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Abstract

Due to bond prices pull-to-par, zero coupon bonds historical returns
are not stationary, as they tend to zero as time to maturity approaches.
Given that the historical simulation method for computing Value at Risk
(VaR) requires a stationary sequence of historical returns, zero coupon
bonds historical returns can not be used to compute VaR by historical
simulation. Their use would systematically overestimate VaR, resulting
in invalid VaR sequences. In this paper we propose an adjustment of zero
coupon bonds historical returns. We call the adjusted returns “pulled-to-
par” returns. We prove that when the zero coupon bonds continuously
compounded yields to maturity are stationary the adjusted pulled-to-par
returns allow VaR computation by historical simulation. We first illustrate
the VaR computation in a simulation scenario, then we apply it to real
data on euro zone STRIPS.

1 Introduction

According to Basel II, although banks can develop their own internal mod-
els, Value at Risk (VaR) is still the minimum standard [Basel II(2006), 195].
This regulatory framework is expected to be in use until the end of 2019, time
when the 2016 revised standard implementation [Basel II(2016), 4] is expected
to replace it. Among the VaR models based on variance-covariance matrices,
historical simulation, or Monte Carlo simulation, no particular type of model is
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prescribed. The survey [Mehta et al.(2012), 4] refers that 75 percent of banks
use historical simulation. For a comprehensive literature review on VaR method-
ologies, strengths and limitations, we refer to [Abad, Benito and López(2014)].

Zero coupon bonds historical returns are not stationary, as they tend to zero
as the time to maturity approaches – the so-called pull-to-par effect. Returns
convergence to zero result from bond prices convergence to their par value at
maturity1. Without this convergence bonds would mature at a price differ-
ent from their payoff at maturity, leading to arbitrage opportunities2, which is
believed that does not happens in efficient markets.

The pull-to-par of bond prices is, thus, the key factor that distinguishes
the dynamics of bond prices. Given the non-stationarity of zero coupon bonds
historical returns, they cannot be used to compute VaR by historical simulation,
because this method requires stationary historical returns.

In this paper we propose an adjustment of zero coupon bonds historical
returns that allows computing VaR by historical simulation. The aim of our
proposal is to compute VaR by historical simulation of portfolios with zero
coupon bonds, keeping the same level of simplicity the historical simulation
method allows for portfolios with stocks. The underlying ideas of the adjustment
were first described in [Sousa et al.(2014)]. Intuitively, all historical returns
are pulled to the dates relevant to the VaR computations. The goal of such
adjustment is to correct the pull-to-par effect of bond prices while preserving
historical market movements.

In our main theoretical results (Section 3), we prove that the proposed
method applies whenever zero coupon bonds continuously compounded yields
to maturity are stationary. We then illustrate the pull-to-par VaR computations
and backtest them in a simulation scenario (Section 4). Finally, we apply the
proposed method to euro bond STRIPS (Section 5).

2 Value at risk and historical simulation

Consider, the time instant t, an asset with value Vt, at time t, and an holding
period ∆. The asset profit or loss PLt+∆, at time t+∆, over the holding period
∆, is given by:

PLt+∆ = Vt+∆ − Vt = Vt

(
Vt+∆ − Vt

Vt

)
where

Vt+∆ − Vt
Vt

=
Vt+∆

Vt
− 1 (1)

is the asset return at time t+ ∆ over the period ∆.

1The bond par value is also known as the face value. For more details on the pull-to-par
effect, see for instance [Fabozzi(2004), 50]

2For a formal definition of arbitrage see [Björk(2004), 92].
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The VaR, at time t, with confidence level α and horizon ∆, is the loss L that
is not exceeded with probability α, when holding the asset over the period ∆.
Formally,

P(PLt+∆ < L) = 1− α (2)

where P denotes probability. The VaR value L is the 1 − α quantile of the
profits and losses distribution.

In the historical simulation method [Dowd(2007)] the VaR value L, in Equa-
tion (2), is computed over a distribution of simulated profits and losses. Each
non-overlapping historical return is applied to the current asset value to build
a simulated profit or loss, P̃L. Denoting by s an historical time, s ≤ t−∆

P̃Lt+∆ = Vt

(
Vs+∆

Vs
− 1

)
(3)

The assumption is that the profits or losses process is stationary. Under this
assumption the empirical distribution of simulated profits or losses converges to
the real distribution of profits and losses [McNeil, Frey and Embrechts(2005),
50]. Therefore, the VaR value L, obtained from (2), is the 1−α quantile of the
simulated profits and losses distribution.

In case of portfolios with several assets, the synchronized simulated profits
or losses of all portfolio assets are added to obtain the simulated portfolio profits
or losses distribution. The VaR value is obtained from the 1−α quantile of the
portfolio simulated profits and losses distribution.

The problem with fixed income assets is that the stationarity assumption
does not hold, by definition. In the following we focus on zero coupon bond
prices, as they are key for valuation of any fixed income instrument.

2.1 Zero coupon bonds historical returns

Consider the market price p(t, T ), at time t ≤ T , of a zero coupon bond paying
1 at maturity T . The pull-to-par convergence of the bond price to the par value
ensures that at time T we have that p(T, T ) = 1. Consider also holding the
bond quantity q over the period ∆. Given that the VaR is computed at time t,
the zero coupon bond historical return, at time s+ ∆ < t, over the period ∆, is
given by

Vs+∆

Vs
− 1 =

q p(s+ ∆, T )

q p(s, T )
− 1 =

p(s+ ∆, T )

p(s, T )
− 1. (4)

Zero coupon bonds historical returns do incorporate historical market move-
ments that should be considered in VaR computation. However, due to bond
prices pull-to-par they are not stationary as they tend to zero as time to ma-
turity approaches. Therefore the returns at time t > s + ∆ are systematically
smaller than those at the historical times s+ ∆. Hence, the use of zero coupon
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bonds historical returns to compute VaR by historical simulation would system-
atically overestimate VaR resulting in invalid VaR sequences. This phenomenon
will be clearly illustrated in the simulation study carried out in Section 4.

2.2 Zero coupon bonds “pulled -to-par” returns

In this paper we proposes3 the following zero coupon bond historical return at
time s + ∆ for holding period ∆, adjusted (or pulled) to times to maturity4

T − t and T − (t+ ∆), as follows

p(s+ ∆, T )1− t−s
T−(s+∆)

p(s, T )1− t−s
T−s

− 1. (5)

We call the adjusted historical returns from (5) ”pulled-to-par” returns.

3 On the “pulled-to-par” VaR method

Let p(t, T ) be the price process, defined on the probability space (Ω,A,P), of
a zero coupon bond paying 1 at maturity T , from which a single realization
is observed. Given p(t, T ) we can always define its continuously compounded
yield-to-maturity as,

p(t, T ) = e−y(t,T )(T−t) . (6)

This yield-to-maturity is the typical risk factor used for fixed income risk
management purposes [McNeil, Frey and Embrechts(2005), 31]. It is, therefore,
not surprising that the applicability of the pulled-to-par VaR method depends
on (distributional) properties of this risk factor.

Our main result, in Theorem (3.1) below, shows that under strict sense
stationarity of the continuously compounded yield-to-maturity, pulled-to-par
returns do allow computing VaR by historical simulation for portfolios with
zero coupon bonds.

Taking a back-testing point of view, i.e. we assuming that the zero coupon
bond already matured and that the entire price sequence was observed. Then,
any historical market price p(s, T ) implies a continuously compounded yield to
maturity, y(s, T ), at time s, which satisfies

1 = p(s, T )ey(s,T )(T−s) , (7)

and is, thus, defined as,

y(s, T ) = − log p(s, T )

T − s
. (8)

3Building on the discrete time intuition in [Sousa et al.(2014)], Theorem 3.2 shows that, for
continuously compounded yields, (5) defines the zero coupon bond “pulled -to-par” returns.

4These are the relevant times to maturity at time VaR is computed.

4



Theorem 3.1. Let s ≤ t + ∆. If the yield-to-maturity y(s, T ) is stationary,
in the strict sense, the 1 − α quantile of the pulled-to-par returns distribution
equals the zero coupon bond value at risk at time t.

Proof. Theorem (3.1) follows straight forward from writing the bond return of
Equation (4) at time t, the time VaR is computed, and the proposed pulled-to-
par return of Equation (5) as

p(t+ ∆, T )

p(t, T )
− 1 = e−(T−t)(y(t+∆,T )−y(t,T ))+∆y(t+∆,T ) − 1 (9)

and

p(s+ ∆, T )1− t−s
T−(s+∆)

p(s, T )1− t−s
T−s

− 1 = e−(T−t)(y(s+∆,T )−y(s,T ))+∆y(s+∆,T ) − 1. (10)

Equation (9) results from:

p(t+ ∆, T )

p(t, T )
− 1 =

e−y(t+∆,T )(T−(t+∆))

e−y(t,T )(T−t)
− 1 (11)

= e−y(t+∆,T )(T−(t+∆))+y(t,T )(T−t) − 1

= e−Ty(t+∆,T )+ty(t+∆,T )+∆y(t+∆,T )+Ty(t,T )−ty(t,T ) − 1

= e−T (y(t+∆,T )−y(t,T ))+t(y(t+∆,T )−y(t,T ))+∆y(t+∆,T ) − 1

= e−(T−t)(y(t+∆,T )−y(t,T ))+∆y(t+∆,T ) − 1

while Equation (10) results from:

p(s+ ∆, T )1− t−s
T−(s+∆)

p(s, T )1− t−s
T−s

− 1 =

(
e−y(s+∆,T )(T−(s+∆))

)1− t−s
T−(s+∆)(

e−y(s,T )(T−s)
)1− t−s

T−s

− 1

=
e−y(s+∆,T )(T−(s+∆))+y(s+∆,T )(T−(s+∆)) t−s

T−(s+∆)

e−y(s,T )(T−s)+y(s,T )(T−s) t−s
T−s

− 1

=
e−y(s+∆,T )(T−(s+∆))+y(s+∆,T )(t−s)

e−y(s,T )(T−s)+y(s,T )(t−s)
− 1

=
e−y(s+∆,T )(T−(s+∆))

e−y(s,T )(T−s)︸ ︷︷ ︸
Equation (11) on time s

ey(s+∆,T )(t−s)

ey(s,T )(t−s)
− 1
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= e−(T−s)(y(s+∆,T )−y(s,T ))+∆y(s+∆,T )ey(s+∆,T )(t−s)−y(s,T )(t−s) − 1

= e−(T−s)(y(s+∆,T )−y(s,T ))+∆y(s+∆,T )e(t−s)(y(s+∆,T )−y(s,T )) − 1

= e−(T−s)(y(s+∆,T )−y(s,T ))+∆y(s+∆,T )+(t−s)(y(s+∆,T )−y(s,T )) − 1

= e(−(T−s)+(t−s))(y(s+∆,T )−y(s,T ))+∆y(s+∆,T ) − 1

= e(−T+s+t−s)(y(s+∆,T )−y(s,T ))+∆y(s+∆,T ) − 1

= e−(T−t)(y(s+∆,T )−y(s,T ))+∆y(s+∆,T ) − 1.

If the yield to maturity, y(t, T ), is stationary, in the strict sense, then

[Papoulis(1984), 219-220], then denoting equality in distribution by
d
=, we have

1. The probability distribution of y(t, T ) is independent of t. Let y(T ) be a
random variable with the time independent yield to maturity distribution.
We have that

y(t+ ∆, T )
d
= y(s+ ∆, T )

d
= y(T ); (12)

2. The probability distribution of y(t −∆, T ) − y(t, T ) depends only on ∆.
Let y(∆, T ) be a random variable with the ∆ dependent yield to maturity
distribution. We have that:

y(t+ ∆, T )− y(t, T )
d
= y(s+ ∆, T )− y(s, T )

d
= y(∆, T ). (13)

Given Equations (12) and (13) the returns in Equations (9) and (10) are
given by:

p(t+ ∆, T )

p(t, T )
− 1 = e−(T−t)(y(t+∆,T )−y(t,T ))+∆y(t+∆,T ) − 1

d
= e−(T−t)y(∆,T )+∆y(T ) − 1

and

p(s+ ∆, T )1− t−s
T−(s+∆)

p(s, T )1− t−s
T−s

− 1 = e−(T−t)(y(s+∆,T )−y(s,T ))+∆y(s+∆,T ) − 1

d
= e−(T−t)y(∆,T )+∆y(T ) − 1.

Both the bond return at time VaR is computed (Equation (9)) and the
proposed pulled-to-par return of Expression (5) have the same probability dis-
tribution. Therefore, the 1 − α quantile of the proposed pulled-to-par return
equals the VaR value L.
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Theorem (3.2) shows that the pulled-to.par returns of Expression (5) are
computed from historical prices at times s and s + ∆, pulled to times t and
t+ ∆, using the continuously compounded implied historical yields to maturity,
at times s and s+ ∆. The pull-to-par effect is thus corrected, while preserving
historical market movements.

Theorem 3.2. The zero coupon bonds pulled-to-par returns of Expression (5)
computed from historical prices p(s, T ) and p(s+ ∆, T ) are given by

ps+∆(t+ ∆, T )

ps(t, T )
− 1, (14)

where:

• ps(t, T ) is the bond valuation at time t given the historical market price
p(s, T ) and the corresponding continuously compounded implied yield to
maturity y(s, T );

• and ps+∆(t+∆, T ) is the bond valuation at time t+∆ given the historical
market price p(s+ ∆, T ) and the corresponding continuously compounded
implied yield to maturity y(s+ ∆, T ).

Proof. Given Equation (7), ps(t, T ) is given by

ps(t, T ) = p(s, T )ey(s,T )(t−s). (15)

Substituting y(s, T ), given by Equation (8)

ps(t, T ) = p(s, T )e−
log p(s,T )

T−s (t−s)

= p(s, T )e− log p(s,T ) t−s
T−s

= p(s, T )elog 1
p(s,T )

t−s
T−s

= p(s, T )
(
elog 1

p(s,T )

) t−s
T−s

= p(s, T )

(
1

p(s, T )

) t−s
T−s

= p(s, T )p(s, T )−
t−s
T−s

= p(s, T )1− t−s
T−s .

Repeating a similar manipulation for ps+∆(t+ ∆, T )
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ps+∆(t+ ∆, T ) = p(s+ ∆, T )ey(s+∆,T )((t+∆)−(s+∆))

= p(s+ ∆, T )e−
log p(s+∆,T )

T−(s+∆)
(t−s)

= p(s+ ∆, T )p(s+ ∆, T )−
t−s

T−(s+∆)

= p(s+ ∆, T )1− t−s
T−(s+∆) .

Substituting ps(t, T ) and ps+∆(t+ ∆, T ) in Equation (14) gives

ps+∆(t+ ∆, T )

ps(t, T )
− 1 =

p(s+ ∆, T )1− t−s
T−(s+∆)

p(s, T )1− t−s
T−s

− 1

which equals Expression (5).

4 Simulation

The main purpose of this section is to provide a controlled environment where
the assumption of Theorem (3.1) holds, namely, where the yields to maturity of
zero coupon bonds are stationary.

We use this controlled environment to illustrate Zero Coupon Bonds VaR
computation with pulled-to-par returns and compare it with the VaR computa-
tion using historical returns.

Given that the historical simulation performance depends on the size of the
available historical sequence [McNeil, Frey and Embrechts(2005), 51] we also
evaluate the ratio of valid VaR sequences obtained for the selected simulation
scenario.

4.1 Simulation scenario

Our guideline for simulating prices of zero coupon bonds was to replicate the
conditions of our real data database.

Regarding the availability of prices, our real data database, has prices from
2006-01-03 to 2018-06-01, spanning approximately twelve and a half years. In
order to get a similar time spanning we simulated sequences of 4533 daily prices.
We also simulated weekends, because the non-availability of prices at weekends
decreases the number of returns available 5 and the historical simulation method
depends on the number of returns available. We simulated weekends by remov-
ing the last two prices of each non-overlapping 7 prices sequence.

5As an example, in a sequence of 7 days, starting at a Monday, there are only 4 one day
returns available, instead of the potentially 6 if there were prices at weekends.
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As for the prices simulation, Theorem (3.1) requires stationary yields to
maturity. Looking at the prices in our database negative yields to maturity
occurrences can be observed. To accommodate both scenarios we simulate the
yields to maturity with a constant mean uniformly distributed between -1.0%
and 1%. In each time instant, this constant mean is added with an indepen-
dent uniform distribution between 0.0% and 0.1%. The resulting sequence is
smoothed by a five instants moving average to add some time structure.

Finally we selected maturities distributed in the year ahead of our period of
analysis because the maturities of our real data database follow this same crite-
rion. In sequences lengths terms the maturities were simulated to be uniformly
distributed between 4533 plus 1 and 4533 plus 365.

Appendix A illustrates the negative yield to maturity simulated sequence
along with the corresponding zero coupon bond prices.

4.2 Simulated zero coupon bond VaR

In this section we illustrate the VaR computation of a simulated zero coupon
bond using pulled-to-par returns.

Following the Basel recommendations [Basel II(2006)] we start to compute
VaR one year after the beginning of our period of analysis so that the VaR is
computed with a minimum of one year of historical data. Then, we compute
VaR at each instant using all the available historical data until that instant.

Figure 1 illustrates the historical returns and the VaR value obtained using
the historical simulation method over the proposed pull-to-par returns, for the
12.8 maturity zero coupon bond whose prices are illustrated in Appendix A.
The horizon and confidence level is ∆ = 1 day and α = 0.99, respectively. The
returns that violate the VaR value are also showed.

It is clear from Figure 1 that the pulled-to-par VaR value follows the histor-
ical returns pattern, diminishing towards zero as time to maturity approaches.

Just for illustration purposes Figure 1 also includes the 1− 0.99 quantile of
the historical returns. It is clear from Figure 1 that this quantile can not be
used to compute VaR. It does not follow the returns diminishing pattern. As a
consequence there are almost no violations of this quantile which would result
in an invalid VaR sequence.

In order to validate the obtained VaR sequences we applied both the stan-
dard Bernoulli coverage test, for the level of VaR violations, and the text of
[Christoffersen(1998)] for violations of independence. Implementation of both
tests in several programming languages is provided in [Danelsson(2015)].

Table 1 shows both statistical tests p-values for the VaR sequence of Figure 1.
Using the common p-value threshold of 0.05, it confirms that the Var sequence
of Figure 1 is valid. The returns VaR violations in Figure 1 (orange excedences)
of the pulled-to-par VaR (green line), occur as required at with 1% frequency
and are independent.
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Figure 1: One day horizon, 0.99 confidence level, 12.8 maturity zero coupon
bond pulled-to-par VaR example.

p-value
Level test 0.402

Independence test 0.414

Table 1: Figure 1 VaR violations statistical tests p-values.

4.3 VaR computation performance

The historical simulation method is based on the convergence of the empirical
returns distribution to the real distribution. This convergence takes place as
the number of returns tends to infinity. In practice the number of returns is
limited. In this section we evaluate the performance of the pulled-to-par VaR
computation, with pulled in the simulation scenario previously described.

Ideally we would consider the confidence levels from Basel recommendations,
namely, 97.5% and 99% [Basel II(2006), Basel II(2016)], as well as the recom-
mended 10 day time horizon. However, in terms of the time horizon, and since it
also allowed shorter horizons to be scaled to the 10 days period, here e evaluate
1 day periods. This maximizes the number of returns available and allow for a
better performance evaluation.

We repeat the VaR computation 1000 times for each confidence level. These
number of repetitions was empirically determined by observing that the perfor-
mance ratios remain almost unchanged around 500 repetitions. We just doubled
this number and observed that the ratios did not change.

Table 2 illustrates the performance ratios obtained. Under the described
simulation scenario the performance of the one day VaR computation for a
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period slightly exceeding 10 years is always above 90%.

Violations Volialtions Valid
level independence VaR

p-value > 0.05 p-value > 0.05 sequences
α = 0.975 confidence level 949 955 909
α = 0.99 confidence level 918 981 900

Table 2: One day VaR computation performance over 1000 repetitions.

Figure 1 together with Table 2 summarize the overall idea of this paper.
It is clear from Figure 1 that bond historical returns tend to zero as maturity
approaches (blue line). This is the direct consequence of the pull-to-par con-
vergence of bond prices to the par value at maturity. It is also clear that the
quantile of the historical returns (red line) systematically overestimates VaR
as there are almost no historical returns violations of this value. On the other
hand, the pulled-to-par VaR value proposed (green line) is indeed adjusted for
the pull-to-par pattern as it clearly follow the diminishing pattern of the histor-
ical returns. Table 2 shows that the historical returns violations of this value do
confirm that it is a valid VaR sequence for over more than 90% of the simulation
repetitions.

4.4 Computational overhead

Expression (5) implies recalculation of pulled-to-par returns of each time tVaR is
computed. This results in a computational overhead compared to the historical
simulation of portfolios of stocks, where no (pull-to-par) adjustment is needed.
However the pulled to par returns for each time t can be computed independently
of each other. This means that they can be parallelized. Given the current trend
of multicore GPU’s6 we anticipate that this overhead will easily overcome.

5 Real data

In this section we apply the pulled-to-par VaR method to real zero coupon bonds
traded in the market.

The long term zero coupon bond market is almost nonexistent compared to
the huge market of long term coupon bonds. However, investment houses detach
coupons and principal from coupon bonds and trade STRIPS7 independently of
the original bonds. As these STRIPS have only one cash-flow, for all practical
purposes, they are nothing but zero coupon bonds.

Our database contains sovereign eurozone STRIPS daily prices from 2006-
01-03 to 2018-06-01. The eurozone is a natural region of choice has it allows

6As an example the NVIDEA GEFORCE GTX 1080 Ti GPU has 3584 computing cores.
7Separate Trading of Registered Interest and Principal of Securities
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trading of STRIPS of different countries, with very different risk profiles, un-
der the same currency. All the STRIPS were issued before 2006-01-03 and all
were alive at 2018-06-01. The maturities range from 2018-06-01 to 2019-06-01.
One year ahead of the last prices date. The choice of this near to maturity
scenario was intentional. It provides the presence the vanishing returns near
maturity. There are 19 STRIPS. Two from Germany, 3 from France, 7 from
Italy, 1 from Belgium, 1 from Netherlands, 3 from Austria and 2 from Spain. A
preliminary analysis allowed noticing that the STRIPS from the same country
exhibited highly correlated price sequences. Almost indistinguishable. There-
fore we kept only one STRIPS from each country. We choose the one with the
shorter maturity. The list of the 7 STRIPS used is in Appendix B.

We use STRIPS both individually and in portfolios. The results are for 0.99
confidence level and 1 day horizon.

5.1 Individual STRIPS

Table 3 shows level and independence VaR violations tests p-values for the
individual STRIPS. It can be observed a huge difference regarding our simula-
tion scenario, where the stationarity assumption was guaranteed. Given that
the method proposed in this paper assumes that yields are stationary we at-
tribute the generally poor performance of the method on real data to nonsta-
tionary yields [Afonso et al.(2015)]. Nevertheless it should be highlighted that
the analysis period includes a severe European sovereign debt crisis. Under this
extremely adverse conditions there is one VaR valid sequence. Figure 2 shows
the prices of this individual STRIPS and Figure 3 shows the corresponding re-
turns, VaR sequence and VaR violations. For comparison purposes Figures 4
and 5 show the same sequences for and invalid VaR STRIPS.

Level Independence VaR sequence
GG7292384 0.041 0.480 INVALID
GG7088238 0.113 0.065 VALID
EC5586903 0.536 0.001 INVALID
CP5051463 0.012 0.001 INVALID
GG7150772 0.000 0.868 INVALID
GG7292699 0.290 0.000 INVALID
EC4900568 0.000 0.004 INVALID

Table 3: Level and independence VaR violations tests p-values of individual
STRIPS.

Comparing Figures 2 and 4, which illustrate a real bond price sequences,
with Figure 7, which illustrates a simulated price sequence, a lack regularity in
the evolution of the real bonds prices can be observed. This lack of regularity
is characterized by high volatility periods mixed with small volatility periods as
well as huge price drops (remarkably clear in Figure 4). This kind of evolution
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Figure 2: French GG7088238 STRIPS, 25-10-2018 maturity, historical prices.
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Figure 3: French GG7088238 STRIPS, 25-10-2018 maturity, one day horizon,
0.99 confidence level, returns, VaR and Var violations.

is a clear sign of nonstationarity of yields and compromises the results of the
method application in a real data scenario.

This volatility pattern, can be observed again in Figures 3 and 5 reflected
in the evolution of the historical returns. Instead of the smooth pattern of
diminishing historical returns as maturity approaches, observed in Figure 1, the
real data sequence exhibits periods of diminishing returns followed by periods
of large returns.

Despite all this adverse observations it can also be observed in Figures 3 and
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Figure 4: Italy EC5586903 STRIPS, 01-08-2018 maturity, historical prices.
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Figure 5: Italy EC5586903 STRIPS, 01-08-2018 maturity, one day horizon, 0.99
confidence level, returns, VaR and Var violations.

5, that the VaR value, computed we the proposed pull-to-par returns, is in fact
adjusted to the pull-to-par diminishing pattern of the historical returns, leading
to one valid VaR sequence. That of the French STRIPS GG7088238.

The overall conclusion of this discussion is that the stationarity assumption
seems to be too strong for the real data scenario leading to a general poor
performance in the case of individual STRIPS. Just one in the seven STRIPS
tested resulted in a valid VaR sequence.
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5.2 Portfolios

With the 7 STRIPS available we constructed all the possible portfolios with the
number of STRIPS varying from 1 to 7 (the portfolios with 1 STRIPS equals
the individual case described in the preceding section but are repeated here
for means of comparison). Table 4 shows the number of valid portfolios VaR.
Despite the poor general performance it can be observed that the diversification
reached with portfolios with such a small number of portfolios allows the number
of valid VaR sequences to increase.

Number of Number of STRIPS Number of Valid VaR
Portfolios per Portfolio Valid VaR Percentage

7 1 1 14%
21 2 5 24%
35 3 7 20%
35 4 8 23%
21 5 5 24%
7 6 2 29%
1 7 0 0%

Table 4: Number of valid Portfolios VaR sequences.

This can be observed right on the first two lines of Table 4, where the number
of STRIPS in the portfolios was increased from 1 to 2. The percentage of valid
VaR sequences in portfolios with just one STRIPS is 14%. But the percentage
of valid VaR sequences in portfolios with two STRIPS increases to 24%. Given
that the pulled-to-par VaR method requires stationary yields this increase can be
explained by the contributions of the diversification to the portfolio stationarity
yield.

6 Conclusions

In this paper we propose adjusting zero coupon bonds historical returns in such
a way that allows VaR computation for portfolios, using the historical simulation
method. The pulled-to-par VaR method.

We prove that the proposed VaR method leads to accurate VaR computa-
tions whenever zero coupon bonds yields to maturity are stationary.

Simulation results show that one day VaR computation performance under
Basel recommendations for a 10 years period is above 90%.

Real data performance on individual STRIPS is poor due the nonstationarity
of bond rates in the period under analysis, [Afonso et al.(2015)]. Our sample
includes the European sovereign debt crisis of 2010-2014. Despite this, the
diversification effect in portfolios with a very small number of STRIPS, such as
3 and 4, do allow for increasing performance.

15



We identify the following strengths of the proposed method. The portfolio
specific VaR is computed while using the market as the only source of informa-
tion. The only information need is market prices. Neither subjective risk factors
mapping [Alexander(2009)], risk factors correlations, standard maturities inter-
polation, interest rate and credit risk separation, nor ratings, are needed.

Regarding weaknesses, the proposed method inherits all the known weak-
nesses of the historical simulation method, namely, the need for stationary of
the historical returns used (or adjusted historical returns in our case), and the
need of large amounts of synchronized historical data for all securities in the
portfolio, [McNeil, Frey and Embrechts(2005)].
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A Simulation Example

In this section we illustrate in Figure 6 a negative yield to maturity simulated
sequence along with the corresponding zero coupon bond prices in Figure 7.
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Figure 6: Negative yield to maturity simulated sequence.
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Figure 7: 12.8 maturity zero coupon bond price sequence. The corresponding
yields to maturity sequence is the one in Figure 6.

B STRIPS list

Table 5: STRIPS Database.
Bloomberg ID Maturity Issuer Name

GG7292384 04-07-2018 Deutsche Bundesrepublik Coupon STRIPS
GG7088238 25-10-2018 French Republic Government Bond OAT Coupon STRIPS
EC5586903 01-08-2018 Italy Buoni Poliennali del Tesoro Coupon STRIPS
CP5051463 28-03-2019 Kingdom of Belgium Government Bond Coupon STRIPS
GG7150772 15-01-2019 Netherlands Government Bond Coupon STRIPS
GG7292699 15-07-2018 Republic of Austria Government Bond Coupon STRIPS
EC4900568 30-07-2018 Spain Government Bond Coupon STRIPS

17



References

[Christoffersen(1998)] Christoffersen, P. F.: Evaluating interval forecasts. In-
ternational Economic Review, 39 (1998) 841862.

[Alexander(2009)] Alexander, C.: Market Risk Analysis, Value at Risk Models.
John Wiley & Sons, 2009.

[McNeil, Frey and Embrechts(2005)] McNeil, A.J. and Frey, R. and Embrechts,
P.: Quantitative Risk Management: Concepts, Techniques, and Tools.
Princeton University Press, 2005.

[Papoulis(1984)] Papoulis, A.: Probability, Random Variables, and Stochastic
Processes, Second Edition. McGraw-Hill, 1984.

[Dowd(2007)] Dowd, K.: Measuring market risk, Second Edition, p 84. John
Wiley & Sons, 2007.
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