∗(n))) ≤

f∗(dX(f∗(n))) ≤ f∗(iX(f∗(n))) ∼= iY (n).

Remark 5.1.17. Let i be an interior operator. Then J(i) ∩D(i) ⊆ {X ∈ C : jX = dX}. Indeed, let
X ∈ J(i) ∩D(i). Then dX ≤ iX ≤ jX . So, dX = jX , since one always has j ≤ d.

The following result shows that one can construct two interior operators j(A) and d(B) of interest
which are induced by subcategories A and B, respectively. A particular case of the construction of j(A)
appears in [CR10].

Proposition 5.1.18. Let A and B be any two subcategories of C then

a. j(A)X(r) :=
∨
{g∗(g∗(r)) :

g

X → A,A ∈ A} for all X ∈ C and r ∈ subX defines an interior
operator on C. Moreover, j(A) is always an idempotent and standard interior operator;

b. d(B)X(r) := r∧
∧
{f∗(f∗(r)) :

f

B → X,B ∈ B} for all X ∈ C and r ∈ subX is defines an interior
operator on C.

Proof. Similar to the proof of Proposition 5.1.3.

We call j(A) and d(B) discrete and indiscrete interior operators with respect to subcategories A and B,
respectively and these notations will be used in the rest of this section.

Recall that constant morphisms have played a significant role in the study of the notions of connect-
edness and disconnectedness in an arbitrary category (see [Her68, Pre71, AW75]). Next we present a
relative notion of constant morphisms in order to investigate the general concepts of connectedness and
disconnectedness in the category C. To this purpose, we consider a class

So = {X ∈ C : !∗X((!X)∗(m)) ∼= m for all m ∈ subX}

(see [Cle95, Raz12]). The following lemma describes properties of the class So.

Lemma 5.1.19. From the definition of So one has the following.

(a) So is closed under M-subobjects, that is, if
r

R→ X∈M and X ∈ So, then R ∈ So;

(b) Let E be stable under pullback along M-morphisms. Then So is closed under E-images, that is,

if
q

X → Q∈ E and X ∈ So then Q ∈ So.
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Proof. (a) Let t : T → R be a subobject of R such that r ∈ M and X ∈ So. Then we have a
commutative diagram

R
r //

!R   

X

!X
��

1

and hence !R ∼= !X ◦ r and r∗(r∗(t)) ∼= t. As a consequence,
!R((!R)∗(t)) ∼= (!X ◦ r)∗((!X ◦ r)∗(t)) ∼= r∗(!∗X((!X)∗(r∗(t)))) ∼= r∗(r∗(t)) ∼= t. Therefore, R ∈ So.

(b) Let n : N → Q be in subQ such that q ∈ E and X ∈ So. Then the diagram

X
q
//

!X
��

Q

!Q
��

1

commutes and hence !X = !Q ◦ q. Consequently, n ∼= q∗(q
∗(n)) ∼= q∗(!

∗
X((!X)∗(q

∗(n)))) ∼=
q∗((!Q ◦ q)∗((!Q ◦ q)∗(q∗(n)))) ∼= q∗(q

∗(!∗Q((!Q)∗(q∗(q
∗(n)))))) ∼=!∗Q((!Q)∗(n)). Thus, Q ∈ So.

Remark 5.1.20. We also note that the followings.

a. So is a non-empty subcategory of C. Indeed, !1 : 1 → 1 ∈ M, as M contains all isomorphisms,
and hence !∗1((!1)∗(m)) ∼= m for all m ∈ sub1. Therefore, 1 ∈ So.

b. We call any object X in So a constant object.

This remark enables us to define constant morphisms with respect to So and (E ,M)-factorization sys-
tem as follows.

Definition 5.1.21. A morphism f : X → Y is constant if the domain f [X] of the M-part of the
(E ,M)-factorization of f is a constant object, that is, f [X] ∈ So.

Note that f [X] is the domain of f(1X), the image of f . One can also easily observe that:

If X
e // f [X]

m // Y is the (E ,M)-factorization of f ∼= f ◦ 1X , shown in the diagram below, then f
is constant if and only if m is constant if and only if e is constant.

X
1X //

e
!!

X
f
// Y

f [X]
m∼=f(1X)

==

Remark 5.1.22. Let X ∈ C. Then
!X

X → 1 is constant. Indeed, let (e,m) be the (E ,M)-factorization
of !X : X →!X [X] → 1. Then the fact that 1 ∈ So (see Remark 5.1.20 (a)) and So is closed under
M-subobjects (see Lemma 5.1.19(a)), one has !X [X] ∈ So.

Examples 5.1.23. ([Cle95])

http://etd.uwc.ac.za/



Section 5.1. Connectedness via constant morphisms Page 103

(a) Let C be the category Sets with (Surjections, Injections)-factorization system and f : X → Y
be any function. Then f [X] ∈ So ⇔!∗f [X]((!f [X])∗(N)) = N ∀N ⊆ f [X] ⇔ f [X] is a singleton
set. Hence, the constant morphisms are the constant maps. In fact So contains only the empty
set and the singletons.

(b) Let C be the category Top with (Surjections, Embeddings)-factorization system. Then So con-
tains only the empty space and the singleton spaces. Hence, the constant morphisms are precisely
the constant maps.

(c) Let C be the category SGph of directed spatial graphs and graph homomorphisms with the (Sur-
jective homorphisms, Embeddings)-factorization system. Then So contains only the null graph (a
graph with no vertices nor edges) and the graphs with a single vertex and one loop. Hence, the
constant morphisms are the constant maps.

Lemma 5.1.24. Let E be stable under pullback along M-morphisms. Then any morphism that can be
factored through a constant object is constant.

Proof. Let f : X → Y be a morphism that is factored through S ∈ So. Then ∃
r

X → S
s
→ Y such

that f = s ◦ r. Now, let
e
′

S → s[S]
m
′

→ Y and
e

X → f [X]
m
→ Y be the (E ,M)-factorization of s and f

respectively. Then we obtain the commutative diagram below.

X
e //

e
′◦r
��

f [X]

m

��

s[S]
m
′
// Y

Hence, by the diagonalization property ∃!d : f [X] → s[S] such that d ◦ e = e
′ ◦ r and m = m

′ ◦ d.
But since M is left cancellable with respect to itself (g ◦ f ∈ M and g ∈ M implies f ∈ M) we
have that d ∈ M. Furthermore, S ∈ So and e

′
: S → s[S] ∈ E and E is stable under pullback along

M-morphisms. Then Lemma 5.1.19(b) implies s[S] ∈ So. Consequently, Lemma 5.1.19(a) implies
f [X] ∈ So.

The following result summarizes some properties of constant morphisms.

Proposition 5.1.25. Let Sm be the class of constant morphisms.

(a) Let E be stable under pullback along M-morphisms. Then f ∈ Sm ⇒ g ◦ f ◦ h ∈ Sm ;

(b) Sm is left cancellable with respect to M, that is, g ◦ f ∈ Sm and g ∈M⇒ f ∈ Sm;

(c) Sm is right cancellable with respect to E , that is, g ◦ f ∈ Sm and f ∈ E ⇒ g ∈ Sm.

Proof. (a) Let
h

W → X
f

→ Y
g

→ Z be a morphism such that f is constant. Then f [X] ∈ So. Thus,

g ◦ f ◦h = W
h // X

e // f [X]
m // Y

g
// Z = W

e◦h// f [X]
g◦m
// Z is factored through a constant

object f [X]. Therefore, Lemma 5.1.24 implies g ◦ f ◦ h is constant.

(b) Let
f

X → Y
g

→ Z be a morphism such that g ◦ f is constant and g ∈ M. Then (g ◦ f)[X] ∈ So.
Let (e,m) and (e

′
,m
′
) be the (E ,M)-factorization of g ◦ f and f respectively. Then (e,m)

http://etd.uwc.ac.za/



Section 5.1. Connectedness via constant morphisms Page 104

and (e
′
, g ◦m′) are the (E ,M)-factorization of g ◦ f . Then there exists a unique isomorphism

d : (g ◦ f)[X]→ f [X], such that the diagram.

X
e //

e
′

��

(g ◦ f)[X]

m

��

d

yy

f [X]
g◦m′

// Z

commutes. Consequently, f [X] ∼= (g ◦ f)[X] ∈ So. Therefore, f is constant.

(c) Let
f

X → Y
g

→ Z be a morphism such that g ◦ f is constant and f ∈ E . Then (g ◦ f)[X] ∈ So.
Let (e,m) and (e

′
,m
′
) be the (E ,M)-factorization of g ◦ f and g respectively. Then (e,m)

and (e
′ ◦ f,m′) are the (E ,M)-factorization of g ◦ f . Then there exists a unique isomorphism

d : (g ◦ f)[X]→ f [X], such that the diagram

X
e //

e
′◦f
��

(g ◦ f)[X]

m

��

d

yy

g[X]
m
′

// Z

commutes. As a result, g[X] ∼= (g ◦ f)[X] ∈ So. Therefore, g is constant.

Let X and Y be any two objects of C. Then we use X ‖ Y to denote every morphism X → Y is constant.

Definition 5.1.26. Let A and B be any two full subcategories of C. Then we define

(a) the left-constant subcategory of A by l(A) = {X ∈ C : (∀Y ∈ A)(X ‖ Y )} and

(b) the right-constant subcategory of B by r(B) = {Y ∈ C : (∀X ∈ B)(X ‖ Y )}.

Throughout the remainder of this section, we use S(C) to denote the conglomerate of all full sub-
categories of C that are ordered by inclusion ⊆ and S(C)op to denote its dual with the reverse order
⊇. We also use � to denote the order of the dual INT (C,M)op of the conglomerate of all interior
operators of C with respect toM ordered by ≤. With these notations, the Galois connection introduced
in [Her68, Pre78] can be described in the following proposition:

Proposition 5.1.27. Let A and B be any two subcategories of C. Then

S(C) ⊥
r //

S(C)op

l
oo is a Galois connection.

Proof. Let A and B be in S(C). Then we need to show that r(B) ⊇ A⇔ B ⊆ l(A).

(a) Suppose r(B) ⊇ A. Then A ⊆ r(B). Now, let X ∈ B. Then X ‖ Y for all Y ∈ A. So, X ∈ l(A)
and hence B ⊆ l(A).

(b) Suppose B ⊆ l(A). Then for any Y ∈ A we have X ‖ Y for all X ∈ B. Therefore, Y ∈ l(B) and
hence r(B) ⊇ A.
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The above Galois connectection is known as the Herrlich-Preuß-Arhangel’skǐi-Wiegandt (left-constant,
right-constant) correspondence. As a consequence of Proposition 5.1.25 one obtains the following result.

Proposition 5.1.28. Let A and B be any two full subcategories of C.

(a) l(A) is closed under E-images;

(b) r(B) is closed under M-subobjects.

Definition 5.1.29. Let i be a given interior operator on C with respect to M. We say that X ∈ C is

(a) i-connected if X ∈ l(D(i)), that is, for every i-discrete object Y , any C-morphism X → Y is
constant ;

(b) i-disconnected if X ∈ r(J(i)), that is, for every i-indiscrete object Y , any C-morphism Y → X
is constant.

Proposition 5.1.30. Let i be a given interior operator on C with respect to M.

(a) Let
r

R→ X be in M and X is i-disconnected. Then R is i-disconnected;

(b) Let
f

X → Y be in E and X is i-connected. Then Y is i-connected.

Proof. Apply Proposition 5.1.28.

Corollary 5.1.31. Let i be a given interior operator on C with respect to M and suppose C ad-
mits arbitrary products. Let X =

∏
i∈I
Xi be an i-connected product in C such that each projections

pi : X → Xi ∈ E
′
. Then each Xi is i-connected.

Proposition 5.1.32. Let i be a given interior operator on C with respect toM. Then a right constant
subcategory is closed under monosources.

Proof. Let A be a full subcategory of C, r(A) be the right-constant subcategory of A and
(πi : Y → Yi)i∈I be a monosource with Yi ∈ r(A). Let X ∈ A and (e,m) and (ef ,mf ) be the (E ,M)-
factorization of f and πi ◦ f , respectively. Then by the unique diagonalization property there exists a
unique d : f [X]→ (πi ◦f)[X] such that πi ◦mf = m◦d and e = d◦ef . Suppose !f [X] ◦u =!f [X] ◦v for
any two pair morphisms u and v with codomain f [X]. Consequently, !(πi◦f)[X] ◦ d ◦u =!(πi◦f)[X] ◦ d ◦ v.
But since πi ◦ f is constant, one has d ◦ u = d ◦ v. This in turn implies m ◦ d ◦ u = m ◦ d ◦ v. Hence,

πi ◦mf ◦ u = πi ◦mf ◦ v for all i (m ◦ d = πi ◦mf )

⇒ mf ◦ u = mf ◦ v (π′is jointly monic)

⇒ u = v (mf monic)

⇒!f [X]is monic.

Thus, by Proposition 1.4.4(a), !∗f [X]((!f [X])∗(m)) ∼= m for all m ∈ subf [X], that is: f [X] ∈ So.
Therefore, f is constant and hence X ‖ Y for all X ∈ A. As a consequence, Y ∈ r(A).
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The right constant subcategory contains the preterminal objects. Indeed, if X ∈ P then !X : X → 1
is monic. But since !X : X → 1 is constant (see Remark 5.1.22), one has 1 ∈ r(B). Consequently,
X ∈ r(B) since the right constant subcategory is closed under monosources and hence under mono.

Corollary 5.1.33. Let i be a given interior operator on C with respect toM and assume that C admits
arbitrary products. Then the product of a family of i-disconnected objects is i-disconnected.

Proof. Let (pi : X =
∏
i∈I
Xi → Xi)i∈I be a product with each Xi being i-disconnected. Then each Xi

belongs to r(J(i)). Consequently, by Proposition 5.1.32, one has X =
∏
i∈I
Xi ∈ r(J(i)) since products

are monosources. Therefore, X =
∏
i∈I
Xi is disconnected.

Lemma 5.1.34. Let i be a given interior operator on C with respect to M. Then J(i) ∩D(i) ⊆ So.

Proof. Let X ∈ J(i) ∩D(i). Then dX ≤ iX ≤ jX and hence dX ∼= jX . Consequently, the stability of
E under pullback along monomorphisms implies r ∼= dX(r) ∼= jX(r) ∼= !∗X((!X)∗(r)) for all r ∈subX.
Therefore, X ∈ So.

Proposition 5.1.35. Let i be a given interior operator on C with respect toM and f : X → Y be any
morphism in C with X ∈ J(i) and Y ∈ D(i). Then f is constant.

Proof. Let (e,m) be the (E ,M)-factorization of f , shown in the diagram

X

e
!!

f
// Y

f [X]

m∼=f(1X)

OO

Then the fact that X ∈ J(i) and
e

X → f [X]∈ E we have by Corollary 5.1.11 f [X] ∈ J(i). Besides,

since
m

f [X]→ Y ∈ M and Y ∈ D(i) then Corollary 5.1.14 obtains f [X] ∈ D(i). Thus, f [X] ∈
J(i) ∩D(i). This in turn implies f [X] ∈ So, by Lemma 5.1.34. Therefore, f is constant.

Corollary 5.1.36. Let i be any given interior operator on C with respect to M. Then the i-indiscrete
objects are i-connected objects.

Proof. Let X ∈ J(i). Then by Proposition 5.1.35, any morphism f : X → Y with Y ∈ D(i) must be
constant. Hence, J(i) ⊆ l(D(i)).

Following the definitions of J and D one has:

Remark 5.1.37. For interior operators i and i
′

on C such that i � i
′

one has J(i) ⊆ J(i
′
) and

D(i) ⊇ D(i
′
). That is, J and D can be seen as functors from INT (C,M)op to that of S(C) and

S(C)op, respectively.

From the definitions of j(A) and d(B), where A, B ∈ S(C) one also obtains the following:

Remark 5.1.38. Let A and B be any two full subcategories of C. Then

(a) A ⊆ B⇒ j(A) ≤ j(B);
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(b) A ⊆ B⇒ d(A) � d(B);

(c) j(A)A = dA for all A ∈ A, that is, j(A) is discrete in A;

(d) d(B)B = jB for all B ∈ B, that is, d(B) is indiscrete in B.

As a consequence of the above remark d and j may be interpreted as functors from S(C) and S(C)op

to INT (C,M)op, respectively.

Lemma 5.1.39. Let i be any interior operator. Then d(J(i)) � i.

Proof. Let r ∈ subX. Then r ≤ g∗(g∗(r)) for all g : A→ X with A ∈ J(i).
Hence one has r ≤

∧
{g∗(g∗(r)) : g : A→ X with A ∈ J(i)}. Consequently,

iX(r) ≤ iX(
∧
{g∗(g∗(r)) :

g

A→ X,A ∈ J(i)})

≤
∧
{iX(g∗(g

∗(r))) :
g

A→ X,A ∈ J(i)}

≤
∧
{g∗(iA(g∗(r))) :

g

A→ X,A ∈ J(i)} ∼= d(J(i))X(r).

Proposition 5.1.40. S(C) ⊥
d //

INT (C,M)op

J
oo is a Galois connection.

Proof. Let B ∈ S(C) and i ∈ INT (C,M). We need to show that d(B) � i⇔ B ⊆ J(i).

(⇒) Suppose d(B) � i. Then i ≤ d(B) and hence Remark 5.1.38 provides iB ≤ d(B)B = jB for all
B ∈ B. Consequently, B ∈ J(i). Therefore, B ⊆ J(i).

(⇐) Assume that B ⊆ J(i). Then Remark 5.1.38 implies d(J(i)) ≤ d(B). Consequently, Lemma
5.1.39 yields i ≤ d(J(i)) ≤ d(B). Therefore, d(B) � i.

Lemma 5.1.41. Let i be any interior operator. Then i � j(D(i)).

Proof. Let r ∈ subX and
f

X → P , P ∈ D(i). Then the continuity condition of i provides

f∗(f∗(r)) ∼= f∗(dP (f∗(r))) ≤ f∗(iP (f∗(r))) ≤ iX(f∗(f∗(r))) ≤ iX(r)

⇒ j(D(i))X(r) =
∨
{f∗(f∗(r)) :

f

X → P , P ∈ D(i)} ≤ iX(r)

⇒ j(D(i)) ≤ i.

Proposition 5.1.42. INT (C,M)op ⊥
D //

S(C)op

j
oo is a Galois connection.

Proof. Let A ∈ S(C) and i ∈ INT (C,M). We need to show that D(i) ⊇ A⇔ i � j(A).

(⇒) Suppose D(i) ⊇ A. Then A ⊆ D(i) and hence Remark 5.1.38 provides j(A) ≤ j(D(i)). Conse-
quently, Lemma 5.1.41 yields j(A) ≤ j(D(i)) ≤ i. Therefore, j(A) ≤ i and hence i � j(A).
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(⇐) Assume that i � j(A). Then j(A) ≤ i. Using Remark 5.1.38 we have that dA = j(A)A ≤ iA for
all A ∈ A. Therefore, A ⊆ D(i)⇔ D(i) ⊇ A.

Propositions 5.1.35, 5.1.40 and 5.1.42 give:

Proposition 5.1.43. Let A ∈ S(C). Then

(a) (J ◦ j)(A) ⊆ l(A);

(b) (D ◦ d)(A) ⊆ r(A).

Proof. (a) Let X ∈ J(j(A)) and f : X → Y with Y ∈ A be any morphism. Since by Proposition
5.1.42 D a j : S(C)op → INT (C,M)op we have D(j(A)) ⊇ A, that is: A ⊆ D(j(A)). Hence,
every object of A belongs to D(j(A)), in particular Y ∈ D(j(A)). As a result f : X → Y is a
morphism with X ∈ J(j(A)) and Y ∈ D(j(A)). Consequently, by Proposition 5.1.35 f must be
constant and hence X ∈ l(A).

(b) Let Y ∈ D(d(A)) and f : X → Y with X ∈ A be any morphism. Since by Proposition 5.1.40
d a J : INT (C,M)op → S(C) we have A ⊆ J(d(A)). Hence every object of A belongs to
J(d(A)), in particular X ∈ J(d(A)). Thus f : X → Y is a morphism with X ∈ J(d(A)) and
Y ∈ D(d(A)). Consequently, by Proposition 5.1.35 f must be constant and hence Y ∈ r(A).

Now we are ready to show that the Herrlich-Preuß-Arhangel’skii-Wiegandt (HPAW) (left-constant, right-
constant) correspondence is the composition of the adjunctions defined in Propositions 5.1.40 and 5.1.42.
As a consequence of Propositions 5.1.40 and 5.1.42 one has the Galois correspondences

S(C) ⊥
d
// INT (C,M)op

Joo
⊥
D //

S(C)op

j
oo

Furthermore, one has:

Theorem 5.1.44. Let P = So. Then the Galois connection S(C)
r−⇀↽−
l
S(C)op factors through

INT(C,M)op via the Galois connections S(C)
d−⇀↽−
J

INT(C,M)op and INT(C,M)op
D−⇀↽−
j

S(C)op, that

is: there is a commutative triangle

INT(C,M)op

S(C) S(C)op

D

J

d

r

j

l

of adjunctions, factoring r through D and l through J , that is, r = D ◦ d and l = J ◦ j.
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Proof. Note that one can easily observe that D ◦ d and J ◦ j give rise to a Galois connection between
S(C) and S(C)op. Due to the uniqueness of the adjoints in a Galois connection if we show one equality
then the other equality follows. Hence it is sufficient to show that D(d(B)) = r(B). To this end, let

Y ∈ r(B) and n ∈subY . Then X ‖ Y for all X ∈ B, that is
f

X → Y with X ∈ B is constant and hence
its image f [X] ∈ So = P.

X

e
!!

f
// Y

f [X]

m∼=f(1X)

OO

Consequently, the stability of E under pullback along monomorphisms (and henceM-morphisms) implies

jX(f∗(n)) =
∨
{g∗(g∗(f∗(n))) :

g

X → P , P ∈ P} ≥ e∗(e(f∗(n))) ∼= e∗(e(m∗(n))) ∼= e∗(m∗(n)) ∼= f∗(n).

This in turn implies n ≤ f∗(f
∗(n)) ≤ f∗(jX(f∗(n))), hence n ≤

∧
{f∗(jX(f∗(n))) :

f

X → Y ,X ∈ B}.

As a consequence, n ∼= n ∧
∧
{f∗(jX(f∗(n))) :

f

X → Y ,X ∈ B} ∼= d(B)Y (n), that is: Y ∈ D(d(B)).

On the other hand, let Y ∈ D(d(B)),
f

X → Y with X ∈ B and
t

T → f [X] be in subf [X].Then
the stability of E under pullback along monomorphisms (and hence M-morphisms) and Proposition
5.1.8 imply jf [X](t) ∼= e∗(e

∗(jf [X](t))) ∼= e∗(jX(e∗(t))) ∼= e∗(d(B)X(e∗(n))) ≥ d(B)f [X](e∗(e
∗(n))) ∼=

d(B)f [X](n) ∼= n. Therefore, f [X] ∈ So and hence X ‖ Y for all X ∈ B. So, Y ∈ r(B) . Therefore, the
Herrlich-Preuß-Arhangel’skii-Wiegandt (left-constant, right-constant) correspondence is the composition

of the adjunctions (D, j) and (d, J). We note that S(C)
D◦d−⇀↽−
J◦j

S(C)op is called the connectedness-

disconnectedness Galois connection.

In the following results of this section by assuming the category C admits products we would like to
explore the behaviour of iX on products. Consequently, with Definition 3.1.34 and Proposition 5.1.6,
one has the following result.

Proposition 5.1.45. Let i be a given interior operator on C with respect to M and
S := (fi : X → Xi)i∈I be an i-initial cone. If Xi ∈ J(i) for all i ∈ I then X ∈ J(i).

Proof. Suppose S is i-initial and Xi ∈ J(i). Let m : M → X ∈ subX. Then the diagram

X
fi //

!X
  

Xi

!Xi
��

1

commutes. Hence, Definition 3.1.34 and Proposition 5.1.6 imply

iX(m) ≤
∨
i∈I
f∗i (iXi((fi)∗(m)))

≤
∨
i∈I
f∗i (jXi((fi)∗(m))) ∼=

∨
i∈I
f∗i (!∗Xi((!Xi)∗((fi)∗(m))))) ∼=

∨
i∈I

!∗X((!X)∗(m)) ∼=!∗X((!X)∗(m)) ∼= jX(m).
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Consequently, one obtains the following corollary.

Corollary 5.1.46. Let i be a given interior operator on C with respect toM. The product of i-indiscrete
objects is i-indiscrete provided that the projections are jointly i-initial.

Proof. Put X =
∏
i∈I
Xi and then apply Proposition 5.1.45.

Corollary 5.1.47. Let A ∈ S(C),P = So and (pi : X =
∏
i∈I
Xi → Xi)i∈I be j(A)-initial. If Xi ∈ l(A)

for all i ∈ I then X =
∏
i∈I
Xi ∈ l(A).

Proof. Let Xi ∈ l(A). Then by Proposition 5.1.44 we have that l(A) = J(j(A)) and hence Xi ∈
J(j(A)) for all i ∈ I. But since each projection is j(A)-initial then by Corollary 5.1.46 one obtains that
X =

∏
i∈I
Xi ∈ J(j(A)) = l(A).

In the above corollary if A = D(i) then we have the product of i-connected objects is i-connected.

In [AW75], a topological space X is T0 if and only if X ∈ r(B0) (disconnected subclasses), where B0 is
the class of indiscrete topological spaces. This motivates the following definition.

Definition 5.1.48. Given an interior operator i, we say that an object X ∈ C is T0 with respect to i if
and only if X ∈ r(J(i)), that is: X is i-disconnected.

T0 may be interpreted as a functor T0 = r ◦ J : INT (C,M)op → S(C)op.

Proposition 5.1.49. Let i be any given interior operator on C with respect toM. Then D(i) ⊆ T0(i).

Proof. Let Y ∈ D(i). Then by Proposition 5.1.35, any morphism f : X → Y with X ∈ J(i) must
be constant. Therefore, Y ∈ r(J(i)) = T0(i). Consequently, the i-discrete objects are T0 objects with
respect to i.

Examples 5.1.50. (a) Let C be the category Top with (Surjections, Embeddings)-factorization sys-
tem and R ⊆ X ∈ Top. Since E = the class of surjections is stable under pullback along
monomorphisms and P = So, one has jX(X) = X and jX(R) = ∅ for every proper subset R of
X. Thus X is i-indiscrete if and only if iX ≤ JX if and only if iX(R) = ∅ for every proper subset
R of X if and only if every proper subset R of X is i-codense. Hence, in the category Top, our
notions of connectedness and disconnectedness with respect to i coincides with the notions which
are presented in [CR10]. Therefore, our approach generalizes the work of [CR10].

(b) Let C be the category SGph of directed spatial graphs and graph homomorphisms with the
(Surjective homorphisms, Embeddings)-factorization system. For each directed spatial graph
(G,R) and a subset H ⊆ G, consider the up-interior operator ↑◦G (H) = {h ∈ H : (∀g ∈
G \ H) there is no edge h → g}; then surjective homorphisms are stable under pullback along
monomorphisms and P = So := class of empty graphs with empty edge and one point graphs
with a loop. The discrete objects are graphs whose edges are only loops, which are dicrete graphs
while a graph G is indiscrete if and only if for any g, h ∈ G one has g → h. Consequently, a graph
G is ↑◦-connected if and only if for all h, g ∈ G either h→ g or g → h.
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In this section the assumption that arbitrary joins are preserved by each preimage is crucial in the
development of the theory of the notions of connectedness and disconnectedness with respect to a given
interior operator. It enables us to introduce the concept of coarse and fine objects with respect to a
given interior operator. Consequently, the notions of connectedness and disconnectedness with respect
to interior operators on C in a more general categorical setting are introduced in such a way that the
notions generalize the work of [CR10], extending the concept to a suitable arbitrary category. On the
other hand, since each preimage has both left and right adjoints, some of the results (and proofs) with
respect to interior operators are analogous to that of closure operators. Indeed, this should not come as
a surprise since by Theorem 2.3.8 we know that there is a natural way of moving from closure to interior
operators and vice versa. Our results provide an interior-theoretic descriptions of the notions. Moreover,
there are new insights and importantly some things that can only be done with interior operators.

5.2 Connectedness via partitions

In this section, by considering a lattice structure of subobjects with pseudocomplements we investigate
the notion of connectedness with respect to an interior operator similar to what has been done for
closure operators in [Šla09]. We will see that this notion is a direct translation from classical topology
and show that it is a generalization of connectedness of topological spaces. We start the section with
the following remark.

Remark 5.2.1. Recall that

(a) A subobject mc ∈ subX is the pseudocomplement of m ∈ subX if it holds that r ≤ mc ⇔
r ∧m ∼= 0X for all r ∈ subX. If mc exists, m is said to be pseudocomplemented. If subX is a
Boolean algebra then the pseudocomplements are precisely the complements and

(b) for a morphism f : X → Y in C, m ∈ subX and n ∈ subY then the equation f(m ∧ f∗(n)) ∼=
f(m) ∧ n is known as the Frobenius Reciprocity Law (FRL). One can observe that E ⊆ E ′ ⇔
FRL holds for all morphisms in C. That is, E is stable under pullback along M-morphisms is
equivalent to FRL holds for all morphisms in C (see [CGT96]).

Following [Šla09], let us now define a partition of an object X ∈ C as follows.

Definition 5.2.2. Let m be a subobject of X with pseudocomplement mc. We call the pair (m,mc) a
partition of X. If both m and its pseudocomplement mc are i-open then the pair (m,mc) is called an
i-open partition of X.

Consequently, we have the following two lemmas.

Lemma 5.2.3. Subobjects satisfy the FRL given in Remark 5.2.1(b).

Proof. Let m : M → X be inM such that t ∈ subM and r ∈ subX then since composition is associative
in any category one has m(t∧m∗(r)) ∼= m ◦ (t∧m∗(r)) ∼= m ◦ (t ◦ t∗(m∗(r))) ∼= (m ◦ t) ◦ t∗(m∗(r)) ∼=
(m ◦ t) ◦ (m ◦ t)∗(r) ∼= (m ◦ t) ∧ r ∼= m(t) ∧ r.

Lemma 5.2.4. Let m : M → X be an M suboject. Then m∗(−) : subX → subM preserves both
pseudocomplements and i-open partitions.
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Proof. Let (r, rc) be a partition of X. Then by the previous lemma FRL holds for m and by Remark
5.2.1 every morphism (in particular, each subobject) reflects the least subobject. As a consequence,
t ≤ m∗(rc)⇔ m(t) ≤ rc ⇔ m(t)∧ r ∼= 0X ⇔ m(t∧m∗(r)) ∼= 0X ⇔ t∧m∗(r) ∼= 0M ⇔ t ≤ (m∗(r))c

for all t ∈ subM . Therefore, (m∗(r))c ∼= m∗(rc). Hence, (m∗(r),m∗(rc)) is a partition of M . Moreover,
if (r, rc) is an i-open partition of X then since the pullback of an i-open subobject is i-open we have
(m∗(r),m∗(rc)) is an i-open partition of M .

Recall from [Šla09] a partition (m,mc) of X is said to be trivial if m ∼= 0X or mc ∼= 0X .

Definition 5.2.5. A C-object X is i-connected if X has no non-trivial i-open partition, that is, if every
i-open partition of X is trivial.

Remark 5.2.6. Let C be the category Top supplied with (continuous surjections, embeddings)-factorization
structures for morphisms and kin be the Kuratowski interior operator. Then one can observe that ki-
connectedness is precisely the well known topological connectedness. Hence, the above definition is a
natural way of extending the notion of connectedness in general topology.

The following is a generalized result on connectedness using the notion of i-dense subobject.

Theorem 5.2.7. Let m : M → X be an i-dense subobject of X such that its domain M is i-connected.
Then X is i-connected. That is, any object having an i-dense subobject with i-connected domain is
i-connected.

Proof. Let (r, rc) be an i-open partition of X. Then by Lemma 5.2.4 (m∗(r),m∗(rc)) is an i-open par-
tition of M . Since M is i-connected we have that either m∗(r) ∼= 0M or m∗(rc) ∼= 0M . If m∗(r) ∼= 0M
then m∗(m

∗(r)) ∼= m∗(0M ). Since m is i-dense subobject then r ∼= iX(r) ≤ iX(m∗(m
∗(r))) ∼=

iX(m∗(0M )) ∼= 0X . Thus r ∼= 0X . Similarly, if m∗(rc) ∼= 0M then m∗(m
∗(rc)) ∼= m∗(0M ). Conse-

quently, rc ∼= iX(r) ≤ iX(m∗(m
∗(rc))) ∼= iX(m∗(0M )) ∼= 0X since m is i-dense subobject. Hence

rc ∼= 0X . So, either r ∼= 0X or rc ∼= 0X . Therefore, X has no non-trivial i-open partition, that is: X is
i-connected.

The above theorem yields a classical result on connectedness in topological spaces as a special case.

Corollary 5.2.8. Let i be a hereditary interior operator, r : R → X and s : S → X be subobjects of
X such that r ≤ s. If r is i-dense with i-connected domain R then S is i-connected.

Proof. Let r ≤ s. Then the diagram below commutes.

R
rs //

r
  

S

s
��

X

Since i is hereditary and r ∼= s ◦ rs is i-dense with s ∈ M then by Proposition 4.2.7 we have that
rs : R → S is an i-dense subobject of S having i-connected domain R. Consequently, by Theorem
5.2.7, S is i-connected.

The following lemma is a generalization of the Lemma 5.2.4.
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Lemma 5.2.9. [Šla09] Let E ⊆ E ′ . Then any morphism in C reflects both pseudocomplements and
i-open partitions.

Proof. Let f : X → Y be a morphism in C. Then as is mentioned in the Remark 5.2.1, it reflects
the least subobject. On the other hand, since E is stable under pullback along M-morphisms then
by Remark 5.2.1, FRL holds. Consequently, for any m ∈ subX one has m ≤ f∗(nc) ⇔ f(m) ≤
nc ⇔ f(m) ∧ n ∼= 0Y ⇔ f(m ∧ f∗(n)) ∼= 0Y ⇔ m ∧ f∗(n) ∼= 0X ⇔ m ≤ (f∗(n))c. Therefore,
(f∗(n))c ∼= f∗(nc). Moreover, if (n, nc) is an i-open partition of Y then since the pullback of an i-open
subobject is i-open we have (f∗(n), f∗(nc)) is an i-open partition of X.

The following result describes preservation of connectedness under a natural condition.

Proposition 5.2.10. Let f : X → Y be a morphism in E ′ such that X is i-connected. Then Y is
i-connected.

Proof. Let (n, nc) be an i-open partition of Y . Then by Lemma 5.2.9 we obtain that (f∗(n), f∗(nc))
is an i-open partition of X. Since X is i-connected we have that f∗(n) ∼= 0X or f∗(nc) ∼= 0X . Con-
sequently, by Proposition 1.4.4 (c) one obtains n ∼= f∗(f

∗(n)) ∼= f∗(0X) ∼= 0Y or nc ∼= f∗(f
∗(nc)) ∼=

f∗(0X) ∼= 0Y . Therefore, (n, nc) is a trivial i-open partition of Y and hence Y is i-connected.

Corollary 5.2.11. Let X =
∏
i∈I
Xi be an i-connected product in C such that each projection pi : X →

Xi ∈ E
′
. Then each Xi is i-connected.

Hereafter, we use sub+X to denote the class of all non trivial subobjects of X, that is: sub+X := {m ∈
subX : 0X < m}. Following [Šla09] we have the notion of i-monotone which is described below.

Definition 5.2.12. A morphism
f

X → Y is i-monotone if for all n in sub+Y there exists
q

Q→ Y in

sub+Y such that 0Y < q ≤ n and f∗[Q] is i-connected. That is,
f

X → Y is i-monotone if for every
non-zero subobject n of Y there exists a non-zero subobject q of Y which is smaller or equal to n such
that the domain of the pullback of q along f is i-connected.

Lemma 5.2.13. Let
f

X → Y be an i-monotone morphism in E ′ . Then f takes an i-open partition of X
to a partition of Y . Moreover, if (m,mc) is an i-open partition of X then mc ∼= f∗(f(mc)). Besides,
if for each C-object X, subX is a Boolean algebra then m ∼= f∗(f(m)).

Proof. Let (m,mc) be an i-open partition of X. To prove that f(mc) ∼= f(m)c we need to show that
n ∧ f(m) ∼= 0X ⇔ n ≤ f(mc).

(⇒) Let n ∈ subY such that n ∧ f(m) ∼= 0Y . Then f∗(n) ∧ m ≤ f∗(n) ∧ f∗(f(m)) ∼=
f∗(n ∧ f(m)) ∼= f∗(0Y ) ∼= 0X . Hence f∗(n) ∧m ∼= 0X . Thus f∗(n) ≤ mc. As a consequence,
n ∼= f(f∗(n)) ≤ f(mc) since f ∈ E ′ and f(−) is order preserving.

(⇐) Let n ∈ subY such that n ≤ f(mc). In order to show n ∧ f(m) ∼= 0Y , we use proof by

contradiction. To this end, suppose 0Y < n ∧ f(m). Since f is i-monotone, ∃
q

Q→ Y in sub+Y
such that 0Y < q ≤ n ∧ f(m) and f∗[Q] is i-connected. Consequently, 0Y < q ≤ n ≤ f(mc)
and 0Y < q ≤ f(m). Moreover, since f ∈ E ′ , f satisfies FRL given in Remark 5.2.1(b). Hence,
0Y < q ∼= f(mc) ∧ q ∼= f(mc ∧ f∗(q)) and 0Y < q ∼= f(m) ∧ q ∼= f(m ∧ f∗(q)). Thus,
0X < mc∧f∗(q) and 0X < m∧f∗(q). But since by Lemma 5.2.4 ((f∗(q))∗(m), (f∗(q))∗(mc)) is
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an i-open partition of i-connected f∗[Q], one has (f∗(q))∗(m) ∼= 0f∗[Q] or (f∗(q))∗(mc) ∼= 0f∗[Q]

since f∗[Q] is i-connected. Hence, m ∧ f∗(q) ∼= f∗(q) ◦ (f∗(q))∗(m) ∼= f∗(q) ◦ 0f∗[Q]
∼= 0X or

mc ∧ f∗(q) ∼= f∗(q) ◦ (f∗(q))∗(mc) ∼= f∗(q) ◦ 0f∗[Q]
∼= 0X , which is contradiction. This leads us

to conclude that n ∧ f(m) ∼= 0Y .

Moreover, if (m,mc) is an i-open partition of X then f(mc) ∼= f(m)c, as shown above. Hence
(f(m), f(mc)) is a partion of Y . Consequently, 0Y ∼= f(m) ∧ f(mc) ∼= f(m ∧ f∗(f(mc))) ⇔ m ∧
f∗(f(mc)) ∼= 0X ⇔ f∗(f(mc)) ≤ mc since f satisfies FRL given in Remark 5.2.1(b). Therefore,
mc ∼= f∗(f(mc)). On the other hand, if subX is a Boolean algebra then from FRL one obtains that
0Y ∼= f(mc)∧f(m) ∼= f(mc∧f∗(f(m)))⇔ mc∧f∗(f(m)) ∼= 0X ⇔ f∗(f(m)) ≤ mcc ∼= m. Therefore,
m ∼= f∗(f(m)).

Proposition 5.2.14. Let f : X → Y be an i-open and monotone morphism in E ′ . Then X is i-
connected if and only if Y is i-connected.

Proof. By Proposition 5.2.10 the necessary part holds. To show that the sufficiency part let (m,mc)
be an i-open partition of X. Since f is i-open then both f(m) and f(mc) are i-open subobjects of Y .
On the other hand, f is an i-monotone morphism in E ′ and hence by Lemma 5.2.13, (f(m), f(mc))
is an i-open partion of Y . Thus, f(m) ∼= 0Y or f(mc) ∼= 0Y , since Y is i-connected. Consequently,
we obtain m ≤ f∗(f(m)) ∼= f∗(0Y ) ∼= 0X or mc ≤ f∗(f(mc)) ∼= f∗(0Y ) ∼= 0X . Hence, m ∼= 0X or
mc ∼= 0X . Therefore, X is i-connected.

Proposition 5.2.15. Let f : X → Y be an i-quotient and monotone morphism in E ′ and suppose for
each C-object X, subX is a Boolean algebra. Then X is i-connected if and only if Y is i-connected.

Proof. The necessary part is clear by Proposition 5.2.10. It remains to show the sufficiency part. To this
end, let (m,mc) be an i-open partition of X. Since f is an i-monotone morphism in E ′ and hence by
Lemma 5.2.13, (f(m), f(mc)) is a partion of Y . On the other hand, since f is an i-quotient and both
m ∼= f∗(f(m)) and mc ∼= f∗(f(mc)) are i-open subobject of X we have that both f(m) and f(mc) are
i-open subobject of Y . Note that i-quotient morphisms reflect i-open subobjects. Thus, (f(m), f(mc))
is an i-open partion of Y . Hence, f(m) ∼= 0Y or f(mc) ∼= 0Y , since Y is i-connected. Consequently,
by Lemma 5.2.13, we obtain m ∼= f∗(f(m)) ∼= f∗(0Y ) ∼= 0X or mc ∼= f∗(f(mc)) ∼= f∗(0Y ) ∼= 0X .
Therefore, X is i-connected.

Proposition 5.2.16. Suppose f : X → Y is an i-final and monotone morphism in E ′ and suppose for
each C-object X, subX is a Boolean algebra. Then X is i-connected if and only if Y is i-connected.

Proof. Similar to the proof of Proposition 5.2.15.

Proposition 5.2.17. Let i be a hereditary interior operator, f : X → Y be an i-monotone morphism
in E ′ and f̂ : f∗(N) → N be the restriction of f along the suboject n : N → Y . Then f∗(N) is
i-connected if and only if N is i-connected provided that

(a) f ∈ O(i) or

(b) f ∈ F(i) and for each C-object X, subX is a Boolean algebra.

Proof. (⇒) Suppose f∗(N) is i-connected. Since f ∈ E ′ we have that g : f∗(N) → N is in E ′ .
Therefore, by Proposition 5.2.10, N is i-connected.
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(⇒) Suppose N is i-connected. Let f ∈ F(i) ∪ O(i). Since n ∈ M, one has f̂ ∈ F(i) ∪ O(i) by
Proposition 4.1.25. On the other hand, since f is i-monotone the pullback propery yields f̂ is
i-monotone. And also f ∈ E ′ implies f̂ ∈ E ′ . Thus, f̂ : f∗(N)→ N is an i-monotone morphism
in E ′ ∩ (F(i) ∪ O(i)). Therefore, by Propositions 5.2.14 and 5.2.16, we obtain that f∗(N) is
i-connected.
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6. Compactness with Respect to an Interior
operator

Inspired by the Kuratowski-Mròwka theorem (see Theorem 6.1.9) the categorical theory of compactness
with respect to a closure operator was started by Manes in [Man74]. In [HSS87], Herrlich, Salicrup
and Strecker studied a notion of compactness with respect to M in a concrete category over Set
equipped with (E ,M)-factorization structure for morphisms, which is a generalization of the classical
compactness for topological spaces. Afterwards, the notion of compactness of objects of an arbitrary
category by using closure operators was investigated by a number of authors; see, for example, [Cas90,
Cle96, CGT96, Tho99, CG05, GŠ09, Hol09], turning the Kuratowski-Mròwka theorem into a definition.
In this chapter, by using the notion of interior operator we present two interior-theoretic approaches to
compactness in an arbitrary category. We show that a special case of each theory produces classical
results of compactness in general topology. To this end, as in the case of the previous three chapters, we
work in an M-complete category C equipped with (E ,M)-factorization structure for morphisms such
thatM is a fixed class of monomorphisms and assume that the preimage f∗(−) preserves arbitrary joins
for every morphism f in C. We also assume that M contains all regular monomorphisms whenever it
is needed and consider an interior operator i on C with respect to M.

6.1 Compactness via closed morphisms

Tholen in [Tho99] then together with Clementino and Giuli in [CGT04] presented a categorical approach
to topological properties such as compactness and Hausdorff separation by providing a category C with
an additional structure given by a distinguished class of morphisms that behave almost like the class
K(i) which is generated in Section 3.1. This approach generalizes the work of [CGT96]. In this section,
by considering the suitable class K(i) of i-closed morphisms we first study stably i-closed morphisms.
We then investigate a notion of compactness with respect to i and show that this notion behaves al-
most analogously to compactness via closure operators presented in [CGT96]. We conclude this section
by presenting a notion of Hausdorff separation relative to i and mention a property which connects
i-compact and i-Hausdorff objects. In order to do this we begin with the following fact:

Remark 6.1.1. The pullback of an i-closed morphism need not be an i-closed morphism. Indeed, the
map < → 1, where 1 is a one-point space, is (kin−) closed but the pullback < × < → < of this map
along itself, as in

<× < //

��

<

��

< // 1

is not (kin−) closed since both projections of <×< map the closed set S =

{
(a,

1

a
) : a 6= 0

}
to <\{0}

which is not a closed subset of <.

Recall from Definition 4.1.27 that a morphism f : X → Y in C is stably closed with respect to an
interior operator i (stably i-closed) if any pullback of f is i-closed. We use K(i)∗ to denote the class of
stably i-closed morphisms.
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Remark 6.1.2. K(i)∗ is a subclass of K(i). Indeed, the diagram below is a pullback, hence if f is stably
i-closed then f is i-closed. Therefore, K(i)∗ ⊆ K(i).

X
f
//

1X
��

Y

1Y
��

X
f
// Y

As a consequence the class K(i)∗ satisfies the following fundamental stability properties.

Proposition 6.1.3. The class K(i)∗

(a) is stable under composition,

(b) is stable under pullback,

(c) is left-cancellable with respect to M, that is: if g ◦ f ∈ K(i)∗ and g ∈M then f ∈ K(i)∗,

(d) contains all the isomorphisms and

(e) is right-cancellable with respect to E∗, that is: if g ◦ f ∈ K(i)∗ and f ∈ E∗ then g ∈ K(i)∗.

Proof. (a) Let f, g ∈ K(i)∗ and h̃(g ◦ f) be the pullback of g ◦ f along any h, as in the left diagram
below. Then factorize this pullback diagram, as in the right diagram below

·
h̃(g◦f)

//

��

·
h
��

·
g◦f
// ·

·
k̃(f)

//

��

·
h̃(g)
//

k
��

·
h
��

·
f
// · g

// ·

with h̃(g) and k̃(f) as pullbacks of g and f , respectively. Then both h̃(g) and k̃(f) belong to
K(i), hence the pullback h̃(g ◦ f) of g ◦ f along h which is given by h̃(g ◦ f) ∼= h̃(g)◦ k̃(f) ∈ K(i)
by Proposition 3.1.4(a).

(b) Let f : X → Y ∈ K(i)∗. Then the pullback of f along any morphism is an i-closed morphism. In
particular, any pullback h̃(f) of f along h, shown in the diagram below, is an i-closed morphism.
Moreover, any pullback k̃(h̃(f)) of h̃(f) along k, as in

·
k̃(h̃(f))

//

��

·
k
��

·
h̃(f)

//

��

·
h
��

X
f
// Y

is also an i-closed morphism since k̃(h̃(f)) ∼= h̃ ◦ k(f), where h̃ ◦ k(f) is the pullback of f along
h ◦ k, is a pullback of f . Therefore, by Definition 4.1.27 h̃(f) ∈ K(i)∗. As is explained above,
one also has K(i)∗ ⊆ K(i).
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(c) Let g ◦ f ∈ K(i)∗ and g ∈M. Then the diagram

· 1 //

f

��

·
g◦f
��

· g
// ·

is a pullback. Consequently, with (b), f ∈ K(i)∗.

(d) It follows from the fact that the class Iso(C) of isomorphisms is stable under pullback and Propo-
sition 3.1.4(c).

(e) Let g ◦ f ∈ K(i)∗. Let h̃(g) be the pullback of g along any morphism h, as in the left diagram
below. Then the right diagram below

·
h̃(g)
//

k
��

·
h
��

· g
// ·

·
k̃(f)

//

��

·
h̃(g)
//

k
��

·
h
��

·
f
// · g

// ·

is a pullback, where k̃(f) is the pullback of f along k. Then k̃(f) ∈ E∗ ⊆ E ′ and h̃(g)◦k̃(f) ∈ K(i).
Consequently, by Proposition 3.1.4(d), h̃(g) ∈ K(i).

We obtain the following corollary from Proposition 6.1.3.

Corollary 6.1.4. (a) Let f = m ◦ e with m ∈M and e ∈ E∗. f ∈ K(i)∗ if and only if m, e ∈ K(i)∗.

(b) If f : X → Y ∈ K(i)∗, so is the restriction f̂ : f∗(N)→ N for all n : N → Y in subY .

Lemma 6.1.5. f : X → Y ∈ K(i)∗ ⇔ f × 1V : X × V → Y × V ∈ K(i)∗ for all V ∈ C.

Proof. (⇒) Suppose f ∈ K(i)∗. Using the fact that f × 1V is a pullback of f , that is: the
diagram

X × V f×1V //

πX
��

Y × V
pY
��

X
f

// Y

is a pullback and K(i)∗ is stable under pullback (see Proposition 6.1.3(b)), one has f×1V ∈ K(i)∗.

(⇐) Suppose f × 1V : X × V → Y × V ∈ K(i)∗ for all V ∈ C. Let f̂ : U → V be a pullback
of f along v : V → Y , as in the left diagram below. Then one factorizes this pullback diagram,
as in the right diagram below with both the outer rectangle and the lower square pullbacks.
Consequently, the upper square of the right diagram below is a pullback, hence f̂ is a pullback of
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f × 1V . Therefore, f̂ ∈ K(i) since f × 1V is a stably i-closed morphism.

U
f̂
//

u

��

V

v

���� ��

X
f
// Y

U
f̂

//

〈u,f̂〉
��

V

〈v,1V 〉
��

X × V f×1V //

πX
��

Y × V
pY
��

X
f

// Y

As an immediate consequence of the above lemma one has:

Remark 6.1.6. (a) f : X → Y ∈ K(i)∗ ⇔ 1V × f : V ×X → V × Y ∈ K(i)∗ for all V ∈ C.

(b) !X : X → 1 ∈ K(i)∗ ⇔ πY : X × Y → Y ∈ K(i)∗ for any object Y ∈ C since 1× Y ∼= Y for the
terminal object 1.

Proposition 6.1.7. K(i)∗ is closed under finite products.

Proof. Let f : X → Y and g : Z →W be morphisms in K(i)∗. Then by Lemma 6.1.5, both 1Y ×g and
f × 1Z belong to K(i)∗. Consequently, by Proposition 6.1.3(a), f × g = (1Y × g) ◦ (f × 1Z) ∈ K(i)∗.
Hence, K(i)∗ is closed under binary products, that is: the product of two stably i-closed morphisms is
stably i-closed morphism. Inductively, one shows the closure of K(i)∗ under finite products.

Recall from Corollary 4.1.25 that if E is stable under pullback alongM-morphisms and i is a hereditary
interior operator, then any pullback of an i-closed morphism alongM-morphisms is i-closed. As a con-
sequence, with Lemma 6.1.5, one has f : X → Y ∈ K(i)∗ if and only if f×1V : X×V → Y ×V ∈ K(i)
for all V ∈ C for a hereditary interior operator i with the class E which is stable under pullback along
M-morphisms; see Proposition 4.1.29. This in turn implies:

Remark 6.1.8. In Top with (Surjections, Embeddings)-factorization system, the stably kin-closed mor-
phisms are proper maps in the sense of [Bou66]. Indeed, kin is a hereditary interior operator by Example
4.1.12(a), E = Surjections are stable under pullback.

Theorem 6.1.9 (Kuratowski and Mròwka). A topological space X is compact iff the projection
p2 : X × Y → Y is closed for all Y ∈ Top if and only if the unique map !X : X → 1, where 1 is a
one-point space (the terminal object in Top), is stably closed.

This motivates the following definition:

Definition 6.1.10. An object X ∈ C is i-compact if the unique morphism !X : X → 1 of X into the
terminal object 1 is a stably i-closed morphism, that is: if !X ∈ K(i)∗.

We use Comp(i) to denote the full subcategory of i-compact objects in C.

Remark 6.1.11. 1 ∈ Comp(i). In fact, K(i)∗ contains all isomorphisms, in particular 1→ 1 ∈ K(i)∗.
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As a consequence of Propositions 3.1.4 and 6.1.3 one can obtain the following characterization of i-
compact objects.

Proposition 6.1.12. For any object X in C, the following assertions are equivalent:

(a) for any object Y ∈ C, the projection πY : X × Y → Y ∈ K(i);

(b) X ∈ Comp(i);

(c) for any object Y ∈ C, the projection πY : X × Y → Y ∈ K(i)∗.

Proof. (a) ⇒ (b) : Suppose πY : X × Y → Y ∈ K(i) for all Y ∈ C. Let ˆ!X : Z → Y be a
pullback of !X along !Y , as in the left diagram below. Then factorizing this pullback diagram, as
in the right diagram below

Z
ˆ!X //

u

��

Y

!Y

���� ��

X
!X
// 1

Z
ˆ!X //

〈u, ˆ!X〉
��

Y

1Y
��

X × Y πY //

πX
��

Y

!Y
��

X
!X

// 1

with both the outer rectangle and the lower square pullbacks. Then the upper square of the right
diagram above is a pullback, hence ˆ!X is a pullback of πY . The fact that 1Y ∈ Iso(C) and Iso(C) is
stable under pullback imply the pullback 〈u, ˆ!X〉 of 1Y belongs to Iso(C), that is: 〈u, ˆ!X〉 ∈ Iso(C).
Consequently, by Proposition 3.1.4(c), 〈u, ˆ!X〉 is i-closed. Therefore, ˆ!X = πY ◦ 〈u, ˆ!X〉 ∈ K(i),
by Proposition 3.1.4(a).

(b)⇒ (c) : Let X and Y ∈ C. Since the projection πY : X × Y → Y is the pullback of !X along
!Y , that is: the diagram

X × Y πY //

πX
��

Y

!Y
��

X
!X

// 1

is a pullback. Consequently, if X ∈ Comp(i) then !X ∈ K(i)∗, hence πY : X × Y → Y ∈ K(i)∗

since K(i)∗ is stable under pullback.

(c) ⇒ (a) : follows from Proposition 6.1.3(b). Of course, this is equivalent to (b) by Remark
6.1.6(b).

Remark 6.1.13. Let A and B be any two subcategories of C. Then, the class K(i) induces a Galois

connection S(C) ⊥
c //

S(C)op
p

oo , where c(A) = {X ∈ C : (∀Y ∈ A)(πY : X × Y → Y ∈ K(i))}

and p(B) = {Y ∈ C : (∀X ∈ B)(πY : X × Y → Y ∈ K(i))}.

As a consequence of Propositions 6.1.3 and 6.1.12, we provide a series of properties of compact objects
with respect to an interior operator i. These properties generalize properties of the classical topological
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compactness.

Proposition 6.1.14. Let f : X → Y ∈ E∗ with X ∈ Comp(i). Then Y ∈ Comp(i).

Proof. Let X ∈ Comp(i) and f ∈ E∗ then !Y ◦ f =!X ∈ K(i)∗, hence as a consequence of Proposition
6.1.3(e), !Y ∈ K(i)∗.

A direct application of the above proposition yields the following:

Corollary 6.1.15. Let (Xi)i∈I be a family of C-objects such that each projection pi :
∏
j∈J

Xj → Xi

belongs to the class E , which is stable under pullback and X =
∏
j∈J Xj ∈ Comp(i). Then each factor

Xj is compact relative to i.

Proposition 6.1.16. Comp(i) is closed under stably i-closed embeddings.

Proof. Let m : M → X ∈ M ∩ K(i)∗ such that X ∈ Comp(i) then !X ∈ K(i)∗ and !M =!X ◦ m
Consequently, Proposition 6.1.3(a) gives !M =!X ◦m ∈ K(i)∗. Therefore, M ∈ Comp(i).

Proposition 6.1.17. Comp(i) is closed under finite products in C.

Proof. Let X,Y ∈ Comp(i). The fact that X is compact relative to i implies πY : X×Y → Y ∈ K(i)∗

by Proposition 6.1.12. But since Y ∈ Comp(i), one also has !Y ∈ K(i)∗, as in the commutative diagram

X × Y
πY ∈K(i)∗

//

!X×Y
##

Y

!Y ∈K(i)∗

��

1

Consequently, by Proposition 6.1.3(a), !X×Y =!Y ◦ πY ∈ K(i)∗. Hence, X × Y ∈ Comp(i), that is:
Comp(i) is closed under binary products. Indeed, the principle of mathematical induction produces the
required result.

The following is a characterization of compact objects with respect to an interior operator i.

Proposition 6.1.18. For X,Y ∈ C, X ∈ Comp(i)⇔ ∃f : X → Y ∈ K(i)∗ with Y ∈ Comp(i).

Proof. Suppose X ∈ Comp(i). Then !X : X → 1 ∈ K(i)∗ with 1 ∈ Comp(i). Therefore, the required
f is !X with Y = 1 ∈ Comp(i). Conversely, if there exists f : X → Y ∈ K(i)∗ with Y ∈ Comp(i) then
the diagram below commutes with both f and !Y belong to K(i)∗. Consequently, by Proposition 6.1.3,
!X =!Y ◦ f ∈ K(i)∗. Therefore, X ∈ Comp(i).

X
f
//

!X   

Y

!Y
��

1
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Corollary 6.1.19. (a) Let

D
f̂
//

ĝ
��

Z

g

��

X
f
// Y

be a pullback diagram with f ∈ K(i)∗ and Z ∈ Comp(i) then D ∈ Comp(i). In particular, any
fibre of f ∈ K(i)∗ is i-compact, where a fibre D of f occurs in the above pullback diagram with
Z = 1, the terminal object of C.

(b) The preimage of any subobject n of Y with i-compact domain N under stably i-closed morphism
f : X → Y is i-compact.

Proof. (a) Suppose f ∈ K(i)∗. Then Proposition 6.1.3(b) yields f̂ ∈ K(i)∗. Consequently, with the
hypothesis Z ∈ Comp(i) and Proposition 6.1.18 one concludes D ∈ Comp(i). The particular case
follows from the fact that 1 ∈ Comp(i).

(b) The diagram below is a pullback with f ∈ K(i)∗ and N ∈ Comp(i) then (a) yields f∗[N ] ∈
Comp(i).

f∗[N ] //

f∗(n)
��

N

n

��

X
f
// Y

In what follows we study Hausdorffness (separatedness) with respect to an interior operator i on C with
respect to M.

Remark 6.1.20. A topological space Y is a Hausdorff (or a separated) space if the diagonal map
δY = 〈1Y , 1Y 〉 : Y → Y × Y is closed if and only if δY is stably kin-closed.

This motivates the following:

Definition 6.1.21. An object Y of C is called i-Hausdorff (or i-separated) if the diagonal map δY :
Y → Y × Y is stably i-closed, that is: δY ∈ K(i)∗.

In Top, the kin-Hausdorffness yields the usual notion of Hausdorff separation. We use Haus(i) to denote
the full subcategory of i-Hausdorff objects of C. Trivially 1 ∈ Haus(i).

Remark 6.1.22. (a) Let subX be a Boolean algebra for every C-object X, i be a hereditary interior
operator and ci be the induced closure operator given by ciX(m) = iX(m), where m denotes the
complement of m. Then by Proposition 3.1.3 and Theorem 4.1.11, X is i-Hausdorff if and only if
X is ci-Hausdorff (see [CGT96]). Note that for a given closure operator c, a c-closed morphism in
M is a c-closed subobject. Moreover, if c is hereditary (hence weakly hereditary) then a c-closed
subobject is a c-closed morphism (see [CGT96]).

(b) Let f : X → Y be any morphism with Y ∈ Haus(i). Then the graph of f , Γf = 〈1X , f〉 = X →
X × Y ∈ K(i)∗. Indeed, since Γf is the pullback (f × 1Y )∗(δY ) of the diagonal morphism δY
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along the morphism f × 1Y , as in

X
Γf
//

f
��

X × Y
f×1Y
��

Y
δY
// Y × Y

and K(i)∗ is stable under pullback, one has Γf = 〈1X , f〉 ∈ K(i)∗. Moreover, any pullback of Γf
belongs to K(i)∗.

Definition 6.1.21 and Remark 6.1.22 yield:

Proposition 6.1.23. Let i be a hereditary interior operator on Top. Then our notion of Hausdorff
separation with respect to i coincides with the notion of separation with respect to i which is studied
in [CM13].

As a consequence of Definition 6.1.21 and Proposition 6.1.3 one has:

Proposition 6.1.24. (a) Let Y ∈ Haus(i). Then, f : X → Y ∈ K(i)∗ ⇔ f × 1V : X × V →
Y × V ∈ K(i) for all V ∈ C.

(b) Let f : X → Y ∈ K(i)∗ and g : X → Z be a morphism with Z ∈ Haus(i). Then 〈f, g〉 : X →
Y × Z ∈ K(i)∗.

(c) Let f : X → Y and h : Y → Z be morphisms in C such that h ◦ f ∈ K(i)∗ and Y ∈ Haus(i).
Then f ∈ K(i)∗.

(d) Let f : X → Y ∈ K(i)∗ ∩ E∗ with X ∈ Haus(i). Then Y ∈ Haus(i).

(e) If X,Y ∈ Haus(i) then X × Y ∈ Haus(i).

(f) Haus(i) is closed underM-morphisms, that is: if m : M → X ∈M with X ∈ Haus(i) then M ∈
Haus(i).

Proof. (a) follows from the above definition, Lemma 6.1.5, Remark 6.1.22(b) and the fact that K(i)∗

is left cancellable with respect to M.

(b) since 〈f, g〉 factors as X
〈1X ,g〉
// X × Z f×1Z // Y × Z with 〈1X , g〉, f × 1Z ∈ K(i)∗ and K(i)∗ is

stable under composition, one has 〈f, g〉 : X → Y × Z ∈ K(i)∗.

(c) Consider the commutative diagram

X
Γf
//

f
��

X × Y
h◦f×1Y
��

Y
〈h,1Y 〉
// Z × Y

Then, since h ◦ f ∈ K(i)∗, one has h ◦ f × 1Y ∈ K(i)∗ by Lemma 6.1.5, and since Y ∈ Haus(i),
one has Γf ∈ K(i)∗ by Remark 6.1.22(b). Consequently, with Proposition 6.1.3(a) one obtains
〈h, 1Y 〉 ◦ f = h ◦ f × 1Y ◦ Γf ∈ K(i)∗. Therefore, by Proposition 6.1.3(c), f ∈ K(i)∗ since
〈h, 1Y 〉 ∈ M, as it is a section (hence a regular monomorphism).
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(d) Let f : X → Y ∈ K(i)∗ and X ∈ Haus(i). One has a commutative diagram

X
f

//

δX
��

Y

δY
��

X ×X
f×f

// Y × Y

with δX ∈ K(i)∗ and f × f ∈ K(i)∗ (by Proposition 6.1.7). Consequently, Proposition 6.1.3(a)
yields δY ◦ f = f × f ◦ δX ∈ K(i)∗. Hence, by Proposition 6.1.3(e), δY ∈ K(i)∗ since f ∈ E∗.

(e) is a consequence of δX×Y ∼= δX × δY and Proposition 6.1.7.

(f) is a consequence of the stability of K(i)∗ under composition and δM : M →M ×M is a pullback
of Γm : M →M ×X and hence a pullback of δX : X → X ×X.

The following is a property which relates i-compact objects to i-Hausdorff objects.

Proposition 6.1.25. For X i-compact and Y i-Hausdorff, every morphism f : X → Y ∈ K(i)∗.

Proof. Since f factors as X
〈1X ,f〉
// X × Y πY // Y with 〈1X , f〉, πY ∈ K(i)∗. Consequently, Proposi-

tion 6.1.3(a) gives f ∈ K(i)∗.

As a consequence of the above Proposition and Proposition 6.1.3(a) one obtains:

Corollary 6.1.26. Let Y ∈ Comp(i) ∩ Haus(i). Then f : X → Y ∈ K(i)∗ ⇔ X ∈ Comp(i).

Remark 6.1.27. (a) Due to the Kuratowski and Mròwka theorem, for C = Top, the kin-compact
objects are the usual compact spaces.

(b) Let subX be a Boolean algebra for every C-object X, i be an interior operator and ci be the
induced closure operator given by ciX(m) = iX(m), where m denotes the complement of m. Then
by Proposition 3.1.3, X is compact relative to i if and only if X is compact with respect to ci

(see [CGT96]).

(c) We may deduce that i-compactness is well defined since its basic properties are shown to be similar
to the classical compactness of topological spaces.

In this section the assumption that arbitrary joins are preserved by each preimage is essential in the
development of the theory of the notions of compactness and separatedness with respect to a given
interior operator. It allows us to introduce stably closed morphisms with respect to a given interior
operator. Consequently, the notions of compactness and separatedness with respect to a given interior
operator on C are introduced. Our notion of separatedness coincides with the one given in [CM13] for
a given hereditary interior operator. On the other hand, since each preimage has both left and right
adjoints, some of the results (and proofs) with respect to interior operators are analogous to that of
closure operators. Indeed, this should not come as a surprise, as observed before. In fact, some of
our results are specific cases of [CGT04]. Our results provide an interior-theoretic description of the
notions. Moreover, there are new insights and importantly some things that can only be done with
interior operators.
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6.2 Compactness via covers

In this section, following the Borel-Lebesgue definition of compact spaces we introduce the notion of
compactness with respect to an interior operator, similarly to what has been done for closure operators
in [Cle96].

Definition 6.2.1. An object X of a category C is said to be Borel-Lebesgue compact with respect to
an interior operator i if for every family (rk)k∈K of subobjects of X such that

∨
k∈K

iX(rk) ∼= iX(1X),

there exists a finite subset J of K such that iX(1X) ≤
∨
j∈J

rj .

Since rk ≤ 1X for all k ∈ K, one has iX(rk) ≤ iX(1X) for all k ∈ K, hence
∨
k∈K

iX(rk) ≤ iX(1X).

Consequently, we can replace
∨
k∈K

iX(rk) ∼= iX(1X) by iX(1X) ≤
∨
k∈K

iX(rk) in the above definition.

We also note that, a concept of Borel-Lebesgue compact relative to an interior operator generalizes the
classical notion of compactness for topological spaces, since if C = Top and i is the interior operator
induced by the topology then the Borel-Lebesgue compact objects are the compact topological spaces.

Remark 6.2.2. An object X ∈ C is Borel-Lebesgue compact with respect to a standard interior operator
i if for every family (rk)k∈K of subobjects of X such that 1X ≤

∨
k∈K

iX(rk) (or 1X ∼=
∨
k∈K

iX(rk)), there

exists a finite subset J of K such that 1X ≤
∨
j∈J

rj (or 1X ∼=
∨
j∈J

rj).

We use BLComp(i) to denote the subcategory of Borel-Lebesgue compact objects with respect to an
interior operator i of the category C. In Top, this notion of compactness coincides with the notion of
compactness via closed morphisms.

Proposition 6.2.3. (Image of compact space is compact). Let i be a standard interior operator and
f : X → Y ∈ E ′ . If X ∈ BLComp(i) then so is Y .

Proof. Suppose X ∈ BLComp(i). Let (nk)k∈K be a family of subobjects of Y such that
∨
k∈K

iY (nk) ∼=

iY (1Y ). Then the fact that i is standard and f∗ commutes with the join of subobjects implies
iX(1X) ∼= 1X ∼= f∗(1Y ) ∼= f∗(iY (1Y )) ∼= f∗(

∨
k∈K

iY (nk)) ∼=
∨
k∈K

f∗(iY (nk)) ≤
∨
k∈K

iX(f∗(nk)). Hence,

(f∗(nk))k∈K is a family of subobjects of X such that
∨
k∈K

iX(f∗(nk)) ∼= iX(1X). But since X ∈

BLComp(i) we have that there exists a finite subset J of K such that iX(1X) ≤
∨
j∈J

f∗(nj). Con-

sequently, the fact that f ∈ E ′ implies iY (1Y ) ∼= 1Y ∼= f∗(1X) ∼= f∗(iX(1X)) ≤ f∗(
∨
j∈J

f∗(nj)) ∼=

f∗(f
∗(
∨
j∈J

nj))) ∼=
∨
j∈J

nj .

As an immediate consequence of Proposition 6.2.3, we obtain the following fact:

Corollary 6.2.4. Let i be a standard interior operator and X =
∏
i∈I
Xi be a product in C such that each

projection pi : X → Xi ∈ E
′
. If X ∈ BLComp(i) then each Xi ∈ BLComp(i).
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As a generalization of Proposition 6.2.3, one has the following.

Proposition 6.2.5. Let i be a standard interior operator and f : X → Y be any morphism in C such
that f∗(n) ∼= 1X ⇔ n ∼= 1Y . If X ∈ BLComp(i) then so is Y .

Proof. Let (nk)k∈K be a family of subobjects of Y such that
∨
k∈K

iY (nk) ∼= iY (1Y ). Since i is standard

and f∗ commutes with the join of subobjects, one has iX(1X) ∼= 1X ∼= f∗(1Y ) ∼= f∗(iY (1Y )) ∼=
f∗(

∨
k∈K

iY (nk)) ∼=
∨
k∈K

f∗(iY (nk)) ≤
∨
k∈K

iX(f∗(nk)). Hence, (f∗(nk))k∈K is a family of subobjects

of X such that
∨
k∈K

iX(f∗(nk)) ∼= iX(1X). But since X belongs to BLComp(i) we have that there

exists a finite subset J of K such that 1X ∼= iX(1X) ≤
∨
j∈J

f∗(nj). Consequently, 1X ∼=
∨
j∈J

f∗(nj)) ∼=

f∗(
∨
j∈J

nj). This together with the hypothesis f∗(n) ∼= 1X ⇔ n ∼= 1Y for all n ∈ subY yields
∨
j∈J

nj ∼=

1Y ∼= iY (1Y ).

The following is a converse of Proposition 6.2.3.

Proposition 6.2.6. Let i be a standard interior operator and f : X → Y ∈ I(i) ∩ E ′ . If Y ∈
BLComp(i) then so is X.

Proof. Suppose Y ∈ BLComp(i). Let (rk)k∈K be a family of subobjects of X such that iX(1X) ∼=∨
k∈K

iX(rk). Then

iY (1Y ) ∼= 1Y ∼= f∗(1X) ∼= f∗(iX(1X)) ∼= f∗(
∨
k∈K

iX(rk)) (i standard)

∼= f∗(
∨
k∈K

f∗(iY (f∗(rk)))) (f ∈ I(i))

∼= f∗(f
∗(
∨
k∈K

iY (f∗(rk)))) (f∗commutes with the joins)

∼=
∨
k∈K

iY (f∗(rk)) (f ∈ E ′).

Thus (f∗(rk))k∈K is a family of subobjects of Y such that iY (1Y ) ∼=
∨
k∈K

iY (f∗(rk)). Consequently,

compactness of Y implies there exists a finite subset J of K such that iY (1Y ) ≤
∨
j∈J

f∗(rj). Hence,

iX(1X) ∼= 1X ∼= f∗(1Y ) ∼= f∗(iY (1Y )) ≤ f∗(
∨
j∈J

f∗(rj)) ∼=
∨
j∈J

f∗(f∗(rj)) ≤
∨
j∈J

rj .

Next we show that the domain of a closed embedding of a compact object is compact. For that we first
prove the following lemma.

Lemma 6.2.7. Let subX be a Boolean algebra for each object X ∈ C and f ∈ M then the right
adjoint f∗ of f∗ commutes with the join of subobjects.

Proof. Let (rk)k∈K be a family of subobjects of X. Then by the fact that f ∈ M and Lemma 1.4.7

(b) one obtains: f∗

(∨
rk

k∈K

)
∼= f

(∨
rk

k∈K

)
∼= f

(∧
rk

k∈K

)
∼=
∧
k∈K

f(rk) ∼=
∨
k∈K

f(rk) ∼=
∨
k∈K

f∗(rk).
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Proposition 6.2.8. (Closed subspace of a compact space is compact). Let subX be a Boolean algebra
for each object X ∈ C and r : R → X be a closed morphism in M and i be an interior operator. If
X ∈ BLComp(i) then so is R.

Proof. Let (rk)k∈K be a family of subobjects of R such that iR(1R) ∼=
∨
k∈K

iR(rk). Then

iX(1X) ∼= iX(r∗(1R)) ≤ r∗(iR(1R)) (r i-continuous)

∼= r∗

(∨
k∈K

iR(rk)

)
∼=
∨
k∈K

r∗(iR(rk)) (Lemma 6.2.7)

∼=
∨
k∈K

iX(r∗(rk)) (r ∈ K(i)).

But since X ∈ BLComp(i), there exists J ⊆ K finite such that iX(1X) ≤
∨
j∈J

r∗(rj). Consequently, with

Proposition 3.1.36 one has iR(1R) ∼= r∗(iX(r∗(1R))) ∼= r∗(iX(1X)) ≤ r∗(
∨
j∈J

r∗(rj)) ∼=
∨
j∈J

r∗(r∗(rj)) ≤∨
j∈J

rj . Therefore, R ∈ BLComp(i).

Examples 6.2.9. (a) Let C be the category Top of topological spaces and continuous functions with
(Surjections, Embeddings)-factorization system.

(i) The Borel-Lebesgue compact objects with respect to the Kuratowski interior operator kin

are the compact spaces. Indeed, for every family (Ri)i∈I of subspaces of a topological space
X such that

⋃
i∈I
kinX(Ri) = X we have a family (kinX(Ri))i∈I of open subspaces which covers

X. Consequently, the fact that X is compact implies there is a finite subcover of X. That
is, there is a finite subset J of I such that X =

⋃
j∈J

kinX(Rj) ⊆
⋃
j∈J

Rj .

(ii) The Borel-Lebesgue compact objects with respect to the discrete interior operator din are
the finite topological spaces.

(iii) Any topological space X is a Borel-Lebesgue compact object with respect to the trivial
interior operator tin.

(iv) The Borel-Lebesgue compact objects with respect to bin-interior are topological spaces in
which the topology induced by the bin is compact.

(b) Let C be the category PreTop of pretopological spaces and continuous functions with
(Surjections, Embeddings)-factorization system. Then the Borel-Lebesgue compact objects with
respect to the Čech interior operator čin are precisely the compact pretopological spaces.

(c) Let C be the category Loc of locales with (onto localic maps, one to one localic maps)-factorization
system. Then the Borel-Lebesgue compact objects with respect to the interior operator which
assigns to each sublocale the largest open sublocale contained in it are the compact locales.

The notion of compactness via covers is trivial in all abelian categories (such as the category of modules
over a commutative ring, the category of all abelian groups, the category of vector spaces over a field).
Indeed, such categories only have the discrete interior operator (see Chapeter 2) and the Borel-Lebesgue
compact objects with respect to this operator are the finite ones.
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[Šla08] J. Šlapal. Convergence on categories. Appl. Categ. Structures, 16(4):503–519, 2008.
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