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Abstract  

 

The research performed in this thesis had as overall objective to fill the gap in the current 

literature about flavour thresholds and sensitivity to suprathreshold concentrations. Two 

groups of tasters were used, one comprised by 15 novices (student panel) and the other 

by 16 wine experts (professional panel). Detection (DT) and recognition (RT) thresholds 

were established in wine for six common off-flavour compounds when present in high 

concentration: acetaldehyde, acetic acid, ethyl acetate, hexanol, hydrogen sulfide and 

volatile phenols. Thresholds were evaluated orthonasally (ON) and retronasally (RN) by 

each participant, using the standardized procedures based on the ascending forced-

choice (3-AFC) triangular tests. The suprathreshold intensity was obtained ON and RN 

after testing three measures of individual responsiveness: geometric mean (GM), area-

under-curve (AUC) and slope of the response regression line.  

 

DT and RT thresholds yielded overall results within the range reported in literature. 

Interestingly, in both threshold and suprathreshold tests, contrary to predictions based 

on reports of an association between expertise and improvement of the olfactory and 

gustatory sensitivity, the thresholds for the same molecules were similar between tasting 

panels, indicating that sensitivities were practically not affected by expertise. The 

relationship between threshold and suprathreshold intensities was also studied. In most 

cases there was not a relationship, implying that a low threshold does not necessarily 

lead to greater sensations elicited by suprathreshold concentrations. On the other hand, 

the results suggested that some subjects perceived the molecules differently on both 

orthonasal and retronasal pathways, presenting higher variability on the orthonasal 

evaluation comparing with the retronasal one.  

 

Overall, results highlighted the high variability of individual olfactory responses and the 

importance of the retronasal pathway on the assessment of off-flavours in wines.  
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Resumo 

 

O presente trabalho teve como objectivo preencher as lacunas existentes na literatura 

relativas aos valores de limiares e supra-limiares dos compostos voláteis constituintes 

do vinho. Neste contexto, foram determinados os limiares de detecção e de 

reconhecimento para seis dos compostos de defeitos mais comuns em vinho quando 

presentes em altas concentrações: acetaldeído, ácido acético, acetato de etilo, hexanol, 

sulfureto de hidrogénio (H2S) e fenóis voláteis, numa amostra de 15 provadores não 

treinados e de 16 provadores treinados. Os limiares foram avaliados por cada provador 

através de duas vias: ortonasal e retronasal, com base na metodologia padrão de 

comparação direcional de três amostras (3-AFC). As intensidades supra-limiares foram 

obtidas também pelas vias ortonasal e retronasal, sendo a sensibilidade individual 

avaliada através de três medidas: média geométrica, área-sob-curva e declive. 

 

Os limiares de detecção e reconhecimento obtidos no presente estudo estão inseridos 

dentro da gama de resultados publicados na literatura. Curiosamente, nos testes de 

limiares e supra-limiares, contraditoriamente às conclusões publicadas em alguns 

artigos relativas à relação entre o conhecimento e a melhoria das sensibilidades olfactiva 

e gustativa, os valores de limiares para as mesmas moléculas de defeitos foram 

idênticos entre ambos os painéis de prova, indicando que a sensibilidade não é 

praticamente afectada pelo conhecimento do provador. A relação entre os limiares e 

supra-limiares também foi estudada. Em maior parte dos casos não houve relação, 

implicando que baixos limiares não conduzem necessariamente a grandes sensações 

relativamente a concentrações de supra-limiares. Por outro lado, os resultados 

sugeriram que alguns dos provadores apresentam diferenças de intensidade na 

percepção das moléculas quando comparada a via ortonasal com a retronasal, sendo 

que a avaliação ortonasal apresentou maior variabilidade. Esta observação indica que 

a resposta retronasal não deve ser descartada na avaliação de defeitos nos vinhos.  

 

 

 

 

Palavras-chave: limiar, supra-limiar, ortonasal, retronasal, defeitos do vinho. 
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Resumo alargado 

 

A investigação desenvolvida ao longo da presente tese está inserida num projecto global 

que tem principal foco estudar e compreender o comportamento do consumidor 

relativamente a vinhos com características sensoriais incomuns, tendo como referência 

os defeitos. Nestes vinhos estão incluídos vinhos direccionados para nicho de 

consumidores que os aceitam mesmo apresentando características sensoriais 

diferentes dos vinhos ditos comerciais.  

 

Como objectivo inicial, o trabalho desenvolvido focou-se em preencher as lacunas 

existentes na literatura relativas aos valores de limiares dos compostos voláteis 

constituintes do vinho. Neste contexto, foram determinados os limiares de detecção (DT) 

e de reconhecimento (RT) para seis dos defeitos mais comuns em vinho: acetaldeído, 

ácido acético, acetato de etilo, hexanol, sulfureto de hidrogénio (H2S) e fenóis voláteis, 

num painel de 15 provadores não treinados (6 provadores do sexo feminino e 9 do sexo 

masculino, com idades compreendidas entre os 23 e 36 anos; média 28 ± 4) e de 16 

provadores treinados (8 provadores do sexo feminino e 8 do sexo masculino, com 

idades compreendidas entre os 30 e 65 anos; média 47±13). Os limiares foram 

avaliados por cada provador através de duas vias de percepção: ortonasal (ON) e 

retronasal (RN), com base na metodologia padrão de comparação direcional de três 

amostras (3-AFC), onde as amostras são apresentadas em ordem crescente de 

concentração e o provador é forçado a escolher uma das três amostras, em cada 

concentração (uma amostra contém o defeito e as outras duas apenas vinho).  

 

Os resultados dos limiares de detecção e reconhecimento para o painel não treinado 

foram os seguintes: (i) acetaldeído em vinho branco (mg/L): DT no ON e RN: 12 e 14; 

RT no ON e RN: 46 e 70; (ii) ácido acético em vinho tinto (mg/L): DT no ON e RN: 302 

e 481; RT no ON e RN: 658 e 1035; (iii) acetato de etilo em vinho branco (mg/L): DT no 

ON e RN: 14 e 17; RT no ON e RN: 27 e 29; (iv) hexanol em vinho branco (μg/L): DT no 

ON e RN: 72 e 107; RT no ON e RN: 402 e 370; (v) sulfeto de hidrogénio em vinho tinto 

(μg/L): DT no ON e RN: 83 e 73; RT no ON e RN: 286; e (vi) fenóis voláteis em vinho 

tinto (4-EF; 4-EG) (μg/L): DT no ON e RN: 29 e 31; RT no ON e RN: 35 e 31.  

 

Os resultados dos limiares de detecção e reconhecimento para o painel treinado foram 

os seguintes: (i) acetaldeído em vinho branco – 1ª prova (mg/L): DT no ON e RN: 50 e 

47; RT no ON e RN: 77 e 61; (ii) acetaldeído em vinho branco – 2ª prova (mg/L): DT no 

ON e RN: 15 e 14; RT no ON e RN: 27 e 21; (iii) acetaldeído em vinho branco – 3ª prova 
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(mg/L): DT no ON e RN: 9 e 7; RT no ON e RN: 21 e 16; (iii) acetaldeído em vinho tinto 

(mg/L): DT no ON e RN: 24 e 18; RT no ON e RN: 26 e 39; (iv) acetato de etilo em vinho 

branco – 1ª prova (mg/L): DT no ON e RN: 54 e 50; RT no ON e RN: 87 e 65; (v) acetato 

de etilo em vinho branco – 2ª prova (mg/L): DT no ON e RN: 26 e 32; RT no ON e RN: 

26 e 49; (vi) fenóis voláteis em vinho tinto – 1ª prova (4-EF; 4-EG) (μg/L): DT no ON e 

RN: 41 e 33; RT no ON e RN: 68 e 42; e (vii) fenóis voláteis em vinho tinto – 2ª prova 

(μg/L): DT no ON e RN: 31 e 33; RT no ON e RN: 49 e 40. 

 

Quanto ao objectivo de caracterizar e entender a sensibilidade individual e a reposta 

sensorial dos provadores à presença dos defeitos no vinho, três medidas foram 

avaliadas – média geométrica, área-sob-curva e declive – com base em intensidades 

supra-limiares.  No que diz respeito à analise sensorial com base nas concentrações 

supra-limiares, a metodologia consistiu na disposição alternada de cinco amostras com 

concentrações diferentes, em que a avaliação ortonasal foi com o auxílio de uma régua 

para medir a distância entre o copo da amostra e o nariz do provador, aquando o mesmo  

sentisse o odor do defeito e a avaliação retronasal foi com base na escala de Likert, que 

quantifica a intensidade da resposta sensorial numa escala.  

 

Considerando os resultados das correlações entre cada par de medidas, os melhores 

resultados foram obtidos entre a média geométrica e a área-sob-curva, sendo que as 

correlações obtidas no que dizem respeito ao declive foram fracas, devido em grande 

parte à insensibilidade demonstrada pelo painel de provadores no decorrer da análise 

sensorial. Tendo também em conta todas as limitações relativas às suas determinações, 

a opção foi a de seleccionar a média geométrica como medida da sensibilidade 

individual. Individualizando as respectivas respostas sensoriais do painel não treinado 

com base na média geométrica, foi possível categorizar a sensibilidade dos provadores, 

contudo foi verificado uma grande variabilidade nas respostas e na percepção ortonasal 

e retronasal dos defeitos do vinho por parte dos provadores. 

 

Para este estudo, também foi analisada a relação entre os limiares e supra-limiares. Os 

casos onde se verificaram a respectiva relação foram limitados. Curiosamente, nos 

testes de limiares e supra-limiares, contraditoriamente às conclusões publicadas em 

alguns artigos relativas à relação entre o treino e a melhoria das sensibilidades olfactiva 

e gustativa, os valores de limiares para as mesmas moléculas de defeitos foram 

idênticos entre ambos os painéis de prova, indicando que a sensibilidade não é 

praticamente afectada pelo treino do provador. Por outro lado, os resultados também 

sugeriram que alguns dos provadores apresentam diferenças de intensidade na 



VI 
 

percepção das moléculas quando comparada a via ortonasal com a retronasal, sendo 

que a avaliação ortonasal apresentou maior variabilidade (maiores valores de desvio 

padrão). Esta observação indica que a resposta retronasal não deve ser descartada na 

avaliação de defeitos nos vinhos.  
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1. INTRODUCTION 

In accordance to the movement of society, wines are also following the tendency to 

meet the essence and purity of the practices, from the vineyard to the winery (Lalas, 

2018). As regards viticulture and oenology, biodynamic, organic and natural wines have 

received increasing attention over the last few years. These styles of wine have become 

increasingly popular as the customers demand for wines that are made in a minimum-

intervention style (Wilson, 2016). However, according to Guzzon et al. (2016), many 

doubts remain among winemakers in relation to its applicability on a large scale for the 

production of wines and its quality acceptance by consumers.  

 

Generally, the perception of wine quality is easier to recognize than it is to define and 

it is more related to the intrinsic aspects of wine (Villamor, 2012). Indeed, for example, 

while the colour, brand or reputation of wine is important to consumers, it is the aroma 

and taste of wine that have the greatest impact for wine enjoyment. This sensory 

experience is usually pleasurable. In agreement with Puckette (2014), the first flavours 

that consumers learn to identify in wine are fruit flavours, perhaps because these are 

the most gratifying. However, it can at times be a less-than-pleasant surprise with off-

flavours, many of which are weird and require an acquired taste (Bartowsky & Pretorius, 

2009). Maybe that is one of the reasons why, according to Asimov (2018), wines 

affected by off-flavours are quickly judged by consumers. Actually, according to Lalas 

(2018), some “imperfections” or “off-flavours” may rather be associated with some of 

these wines. However, it is important to take in consideration that the perception of off-

flavours depends on the consumer and its capacity to understand them, because the 

aroma and flavour perceptions are highly individual. 

 

1.1 Chemical basis of wine aroma 

Wine aroma is very complex. In agreement with Francis and Newton (2005) and 

Ferreira et al. (2007), at the core of the quality (or the lack of it) of a wine there is a 

large amount of odour active compounds. One of the long-standing goals of wine aroma 

research has been to identify those volatile and non-volatiles compounds that are 

central to particular olfactory attributes of wines, whether perceived ortho- or 

retronasally, and understand their role in the final perception of the wine.  

 

By the late eighties of last century, chemists had identified more than 800 compounds 

in the volatile fractions of wines (Schreier, 1979; Maarse & Vischer, 1989). This was a 

sort of bitter success since so much of that information was apparently mostly useless. 
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In line with Ferreira et al. (2007), the first reason for that apparent failure was because 

researchers at that time tried to identify all the molecules present in the volatile fraction 

of wine instead of concentrating on those that really have the power to impact the 

pituitary tissues. The second one is linked to the complexity of wine flavour: only in a 

limited number of cases can a single odour molecule be explicitly recognised in the 

aroma or flavour of the wine. It is not surprising, therefore, that the major successes 

had come in the identification of off-flavours. The third reason is that at that time it was 

very difficult to get accurate quantitative data on some of the molecules present at low 

concentrations. All those limitations have been slowly and progressively solved in the 

last 10 or 15 years due to the progress made in the quantitative determination of some 

important odorants and due to the systematic development of gas chromatography-

olfactometric (GC-O) methods that have made it possible to screen from all the volatile 

compounds of wine, those that really have the ability to be flavour active (Ferreira et 

al., 1998; Lopez et al., 2003; Cullere et al., 2004; Escudero et al., 2004). 

 

The chemical basis of wine aroma according to Ferreira et al. (2007), may be explained 

by the role played by the following compounds: 
 

(i) Impact or highly active compounds. 

These are the compounds which can effectively transmit their specific (impact) or 

primary (highly active) aroma nuance to a given wine without the need of the support 

of more aroma chemicals. The best example is given by the molecule of linalool. 

 

(ii) Impact groups of compounds. 

These are constituted by families of compounds usually having similar chemical 

structures, with close odour properties and that can impart to the aroma of a wine the 

specific notes of the family. An example is the group of γ-lactones. 

 

(iii) Subtle compounds. 

These are the compounds which fail to transmit their specific aroma nuances to the 

wine but contribute decisively to the development in wine of some secondary-generic 

aroma nuance (for instance fruity, sweet).  

 

(iv) Compounds forming the base of wine aroma. 

These are the compounds present in all wines at concentrations above their 

corresponding odour thresholds which, however, are no longer perceived as single 

entities because their aromas are fully integrated to form the complex concept of wine 

aroma.  
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(v) Off-flavour compounds. 

These are the compounds whose presence brings a decrease in the overall aroma 

quality of wine. 

 

The mixture of all the major fermentation compounds at the concentrations at which 

they are usually found in wine has the typical odour of alcoholic beverages that often is 

define as vinous (Ferreira et al., 2007). The key point is that this mixture forms what 

they call an aroma buffer. Both effects of aroma buffer were described by Ferreira et 

al. (2002) and Escudero et al. (2004), concluding that the omission or addition of some 

compounds does not bring about important changes in wine aroma. Therefore, it could 

be said that wine forms some kind of aromatic buffer towards a wide range of aromas. 

Table 1.1. shows the effects of omission from the mixture of wine major compounds of 

one of the odorants, that, in most cases, had no effect, or a just apparent effect that the 

judges were not able to define. Only in the cases of isoamyl acetate and β-

damascenone there were slight effects on the fruitiness of the mixture. Table 1.2. shows 

the effect of the addition of different aroma compounds to the mixture of wine major 

compounds. The addition of high amounts of some odorants has nearly no effect, or in 

some cases the effect is not the perception in the mixture of the added odorant but a 

decrease on some of the basic attributes of the mixture (except for isoamyl acetate). 

 

According to Escudero et al. (2004) and Ferreira et al. (2007), the aroma buffer would 

be caused by the presence in wine of relatively high concentrations of ethanol and other 

volatiles formed by fermentation such as ethyl esters, fusel alcohols, volatile phenols, 

β-damascenone, and fatty acids. Fortunately, the aroma of many wines is very rich in 

aroma nuances that are quite different to the basic ‘vinous’ aroma of the aroma buffer. 

This clearly means that some aroma molecules succeed in some wines in breaking the 

buffer and produce a different sensory perception, transmitting a different aroma 

nuance. In line with Ferreira et al. (2007), the first way to break the buffer is by a single 

odorant molecule at the concentration at which it can be naturally found in some wines. 

There are only few aroma chemicals that can act as impact compounds: linalool, c-rose 

oxide, 4-mercapto-4-methylpentan-2-one, 3-mercaptohexan-1-ol, sotolon, furfurylthiol, 

3-mercaptohexyl acetate, benzylmercaptan, dimethyl sulphide, methional, diacetyl, 

isoamyl acetate and rotundone. A second way to break the buffer is by the concerted 

action of a group of molecules sharing chemical and odour properties. The third way to 

break the buffer is by the concerted action of many chemicals sharing some similarity 

in any of their generic aroma descriptors. Of course, the buffer can be broken, but in a 

negative way, by many chemicals playing the role of off-flavours. 
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Table 1.1. Effects caused by the omission in the wine mixture (the aroma buffer) of one of the 

wine constituents (adapted from Ferreira et al., 2002). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2. Effects caused by the addition of some selected aroma compounds to the wine 

mixture (adapted from Escudero et al., 2004). 
 
 

Compound added (level and relative increment) Effect         Observations 

2,6-dimethoxyphenol (2 ppm; 4000x) Slight - flowery; - candy 

β-damascenone (4.5 ppb; 1x) None  

Ethyl octanoate (6.0 ppm; 8.6x) None  

Furaneol (800 ppb; 27x) None  

Guaiacol (15 ppb; 71x) Slight - candy; - flowery 

Isoamyl acetate (5.5 ppm; 2.2x) Slight + banana 

Sotolon (140 ppb; 28x) Slight - fruity; - candy 

 

1.2 Off-flavours in wine 

One important prerequisite related with marketing and commercial implications for wine 

and similar products of high quality is to be free of aroma imperfection. As explained by 

Rapp (1990), these “imperfections” in wine are of a complex nature because the 

undesirable aromas can be varietal specific flavours (e.g. black pepper) or can be 

formed during the production and bottling of wine (e.g. corkiness, mousiness). The 

Compound omitted Qualitative effect 

β-damascenone Slight decrease in intensity 

β-phenylethanol Inappreciable 

Acetaldehyde None 

Butyric acid Inappreciable 

Diacetyl None 

Ethyl acetate None 

Ethyl butyrate None 

Ethyl hexanoate Inappreciable 

Ethyl isovalerate None 

Ethyl octanoate Inappreciable 

Hexanoic acid Inappreciable 

Isoamyl acetate Slightly less fruity 

Isoamyl alcohol Inappreciable 

Methionol Inappreciable 

Octanoic acid Inappreciable 
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effect depends on the style of the wine, the concentration of the aroma compound, the 

sensitivity of the consumers and, as it affects the wine enjoyment, it is extremely difficult 

for the consumers to make an accurate judgement of the wine.  

 

The first thing that should be said is that the concept of off-flavour is relative, because 

it is, at least in part, related to the previous experiences and expectations of the 

consumer. As mentioned by Ferreira et al. (2007) there are many examples of this. 

Many local producers and ‘traditional’ consumers of Spanish wines from Rioja became 

so familiar with the presence of small amounts of ethyl phenols in their wines, that for 

them the phenolic-note produced by those compounds is something essential in the 

wines. The same is also observed among producers of Beaujolais. Similarly, some 

producers of wines from Sauvignon Blanc are quite happy with the earthy and black-

pepper notes introduced by methoxypyrazines. In some other cases, however, there is 

a large world-wide consensus about the negative role of some molecules, such as TCA 

(trichloroanisole; cork taint). It also necessary to point out that some apparently ‘bad’ 

molecules can sometimes play an interesting role on wine aroma, such as dimethyl 

sulfide that enhance the fruitiness in some red wines (Escudero et al., 2007).  

 

The second point that should be remarked is that, in general, the negative role of many 

aroma molecules is noted at concentrations well below the level at which those 

molecules are clearly perceived in wine. Before reaching such recognition threshold, 

the effect of these molecules is to decrease some positive sensory characteristics of 

the wine, and sometimes even to unbalance the wine aroma. 

 

The final comment is that sometimes the off-flavours can be produced by relatively 

large amounts of fermentation by-products (isoacids, acetoin, vinylphenols, some 

alcohols) acting in a concerted way, so the individual compounds do not need to be 

present at the concentrations at which they usually are considered a risk to quality. This 

phenomenon was described by Escudero et al. (2007) and apparently could be one of 

the most important causes of low quality observed in many wines.  

 

Therefore, according to Capone et al. (2010), off-flavours are unacceptable odours or 

tastes that result from product components formed by chemical or biological processes 

(e.g. microbiological spoilage) within the product, attributed to poor winemaking 

practices and/or inadequate storage conditions. Compounds causing off-flavours in 

wine are often present at higher concentrations that can lead to undesirable sensory 

characteristics. Table 1.3. summarises the different wine compounds that have been 
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documented as potential wine off-flavours that generally strongly influence the wine 

quality. The compounds off-flavours described in the next sections are the focus of the 

present overall study where this research is included.  

 

Table 1.3. Most common off-flavours in wine (Ferreira et al., 2007). 
 

Off-flavour/Compound Descriptors Possible causes Sensory thresholds 

Acetaldehyde/Oxidation Green apple, 
stuck ferment 
aroma 

-Bacterial spoilage (genus 
Acetobacter,Gluconobacter); 
-Oxidation. 

500 μg/L (in water/ethanol) 
(Guth, 1997) 
 

Acetic Acid Vinegar odour -Bacterial spoilage (genus 
Acetobacter, Gluconobacter); - 
Yeast spoilage; 
-Oxidation. 

0.2 g/L (in water/ethanol) 
(Guth, 1997) 

Cork taint  
(2,4,6-trichloranisole: 
TCA) 

Musty, earthy, 
moldy odours 

-Presence of fungi on cork 
stopper. 

2.1 ng/L (detection threshold 
in red wine) 
(Prescott et al., 2005) 

Ethylacetate Nail polish 
remover 
odour 

-Yeast spoilage (apiculate 
yeasts); 
- Bacterial spoilage. 

6.4 mg/L; 13.3 mg/L 
(detection and recognition 
thresholds in air, respectively)  
(Hellman & Small, 1973) 

Geosmin 
(earthy-type taint) 

Earthy, musty 
odours 

-Metabolite of Botrytis cinerea, 
soil bacteria and algae. 

25 ng/L (in red wine) 
(AWRI, 2018) 

Geranium Crushed 
geranium 
leaves odour 

-Metabolism of sorbic acid by 
lactic acid bacteria. 

100 ng/L  
(AWRI, 2018) 

Hexanol Herbaceous 
odour 

-Grape maturation. 8 mg/L (in water/ethanol) 
(Guth, 1997) 

Mousy taint  
(2-acetyltetrahydro-
pyridine ACTPY),  
2-ethyltetrahydropyridine 
(ETPY), 
2-acetylpyrroline (ACPY) 

Caged mice, 
cracker 
biscuit odours 

-Bacterial spoilage (genus 
Lactobacillus and Oenococcus 
oeni); 
-Yeast spoilage (Brettanomyces); 
-Oxidation (unknown 
mechanism). 

ACTPY: 4.8-106 μg/L; 
ETPY: 2.7–18.7 μg/L; 
ACPY: 7.8 μg/L (in wine) 
(AWRI, 2018) 

Sulfur compounds 
(H2S, ethyl mercaptan, 
dimethysulfide) 

Rotten egg, 
garlic, onion, 
cooked 
vegetable 

-Produced in excess by yeasts 
during fermentation; 
-Reduction. 

H2S: 5.7 – 7.9 µg/L (detection 
threshold in air) 
(Young & Adams, 1966) 

Volatile phenols 
(4-ethylphenol (4-EP), 
4-ethylguaiacol (4-EG)) 

Barnyard, 
horse, wet 
leather 
odours 

-Yeast spoilage during wine 
storage tank, barrique or bottle 
(genus Brettanomyces, 
Dekkera). 

4-EP + 4-EG: 114.3 μg/L 
(in wine)  
(Csikor, Pusztai & Barátossy, 
2018) 

  

 

 



7 
 

1.2.1 Acetaldehyde 

Acetaldehyde, also known as ethanal, is the most important aldehyde occurring in wine. 

It is primarily a product of yeast metabolism of sugars during the first stages of alcoholic 

fermentation (Jackson, 2008). It is the last precursor in yeast fermentation before 

ethanol is formed, and is produced when pyruvate is converted by the enzyme alcohol 

dehydrogenase (ADH) to acetaldehyde. Conversely, a secondary source of 

acetaldehyde production, which usually occurs after wine ageing, is oxidation of 

ethanol, once again facilitated by the enzyme ADH (Jackowetz et al., 2010). It is 

sporadically associated with spoilage by acetic acid bacteria. As an intermediate in the 

bacterial formation of acetic acid and under low-O2 conditions and/or alcohol levels 

greater than 10% v/v, tends to accumulate instead of being oxidised to acetic acid 

(Theron, 2017). 

 

1.2.2 Volatile acidity and ethyl acetate 

Volatile acidity (VA) is one of the most important characteristics of wines, contributing 

directly and indirectly to their quality. It is not possible to produce wine without VA, since 

acetic acid, the major acid compound (90%), can be primarily produced in low 

concentrations during the alcoholic fermentation step by yeasts and also formed by 

bacterial metabolism, such as acetic acid bacteria (AAB) and lactic acid bacteria 

(Miranda et al., 2017). The AAB oxidize the ethanol to acetic acid and based on the 

findings of Bartowsky and Henschke (2008), there are two membrane-bound enzymes 

catalysing the reactions: alcohol dehydrogenase (ethanol to acetaldehyde) and 

acetaldehyde dehydrogenase (acetaldehyde to acetic acid). The recognition of VA in 

wines, namely the “acetic nose”, is not exclusively the result of the acetic acid levels, 

but severally depends on the acetic acid and ethyl acetate ratio (Zoecklein, 2012).  

 

Ethyl acetate is the most common ester present in wine and results from the 

combination between the acetic acid formed with the alcohol remaining in the wine. 

According to Nogueira and Nascimento (1999), the concentration of both compounds 

in wine depends severally on the yeast strain, since that, as acetic acid, ethyl acetate 

can also be formed by the action of apiculate yeasts during fermentation and depends 

on the action of AAB during ageing. As explained by Cliff and Pickering (2006), the 

presence of both compounds below perceptible levels can enhance the fruitiness 

flavour and add complexity to wine, while above it can be considered undesirable and 

may evidence microbiological problems. Although the incidence of excess ethyl acetate 

is statistically lower than that of the acetic acid, the first one is considered a more 

serious problem because of its greater organoleptic impact, given its ability to 

completely degrade the typicalty of a wine.  
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1.2.3 Hexanol 

Hexanols are the major C6-alcohols compounds (higher alcohols) and donate a 

herbaceous odour to certain wines due to problems in grape ripening. However, they 

may be present in healthy grapes but rarely occur in significant amounts (Jackson, 

2008). Part of the compounds present in wines has six carbon atoms deriving from 

grape polyunsaturated fatty acids (primarily originated from membrane lipids), namely 

linoleic and α-linolenic acids (Oliveira et al., 2006).  

 

1.2.4 Sulfur compounds 

As a consequence of yeast metabolism, heat treatment, light exposure, or other 

nonenzymatic reactions, a wide diversity of volatile sulfur-containing compounds may 

be produced during fermentation, ageing, and post-bottling. Although generally 

occurring in trace amounts, their high volatility and low sensory thresholds, can impart 

a great significance (Jackson, 2008). The principal offending compounds are reductive 

aromas developed by disulphides, mercaptans and hydrogen sulfide (H2S). The last 

one is the most common volatile sulfur compound in wine and it may be formed during 

fermentation, as yeasts reduce residual elemental sulfur (Schütz & Kunkee, 1977), or 

metabolize sulfur-containing amino acids, notably cysteine and methionine (Henschke 

& Jiranek, 1991). 

 

1.2.5 Volatile phenols 

Of the spoilage yeasts, Brettanomyces spp. (imperfect state of Dekkera) are probably 

the most notorious (Larue et al., 1991). As explained by Kheir et al. (2013), in some 

cases, depending the conditions and the available precursors (hydroxycinnamic acids, 

also called phenolic acids such as ferulic and p-coumaric acids), these yeasts can 

produce undesirable metabolites (volatile phenols) when growing and/or ageing in 

wine. In agremeent with Loureiro and Malfeito-Ferreira (2006), the recognition of the 

role played by the species in red wine spoilage due to the production of “horse sweat” 

taint has presented a new challenge to winemakers in the last decade. Surprising to 

those who detect the malodorous by-products of Brettanomyces metabolism, some 

winemakers appear to appreciate its effects on their wines (Steele, 2004). As identified 

by Suarez et al. (2007), their origin involve the sequential action of two enzymes on a 

hydroxycinnamic acid substrate. Hydroxycinnamate decarboxylase first turns these 

acids into vinylphenols (4-vinylphenol and 4-vinylguaiacol), possibly followed by 

reduction to ethylphenols (4-ethylphenol and 4-ethylguaiacol) by vinylphenol reductase 

(Chatonnet et al., 1992). Although several bacteria and yeasts are capable of 
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metabolizing hydroxycinnamates to vinylphenols, only a few yeasts, notably those 

belonging to the genus Brettanomyces spp., can convert substantial amounts to 

ethylphenols (Chatonnet et al., 1992).  

 

1.3 Orthonasal and retronasal aroma perception 

Although closely related, flavour, aroma, smell and taste are not exactly 

interchangeable (Puckette, 2014). Flavour is the result of the simultaneous stimulation 

of three principal sensory systems: taste, olfaction (aroma) and the trigeminal system. 

The latter comprises chemical, thermal and tactile sensations (Cerf-Ducastel & Murphy, 

2001). Taste refers to the senses inside our mouth including the tongue (Puckette, 

2014). Every human tongue has two kinds of receptors: one type is for taste, known as 

‘taste buds’, which can be found all over the tongue. While the other receptor is for 

tactile sensations that refers to the free nerve endings sensed all over the inside of the 

mouth and tongue. In simple language, taste buds focus primarily on sweet, salt, bitter 

and sour, while the mouthfeel, as a sensory propriety, focuses on viscosity (i.e. body), 

tannins, and the overall texture of the wine (Puckette, 2014). Aroma and bouquet are 

just pleasant words used to describe the odours (Puckette, 2014). Odours are 

volatilized compounds sensed in our brain by the limbic system which deals with 

emotion, behaviour, motivation and long-term memory. An odour molecule may reach 

the olfactory epithelium via the nose (orthonasal olfaction), referred to the external 

world, or via the mouth (retronasal olfaction), referred to the oral cavity (Rozin, 1982). 

The illusion that retronasally perceived odours are localized to the mouth is so powerful 

that people routinely mistake retronasal olfaction for “taste” (Rozin, 1982). As an 

example, we may say that we like the “taste” of a wine because of its fruity or spicy 

notes. However, taste refers only to the sensations of sweet, sour, salty and bitter, and 

thus the pleasant “taste” to which we refer is actually a pleasant odour sensed 

retronasally.  

 

The perception of volatiles and non-volatiles aroma compounds by orthonasal and 

retronasal pathways has been of particular interest in flavour research and strong 

evidence has shown that odours are perceived differently when presented in ortho- 

versus retronasal modes (Rozin, 1982; Halpern, 2004; Heilmann & Hummel, 2004; 

Small et al. 2004; Small et al. 2005; Sun & Halpern, 2005; Hummel & Heilmann, 2008; 

Welge-Lussen et al., 2009). In 1982, Rozin was the first one that observed that 

“olfaction is the only dual sensory modality, in that it senses both objects in the external 

world and objects in the mouth” and thus proposed that “the same olfactory stimulation 

may be perceived and evaluated in two qualitatively different ways depending on 



10 
 

whether it is referred”, which suggested that orthonasal and retronasal olfactory 

perceptions are two different systems. However, several studies testing Rozin’s 

hypothesis have yielded mixed results, with several authors concluding that orthonasal 

and retronasal olfaction differ only in the efficiency with which odours are delivered to 

the olfactory epithelium (Burdach et al., 1984;  Voirol & Daget, 1986; Pierce & Halpern, 

1996; Bojanowski & Hummel, 2012). So for a while no support was found for the 

'olfactory duality' hypothesized by Rozin (1982). Most studies comparing orthonasal 

versus retronasal have focused upon qualities of the experience that provide 

information about the quantity or identity of the sensory stimulus, whereas the key 

distinction Rozin had made was that route of delivery influenced not what the stimulus 

was but rather where the stimulus was perceived. Generally, in these studies were 

found greater intensity for orthonasal than for retronasal stimulation. Specially, Voirol 

and Daget (1986) have shown that perception intensity depends on the absolute 

quantity of odorant reaching the olfactory epithelium, which corresponds to the 

difference in the air flow between sniffing and exhalating, inducing higher intensity 

judgement for the orthonasal mode. Given the proposed importance of retronasal in the 

oral perception of wines, usually the retronasal identification accuracy is inferior to 

orthonasal under normal breathing conditions which may seem counterintuitive. 

Nonetheless, this was observed repeatedly in Pierce and Halpern (1996): the vapour 

phase has been reported to be less efficiently sensed by the retronasal than by the 

orthonasal.  

 

Although several studies have examined brain responses to retronasal olfactory 

stimulation (de Araujo et al., 2003; Small et al., 2004), none have directly compared 

orthonasal and retronasal in the same subjects or considered the possibility that the 

effects of route of stimulation depend on the way that odours are typically sensed. The 

findings of Small et al. (2005) clearly support all these notions by demonstrating that 

the neural response evoked by an odour may be influenced by its route of 

administration. First, imaging techniques like functional magnetic resonance imaging 

(fMRI) allowed to identify that activation due to retronasal stimulation was found at the 

base of the central sulcus, corresponding to the primary representation of the oral 

cavity, possibly reflecting that retronasal odours are referred to the mouth. In second, 

the stimulus studied “chocolate” was perceived as similarly intense and pleasant across 

both orthonasal and retronasal administration, thus the only perceptual difference was 

related to where the stimulus was referred (nose vs mouth). In Small et al. (2004) and 

Small et al. (2005) studies, they identified the preferential activation in different brain 

areas in response to ortho- and retronasally presented stimulus. It was observed 
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deactivation in the orbitofrontal cortex, insula and anterior cingulate cortex for taste-

orthonasal stimulus, and supra-additive responses at the same regions for the 

combination of taste-retronasal stimulus. The results clearly indicate that the neural 

processing of an odour is influenced by its route of administration. 

 

1.4 Suprathreshold and threshold sensory measures  

Individual perception of aroma and taste are challenging to measure and there is no 

single method to assess it. Indeed, five distinct methods have been used by 

researchers to understand individual’s sensitivity to tastes: detection threshold (DT) 

and recognition threshold (RT), suprathreshold intensity measure, 6-n-propylthiouracil 

(PROP) taster status and fungiform papillae (FP) number (Webb et al., 2015). In the 

present study, the methods used were the detection and recognition thresholds and 

suprathreshold intensity regarding flavour active molecules. An individual sensing an 

odour is directly aware of only two sensory properties of the odour: intensity (how strong 

it smells) and character (what it smells like). These sensations are interpreted based 

on prior experience and expectations. Most studies about flavour perception (Prescott 

et al., 2005; Pickering et al., 2007; Ross et al., 2014; Chrysanthou et al., 2016) do not 

reflect the prime importance of odour intensity. Instead, they emphasize odour 

threshold: a measure of dilution needed to reduce the perceived odour intensity to some 

defined probability of detection level. It resulted from an earlier assumption that 

threshold multiples are measures of odour intensity. In line with Dravnieks and Jarke 

(1980), it is now known not to be true. The perceived odour intensities, as on a typical 

scale of none/very faint/faint/easily noticeable/strong/very strong, relate to the threshold 

multiples differently for different odorants. Because of the lack of direct relation between 

odour thresholds and intensities, there is a growing interest in measuring the perceived 

odour intensities directly (Dravnieks & Jarke, 1980). 

 

Detection threshold (DT) and recognition threshold (RT) provide estimates of the lowest 

chemical concentration that can be perceived by an individual. For example, a solution 

may contain a substance at a concentration undetectable to the general population, but 

as the concentration is increased, a DT is attained such that the solution can be 

discriminated from pure solvent in a forced choice task. As the concentration is further 

increased, a RT is attained, and this is the point where the substance is both perceived 

and identifiable (Keast & Roper, 2007). It is widely accepted that individuals with lower 

detection and recognition thresholds are more sensitive to a chemical than those with 

a higher detection and recognition thresholds. Thresholds are determined using a 

classic psychophysical protocol - ASTM E 679 - described by the American Society for 
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Testing and Materials (ASTM, 2004), defined as the method of limits with an ascending 

concentration series using 3-alternative forced-choice (3-AFC) at each concentration. 

In a forced-choice method, the judgment is made after smelling several stimulus, 

including blanks. This offers an advantage over methods in which one stimulus is 

judged at a time and progressively stronger odorous sample concentrations can be 

systematically evaluated. The forced-choice method also reduces the problems 

stemming from odour adaptation. 

 

Suprathreshold intensity refers to the perceived intensity (magnitude) of a substance at 

concentration above threshold. As the stimulus concentration increases, it is expected 

that the perceived intensity will also increase, eventually reaching to a terminal 

threshold for the stimulus: it occurs at concentration between the recognition threshold 

and the terminal threshold (suprathreshold) (Webb et al., 2015). Odour intensities are 

expressed by scales based on descriptive categories or on estimates of magnitude. In 

all cases, the measurement is a sensory evaluation (Turk et al., 1980). However, 

intensity is an individual difference characteristic defined in terms of the typical strength 

of an individual's responsiveness (Larsen & Diener, 1987) and relatively to the 

individual sensitivity measurement there are few studies. In Webb et al. (2015), 

suprathreshold taste intensity concentrations were presented based on geometric 

mean, however they did not relate with the individual sensitivity. Geometric mean (GM) 

is often used to evaluate data covering several orders of magnitude, and sometimes 

for evaluating ratios and percentage changes. The geometric mean, unlike the 

arithmetic mean, tends to dampen the effect of very high or low values, which might 

bias the mean if a straight average (arithmetic mean) was calculated (Costa, 2018). In 

Peng et al. (2016) the area-under-curve (AUC) measure was used to serve as a 

quantifier of people’s sensitivity for detecting stimulus. With AUC the sensitivity can be 

computed across all the possible suprathreshold and threshold intensities and the 

correspondent plot curve and area under the curve, as an effective measure of 

sensitivity, have been considered with meaningful interpretations. This curve plays a 

central role in diagnostic test evaluation, finding the optimal cut off values, and 

comparing two alternative diagnostic tasks when each task is performed on the same 

subject (adapting, for example, for comparisons between orthonasal and retronasal 

flavour perceptions) (Hajian-Tilaki, 2013). Besides these two sensitivity measures, in 

this study the slope of the intensity plot will be evaluated also as an individual sensitivity 

measure. Although no study refers the slope as a measure of individual sensitivity, Turk 

et al. (1980) used it to relate the magnitude of sensations with the intensity of the stimuli.  
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1.5 Objectives 

The research performed in this thesis was the initial step of a global project aimed at 

understanding the consumer behaviour regarding wines with unusual sensory features 

like off-flavours or off-tastes. These wines include those directed to niche consumers 

that are willing to accept wines with sensory characteristics distinct from the flawless 

international commercial ones. The first overall objective was to fill the gap in the 

current literature about thresholds and its real representativity in wines matrixes by both 

smell pathways (orthonasal and retronasal), since most of the published values are 

measured in water/ethanol solutions and only by the orthonasal route. Another overall 

research objective was to characterize and understand the sensitivity and sensory 

response to the presence of off-flavours related with the above mentioned niche wines. 

In particular, the specific objectives of this study were: 

 

(i) To evaluate sensory thresholds (detection and recognition) of different off-flavours, 

for both orthonasal and retronasal pathways in wine; 

 

(ii) To evaluate different measures of individual sensitivity to flavours in wine; 

 

(iii) To understand the relation between suprathreshold flavour sensitivity and sensory 

thresholds. 
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2. MATERIALS AND METHODS  

 

2.1 Panel selection 

The tasting sessions involved a total of 15 students selected from the first year of the 

Master of Viticulture and Enology held at the Instituto Superior de Agronomia in 

2017/2018 (ISA, University of Lisbon). The tasting panel comprised 6 females and 9 

males ranging in age from 23 to 36 years old (28 ± 4). None of the students had 

previously been trained in experiments on odour and taste sensitivity, however they 

reported that were aware of the fundamental concepts related to wine tasting. In 

parallel, another panel was used comprising 16 wine professionals between 30 and 65 

years old (8 females and 8 males, 47±13), with more than five years of experience in 

wine tasting. The untrained panel will be mentioned as the student panel and the trained 

panel as the professional one. In both cases the number of tasters was higher than 9, 

which is regarded as the minimum necessary to obtain a sufficient number of data 

points for sample comparisons if each panelist evaluates only once, according to 

Dravnieks and Jarke (1980). 

 

2.2 Sensory sessions 

All the sessions were conducted in the Laboratory of Microbiology (ISA) and lasted 1 h 

each weekly session from March to May 2018. Each session took place in the morning 

and was divided in three phases, corresponding each phase to a different test that 

involved both orthonasal and retronasal evaluations. The first one corresponded to the 

intensity test, where the subjects evaluated different suprathreshold concentrations of 

off-flavours. The second and third phases corresponded to the detection and 

recognition threshold tests, respectively. Tasters were provided each weekly session 

with a different off-flavour to evaluate.  

 

For all tastings, the samples were presented to the panel coded with three-digit random 

numbers and without further information. Sample volume was 25 mL of wine served at 

room temperature (23 ± 2 ºC) in tasting glasses according the requirements of ISO 

3591:1997 standard and covered with a petri dish for 1 h before tasting. Tasters were 

given unsalted crackers, a spitter and demineralized water to cleanse the palate before 

the tests and between the samples. A break was enforced between each odorant 

concentration and between each test to minimise sensory saturation. Adapting some 

of the minimum requirements from ISO 8589:2010 standard, the samples were 

prepared in a near room separated from the tasting area and were evaluated on the 

benches of a well-ventilated classroom. 
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2.3 Sample preparation   

The wines were produced in the ISA experimental winery following conventional 

winemaking techniques. White wine produced in the year 2016 was made from 

Macabeu variety while a blend of Cabernet Sauvignon and Syrah from the year 2017 

was used in the red wine. The physical-chemical analysis of both wines is shown in 

Table 2.1. and was performed by Laboratory Ferreira Lapa, in Instituto Superior de 

Agronomia. Previous sensorial tasting by the laboratory trained staff did not reveal the 

presence of off-flavours in the base wines. However, analysing the results in Table 2.2. 

from ETSIAAB in Universidad Politécnica de Madrid, in the wines there were effectively 

the presence of the molecules acetaldehyde, ethyl acetate and volatile phenols. 

  

Table 2.1. Composition of the base wines used in the threshold and suprathreshold tests. 
 

Wine pH 
Total acidity 

(g tartaric acid/L) 

Reducing 

substances 

(g/L) 

Alcoholic 

strength 

(%, v/v) 

Volatile acidity 

(g acetic acid/L) 

Free SO₂ 

(mg/L) 

Total SO₂ 

(mg/L) 

White 3.52 5.3 0.7 11.3 0.23 39 105 

Red 3.52 8.0 1.9 14.6 0.43 26 80 

 

Table 2.2. Quantification of the volatile compounds in the base wines - acetaldehyde, ethyl 

acetate, hexanol and volatile phenols, and respective correspondence to the suprathreshold 

added concentration. 
 

Molecule 
Added concentration (mg/L) 

0  125 250 500 1000 

Acetaldehyde  

(in white wine) 
37 28 127 109 202 

Ethyl acetate  

(in white wine) 
19 165 216 523 855 

 Added concentration (μg/L) 

 125 250 500 1000 2000 

Hexanol (in white wine) 142 266 451 976 1679 

Volatile phenols (4-EF) 

(in red wine) 
624 842 1036 1760 3326 

 

A total of six off-flavour compounds were tested (acetaldehyde, acetic acid, ethyl 

acetate, hexanol, hydrogen sulfide, volatile phenols (4-ethylphenol and 4-ethylguaiacol 

in 10:1) by spiking the basic white and red wines as described in Table 2.3. Five 

concentration steps were made with a constant 2-fold dilution factor throughout the 

range. The concentration series for each odorant was initially established with 

reference to the detection threshold range reported in the literature. All solutions were 

prepared approximately 24 hours before the sensory session and tested by three 

members of the laboratory staff to check the presence of the odour. 
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Table 2.3. Added concentrations of the off-flavour molecules used in the threshold and 

suprathreshold sensory tests. 
 

Molecule 
Solution´s 

information 
Test 

Concentration level 

1st 2nd 3rd 4th 5th 

Acetaldehyde 

in white wine 

(mg/L) 

Fluka product CAS 

Number: 75-07-0 

Suprathreshold 0 125 250 500 1000 

Threshold 15.625 31.25 62.5 125 250 

Acetic acid in 

red wine 

(mg/L) 

Acetic acid glacial; 

PanReac product code: 

131008 

Suprathreshold 250 500 1000 2000 4000 

Threshold 125 250 500 1000 2000 

Ethyl acetate 

in white wine 

(mg/L) 

BDH chemicals product 

code: 28311 

Suprathreshold 0 125 250 500 1000 

Threshold 15.625 31.25 62.5 125 250 

Hexanol in 

white wine 

(μg/L) 

1-hexanol; Sigma-aldrich 

product CAS Number: 

111-27-3 

Suprathreshold 0 500 1000 2000 4000 

Threshold 62.5 125 250 500 1000 

Hydrogen 

sulfide in red 

wine (μg/L) 

Sigma-aldrich product 

code: 742546 

Suprathreshold 125 250 500 1000 2000 

Threshold 62.5 125 250 500 1000 

4-ethylphenol  

(4-EF); 4-

ethylguaiacol  

(4-EG) (10:1) in 

red wine (μg/L) 

4-EF and 4-EG; Sigma-

aldrich products CAS 

Number: 123-07-9 and 

2785-89-9, respectively 

Suprathreshold 125 250 500 1000 2000 

Threshold 31.25 62.5 125 250 500 

 

2.4 Sensory methodology for ortho- and retronasal perceptions 

2.4.1 Suprathreshold flavour intensity test 

The determination of flavour suprathreshold intensities was performed using 5 glasses 

with different concentrations in random order across tasters, as illustrated in Figure 2.1. 

The orthonasal intensity was measured by placing the glass with a 45º angle without 

swirling and gently approaching the glass to the nose. When the odour started to be 

felt, the distance (cm) was measured with a ruler from the top of the glass to the nose. 

The further away from their nose the glass was, the greater the aromatic intensity of 

the wine. For the retronasal test, the tasters used a nose clip (Decathlon; made in 

Malaysia), put the wine in the mouth and chewed for 3 times and then spitted. The 

intensity value was drawn by a vertical mark in the Likert scale (Likert, 1932), used to 

scaling intensity responses, between “barely detectable” and “strongest imaginable” on 

the retronasal intensity sheet (Annex 1.).  

 

In order to measure the individual sensitivity, the geometric mean (GM), the area-under-

curve (AUC) and the regression slope were used. The first measure of individual 

sensitivity was obtained by calculating the geometric mean of the intensity scores 
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across all suprathreshold concentrations of the compounds (Webb et al., 2015). The 

individual sensitivity was also expressed by calculating the area under the curve, 

derived from plotting the measured intensity values as a function of suprathreshold 

concentrations of the compounds. This plot also allowed to determine the slope of the 

regression line obtained by fitting with method of minimum squares. The AUC and slope 

results were obtained with Software R and the GM mean was calculated with Microsoft 

Excel.  

 

 
 

Figure 2.1. Suprathreshold intensity sample presentation scheme. 

 

2.4.2 Detection and recognition thresholds test 

The protocol ASTM E-679 (ASTM, 2004) used for determination of thresholds consists 

of an ascending forced-choice (3-AFC) triangular tests. Each triad contains one target 

sample (with the off-flavour) and two blank samples (with clean wine), as illustrated in 

Figure 2.2. For each concentration, tasters were asked first to identify the spiked 

sample by smelling the triad (orthonasal evaluation) and in second, by retronasal 

evaluation, to recognise the sample with the odd smell and give it a name or equivalent 

descriptor, completing the threshold sheet (Annex 2.). The test was run from the lowest 

concentration to the higher concentration, avoiding come back.  

 

Individual best estimated thresholds (BETs) were calculated according the method 

ASTM E-679 (2004) and were determined as the geometric mean of the last incorrect 

response and the following detected and/or recognised concentration, when this was 

followed by at least 2 further correct responses (Chrysanthou et al., 2016). Each series 

of five responses were tabulated and a (-) symbol was used for an incorrect response, 

(+) for a correct one and (+) painted of grey for a correct recognition of the off-flavour 

compound. Group BETs were calculated as the geometric mean of the average of 
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individual BETs. Calculation of individual and group thresholds were carried out using 

the Microsoft Excel program and statistical analyses were evaluated by ANOVA at 

p<0.05 significance level. 

 

 
 

Figure 2.2. Threshold sample preparation scheme. 
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3. RESULTS AND DISCUSSION  

 

3.1 Ortho- and retronasal detection and recognition thresholds 

Professional panel 

The results of the several trials to obtain detection and recognition thresholds for the 

professional panel are shown in Table 3.1. The first tests were done with acetaldehyde 

in white wine and were repeated 3 times in order to assess the increase in odour 

sensitivity with training. The lower thresholds were observed in the third experiment 

which was due not only to the increased taster sensitivity but also to the reduction in 

the lower range of tested concentrations. In fact, several tasters were able to detect the 

molecule in the lower concentrations of the first trials and by lowering further the 

concentration range it was possible to better ascertain their sensitivity (see Annex 3.). 

The same behaviour was also observed with ethyl acetate in white wines and volatile 

phenols in red wines (see Annex 4. and Annex 5., respectively). Interestingly, the 

retronasal route yielded lower nominal results but with no significant difference from the 

orthonasal pathways. Taking in consideration individual BET’s, some tasters showed 

increased sensitivity and ability to identify the flavour by the retronasal pathway (see 

Annex 3., Annex 4. and Annex 5.). The acetaldehyde thresholds were higher in red 

than in white wine after training but, as illustrated in Table 3.2, significant differences 

regarding the training (p<0.05) were only observed on detection threshold values. 

Regarding the matrix effect, no evident differences were observed between the 

thresholds evaluated in white and in red wine (p<0.05). 

 

Table 3.1. Detection and recognition BET thresholds values for orthonasal and retronasal  

(professional panel). 
 

Base 

Wine 
Molecule 

Detection threshold 
p-

value 

Recognition threshold 
p-

value Orthonasal  Retronasal Orthonasal 
 

Retronasal 

mean sda  Mean sda mean sda  mean sda 

White 

Wine 

Acetaldehyde 

(mg/L) 

50 1  47 1 0.56 77 2 
 

61 3 0.65 

15 2  14 1 0.74 27 3 
 

21 4 0.72 

9 3  7 3 0.61 21 3 
 

16 6 0.83 

Ethyl acetate 

(mg/L) 

54 1  50 1 0.63 87 3 
 

65 3 0.57 

26 2  32 2 0.43 26 2 
 

49 4 0.12 

Red 

Wine 

Acetaldehyde 

(mg/L) 
24 3 

 
18 2 0.44 26 3 

 

39 3 0.47 

Volatile phenols 

(4-EF, 4-EG) 

(μg/L) 

41 2  33 2 0.53 68 3 
 

42 3 0.40 

31 2  33 2 0.78 49 2 
 

40 2 0.44 

a Standard deviation of log10 BET. 
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The standard deviation of log BET may be interpreted as a measure of the variability 

between tasters (Table 3.1). Values were higher for the recognition than for the 

detection thresholds indicating that some individuals would require more training to 

correctly identify certain off-flavours.   

 

Table 3.2. Significance of the difference (p-values) between (a) the first and third sensory 

sessions for acetaldehyde (in white wine) and between (b) threshold determination of 

acetaldehyde in white and in red wine (professional panel). 
 

Molecule 
 Detection 

 
Recognition 

 Orthonasal  Retronasal Orthonasal  Retronasal 

Acetaldehyde 
(a) 0.0002  0.0001  0.054  0.12 

(b) 0.09  0.1  0.9  0.5 

 

Student panel  

The threshold results of the student panel were obtained in only one session per 

molecule to assess the sensitivity without previous training (Table 3.3, and more 

detailed in Annex 6. to Annex 11.). The threshold values were equal by both routes 

(p>0.05) and nominal values were mostly higher for the retronasal route, contrarily to 

the professional panel. Interestingly, thresholds for the same molecules were similar 

between tasting panels, indicating that sensitivities were practically not affected by 

training. 

 

Table 3.3. Detection and recognition BET thresholds for orthonasal and retronasal 

 (student panel). 
 

Base 

Wine 
Molecule 

Detection threshold 

p-

value 

Recognition threshold 

p-

value Orthonasal  Retronasal Orthonasal  Retronasal 

mean sda  mean sda mean sda  mean sda 

White 

Wine 

Acetaldehyde (mg/L) 12 1  14 1 0.19 46 5  70 5 0.53 

Ethyl acetate (mg/L) 14 2  17 2 0.39 27 3  29 3 0.90 

Hexanol (μg/L) 72 3  107 3 0.37 402 4  370 4 0.83 

Red 

Wine 

Acetic acid (mg/L) 302 3  481 3 0.32 658 4  1035 3 0.41 

Hydrogen sulfide 

(μg/L) 
83 2  73 3 0.87 286 5  461 4 0.58 

Volatile phenols 

(4-EF, 4-EG) (μg/L) 
29 2  31 2 0.77 35 2  31 2 0.78 

a Standard deviation of log10 BET. 
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Beyond the medium used in the threshold determination, sensory threshold values are 

a function of sample preparation, individual sensitivities and, of course, they are 

estimate for particular wines that highly influence the odour threshold values. The 

threshold values for acetaldehyde and acetic acid estimated in the present study were 

higher than the values reported by Guth (1997) (500 μg/L and 200 mg/L, respectively). 

On the contrary, for the molecule hexanol, the detection and recognition threshold 

values obtained were much lower than the reported by Guth (1997) (8000 μg/L). The 

difference between both results can be explained by the methodology used by Guth 

(1997): (i) the sessions involved only six trained judges; (ii) the compounds were 

dissolved in ethanol and added to a mixture of water/ethanol, (iii) the sensory evaluation 

(triangular tests) was performed only retronasally and (iv) the samples were presented 

in order of decreasing concentrations.  

 

The detection and recognition threshold values for ethyl acetate obtained in white wine 

were close to the values determined in air by Hellman and Small (1973) (6.4 mg/L and 

13.3 m/L, respectively). These values were obtained using a force-choice (3-AFC) 

method with ascending series and a panel of five trained tasters. The threshold values 

for hydrogen sulfide measured in this study were more than hundred times higher than 

the detection threshold values in air suggested by Young & Adams (1966) (5.7 – 7.9 

μg/L). The differences between both values can be explained by the procedure used: 

(i) large size of the panel (N=81 tasters); (ii) presentation mode of the molecule was by 

a mask and (iii) the methodology was performed in trials of ascending series (without 

forced-choice). Analysing the results for volatile phenols in wine obtained in this study, 

the threshold values were lower than the reported by Csikor et al. (2018) also in wine 

(4-EP + 4-EG: 114.3 μg/L). The values were determined in a sample of 260 wines using 

a high-performance liquid chromatography with a fluorimetric detector and sensory 

sessions was performed by five trained judges.  

 

3.2 Comparison of individual flavour thresholds  

In order to understand the distribution of taste sensitivity among the student tasters, for 

each off-flavour molecule the average of the group log (BET) values of the panel was 

used as the cut-off value between classes of high and low sensitive tasters. Computing 

all responses for all molecules, the tasters were aggregated in 2 sensitivity classes - 

high (H) and low (L), as shown in Annex 12.  The comparison among the behaviour of 

the tasters was done qualitatively by the number of times each one was considered as 

of high or of low sensitivity for all off-flavours (Table 3.4). The responses varied 

according to taster, molecule and mode of wine administration and evidenced the high 
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individual variability on the orthonasal and retronasal perceptions of the flavours. The 

cases where tasters were always within one class were rare, comprising taster 4 with 

low recognition thresholds, taster 8 with low sensitivity in the detection, and tasters 11 

and 14 with low sensitivity on detection and high sensitivity on the recognition. 

 

Table 3.4. Number of threshold determination where the tasters were of high (H) or low (L) 

sensitivity for the orthonasal and retronasal pathways (student panel). 
 

Taster 

Detection  Recognition 

Orthonasal  Retronasal  Orthonasal  Retronasal 

L H  L H  L H  L H 

1 1 3  1 3  2 2  4 - 

2 3 2  1 4  2 3  2 3 

3 3 3  4 2  4 2  4 2 

4 4 1  3 2  5 -  5 - 

5 - 4  1 3  - 4  2 2 

6 1 -  1 -  1 -  1 - 

7 1 1  2 -  - 2  - 2 

8 5 -  5 -  4 1  2 3 

9 4 -  2 2  3 1  2 2 

10 2 2  - 4  1 3  - 4 

11 4 1  4 1  - 5  - 5 

12 3 1  3 1  3 1  4 - 

13 2 3  3 2  2 3  4 1 

14 4 1  4 2  - 5  - 5 

15 4 1  3 2  2 3  2 3 

Total 41 23  37 28  29 35  32 32 

 

3.3 Evaluation of the sensitivity to suprathreshold concentrations 

The individual sensitivity to off-flavour suprathreshold concentrations of the student 

tasting panel was measured for all 6 molecules regarding the orthonasal and retronasal 

pathways. Results were highly variable with patterns that can be summarised by 3 

representative individuals as shown in Figure 3.1, concerning orthonasal and retronasal 

intensities of ethyl acetate. The absolute intensity values of orthonasal and retronasal 

pathways can only be qualitatively compared because of the different scale measures 

of intensity (ruler and Likert’s scale, respectively). However, the slope of the regression 

curve can be compared between both pathways. There were tasters showing 

increasing response to the stimulus in both routes, while others were orthonasally 

insensitive and retronasally sensitive or fully insensitive. The sensitivity could be 

evaluated by the magnitude of the slope of the regression line. Sensitive individuals 

showed a positive slope while insensitive ones showed a null or negative slope.  

 



23 
 

                                       (A)                                                                (B) 

 
 

                                      

              (C)                                                               (D) 

                                       (E)                                                               (F) 

 
 

Figure 3.1. Orthonasal and retronasal flavour intensity responses of three classes of subjects 

(A and B; C and D; E and F) for ethyl acetate (student panel).  

 

Added concentration of ethyl acetate (mg/L)                               Added concentration of ethyl acetate (mg/L) 

 

Added concentration of ethyl acetate (mg/L)                               Added concentration of ethyl acetate (mg/L) 

 

  Added concentration of ethyl acetate (mg/L)                               Added concentration of ethyl acetate (mg/L) 
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Taking in consideration the number of individuals that showed negative slopes of the 

regression curves which makes little physiological sense and could be ascribed to the 

individual ability to use the methodology, other measures of sensitivity were used. The 

GM and AUC have already been used in other works related with taste responsiveness 

(Webb et al., 2015, Peng et al., 2016, respectively) and it would be interesting to check 

if they could be used in flavour tests. The correlations between each pair of measures 

taking as example the molecule ethyl acetate are shown in Figure 3.2. and the 

correlations factors for all molecules are shown in Table 3.5. The best correlations were 

obtained between GM and AUC which was expected given the mathematical similarity 

of the determinations, although it was low regarding the retronasal intensity of acetic 

acid. The correlations with the slope were poor showing that possibly this is not a 

reliable measure of individual flavour sensitivity. Probably, this is due to the high 

number of individuals that did not show an increasing response to concentration leading 

to null or negative slopes (see Table 3.6). For GM and AUC, both measures yield 

positive values being an illustrative measure of the responsiveness to the stimulus.  

 

Table 3.5. Correlation values (r2 values) for orthonasal and retronasal intensity measure for 

each molecule (student panel). 
 

Molecule 

 Orthonasal  Retronasal 

 GMa vs 

AUCb 

GMa vs 

Slope 

AUCb vs 

Slope 
 

GMa vs 

AUCb 

GMa vs 

Slope 

AUCb vs 

Slope 

Acetaldehyde  0.98 0.04 0.21  0.75 -0.11 0.34 

Acetic acid  0.95 0.21 0.50  0.40 -0.64 0.30 

Ethyl acetate  0.95 -0.64 -0.46  0.82 -0.04 0.37 

Hexanol  0.99 -0.02 -0.002  0.93 0.24 0.57 

Hydrogen 

sulfide 

 
0.99 -0.16 -0.12  0.98 -0.19 -0.26 

Volatile phenols  

(4-EF, 4-EG) 

 
0.99 0.14 0.24  0.95 -0.07 0.15 

a Geometric mean. 
b Area-under-curve. 
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Figure 3.2. Correlation values for ethyl acetate, between each pair of measure, for orthonasal 

and retronasal intensity (GM, geometric mean; AUC, area under the curve; Slope, slope of the 

regression line of the intensity scores) (student panel).  
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The determination of these measures also raises the question of the methodology to 

detect sensitivity to off-flavours that probably may not be directly adapted from the 

responses to taste molecules. For instance, the flavour concentrations were in a 

random order, as advised for tastants (de Graaf et al., 1994), but probably the nose 

“cleaning” is not so effective as the palate cleaning, even assuring that the effects are 

minimized by adequate olfactory cleansing between samples. Another fact that may 

have contributed to these results is related with the sensitivity of the tasters. As shown 

in Figure 3.1, for the same off-flavour compound, there were subjects with very different 

intensity responses, more variable when compared to taste responsiveness, mainly 

regarding the negative slope responses. Considering this individual variability, it 

becomes more complicated to find one single measure to quantify all the individual 

sensitivity. Probably, this is the reason why, when studying flavour sensitivity, research 

is almost restricted to sensory thresholds and do not mention suprathreshold 

determinations.  

 

Another reason taken in consideration for the selection of the sensitivity measures was 

related with the absolute concentration of the off-flavour compounds, because if the 

area-under-curve was used as sensitivity measure, it would not be appropriate to 

compare different areas that corresponded to different absolute concentrations. 

Considering all results and having in mind the limitations of each determination to be a 

good measure of the suprathreshold sensitivity to the flavour stimulus, the option was 

to use the GM as an individual sensitivity measure.  

 

3.4 Individual and group suprathreshold intensity evaluation 

When all individual responses were merged an overall panel sensitivity may be 

obtained enabling to compare the stimulus elicited by each molecule in both pathways. 

Figure 3.3. shows the panel response to each one of the molecules and Table 3.6 lists 

the intensity measure scores of the student tasters. The acetaldehyde response shows 

a typical saturation curve where after an initial responsiveness increase there is a 

constancy in the perceived intensities. The other molecules elicited practically constant 

responses across all concentrations, with practically null slopes, showing that tasters 

were not highly sensitive to the increase in flavour concentration. The differences 

between the first and last tested concentrations are listed in Table 3.7 and reflect the 

low slope values across all flavour levels.  
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                                    (A)                                                              (B)  

                                           

     (C)                                                              (D) 

  
        

    (E)                                                              (F) 

  
 

Figure 3.3. Intensity responses of the panel across all suprathreshold concentrations of 

acetaldehyde (A), acetic acid (B), ethyl acetate (C), hexanol (D), hydrogen sulfide (E) and 

volatile phenols (F) in wine solution, for orthonasal and retronasal pathways (student panel). 

 

 

 

Added concentration of acetaldehyde (mg/L)                                 Added concentration of acetic acid (mg/L) 

 

Added concentration of ethyl acetate (mg/L)                                   Added concentration of hexanol (μg/L) 

 

Added concentration of hydrogen sulfide (μg/L)                         Added concentration of volatile phenols (μg/L) 
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Table 3.6. Slope, area-under-curve and geometric mean average values for orthonasal and 

retronasal intensity measure of the student tasting panel. 
 

Molecule 

Orthonasal  Retronasal 

Slope 
Area-under-

curve 

Geometric 

mean 
 Slope 

Area-under-

curve 

Geometric 

mean 

Acetaldehyde 0.003 8144 7.2  0.002 6144 5.0 

Acetic acid 0.0004 27910 7.2  0.0004 22663 5.5 

Ethyl acetate 0.002 7694 6.7  0.003 6469 5.5 

Hexanol -0.0001 26350 6.5  0.0004 24500 5.9 

Hydrogen 

sulfide 
-0.001 13756 7.4  -0.001 10400 5.5 

Volatile phenols 

(4-EF, 4-EG) 
0.001 16619 8.4  0.001 13469 6.8 

 

 

Table 3.7. Significance of the difference between the first and last concentration for orthonasal 

and retronasal intensity measure (student panel). 
 

Molecule 
 p-value 

 Orthonasal  Retronasal 

Acetaldehyde  0.02  0.0001 

Acetic acid  0.25  0.19 

Ethyl acetate  0.59  0.01 

Hexanol  0.99  0.06 

Hydrogen sulfide  0.60  0.09 

Volatile phenols 
(4-EF, 4-EG) 

 0.75  0.16 

 

The relatively high standard deviation of the mean values (see Figure 3.3.) indicated a 

large variability in smell and flavour perceptions by analysing all the molecules in the 5 

suprathreshold concentrations. Comparisons between the mean values confirmed 

differences between orthonasal and retronasal, sustaining the theory of Rozin (1982) 

for the qualitative difference and the duality in the ortho- and retronasal olfactory 

senses. In order to understand the distribution of these responses, the geometric mean 

(GM) of each taster response across the five suprathreshold concentrations of each 

molecule provided a measure of individual sensitivity. For each molecule, in orthonasal 

and retronasal pathways, the GM average of the tasting panel was used as the cut-off 

value between classes of high and low sensitive tasters. Computing all responses for 

all molecules, the tasters were aggregated in 2 sensitivity classes - high (H) and low 

(L), as shown in Annex 13. Table 3.8. shows the results merging the classes of all 
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flavours. The outputs were: (i) low sensitivity on orthonasal and high sensitivity on 

retronasal for tasters number 2, 4, 12; (ii) high sensitivity on orthonasal and low 

sensitivity on retronasal for tasters number 7, 8; (iii) high sensitivity on ortho- and 

retronasal for tasters number 3, 11, 15; (iv) low sensitivity on ortho- and retronasal for 

tasters number 5, 6, 10, 13, 14. For tasters number 1 and 9, the attribution of a specific 

sensitivity category for retronasal was inconclusive because of the similarity between 

numbers in each H and L classes. By individuating the overall responses and 

considering the consistence of each taster in all molecules, only tasters number 2, 3, 

5, 10, 11, 13, 15 were coherent in all their orthonasal response and/or in all their 

retronasal response, for all molecules (with some exceptions).  

 

Concerning the differences between the chemical composition of the molecules and 

their aroma perception by each subject, there was a different individual behaviour for 

each molecule that affects the coherence of the tasting. When the results were 

analysed individually, not all the subjects were consistent in all their ortho- and 

retronasal responses, presenting different odour perceptions for each off-flavour.  

 

Table 3.8. Number of suprathreshold determination where the tasters were of high (H) or low 

(L) sensitivity for the orthonasal and retronasal pathways (student panel). 
 

Taster 
Orthonasal  Retronasal 

L H  L H 

1 4 -  2 2 

2 5 -  - 5 

3 - 6  2 4 

4 3 -  1 2 

5 3 1  3 1 

6 2 1  2 1 

7 1 3  3 1 

8 2 3  3 2 

9 - 4  2 2 

10 4 -  3 1 

11 - 5  - 5 

12 3 1  1 3 

13 4 1  4 1 

14 5 -  3 2 

15 - 5  - 5 

Total 36 30  29 37 
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3.5 Comparison between ortho- and retronasal intensity evaluation 

The Figures 3.4 to 3.9 correspond each one to a different molecule and each one 

includes four plots (A, B, C, D). The panel was divided in two classes according their 

sensitivity. Plot A shows the intensity scores for each suprathreshold concentration on 

orthonasal for both low and high sensitivity tasters. Plot B shows the respective intensity 

scores for each suprathreshold concentration on retronasal route for the subjects within 

the sensitivity groups of Figure A. On orthonasal via, the different sensitivity between 

both groups was not evident on retronasal olfaction. Plot C illustrates the intensity 

scores for each suprathreshold concentration on retronasal smell for low and high 

sensitivity tasters. Plot D shows the intensity scores for each suprathreshold 

concentration on orthonasal route for the same subjects of Plot C. Analysing all the 

results for all molecules, low and high sensitivity tasters on retronasal smell had similar 

sensitivity and when compared on orthonasal route.  

 

 

 

  
 

Figure 3.4. Intensity scores for each suprathreshold concentration of acetaldehyde on 

orthonasal (A) and correspondent distribution on retronasal (B) and on retronasal (C) and 

correspondent distribution on orthonasal (D), for the same low and high sensitivity subjects. 

A B 

C D 

 Added concentration of acetaldehyde (mg/L)                             Added concentration of acetaldehyde (mg/L) 

 

 Added concentration of acetaldehyde (mg/L)                             Added concentration of acetaldehyde (mg/L) 
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Figure 3.5. Intensity scores for each suprathreshold concentration of acetic acid on orthonasal 

(A) and correspondent distribution on retronasal (B) and on retronasal (C) and correspondent 

distribution on orthonasal (D), for the same low and high sensitivity subjects. 

 

 

 

 

 

 

A B 

C D 

 Added concentration of acetic acid (mg/L)                                   Added concentration of acetic acid (mg/L) 

 

 Added concentration of acetic acid (mg/L)                                 Added concentration of acetic acid (mg/L) 
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Figure 3.6. Intensity scores for each suprathreshold concentration of ethyl acetate on 

orthonasal (A) and correspondent distribution on retronasal (B) and on retronasal (C) and 

correspondent distribution on orthonasal (D), for the same low and high sensitivity subjects. 

 

 

 

 

 

 

 

 

 

A B 

C D 

 Added concentration of ethyl acetate (mg/L)                            Added concentration of ethyl acetate (mg/L) 

 

 Added concentration of ethyl acetate (mg/L)                            Added concentration of ethyl acetate (mg/L) 
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Figure 3.7. Intensity scores for each suprathreshold concentration hexanol on orthonasal (A) 

and correspondent distribution on retronasal (B) and on retronasal (C) and correspondent 

distribution on orthonasal (D), for the same low and high sensitivity subjects. 

 

 

 

 

 

 

A B B 

C D 

 Added concentration of hexanol (μg/L)                                       Added concentration of hexanol (μg/L) 

 

 Added concentration of hexanol (μg/L)                                         Added concentration of hexanol (μg/L) 
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Figure 3.8. Intensity scores for each suprathreshold concentration of hydrogen sulfide on 

orthonasal (A) and correspondent distribution on retronasal (B) and on retronasal (C) and 

correspondent distribution on orthonasal (D), for the same low and high sensitivity subjects. 

 
 
 
 
 
 

A B 

C D 

 Added concentration of hydrogen sulfide (μg/L)                          Added concentration of hydrogen sulfide (μg/L) 

 

 Added concentration of hydrogen sulfide (μg/L)                          Added concentration of hydrogen sulfide (μg/L) 
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Figure 3.9. Intensity scores for each suprathreshold concentration of volatile phenols on 

orthonasal (A) and correspondent distribution on retronasal (B) and on retronasal (C) and 

correspondent distribution on orthonasal (D), for the same low and high sensitivity subjects. 

 

Analysing the results for all molecules in Table 3.9, the mean and standard deviation 

values were always higher on orthonasal than on retronasal mode. The orthonasal 

mode presented also a higher variability (with higher standard deviation values) in the 

intensity response of the subjects, for suprathreshold concentrations. The values of the 

coefficient of variation (CV) illustrated in Table 3.10. corroborated this: on orthonasal 

the respective values were higher than on retronasal, meaning that the panel was more 

heterogeneous on orthonasal pathway. As most of the coefficient of variation values 

were higher than 25%, the panel comprised medium to high dispersion between the 

subjects (Romano et al., 2005), evidencing their higher individual variability. The 

difference between the high and low sensitive untrained tasters for the orthonasal 

perception was significant for all molecules (evaluated by ANOVA at p=0.05 level of 

significance). On the contrary, for the retronasal pathway, no distinction of sensitivity 

was observed between the tasters for acetaldehyde, acetic acid and volatile phenols. 

 

A B 

C D 

       Added concentration of volatile phenols (μg/L)                       Added concentration of volatile phenols (μg/L) 

 

 Added concentration of volatile phenols (μg/L)                           Added concentration of volatile phenols (μg/L) 
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Table 3.9. Mean and standard deviation values (cm) for each molecule, on orthonasal and 

retronasal, for all type of sensitivity tasters (student panel). 
 

Molecule 

Orthonasal   Retronasal  

All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters 

p-value 

(for high 

and low) 

 All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters 

p-value 

(for high 

and low) 
Mean ± sda Mean ± sda Mean ± sda  Mean ± sda Mean ± sda Mean ± sda 

Acetaldehyde  7.7 ± 4.0 10.7 ± 3.7 5.4 ± 2.1 0.001  5.6 ± 2.1 6.2 ± 1.8 4.5 ± 2.1 0.11 

Acetic acid  7.5 ± 3.4 9.8 ± 2.7 5.2 ± 2.1 0.0003  5.9 ± 1.8 6.8 ± 1.2 5.1 ± 1.7 0.05 

Ethyl acetate  7.2 ± 3.5 9.8 ± 3.2 5.2 ± 2.2 0.001  5.9 ± 2.3 7.1 ± 1.7 4.8 ± 2.2 0.03 

Hexanol  6.7 ± 4.4 10.2 ± 4.0 3.7 ± 1.7 0.0004  6.0 ± 1.5 6.9 ± 1.4 5.3 ± 1.0 0.045 

Hydrogen 

sulfide 
7.6 ± 4.6 11.9 ± 3.5 5.0 ± 2.7 0.0003  5.8 ± 2.3 6.7 ± 1.2 3.0 ± 2.1 0.002 

Volatile phenols 

 (4-EP, 4-EG)  
8.6 ± 4.5 11.1 ± 3.6 5.3 ± 3.0 0.00001  7.0 ± 1.8 7.5 ± 1.0 6.5 ± 2.8 0.21 

a Standard deviation. 

 

Table 3.10. Coefficient of variation values for each molecule and all type of sensitivity tasters, 

on orthonasal and retronasal pathways (student panel). 
 

Molecule 

Orthonasal  Retronasal 

All tasters 
Highly 
sensitive 
tasters 

Low 
sensitive 
tasters 

 All tasters 
Highly 
sensitive 
tasters 

Low 
sensitive 
tasters 

CVa CVa CVa  CVa CVa CVa 

Acetaldehyde 52% 35% 39%  38% 29% 47% 

Acetic acid 45% 28% 40%  31% 18% 33% 

Ethyl acetate 50% 33% 42%  39% 24% 46% 

Hexanol 66% 39% 46%  25% 20% 19% 

Hydrogen sulfide 61% 30% 54%  40% 18% 70% 

Volatile phenols  
(4-EP, 4-EG) 

52% 32% 57%  26% 13% 43% 
                          a Coefficient of variation. 

 

The same methodological approach was performed with the professional panel to 

compare with the behaviour of the untrained tasters. The analysis made for the trained 

panel is illustrated in Table 3.11. and Table 3.12. Supporting the results for the student 

panel, the orthonasal route also presented a higher variability (with higher standard 

deviation values) in the intensity response of the trained subjects. The coefficient of 

variation values illustrated in Table 3.13. corroborated this: on orthonasal the respective 

values were higher than on retronasal, meaning that the panel was more 

heterogeneous on orthonasal intensity measure. The difference between the high and 

low sensitive trained tasters was significant for all molecules, on orthonasal perception 

(Table 3.11, evaluated by ANOVA at p=0.05 level of significance). On the contrary, the 

retronasal pathway showed no distinction of sensitivity between the high and low 

sensitive individuals for acetaldehyde, ethyl acetate and volatile phenols (like the 

student panel).  
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The comparison of the intensity responses between the student and professional panel 

appears to yield similar results (p>0.05, evaluated by ANOVA), with exception for the 

orthonasal perception of hydrogen sulfide and volatile phenols (Table 3.13). Students 

showed a higher sensitivity to hydrogen sulphide and lower sensitivity to volatile 

phenols. Interestingly, Tempere et al. (2012) reported that the sensitivities of graduated 

experts to some wine odorant compounds were improved over several tastings. These 

differences between taster experience were not observed for the retronasal route 

(except for all tasters with hydrogen sulphide). 

 

Table 3.11. Mean and standard deviation values (cm) for each molecule, on orthonasal and 

retronasal, for all type of sensitivity tasters (professional panel). 
 

Molecule 

Orthonasal   Retronasal  

All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters 

p-value  

(for high 

and low) 

 

All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters 

p-value 

(for high 

and low) 

Mean ± sda Mean ± sda Mean ± sda  Mean ± sda Mean ± sda Mean ± sda 

Acetaldehyde 8.5 ± 4.0 11.5 ± 3.4 6.0 ± 2.1 0.001  6.6 ± 2.0 6.6 ± 2.1 6.7 ± 2.1 0.93 

Acetic acid 7.8 ± 4.0 10.9 ± 3.4 5.5 ± 2.1 0.00001  5.9 ± 1.9 6.8 ± 1.5 4.3 ± 1.5 0.02 

Ethyl acetate 7.3 ± 3.5 9.6 ± 2.3 4.7 ± 2.3 0.002  5.4 ± 2.1 5.8 ± 1.9 4.9 ± 2.4 0.50 

Hydrogen 

sulfide 
6.0 ± 3.0 8.6 ± 2.0 4.0 ± 1.5 0.000001  4.4 ± 2.1 6.0 ± 1.5 2.9 ± 1.4 0.0001 

Volatile phenols  

(4-EP, 4-EG) 
9.4 ± 5.2 14.7 ± 2.3 6.5 ± 2.6 0.0000002  5.7 ± 2.3 5.6 ± 3.0 5.5 ± 1.6 0.90 

a Standard deviation. 

 

Table 3.12. Coefficient of variation values for each molecule and all type of sensitivity tasters, 

on orthonasal and retronasal (professional panel). 
 

Molecule 

Orthonasal  Retronasal 

All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters 

 All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters 

CVa CVa CVa  CVa CVa CVa 

Acetaldehyde 47% 30% 35%  30% 32% 32% 

Acetic acid 51% 31% 38%  32% 22% 35% 

Ethyl acetate 48% 24% 49%  39% 33% 49% 

Hydrogen sulfide 50% 23% 38%  48% 25% 48% 

Volatile phenols  

(4-EP, 4-EG) 
55% 16% 40%  40% 54% 29% 

                       a Coefficient of variation. 

 

 

 



38 
 

Table 3.13. p-values of the difference between the intensity scores of the student and 

professional tasters. 
 

Molecule 

Orthonasal  Retronasal 

All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters 

 

All tasters 

Highly 

sensitive 

tasters 

Low 

sensitive 

tasters  

Acetaldehyde 0.44 0.42 0.58  0.33 0.76 0.05 

Acetic acid 0.61 0.27 0.45  0.17 0.98 0.39 

Ethyl acetate 0.75 0.77 0.64  0.64 0.28 0.95 

Hydrogen 

sulfide 
0.001 0.00002 0.025  0.004 0.17 0.82 

Volatile phenols  

(4-EP, 4-EG)  
0.04 0.0002 0.03  0.19 0.16 0.35 

 

3.6 Comparison between suprathreshold and threshold sensitivities 

It was hypothesized by Webb et al. (2015) that those who were able to detect and 

recognize a taste compound at a lower concentration (more sensitive) would 

consequently perceive a greater intensity when presented suprathreshold 

concentrations of the same stimulus. However, these authors did not found evidence 

to support their initial speculation. Notably, earlier research had also failed to find 

relationships between the taste thresholds and suprathresholds intensity ratings 

(Bartoshuk, 1978; Mattes, 1985; Mojet et al., 2005). Interestingly, based on the findings 

of Mojet et al. (2005), for the young people, threshold sensitivity was unrelated to 

suprathreshold intensity for all tastants and in all experimental conditions. However, for 

the elderly, in a few cases a relationship was found between threshold sensitivity and 

suprathreshold intensity, but only when subjects wore a nose clip. In the present study, 

the positive relation between odour thresholds and suprathreshold intensities by 

analysing the tables in Annex 12. and Annex 13., respectively, was only observed for 

taster number 8 concerning acetaldehyde; for taster number 15 concerning acetic acid 

and hexanol; for taster number 3 concerning ethyl acetate; for taster number 9 

concerning hydrogen sulfide; and for taster number 6 concerning volatile phenols. For 

these tasters, low threshold values lead to greater sensations of suprathreshold 

concentrations. Therefore, our results considering flavour molecules were in 

accordance to the speculations reported by Bartoshuk (1978), Mattes (1985) and Webb 

et al. (2015), including the exceptions described by Mojet et al. (2005).  
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4. CONCLUSIONS AND FUTURE PERSPECTIVES 
 

Detection and recognition threshold values in wines of six off-flavour compounds were 

obtained, filling the existing gap in the current literature. The values from this study 

were similar for ethyl acetate, lower for hexanol and volatile phenols and higher for       

acetaldehyde, acetic acid and hydrogen sulfide than the previously reported in 

literature, taking in consideration that were mediated by different wine styles and 

evaluation modes (orthonasal versus retronasal). In both threshold and suprathreshold 

intensity tests, some differences were found between orthonasal and retronasal 

evaluations and between trained and untrained tasters, suggesting that subjects 

perceive the molecules differently. However, there was a higher variability on the 

orthonasal evaluation comparing with the retronasal, suggesting that the retronasal 

route is less variable among tasters. This observation indicates that retronasal 

responses should not be dismissed on the evaluation of off-flavours in wines. In fact, 

the tendency to have higher threshold sensitivities by the retronasal via shows that 

orthonasal evaluations must be followed by wine ingestion. 

 

This study presented a new insight into the individual flavour perception by revealing 

the differences in intensity measures between sensitivity groups and between different 

routes of flavour perception (orthonasal and retronasal). Furthermore, the study 

showed that sensitivity to one off-flavour compound does not indicate sensitivity to 

another off-flavour compound. There was a large individual sensitivity that affected the 

orthonasal and retronasal perception of the off-flavours in wine by the consumers. In 

order to access that individual sensitivity, the geometric mean was the measure that 

captured better the totality of the sense of aroma and taste.  

 

This study had some limitations that may have influenced the lack of relationships 

between threshold and suprathreshold intensity tests and between orthonasal and 

retronasal evaluations. Many of the off-flavour molecules tested have strong aroma 

intensity what become more complicated for the tasters to clean the olfactory and palate 

between each test. This factor may have affected their sensitivity and the results 

reported in this study. In second, the population of the study was composed by few 

numbers of tasters. More research is needed to improve the methods of flavour 

intensity assessment in order to minimise what appeared to be the difficulty in 

performing the requested tasks. 
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6. ANNEXES 

 

1) Tasting sheet for suprathreshold intensity test. 

 

Date___/__/_____ 

Name________________________________________________________Age ______ 

 

Orthonasal smell Intensity 

Without swirling, slowly approach the glass to your nose. When you start to feel the aroma of 

the wine, stop the glass and measure the distance (cm) from the glass to the nose. Write the 

measure in the table below.   

 

 

Wine Distance from nose 
(cm) 
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Retronasal Aroma Intensity 

Close the nose with your fingers. Put the wine in your mouth. Masticate for 3 times and spit. 

Remove the fingers and breath.  Put a vertical mark in the scales.   

 

 

Wine n. ____ 

                  

 

 

Wine n. ____   

                  

 

 

 

 Wine n. ____   

                  

 

 

 

Wine n.____   

                  

 

 

 

 Wine n. ____   

                  

 

 

 

 

 

 

Barely Detectable 
 

Strongest Imaginable 
 

 

Barely Detectable 
 

Strongest Imaginable 
 

 

Barely Detectable 
 

Strongest Imaginable 
 

 

Barely Detectable 
 

Strongest Imaginable 
 

 

Barely Detectable 
 

Strongest Imaginable 
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2) Tasting sheet for threshold test. 

 

Name ______________________________________________      Date___/__/______ 

 

Orthonasal smell 

Please smell each triangle set and identify which one of the 3 glasses has the different smell (2 

of the 3 glasses in each set are the same). Put an X in the box of the different glass and write 

the name of the descriptor that makes the difference. Note that even if you are not able to identify 

the different glass, you must choose one.  Complete each triangle set in from 1 to 5 and avoid 

coming back. 

1 

 

 

 

 

2 

 

 

 

 

3 

 

 

 

 

4 

 

 

 

 

5 

 

 

 

Glass Different Smell 

   

   

   

Glass Different Smell 

   

   

   

Glass Different Smell 

   

   

   

Glass Different Smell 

   

   

   

Glass Different Smell 
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Retronasal smell 

Repeat the process but put the wine in the mouth, masticate and spit without swallowing.  

1 

 

 

 

 

2 

 

 

 

 

3 

 

 

 

 

4 

 

 

 

 

5 

 

 

 

 

 

 

 

 

 

 

Glass Different Smell 

   

   

   

Glass Different Smell 

   

   

   

Glass Different Smell 

   

   

   

Glass Different Smell 

   

   

   

Glass Different Smell 
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3) Individual and group best estimated thresholds for acetaldehyde, on 

orthonasal and retronasal pathways, over several sensory sessions 

performed by professional panel. 

 

a. Individual and group best estimated orthonasal thresholds for acetaldehyde on first 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

1 + + + + +  44.2 1.65  88.4 1.95 

2 + + + + +  44.2 1.65  44.2 1.65 

3 - + + + +  88.4 1.95  88.4 1.95 

4 + + + + +  44.2 1.65  176.8 2.25 

5 + + + + +  44.2 1.65  44.2 1.65 

6 - + + + +  88.4 1.95  707.1 2.85 

7 + + + + +  44.2 1.65  44.2 1.65 

8 + + + + +  44.2 1.65  44.2 1.65 

9 + + + + +  44.2 1.65  44.2 1.65 

10 + + + + +  44.2 1.65  88.4 1.95 

proportion 

correct for 

detection 

0.80 1.00 1.00 1.00 1.00  
Mean  

log (BET) 
1.70  

Mean  

log (BET) 
1.89 

proportion 

correct for 

recognition 

0.50 0.80 0.90 0.90 1.00  Antilog (BET) 50  Antilog (BET) 77 

 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

b. Individual and group best estimated retronasal thresholds for acetaldehyde on first 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

1 + + + + +  44.2 1.65  44.2 1.65 

2 + + + + +  44.2 1.65  44.2 1.65 

3 - + + + +  88.4 1.95  88.4 1.95 

4 + + + + +  44.2 1.65  44.2 1.65 

5 + + + + +  44.2 1.65  44.2 1.65 

6 + + + + +  44.2 1.65  353.6 3.15 

7 + + + + +  44.2 1.65  44.2 1.65 

8 + + + + +  44.2 1.65  44.2 1.65 

9 + + + + +  44.2 1.65  44.2 1.65 

10 + + + + +  44.2 1.65  44.2 1.65 

proportion 

correct for 

detection 

0.90 1.00 1.00 1.00 1.00  
Mean  

log (BET) 
1.67  

Mean  

log (BET) 
1.79 

proportion 

correct for 

recognition 

0.80 0.90 0.90 1.00 1.00  Antilog (BET) 47  Antilog (BET) 61 

 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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c. Individual and group best estimated orthonasal thresholds for acetaldehyde on second 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 + + + + +  11.0 1.04  44.2 1.65 

2 + + + + +  11.0 1.04  11.0 1.04 

3 + + + + +  11.0 1.04  11.0 1.04 

4 + - + + +  44.2 1.65  44.2 1.65 

5 + + + + +  11.0 1.04  11 1.04 

6 + + + + +  11.0 1.04  353.6 2.55 

7 + + - + +  11.0 1.04  88.4 1.95 

8 - + + + +  22.1 1.34  22.1 1.34 

9 + + + + +  11.0 1.04  11.0 1.04 

10 + - + + +  44.2 1.65  44.2 1.65 

proportion 

correct for 

detection 

0.90 0.80 0.90 1.00 1.00  
Mean 

log (BET) 
1.17  

Mean 

log (BET) 
1.43 

proportion 

correct for 

recognition 

0.60 0.50 0.80 0.90 0.90  Antilog (BET) 15  Antilog (BET) 67 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

d. Individual and group best estimated retronasal thresholds for acetaldehyde on second 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 + + + + +  11.0 1.04  22.1 1.34 

2 + + + + +  11.0 1.04  11.0 1.04 

3 + + + + +  11.0 1.04  11.0 1.04 

4 - + + + +  22.1 1.34  22.1 1.34 

5 + + + + +  11.0 1.04  11.0 1.04 

6 - + + + +  22.1 1.34  353.6 3.15 

7 + + + + +  11.0 1.04  11.0 1.04 

8 - + + + +  22.1 1.34  22.1 1.34 

9 + + + + +  11.0 1.04  22.1 1.34 

10 - + + + +  22.1 1.34  22.1 1.34 

proportion 

correct for 

detection 

0.60 1.00 1.00 1.00 1.00  
Mean 

log (BET) 
1.15  

Mean 

log (BET) 
1.32 

proportion 

correct for 

recognition 

0.40 0.90 0.90 0.90 0.90  Antilog (BET) 14  Antilog (BET) 21 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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e. Individual and group best estimated orthonasal thresholds for acetaldehyde on third 

experiment (professional panel, N=9). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

3.91 7.81 15.625 31.25 62.5  BETa log (BET)  BETa log (BET) 

1 + + - + -  22.1 1.34  88.4 1.95 

2 + - - + +  22.1 1.34  88.4 1.95 

3 - - - + +  22.1 1.34  22.1 1.34 

4 + + + + +  2.8 0.44  88.4 1.95 

5 + + + + +  2.8 0.44  2.8 0.45 

6 + + - + +  22.1 1.34  88.4 1.95 

7 - - + + +  11.0 1.04  11.0 1.04 

8 - + - + +  22.1 1.34  22.1 1.34 

9 - + + + +  5.5 0.74  11.0 1.04 

proportion 

correct for 

detection 

0.56 0.67 0.44 1.00 0.89  
Mean 

log (BET) 
0.96  

Mean 

log (BET) 
1.32 

proportion 

correct for 

recognition 

0.22 0.33 0.33 0.67 0.56  Antilog (BET) 9  Antilog (BET) 21 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

 

f. Individual and group best estimated retronasal thresholds for acetaldehyde on third 

experiment (professional panel, N=9). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

3.91 7.81 15.625 31.25 62.5  BETa log (BET)  BETa log (BET) 

1 - - - + +  22.1 1.34  22.1 1.34 

2 - - - + +  22.1 1.34  22.1 1.34 

3 - + + - +  5.5 0.74  5.5 0.74 

4 + + + + +  2.8 0.44  88.4 1.95 

5 + + + + +  2.8 0.44  11.0 1.04 

6 - + - + -  22.1 1.34  88.4 3.15 

7 - - + + +  11.0 1.04  11.0 1.04 

8 - + - + +  22.1 1.34  22.1 1.34 

9 + + + + +  2.8 0.44  2.8 0.45 

proportion 

correct for 

detection 

0.33 0.67 0.56 0.89 0.89  
Mean 

log (BET) 
0.84  

Mean 

log (BET) 
1.20 

proportion 

correct for 

recognition 

0.11 0.33 0.44 0.78 0.78  Antilog (BET) 7  Antilog (BET) 16 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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4) Individual and group best estimated thresholds for ethyl acetate, on 

orthonasal and retronasal pathways, over several sensory sessions 

performed by professional panel. 

 

a. Individual and group best estimated orthonasal thresholds for ethyl acetate on first 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

1 + + + + +  44.2 1.65  88.4 1.95 

2 + + + + +  44.2 1.65  44.2 1.65 

3 - + + + +  88.4 1.95  88.4 1.95 

4 - + + + +  88.4 1.95  176.8 2.25 

5 + + + + +  44.2 1.65  44.2 1.65 

6 - + + + +  88.4 1.95  1414.2 3.15 

7 + + + + +  44.2 1.65  44.2 1.65 

8 + + + + +  44.2 1.65  44.2 1.65 

9 + + + + +  44.2 1.65  88.4 1.95 

10 + + + + +  44.2 1.65  88.4 1.95 

proportion 

correct for 

detection 

0.70 1.00 1.00 1.00 1.00  
Mean 

log (BET) 
1.73  

Mean 

log (BET) 
1.94 

proportion 

correct for 

recognition 

0.40 0.80 0.90 0.90 0.90  Antilog (BET) 54  Antilog (BET) 87 

 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

b. Individual and group best estimated retronasal thresholds for ethyl acetate on first 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

1 + + + + +  44.2 1.65  88.4 1.95 

2 + + + + +  44.2 1.65  44.2 1.65 

3 + + + + +  44.2 1.65  44.2 1.65 

4 - + + + +  88.4 1.95  88.4 1.95 

5 + + + + +  44.2 1.65  44.2 1.65 

6 - + + + +  88.4 1.95  176.8 3.15 

7 + + + + +  44.2 1.65  44.2 1.65 

8 + + + + +  44.2 1.65  44.2 1.65 

9 + + + + +  44.2 1.65  44.2 1.65 

10 + + + + +  44.2 1.65  44.2 1.65 

proportion 

correct for 

detection 

0.80 1.00 1.00 1.00 1.00  
Mean 

log (BET) 
1.70  

Mean 

log (BET) 
1.82 

proportion 

correct for 

recognition 

0.70 0.90 1.00 1.00 1.00  Antilog (BET) 50  Antilog (BET) 65 

 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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c. Individual and group best estimated orthonasal thresholds for ethyl acetate on second 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 - + + + +  22.1 1.34  22.1 1.34 

2 + + + + +  11.0 1.04  11.0 1.04 

3 + + + + +  11.0 1.04  11.0 1.04 

4 - - - + +  88.4 1.95  88.4 1.95 

5 - - + + +  44.2 1.65  44.2 1.65 

6 - - + + +  44.2 1.65  44.2 1.65 

7 + - + + +  44.2 1.65  44.2 1.65 

8 - + + + +  22.1 1.34  22.1 1.34 

9 - + + + +  22.1 1.34  22.1 1.34 

10 - + + + +  22.1 1.34  22.1 1.34 

proportion 

correct for 

detection 

0.30 0.60 0.9. 1.00 1.00  
Mean 

log (BET) 
1.41  

Mean 

log (BET) 
1.41 

proportion 

correct for 

recognition 

0.30 0.60 0.90 1.00 1.00  Antilog (BET) 26  Antilog (BET) 26 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

d. Individual and group best estimated retronasal thresholds for ethyl acetate on second 

experiment (professional panel, N=10). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 - + + + +  22.1 1.34  44.2 1.65 

2 + + + + +  11.0 1.04  44.2 1.65 

3 + + + + +  11.0 1.04  11.0 1.04 

4 + - - + +  88.4 1.95  88.4 1.95 

5 + - + + +  44.2 1.65  44.2 1.65 

6 - - - + +  88.4 1.95  88.4 3.15 

7 - + + + +  22.1 1.34  22.1 1.34 

8 - - - + +  88.4 1.95  88.4 1.95 

9 - + + + +  22.1 1.34  22.1 1.34 

10 - + - + +  88.4 1.95  88.4 1.95 

proportion 

correct for 

detection 

0.40 0.60 0.60 1.00 1.00  
Mean 

log (BET) 
1.51  

Mean 

log (BET) 
1.69 

proportion 

correct for 

recognition 

0.30 0.40 0.60 1.00 1.00  Antilog (BET) 32  Antilog (BET) 49 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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5) Individual and group best estimated thresholds for volatile phenols (4-

ethylphenol; 4-ethylguaiacol), on orthonasal and retronasal pathways, over 

several sensory sessions performed by professional panel. 

 

a. Individual and group best estimated orthonasal thresholds for volatile phenols on first 

experiment (professional panel, N=9). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

31.25 62.5 125 250 500  BETa log (BET)  BETa log (BET) 

1 - - - + +  176.8 2.25  176.8 2.25 

2 - + + + +  44.2 1.65  88.4 1.95 

3 - - + + +  88.4 1.95  88.4 1.95 

4 + - + + +  88.4 1.95  707.1 2.85 

5 + + + + +  22.1 1.34  22.1 1.34 

6 + + + + +  22.1 1.34  44.2 1.65 

7 - + + + +  44.2 1.65  88.4 1.95 

8 + + + + +  22.1 1.34  44.2 1.65 

9 + + + + +  22.1 1.34  22.1 1.34 

proportion 

correct for 

detection 

0.56 0.67 0.89 1.00 1.00  
Mean 

log (BET) 
1.62  

Mean 

log (BET) 
1.83 

proportion 

correct for 

recognition 

0.22 0.44 0.78 0.89 0.89  Antilog (BET) 41  Antilog (BET) 68 

 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

b. Individual and group best estimated retronasal thresholds for volatile phenols on first 

experiment (professional panel, N=9). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

31.25 62.5 125 250 500  BETa log (BET)  BETa log (BET) 

1 - - - + +  176.8 2.25  176.8 2.25 

2 + + + + +  22.1 1.34  44.2 1.65 

3 + + + + +  22.1 1.34  22.1 1.34 

4 + - + + +  88.4 1.95  707.1 2.85 

5 + + + + +  22.1 1.34  22.1 1.34 

6 + + + + +  22.1 1.34  22.1 1.34 

7 + + + + +  22.1 1.34  22.1 1.34 

8 - + + + +  44.2 1.65  44.2 1.65 

9 + + + + +  22.1 1.34  22.1 1.34 

proportion 

correct for 

detection 

0.78 0.78 0.89 1.00 1.00  
Mean 

log (BET) 
1.52  

Mean 

log (BET) 
1.62 

proportion 

correct for 

recognition 

0.56 0.78 0.78 0.89 0.89  Antilog (BET) 33  Antilog (BET) 42 

 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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c. Individual and group best estimated orthonasal thresholds for volatile phenols on second 

experiment (professional panel, N=11). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

31.25 62.5 125 250 500  BETa log (BET)  BETa log (BET) 

1 + + + + +  22.1 1.34  22.1 1.34 

2 + + + + +  22.1 1.34  22.1 1.34 

3 + - + + +  88.4 1.95  88.4 1.95 

4 - + + + +  44.2 1.65  44.2 1.65 

5 + + + + +  22.1 1.34  44.2 1.65 

6 + - + + +  22.1 1.34  353.6 2.55 

7 + + + + +  22.1 1.34  22.1 1.34 

8 - + + + +  44.2 1.65  176.8 2.25 

9 + + + + +  22.1 1.34  44.2 1.65 

10 - + + + +  44.2 1.65  44.2 1.65 

11 - + + + +  44.2 1.65  44.2 1.65 

proportion 

correct for 

detection 

0.64 0.82 1.00 1.00 1.00  
Mean 

log (BET) 
1.50  

Mean 

log (BET) 
1.69 

proportion 

correct for 

recognition 

0.36 0.73 0.82 0.91 1.00  Antilog (BET) 31  Antilog (BET) 49 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

d. Individual and group best estimated retronasal thresholds for volatile phenols on second 

experiment (professional panel, N=11). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

31.25 62.5 125 250 500  BETa log (BET)  BETa log (BET) 

1 + + + + +  22.1 1.34  22.1 1.34 

2 - - + + +  88.4 1.95  88.4 1.95 

3 + - + + +  88.4 1.95  88.4 1.95 

4 - + + + +  44.2 1.65  44.2 1.65 

5 + + + + +  22.1 1.34  22.1 1.34 

6 + + + + +  22.1 1.34  22.1 1.34 

7 + + + + +  22.1 1.34  22.1 1.34 

8 - + + + +  44.2 1.65  44.2 1.65 

9 + + + + +  22.1 1.34  44.2 1.65 

10 + + + + +  22.1 1.34  88.4 1.95 

11 - + + + +  44.2 1.65  44.2 1.65 

proportion 

correct for 

detection 

0.64 0.82 1.00 1.00 1.00  
Mean 

log (BET) 
1.52  

Mean 

log (BET) 
1.60 

proportion 

correct for 

recognition 

0.36 0.73 1.00 1.00 1.00  Antilog (BET) 33  Antilog (BET) 40 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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6) Individual and group best estimated thresholds for acetaldehyde, on 

orthonasal and retronasal pathways, performed by student panel. 

 

a. Individual and group best estimated orthonasal thresholds for acetaldehyde on first 

experiment (student panel, N=13). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 - + + + +  22.1 1.34  22.1 1.34 

2 + + + + +  11.0 1.04  11.0 1.04 

3 + + + + +  11.0 1.04  353.6 2.55 

4 + + + + +  11.0 1.04  11.0 1.04 

5 - + + + +  22.1 1.34  353.6 2.55 

8 + + + + +  11.0 1.04  11.0 1.04 

9 + + + + +  11.0 1.04  353.6 2.55 

10 + + + + +  11.0 1.04  44.2 1.65 

11 + + + + +  11.0 1.04  353.6 2.55 

12 + + + + +  11.0 1.04  11.0 1.04 

13 + + + + +  11.0 1.04  11.0 1.04 

14 + + + + +  11.0 1.04  353.6 2.55 

15 + + + + +  11.0 1.04  353.6 2.55 

proportion 

correct for 

detection 

0.85 1.00 1.00 1.00 1.00 

 
Mean 

log (BET) 
1.08  

Mean 

log (BET) 
1.66 

proportion 

correct for 

recognition 

0.38 0.69 0.46 0.46 0.31 

 
Antilog 

(BET) 
12  Antilog (BET) 46 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate recognition of off-flavour. 

 

b. Individual and group best estimated retronasal thresholds for acetaldehyde on first 

experiment (student panel, N=13). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 - + + + +  22.1 1.34  22.1 1.34 

2 + + + + +  11.0 1.04  353.6 2.55 

3 + + + + +  11.0 1.04  353.6 2.55 

4 + + + + +  11.0 1.04  11.0 1.04 

5 - + + + +  22.1 1.34  353.6 2.55 

8 + + + + +  11.0 1.04  11.0 1.04 

9 - + + + +  22.1 1.34  353.6 2.55 

10 - + + + +  22.1 1.34  353.6 2.55 

11 - + + + +  22.1 1.34  353.6 2.55 

12 + + + + +  11.0 1.04  11.0 1.04 

13 + + + + +  11.0 1.04  11.0 1.04 

14 + + + + +  11.0 1.04  353.6 2.55 

15 + + + + +  11.0 1.04  353.6 2.55 

proportion 

correct for 

detection 

0.62 1.00 1.00 1.00 1.00  
Mean 

log (BET) 
1.15  

Mean 

log (BET) 
1.84 

proportion 

correct for 

recognition 

0.31 0.39 0.54 0.39 0.23  Antilog (BET) 14  Antilog (BET) 70 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate recognition of off-flavour. 
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7) Individual and group best estimated thresholds for ethyl acetate, on 

orthonasal and retronasal pathways, performed by student panel. 
 

a. Individual and group best estimated orthonasal thresholds for ethyl acetate on first 

experiment (student panel, N=13). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 + + + + +  11.0 1.04  22.1 1.34 

2 - + + + +  22.1 1.34  22.1 1.34 

3 + + + + +  11.0 1.04  11.0 1.04 

4 - + + + +  22.1 1.34  22.1 1.34 

5 + - - + +  88.4 1.95  88.4 1.95 

8 + + + + +  11.0 1.04  11.0 1.04 

9 + + + + +  11.0 1.04  11.0 1.04 

10 + + + + +  11.0 1.04  88.4 1.95 

11 + + + + +  11.0 1.04  353.6 2.55 

12 + + + + +  11.0 1.04  11.0 1.04 

13 + + + + +  11.0 1.04  11.0 1.04 

14 + + + + +  11.0 1.04  88.4 1.95 

15 + + + + +  11.0 1.04  88.4 1.95 

proportion 

correct for 

detection 

0.85 0.92 0.92 1.00 1.00 

 
Mean 

log (BET) 
1.14  

Mean 

log (BET) 
1.43 

proportion 

correct for 

recognition 

0.39 0.62 0.62 0.92 0.92 

 

Antilog (BET) 14  Antilog (BET) 27 

 aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate recognition of off-flavour. 

 

b. Individual and group best estimated retronasal thresholds for ethyl acetate on first 

experiment (student panel, N=13). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

15.625 31.25 62.5 125 250  BETa log (BET)  BETa log (BET) 

1 + + + + +  11.0 1.04  11.0 1.04 

2 - + + + +  22.1 1.34  22.1 1.34 

3 + + + + +  11.0 1.04  11.0 1.04 

4 - + + + +  22.1 1.34  22.1 1.34 

5 - + + + +  22.1 1.34  88.4 1.95 

8 + + + + +  11.0 1.04  88.4 1.95 

9 + + + + +  11.0 1.04  11.0 1.04 

10 + - - + +  88.4 1.95  88.4 1.95 

11 + + + + +  11.0 1.04  44.2 1.65 

12 + + + + +  11.0 1.04  11.0 1.04 

13 + + + + +  11.0 1.04  11.0 1.04 

14 + - + + +  44.2 1.65  88.4 1.95 

15 - + + + +  22.1 1.34  353.6 2.55 

proportion 

correct for 

detection 

0.70 0.85 0.92 1.00 1.00 

 
Mean 

log (BET) 
1.22  

Mean 

log (BET) 
1.46 

proportion 

correct for 

recognition 

0.38 0.54 0.62 0.92 0.85 

 

Antilog (BET) 17  Antilog (BET) 29 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate recognition of off-flavour. 
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8) Individual and group best estimated thresholds for hexanol, on orthonasal 

and retronasal pathways, performed by student panel. 
 

a. Individual and group best estimated orthonasal thresholds for hexanol on first experiment 

(student panel, N=13). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

1 - - - + +  88.4 1.95  1414.2 3.15 

2 + + + + +  44.2 1.65  1414.2 3.15 

3 - + + + +  88.4 1.95  88.4 1.95 

4 + + + + +  44.2 1.65  44.2 1.65 

5 - + + + +  88.4 1.95  1414.2 3.15 

10 - - - - -  1414.2 3.15  1414.2 3.15 

11 + + + + +  44.2 1.65  1414.2 3.15 

12 + + + + +  44.2 1.65  44.2 1.65 

13 - + + + +  88.4 1.95  1414.2 3.15 

14 + + + + +  44.2 1.65  707.1 2.85 

15 + + + + +  44.2 1.65  353.6 2.55 

proportion 
correct for 
detection 

0.55 0.82 0.82 0.91 0.91 
 Mean 

log (BET) 
1.86  

Mean 

log (BET) 
2.60 

proportion 
correct for 
recognition 

0.18 0.27 0.27 0.36 0.45 
 

Antilog (BET) 72  Antilog (BET) 402 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 
recognition of off-flavour. 

 
 

b. Individual and group best estimated retronasal thresholds for hexanol on first experiment 

(student panel, N=13). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

1 - + - + +  353.6 2.55  353.6 2.55 

2 - + - + +  353.6 2.55  353.6 2.55 

3 - + + + +  88.4 1.95  1414.2 3.15 

4 + + + + +  44.2 1.65  44.2 1.65 

5 - - - + +  353.6 2.55  353.6 2.55 

10 - - - - -  1414.2 3.15  1414.2 3.15 

11 + + + + +  44.2 1.65  1414.2 3.15 

12 + + + + +  44.2 1.65  44.2 1.65 

13 - + + + +  88.4 1.95  1414.2 3.15 

14 + + + + +  44.2 1.65  707.1 2.85 

15 + + + + +  44.2 1.65  353.6 2.55 

proportion 

correct for 

detection 

0.45 0.82 0.64 0.91 0.91 

 
Mean 

log (BET) 
2.03  

Mean 

log (BET) 
2.57 

proportion 

correct for 

recognition 

0.18 0.27 0.18 0.55 0.64 

 

Antilog (BET) 107  Antilog (BET) 370 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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9) Individual and group best estimated thresholds for acetic acid, on orthonasal 

and retronasal pathways, performed by student panel. 
 

a. Individual and group best estimated orthonasal thresholds for acetic acid on first 

experiment (student panel, N=12). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

125 250 500 1000 2000  BETa log (BET)  BETa log (BET) 

1 + - - + +  707.1 2.85  707.1 2.85 

3 - + - + +  707.1 2.85  707.1 2.85 

4 + + - + +  88.4 1.95  88.4 1.95 

7 + + + - +  88.4 1.95  2828.4 3.45 

8 - + + - +  176.8 2.25  1414.2 3.15 

9 - + + + +  176.8 2.25  176.8 2.25 

10 - - + - -  2828.4 3.45  2828.4 3.45 

11 - + + - -  176.8 2.25  2828.4 3.45 

12 - - - + +  707.1 2.85  707.1 2.85 

13 - - - + +  707.1 2.85  707.1 2.85 

14 + - - + +  707.1 2.85  2828.4 3.45 

15 + + + + +  88.4 1.95  88.4 1.95 

proportion 

correct for 

detection 

0.42 0.58 0.50 0.67 0.83 

 
Mean 

log (BET) 
2.48  

Mean 

log (BET) 
2.82 

proportion 

correct for 

recognition 

0.25 0.33 0.17 0.50 0.58 

 

Antilog (BET) 302  Antilog (BET) 658 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

b. Individual and group best estimated retronasal thresholds for acetic acid on first experiment 

(student panel, N=12). 

Subject 
Concentration (mg/L)  Detection threshold  Recognition threshold 

125 250 500 1000 2000  BETa log (BET)  BETa log (BET) 

1 - + - + +  707.1 2.85  707.1 2.85 

3 - + - + +  707.1 2.85  707.1 2.85 

4 - - - + +  707.1 2.85  707.1 2.85 

7 + + + - +  88.4 1.95  2828.4 3.45 

8 - + + + +  176.8 2.25  2828.4 3.45 

9 - - + - -  2828.4 3.45  2828.4 3.45 

10 - - + - +  2828.4 3.45  2828.4 3.45 

11 - - + + +  353.5 2.55  1414.2 3.15 

12 - - - + +  707.1 2.85  707.1 2.85 

13 - - - + +  707.1 2.85  707.1 2.85 

14 + - - + +  707.1 2.85  2828.4 3.45 

15 + + + + +  88.4 1.95  88.4 1.95 

proportion 

correct for 

detection 

0.25 0.42 0.50 0.75 0.92 

 
Mean 

log (BET) 
2.68  

Mean 

log (BET) 
3.02 

proportion 

correct for 

recognition 

0.08 0.17 0.08 0.50 0.58 

 

Antilog (BET) 481  Antilog (BET) 1035 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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10) Individual and group best estimated thresholds for hydrogen sulfide, on 

orthonasal and retronasal pathways, performed by student panel. 
 

a. Individual and group best estimated orthonasal thresholds for hydrogen sulfide on first 

experiment (student panel, N=8). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

2 - + + + +  88.4 1.95  1414.2 3.15 

3 - + + + +  88.4 1.95  88.4 1.95 

7 - + + + +  88.4 1.95  1414.2 3.15 

8 + + + + +  44.2 1.65  44.2 1.65 

9 + + + + +  44.2 1.65  44.2 1.65 

11 - + - - +  707.1 2.85  1414.2 3.15 

13 - + + + +  88.4 1.95  353.6 2.55 

14 + + - + +  44.2 1.65  1414.2 3.15 

proportion 

correct for 

detection 

0.38 1.00 0.75 0.88 1.00 

 
Mean 

log (BET) 
1.92  

Mean 

log (BET) 
2.46 

proportion 

correct for 

recognition 

0.26 0.38 0.38 0.50 0.50 

 

Antilog (BET) 83  Antilog (BET) 286 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 
recognition of off-flavour. 

 
 

b. Individual and group best estimated retronasal thresholds for hydrogen sulfide on first 

experiment (student panel, N=8). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

62.5 125 250 500 1000  BETa log (BET)  BETa log (BET) 

2 - + - - -  1414.2 3.15  1414.2 3.15 

3 - + + + +  88.4 1.95  88.4 1.95 

7 + + + + +  44.2 1.65  1414.2 3.15 

8 + + + + +  44.2 1.65  1414.2 3.15 

9 + + + - +  44.2 1.65  44.2 1.65 

11 + + - - +  44.2 1.65  1414.2 3.15 

13 - + + + +  88.4 1.95  353.6 2.55 

14 + + - - -  44.2 1.65  1414.2 3.15 

proportion 

correct for 

detection 

0.63 1.00 0.63 0.50 0.75 

 
Mean 

log (BET) 
1.86  

Mean 

log (BET) 
2.66 

proportion 

correct for 

recognition 

0.13 0.25 0.25 0.25 0.38 

 

Antilog (BET) 73  Antilog (BET) 461 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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11) Individual and group best estimated thresholds for volatile phenols (4-

ethylphenol; 4-ethylguaiacol), on orthonasal and retronasal pathways, 

performed by student panel. 
 

a. Individual and group best estimated orthonasal thresholds for hydrogen sulfide on first 

experiment (student panel, N=7). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

31.25 62.5 125 250 500  BETa log (BET)  BETa log (BET) 

2 + + + + +  22.1 1.34  88.4 1.95 

3 + + + + +  22.1 1.34  22.1 1.34 

4 + + + + +  22.1 1.34  22.1 1.34 

5 - + + + +  44.2 1.65  44.2 1.65 

6 + + + + +  22.1 1.34  22.1 1.34 

8 + + + + +  22.1 1.34  22.1 1.34 

17 + - + + -  88.4 1.95  88.4 1.95 

proportion 

correct for 

detection 

0.86 0.86 1.00 1.00 0.86 

 
Mean 

log (BET) 
1.46  

Mean 

log (BET) 
1.54 

proportion 

correct for 

recognition 

0.86 0.71 1.00 1.00 0.86 

 

Antilog (BET) 29  Antilog (BET) 35 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 

 

b. Individual and group best estimated orthonasal thresholds for hydrogen sulfide on first 

experiment (student panel, N=7). 

Subject 
Concentration (μg/L)  Detection threshold  Recognition threshold 

31.25 62.5 125 250 500  BETa log (BET)  BETa log (BET) 

2 + - + + +  88.4 1.95  88.4 1.95 

3 + + + + +  22.1 1.34  22.1 1.34 

4 + + + + +  22.1 1.34  22.1 1.34 

5 + + + + +  22.1 1.34  22.1 1.34 

6 + + + + +  22.1 1.34  22.1 1.34 

8 + + + + +  22.1 1.34  22.1 1.34 

17 + - + + -  88.4 1.95  88.4 1.95 

proportion 

correct for 

detection 

1.00 0.71 1.00 1.00 0.86 

 
Mean 

log (BET) 
1.49  

Mean 

log (BET) 
1.49 

proportion 

correct for 

recognition 

1.00 0.71 1.00 1.00 0.86 

 

Antilog (BET) 31  Antilog (BET) 31 

aBET, best estimated threshold; correct choice indicated by + and incorrect by -; highlighted grey cells indicate 

recognition of off-flavour. 
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12) Taster characterization according sensitivity classes (H-high; L-low) for each molecule on orthonasal and retronasal pathways, 

regarding detection and recognition threshold results (student panel). 

 

 

 

 

Subject 

Acetaldehyde Acetic acid Ethyl acetate Hexanol Hydrogen sulfide Volatile phenols 

Detection Recognition Detection Recognition Detection Recognition Detection Recognition Detection Recognition Detection Recognition 

Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro 

1 L L H H L L L H H H H H L L L H - - - - - - - - 

2 H H H L - - - - L L H H H L L H L L L L H L L L 

3 H H L L L L L H H H H H L H H L L L H H H H H H 

4 H H H H H L H H L L H H H H H H - - - - H H H H 

5 L L L L - - - - L L L L L L L H - - - - L H L H 

6 - - - - - - - - - - - - - - - - - - - - H H H H 

7 - - - - H H L L - - - - - - - - L H L L - - - - 

8 H H H H H H L L H H H L - - - - H H H L H H H H 

9 H L L L H L H L H H H H - - - - H H H H - - - - 

10 H L H L L L L L H L L L L L L L - - - - - - - - 

11 H L L L H H L L H H L L H H L L L H L L - - - - 

12 H H H H L L L H H H H H H H H H - - - - - - - - 

13 H H H H L L L H H H H H L H L L L L L H - - - - 

14 H H L L L L L L H L L L H H L L H H L L - - - - 

15 H H L L H H H H H L L L H H H H - - - - L L L L 
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13) Taster characterization according sensitivity classes (H-high; L-low) for each molecule on orthonasal and retronasal pathways, 

regarding suprathreshold intensity concentration (student panel). 

 

Taster 
Acetaldehyde Acetic acid Ethyl acetate Hexanol Hydrogen sulfide Volatile phenols 

Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro Ortho Retro 

1 L H L L L H L L - - - - 

2 L H - - L H L H L H L H 

3 H H H H H H H L H H H L 

4 - - L H - - L L - - L H 

5 L L - - L L H H - - L L 

6 L L - - L L - - - - H H 

7 H L H L H H - - L L - - 

8 H H L L H H - - L L H L 

9 H H H L H L - - H H - - 

10 L H L L L L L L - - - - 

11 H H H H H H H H H H - - 

12 L H H H L L L H - - - - 

13 L L L L L L H L L H - - 

14 L L L H L L L L L H - - 

15 H H H H H H H H - - H H 


