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ABSTRACT 

 

The sustainability of evergreen oak woodlands (montado) in Portugal is currently 

threatened in large areas, mainly due to limited tree recruitment constrains and soil 

degradation. It is therefore urgent to develop sustainable management options which 

enhance montado productivity, ensuring their long-term viability and all ecosystem 

services. The present study aimed specifically to evaluate trends in soil quality 

changes, associated with management practices currently followed in montado. 

Different montado areas, corresponding to different soil types and land use histories, 

with different management options, including sowed and natural pasture systems, 

and different stocking rates and grazer species, were considered; also, the specific 

influence of the tree cover on the soil characteristics was investigated. The soil 

quality of study areas was assessed by evaluating physical, chemical and 

biochemical soil properties. Carbon and the main nutrient fluxes were also 

evaluated, assessing GHG emissions and nutrient leaching. Results enabled the 

assessment of the benefits associated with the establishment of improved pastures, 

namely in soil hydrological conditions, nutrient availability and soil organic matter 

status, which was particularly enhanced in areas under the tree cover influence. 

Nevertheless, factors associated with the soil type (texture) and livestock 

management (stocking rate) might have strong influence on the extent and nature of 

such benefits. Pasture management influence over soil carbon and nutrient fluxes 

were found negligible, despite disturbance may occur. Scattered trees, in the 

montado, promote the creation of islands of improved physical conditions and soil 

fertility, where the organic carbon accumulation is strongly enhanced. Trees 

undoubtedly improve soil quality, enhance the soil resistance to face degradation 

threats, and contribute to carbon sequestration. This potential should be taken into 

account for policy and management decisions, at both local and regional scales. 

 

Keywords: nitrogen; organic C; pasture systems; Quercus sp.; soil fertility. 
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RESUMO 

 

A sustentabilidade dos montados está sob ameaça em vastas áreas do País, 

principalmente devido a restrições na regeneração das árvores e a condições de 

degradação do solo. Torna-se, assim, urgente desenvolver opções de gestão 

sustentáveis, que permitam reforçar a produtividade, garantir a viabilidade a longo 

prazo e assegurar os serviços do ecossistema do montado. O presente estudo foi 

desenvolvido com o objectivo de identificar os padrões de alteração da qualidade 

dos solos, decorrentes de práticas de gestão do montado actualmente em uso em 

Portugal. Foram consideradas diferentes áreas, com diferentes tipos de solo, 

historiais de uso e opções de gestão, incluíndo pastagens semeadas e naturais, 

diferentes animais e intensidades de pastoreio; investigou-se ainda a influência 

específica do coberto arbóreo. A qualidade dos solos foi avaliada através da 

determinação de propriedades físicas, químicas e bioquímicas. Fluxos de carbono 

e nutrientes foram também avaliados, através das emissões de GHG e dos 

nutrientes lixiviados. Os resultados permitiram observar benefícios associados à 

instalação de pastagens melhoradas no que respeita a caracterisiticas hidrológicas, 

à disponibilidade de nutrientes e ao teor de matéria orgânica do solo, que foram 

particularmente acrescidos nas áreas sob a influência das árvores. Porém, factores 

associados ao tipo de solo (textura) e à gestão do pastoreio (carga animal) 

influenciaram fortemente a extensão e natureza desses efeitos. Os efeitos da gestão 

da pastagem sob os fluxos de carbono e nutrientes do solo foram insignificantes, 

embora perturbações possam ocorrer. As árvores conduzem à criação de zonas 

onde as condições físicas e a fertilidade do solo são fortemente melhoradas, 

relativamente àquelas fora da sua influência. As árvores contribuem, assim, para 

melhorar a qualidade do solo, aumentar a resistência aos riscos de degradação e 

reforçar o sequestro de carbono. Tal potencial deve ser considerado nas decisões 

políticas e de gestão, tanto a nível local como regional. 

 

Palavras-chave: azoto; carbono orgânico; fertilidade do solo; pastagens; Quercus 

sp.  
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RESUMO ALARGADO 

 

As áreas de montado são parte importante do património social, económico e 

ambiental em Portugal. O montado é o sistema agroflorestal dominante na 

Península Ibérica (e o maior cluster agroflorestal da União europeia), ocupando 

mais de 3 milhões de hectares. Este sistema consiste na combinação de baixa 

densidade de árvores, tipicamente o sobreiro (Quercus suber L.) e a azinheira (Q. 

ilex L.), com culturas agrícolas, pastagens permanentes ou espécies arbustivas no 

sob coberto. Porém, a sustentabilidade destes sistemas multifuncionais encontra-

se ameaçada, mormente no que respeita à degradação do solo e às dificuldades 

em assegurar uma eficiente regeneração do coberto arbóreo. Estas ameaças 

advêm principalmente de um longo historial de modificações do sistema de uso e 

poderão ser consideravelmente agravadas pelas alterações climáticas, previstas e 

já patentes na região Mediterrânica. Neste contexto, os modelos de gestão 

constituem ferramentas importantes para a prevenção e reversão dos eventuais 

processos de degradação dos sistemas de montado. 

 

O principal objectivo do presente estudo consistiu em avaliar os actuais sistemas de 

gestão do montado quanto à qualidade do solo, bem como a sua potencial influência 

sobre os serviços mais relevantes dos respectivos ecossistemas. Pretende-se 

contribuir para uma melhor compreensão das alterações das funções destes solos, 

face às recentes modificações de gestão, o que permitirá estabelecer algumas 

bases de recomendação visando a sustentabilidade futura do sistema montado. 

Considerando que todos os factores associados à gestão, assim como as 

características inerentes ao ambiente físico, contribuem para a resposta do sistema 

às mudanças de gestão, foram desenvolvidos quatro estudos, incluíndo cinco áreas 

de montado representativas em Portugal. 

 

No primeiro estudo, na Herdade da Machoqueira do Grou, compararam-se 

indicadores da qualidade do solo num montado de sobro com elevada densidade 

(mais de 100 árvores por hectare), com sistemas de gestão do subcoberto 
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contrastantes: o primeiro com coberto arbustivo e sem pastoreio e o segundo com 

pastoreio extensivo de bovinos (0,1 vacas ha-1 ano-1), onde havia sido semeada 

uma pastagem melhorada (com elevada proporção de leguminosas) há cinco anos. 

Os resultados mostraram o potencial destas pastagens na melhoria da fertilidade 

do solo, com aumento da disponibilidade de azoto (N) e fósforo (P), mas não 

confirmaram o seu efeitoem potenciar o sequestro de carbono (C) no solo, a curto 

prazo. Esta diferença associa-se aos efeitos da remoção das espécies arbustivas, 

aquando da instalação da pastagem e da subsequente gestão do pastoreio. 

Concluiu-se que o coberto arbustivo salvaguarda o C orgânico do solo e potencia o 

renovo da cobertura arbórea, o mesmo não acontecendo com a gerstão associada 

à pastagem melhorada. 

 

O segundo estudo visou a comparação dos efeitos, a longo prazo, da gestão de 

montados com pastagens melhoradas e naturais, sobre as características físicas, 

químicas e bioquímicas do solo. Consideraram-se duas áreas com solos de 

diferente classe textural e zonas sob e fora da influência das copas das árvores. Na 

Herdade dos Esquerdos, com solos de textura franco-arenosa, estudou-se uma 

pastagem melhorada com cerca de 35 anos, pastoreada por ovelhas (5 a 8 animais 

ha-1 ano-1; 0,5 a 0,8 LU ha-1 ano-1), comparada com uma pastagem natural 

adjacente, sujeita a pastoreio extensivo (< 1 ovelha ha-1 ano-1) e apresentando 

algum grau de cobertura por espécies arbustivas. Na Herdade do Olival, onde os 

solos apresentam textura franca a franco-limosa, consideraram-se igualmente uma 

pastagem melhorada com 16 anos e uma pastagem natural, ambas usadas para 

pastoreio de gado bovino ao longo de todo o ano, com uma carga animal de cerca 

de 0,7 vacas por hectare (0.6 LU ha-1 ano-1). Os resultados revelaram o efeito 

positivo das pastagens semeadas, relativamente às naturais, sobre o teor de C 

orgânico e a fertilidade do solo, sendo os efeitos ampliados nas áreas sob a 

influência das árvores. Porém, foram evidenciados os efeitos negativos da elevada 

carga animal sobre as características físicas do solo, particularmente no caso de 

textura franca a franco-limosa. Decorrendo do intenso pisoteio animal, o estado de 

compactação do solo determinou a redução da porosidade e da condutividade 
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hidráulica, possíveis constrangimentos à penetração das raízes e ao arejamento, 

sem que se verificasse acréscimo da água útil do solo. Em tal caso, a instalação de 

pastagem melhorada não foi suficiente para contrariar os efeitos negativos da 

intensificação do pastoreio. 

 

Em duas áreas de montado com historial de gestão contrastante e em que ocorrem 

solos com diferentes características -Tapada Real de Vila Viçosa e Herdade da 

Mitra - desenvolveu-se um terceiro estudo com o intuito de tipificar a variação 

espacial das características do solo sob a influência de árvores isoladas, 

desenvolvendo ainda um sistema de quantificação do contributo de cada elemento 

arbóreo para a acumulação de C orgânico no solo até 20 cm de profundidade. 

Amostraram-se os solos em torno de árvores representativas, considerando 

diferentes distâncias desde o tronco da árvore e relativas à projecção vertical da 

copa, desde 0,33 e até 2,0 vezes o raio (R) desta. Em ambos os locais, os resultados 

confirmaram o efeito positivo das árvores na acumulação de matéria orgânica e de 

nutrientes no solo numa área considerável que vai além da projecção vertical da 

copa. A variação da acumulação de carbono orgânico no solo, em função da 

distância ao tronco da árvore, foi explicada por um modelo exponencial negativo, 

para qualquer distância (r) dada por 2R ≥ r> 0. Quantificada a contribuição da árvore 

isolada para a acumulação de C orgânico no solo, concluiu-se que a sua influência 

ao nível da paisagem pode atingir cerca de 3 kg C m-2, considerando uma média de 

50 árvores por hectare. 

 

Um estudo sobre o efeito do sistema de gestão da pastagem nos fluxos de C e de 

nutrientes do solo, foi desenvolvido num sistema lisimétrico em que se utilizaram 

blocos não perturbados de solo, provenientes da Herdade dos Esquerdos e da 

Herdade do Olival. Na primeira foram consideradas duas pastagens melhoradas, 

uma com 37 anos e outra da mesma idade, mas que fora recentemente resemeada 

(sementeira directa), bem como uma pastagem natural. Na segunda consideraram-

se solos de uma pastagem melhorada (18 anos) e outra natural, e ainda solos de 

uma área com coberto arbustivo espontâneo, onde o pastoreio é ocasional. Em 
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qualquer dos casos, apenas se estudaram as áreas fora da influência das árvores. 

Durante 15 meses, foram periodicamente determinados os fluxos dos principais 

gases de estufa - metano (CH4), óxido nitroso (N2O) e dióxido de carbono (CO2) -, 

sendo também consideradas as perdas de C orgânico e de nutrientes do solo por 

lixiviação (C orgânico dissolvido, N-NO3
-, N-NH4

+, N total, P, K, Ca, Mg e Na), bem 

como a extracção dos principais nutrientes (N, P, K, Ca, Mg e Mn) pela biomassa 

herbácea. Os resultados foram maioritariamente influenciados pelas condições de 

humidade e temperatura, mas também pela textura e porosidade do solo. Os solos 

de textura média apresentaram maiores fluxos e emissões acumuladas de CH4, mas 

não significativamente diferentes dos de textura mais grosseira. Este efeito resultou 

em maiores transferências de C para a atmosfera, por unidade inicial de C orgânico 

no solo, comparativamente às estimadas para os solos de textura mais grosseira. 

As pastagens melhoradas sem perturbação mostraram emissões acumuladas de 

CO2 mais elevadas, associadas aos teores mais elevados de matéria orgânica do 

solo. Para além deste efeito, observaram-se ainda picos de emissão de N2O com 

as primeiras chuvas, na pastagem melhorada mais antiga, que resultaram num 

maior valor potencial de aquecimento global (GWP). As mais elevadas quantidades 

de P lixiviado ocorreram nos solos de pastagem melhorada, realçando a 

necessidade de rever as práticas de aplicação contínua de fertilizantes fosfatados 

nestas áreas. A renovação da pastagem melhorada teve como consequências o 

aumento da produtividade das herbáceas, da actividade microbiana do solo, e 

também da lixiviação de C orgânico e NO3
-, o que terá resultou numa redução das 

perdas gasosoas de N2O e CO2, promovendo assim o reequilíbrio dos fluxos de N 

e C do solo. 

 

As pastagens melhoradas surgem como alternativa viável para o aumento da 

produtividade, com efeitos benéficos também sobre os teores de matéria orgânica 

e a fertilidade dos solos. Contudo, este potencial poderá ser grandemente 

modificado por outras variáveis, nomeadamente o tipo de solo e a gestão do 

pastoreio. Torna-se também evidente o grande contributo das árvores para a 

melhoria das funções do solo, sendo que o seu potencial para sequestrar C ao nível 
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da paisagem poderá exceder em muito o das práticas actualmente subsidiadas. 

Uma gestão sustentável dos sistemas de montado deverá ser sempre adequada às 

condições locais, havendo necessidade de políticas que promovam a acumulação 

de C, previnam a degradação do solo e garantam a regeneração do coberto 

arbóreo. Para efeitos de monitorização, o teor de C orgânico e a massa volúmica 

aparente destinguem-se como os mais robustos indicadores de alterações na 

qualidade dos solos de montado, associadas a mudanças na gestão. Tendo em 

conta os longos tempos de resposta dos parâmetros de qualidade do solo face às 

modificações de gestão, estudos de longo prazo serão fundamentais para clarificar 

estes padrões e fundamentar decisões futuras. O estabelecimento de parcelas de 

controlo e a avaliação da rentabilidade económica associada às diferentes opções 

de gestão serão fundamentais para uma visão mais detalhada sobre o ponto de 

vista da sustentabilidade dos sistemas de montado.
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INTRODUCTION 

 

Montado, a valuable agroforestry system 

Agroforestry systems, which combine agriculture and forest productions in the same 

land unit, are receiving a renewed interest for their socioeconomic value and 

potential environmental services (Alavalapati et al., 2004; Rigueiro-Rodríguez et al., 

2009). Indeed, these systems have been suggested among the most promising 

options for carbon (C) sequestration on agricultural lands (Kumar and Nair, 2011; 

Lorenz and Lal, 2014), and can help landowners and society to address many other 

issues on rural areas, such as economic diversification (Campos et al., 2001), 

biodiversity and water quality (Schoeneberger, 2009; Torralba et al., 2016), and soil 

erosion control (Cardinael et al., 2015). 

Evergreen oak woodlands, called montado in Portugal and dehesa in Spain, are 

ancient agroforestry systems, traditional of the Iberian Peninsula, that are formed by 

the combination of scattered oak trees - mainly Quercus suber L. and Q. rotundifolia 

Lam. - with variable understorey land use systems, such as agricultural crops, 

pastures and/or shrubs (Joffre et al., 1999; Moreno and Pulido, 2009; Pinto-Correia 

et al., 2013). Their extend has been estimated to be above 3 million hectares 

(Eichhorn et al., 2006), coinciding with one of the largest European agroforestry 

cluster areas (den Herder et al., 2017). 

In Portugal, according to the last forest inventories, cork and holm oak trees are 

mainly found in low tree density stands that account for approximately 1.07 million 

hectares, which is about 12% of the country continental area and represents about 

34% of the national forest area (ICNF, 2013; Pinto-Correia et al., 2013). 

The montado values have been widely recognized, not only for the combination of 

agriculture and forest productions, but also for their vital environmental functions, 

and crucial social and cultural services (Campos et al., 2001; Moreno and Pulido, 

2009). Although they have been acknowledged as important habitats requiring 

conservation, by the NATURA 2000 network (Habitats Directive, 1992), large 

montado areas are currently facing multiple sustainability threats, mainly due to soil 
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degradation (and desertification) and lack of tree natural regeneration (Belo et al., 

2014; Campos et al., 2008). 

 

Current threats to montado sustainability 

Current and foreseen climate changes in the Mediterranean region, more precisely 

higher temperature and increasing drought frequency (IPCC, 2014a), may strongly 

increase the montado vulnerability. A decrease of productivity (Costa et al., 2016; 

Jongen et al., 2011), enhancement of tree decline (Duque-Lazo et al., 2018), soil 

organic matter losses (Lozano-García et al., 2017), nutrient cycling modifications 

(Delgado-Baquerizo et al., 2014), and changes in the system functioning (e.g. 

Caldeira et al., 2015; Correia et al., 2012; Costa-e-Silva et al., 2015) are the main 

issues reported in recent studies. Also, most montado areas occur over degraded 

soils, presenting low fertility and low organic matter status (Pulido-Fernández et al., 

2013; Ruiz-Sinoga et al., 2012; Rodeghiero et al., 2011), which limit both productivity 

and soil resistance to degradation. Additionally, large areas present generalized tree 

decline (Costa et al., 2009; Kim et al., 2017) and absence of tree recruitment 

(Plieninger et al., 2003; Pulido and Díaz, 2005), which seriously compromises the 

montado long-term viability. 

Throughout their long existence, montados have been shaped by human activities, 

and social and economic factors have driven most of their management history 

(Bugalho et al., 2011; Joffre et al., 1999). Although several management patterns 

are being linked to the current state of threatened sustainability, the key for montado 

future viability may also be based on proper management practices (Costa et al., 

2014; Moreno and Pulido, 2009). 

In Portugal, until the first half of the XX century, montado areas were mostly used 

for cereal crops rotations, with extensive grazing by pig and sheep herds during 

fallow. A period of selective intensification and abandonment, according to the site 

productivity and mechanization potential, has followed, mainly as a consequence of 

agriculture technological developments (e.g. mechanization, chemical fertilization), 

and the EU common agricultural policies applications (e.g. set aside, synergetic 

areas) (Belo et al., 2014). 
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Currently, montado management is mostly driven by subsidy policies, as stake 

holders are often constrained to choose between system intensification or its 

abandonment (Belo et al., 2014; Plieninger and Wilbrand, 2001). For instance, 

grazing intensification, and cattle production in particular, became an appealing 

option (IFAP, 2016). In fact, a considerable increase of the permanent pasture area 

and livestock units occurred in the last decades (GPP, 2018; INE, 2018, 2016). 

However, the increasing grazing pressure may aggravate tree regeneration 

constrains (López-Sánchez et al., 2014) and soil degradation risks (Eldridge et al., 

2017; Ordóñez et al., 2018; Pulido et al., 2018). Hence, a deeper understanding on 

the interactions between grazers and the complexity of the montado system is 

needed since only limited studies attend such issues. 

Sowing selected mixtures of herbaceous species with high legume proportions 

(called improved pastures), has been considered a crucial strategy for sustainable 

livestock production (Lüscher et al., 2014). In Portugal, improved pasture sowing in 

montado areas is being recommended, aiming to address both the increasing 

livestock nutritional requirements, and the reversing of soil degradation patterns 

(Belo et al., 2014; Crespo, 2006). The sowed pasture area showed a notorious 

increase in the last decades (INE, 2016), which was associated with the Portuguese 

Carbon Fund financial support for improved pasture establishment, accounting for 

their potential for carbon sequestration enhancement (APA, 2017; Terraprima, 

2018a). Although improved pasture establishment and management has been found 

to boost productivity (Aguiar et al., 2011; Franca et al., Hernández-Estebán et al., 

2018;), increase atmospheric N2 fixation (Carranca et al., 2015), and enhance soil 

organic C accumulation and upgrade the soil nutrient status and nitrogen availability 

(Gómez-Rey et al., 2012; Hernández-Estebán et al., 2018; Rodrigues et al., 2015), 

their long-term effects on the montado system functioning and sustainability is still 

poorly understood.  

Some Portuguese montados areas are managed with emphasis on the tree 

productivity, mostly where the main goal is the production of cork of high quality 

(Costa and Oliveira, 2015). In such a case, if grazing intensity is low or even absent, 

the natural understorey vegetation tends to be dominated by naturally occurring 
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shrubs in a similar way to abandoned montado areas that are often invaded. Since 

shrub encroachment may reduce nutrient and water availability (Caldeira et al., 

2015), and excessive biomass accumulation can increase the wild fire risk, the 

Portuguese government guidelines indicate that the understorey vegetation in cork 

oak stands should not exceed one-meter height (IFAP, 2017). Although a financial 

incentive is provided by the Portuguese government, for practices that ensure 

minimum soil disturbance (Terraprima, 2018b), the most common shrub growth 

control is practiced by mechanical soil perturbation (typically by harrowing). 

Several recent studies have linked the shrub cover to important montado ecosystem 

services, such as biodiversity conservation (Moreno and Pulido, 2009; Tárrega et 

al., 2009), carbon sequestration (Correia et al., 2014), soil quality enhancement 

(Gómez-Rey et al., 2013; Moreno and Obrador, 2007; Simões et al., 2009) and tree 

recruitment facilitation (Dias et al., 2016; Simões et al., 2016). In this context, the 

effects of shrub control, following land use intensification (like improved pasture 

installation or grazing intensification), is a topic deserving further investigation, 

regarding montado ecosystem functions and sustainability. 

 

Montado ecossystem services 

As for other agroforestry systems (e.g. Baah-Acheamfour et al., 2014; Belsky et al., 

1989; Galicia and García-Oliva, 2008; Harvey et al., 2011; Wilson and Lemon, 2004), 

many montado valuable services are acknowledged as oak tree-related, either by 

their direct productions (e.g. cork, acorns, firewood) or their indirect benefits for the 

system functioning (Dahlgren et al., 2003; Gallardo, 2003; Moreno and Obrador, 

2007). In savannah-like ecosystems, scattered trees act as key ecosystem 

components, as they capture, distribute and facilitate cycling of nutrients and water 

(Rhoades, 1997). As a result, beneath the trees it is common to observe improved 

soil fertility (Gallardo, 2003), organic matter accumulation (Simón et al., 2013), 

physical conditions improvement (Dubbert et al., 2014) and pasture composition 

quality (Cubera et al., 2009); however, the pasture productivity may be strongly 

variable (Cubera et al., 2009; Dubbert et al., 2014; López-Carrasco et al., 2015). 
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Notwithstanding, tree presence in the montado is being mostly overlooked by current 

management practices and policies, even though there are clear evidences of a 

generalized high tree and stand age (Plieninger et al., 2003), lack of natural 

regeneration (Heydari et al., 2017; Kim et al., 2017) and alarming numbers of tree 

decline (Costa et al., 2009; Duque-Lazo et al., 2018). Hence, to ensure oak 

woodlands future viability, information on the tree contribution for ecosystem 

functions and related services must be clarified, in order to identify adequate 

protective measures at both local and landscape levels. 

Increasing anthropogenic greenhouse gases (GHG) emissions to the atmosphere - 

mainly carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - have been 

recognized as the main drivers of global climate changes, so efforts are being made 

globally to counterbalance and overcome their effects (IPCC, 2014b). Soil is not only 

the largest terrestrial sink of carbon and nitrogen (1500 Pg of C and 136 Pg of N, in 

the upper 1 m; Batjes, 1996), but is also responsible for maintaining and regulating 

all biogeochemical cycles. Therefore, soil is both a vulnerable and potentially 

valuable component, regarding climate change mitigation and adaptation strategies. 

For that reason, much attention is being given to the soil potential to sequester C 

(e.g. Lal et al., 2015; Minasny et al., 2017), for which silvopastural systems were 

identified as one of the most promising land management option (Kim et al., 2016). 

It should be emphasized, that the potential to sequester C in soil by management or 

land use changes, is mostly associated with soil organic C accumulation, that is soil 

organic matter. Given the complex and dynamic nature of the soil organic matter 

(Janzen, 2006; Lehmann and Kleber, 2015), the effects of soil C sequestration may 

not be strictly evaluated as a simple transfer of C from the atmosphere to the soil. 

Indeed, several constrains should be taken into account when evaluating the 

potential of a specific management practice for soil C sequestration enhancement: 

first, the amount of C that soil can store is finite; second, the process can be rapidly 

reversed with minor changes in current conditions; and third, when soil C 

sequestration is intended to mitigate GHG emissions, all relevant gases species 

must be accounted, to ensure an effective global warming potential (GWP) decrease 

(Powlson et al., 2011). In this sense, it is now commonly accepted that studying 
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fluxes, instead of stocks, is a more informative and reproducible approach (Bispo et 

al., 2017; Lehmann and Kleber, 2015). 

While scarce information is available in Mediterranean ecosystem for soil C and N 

fluxes (Castaldi et al., 2006; Luyssaert et al., 2007; Oertel et al., 2016; Schulze et 

al., 2009), available estimates for the montado system indicate that their annual C 

intake may reach values close to those found in central Europe forests, but the wide 

variability of results appears associated with stand structure, climatic events, 

management history and current practices (Pinto-Correia et al., 2013). Most studies 

related to GHG emissions in montado have focussed on C emissions (e.g. Correia 

et al., 2012), namely CO2 and CH4 but few or no information is available regarding 

nitrous oxide fluxes (Shvaleva et al., 2015), despite its significantly higher GWP, 

relative to CH4 (IPCC, 2014c). 

Some management practices of montado imply the application of mineral fertilizers 

to soil, namely P fertilizers. A consequence is the increase of soil P status and 

potential risk of P runoff or leaching with potential impact on water quality. Such issue 

is relevant in Alentejo since water used for irrigation is mainly captured in small 

ponds filled with water from montado area. Furthermore, it is crucial to assess that 

management practices efficient to increase C sequestration in soil or with any 

positive impact on montado do not lead to other nutrient losses as nitrate leaching.   

 

Monitoring soil quality and assessing montado sustainability 

Given the threats which mine its sustainability, the montado future is undoubtedly 

entangled in the functions of its soils. Thus, monitoring soil disturbance, along 

management or environmental changes, becomes crucial to efficiently predict and 

reverse possible degradation patterns. By measuring relevant physical, chemical 

and biochemical properties, soil processes can be assessed and interpreted, 

enabling to infer a perception of soil quality. As defined by Doran and Safley (1997), 

soil quality is its ability to function within the ecosystems and land use limits, while 

sustaining biological productivity, promoting air and water quality and maintaining 

plant, animal and human health. Indeed, this concept is imbedded by the observer 

interests, which brings permanent discussion into the choice of the best set of soil 
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parameters to reflect a particular ecosystem service (e.g. Askari and Holden, 2015; 

Knoepp et al., 2000; Sánchez-Navarro et al., 2015). In this context, identifying 

simple, reproducible and efficient soil quality indicators for montados, would 

constitute a valuable monitorization tool, in the pursue for its sustainable 

management. 

In this context, it was hypothesized that recently introduced changes (e.g. improved 

pasture establishment, grazing intensification, shrub removal or tree decline, among 

others) may interact with all montado components, including soil quality status. 

Additionally, the extend and direction of these interactions are dependent on all other 

site-specific and management factors. 

The overall objective of the present thesis was to evaluate the effects of some current 

management practices on relevant soil functions and assess whether and how they 

can influence montado expected services. Specifically, it was aimed to: i) obtain a 

better understanding on changes of montado soil functions associated with 

management; and 2) provide information to base proper management options 

regarding its major economic and environmental services achievement. Additionally, 

results will be useful to establish guidelines for monitoring soil quality in montados, 

at both land unit and policy-maker levels, as a tool to assure their sustainable 

management.  

Four studies were developed in five evergreen oak woodland farms, representative 

of the main Portuguese montado areas and current management systems: 

i) A first study is presented in Chapter 1 entitled “Do improved pastures 

enhance soil quality of cork oak woodlands in the Alentejo region (Portugal)?” 

At the Herdade da Machoqueira do Grou, soil physical, chemical and 

biochemical indicators were determined under a 5-year old improved pasture 

and an adjacent natural understory, both under a dense cork oak woodland; 

ii) The Chapter 2 deals with a second study entitled “How are current 

management systems affecting soil quality in evergreen oak woodlands 

(montados)?” 

An assessment of soil physical, chemical and biochemical properties was 

conducted at two farms (Herdade dos Esquerdos and Herdade do Olival), 
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with different soil texture and grazing management, under improved and 

natural pastures, and considering tree-covered and open areas; 

iii) A third study assessing the “Spatial variation of soil characteristics and soil 

carbon stock as affected by single trees in evergreen oak woodlands 

(montados)” is discussed on Chapter 3. 

A sampling design was established to account for soil properties spatial 

variation around cork and holm oak scattered trees, at Herdade da Mitra and 

Tapada Real de Vila Viçosa farms, special attention being given to the tree 

contribution to soil organic carbon accumulation. 

iv) Finally, in Chapter 4, the “Influence of pasture management on nutrient fluxes 

in evergreen oak woodland (montado) soils” is presented. 

A lysimetric experiment was assembled with open grassland undisturbed soil 

blocks, from two study sites presenting different soil texture (Herdade dos 

Esquerdos and Herdade do Olival), considering three pasture management 

systems in each (natural, improved and occasionally grazed). Data collection 

included initial soil properties, herbaceous biomass production and nutrient 

content, and greenhouse gases emissions and soil leachates along a 15-

month period. 

Each of the current Thesis chapters, corresponding to each of the studies developed, 

are presented in article publication format, the first being already published in the 

journal Agroforestry Systems. 
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Do improved pastures enhance soil quality of cork oak 

woodlands in the Alentejo region (Portugal)? 

 

 

ABSTRACT 

Portuguese forest sustainability is currently threatened by forecasted climate 

changes and inappropriate management practices. Specifically, large cork oak 

woodland areas (montados) are subjected to soil degradation and tree 

recruitment impeachment. A study was developed to compare soil properties in 

cork oak woodlands with improved pastures (IP) grazed by cattle and natural 

understorey management (NU) without grazing. The IP system did not lead to 

soil organic C concentration increase, soil organic C stock being 0.7 kg m-2 lower 

in the upper 30 cm soil layer, compared to the NU system. Under the IP 

management, soil N content was 39.7 g m-2 higher up to 30 cm depth, and N 

mineralization potential was increased by 50% in the 10 cm top soil layer. Soil 

bulk density and C mineralization potential were similar in both systems. Sowing 

legume-rich pastures can result in an immediate soil quality improvement, 

especially regarding N availability, although grazing may hamper tree 

recruitment. Managing the natural understorey appears suitable for soil organic 

C maintenance, and also allows tree recruitment, while soil N availability limitation 

could be overcome by fertilizer applications. 

 

Keywords: bulk density; nitrogen; management system; organic carbon; soil 

fertility. 
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INTRODUCTION 

Evergreen oak woodlands (montado in Portugal, dehesa in Spain) are the most 

widely spread agroforestry systems in the Iberian Peninsula, occupying more 

than 3 million hectares (Eichhorn et al. 2006). Oak trees (mainly Quercus ilex and 

Q. suber L.) are intercropped with agriculture, pastures or natural shrubs, forming 

complex and highly variable landscapes. Cork oak woodlands are especially 

important in Portugal, for their role on the supply of raw material for the cork 

industry. However, their sustainability is now being questioned, particularly owing 

to soil degradation, productivity decline and lack of tree natural regeneration 

(Bugalho et al. 2011; Costa et al. 2014). In this context, the future of montado is 

dependent on management decisions that promote soil restoration and tree 

recruitment, thus ensuring the system long-term viability (Escribano et al. 2018). 

Recent montado history is marked by land use intensification, as landowners 

have followed EU subsidies in an attempt to increase the system profitability (Belo 

et al. 2014). In the last decades, some areas were converted to permanent 

pastures and grazing pressure was increased by replacement of traditional pig 

and sheep herds for cattle (GPP 2018). Sowing improved pastures - selected 

mixtures of legume and grass species - has become an interesting alternative for 

enhancing pasture yield and improving soil functions in oak woodlands (Carranca 

et al., 2015; Gómez-Rey et al., 2012; Hernández-Esteban et al., 2018). Their 

potential for soil organic carbon (C) accumulation has been reported (Teixeira et 

al. 2015), and since 2009 the Portuguese Carbon Fund granted financial support 

for this management option, and therefore an increase in national sown pasture 

area occurred (APA 2017). Nevertheless, information regarding the effect of 

improved pastures establishment on montado agroecosystems is scarce 

(Gómez-Rey et al. 2012; Hernandéz-Esteban et al. 2018; Rodrigues et al. 2015). 

Grazing can enhance soil nutrient cycling and accumulation (Bilotta et al. 2007), 

but excessive animal trampling can also damage soil structure by compaction. 

Also, animal excessive feeding might limit the growth of trees and shrubs, which 

may seriously threaten tree recruitment and drive losses of soil fertility (Dahlgren 

et al. 1997; López-Sánchez et al. 2014). 

Montado areas are often colonized by naturally occurring shrub species, which 

can enhance standing biomass (Correia et al. 2014), increase soil organic C 

sequestration and fertility (Gómez-Rey et al. 2013), while soil N changes may 
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depend on shrub species (Moreno and Obrador 2007; Simões et al. 2009). Also, 

shrub cover has been associated with successful tree recruitment (Dias et al. 

2016; Simões et al. 2016), while warranting feed diversity for grazers and 

increasing natural biodiversity conservation potential (Moreno and Pulido 2009). 

As the excessive accumulation of shrub biomass may increase fire risks and 

compete with trees for water and nutrients (Caldeira et al. 2015), periodical shrub 

cutting is recommended, and practices ensuring minimum soil disturbance are 

financially supported by the Portuguese government (APA 2017). 

In the light of global climate change scenarios forecasted for the Mediterranean 

region (IPCC 2015), management systems that ensure montado resilience and 

long-term sustainability should be developed. Such systems must improve soil 

functions, which can be assessed by measuring physical, chemical and 

biochemical soil properties - the so called soil quality indicators (Pulido et al. 

2017). Understanding how different management systems are affecting soil 

properties of cork oak woodlands is essential to ensure permanent tree 

recruitment and cork productivity, that is, to address their long-term sustainability.  

In this context, soil physical, chemical and biological properties were evaluated, 

regarding accumulation and mineralization of soil organic C and N, and soil 

fertility development. For that, two representative cork oak woodland areas were 

examined, one with natural understorey and absence of grazing and another with 

an improved pasture grazed by cattle. The authors hypothesized that improved 

pasture management would result in soil organic C build-up and higher soil 

nutrient availability. Therefore, results will provide useful information for land 

managers and policy-makers endeavouring proper management systems aiming 

the sustainability of cork oak woodlands. 
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MATERIALS AND METHODS 

 

Study area 

The study was conducted at Herdade da Machoqueira do Grou, Coruche county, 

Southern Portugal (39°08’18.29’’N, 8°19’57.68’’W), in a pure cork oak (Quercus 

suber L.) stand representative of the largest cork oak woodland area in Portugal. 

The climate is Mediterranean, with hot and dry summers and mild wet winters. 

Mean annual rainfall (1980-2002) is 685 mm, and mean annual air temperature 

(1960-1989) is 15.2 °C (SNIRH 2017). Landscape is made of Pliocenic and Mio-

Pliocenic formations (Zbyszewski 1953), topography being mostly gently 

undulating (slope gradient: 6-8%; SROA 1965). Soils are developed on 

sandstones, and classified as Dystric Arenosols associated with Dystric Regosols 

(IUSS Working Group WRB 2015); they are coarse textured (clay less than 60 g 

kg-1), strongly to moderately acidic, with low nutrient status. 

The pure cork oak stand was installed in 1965, with approximate density of 177 

trees per hectare, and canopy cover reaching 30 to 60%. In 1992, it was divided 

in two areas (estates) with different management regimes: one area was 

converted into a permanent natural pasture for extensive cattle grazing, while the 

other was kept ungrazed with its natural understorey vegetation, comprising an 

herbaceous layer and shrubs, mainly Cistus sp., Lavandula stoechas L. and Ulex 

sp. 

In August 2009, the grazed area was tilled with a disking harrow followed by 

mechanical spreading of 500 kg ha-1 of dolomitic limestone (20% MgO, 65% 

CaO) and 500 kg ha-1 of phosphate fertilizer (18% P2O5, 10% CaO, 27% SO3). A 

pasture mixture (IP; Trifolium spp., Ornithopus spp. and Biserrula pelecinus L.) 

was then broadcast seeded, and a roller was used to level soil surface and 

warrant seed cover. The area has been ever since grazed by about 1.4 cows per 

hectare for one month every year (0.1 LU ha-1 year-1), at the end of spring, which 

ensures the control of natural shrub species. 

In the natural understorey vegetation area (NU), management is exclusively 

oriented for cork production, and no fertilizers were applied. The shrub growth is 

controlled with a rotary mower every 4 to 6 years, the last control being carried 

out in February 2014. Seedling protection is ensured by adjusting the cutting 
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height to its maximum distance to the soil surface, and sapling damage is 

prevented by postponing the control of shrub patches where they occur. 

 

Vegetation measurements 

Standing herbaceous vegetation biomass and mass soil floor litter layer have 

been evaluated since 2009 in late spring (end of May). A total of 14 points, seven 

in each experimental area, were marked along four south-north transects (spaced 

50 m). Two 0.4×0.4 m samples were randomly taken around each point. Samples 

of herbaceous vegetation and soil surface-litter were dried (24 hours at 65 °C) 

and weighed. The three main botanical groups in herbaceous biomass - grasses, 

legumes and forbs - were treated separately. In 2011, biomass and coverage of 

the main shrub species (Cistus salviifolius L., C. crispus L. and Ulex airensis Esp. 

Santo, Cubas, Lousã, C. Pardo & J. C. Costa) were quantified in the NU area. 

Aboveground biomass of shrubs was collected inside four 30 m2 randomly 

selected plots, samples being oven dried and weighed (Correia et al. 2014). Tree 

litter fall (leaves, branches, flowers and fruits) was collected monthly, from 2011 

to 2016, in 16 littertraps (0.5 m2) distributed in two transects in the NU 

experimental site. Given the similar tree density, age and dendrometric traits at 

NU and IP, estimates were considered representative of both study systems. 

 

Soil sampling 

Sampling took place between 2014 and 2017 in IP and NU adjacent areas. The 

two areas were comparable in terms of soil fertility until 1992, as they were 

subjected to similar management and located on the same geology, soil type and 

topography. To alleviate possible pseudo replication problems (Stamps and Linit 

1999), in each management system an area of 200×100 m was delimitated, 15 

m from the boundary, and within it 20 sampling plots (20×20 m) were established, 

considering a grid of 5×5 m cells in each (Figure 1). Given the high tree density 

in study areas, sampling plots were randomly selected. 

Five sampling plots were randomly selected in each study area for soil bulk 

density assessment. In each plot, three grid cells were randomly selected, and 

undisturbed soil samples were collected in their centre at 0-10, 10-20 and 20-30 

cm depth, by carving metal cylinders (ca. 368.8 cm3) into each soil layer. Soil 

cores were trimmed to the exact cylinder volume and transferred to plastic bags.  
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In each system, disturbed soil samples were collected for soil fertility assessment 

in six randomly selected plots. Samples were taken with an auger in the centre 

of five grid cells (randomly selected) from each sampling plot, at 0-10, 10-20 and 

20-30 cm depth. A total of 30 samples were taken per each soil depth and study 

area. Soil was sampled up to 30 cm soil depth, in conformity with international 

standards for soil organic C stock calculation (FAO 2017). 

For assessing soil organic C and N mineralization, six sampling plots were 

randomly selected per management system. In the centre of four randomly 

selected cell grids at each sampling plot, soil cores were taken with an auger from 

the top 10 cm layer; samples were combined two by two, resulting in two 

composite samples per plot, and a total of 12 composite samples for each study 

system. 

 

Figure 1 - Sampling plot distribution at the improved pasture (IP) and natural understory 
(NU) systems in Herdade da Machoqueira do Grou. 

 

Laboratory procedures 

Soil bulk density 

Samples were oven-dried at 40 °C for a week, and then 10 g subsamples were 

placed overnight at 105 °C to allow dry weight calculations. Soil bulk density was 

determined as the ratio between sample dry weight and cylinder volume (Blake 

and Hartge 1986). 

20 m 

N 
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IP 
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Soil fertility  

Samples were air dried and then passed through a 2 mm sieve. Analyses were 

carried out on the <2 mm soil fraction. Soil pH was determined with a 

potentiometer (Metrohm 632) in soil suspensions in distilled water and 1 M KCl 

(1:2.5) after 1 h of intermittent shaking. Soil total organic C concentration was 

determined by the potassium dichromate oxidation following De Leenheer and 

Van Hove (1958). Particulate C fraction was separated by wet sieving soil 

samples at 53 μm, respective organic C concentration being determined as 

above. Total N was determined by the Kjeldahl procedure, using a Kjeltec 

digestion and distillation apparatus and a separated automated titration device. 

C and N stocks were calculated using soil bulk density and rock fragments 

correction (Poeplau et al. 2017). Non-acid exchangeable cations (Ca2+, Mg2+, 

Na+, K+) were extracted with 1 M ammonium acetate solution (pH 7 adjusted) and 

determined by atomic absorption spectroscopy (AAS). Exchangeable Al3+ was 

extracted with 1 M KCl solution (Barnhisel and Bertsch 1982) and determined by 

AAS. Extractable K and P were evaluated by the Egnér-Riehm (1958) test and 

determined by AAS and UV-visible spectroscopy, respectively. Hot water soluble 

C and N contents, as indicators of soil microorganism preferential substrates and 

product availability (Haynes 2000), were determined by suspending soil in 

distilled water (1:5) at approximately 85 °C for one hour (Khanna et al. 2001). 

Total dissolved organic C and N were determined in the resultant water extracts 

by using an automated segmented flow analyser (Houba et al. 1994). 

 

Soil biochemical indicators 

Samples were sieved and the <2 mm soil fraction was kept refrigerated (about 4 

°C) in closed plastic bags to keep field moisture and restrain biologic activity. Six 

subsamples were used in the fumigation-extraction procedure (Vance et al. 

1987): three replicates were immediately extracted with 50 mL of 0.5 M K2SO4 

solution, while remaining three were first chloroform fumigated for 24h. 

Additionally, soil subsamples (50 g) were rewetted at approximately 60% of their 

water field capacity and placed in hermetic glass containers with 0.5 M NaOH 

solution. Containers were incubated in the dark at 25 °C for 120 days. Trapping 

solutions were changed at days 1, 2, 3, 4, 7, 15, 28, 56 and 119, and dissolved 

CO2 has been precipitated with 0.5 M Ba2Cl, the excess NaOH being titrated with 
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0.5 M HCl. Soil C potential mineralization was assessed by calculating the total 

amount of respired CO2-C per initial soil organic C unit. Metabolic coefficient 

(qCO2) was calculated as the CO2-C respired at the seventh day of incubation 

per microbial biomass C unit. Approximately 1000 g soil samples (n=12) were 

incubated in the dark at 25 °C and 60% water field capacity inside plastic bags, 

for 16 weeks. Soil subsamples were taken (days 0, 7, 14, 28, 42, 56, 70, 84, 98 

and 112) and extracted with a 2 M KCl solution. Extracts were used for NO3
--N 

and NH4
+-N determination in an automated segmented flow analyser (Houba et 

al. 1994). Net N mineralization rates were calculated as final net mineralized N 

per initial total N. 

 

Statistical analyses 

Differences between the two study systems (IP and NU), for the determined soil 

properties at each depth were assessed by Student’s t-tests whenever 

population’s normal distribution (Shapiro-Wilk test) and homogeneity of variances 

(Levene’s test) were proven or achieved by logarithmic or arcsin transformations 

(only for 0-10 cm depth hot water soluble C proportion). For non-parametric 

variables, the Kruskal-Wallis test was used. Statistical analyses were conducted 

in R software (R Core Team 2014). 
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RESULTS 

 

Vegetation 

Standing biomass of herbaceous vegetation in the IP system was about 1.6 times 

higher than that in the NU (Figure 2). Legumes were the least represented 

botanical family for both systems, although their biomass was, on average, three 

times higher in the IP (0.12 Mg ha-1) than in NU (0.04 Mg ha-1) (data not shown). 

Grasses were the predominant botanical group, representing about 42 and 46% 

of total herbs in the IP and NU, respectively. An average of 3.9 Mg ha-1 year-1 

tree litter fall was estimated. The mass of the soil surface litter was similar in both 

systems. The aboveground biomass of three-year old shrubs in the NU 

accounted for 1.59 Mg ha-1. 

 

Figure 2 - Boxplot statistics for (a) herbaceous biomass and (c) soil surface-litter in late 
spring, during the 2009 - 2017 period (except 2010), for improved pasture (IP) and 
natural understorey (NU) systems; and (b) yearly tree litter fall for the 2011 - 2016 period 
in the NU. Mean values are represented with thick lines. 

 

Soil bulk density, organic C and total N 

Soil bulk density values did not show significant differences between the study 

systems at any depth (Table 1). Soil organic C concentrations and amounts did 

not differ between management systems up to 30 cm soil depth. Total N 

concentrations in the 0-10 and 10-20 cm soil layers were significantly higher in 
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the IP (0.91 and 0.41 g kg-1, respectively) than in NU (0.65 and 0.30 g kg-1, 

respectively). A similar trend was observed for the total N amount, with the IP soil 

containing about 1.4 times that of NU, in the 0-10 cm soil layer. Soil C:N ratio was 

significantly lower in the IP system, up to 30 cm depth. 

 

Table 1 - Soil bulk density, soil organic C and N concentration and amounts in the 5-year 
old improved pasture (IP) and natural understorey (NU). Mean ± standard error (n=30) 
and statistical significance: n.s.-p≥0,05, *-p<0,05, **-p<0,01, ***-p<0,001. 

Depth 
System 

Bulk density Organic C Total N C:N Organic C Total N 

cm g cm-3 g kg-1  kg m-2 g m-2 

0-10 IP 1.18±0.02 17.5±1.07 0.91±0.05 19.5±1.23 1.6±0.10 84.8±5.1 
 NU 1.18±0.03 21.4±2.43 0.65±0.06 32.6±1.32 1.85±0.14 61.9±6.1 
  n.s. n.s. *** *** n.s. *** 

10-20 IP 1.27±0.03 7.5±0.39 0.41±0.02 18.9±0.87 0.7±0.04 41.0±2.4 
 NU 1.26±0.03 9.0±0.66 0.30±0.02 30.0±1.51 0.9±0.07 30.6±1.8 
  n.s. n.s. *** *** n.s. *** 

20-30 IP 1.34±0.02 5.1±0.45 0.30±0.02 17.3±0.82 0.5±0.05 31.0±2.5 
 NU 1.31±0.01 6.0±0.42 0.24±0.02 27.3±1.91 0.6±0.04 24.6±1.8 
  n.s. n.s. * *** n.s. * 

 

Particulate organic matter and hot water soluble C and N 

Particulate organic matter C concentration and relative proportion to total organic 

C did not differ significantly between NU and IP (Table 2). Hot water soluble C 

concentration in the 0-10 and 10-20 cm soil layers was significantly higher in the 

IP (0.63 and 0.34 g kg-1, respectively) than NU (0.48 and 0.24 g kg-1, 

respectively). HWS-C proportion of total organic C in the 0-10 and 10-20 cm soil 

layers was also significantly higher in the IP than NU (3.8 and 4.6%, 2.4 and 

2.8%, respectively). 

Hot water soluble N concentration followed the trend of total N, being higher 

under IP than NU soils, up to 20 cm depth. HWS-N relative proportion to soil total 

N was not different between management systems. 

 

Carbon mineralization 

After 28 days of incubation, soil samples from the IP released significantly more 

CO2-C than those from NU, but between the 56 and 120th day this tendency was 

reversed (Figure 3). Mean total respired CO2-C was significantly lower for IP 

(523.4 mg kg-1) than NU (676.2 mg kg-1) soils. 
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Table 2 - Soil particulate (POM-C) and hot water soluble C (HWS-C) and N (HWS-N) 
concentrations and corresponding percentage in relation to total soil organic C (POM-
C/C, HWS-C/C) and N (HWS-N/N) in the 5-year old improved pasture (IP) and natural 
understorey (NU). Mean ± standard error (n=30) and statistical significance: n.s.-p≥0,05, 
*- p<0,05, **- p<0,01, ***- p<0,001. 

Depth 
System 

POM-C HWS-C HWS-N  POM-C/C HWS-C/C HWS-N/N 

cm g kg-1  % 

0-10 IP 8.2±0.80 0.63±0.04 0.08±0.00  44.9±2.08 3.8±0.21 9.6±0.53 
 NU 9.6±1.51 0.48±0.06 0.05±0.01  41.6±2.99 2.4±0.21 8.2±0.65 
  n.s. * ***  n.s. ** n.s. 

10-20 IP 2.2±0.24 0.34±0.03 0.03±0.00  27.7±1.73 4.6±0.23 8.6±0.49 
 NU 2.2±0.25 0.24±0.02 0.02±0.00  25.1±2.18 2.8±0.16 7.7±0.53 
  n.s. *** ***  n.s. *** n.s. 

20-30 IP 1.3±0.15 0.23±0.03 0.02±0.00  25.5±1.23 4.5±0.29 7.0±0.53 
 NU 1.6±0.18 0.22±0.03 0.02±0.00  26.8±2.76 4.3±0.79 9.6±1.18 
  n.s. n.s. n.s.  n.s. * n.s. 

 

 

Figure 3 - Accumulated CO2-C released by soils from the 5-year old improved pasture 
(IP) and the natural understorey (NU) systems during an incubation period of 120 days. 
Values at the end of each line are mean mineralized C (n=12); different superscripted 
letters indicate significant differences between management systems (p<0.05). 

 

N mineralization 

Soil from IP showed initial higher mineral N (NH4
+and NO3

-) concentrations than 

that from NU (Table 3). Net N mineralization and respective rates were also 

higher in IP (88.3 mg kg-1 soil; and 69.6 mg g N) than NU soils (52.9 mg kg-1soil; 

and 45.5 mg g-1N). 
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Table 3 - Initial soil mineral N concentrations, net mineralized nitrate- and ammonium-
N, and mineralized N per unit of soil N (MN/N), after 112 days of aerobic incubation, in 
soils from the 5-year old improved pasture (IP) and the natural understorey (NU). Mean 
± standard error (n=12) and statistical significance: n.s.-p≥0,05, *-p<0,05, **-p<0,01, ***-
p<0,001. 

System 

Initial mineral N  Net mineralized N 

NH4
+-N NO3

--N (NH4
+ + NO3

-)-N  NO3
--N NH4

+-N N c MN/N 

mg kg-1  mg kg-1  mg g-1 

IP 6.6±0.43 0.97±0.05 7.6±0.44  93.7±5.82 -5.4±0.43 88.3±5.94  69.6±2.71 

NU 3.9±0.23 0.65±0.02 4.5±0.24  17.7±5.18 45.2±11.9 52.9±10.1  45.5±6.67 

 *** *** ***  *** *** **  ** 

 

In IP, net nitrification prevailed over net ammonification, the latter being negative 

from day 28 until the end of the incubation (Figure 4). In NU, net ammonification 

largely prevailed throughout the incubation period, and net nitrification was 

significantly lower than in IP. At the end of incubation, net NH4
+-N concentration 

was 8.4 times greater in soils from NU than in those from IP system. 

 

 

Figure 4 - Evolution of net NH4
+-N and net NO3

--N concentrations in the 5-year old 
improved pasture (IP) and natural understorey (NU) soils, along 16-week aerobic 
incubation. Values at the end of each line are mean net mineralized N (n=12); different 
superscript letters (uppercase for NH4

+-N; lowercase for NO3
--N) indicate significant 

differences between management systems (p<0.05). 
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Microbial C and N 

Soil C mineralization, microbial C and N biomass and respective proportions 

relative to soil organic C and total N did not show significant differences between 

the study systems (Table 4). Soils from the NU system showed significantly 

higher microbial C:N ratio (6.9) and lower metabolic coefficient (2.1 mg g-1 h-1) 

than in those from the IP (5.4, and 3.0 mg g-1 h-1, respectively). 

 

Table 4 - Mineralized C per unit of soil organic C (MC/C), microbial biomass C and N 
contents (C mic, N mic) and corresponding percentages in relation to total organic C (C 
mic/C) and N (N mic/N), microbial C:N ratio and metabolic coefficient (qCO2) in the 5-
year old improved pasture (IP) and natural understorey (NU). Mean ± standard error 
(n=12) and statistical significance: n.s.-p≥0,05, *-p<0,05, **-p<0,01, ***-p<0,001. 

System MC/C  C mic N mic  C mic/Ca N mic/Nb  C:N mic qCO2 

 mg g-1  mg kg-1  %   mg g-1 h-1 

IP 26.0±1.17  172.9±13.6 31.9±2.54  7.6±0.03 25.0±0.07  5.4±0.10 3.0±0.23 

NU 30.1±2.36  177.5±12.1 26.1±2.34  7.0±0.02 24.0±0.10  6.9±0.25 2.1±0.13 

 n.s.  n.s. n.s.  n.s. n.s.  *** ** 

 

Soil fertility  

Soil pH in water was significantly higher in the IP system up to 10 cm depth 

whereas the same was observed for pH in KCl for all soil layers (Table 5). 

Extractable P concentration in the IP soil was significantly higher, up to 20 cm 

depth, than in NU, while no significant differences were observed regarding 

extractable K. IP soils showed higher concentrations of exchangeable Ca2+ and 

Mg2+ up to10 and 20 cm depth, respectively. Exchangeable Al3+concentration in 

the 0-10 cm soil layer was significantly lower in IP than in NU soils. 
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Table 5 - Soil pH, extractable P and K, non-acid exchangeable cations (Ca2+, Mg2+, Na+, K+) and extractable Al3+concentrations in the 5-year 
old improved pasture (IP) and natural understorey (NU). Mean ± standard error (n=30) and statistical significance: n.s.-p≥0,05, *-p<0,05, **-
p<0,01, ***-p<0,001. 

Depth 
System 

pH  P K  Ca2+ Mg2+ Na+ K+ Al3+ 

cm H2O KCl  mg kg-1  cmolc kg-1 

0-10 IP 5.68±0.07 4.50±0.08  6.8±0.7 41.9±3.2  1.87±0.20 0.43±0.05 0.03±0.00 0.10±0.01 0.14±0.05 

 NU 5.23±0.12 3.80±0.07  3.3±0.3 50.9±4.9  0.69±0.06 0.22±0.02 0.05±0.01 0.10±0.01 0.44±0.04 

  ** ***  *** n.s.  *** *** * n.s. *** 

             
10-20 IP 5.51±0.05 4.23±0.04  6.0±1.0 29.4±2.0  0.45±0.05 0.17±0.02 0.02±0.00 0.08±0.01 0.48±0.06 

 NU 5.33±0.09 3.99±0.04  2.1±0.2 34.2±2.5  0.30±0.03 0.10±0.01 0.04±0.00 0.07±0.01 0.63±0.04 

  n.s. ***  *** n.s.  n.s. *** * n.s. n.s. 

             
20-30 IP 5.66±0.05 4.43±0.03  3.1±0.5 29.7±2.2  0.56±0.13 0.17±0.03 0.03±0.00 0.08±0.01 0.48±0.06 

 NU 5.49±0.07 4.17±0.06  1.9±0.2 34.5±2.9  0.31±0.04 0.09±0.01 0.04±0.01 0.07±0.01 0.59±0.04 

  n.s. ***  n.s. n.s.  n.s. n.s. n.s. * n.s. 
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DISCUSSION 

High tree density at the study area led us to assume homogeneous tree cover for 

sampling, so our results are more likely to characterize an oak forest stand than 

a typical open oak woodland (<80 trees ha-1; Moreno and Pulido 2009). It should 

not be overlooked that results from the improved pasture are influenced by the 

overlapping effects of cattle grazing and fertilizer application, being not possible 

to disentangle the specific effect of pasture sowing. 

Soil bulk density in the study areas ranged between 1.18 and 1.34 g cm-3, in the 

upper 0-10 and 20-30 cm soil layers, respectively. These values are similar to 

those reported by Gómez-Rey et al. (2012), for long-term natural and improved 

pastures grazed by sheep, under Mediterranean climate and sandy loam textured 

soils. Although improved pastures are commonly associated with surface soil 

porosity enhancement (Haynes and Williams 1993), such a trend was not 

observed in our study, probably due to the low soil organic C content. Also, the 

low stocking rate practiced, with cattle permanence being short and occurring 

only in late spring, may explain why soil porosity showed no significant 

modifications in the grazed pasture, as compared to the natural understorey, 

suggesting the absence of soil compaction risks in the former. In fact, values up 

to 30 cm depth were below 1.5 g cm-3, the threshold above which root 

development might be constrained for similar textured soils (Weil and Brady 

2017). 

Although some studies report that pasture sowing can strongly enhance soil 

organic carbon accumulation at a short-term (e.g. Teixeira et al. 2015), in the 

present study a decrease of 0.7 kg organic C m-2 (though not statistically different) 

was estimated for the improved pasture system, compared with the natural 

understorey upper 30 cm soil layer. This trend may be explained, on one hand, 

by shrub elimination in the grazed area, which reduces soil organic residue inputs 

(Simões et al. 2009) and, on the other hand, by soil disturbance at pasture 

installation (disk harrowing) that might expose physically protected organic 

substrates, thus enabling their mineralization (Six et al. 2000). Our results are in 

accordance with those reported by Gómez-Rey et al. (2012) who observed 

negligible increases in the soil organic C stock up to 20 cm depth (0.18 and 0.84 

kg m-2, in open and tree covered areas, respectively) in a 26 year old improved 

pasture, as compared to a natural pasture with shrub control every six years. 
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Soil organic C stock in the natural understory management was similar to those 

reported for chestnut orchards growing on loamy soils (Borges et al. 2017), and 

to those obtained beneath tree crowns in sandy-loam soils under oak woodlands 

(Gómez-Rey et al. 2012), in Mediterranean conditions. This result highlights the 

important role of shrubs in the overall system C sequestration in our study site, 

which was estimated around 17% of total system C annual uptake (Correia et al. 

2014). It should also be emphasized that structural heterogeneity introduced by 

shrubs is linked to several valuable ecosystem services, such as biodiversity 

conservation and tree recruitment facilitation (Dias et al. 2016; Simões et al. 

2016). 

Improved pasture system led to a strong decrease of soil C:N ratio (from 33 to 

20, in the upper 10 cm layer). Such change suggests important modifications in 

soil organic matter quality and dynamics, especially regarding N mineralization 

patterns (Weil and Brady 2017). In fact, the substitution of shrubs with high C:N 

ratio residues (60 to 80; Simões et al. 2009) for a homogeneous legume-rich 

herbaceous cover, with considerably lower C:N ratio (25 to 30; Carranca et al. 

2015), contributed to change soil organic matter quality. As a consequence, the 

establishment of improved pasture clearly enhanced soil nitrification potential, 

and soil N availability, which is in agreement with the trends reported by Gómez-

Rey et al. (2012) for an older improved pasture. 

Although soil N mineralization potential was increased by almost 50% (from 46 

to 70 mg g-1), it was not accompanied by soil pH increase, indicating that the initial 

lime and fertilizer applications might have balanced possible soil acidification 

effects (Haynes and Williams 1993). Regarding possible soil N losses, it should 

be emphasised that our N mineralization estimates, from sieved soil samples and 

under laboratory-controlled conditions, are certainly above the in situ 

mineralization amounts. Actually, soil N mineralization potentials in evergreen 

oak woodlands strongly decrease in the presence of herbaceous and tree 

decomposing roots (Gómez-Rey et al. 2011), and significant reduction of nitrate 

leaching is associated with oak root nitrate uptake (Nunes 2004). The high tree 

density at our study site may ensure low risk of nitrogen losses. 

The establishment of improved pastures did not lead to marked changes on the 

soil C cycle as soil C mineralization rates and microbial biomass C and N were 

similar to that occurring in the natural understory system. However, higher 
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metabolic coefficient (qCO2) and lower microbial biomass C:N ratio indicate that 

the microbial population of the improved pasture soil may be less efficient in C 

metabolism than that from the natural vegetation area (Anderson and Domsch 

1990). Improved pasture establishment enhanced the soil biochemical cycles, 

enabling the development of a soil microbial population with higher C 

consumption per unit of microbial biomass C, as compared to the natural 

understorey, following trends reported by Gómez-Rey et al. (2012) and 

Rosenzweig et al. (2016). 

Besides similar soil organic C and POM-C proportions between the study 

systems, higher HWS-C in the improved pasture soil suggests enhanced soil 

microbial activity (Iqbal et al. 2010). This result is in agreement with Rodrigues et 

al. (2015) observations, in a 35-year old improved pasture from a Southern 

Portugal oak woodland, where HWS-C was more than doubled, along with a soil 

organic C increase, compared to an adjacent natural pasture. This trend, found 

only 5 years after pasture sowing and associated with a small decrease of soil 

organic C, highlights the efficiency of HWS-C as a soil organic matter indicator 

for monitoring changes of management and land use (Kalbitz et al. 2000). 

Soil fertility was undoubtedly favoured by pasture sowing, mostly associated with 

significant N accumulation, up to 20 cm depth, but also as a consequence of 

fertilizer and lime inputs. Higher concentrations of extractable P and 

exchangeable Ca2+ and Mg2+, agree with results reported for older improved 

pastures in oak woodlands, where chemical fertilizers were periodically applied 

(Gómez-Rey et al. 2012). 

Increasing in non-acid cation concentrations contributed to a soil exchange 

complex with lower Al3+ saturation degree (from 29 to 5% in 0-10 cm layer) and, 

therefore, to change soil reaction from strongly to moderately acidic, which may 

also enhance nutrient availability (Weil and Brady 2017). These changes indicate 

a higher cation retention capacity, as the effective soil cation exchange capacity 

(sum of non-acid cations plus exchangeable Al3+) in the 0-10 cm improved 

pasture soil layer reached 2.57 cmolc kg-1, while it was only 1.50 cmolc kg-1 in NU. 

It is noteworthy that only a few years after pasture sowing, most of the studied 

soil properties were in accordance with results from older improved pastures in 

open oak woodlands (Gómez-Rey et al. 2012; Rodrigues et al. 2015). This 

confirms the potential of sowing legume-rich mixtures for soil N enrichment and 
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a fast soil quality improvement in cork oak woodlands, but they can be associated 

with soil organic C losses, with negative consequences for soil functions. 

Meanwhile, improved pasture sowing is commonly projected for grazing 

(intensification system), which hampers tree recruitment and threaten the long-

term viability of cork oak woodlands, unless shelters are effectively used for 

seedlings protection. In contrast, tree recruitment is mostly facilitated under the 

natural understorey management, which allow shrub growth and saplings 

protective measures, avoid soil organic carbon losses and assure long-term cork 

production. As under this system the soil is N limited, occasional applications of 

fertilizers may be useful to improve tree nutritional status and soil organic matter 

quality. 

 

CONCLUSIONS 

Improved pastures extensively grazed by cattle do not necessarily lead to higher 

soil organic C stock in cork oak woodlands, as compared to ungrazed systems 

with natural shrub understory. In contrast, pasture management can promote soil 

quality, namely by enhancing soil organic matter quality and fertility, without 

detriment of soil physical conditions. Management aiming sustainable cork oak 

woodlands should be based on practices that effectively promote tree 

regeneration, such as those followed in the natural understory vegetation system, 

in which occasional application of fertilizers might be a promising option for 

improvement of soil quality and tree nutrition status. Long-term studies are 

needed regarding cork production and quality in study systems, for economic and 

environmental evaluation of cork woodlands. 
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How are current management systems affecting soil quality 

in evergreen oak woodlands (montados)? 
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How are current management systems affecting soil 

quality in evergreen oak woodlands (montados)? 

 

 

ABSTRACT 

Sustainability of Portuguese evergreen oak woodlands (montados, dehesas in 

Spain) is currently threatened by climate changes and inadequate management 

practices, which have led to soil degradation and tree recruitment impeachment 

in many areas. For assessment of the role of sowing improved pastures as a 

management option to reverse soil degradation and increase productivity in 

montado systems, a study was developed to assess their long-term management 

effects over soil properties. Improved and natural pastures soils were evaluated 

in two farms, with different soil types and grazing management systems, also 

considering the effect of tree cover. Soil bulk density, water retention, aggregates 

stability, saturated hydraulic conductivity, organic C and N concentrations, 

accumulation and mineralization, and soil fertility were measured. As compared 

with natural pastures, long-term improved pasture management has mostly 

decreased soil bulk density (and increased soil porosity), enhanced organic C 

accumulation and improved soil fertility, which occurred in open areas and even 

more markedly beneath tree crowns. Despite this, improved pasture 

establishment appeared not sufficient to assure adequate soil physical properties 

under higher stocking rates, mainly due to excessive soil compaction. Moreover, 

none of the study management systems considers measures to reverse tree 

regeneration failure, which poses critical issues on these systems future viability. 

Concerning montado long-term sustainable management, these recent changes 

effects over the system economic and environmental performances, must also 

be evaluated. 

 

Keywords: improved pasture, natural pasture, organic matter, physical status, 

soil fertility. 
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INTRODUCTION 

Agroforestry systems are receiving a renewed interest, not only for their 

integrated approach to forest and agriculture productivity (Rigueiro-Rodríguez et 

al., 2009), but also for their potential to provide environmental services, such as 

carbon (C) sequestration (Kim et al., 2016; Kumar and Nair, 2011), and 

biodiversity conservation (Lemaire et al., 2014; Torralba et al., 2016). In the 

Iberian Peninsula, evergreen oak woodlands - montado in Portugal and dehesa 

in Spain - are the most important agroforestry system, where they occupy more 

than 3 million hectares (Eichhorn et al., 2006). Within these woodlands, scattered 

oak trees, mainly Quercus suber L. and Q. ilex L., are intercropped with 

agricultural crops, pastures and/or shrubs (Belo et al., 2009). Such multipurpose 

systems are a complex mosaic of biotic and abiotic conditions, with their multi-

layer vegetation stratus crossing the landscapes diversity (Moreno et al., 2007; 

Moreno and Pulido, 2009). 

Presently, large montado areas are facing several sustainability threats, including 

soil degradation, low tree and understorey productivities, lack of tree natural 

regeneration, and tree mortality (Moreno and Pulido, 2009; Plieninger et al., 2003; 

Pulido and Díaz, 2005; Ruiz Sinoga et al., 2012). Furthermore, land degradation 

(desertification) and the foreseen climate changes for the Mediterranean region, 

urge the need to implement adaptation and mitigation strategies (Duque-Lazo et 

al., 2018; IPCC, 2014; Lozano-García et al., 2017). Therefore, montado systems 

require human activity to sustain biodiversity and ecosystem services (Bugalho 

et al., 2011). 

Recent studies addressing montado sustainable management have mainly 

focused on strategies for tree recruitment facilitation (Carmona et al., 2013; Dias 

et al., 2016; López-Sánchez et al., 2016; Pérez-Devesa et al., 2008; Ramírez and 

Díaz, 2008; Simões et al., 2016), pasture productivity enhancement (Cubera et 

al., 2009; Hernández-Esteban et al., 2018; Rivest et al., 2011), biodiversity 

conservation (Bugalho et al., 2011; Tárrega et al., 2009), and potential for carbon 

(C) sequestration (Alías et al., 2015; Correia et al., 2014; Oubrahim et al., 2016). 

However, contribution of soil functions for montado expected services are often 

overlooked and involved processes remain poorly understood, under current 

environmental and management changes. 
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Legume-based grassland systems constitute a pillar for sustainable and 

competitive livestock production (Lüscher et al., 2014), as a result of both N2 

symbiotic fixation and the efficiency of acquired N into biomass (Nyfeler et al., 

2011). Following the need to make montado a more competitive system, sowing 

improved pastures (that is, a mixture of selected species with high proportion of 

legumes) has recently raised interest among Portuguese stakeholders, as an 

option to increase pasture productivity and reverse soil degradation (Crespo, 

2006; Belo et al., 2014). In fact, accompanying an increase in national area of 

permanent pastures (GPP, 2018), improved pastures has recently increased, 

since it became a financially supported practice by the Portuguese Carbon Fund 

(APA, 2017). A great attention has been given to practices related to improved 

pastures establishment and persistence (Aguiar et al., 2006; Franca et al., 2016; 

Hernández-Estebán et al., 2018), their role on N2 fixation from the atmosphere 

(Carranca et al., 2015), the soil nutritional status and productivity (Hernández-

Estebán et al., 2018), the enhancement of soil organic carbon accumulation 

(Gómez-Rey et al., 2012; Hernández-Estebán et al., 2018), and soil nitrogen 

availability (Gómez-Rey et al., 2012). The effects of oak tree cover on such 

processes was also taken into account in most studies (Carranca et al., 2015; 

Gómez-Rey et al., 2012; Hernández-Estebán et al., 2018). 

Higher productivity of improved pastures can support higher stocking rates, either 

by grazing density or by substitution of the traditional sheep and pig herds by 

cattle (Belo et al., 2009; Pinto-Correia et al., 2013). In fact, recent montado history 

is marked by land use intensification, as landowners often follow EU subsidies in 

an attempt to increase the system profitability (GPP, 2018; Belo et al., 2014). 

Such strong management changes are mostly resulting in overgrazing, which is 

now held responsible for failure of oak tree regeneration (López-Sánchez et al., 

2014), significant biodiversity losses (Bugalho et al., 2011; Dias et al., 2016), and 

soil degradation (Pulido et al., 2018). Yet, grazing intensification has been 

associated with contrasting response in changes of soil properties (Abdalla et al., 

2018), highlighting the need to integrate other factors, such as tree density, soil 

type and management system and specific practices (Pulido et al., 2017; Uribe 

et al., 2015). 

Additionally, both grazing intensification and pasture sowing are generally 

associated with naturally occurring shrubs removal, a montado component that 
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is recognized for their great potential for C sequestration (Correia et al., 2014), 

enhancement of soil fertility and C and N dynamics, especially under tree canopy 

cover (Gómez-Rey et al., 2013; Simões et al., 2009), and tree recruitment 

facilitation (Dias et al., 2016; Simões et al., 2016). 

In this context, information on recent management changes long-term effects on 

the overall montado sustainability is still scarce, and wider approaches, including 

soil types and management systems diversity, are lacking. Also, in order to 

enable soil quality changes monitorization at farm level, indicator systems are 

needed. 

A study was developed to obtain: (i) deeper understanding on modifications in 

soil properties associated with improved pasture establishment under different 

site conditions and management systems; and (ii) base information to develop 

guidelines for improvement of soil status and sustainable management of the 

montado system. It was hypothesized that the establishment of improved 

pastures enhances soil organic matter accumulation, fertility and resistance to 

degradation, and that changes on soil properties are dependent on site-specific 

ecological conditions and management options, such as soil type, tree cover, 

stocking rate and grazer species. Two representative montado farms, with 

different soil types, grazing animals and stocking rates, were evaluated for soil 

physical, chemical and biochemical properties, considering both natural and long-

term improved pasture areas, and oak tree cover influence. Results of the current 

study are valuable to identify whether and how current management practices 

are affecting montado sustainability, aiding in the choice of alternatives to 

enhance its services. Results also provide information on the most relevant 

indicators to base monitoring systems of soil quality status in montado systems. 
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MATERIALS AND METHODS 

 

Study areas 

The study was conducted in two montado farms (mostly Quercus suber L. with 

few Q. ilex L.) both located in the Alto Alentejo region (Portugal): Herdade dos 

Esquerdos (HE; 39°07’-39°08’ N, 7°29’-7°30’ W; Vaiamonte) and Herdade do 

Olival (HO; 38°51’-38°52’ N, 7°32’-7’°33’ W; Mamporcão). In both farms, oak 

trees cover is about 35% of surface area, corresponding to 30-40 trees ha-1. The 

landscape is gentle undulating (SROA, 1976; SROA, 1972), and climate is of 

Mediterranean type, with hot and dry summer and mild and wet winter. In the HE, 

the mean annual temperature is 15 °C, varying from 8.4 °C (January) to 23.5 °C 

(August), and the mean annual rainfall is 620 mm (INMG, 1991). In the HO, the 

mean annual rainfall is 670 mm, and the mean monthly temperature varies from 

10 to 25 °C (Ferreira, 1970). Soils in the HE are developed over gneisses and 

show sandy loam texture (about110 g kg-1 clay, 140 g kg-1 silt), being classified 

as leptic Regosols associated with Leptosols with dystric characteristics (IUSS 

Working Group WRB, 2015). In the HO, soils are developed on granitic bedrock 

and are classified as endoleptic dystric Cambisols and endoleptic haplic Luvisols 

(IUSS Working Group WRB, 2015), showing loam texture (ca.160 g kg-1 clay, 210 

g kg-1 silt. 

 

Management systems 

At the HE farm, two management systems were identified: 1) an improved 

pasture (IP) sowed in 1979 and grazed by 5 to 8 sheep per hectare every year 

(0.5 to 0.8 LU ha-1 year-1); and 2) a natural pasture (NP) grazed by less than 1 

sheep ha-1 year-1 (ca. 0.1 LU ha-1 year-1). Sheep grazing in both pastures occurs 

intermittently throughout the year. The IP seed mixture included mainly Trifolium 

spp., Ornithopus spp. and Lolium spp., with 300 kg ha-1 of natural rock phosphate 

(26.5% P2O5, 35% CaO, 3.2% SO3 and 0.8% MgO) being applied every two 

years. In the NP, naturally occurring shrubs (mostly Quercus coccifera L., Cistus 

spp. and Crataegus monogyna Jacq.) are controlled every four to six years by 

disk harrowing. Natural herbaceous vegetation consists mainly of Chamaemelum 

mixtum (L.) All., Leontodon taraxacoides (Vill.) Mérat, Trifolium spp., Ornithopus 

spp. and Biserrula pelecinus L. (FCT, 2014). 
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At the HO farm, two different management systems were also identified: 1) an 

improved pasture (IP) sowed in 1998, which is grazed by 0.7 cows per hectare 

and year (0.7 LU ha-1 year-1); and 2) a natural pasture (NP) grazed by the same 

cattle herd at similar stocking rate. Both areas are grazed alternately throughout 

the year. In the IP area, 350 kg ha-1 of calcium phosphate fertilizer (18% P2O5, 

10% CaO and 27% SO3) were applied every two years. Dominant herbaceous 

species in natural pasture areas include Agrostis castellana Boiss. et Reut., 

Chamaemelum nobile (L.) All., Vulpia geniculata (L.) Link, Lolium rigidum Gaudin 

and Carduus tenuiflorus Curtis (FCT, 2014). 

 

Soil sampling 

In 2011, three 100×100 m plots were delimitated in each management system 

area, within each study farm, in order to alleviate possible pseudo replication 

problems (Stamps and Linit 1999). Each plot was then divided in four 50×50 m 

sub-plots and a circular 1256 m2 area (40 m radius) was delimited in their centre 

(DGF, 2001). Two of the resulting circles, in each plot, were randomly selected 

and two representative trees (similar crown and breast height diameters) were 

marked in each selected circle, resulting in 12 trees for each management 

system, from each farm. 

Soil samples (disturbed and undisturbed) from studied management systems at 

each farm (HE and HO) were collected between 2014 and 2017 in two positions 

relative to tree canopy: (i) beneath tree canopy (BC), at approximately 50% of 

crown radius projection, and (ii) in the open areas (OA), at least twice the crown 

radius away from the tree trunk, considering that oak canopies influence over soil 

properties can reach that distance (Simón et al., 2013). In each case, samplings 

were carried out according to the four major cardinal points direction, that is, four 

samples were taken for each position relative to tree. Soil samples were taken 

from the 10 cm top soil layer, because former studies indicated that soil changes 

mostly occurred in this layer (Gómez-Rey et al. 2012; Nunes, 2004).  

 

Undisturbed samples 

For bulk density measurements, undisturbed soil samples were collected around 

five randomly selected trees from the set established for each management 

system, at each farm. Four cylinders were carved into the soil, according to each 
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cardinal direction, and samples were trimmed exactly to the cylinder volume (ca. 

590 cm3). A set of 20 soil samples was taken in each management system and 

position relative to tree canopy. 

For measurements of soil water content at different matric potentials, undisturbed 

soil samples were collected by using metallic rings (ca. 59 cm3) around six trees 

in each management system, samples being trimmed to the exact container 

volume. Twenty-four samples were taken for each management system and 

position relatively to tree canopy and were kept refrigerated (about 4 °C) until 

laboratory measurements. 

For saturated hydraulic conductivity measurements, 100 cm3 cylinders were used 

to sample the soil around five randomly selected trees. As a result, for each 

management system and position relatively to tree, 20 cylinders were collected. 

Cylinders were kept refrigerated (about 4 °C) until laboratory measurements. 

 

Disturbed samples 

Four disturbed soil samples were collected by excavation around 5 randomly 

selected trees, in each management system. Samples were air dried and used 

for aggregate size distribution and stability determinations. 

Soil samples were taken with an auger around each of the 12 selected trees in 

each management system. Samples from each position relatively to tree were 

combined to form one composite sample, resulting in 12 samples of each 

management system and position relatively to tree. Samples were air-dried and 

passed through a 2 mm sieve. 

For biochemical measurements, soil samples were collected by using an auger 

around the 12 selected trees, and 12 composite samples were obtained as 

described above. These composite samples were randomly paired, and therefore 

six samples were obtained for each management system and position relatively 

to tree. Samples were immediately sieved at 2 mm and refrigerated (about 4 °C) 

in closed plastic bags, to keep field moist content and avoid further soil microbial 

activity. 
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Laboratory procedures 

 

Soil bulk density, water retention and saturated hydraulic conductivity 

Soil bulk density was determined by the ratio of dry weigh of undisturbed soil 

cores (oven dried at 105 °C) and the cylinder volume (Blake and Hartge, 1986). 

Soil water content at different matric potentials was determined by placing six 

samples randomly selected (from each management system and position 

relatively to tree) over each specific pressure-plate or pressure-membrane inside 

the pressure apparatus, where they were allowed to saturate with distilled water 

for at least 24 hours. The pressure was then adjusted to -5, -10, -33 and -1500 

kPa, and kept continuously until no water leaked from the pan. Soil water contents 

were calculated by sample weight difference before and after drying at 105 °C 

(Richards, 1965). 

For saturated hydraulic conductivity determination (Ks), undisturbed soil samples 

were placed in a tray and slowly saturated by raising the water level until water 

was visible at the soil surface (minimum 24 hours). Saturated samples were 

placed in a laboratory permeameter (Eijkelkamp Soil & Water, 2017), and the 

constant head method was applied (Reynolds and Elrick, 2002a). When the water 

level raised less than 2 cm a day, the falling head method was used (Reynolds 

and Elrick, 2002b). 

Total soil porosity was calculated using the determined bulk density and soil 

particles density (2.65 g cm-3), as described by Danielson and Sutherland (1986). 

Air filled pore volume was estimated as the difference between total pore volume 

and water filled volume, measured at -10 kPa. 

 

Dispersion ratio, aggregate size distribution and stability 

Particle-size fractions and dispersion ratio were determined in the <2 mm soil 

fraction from the air-dried disturbed samples. Two sets of subsamples (ca. 20 g) 

were taken: one was first treated with H2O2 solution and heated, and 20 mL of 

dispersing solution (containing (NaPO3)6 and Na2CO3) were added; while the 

other was simply dispersed in distilled water. Coarse sand was obtained by 

sieving and fine sand by washing/decanting, while silt and clay fractions were 

determined by pipetting, as described by Póvoas and Barral (1992). Dispersion 

ratios were calculated for the <0.02 and <0.002 mm particle size classes, as the 
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ratio of the proportion obtained by water dispersion to that obtained with the 

dispersing solution. 

Aggregate size fractions and water stable aggregates proportion were 

determined as described by Kemper and Rosenau (1986). Bulk air-dried soil 

samples (approximately 300 g) were separated by gentle sieving over 5, 2, and 

1 mm sieves, in sequence, each retained fractions being then weighed. 

Approximately 4 g of the obtained 1 to 2 mm aggregates class were slowly 

saturated with water vapor and placed in a wet sieving equipment (0.25 mm) to 

be submerged and raised from distilled water for 3 minutes (35 cycles per 

minute), the dispersed material being collected. Retained aggregates were 

disrupted by using 100 mL of dispersing solution, collecting the dispersed 

material that passed through the sieve. Both dispersed soil fractions (by water or 

dispersing solution) were oven dried (105 °C) and weighed. Water stable 

aggregates proportion was calculated, as the ratio between the weight of the 

fraction collected after adding the dispersing solution, by the sum of that with the 

weight of the fraction that passed through the sieve during the 3-minute water 

dispersion procedure. 

 

Soil biochemical properties 

For microbial biomass C and N determination the fumigation-extraction 

procedure (Vance et al., 1987) was applied to the field-moist (<2 mm) soil 

samples, using six replicates with 10 g. Three replicates were immediately 

extracted with 50 mL of 0.5 M K2SO4 solution, while another three were firstly 

placed in the dark inside a vacuumed desiccator with ca. 50 mL of chloroform 

and 20 g of NaOH for 24 h. Contents of C and N in the extracts were determined 

by using an automated segmented flow analyser (Houba et al. 1994). 

Soil respiration was measured by placing 50 g of soil (rewetted at approximately 

60% of their water field capacity), in hermetic glass containers with a CO2 trap 

solution (30 mL of 0.5 M NaOH), in the dark at 25 °C for 120 days. Trapping 

solutions were changed at days 1, 2, 3, 4, 7, 15, 28, 56 and 119, and excess of 

NaOH was titrated with a 0.5 M HCl solution, after dissolved CO2 has been 

precipitated by a 0.5 M Ba2Cl solution (García et al., 2003). Mineralized C per 

unit of soil initial organic C (MC/C) was calculated by dividing the total amount of 

respired CO2-C along the incubation period, by the initial soil organic C content. 
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The metabolic coefficient was calculated as the ratio between the CO2-C respired 

per day at the seventh day of incubation, and the initial soil microbial biomass C. 

Field-moist soil samples (ca. 1000 g) were rewetted at 60% water field capacity 

and incubated at 25 °C for 16 weeks. To follow N mineralization patterns, 10 g 

subsamples were taken periodically (days 0, 7, 14, 28, 42, 56, 70, 84, 98 and 

112), adding 50 mL of 2M KCl solution (Keeney and Nelson, 1982). Extracts were 

used for NO3
--N and NH4

+-N determination in an automated segmented flow 

analyser (Houba et al. 1994). Net N mineralization was calculated by the 

difference of the determined initial to each date mineral N contents. Mineralized 

N per unit of soil N (MN/N), was obtained by dividing the final net mineralized N 

by the initial soil total N. 

 

Soil chemical properties  

Soil chemical properties were determined in the air-dried soil samples (< 2 mm). 

Total soil organic C (SOC) was determined by the potassium dichromate 

oxidation procedure (De Leenheer and Van Hove, 1958), and the particulate C 

fraction by using the material obtained after wet sieving of 50 g of soil with a 53 

μm sieve. Coarse fragments proportion and soil bulk density were taken into 

account to calculate soil C accumulation in the 0-10 cm soil layer (Poeplau et al., 

2017). Hot water soluble C was determined by using a suspension of 10 g of soil 

in 50 mL of water, at approximately 85 °C, for one hour (Khanna et al., 2001), 

and dissolved organic C was determined in an automated segmented flow 

analyser. Total N was determined by the Kjeldhal procedure. Non-acid 

exchangeable cations (Ca2+, Mg2+, Na+, K+) were extracted by percolating 5 g of 

soil samples with ammonium acetate at pH 7 and measured by atomic absorption 

spectrophotometry (AAS). Soil reaction was determined in distilled water or 1 M 

KCl suspensions (soil solution ratio: 1:2.5), using a potentiometer. Extractable K 

and P by the Egnér-Riehm (1958) test were obtained by shaking 5 g of soil with 

a solution of ammonium lactate and acetic acid for two hours, and determined by 

AAS and UV-visible spectroscopy, respectively. 

Regarding the “4 per 1000” initiative - “Soils for Food Security and Climate” - 

(http:4p1000.org), with the objective to increase soil organic C accumulations 

globally by 0.4 percent per year, the absolute annual rate of change in SOC (kg 

C ha−1 yr−1) and the relative rate (that is, to the control value of the SOC, ‰yr−1) 
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were calculated from the SOC accumulated under improved and natural pasture 

(synchronic approach) and the study period (Corbeels et al., 2018). Although 

SOC storage rates calculated by the diachronic approach lead to more accurate 

results (Costa Junior et al., 2013), since no data on soil organic C were available 

for the initial conditions, that is, prior to management changes, the synchronic 

approach was used. 

 

Statistical analyses 

All studied variables were separately analysed for Herdade dos Esquerdos and 

Herdade do Olival. When the population normal distribution (Shapiro-Wilk test) 

and homogeneity of variances (Levene’s test) could be assumed, with or without 

data transformations (e.g. logarithm, square root), an analysis of variance 

(ANOVA) was conducted to test for differences between management system, 

tree canopy cover and respective interaction effects. If these conditions were not 

attainable, an aligned rank transformation (ART) was performed before 

submitting the data to the ANOVA. When needed, Tukey’s or Waerden’s (non-

parametric) tests were used for means comparison. Due to the high variability of 

hydraulic conductivity results, they are presented as boxplots and histograms to 

enable data analyses and interpretation. All data analysis was carried out in the 

R environment (R Core Team, 2014), including adequate packages such as 

‘agricolae’ (De Mendiburu, 2009), ‘car’ (Fox and Weisberg, 2011) and ‘ARTool’ 

(Kay and Wobbrock, 2016; Wobbrock et al., 2011). 
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RESULTS 

 

Bulk density 

At both HE and HO, soil bulk density was significantly lower beneath tree crown 

than in the open, and significantly lower in the IP than in NP pasture, but no 

significant interactions were observed between pastures and tree position (Table 

1). At the HO, bulk density values in the IP and NP (1.55 and 1,62 g cm-3, 

respectively) were higher than those measured in similar pastures (1.27 and 1.42 

g cm-3, respectively), at HE. Accordingly, values of total soil porosity were lower 

in the former (0.42 and 0.39 cm3 cm-3, respectively) than in the latter (0.52 and 

0.46 cm3 cm-3). 

 

Dispersion ratio, aggregate size distribution and stability 

Soils at HE showed significantly higher proportion of smaller aggregates (1-2 mm) 

in the NP than in IP pasture, and beneath tree crown than in the open; the 2-5 

mm aggregate fraction was also significantly higher in NP than in IP pasture 

(Table 1). At the HE, the proportion of the >5 mm aggregate fraction was 

significantly higher in the IP than in the NP, and significantly higher in the open 

than beneath tree crowns. 

At HO, aggregate size distribution did not show significant differences between 

managements or position relative to trees (Table 1). 

Soils under tree canopy, at HO, showed significantly higher proportion of water 

stable aggregates (1-2 mm fraction) than those in the open, whereas at HE no 

significant differences were observed (Table 1). The percentage of water stable 

aggregates was similar at both HE (93.4-96.5%) and HO (93.6-97.1%). 

At HE, soils under the IP showed significantly lower dispersion ratios of particles 

lower than 0.02 and 0.002 mm (36 and 6%, respectively), as compared to those 

under the NP (42 and 11%, respectively), and significant interactions were 

observed between pastures and tree position. In contrast, at HO, dispersion ratio 

for soil particles < 0.02 mm was significantly higher in the IP than in the NP, and 

in the open than beneath tree crowns. The interaction between pasture 

management and position relative to tree was significant for the dispersion ration 

of particles smaller than 0.002 mm in HO soils. 
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Table 1 - Soil bulk density (BD), aggregate size distribution (> 1 mm), water stable 1-2 
mm aggregates (WSA) and dispersion ratio (under 0.02 and 0.002 mm), in the 0-10 cm 
soil layer under improved (IP) and natural (NP) pastures, beneath canopy (BC) and in 
the open (OA), at Herdade dos Esquerdos and Herdade do Olival. Values are means 
with standard deviations in brackets (n=20, except dispersion ratio with n=12); different 
letters in the same column indicate significant differences within factor or interaction 
levels (p<0.05) by the Tukey test. 

Systems BD  

Aggregate size distribution WSA Dispersion ratio 

1 - 2 mm 2 - 5 mm > 5 mm  < 0.02 mm < 0.002 mm 

 g cm-3  %   

HERDADE DOS ESQUERDOS 

IP 1.27b (0.12)  9.2b (3.3) 22.2b (6.5) 60.0a (12.6) 94.9a (4.9) 0.36b (0.12) 0.06b (0.04) 

NP 1.42a (0.17)  11.5a (4.2) 25.4a (6.0 52.2b (14.2) 96.1a (2.5) 0.42a (0.08) 0.11a (0.06) 
         

BC 1.28b (0.18)  11.3a (3.4) 24.7a (4.5) 52.1b (11.8) 95.0a (5.1) 0.37a (0.12) 0.08a (0.04) 

OA 1.42a (0.10)  9.3b (4.2) 22.9a (7.8) 60.1a (14.9) 96.2a (1.8) 0.41a (0.08) 0.09a (0.07) 
         

IP×BC 1.18 a (0.08)  10.8a (2.7) 24.3a (3.9) 54.0a (9.9) 93.4a (6.3) 0.28b (0.09) 0.08ab (0.04) 

NP×BC 1.36 a (0.21)  11.8a (4.1) 25.0a (7.1) 50.3a (13.5) 96.3a (3.2) 0.45a (0.08) 0.08b (0.04) 

IP×OA 1.36 a (0.06)  7.5a (3.0) 20.0a (7.8) 65.9a (12.5) 96.5a (2.2) 0.44a (0.07) 0.05b (0.03) 

NP×OA 1.48 a (0.09)  11.2a (4.5) 25.9a (6.9) 54.2a (15.1) 96.0a (1.5) 0.38a (0.07) 0.14a (0.07) 

HERDADE DO OLIVAL 

IP 1.55b (0.09)  12.9a (4.8) 21.6a (5.6) 44.0a (19.8) 95.4a (4.2) 0.53a (0.07) 0,13a (0.04) 

NP 1.62a (0.14)  14.2a (4.1) 21.8a (5.4) 38.7a (18.4) 94.8a (4.7) 0.47b (0.07) 0.13a (0.04) 
         

BC 1.50b (0.10)  13.1a (4.3) 21.5a (5.2) 43.0a (18.9) 96.5a (3.0) 0.47b (0.06) 0.12a (0.04) 

OA 1.67a (0. 09)  14.1a (4.7) 22.0a (5.8) 39.8a (14.5) 93.7b (5.2) 0.53ª (0.09) 0.14a (0.04) 
         

IP×BC 1.48a (0.07)  12.3a (3.9) 23.3a (4.3) 46.3a (16.5) 97.1a (2.2) 0.48 (0.06) 0.11b (0.03) 

NP×BC 1.52a (0.12)  13.8a (4.6) 19.6a (5.6) 39.6a (21.1) 95.9a (3.6) 0.46 (0.07) 0.14ab (0.05) 

IP×OA 1.62a (0.06)  13.6a (5.6) 19.9a (6.4) 41.6a (22.9) 93.6a (5.0) 0.58 (0.05) 0.16a (0.05) 

NP×OA 1.72a (0.09)  14.6a (3.6) 24.1a (4.4) 37.8a (15.9) 93.8a (5.6) 0.48 (0.08) 0.12ab (0.03) 

 

Water content and hydraulic conductivity 

Soil water retention at the considered matric potentials was significantly lower in 

the IP than in the NP, at HE (Figure 1), while tree cover has significantly increased 

soil water retention at -5, -10 and -1500 kPa. At HO, soil water retention was 

significantly higher beneath tree canopy than in the open, and in the NP than in 

the IP, for high soil water potential (-5 kPa); interactions between management 

and tree position were only significant at low soil water potential -1500 kPa. 

Data from water retention curves indicates that the difference between mean soil 

water contents at -10 kPa and at -1500 kPa, that is, approximately the soil 

available water content, was higher at HE (0.13 and 0.18 m3 m-3) than at HO (0.08 

to 0.14 cm3 cm-3, in open and tree covered soils, respectively. 
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Figure 1 - Soil volumetric water contents at different matric potentials (ψ) in the 
0-10 cm soil layer, at Herdade dos Esquerdos (HE) and Herdade do Olival (HO). 
Points are means, bars are standard errors, and p-values result from two-way 
ANOVA (n=6) with pasture management (IP - improved; NP - natural) and 
position relative to tree (BC - beneath canopy; OA - open areas) as independent 
variables; different letters for the same matric potential indicate significant 
differences between the interaction levels (p<0.05) by the Tukey test. 
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Figure 2 - Estimated mean air filled porosity (m3 m-3) for the 0-10 cm soil layer under 
improved (IP) and natural (NP) pastures, beneath canopy (BC) and open areas (OA), at 
Herdade dos Esquerdos (HE) and Herdade do Olival (HO). 

 

At HE, estimated air filled porosity at field capacity (at -10 kPa soil water potential) 

beneath tree crowns was 0.14 and 0.30 m3 m-3 (in the NP and IP respectively), 

while in the open was 0.14 and 0.26 m3 m-3 (in the IP and NP, respectively; Figure 

2). Values at HO were much lower, up to 0.04 cm3 cm-3 beneath tree crowns, and 

varying between 0.05 and 0.01 m3 m-3 in the open, for the IP and NP, respectively. 

Air filled pores at -33 kPa were higher but corresponded only to 0.08-0.11 m3 m-

3 at HO (data not showed). 

Management system and position relative to trees did not significantly influence 

mean values of soil saturated hydraulic conductivity, at both farms (data not 

showed).  

At HE, soils under the IP had generally higher and less variable Ks values than 

those under the NP (Figures 3 and 4). 
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Figure 3 - Boxplots (n=20) for the logarithm of soil saturated hydraulic conductivity (Ks) 
measured in the 0-10 cm soil layer under improved (IP) and natural (NP) pastures, 
beneath canopy (BC) and in the open area (OA), at Herdade dos Esquerdos (HE) and 
Herdade do Olival (HO). 
 

Saturated hydraulic conductivity in soils from HO showed wider ranges (from 0 to 

11142 mm h-1) than those from HE (10 to 5019 mm h-1; Figure 3). In the HO open 

areas, IP soils presented more frequently Ks values between 1 and 10 mm h-1, 

while in NP most values were below 1 mm h-1 (Figure 4). The highest variability 

of hydraulic conductivity results was found for the NP soil samples from under the 

trees, where zero hydraulic conductivity results contrasted with a greater 

proportion of values above 100 mm h-1. 
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HE 

 

HO 

  

Figure 4 - Number of observations of saturated hydraulic conductivity values (Ks) within 
the 0-1 (A), 1-10 (B), 10-100 (C) and >100 (D) mm h-1 categories, measured in the 0-10 
cm soil layer under improved (IP) and natural (NP) pastures, beneath canopy (BC) and 
in the open area (OA), at Herdade dos Esquerdos (HE) and Herdade do Olival (HO). 

 

Soil organic C concentration and mineralization 

At both HE and HO farms, soil organic C concentrations and organic C contents, 

up to 10 cm depth, were significantly higher in the IP than in the NP, and 

significant higher beneath tree crowns than in the open (Table 2). No significant 

interactions were observed between pastures and tree position. For the same 

pasture management and the same tree position, organic C concentrations and 

accumulation at the HE were higher than those observed at the HO. 
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Table 2 - Concentrations of organic C (Corg), organic C contents (Cc), particulate organic matter C (POM-C), hot water soluble C (HWS-C), mineral 
associated C (MA-C) and respective proportions of total organic C (POM-C/C, HWS-C/C, MA-C/C), in the 0-10 cm soil layer under improved (IP) 
and natural (NP) pastures, beneath canopy (BC) and in the open (OA), at Herdade dos Esquerdos and Herdade do Olival. Values are means 
with standard deviations in brackets (n=12); different letters in the same column indicate significant differences within factor or interaction levels 
(p<0.05) by the Tukey test. 

Systems Corg  Cc  POM-C HWS-C MA-C  POM-C/C HWS-C/C MA-C/C 

 g kg-1  kg m-2  g kg-1  % 

HERDADE DOS ESQUERDOS 

IP 27.1a (8.4)  2.51a (0.72)  12.8a (6.7) 1.33a (0.6) 14.3a (3.9)  43.1a (9.2) 4.6a (1.2) 55.2b (12.7) 

NP 18.3b (6.5)  1.94b (0.68)  6.2b (2.5) 0.59b (0.3) 12.6a (4.9)  35.7b (15.0) 3.3b (1.2) 66.7a (9.2) 
            

BC 28.4a (6.8)  2.71a (0.56)  12.4a (6.5) 1.21a (0.7) 16.0a (4.0)  40.4a (10.9) 3.9a (1.1) 58.0b (14.3) 

OA 17.0b (6.3)  1.74b (0.59)  6.6b (3.6) 0.72b (0.5) 10.8b (3.2)  38.5a (14.8) 4.0a (1.6) 63.9a (9.5) 
            

IP×BC 33.1a (5.9)  2.98a (0.53)  17.2a (5.8) 1.63a (0.7) 15.9a (4.6)  48.1a (7.6) 4.5a (1.2) 48.6b (13.1) 

NP×BC 23.8a (3.6)  2.44a (0.46)  7.7a (2.0) 0.79a (0.2) 16.1a (3.6)  32.6b (7.8) 3.3a (0.7) 67.4a (7.8) 

IP×OA 21.2a (5.8)  2.04a (0.56)  8.4a (4.0) 1.03a (0.5) 12.8a (2.3)  38.1ab (8.1) 4.8a (1.3) 61.9a (8.1) 

NP×OA 12.9a (3.2)  1.44a (0.46)  4.8a (2.1) 0.40a (0.2) 8.7b (2.6)  38.8ab (19.8) 3.3a (1.6) 66.0a (10.9) 

HERDADE DO OLIVAL 

IP 18.7a (3.8)  1.60a (0.38)  7.45a (2.3) 0.54a (0.2) 11.2a (2.5)  41.0a (4.7) 2.95b (0.43) 60.3a (7.8) 

NP 13.6b (5.2)  1.32b (0.46)  5.42b (3.4) 0.46b (0.2) 8.1b (2.7)  35.6b (7.3) 3.30a (0.69) 61.1a (13.1) 
            

BC 19.6a (4.0)  1.70a (0.37)  8.24a (3.0) 0.64a (0.2) 11.3a (2.2)  40.0a (6.5) 3.27a (0.62) 58.8a (8.7) 

OA 12.7b (3.8)  1.23b (0.38)  4.63b (1.8) 0.36b (0.1) 8.1b (2.9)  36.7a (6.5) 2.96a (0.54) 62.6a (12.2) 
            

IP×BC 21.9a (2.1)  1.79a (0.35)  9.01a (1.8) 0.69a (0.2) 12.9a (1.0)  40.9a (4.8) 3.12a (0.44) 59.0a (4.9) 

NP×BC 17.2a (4.3)  1.60a (0.39)  7.46a (3.8) 0.59a (0.2) 9.8a (2.0)  39.0a (8.0) 3.42a (0.75) 58.5a (11.7) 

IP×OA 15.5a (2.0)  1.42a (0.32)  5.88a (1.6) 0.39a (0.1) 9.6a (2.6)  41.0a (4.8) 2.75a (0.34) 61.5a (10.0) 

NP×OA 9.9a (2.8)  1.04a (0.35)  3.38a (1.0) 0.32a (0.1) 6.5a (2.3)  32.3a (4.9) 3.17a (0.63) 63.8a (14.4) 
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Particulate organic matter carbon (POM-C) concentration followed the trend observed 

for total soil organic C concentration in both HE and HO (Table 2). As a fraction of total 

soil organic C, POM-C was significantly higher under IP than NP at HE, the interaction 

of management and tree position being also significant. In HO, the POM-C fraction 

was significantly higher beneath tree canopy than in the open, while no significant 

differences were associated to pasture management. 

Hot water soluble carbon (HWS-C) concentration was significantly higher in the IP than 

in the NP pasture, and beneath tree crowns than in the open, for both farms. As a 

fraction of total soil organic C, HWS-C was significantly higher under the IP than the 

NP at HE, and an inverse trend was observed at HO. 

 

Figure 5 - Cumulative mineralised C along 120 days of laboratory incubation of the 0-10 cm 
soil layer under improved (IP) and natural (NP) pastures, beneath canopy (BC) and in the open 
area (OA), at Herdade dos Esquerdos (HE) and Herdade do Olival (HO). Points are means, 
bars are standard errors (n=6); different letters for the same day indicate significant differences 
between the interaction levels (p<0.05) by the Tukey test. 
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As observed for soil organic C concentrations, mineralized C throughout the 

incubation, both at HE and HO, was significantly higher in the IP than in the NP, and 

beneath tree crowns than in the open (Figure 5, Table 3). At HE, the mineralized C in 

the IP beneath tree crown doubled that of the NP, but an inverse trend was observed 

in the open; the mineralized C was significantly greater in soils beneath tree crowns 

than in the open, but differences were only statistically significant for the IP. At HO, the 

mineralized C in the IP beneath tree crown also doubled that of the NP, and that in the 

IP beneath tree crowns was about four times higher than in the open. Mineralized C in 

tree-covered areas was higher at HO than at HE for both IP and NP. 

Significantly higher C mineralized per unit of C was observed, at HE, in soils beneath 

tree crown than in the open; also, it was significantly higher for the IP beneath trees 

than in the open. Values of C mineralized per unit of C were higher at HO than at HE 

(Table 3). 

The concentration of organic microbial biomass C (Cmic), at HE, was significantly higher 

in the NP than in the IP, and beneath tree crowns than in the open; the Cmic, in the 

open was significantly higher in NP than in IP, and for IP was significantly higher 

beneath trees than in the open. At HO, the concentrations of Cmic, which were higher 

than at HE, were significantly higher beneath trees than in the open; the Cmic was 

significantly higher in the IP than in the NP, beneath trees, and significantly lower in 

the open; values for IP were significantly higher beneath trees than in the open.  

The proportion of Cmic relative to total organic C, at both HE, was significantly higher in 

the NP than in the IP, and no significant interactions were observed between pastures 

and tree position.  At HO, it was significantly higher in the NP than in the IP and in the 

open than beneath trees; this proportion, in the open was significantly higher in NP 

than in IP; and for the NP was significantly higher in the open than beneath trees.  

No significant differences were observed for the metabolic coefficient (qCO2) between 

pastures and tree positions, at both HE and HO. Among HE systems, the qCO2 was 

significantly higher in the IP than in the NP, beneath tree canopies. At HO, values for 

the IP were significantly higher beneath canopy than in the open. 
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Table 3 - Concentration of organic microbial biomass C (Cmic) and N (Nmic), respective proportions of organic C (Cmic/C) and total N 

(Nmic/N), microbial C:N ratio (Cmic:Nmic), potential mineralizable C (Cmin), metabolic coefficient (qCO2) and mineralized C per unit of 
soil organic C (MC/C), in the 0-10 cm soil layer under improved (IP) and natural (NP) pastures, beneath canopy (BC) and in the open 
(OA), at Herdade dos Esquerdos and Herdade do Olival. Values are means with standard deviations in brackets (n=6); different 
letters in the same column indicate significant differences within factor or interaction levels (p<0.05) by the Tukey or Waerden tests. 

Systems Cmic Nmic  Cmic:Nmic  Cmic/C Nmic/N  qCO2  Cmin  MC/C 

 mg kg-1     %  mg CO2-C g-1 Cmic h-1  g CO2-C kg-1  mg CO2-C g-1 Corg 

HERDADE DOS ESQUERDOS 

IP 195.4b (103.6) 22.2b (14.4)  9.62a (1.64)  0.74b (0.13) 0.93b (0.31)  1.26a (0.50)  0.53a (0.35)  15.4a (3.9) 

NP 240.1a (31.9) 28.9a (4.8)  8.37b (0.61)  1.16a (0.23) 1.74a (0.36)  0.95a (0.49)  0.41b (0.09)  16.1a (2.6) 
          

 

   

BC 258.1a (58.0) 30.8a (8.0)  8.74b (0.79)  0.89a (0.28) 1.36a (0.39)  1.17ª (0.61)  0.64 a (0.24)  17.2a (2.3) 

OA 177.4b (77.0) 20.3b (11.5)  9.52a (1.64)  1.01a (0.29) 1.31a (0.66)  1.04ª (0.40)  0.31b (0.13)  14.2b (3.4) 
7          

 

   

IP×BC 284.3a (66.4) 34.7a (9.0)  8.27b (0.96)  0.70a (0.13) 1.11bc (0.28)  1.59a (0.29)  0.85a (0.10)  18.1a (3.0) 

NP×BC 231.9a (36.6) 26.9a (4.8)  8.67b (0.60)  1.09a (0.25) 1.59ab (0.36)  0.74b (0.55)  0.42b (0.08)  16.4ab (1.2) 

IP×OA 106.5b (14.9) 9.7b (1.1)  11.0a (0.80)  0.79a (0.14) 0.73c (0.20)  0.93ab (0.45)  0.21c (0.05)  12.6b (2.6) 

NP×OA 248.3a (27.1) 30.9a (4.4)  8.07b (0.50)  1.24a (0.20) 1.90a (0.30)  1.16ab (0.35)  0.40b (0.10)  15.9ab (3.6) 

HERDADE DO OLIVAL 

IP 385.9a (177.7) 46.1a (24.5)  8.86b (1.35)  1.09b (0.13) 1.45b (0.24)  1.06ª (0.61)  0.89a (0.62)  19.1a (5.3) 

NP 379.2a (96.1) 39.1a (11.1)  9.78a (0.61)  1.42a (0.41) 1.79a (0.37)  0.95ª (0.43)  0.65b (0.24)  20.5a (4.1) 
          

 

   

BC 469.2a (126.2) 55.1a (18.0)  8.75b (1.02)  1.16b (0.24) 1.59a (0.29)  1.18ª (0.66)  1.11a (0.46)  20.9a (5.3) 

OA 295.8b (91.3) 30.1b (9.0)  9.89a (0.95)  1.46a (0.32) 1.65a (0.41)  0.83ª (0.25)  0.44b (0.13)  18.7a (4.0) 
0.06 

 
         

 

   

IP×BC 550.3a (61.9) 69.0a (6.0)  7.98a (0.58)  1.02b (0.15) 1.62b (0.15)  1.47ª (0.61)  1.44a (0.35)  21.6a (5.1) 

NP×BC 388.2b (124.2) 41.3b (14.6)  9.52a (0.73)  1.10b (0.32) 1.56bc (0.39)  0.88ab (0.62)  0.78b (0.28)  20.2a (5.8) 

IP×OA 221.5c (28.5) 23.2c (4.6)  9.74a (1.35)  1.17b (0.07) 1.28c (0.19)  0.65b (0.23)  0.34c (0.07)  16.6a (4.7) 

NP×OA 370.1b (65.3) 36.9b (6.7)  10.0a (0.35)  1.75a (0.14) 2.01a (0.15)  1.01ab (0.13)  0.53bc (0.10)  20.8a (1.5) 
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Soil N concentration and mineralization 

Soil total N concentrations and accumulation, at HE, were significantly higher in the IP 

than in the NP, and under tree crowns than in the open, but no significant interaction 

was observed between pastures and tree position. Similar trend was observed for total 

N concentrations at HO (Table 4). 

The C:N ratio, at both HE and HO, was significantly higher under tree crowns than in 

the open, and no significant differences were observed between pastures.  

The concentration of organic microbial biomass N (Nmic), at HE, was significantly higher 

in the NP than in the IP, and beneath tree crowns than in the open (Table 3); the 

interaction pasture x tree position showed that, in the open, Nmic was significantly 

higher in the NP than in the IP; and for the IP it was significantly higher beneath trees 

than in the open. At HO, Nmic was significantly higher beneath trees than in the open; 

the interaction indicates that beneath trees it was significantly higher in the IP than in 

the NP, but in the open it was significantly higher in the latter than in the former; also, 

for the IP, it was significantly higher beneath trees than in the open. 

The proportion of Nmic relative to total N, at both HE and HO, was significantly higher 

in the NP than in the IP (Table 3). At HE, the difference between pastures was stronger 

in the open (2.6 times) than beneath trees (1.4 times), difference being narrow at HO. 

The Cmic:Nmic ratio (Table 3), at both HE and HO was significantly higher in the open 

than beneath trees; at the HE it was higher in the IP than in the NP, but at HO the 

inverse occurred. At HE, in the open, it was significantly higher in the IP than in the 

NP, and for the IP it was significantly lower beneath tree crowns than in the open. 

At HE, net ammonification was negligible for the IP and the NP in both tree positions 

(Table 4). In contrast, at the HO net ammonification was observed throughout the 

incubation period, being significantly higher in the IP than in the NP, and beneath tree 

crown than in the open (Figure 6). Net ammonification values in both IP and NP 

beneath tree crown were much higher (90.3 and 82.9 mg N kg-1 soil, respectively) than 

those observed in the open (29.8 and 1.82, mg N kg-1 soil, respectively). Differences 

between pastures were much higher in the open (16.3 times) than beneath trees (1.1 

times). 

Net nitrification N, at HE, was significantly higher in the NP than in the IP, and beneath 

tree crowns than in the open (Table 4). Beneath trees it was significantly higher in the 

IP than in the NP, but in open areas an opposite trend was observed; for the IP, it was 

significantly higher beneath trees than in the open.  
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Table 4 - Total N concentration, N content (Nc), C:N ratio, initial and net mineralized N (N-NH4
+, N-NO3

-), and N mineralized N per unit of 
soil N (MN/N), in the 0-10 cm soil layer under improved (IP) and natural (NP) pastures, beneath canopy (BC) and in the open (OA), at 
Herdade dos Esquerdos and Herdade do Olival. Values are means with standard deviations in brackets (n=6); different letters in the same 
column indicate significant differences within factor or interaction levels (p<0.05) by the Tukey or Waerden tests. 

 
Total N  Nc C:N 

Initial mineral N  Net mineralized N  MN/N 

Systems NH4
+-N NO3

--N (NH4
+ +NO3

-)-N  NH4
+-N NO3

--N (NH4
+ +NO3

-)-N   

 g kg-1  g m2  mg N kg-1  mg g-1 

HERDADE DOS ESQUERDOS 

IP 2.14a (0.6)  197.9a (54.7) 12.9a (1.2) 9.80a (9.9) 8.62a (12.1) 18.42a (21.2)  -2.48a (8.8) 121.0b (43.8) 118.5b (42.4)  59.4b (12.9) 

NP 1.42b (0.5)  150.1b (48.7) 12.8a (0.9) 4.73b (0.4) 1.67b (1.6) 6.40b (1.7)  2.92a (4.6) 133.1a (12.5) 136.0a (15.5)  81.6a (8.2) 
                

BC 2.18a (0.5)  207.5a (45.3) 13.3a (1.0) 10.03a (9.8) 9.34a (11.7) 19.37a (20.6)  -2.08a (9.0) 146.4a (20.0) 144.4a (20.9)  65.7b (18.7) 

OA 1.38b (0.5)  140.5b (46.5) 12.4b (0.8) 4.51b (0.2) 0.95b (0.8) 5.45b (0.8)  2.52a (4.5) 107.6b (30.5) 110.2b (33.5)  75.3a (10.3) 
              

IP×BC 2.54a (0.5)  228.9a (47.7) 13.6a (1.0) 15.17a (12.2) 16.03a (13.8) 31.20a (24.5)  -5.39a (12.2) 161.2a (11.2) 155.8a (19.9)  51.8a (14.4) 

NP×BC 1.82a (0.2)  186.1a (31.8) 13.1a (1.0) 4.88b (0.6) 2.66b (1.7) 7.54b (1.8)  1.24a (1.2) 131.7b (15.3) 133.0a (16.0)  79.7a (9.6) 

IP×OA 1.74a (0.5)  166.9a 43.4) 12.2a (0.9) 4.43b (0.2) 1.21b (1.0) 5.64b (1.1)  0.44a (0.1) 80.9c (15.0) 81.3b (15.0)  67.0a (4.7) 

NP×OA 1.03a (0.2)  114.1a (33.4) 12.5a (0.8) 4.58b (0.1) 0.69b (0.4) 5.26b (0.3)  4.60a (5.9) 134.4b (10.2) 139.0a (15.8)  83.6a (6.8) 

HERDADE DO OLIVAL 

IP 1.49a (0.2)  127.5a (20.6) 12.6a (2.5) 6.55a (3.3) 2.13a (2.0) 8.68a (5.0)  60.1a (34.5) 138.3a (39.6) 194.2a (69.2)  69.9b (12.2) 

NP 1.18b (0.4)  116.9a (42.0) 11.5a (2.5) 4.56b (0.3) 0.44b (1.1) 5.00b (1.1)  42.4b (43.5) 130.6a (17.1) 172.5ª (43.1)  81.9ª (10.1) 
              

BC 1.49a (0.4)  130.5a (38.9) 13.4a (2.4) 6.56a (3.3) 1.94ª (2.3) 8.50a (5.2)  86.6ª (14.5) 152.4ª (27.2) 231.1ª (36.3)  73.0ª (15.8) 

OA 1.18b (0.3)  113.9a (24.4) 10.7b (1.9) 4.55b (0.3) 0.63b (0.7) 5.19b (0.8)  15.8b (17.6) 116.4b (21.1) 135.6b (24.6)  78.8ª (8.0) 
              

IP×BC 1.58a (0.2)  129.2a (24.6) 14.0a (2.5) 8.51a (3.8) 3.12a (2.4) 11.63a (5.8)  90.3a (14.6) 173.6ª (7.6) 255.6a (24.4)  61.9b (9.6) 

NP×BC 1.39a (0.4)  131.8a (50.6) 12.8a (2.3) 4.60b (0.1) 0.76a (1.5) 5.36b (1.5)  82.9a (14.8) 131.2b (22.2) 206.7b (29.6)  84.1a (12.7) 

IP×OA 1.39a (0.1)  125.8a (16.7) 11.2a (1.6) 4.59b (0.2) 1,14a (0.7) 5.73b (0.8)  29.8a (14.6) 102.9c (19.8) 132.7c (29.8)  77.9a (9.1) 

NP×OA 0.97a (0.2)  102.0a (25.5) 10.1a (2.1) 4.52c (0.4) 0.13a (0.3) 4.65c (0.5)  1.82b (1.4) 130.0b (12.2) 138.4c (20.5)  79.7a (7.4) 
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Figure 6 - Net ammonification and nitrification along 112 days of laboratory incubation of the 0-10 cm soil layer under improved (IP) and 
natural (NP) pastures, beneath tree canopy (BC) and in the open (OA), at Herdade dos Esquerdos (HE) and Herdade do Olival (HO). Points 
are means, bars are standard errors (n=6); different letters for the same day indicate significant differences between the interaction levels 
(p<0.05) by the Tukey test. 
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The lowest net nitrification was observed for the IP in the open, and at the end of the 

incubation period it was nearly a half (80.1 mg NO3
--N kg-1 soil) of that registered from 

other HE soils (131 to 161 mg kg-1). 

At HO, net nitrification N was significantly higher beneath tree crowns than in the open, 

but no significant differences were observed between pastures (Table 4); interactions 

followed the trend described for HE. Net nitrification was significantly lower in soil with 

improved pasture in the open (102.9 mg NO3
--N kg-1) than in other soils (130.0-173 mg 

NO3
--N kg-1), while the highest value was observed in the IP beneath tree crowns (173 

mg NO3
--N kg-1; Figure 6). 

Net mineralized N (NH4
+ +NO3

-), at both HE and HO, followed the pattern exhibited by 

the net nitrification N (Table 4). At HE, values in soils with IP, in the open, showed the 

lowest values (81.3 mg mineralized N kg-1 soil), which were significantly lower than in 

the other studied HE systems (133.0-155.8 mg mineralized N kg-1 soil). In the HE open 

areas, values in the IP (132.7 mg mineralized N kg-1 soil) and in the NP (138.4 mg 

mineralized N kg-1 soil) were significantly higher than beneath tree crowns 

(respectively, 255.6 and 206.7 mg mineralized N kg-1 soil). 

Net mineralized N per unit of initial N, at HE, was significantly higher in the NP than in 

the IP (81,6 and 59.4 mg mineralized N g-1 initial N), and in the open than beneath 

(75.3 and 65.7 mg mineralized N g-1 initial N, respectively) tree crowns (Table 4); no 

interactions were observed between pastures and tree position. Values, at HO, were 

in the same range and were significantly lower in the IP (69.9 mg mineralized N g-1 

initial N) than in the NP (81.9 mg mineralized N g-1 initial N). Net mineralized N per unit 

of initial N had only distinguished the IP beneath trees (61.9 mg mineralized N g-1 initial 

N) which was significantly lower than in the NP (84.1 mg mineralized N g-1 initial N), 

and significantly lower than in the open (77.9 mg mineralized N g-1 initial N). 

 

Soil fertility 

At HE, no significant differences were observed for pH values in water between 

pastures and between tree positions, while determinations in the KCl were significantly 

higher in the IP than the NP, and beneath tree crowns than in the open (Table 5). At 

HO, pH values in water were significantly higher in the NP than in the IP, and in the 

open than beneath tree canopy, but no interactions were observed between pastures 

and tree position (Table 5); in the open, values were significantly higher in the NP than 

in the IP, and values for NP were significantly higher in the open than beneath trees. 
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At both HE and HO, soil extractable P concentration was significantly higher in the IP 

than in the NP, and beneath tree crown than in the open, but no interactions between 

pastures and tree position were observed (Table 5). 

At the HE soils, concentration of extractable K was significantly lower under the IP than 

in the NP, and higher beneath trees than in the open (Table 5). At the HO, it was 

significantly higher beneath trees than in the open, but beneath tree crown the 

concentration was significantly higher in the IP than in the NP, and within IP was 

significantly higher beneath trees than in the open.  

Concentrations of exchangeable Ca2+, at HE, were significantly higher in the IP than in 

the NP, and beneath tree crown than in the open, but no interactions were observed 

(Table 5). Similar trend was observed for Mg2+ concentrations between pastures, at 

HO, and tree position, at HE. Concentrations of K+, at HE, were significantly lower in 

the IP than in the NP, and significantly higher beneath tree crown than in the open. At 

HO, concentrations of K+ were significantly higher beneath tree crowns than in the 

open, and in the open were significantly higher in the NP than in the IP; for the IP, 

exchangeable K+ concentrations were significantly higher beneath tree crowns than in 

the open. 
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Table 5 - Soil pH (in H2O and KCl), extractable P and K, and exchangeable non-acid cations (Ca2+, Mg2+, Na+, K+) in the 
0-10 cm soil layer under improved (IP) and natural (NP) pastures, beneath canopy (BC) and in the open (OA), at Herdade 
dos Esquerdos and Herdade do Olival. Values are means with standard deviations in brackets (n=12); different letters in 
the same column indicate significant differences within factor or interaction levels (p<0.05) by the Tukey test. 

Systems 
pH   Extractable  Exchangeable 

H2O KCl  P K  Ca2+ Mg2+ Na+ K+ 
    mg kg-1  cmolc kg-1 

HERDADE DOS ESQUERDOS 

IP 5.62a (0.26) 4.54a (0.27)  62.9a (27.2) 150.7b (102.6)  4.68a (1.60) 0.99a (0.65) 0.14b (0.06) 0.41b (0.25) 

NP 5.61a (0.21) 4.39b (0.28)  6.4b (3.6) 207.5a (72.1)  2.87b (1.02) 0.74a (0.27) 0.20a (0.02) 0.53a (0.17) 
   

 

  

 

    

BC 5.66a (0.23) 4.62a (0.25)  41.7a (39.5) 231.6a (93.9)  4.58a (1.54) 1.12a (0.55) 0.17a (0.05) 0.61a (0.18) 

OA 5.57a (0.23) 4.31b (0.23)  27.6b (27.5) 126.5b (53.1)  2.97b (1.26) 0.60b (0.29) 0.17a (0.05) 0.33b (0.15) 
   

 

  

 

    

IP×BC 5.67a (0.25) 4.68a (0.26)  74.9a (29.0) 204.7a (116.6)  5.58a (1.45) 1.37a (0.68) 0.14a (0.06) 0.57a (0.22) 

NP×BC 5.66a (0.21) 4.56a (0.24)  8.4a (3.5) 258.5a (57.5)  3.58a (0.83) 0.87a (0.22) 0.20a (0.02) 0.65a (0.12) 

IP×OA 5.57a (0.27) 4.40a (0.21)  50.9a (20.0) 96.6a (45.3)  3.79a (1.23) 0.60a (0.33) 0.14a (0.06) 0.24a (0.14) 

NP×OA 5.56a (0.20) 4.22a (0.22)  4.4a (2.4) 156.4a (43.7)  2.16a (0.61) 0.60a (0.25) 0.20a (0.02) 0.41a (0.11) 

HERDADE DO OLIVAL 

IP 5.65b (0.23) 4.34a (0.28)  25.0a (10.6) 138.3a (67.2)  4.28a (0.94) 1.40b (0.35) 0.14b (0.02) 0.35a (0.19) 

NP 5.80a (0.41) 4.17b (0.39)  2.4b (1.9) 118.4a (42.5)  3.98a (1.18) 3.02a (0.95) 0.22a (0.04) 0.37a (0.13) 
   

 

  

 

    

BC 5.52b (0.28) 4.13b (0.43)  16.2a (15.5) 159.6a (58.9)  3.98a (1.11) 2.20a (0.87) 0.18a (0.06) 0.45a (0.15) 

OA 5.93a (0.27) 4.38a (0.15)  10.8b (11.3) 95.2b (27.7)  4.28a (1.03) 2.22a (1.27) 0.18a (0.04) 0.26b (0.10) 
   

 

  

 

    

IP×BC 5.59bc (0.27) 4.33bc (0.37)  30.8a (8.5) 187.0a (57.4)  4.47a (0.64) 1.56b (0.27) 0.14a (0.02) 0.49a (0.16) 

NP×BC 5.46c (0.28) 3.93c (0.40)  2.8a (2.2) 132.2b (48.1)  3.50a (1.28) 2.84a (0.80) 0.23a (0.05) 0.41ab (0.14) 

IP×OA 5.71b (0.18) 4.34b (0.14)  19.6a (9.7) 85.0c (18.2)  4.08a (1.17) 1.25b (0.36) 0.15a (0.02) 0.20c (0.05) 

NP×OA 6.14a (0.14) 4.42a (0.15)  2.0a (1.5) 104.6bc (32.2)  4.47a (0.88) 3.19a (1.08) 0.21a (0.03) 0.33b (0.10) 
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DISCUSSION 

 
Soil physical status 

Soils from the study pastures showed a wide range of bulk density values (1.18 

to 1.72 g cm-3), and the range at Herdade dos Esquerdos (1.18-1.48 g cm-3) was 

substantially different from that observed at Herdade do Olival (1.48-1.72 g cm-

3). Results obtained at Herdade dos Esquerdos indicate that a 35-year period of 

improved pasture management can lead to decreasing soil bulk density, relative 

to natural pasture, both beneath trees and in open areas, following trends 

reported by Gómez-Rey et al. (2012) for a 26-year old improved pasture at a 

similar site. Such a trend may be mostly associated with the observed increase 

in soil organic C concentration, which are indicative of higher soil organic matter 

contents and related soil biological activity (Rabot et al., 2018). It is noteworthy 

that, despite the increase in stocking rate under the improved pasture, soil bulk 

density was lower (1.18-1.36 g cm-3) than that in the natural pasture (1.36-1.48 g 

cm-3), values being typical of non-compacted sandy loam textured soils (below 

1.60 g cm-3), for which no constrains to plant roots growth are expected (Weil and 

Brady, 2017). It is therefore clear, that the increase in sheep grazing density 

practiced in the improved pasture system, may not only present deleterious 

effects on soil physical conditions (e.g. total and aeration porosity), but also 

contribute to an improvement of the soil physical status, as compared with the 

extensively grazed natural pasture system. 

However, results of the present study also indicate that the establishment of 

improved pastures does not necessarily ensures soil adequate physical 

conditions. Indeed, at Herdade do Olival, where pastures are grazed by cattle, 

soil bulk density values were also lower under improved (1.48 and 1.62, 

respectively beneath trees and in the open) than natural pasture (1.52 and 1.72 

g cm-3, respectively beneath trees and in the open), but those were mostly above 

the threshold for non-compacted soils with loam texture (1.5 g cm-3; Weil and 

Brady, 2017). These high soil bulk density values may correspond to a strong 

decrease of total soil porosity (and aeration porosity), suggesting that, despite 

some soil structural preservation may have resulted from the 16-year old 

improved pasture management, it was not sufficiently effective to avoid soil 

physical degradation associated with cattle presence (Pulido et al., 2018). Soil 
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structural deformation processes such as compaction, pugging and poaching, 

can result from the treading action of livestock on soil surface (Billota et al., 2007). 

Cattle hooves are known to exert greater forces onto the soil surface, creating 

much higher static pressures than those of sheep (Greenwood & Mackenzie, 

2001; Billota et al., 2007). Additionally, cattle permanence throughout the whole 

year, including the wet season, when soil moisture is high, may further enhance 

soil physical damaging under these systems (Pulido et al. 2017; Billota et al. 

2017). 

As values of soil bulk density observed in the Herdade do Olival loam textures 

soils are within the “very high” soil degradation category (>1.6 g cm-3), reported 

by Pulido et al. (2017) for similar Mediterranean rangelands occurring mainly over 

sandy-loam textured soils, and considering the present study stocking rate of 0.7 

LU ha-1 year-1, as compared to the 1 LU ha-1 year-1 threshold found by those 

authors, soil texture seems to be conditioning the present study systems 

susceptibility to the physical degradation effects of cattle treading (Weil and 

Brady, 2017; Pulido et al. 2017). 

 
Values of soil bulk density in the improved pasture, at Herdade dos Esquerdos, 

indicate more favourable total soil porosity conditions, particularly higher aeration 

porosity (air filled pores at soil water potential of -10 kPa), which has doubled that 

of the natural pasture system. Accordingly, even though soil saturated hydraulic 

conductivity in both pastures was consistently above 10 mm h-1, a higher 

proportion of values higher than 100 mm h-1 was obtained for the improved 

pasture. These data suggest that the improved pasture management, and 

associated higher sheep grazing intensity, did not led to restrictions regarding soil 

water movement through the soil surface layer, following a pattern reported for 

non-compacted soils (Brevik & Fenton, 2012). 

Nevertheless, negative effects over soil porosity, attributed to soil compaction by 

grazers treading, were observed in both natural and improved pastures at 

Herdade do Olival. While total soil porosity was lower in this farm (0.35-0.44 m3 

m-3) than in the Herdade dos Esquerdos (0.44-0.55 m3 m-3), this effect was even 

more evident on the estimated air filled porosity (at water potential of -10 kPa), 

suggesting that, under Herdade do Olival conditions, soil aeration porosity is 

nearly negligible, as reported by Greacen & Sands (1980), and by Sharrow (2007) 
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for compacted soils. This trend fully agrees with the overall low saturated 

hydraulic conductivity observed for these soils, with many observations under 1 

mm h-1, following reports by Brevik & Fenton (2012) and Greenwood & Mackenzie 

(2001), on heavily compacted soils. As such a hydrological behaviour suggests a 

decrease in soil infiltration rates, increased risks of surface runoff must also be 

considered (Billota et al., 2007; Pulido et al., 2017). Also, under these 

unfavourable conditions for soil drainage, soil water saturation and restriction to 

soil aeration during the wet season may become a problem, with negative effects 

on pasture productivity (Pulido et al., 2018), tree vitality (Costa et al., 2008; 

Hernández-Lambraño et al., 2018), soil nutrient cycling and potential soil 

greenhouse gas emissions (Oenema et al., 1997; Oertel et al., 2016). 

The uneven spatial distribution pattern by animal treading strongly reflects in the 

high spatial variability observed for values of bulk density and saturated hydraulic 

conductivity, which is in line with trends reported for soils affected by grazing by 

Billota et al. (2007) and Sharrow (2007). Yet, in a parallel determination at the 

Herdade do Olival, in visually identified high pugging sites, soil bulk density was 

similar (1.74 g cm-3; data not showed) to the mean value obtained for the natural 

pasture open areas with the current study sampling design, suggesting the 

presented data may broadly reflect these pastures soil physical conditions.  

 
Variations in soil bulk density affected other soil properties, such as water 

retention and water availability. In Herdade dos Esquerdos, it is noteworthy that 

lower water retention capacity and water availability (difference between water 

contents at -10 and -1500 kPa), associated with higher proportion of hydraulic 

conductivity values above 100 mm h-1, was exhibited by soils in the 35-year old 

improved pasture, compared to those in the natural pasture. This trend is in 

accordance with data reported by Greacen & Sands (1980) and Ordóñez et al. 

(2018), who found soil water holding capacity was increased by soil compaction, 

because of the occurrence of smaller pores able to retain water (Sharrow, 2007). 

In this sense, improved pastures long-term management does not necessarily 

lead to higher soil water retention or availability, but mostly results in better soil 

hydrological and aeration conditions. 

Notwithstanding, data obtained at Herdade do Olival did not agree with the 

increase of water holding capacity reported by Greenwood & Mckenzie (2001) for 
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compacted soils. Despite the observed differences in soil bulk density indicate 

different degrees of soil compaction, between natural and improved pasture, 

these soils water holding capacity was similar, both under tree crowns and in the 

open. Moreover, when compared to the Herdade dos Esquerdos sandy loam 

soils, Herdade do Olival loamy soils showed lower water availability, suggesting 

that the excessive compaction in the former, may not lead to increasing water 

holding capacity (Zhang et al. 2017), and can, in addition, lead to an increased 

water retention in smaller pores, and therefore a reduction of roots access to 

water. In fact, low soil porosity, due to the development of excessive soil 

compaction in Herdade do Olival, was associated with a very small air filled 

porosity (0.01-0.05 m3 m-3), at field capacity conditions (-10 kPa). As these values 

are much lower than the 0.1 m3 m-3 threshold assumed to be critical for plant 

growth (Chen et al., 2014; Fashi et al., 2017), such compacted and low water 

availability soil conditions suggest that the near soil surface physical conditions 

are strongly restrictive for potential root growth (Weil and Brady, 2017; Leão et 

al., 2006). Furthermore, water resources use efficiency can be reduced, raising 

critical issues under these Mediterranean environments (Turner, 2004). 

 
Overall, changes in soil physical conditions (e.g. soil bulk density and saturated 

hydraulic conductivity) caused by the establishment of improved pastures, 

compared to the respective natural systems, may be mostly related to 

herbaceous biomass production increase (both above and belowground), as their 

organic inputs and associated biological activity can promote soil structure 

development (Bronick and Lal, 2005; Oades, 1984). Yet, no consistent changes 

were revealed regarding soil aggregation development or stability enhancement, 

suggesting the period of pasture establishment and the magnitude of changes 

were not sufficient to express effects on the study soils structural organization. 

As our results suggest that soil bulk density and related characteristics, such as 

saturated hydraulic conductivity, may be useful indicators for assessment of soil 

physical quality changes, using visual methodologies, such as the one developed 

by Ball et al. (2007), could also be of great usefulness for these pasture systems 

monitorization purposes. 

Soil aggregates (1-2 mm) stability in water was high (above 93%) for both farms 

and pasture management systems. Accordingly, relatively low water dispersion 
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ratios of clay particles (0.05-0.16) were determined, which may reflect these soils 

nearly undisturbed management (no tillage or occasional tillage), across all study 

management systems (Bronick and Lal, 2005; Totsche et al., 2018). 

Nevertheless, further studies are needed for a deeper understanding on soil 

microaggregation temporal and spatial dynamics, as highlighted by Totsche et al. 

(2018). 

 
Data obtained in both farms highlight the recognized role of oak trees on the 

improvement of soil physical conditions in pasture systems, as they contributed 

to decrease soil bulk density and increase soil porosity, following trends reported 

by Belsky et al. (1989), Dahlgren et al. (1997, 2003) and Rhoades (1997). Such 

trends may be mostly a consequence of tree organic residue inputs, via litterfall 

and root litter (Escudero et al., 1985; Sá et al., 2005), and soil surface protection 

by the accumulation of a soil litter layer (Nunes, 2001; Fisher and Binkley, 2000), 

leading to higher concentration of soil organic C and stronger soil biological 

activity (Spohn, 2015; Waldrop and Firestone, 2006). In this sense, maintenance 

of oak trees at the montado landscape level can be a management tool to 

reconcile increasing grazing intensity with soil quality improvement and resilience 

to degradation. However, the results of the current study indicate that the role of 

trees in promoting soil physical quality and reversing soil physical degradation 

patterns, is strongly dependent on the management systems. Indeed, under the 

more intensive grazing conditions at Herdade do Olival, the presence of oak trees 

in both improved and natural pastures was not enough to achieve adequate soil 

physical conditions (such as soil aeration, water infiltration and drainage) and did 

not ensure suitable rooting environment, which in turn may harm both pasture 

and tree vitality and productivity (Pulido et al., 2018). 

 

Soil organic C accumulation and mineralization 

Soil organic C concentrations at Herdade dos Esquerdos and at Herdade do 

Olival varied from 13 to 36 and 10 to 27 g C kg-1 respectively, which are within 

those reported by Pulido-Fernández et al. (2013) for Mediterranean rangelands, 

similar to those reported by Gómez-Rey at al. (2012) for improved and natural 

pastures under similar systems, but higher than those reported by Rodeghiero et 

al. (2011) for the top soil of certain montado areas. 
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Sowing improved pastures generally leads to increments in soil organic C and N 

in oak woodlands (Hernández-Esteban et al., 2018), but their accumulation must 

be strictly referred to the alternative management (Soussana et al., 2004; 

Powlson et al., 2011), that is, the comparable natural pasture systems. Indeed, 

the 35-year old improved pasture at Herdade dos Esquerdos showed 1.6 and 1.4 

times increase in soil organic C concentration, in open areas and beneath tree 

crowns, respectively, relative to the natural pasture. The amount of soil organic 

C up to 10 cm depth was increased by 42% (0.60 kg m-2) in the open, and by 

22% (0.54 kg m-2) beneath tree crowns, following the pattern reported by Gómez-

Rey et al. (2012) for a 26-year old improved pasture in a similar site, and results 

reported by Teixeira et al. (2011) for treeless 5-year old improved pastures, under 

similar Mediterranean climate. The annual rate of organic C accumulation, 

relative to the natural pasture (about 0.017 and 0.015 kg m-2, in the open and 

beneath tree crowns, respectively), was much lower than that reported by Conant 

et al (2001) for incorporation of legumes in grasslands (0.075 kg m-2), but follow 

results reported by Hernández-Estebán et al. (2018) for a chronosequence of 

improved pastures established under evergreen oak woodlands. Such a low rate 

of annual soil organic C accumulation may be associated with the stabilization of 

organic C accumulation along the 35-year period, differences in stocking rates, 

and the presence of native shrubs in the natural pasture, which are also 

recognized to enhance soil organic C status in oak woodlands (Simões et al., 

2009). At Herdade do Olival, the amount of soil organic C in the improved pasture, 

relative to the natural pasture, was increased by 36% (0.38 kg m-2) in the open, 

and 12% (0.19 kg m-2) beneath trees, representing a similar annual rate of organic 

C accumulation (about 0.024 and 0.012 kg m-2, respectively in the open and 

beneath tree crowns) to that observed at Herdade dos Esquerdos, despite the 

differences in the establishment period, soil type and grazing management. 

The observed soil organic C accumulation following the establishment of 

improved pastures in the study farms can be mostly associated with their greater 

above- and below-ground biomass productivity (Hernández–Estebán et al., 2018; 

Gómez-Rey et al. 2012). In fact, at Herdade dos Esquerdos, annual above 

ground biomass of improved pasture open areas was estimated to be about the 

double (476 g dry matter m-2) of that in the comparable natural pasture (234 g dry 

matter m-2; unpublished); whereas, at Herdade do Olival, herbaceous biomass 
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production in the improved pasture was almost thrice of that in the natural pasture 

(413 and 148 g dry matter m-2, respectively; unpublished). 

Differences in pasture biomass production are also, at least partially, in 

accordance with the higher soil organic C concentrations in tree-covered areas. 

Beneath Herdade dos Esquerdos tree canopies, despite similar mean annual 

herbaceous biomass production in improved and natural pastures (288 and 245 

g dry matter m-2, respectively; unpublished), soil organic C was increased in about 

22% (0.54 kg m-2) in the former, compared to the latter. Under the Herdade do 

Olival trees, the increase in accumulated soil organic C due to improved pasture 

management was only of 12% (0.19 kg m-2) but pasture productivity was about 

60% higher (263 versus 166 g dry matter m-2 for improved and natural pastures 

respectively; unpublished). This result is in line with the differences in soil type 

and grazing management, as in the improved pasture from Herdade dos 

Esquerdos, both vegetation biomass production and soil organic C accumulation 

seem to have reached a new stability level, while in the Herdade do Olival 

improved pasture, although herbaceous biomass productivity is considerably 

higher than that in the comparable natural pasture, soil organic C accumulation 

appears lower than that in Herdade dos Esquerdos. 

Considering the 4 per 1000 goal (Minasny et al., 2017; http://4p1000.org), results 

of the present study indicate that the increment of soil organic C storage in the 

open areas, as a result the of improved pasture establishment, was 11 and 23‰ 

for the 35-year and the 16-year old pastures, respectively, and beneath tree 

crowns the accumulation increment was 6.1 and 7.5‰, for the same systems. 

The fact that such rates are considerably above the 4‰ goal, is in agreement 

with the trends reported by Corbeels et al (2017) for African agroforestry systems. 

Higher carbon storage increment in the soil of the younger pasture (at Herdade 

do Olival) might be related to the system lower organic C status, while the much 

lower increment in the soil beneath tree crowns might be a result of the long-term 

input of tree litterfall, and thus of the higher initial soil organic C status. These 

results undoubtedly indicate that improved pasture establishment is an 

opportunity in Mediterranean environments to sequester organic carbon 

(Hernández-Esteban et al. 2018) and, therefore, to fulfil global commitments 

regarding climate change mitigation. Such great potential for soil organic C 

storage in the montado system, may occur especially in areas with strong 
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depletion of soil organic C, where practices to restore soil C are needed. Yet, as 

the efficiency of such practices will depend on the specific ecological and socio-

economic conditions and may be driven by farm income increase, due to crop 

productivity enhancement (Corbeels et al. 2017), the relatively long period of time 

needed for the present study observed benefits to take place (1.6 and 3.5 

decades, for HO and HE, respectively) must be considered and addressed at 

both policy and managers levels. 

 

Tree canopy cover has increased soil organic C content in 0.94 (56%) and 1.0 kg 

m-2 (69%) in the improved and natural pasture, respectively, relative to the open 

areas at Herdade dos Esquerdos. At Herdade do Olival, tree-related increments 

were of 0.37 and 0.56 kg m-2 (26 and 54%). These results suggest that the effect 

of trees themselves is dependent on factors other than the management system, 

in agreement with the widely acknowledged role of trees in the soil organic C 

enhancement of silvopastoral systems, compared with native pastures alone 

(e.g., Dahlgren et al., 1997; Gómez-Rey et al., 2011; Moreno et al., 2007; Howlett 

et al., 2011), and of other agroforestry systems (e.g. Cardinael et al., 2015; 

Cardinael et al., 2017; Pardon et al., 2017; ). It must be emphasized that the 

contribution of scattered oak trees to the current study montados soil organic C 

build-up, may exceed the increments obtained by the long-term management of 

improved pastures, even more so if considering their extended influence far 

beyond the crowns projection (Simón et al., 2013). Also, as trees play an 

important role in the C cycle and on the distribution of organic C (Howlett et al., 

2011, Nunes; 2001), tree density should be approached as a valuable 

management tool towards soil organic C sequestration goals. Also, as 

Portuguese policies on C sequestration are currently attributing incentives to the 

single decision of sowing pastures (APA, 2017), regardless of any other 

management or site-specific factors, the specific tree role in the montado system 

deserves further consideration and discussion (Rhoades, 1997). 

 
The proportions of soil particulate organic matter (POM) at Herdade dos 

Esquerdos (32-48%) and Herdade do Olival (32-41%) are within those reported 

for shrub encroached oak woodlands (28-45%; Gómez-Rey et al., 2013) and 

dense oak woodlands (42-45%. Rodrigues at al., 2019), but are higher than those 
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in agroforestry systems with arable crops (22-30%; Borges et al., 2013), and 

lower than those in degraded soils excluded from grazing (62-63%, Simões et al., 

2009). 

It is noteworthy that the major registered changes of organic C concentrations in 

the study soils, were mostly explained by those observed in the POM fraction. In 

fact, in soils at Herdade dos Esquerdos, the POM-C concentration increases, due 

to either improved pasture or tree cover (about doubled), was stronger than that 

observed for the total soil organic C (about 1.5 and 1.7 times, respectively). For 

instance, beneath the trees, the concentration of organic C allocated in the POM 

fraction in the improved pasture was 2.2 times higher than in the comparable 

natural pasture, whereas the difference for the total organic C was only 1.4 times; 

also, the concentration in improved pastures beneath trees was twice of that 

observed for the same pasture in the open, but the concentration of total organic 

C was only about 1.6 times higher. Such differences were much more visible 

when the soil mineral associated carbon (MA-C) was considered (that is, the 

difference between the concentration of total soil organic C and the concentration 

of POM-C). In fact, in the first case (improved versus natural pasture, beneath 

tree crowns) the concentration of MAC was of the same magnitude, while in the 

second (beneath trees versus open, in improved pasture) it was 1.2 times higher, 

following results reported by Nogueira et al. (2016). This trend suggests that, at 

the Herdade dos Esquerdos, the enhancement of POM accumulation is being 

favoured by the improved pasture and tree cover interaction, as suggested by the 

higher POM-C proportion of total organic C. Such interaction, between tree cover 

and improved pasture, was reported by Gómez-Rey at al. (2012) and Rodrigues 

et al. (2015) in studies developed in similar sites, and may be related to the high 

inputs of tree and pasture litter, combined with the soil stability conditions 

(absence of tillage). Indeed, Six et al. (2000) have found that the initially faster 

soil microbial transformation of fresh POM residues can be rapidly slowed down 

by the macroaggregates formation and POM particles enclosure. The chemically 

active POM residues (frequently designated as labile organic matter) are then 

physically protected from microbial activity and can be considered stabilized, as 

long as such structural units are not disrupted (e.g. by soil tillage), a process 

which enhances the potential of soil C sequestration (Six et al., 2000; Six et al., 

2002). Such trend of POM accumulation was not observed for improved pasture 
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in the open areas, which may be explained by the lower residue inputs. This fact 

suggests a comparably lower potential of long-term improved pastures to 

enhance soil organic C sequestration in the treeless areas, which is in agreement 

with Hoosbeeck et al. (2018) observations, in tropical silvopasture systems. 

At Herdade do Olival, soil organic C increments partition between the POM and 

MA fractions was not markedly altered by the pasture system or the tree cover. 

In fact, the increments in total soil organic C concentration were of similar 

magnitude for both POM-C and MA-C concentrations, whether considering 

sowed pasture (1.4 times higher) or tree cover effects (1.5 times higher). Such a 

trend may be related to the sowed pasture age and respective floristic 

composition. Indeed, sown species adaptation and persistence may vary with a 

large number of factors, but their coverage is most likely to be reduced with time 

(Hernández-Esteban et al., 2018; Carranca et al., 2015). Accordingly, a 

comparatively higher species diversity has been generally found at the current 

study younger improved pasture at Herdade do Olival, than at the older one, at 

Herdade dos Esquerdos (FCT, 2014). 

 

The hot water soluble C (HWS-C) has been considered as a very sensitive 

indicator regarding effects of soil management or land use changes (Rovira and 

Vallejo, 2007; Ghani et al., 2003). In fact, at Herdade dos Esquerdos, the 

concentration of this fraction in the improved pasture was 2.3 times higher than 

in the natural pasture, whereas the incremental ratios for the POM-C and the total 

organic C were about 2.0 and 1.5, respectively. Furthermore, the proportion of 

HWS-C, relative to total organic C, was about 1.4 five times higher in the 

improved than in the natural pasture, regardless of tree position. 

Although an active microbial community is commonly associated with higher 

HWS-C proportions (Iqbal et al., 2010; Marschner and Bredow, 2002), a lower 

proportion of microbial C (1.5 times), similar C mineralization per carbon unit 

(Cmin/C), and reduced N cycling (discussed below) were observed under the 

improved pasture in open area, as compared to the natural pasture. This trend 

suggests the existence of strong differences between the study pastures, 

regarding soil organic matter turnover processes, possibly related to differences 

in soil microbial community composition. Although similar metabolic coefficients 

have been calculated (at the 7th day of laboratory incubation), it is noteworthy that 
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the initial microbial biomass C to N ratio was higher for the improved pasture in 

the open areas, probably as a result of relatively low soil microbial biomass N 

concentration and proportions. Such a result may be explained by vegetation 

cover changes associated with the improved pasture establishment, as several 

authors have reported a clear relationship between vegetation type and soil 

microbial community composition (e.g. Rosenzweig et al., 2016; Garcia-Franco 

et al., 2015; Waldrop & Firestone, 2006). As natural occurring shrubs have been 

found to influence soil organic matter contents and dynamics under montado 

systems (Rodrigues et al. 2019; Gómez-Rey et al., 2013; Simões et al., 2009), 

their removal due to improved pasture installation and management (including 

grazing intensity) may have contributed to change microbial communities in the 

respective soils. 

 

Soil N accumulation and mineralization 

For both Herdade dos Esquerdos and Herdade do Olival, the introduction of 

higher proportion of legume species by pasture sowing has enhanced the soil 

atmospheric nitrogen (N) fixation potential through legume roots and Rhizobium 

bacteria symbiosis, thus promoting soil N accumulation (Carranca et al., 2015; 

Haynes and Williams, 1993). This has led to higher accumulation of N in soils of 

the improved pastures than those measured in natural pastures, especially at the 

Herdade dos Esquerdos. It is noteworthy that the C:N ratio in soils under the 

improved pastures is of the same magnitude of that in soils of the comparable 

natural pastures (12-14 at Herdade dos Esquerdos, 10-14 at Herdade do Olival), 

indicating negligible differences regarding the quality of organic substrates in the 

soil, which is probably reflecting the effect of the long period elapsed from pasture 

sowing, along which the reduction of the legumes proportion is expected 

(Carranca et al., 2015; Hernández-Esteban et al., 2018). Therefore, at long term, 

soils under improved pastures might accumulate organic C and N at similar rates 

as those under natural pastures, although their cycling may differ. 

 

Despite of the observed similarities in soil organic substrates, the net mineralized 

N, under laboratory incubation conditions, was lower in the improved than in the 

natural pastures, especially at Herdade dos Esquerdos; moreover, the net 

mineralized N per unit of soil N was lower in soils of the improved than the natural 
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pastures, at both farms. These trends are not in agreement with those reported 

by Rodrigues et al. (2019) for a 5-year old improved pasture growing under dense 

cork oak woodlands, in which a strong decrease of the C:N ratio and a higher 

potentially mineralized N per unit of soil N were observed. They also disagree 

with results reported by Gómez-Rey et al. (2012), who observed a potential 

enhancement of soil N mineralization for long-term improved pastures (both 

under and beyond oak canopies), which showed no differences in the soil C:N 

ratio. The contrasting trend observed in the current study may be related with 

changes in the composition of soil microbial communities, associated with the 

improved pasture management. 

For instance, at the Herdade dos Esquerdos, although similar soil C:N ratios were 

determined in improved and natural pastures soils, in open areas, the 

homogeneous herbaceous cover of the improved pasture has been replenishing 

soil with considerably lower C:N ratio organic substrates (25-40; Carranca et al., 

2015; Gómez-Rey et al., 2011), as compared to those from shrubs occurring at 

the natural pasture (60-80; Simões et al., 2009). Additionally, the higher stocking 

rates practiced at the improved pasture, compared to those at the natural pasture, 

could also have determined differences in soil organic substrates composition, 

due to higher animal depositions (Haynes and Williams, 1993). As a similar trend 

was observed at Herdade do Olival, and in both farms underneath the trees - soil 

similar C:N ratios, but lower net N mineralization per unit of initial N in improved 

than natural pastures - a transversal effect of improved pasture long-term 

management becomes evident, which is in accordance with some studies on the 

effect of vegetation cover over soil microbial communities composition (e.g. 

Garcia-Franco et al., 2015; Rosenzweig et al., 2016; Waldrop and Firestone, 

2006), and on grazing intensification over soil biochemical functioning (e.g. 

Oenema et al., 1997; Uribe et al., 2015). However, these mechanisms could not 

be fully understood by the current study design, so further studies are needed to 

clarify the processes involved in the observed soil functions modifications. 

 

Remarkable N mineralization patterns differences were observed between the 

study farms. In fact, at Herdade do Olival, especially beneath tree crowns, 

ammonium accumulation was observed, while at the Herdade dos Esquerdos net 

nitrification has prevailed. Such a difference may be mostly associated with 
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different grazers (and stocking rates), as at Herdade do Olival cattle may produce 

larger urine patches, where urea concentrations are high, which is firstly 

mineralized into ammonium (Oenema et al., 1997). Animal preferential activity in 

shaded areas (Haynes and Williams, 1993) may explain why this trend is more 

pronounced underneath tree crowns. Although ammonium maintenance is not 

common under soil aerobic conditions, the observations of the present study may 

be related to the relatively short incubation period (16 weeks), which may have 

not been enough to promote N substrates complete oxidation. For example, 

Goméz-Rey et al. (2010) results from 35-weeks long laboratory incubations, with 

soils from eucalypt plantation, have showed that the initial net ammonification 

could be decreased in time, as net nitrification develops. Moreover, differences 

in soil microbial communities’ composition and functioning may also determine 

such strong modifications to N mineralization, as nitrifying bacteria are usually 

weaker competitors for ammonia, compared with heterotrophic species or plants 

roots (Verhagen et al., 1995). In the light of the present study results, further 

studies are needed to clarify the observed N mineralization patterns. 

 

It is noteworthy that the study soils from areas beneath tree canopy showed 

generally higher potential for mineral N availability than those from open pastures. 

The fact that the net mineralized N per unit of soil N was, on the contrary, lower 

under the trees, suggests that such mineral N availability enhancement may be 

mostly reflecting the higher organic substrates (and N) in these soils, due to tree 

litterfall, in line with Gómez-Rey et al. (2012) and Shvaleva et al. (2014) results, 

under similar montado systems. This result could raise environmental concerns 

on N losses, particularly considering the fact that most of the mineral N 

enhancement was by NO3
--N, which can be easily moved down the soil profile 

and cause environmental contamination (Di and Cameron, 2002). 

Notwithstanding, as oak tree root uptake has been reported to greatly reduce 

nitrate leaching (Nunes, 2004), study soils in situ nitrate losses are probably very 

low. 

 

Soil fertility 

Results of the current study show that the establishment of improved pasture in 

both farms has undoubtedly influenced soil fertility. Indeed, the concentration of 
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soil extractable P at Herdade dos Esquerdos changed, according to the 

Portuguese scale of soil P availability (LQARS, 2006), from the level “very low” 

(<25 mg P2O5 kg-1 soil) in the natural pasture system, to the level “high” (100-200 

mg P2O5 kg-1 soil) in the improved pasture system; while at Herdade do Olival it 

has changed from the level “very low”, to the levels “low” (25-50 mg P2O5 kg-1 

soil) and “medium” (50-100 mg P2O5 kg-1 soil), in the open and beneath tree 

crowns, respectively. This trend fully agrees with results reported by Gómez-Rey 

et al. (2012) for a 26-year old improved pasture under similar ecological 

conditions. Such remarkable soil P availability enhancement is a consequence of 

the continued phosphate fertilizer applications followed in the current improved 

pasture management systems. Differences in the changes degree between farms 

may be mostly related to the time elapsed from the installation of improved 

pastures, as the annual increment of soil extractable P estimated at the Herdade 

dos Esquerdos (about 1.3 and 1.9 mg P kg-1 in the open and beneath tree crowns, 

respectively) is close to that at the Herdade do Olival (1.2 and 2.0 mg P kg-1 soil, 

respectively). As the soil in the 35-year old improved pasture is close to the 

threshold for optimum pasture development under Mediterranean climate 

conditions (Serrano et al., 2011), at such high levels of soil extractable P 

saturation eventual losses by leaching and run-off should not be disregarded, 

considering the management of improved pastures in a long-term perspective 

(Horta and Torrent, 2010). Moreover, the tree effect on the increment of soil 

available P is noticed both in natural and improved pasture systems, for both 

study farms. 

 

A decrease in soil extractable K (and exchangeable K or soil available K) was 

observed in the 35-year old improved pasture, established at Herdade dos 

Esquerdos, both in the open and beneath tree crowns (about 1.7 and 1.5 mg kg-

1 year-1 in the open and beneath tree crowns, respectively). Overall, the soil 

extractable K decrease in the improved pasture, relative to the natural pasture, 

was about 38% in the open and 21% beneath tree crowns. Similar trend occurred, 

at a lower extent, in the 16-year old improved pasture open areas (decrease of 

1.2 mg kg-1 year-1, 18,7% loss), relative to the natural pasture, at Herdade do 

Olival. The lower decrease in extractable potassium observed in the open16-year 

old pasture, compared to the older pasture at Herdade dos Esquerdos, may be 



 

85 

associated with pasture age, but also with the lower soil organic matter (and 

nitrogen) accumulation and the lower soil drainage (as expressed by hydraulic 

conductivity), observed in Herdade do Olival soils, which may all contribute to 

reduce potassium losses by leaching (Alfaro et al., 2003). 

Since no potassium fertilizers were applied following pasture installation, the 

decrease in soils extractable potassium under improved pasture, may be 

explained by the increments of pasture dry mass and animal production (and 

stocking rate), resulting in higher potassium uptake by pasture, as reported by 

Alfaro et al. (2003). Such losses of available potassium in the soil may be the 

cause for the previously reported lower potassium concentration in cork and holm 

oak foliage at the improved pastures, compared to natural ones, at the present 

study areas (FCT, 2014). Furthermore, our data suggest that soil potassium 

availability in open areas, under the present study long-term improved pasture 

management systems, can fall below the threshold reported as the optimum for 

pasture development (125-150 mg kg-1) under similar climate conditions (Serrano 

et al., 2014). Therefore, potassium fertilizer application should be reviewed, for 

the maintenance of adequate soil K status in long-term improved pastures, 

especially when they are installed in naturally poor soils, where this nutrient 

availability must be considered a limiting factor. 

Beneath tree crowns, improved pasture long-term management resulted in lower 

potassium losses at the Herdade dos Esquerdos, and even a small increase at 

the Herdade do Olival, which is undoubtedly associated with the role of trees on 

the potassium cycling, as well as different pasture ages. 

 
Results of the present study also suggest that the concentration of exchangeable 

Ca2+ (as well as the sum of non-acid cations) in older improved pastures at 

Herdade dos Esquerdos, follow the pattern exhibited by the extractable P. In fact, 

the exchangeable Ca2+ concentration increased by 2.00 and 1.63 cmolc kg-1, 

respectively, beneath tree crowns and in the open, whereas the increment of the 

sum of non-acid exchangeable cations was 2.36 and 1.40 cmolc kg-1. The 

increase of exchangeable Ca2+ observed in the improved pasture may be mostly 

associated with the current fertilizer application, as the fertilizer applied is 

responsible for a Ca input of about 75 kg every two years. The negligible changes 

noticed in the 16-year old pasture might be mostly related to the shorter period 
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elapsed from its installation and to the lower input of calcium by fertilizer 

application (only about 25 kg every two years). 

In the Herdade dos Esquerdos, the increment of the sum of non-acid cations 

under the improved pasture suggests an increase in retained cations, that is, in 

soil effective cation exchange capacity. As the soil pH values were similar (5.6-

5.7) and in the same range in the natural and improved pastures (both beneath 

tree crowns and in the open), such an increase might be mostly attributed to the 

increment observed in soil organic matter concentration, following results 

reported by Gallardo (2003) and Moreno et al. (2007). Although some studies 

report that grazed pastures can be associated with soil pH decrease and 

unbalance (e.g. Dorrough et al., 2007; Haynes and Williams, 1993), the 

phosphate fertilizer application in the older improved pasture at Herdade dos 

Esquerdos may have been able to counterbalanced the potential acidification 

associated with soil organic matter accumulation. Nevertheless, fertilizer and lime 

application adjustments might be considered necessary to overcome eventual 

soil degradation patterns following livestock intensification (Weil and Brady, 

2017). 

It is also clear that the presence of oak trees in both improved and natural pasture 

systems contributes to the accumulation of non-acid cations (especially Ca2+), as 

reported for several agroforestry systems (Dahlgren et al., 2003; Moreno et al., 

2007; Pardon et al., 2017). Therefore, the observed absence of changes in these 

soils reaction suggests that the effect of organic matter accumulation, and 

potentially higher amounts of mineralized N, suggests an efficiently balanced by 

the non-acid cations increment beneath tree crowns. 

 

Overall, results of the current study suggest that main soil fertility changes 

following long-term improved pastures, namely soil N, P and Ca availability 

enhancement, are mostly attributed to fertilizer inputs and organic matter 

concentration increments. However, such improvements may depend on pasture 

age, management system (fertilizer application, grazers species and density) and 

soil characteristics. 
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CONCLUSIONS 

Current montado management systems are changing soil functions, urging the 

need to evaluate their thin balance between economical profitability, 

environmental services and future sustainability. 

Sowing and maintaining improved pastures may contribute positively for soil 

physical status, fertility, and organic matter accumulation and stabilization, that 

is, for overall soil quality enhancement. Nevertheless, other factors, including soil 

texture, grazing management, fertilizer application and tree cover, can affect the 

rate and extent of such benefits. Additionally, current improved pastures 

management guidelines are not adapted to the singularities of montado systems, 

so tree recruitment, as the base for their long-term sustainability, is generally 

overlooked. Finer texture soils are particularly prone to soil physical degradation, 

following grazing intensification and related trampling effects. Tree cover is 

crucial to soil functions and resilience, namely structure stability, soil organic 

matter accumulation and stabilization, and nutrient cycling. All relevant changes 

in montado soil functions were expressed by or associated to soil compaction and 

organic matter status, suggesting soil quality monitorization across management 

and land use changes can be achieved by relatively common indicators, namely, 

soil organic C and/or related active fractions proportion shifts (e.g. HWS-C, POM-

C), and bulk density modifications and/or categorical indicators of soil 

compaction, such as stocking rates and visual evidences of animal treading. 

According to the presented results, it is suggested that: i) long-term management 

of improved pastures can be a promising strategy for soil fertility, structure and 

organic matter accumulation enhancement in montado; ii) tree cover 

maintenance and additional regeneration practices must be a priority, at 

research, policy and farm management levels; and iii) all site-specific and 

management factors and interactions (e.g. soil texture, fertilizer inputs, grazer 

species, stocking rate, tree cover) need further consideration, whenever 

evaluating the potential of any management or land use option for soil quality 

improvement, in montado systems. 

Future studies are needed to assess soil quality influence on these systems 

economic and environmental performances under current management 

practices, in order to identify strategies that will ensure montado long-term 

sustainability.  
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Spatial variation pattern of soil characteristics and soil 

organic carbon accumulation as affected by single trees 

in Mediterranean oak woodlands 

 

 

ABSTRACT 

Scattered isolated trees in Mediterranean woodlands are recognized to provide 

ecosystem services like shade, fodder, fruits, wood, cork, climate change 

mitigation and biodiversity. Effects of scattered oak trees (Quercus ilex L. and 

Quercus suber L.) on soil physical and chemical properties were assessed in two 

grazer Mediterranean woodlands (montado), located in the Alentejo region, 

Southern Portugal. Special attention was given to the spatial variation of organic 

soil C and nutrient concentrations according to the distance to the trees (from the 

trunk onwards to the open), and to the soil organic C accumulation as influenced 

by a single tree, up to 20 cm soil depth. Results show that scattered isolated oak 

trees create islands of enhanced soil fertility and quality through organic matter 

accumulation and nutrient cycling. Compared to the open areas, soils beneath 

the canopy of oak trees showed lower bulk density, and greater concentrations 

of organic C, nitrogen, extractable P and K, and exchangeable Ca2+, Mg2+ and 

K+, especially in the upper soil layer (0-5 cm). These concentrations strongly 

decreased from the tree trunk to the open. Scattered oak trees in the montado 

system (e.g. 50 trees ha-1) can lead, in area basis, to the accrual of large amounts 

of organic C (0.59 to 1.48 kg C m-2); the accrual is much higher if the carbon in 

tree biomass is taken into account (1.75 to 2.38 kg C m-2). Our results indicate 

that oak trees in the montado system are paramount to enhance carbon 

sequestration and soil fertility, and their removal or loss should be avoided. 

Results of this study also emphasize the importance of scattered trees on soil 

quality and resistance to degradation. The challenge for agroforesters is to 

determine under what conditions the positive effect of trees will accumulate 

simultaneously with current management systems. 

 

Key words: Montado, Quercus ilex L. subsp. rotundifolia Lam.; Quercus suber, 

soil spatial variation, soil fertility. 
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INTRODUCTION 

Mediterranean-type evergreen oak woodlands, mainly constituted by Quercus 

ilex L. (holm oak) and Quercus suber L. (cork oak), occupy about 1 068 x103 ha 

(ICNF, 2013), which corresponds to about 12 % of the Continental Portugal area, 

and 34 % of the forestry area; they are mostly located in the Alentejo Region 

(Southern Portugal). Although both species often coexist, the Q. ilex mainly 

occurs in the eastern inland drier regions, whereas the Q. suber predominates in 

the wetter western coastal areas (David, 2000). Anthropogenic factors have 

shaped these oak woodlands into savannah-type ecosystems or landscape 

designated by montado (dehesa, in Spain), which are characterized by the 

presence of trees intermittently distributed without a regular pattern within a 

continuous grass matrix, and having grasslands/pastures, crops and fallows as 

understory (Elena-Rosselló et al., 1887; Joffre et al., 1999; Carreiras et al., 2006; 

Simón et al., 2013; Pulido et al., 2017). The montados are multipurpose systems 

mainly managed to feed livestock (pastures, acorns), and for cork and firewood 

extraction (Joffre et al., 1999; Moreno and Pulido, 2009). The net effect of 

scattered trees on grass production can be negative, neutral or positive and 

change with tree age or size and density (Scholes & Archer, 1997). Although 

montado shows strong temporal variability (between and within years) driven by 

the presence of livestock, pastures, shrubs and/or crop-fallow cycles, the 

constant presence of the tree layer provides stability and is crucial for the 

ecosystem functions (Joffre et al., 1999; Costa et al., 2014). 

In savanna ecosystems, scattered trees alter inputs to the soil system by 

increasing of wet and dry deposition, and affect the morphology, chemical and 

physical conditions of the soil, as a result of the amount and characteristics of 

above- and belowground residue inputs (Rhoades, 1997). Trees drive litterfall 

inputs, livestock manure and rainfall distribution, soil temperature, and, 

consequently, a shift in soil biological activity (Young, 1997; Waldrop and 

Firestone, 2006). Higher concentrations of soil organic C, N and non-acid cations, 

and higher values of cation exchange capacity, have been observed for soils 

under the influence of scattered tree canopies, in different climate zones (e.g. 

Barth, 1980; Ryan & McGarity, 1983; Young, 1997). More developed soil profiles 

and improved water regimes have also been observed in ecosystems under 

scattered tree canopies (Dahlgren et al., 1997). Moreover, Zinke (1962) pointed 
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out that individual scattered trees have an influence proportional to their crown 

area projected onto the soil surface. 

Scattered trees in montado systems may alter chemical, physical and biological 

soil properties by their impact on energy and nutrient fluxes (Gallardo et al., 

2000). As reported for agro-ecosystems in the Mediterranean area of California 

(Dahlgren et al., 1997; 2003; Jackson et al., 1990), soils from montado systems 

may show a positive differentiation in their characteristics as a result of the 

presence of oak trees. Indeed, several studies have shown that scattered trees 

in oak woodland systems lead to positive effects on physical soil properties (Joffre 

and Rambal, 1988), soil chemical characteristics (Joffre et al. 1999; Gallardo, 

2003; Moreno and Obrador, 2007; Gómez-Rey et al., 2012), soil fertility (Moreno 

et al., 2007) and soil organic matter quantity and quality (Escudero et al., 1985; 

Rovira & Vallejo, 2007; Howllet et al., 2011). They also enhance the nitrogen 

turnover and microbial biomass N, and inorganic N availability, under their canopy 

relatively to soils occurring in open areas (Gallardo et al., 2000; Gallardo, 2003), 

and facilitate the use of water resources (Cubera and Moreno, 2007). Also, some 

studies indicate that the effect of scattered trees on such soil characteristics are 

dependent on the soil management and land use (Gómez-Rey et al., 2012; 

Hernández-Esteban et al., 2018). 

The spatial variations on soil characteristics driven by scattered oak trees in the 

montado may lead to variations in competitive abilities, a mechanism allowing the 

local coexistence of plant species (Reynolds et al., 1997). Scattered trees can 

likely modify soil properties improving their habitat conditions, by generating 

positive feedback loops between plant and soil compartments (Ehrenfeld et al. 

2005). Consequently, knowledge on the heterogeneity of soil characteristics will 

be paramount to understand the dynamics of specific populations and processes 

within the montado ecosystem. Such information can be used to predict the 

potential habitat distribution for a given species and to promote conservation and 

restoration efforts, in view of predicted climate (Miranda et al., 2002; IPPC, 2014) 

or land use changes. 

Agroforestry systems have a key role in organic C sequestration (Garrity et al., 

2006), and are recognized as a valuable integrated approach for sustainable land 

use, aside from their contribution to climate change adaptation and mitigation 

(Lorenz and Lal, 2014). Agroforestry systems, such as montado, are an appealing 
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option for sequestering C on agricultural lands and help landowners and society 

to address many other issues facing these lands, such as economic 

diversification, biodiversity and water quality (Peichl et al., 2006; Schoeneberger, 

2009), and erosion control (Cardinael et al., 2015). Despite of the potential 

agroforestry systems to increase soil organic C accumulation, quantitative 

estimates are yet scarce (Kim et al., 2016), especially for temperate (Cardinael 

et al 2015) or Mediterranean (Howlett et al 2011) agroforestry systems. The 

extent to which the tree layer influences the soil organic C accumulation in such 

ecosystem is also still poorly understood (Simón et al., 2013; Howllet et al., 2007). 

Although trees affect the spatial distribution of organic matter inputs to the soil, 

sampling protocols have not always taken this impact into account (Simón et al., 

2013). The distribution of the organic C accumulation close and away from 

scattered trees was seldom considered, some authors reported higher SOC 

stocks under the tree canopy than at 5 m from the tree (Howlett et al., 2011) or 

with the age of the trees (Bambrick et al. 2010) or that the spatial distribution of 

soil organic C accumulation to 20 cm depth was not explained by the distance to 

the tree (Upson and Burguess, 2013). Although the montado ecosystem offer a 

unique opportunity to quantify single-tree effects on soil resources and understory 

vegetation, and on the potential of organic C accumulation, no information is yet 

available at such scale. Considering tree density (Lorenz and Lal, 2014), such 

approach may be of great usefulness to estimate soil organic C accumulation at 

landscape level. 

The vast extent and great economic and ecological importance of the montado, 

and the concerns about their long-term sustainability (Costa et al., 2014), raises 

the relevance of studying the functioning of this agroecosystem oak trees, and 

their influence on ecosystem nutrient cycling in a way to understand how 

management practices affect their overall long-term sustainability. Several 

studies were developed in Portugal regarding the montado system, in relation to 

the tree nutrient cycling (Nunes, 2004; Sá et al., 2005), the soil nutrient content 

and availability (Nunes 2004; Nunes et al., 1999, Nunes et al., 2001), the 

precipitation interception and transpiration (David, 2000; David et al., 2006), the 

herbaceous production and nutrient concentration (Sá, 2001; Cubera et al. 2009), 

the herbaceous residues decomposition (Sá et al., 2004), and the soil C 

accumulation according to pasture management (Gómez-Rey et al., 2012). 
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However, some uncertainty subsists regarding the role of trees on soil physical 

and chemical characteristics, nutrient availability, and especially on soil organic 

C accumulation spatial variability. 

In this context, it is paramount to assess the effect of scattered trees on the 

pattern and scale of soil heterogeneity on a spatial basis in the montado 

ecosystem (tree canopy versus open grassland). Therefore, a study was 

developed to evaluate whether scattered oak trees in two representative grazing 

woodlands affect: (i) the mass of soil litter layers and the soil bulk density; (ii) the 

spatial distribution of organic C and nutrient concentrations; and (iii) the 

accumulation of soil organic carbon associated to a single tree. It was 

hypothesized that organic C and nutrient concentrations vary with the distance to 

the tree, and that the evaluation of the accumulated C associated with the 

scattered trees is a tool for assessing soil organic C stock in oak woodland 

landscapes. Results would provide deeper understanding on the soil patches 

found beneath tree canopies, and on their role in ecosystem functions, especially 

organic C accumulation. Also, they will constitute a support for the development 

of management strategies aiming land use sustainability, and for policies 

associated with the optimization of ecosystem services, especially the mitigation 

and adaptation to climate change for fulfilment of international commitments. 
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MATERIALS AND METHODS 

 

Study sites 

The study was carried out in Southern Portugal (Alentejo region) during 2014, at 

the Centro de Estudos e Experimentação da Mitra (Herdade da Mitra), University of 

Évora (HM; 38º32’N, 8º01’W, 243 m a.s.l.), and at the Tapada Real de Vila Viçosa 

(TR; 38 47´N, 8°19’57.68’’W), an enclosed estate with an area of 800 ha, located 

at the Vila Viçosa county. Both sites are under climate of Mediterranean type, with 

hot and dry summers and mild wet winters. Mean annual rainfall is 665 - 685 mm, 

mainly concentrated from autumn to early spring (90%), in less than 75 days of 

rain per year (INMG, 1991). Mean annual air temperature is about 15.4oC, and 

the mean monthly temperature ranges from 8.6ºC in January to 23.1 ºC in August. 

The mean air relative humidity is about 70%. Both sites show mature oak trees, 

with approximately even-aged tree distribution, and are representative of the 

large evergreen oak woodland areas in Portugal. 

The landscape at HM is gently undulating and the slope ranges from 3 to 8%. 

The geological substratum consists of granites and gneisses (Carvalhosa et al., 

1969), and soils are mostly Eutric Leptosols (IUSS Working Group WRB, 2015), 

with sandy-loam texture. They are typically strongly to moderately acidic, and with 

low nutrient status. The vegetation consists of a native pasture with scattered trees 

of Q. suber L and Q. ilex L. subsp. rotundifolia Lam.; the oak stocking ranges from 

35 to 45 trees ha-1, with an average canopy coverage of 21% (David, 2000). The 

study area was formerly used for cereal crops and fallow including sheep grazing; 

during the last decades it has been grazed by goats in an extensive regime, with 

two passages a day of the flock through the area. Common annual grass species 

are Vulpia bromoides (L.) S.F. Gray, Bromus rigidum Gaudin, Hordeum murinum 

L. and Briza maxima L.; major forbs include Rumex bucephalophorus L., Silene 

gallica L., Geranium purpureum Vill., Tolpis barbata (L.) Gaertner, Tuberaria 

guttata L. Fourr.; and major legume species are Ornithopus compressus L., 

Ornithopus pinnatus (Miller) Druce. The understorey is currently invaded by 

shrubs, mainly Cistus salviifolius L. 

The landscape at TR is made of metamorphic formations from the Silurian 

(Gonçalves, 1969; 1972), corresponding to schists, mostly with vertical 

stratification, associated with felsitic metavolcanites. The topography is gently 
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undulating to undulating (slope gradient: 6-8%; SROA, 1964). Soils are classified 

mainly as Dystric Epileptic Regosols and Dystric Leptosols (IUSS Working Group 

WRB, 2015), and their texture is mostly silty-loam (Atterberg scale), clay content 

varying between 171 and 194 g kg-1, and that of silt between 400 and 410 g kg-1. 

Soils are mostly strongly to moderately acidic, with low nutrient status. The estate 

is an oak woodland with a dominant tree cover of holm oak (Q. ilex L. subsp. 

rotundifolia Lam.) and cork oak (Q. suber L.), the tree density varying between 

50 and 60 trees ha-1. The understorey is dominated by grasses (Avena sativa L., 

Avena barbata Pott ex Link, Bromus spp., Agrostis spp.) and forbs 

(Chamaemelum mixtum (L) All. and Coleostephus myconis (L.) Rchb. f.), 

associated with low abundance of legume species (Trifolium arvense L., Trifolium 

angustifolium L., Trifolium campestris Schreb. in Sturm, and Ornithopus 

compressus L.); the understory shrub vegetation is dominated by the gum cistus 

(Cistus landanifer L.) associated with Cistus salvifolius L., Daphne gnidium L. and 

blackberry (Rubus spp.), and is mostly controlled by grazing. Until 1994, the 

estate was used for small hunting game species and never was used for cereal 

crops (as occurred in the neighborhood), with occasional raising of pig herds; 

therefore, no fertilizers were applied. Ungulates herbivorous such as red deer 

(Cervus elaphus) and fallow deer (Dama dama) were introduced in 1994, at a 

density of approximately 0.35 red deer and of 0.1 fallow deer per hectare (about 

0.2 LU ha-1), a density that is uncommon in the Iberian Peninsula hunting estates, 

maintained by a limited culling policy and supplementary feeding in years of lower 

food availability (Lecomte et al. 2016). Afterwards, triticale was occasionally 

cropped, and soil has tilled (disc harrowing) every 4-6 years for shrub growth 

control. Nowadays, the oak stand is exclusively oriented for browsing by 

herbivore ungulates production (and marginally for cork production). 

 

Samplings 

Five isolated holm oak trees, at HM, or cork oak trees, at TR, with similar crown 

diameter (about 12 m), and circumference at breast height or perimeter at the 

first bifurcation, were randomly selected for major sampling procedures. At HM, 

the mean perimeter of randomly selected trees at first bifurcation was 1.67 m 

(range: 1.35-2.05 m), and the mean tree crown radius was 5.9 m (range: 5.8-6.2 

m). At TR, the mean diameter at breast height of randomly selected trees was 
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0.47 m (range: 0.37-0.53 m), and the mean tree crown radius was 5.6 m (range: 

5.5-6.5 m). 

Soil samples from each site were collected between 2014 (HM) and 2015 (TR). 

All samplings, around each tree and in each site, were carried out in four 

transects according to the four cardinal points direction. In each transect, samples 

were taken at different positions relative to the tree canopy projection radius (R): 

0.33R, 0.66R, R, 1.33R and 2R. Therefore, the positions 0.33R and 0.66R were 

beneath tree crowns; the position R was in the edge of the tree crown; and the 

position 2R (twice the tree crown radius) was considered as a reference (open 

grassland), as followed in other studies (Gómez-Rey et al., 2012; see also 

Chapter 2). The sampling design was adopted to account for short range soil 

spatial variability (Belsky et al., 1989), and was based in studies which reported 

that tree canopies in agroforestry systems influence soil properties beyond their 

crowns (Rhoades, 1997), and that such influence in dehesas occurs to a distance 

which can be twice the crown radius of oak trees (Simón et al., 2013). 

For assessment of the surface litter layer mass (only at HM), samples were 

collected in March 2014 (before the litterfall peak) around each tree at the 

aforementioned different positions prior to soil sampling, by using a 0.5 x 0.5 m 

square wooden frame. 

Soil sampling was carried out up to 20 cm depth because the soils at both sites 

can show a depth less than 30 cm, and former studies indicated that changes in 

soil characteristics mostly occurred within this soil depths (Gómez-Rey et al. 

2012; Nunes, 2004). 

Undisturbed soil samples for bulk density determinations were taken around each 

randomly selected trees, at each cardinal direction transect and position relative 

to the tree crown radius, at 0-5, 5-10 and 10-20 cm soil depth. Metallic cylinders 

were carved into the soil, and samples were trimmed exactly to the cylinder 

volume (ca. 590 cm3). 

Following the same sampling scheme, disturbed soil samples were taken with an 

auger, at 0-5, 5-10 and 10-20 cm depth. Samples from the same tree and same 

position relatively to tree crown radius, collected according to the four cardinal 

directions transects, were to form one composite sample per tree and crown 

radius position. Samples were air-dried at room temperatures to a constant 

weight and passed through a 2 mm sieve. The fraction that did not pass the 2 



 

108 

 

mm sieve (coarse fragments) was separated, dried for 24 hours (75ºc), weighed 

and then discarded; the respective weigh was used to convert data derived from 

the 2 mm sieved fraction back to field conditions. 

 

Laboratory procedures 

Litter layer residues were oven-dried at 80ºC for 48 hours, to obtain the respective 

dry weight, and afterwards were ground in a centrifugal grinder with a 0.5 mm 

sieve. The concentration of N (Kjeldahl) in the residues was determined by using 

a Kjeltec Auto 1030 Analyser distillation system, while that of the organic C was 

determined by the potassium dichromate oxidation procedure by De Leenheer 

and Van Hove, (1958). Mineral elements (K, Mg, Ca and P) were solubilised in a 

CEM Microwave Digestion System (MDS-2000 model). For this purpose, 0.5 g of 

the material was placed in LDV (Line Digestion Vessel) tubes, which were in 

contact with 10 mL of HNO3 with a 65% concentration. The resulting solution was 

evaporated in Fourneau cups, and the residue was made soluble by addition of 

10 mL of 3 M HCl. Calcium, Mg and K were measured by atomic-absorption 

spectrometry (AAS), while P was determined colorimetrically (Murphy & Riley, 

1962). 

Cores for bulk density determination were dried at 105 ºC, in an oven, to constant 

weight. Soil bulk density was determined by the ratio of dry weigh of undisturbed 

soil cores (oven dried at 105 °C) and the cylinder volume (Blake and Hartge, 

1986). 

After being air dried and sieved (< 2 mm), disturbed soil samples for chemical 

characterization were oven-dried at 40ºC for 48 hours. Particle size analysis was 

carried out by using the pipette method, as described by Póvoas and Barral 

(1992). Soil concentrations of N and organic C were determined as 

abovementioned. The organic C concentration corresponding to the particulate 

organic matter fraction was determined in the material obtained after wet sieving 

of 50 g of soil in a 53 μm sieve. Non-acid exchangeable cations (Ca2+, Mg2+, Na+, 

K+) were extracted by percolating 5 g of soil samples with 1 M ammonium acetate 

adjusted at pH 7, and measured by AAS. Soil pH was measured in distilled water 

and 1 M KCl suspensions (soil to solution ratio of 1:2.5) using a potentiometer. 

Exchangeable Al3+ was extracted with 1 M KCl solution (Barnhisel and Bertsch 

1982) and determined by AAS. Extractable K and P by the Egnér-Riehm (1958) 
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test, were obtained by shaking 5 g of sample with a solution of ammonium lactate 

and acetic acid for two hours, and measured by AAS and UV-visible 

spectroscopy, respectively. 

 

Soil organic C accumulation 

The amount of organic C accumulated in the soil at each position relative to tree 

crown radius, for each soil layer up to 20 cm depth, was calculated taking into 

account the corresponding concentration of organic C measured in the <2 mm 

soil fraction, soil bulk density, and the proportion of coarse fragments (>2 mm 

fraction) (Poeplau et al., 2017). 

For the evaluation of the soil organic C accumulation in the area influenced by 

each isolated oak tree, it was assumed that its distribution can be adjusted to a 

negative exponential function of the type: 

 

 𝐶 = 𝑏𝑒−𝑎𝑟 [1] 

 

Where C is the soil organic C accumulation (kg m-2), determined at any distance 

r (m) from the tree trunk, b is the base and a is the rate parameter. Thus, soil 

organic C accumulation data was adjusted to this model for each soil layer in 

each study site. 

Considering that, in montado systems, the oak tree influence over soil properties 

is known to extend up to two times the tree crown projection radius (R) (Simón et 

al., 2013), the soil organic carbon amount (in kg) in a circular area around a single 

tree (Ctree), for any r ≤ 2R, can be calculated as: 

 

𝐶𝑡𝑟𝑒𝑒(𝑟) = ∫ 2𝜋𝑥𝑏𝑒−𝑎𝑥
𝑟

0

𝑑𝑥 = 2𝜋𝑏 ∫ 𝑥𝑒−𝑎𝑥 𝑑𝑥 = 
𝑟

0

−
2𝜋𝑏

𝑎
[(𝑥 +

1

𝑎
) 𝑒−𝑎𝑥]

𝑜

𝑟

= 

 = −
2𝜋𝑏

𝑎
[(𝑟 +

1

𝑎
) 𝑒−𝑎𝑟 −

1

𝑎
] = −

2𝜋𝑏

𝑎2
[(𝑎𝑟 + 1)𝑒−𝑎𝑟 − 1] = 

 =
2𝜋𝑏

𝑎2
[1 − (𝑎𝑟 + 1)𝑒−𝑎𝑟]   ,    𝑟 ≤ 2𝑅  [2] 

 

Similarly, the amount of soil organic carbon in any tree-less circular area (Copen), 

as defined by its radius r (m), can be estimated by the base soil organic carbon 
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accumulation (c, kg m-2), that is, the soil organic carbon accumulation value 

determined at any point beyond 2R, as follows: 

 

𝐶𝑜𝑝𝑒𝑛(𝑟) = ∫ 2𝜋𝑥 𝑐 𝑑𝑥
𝑟

0
= 2𝜋𝑐 [

𝑥2

2
]

0

𝑟

= 𝑐𝜋𝑟2  [3] 

 

Solving expressions [2] and [3] for r = 2R - the first using the parameters obtained 

with expression [1] after adjusting the model to the study observations (at 0.33R, 

0.66R, R, 1.33R and 2.0R); and the second considering c as the mean value of 

soil organic carbon accumulation at 2.0R sampling point -, a single tree 

contribution to soil organic C accrual, for each study site and soil layer, was 

estimated by difference, as follows: 

 

𝐶𝑎𝑐𝑐𝑟𝑢𝑎𝑙 = 𝐶𝑡𝑟𝑒𝑒(2𝑅) − 𝐶𝑜𝑝𝑒𝑛(2𝑅)   [4] 

 

Statistical analyses 

For each study site and each soil layer, soil surface litter layer and determined 

soil properties were considered as independent variables, and analyses of 

variance (ANOVA; α=0.05) were performed to test differences between sampling 

distances to tree trunk. When sample normal distribution (Shapiro-Wilk test) and 

homogeneity of variances (Levene’s test) could not be accepted, even with data 

transformations (e.g. logarithm, square root), a non-parametric Kruskal-Wallis 

(α=0.05) procedure was performed. If significant differences between points 

averages were assumable, the Tukey or Waerden (non-parametric) tests 

(α=0.05) were used for means separation. All statistical analyses were done in 

the R environment (R Core Team, 2014), including adequate packages, such as 

‘car’ (Fox and Weisberg, 2011) and ‘agricolae’ (De Mendiburu, 2009). 
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RESULTS 

 

Soil texture 

Soils at HM showed coarser texture (sandy-loam) than soils at TR (silty-loam). 

However, soils at both sites did not show significant differences in concentrations 

of particle-size fractions between different distances to trees (Table 1). Similar 

trend was observed for soil depth (data not shown). 

 

Table 1 - Concentrations (g kg-1; mean ± standard deviation; n=5) of coarse sand (CS), 
fine sand (FS); silt (SL) and clay (CL) particles in soil at different points relative to tree 
crown radius (R), at Herdade da Mitra (HM) and Tapada Real de Vila Viçosa (TR). 

 HM  TR 

 0.33R 0.66R 1R 1.33R 2R  0.33R 0.66R 1R 1.33R 2R 

CS 378±33 393±40 385±34 376±42 394±59  
378±33 393±40 

162±7 

451±22 

83±8 

88±8 

385±34 

376±42 394±59 

451±22 443±34 449±30 449±34 435±49 

83±8 79±9 79±14 83±5 82±10 

88±8 86±8 87±13 92±8 89±14 

162 

160±8 166±7 162±7 162±16 

FS 451±22 443±34 449±30 449±34 435±49  239±9 249±14 248±14 247±24 239±17 

SL 83±8 79±9 79±14 83±5 82±10  409±9 407±10 405±20 409±15 411±11 

CL 88±8 86±8 87±13 92±8 89±14  189±10 183±7 182±17 182±19 188±24 

 

Soil litter layer mass 

The soil litter layer mass at HM (Table 2), significantly decreased from areas 

close to the tree trunk (270.4 g m-2) to the canopy vertical projection limit (127.9 

g m-2), and from that to open areas (34.1 g m-2). The mass of the litter layer, at 

the vertical canopy projection limit, was less than the half of that observed in the 

area closest to the tree trunk. 

 

Table 2 - Means (± standard errors; n=20) of litter layer mass (LLM) and amounts (g m-

2) of C, N, P, K, Ca and Mg in the litter layer measured at different points relative to tree 
crown radius (R) in the Herdade da Mitra study site. Values followed by the same letter 
are not statistically different by the Tukey test (p <0.05). 

R LLM C N P K Ca Mg 

0.33R 270,4a±30,0 112,3 3,52a±0.76 0.21a±0.05 0.58a±0.23 5.27a±1.14 0.65a±0.15 

0.66R 241,2a±36,0 103,8 2,77a±0.58 0.15a±0.03 0.57a±0.09 4.33a±0.73 0.49ab±0.08 

1R 127,9b±19,0 49,8 1,72b±0.12 0.10b±0.01 0.36a±0.04 2.45b±0.20 0.37b±0.05 

1.33R 68,3c±12,0 28,0 0,90c±0.18 0.05c±0.01 0.23b±0.06 1.15c±0.25 0.18c±0.06 

2R 34,1d±9,0 13,6 0,46c±0.10 0.03c±0.01 0.09b±0.03 0.58c±0.13 0.09c±0.02 

 

The amounts of org C and nutrients accumulated in the litter layers followed 

approximately the trend observed for the litter layer mass (Table 2). The amounts 

decreased 9-10 times from the zone closer the tree trunk to the open, for C, N, P 
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and Ca; differences for K and Mg were smaller (6-7 times). The C/N ratio (29-36) 

did not vary with the distance to tree trunk. 

 

Bulk density 

Soil bulk density, in the 0-5 cm layer, was the lowest in the areas close to the tree 

trunk (1.14 and 1.22 g cm-3 in the HM and TP, respectively), and significantly 

increased towards the open (Figure 1); values at 0,33 and 0.66R were 

significantly lower (p<0.01) than those measured beyond tree canopy. At both 

sites, bulk density increased with soil depth, but values observed in the 5-10 cm 

layer followed the trend found in the 0-5 cm layer. Values in the 10-20 cm soil 

layer, at HM, were not significantly affected by the distance to tree trunk, whereas 

at TR significantly increased towards the open. 

 

 

Figure 1 - Bulk density (BD) in the 0-5, 5-10 and 10-20 cm soil layers, at different points 
relative to tree crown radius (R), at Herdade da Mitra (HM) and Tapada Real de Vila 
Viçosa (TR). Bars are mean ± standard deviation (n=20). Different letters in the same 
depth correspond to significant differences by the Tukey test (p< 0.05). 
 

Organic C and N concentrations 

Concentrations of soil organic C (SOC) were much higher at TR than at HM 

for the different soil layers (Figure 2). In the 0-5 cm soil layer of both sites they 

were the highest in the position closer to the tree trunk and were about 2.4 

times higher than in the open (2R). Organic C concentrations were significantly 

higher (p<0.05) underneath the tree crown than in the open. 

The concentrations of total N (Figure 2) significantly decreased with the 

increasing of the distance from the tree trunk, following the pattern exhibited by 
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those of SOC. This trend was observed up to 10 cm depth at HM, and up to 20 

cm depth at TR. In the zone closer to the tree trunk at both sites, the N 

concentrations in the 0-5 cm soil layer doubled those observed in the open, 

difference being narrower than those observed for SOC. 

 

 

Figure 2 - Concentrations of organic C (org C), nitrogen and particulate organic C (POM-
C) in the 0-5, 5-10 and 10-20 cm soil layers, at different points relative to tree crown 
radius (R), at Herdade da Mitra (HM) and Tapada Real de Vila Viçosa (TR). Bars are 
mean ± standard deviation (n=5; except for org C, with n=20). Different letters in the 
same depth correspond to significant differences by the Tukey test (p< 0.05). 

 

The soil C:N ratio showed a narrow range and was higher at HM (14.2-12.0) 

than at TR (12.2-9.7), values decreasing with soil depth (Table 3). At HM, the 

values of the C:N ratio did not show significant changes with the distance to 

the tree trunk. In contrast, values at TR significantly decreased towards the 
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open for all soil depths, as occurred for the SOC and N concentrations. 

Despite the differences in SOC concentrations, the concentration of organic C 

corresponding to the particulate organic matter (POM-C) were of the same 

magnitude in both study sites (Figure 2), and followed the trend exhibited by 

the SOC concentrations according to the distance to the tree trunk. The 

proportion of POM-C relatively to the SOC was much higher, in all soil layers, 

at HM than at TR (Table 3); for instance, the proportion in the 0-5 cm layer 

was 52.9-31.5 and 27.8-18.0% for the former and the latter, respectively. 

Differences in POM-C concentrations corresponding to the different positions 

relative to tree trunk were larger than those observed for the SOC, as the 

concentrations close to the tree trunk in the 0-5 cm layer were about 4.0 and 

3.7 times higher than in the open, respectively at HM and TR. 

 

Table 3 - Means (± standard errors; n=5) of C:N ratio and proportion of organic C 
corresponding to the particulate organic fraction (POM-C/SOC, %) in the 0-5, 5-10 and 
10-20 cm soil layers, at different points relative to tree crown radius (R), at Herdade da 
Mitra (HM) and Tapada Real de Vila Viçosa (TR). Values followed by the same letter are 
not statistically different by the Tukey test (p <0.05). 

Depth HM  TR 

(cm) 0.33R 0.66R 1R 1.33R 2R  0.33R 0.66R R 1.33R 2R 

C:N 

0-5 
14.6 
±0.36 

13. 9 
±0.90 

13.9 
±0.55 

13.6 
±1.21 

13.6 
±1.35 

 
12.20a

±0.80 
11.56ab 
±0.59 

11.35ab 
±0.42 

10.65bc 
±0.25 

9.69c 
±0.51 

5-10 
12.2 
±1.36 

12.1 
±0.26 

13.4 
±1.52 

12.7 
±0.98 

13.4 
±1.06 

 
11.33a 
±1.13 

10.36ab 
±0.50 

10.18abc 
±0.25 

9.40bc 
±0.43 

8.65c 
±0.39 

10-20 
11.8 
±0.57 

11.6 
±0.83 

12.1 
±1.42 

11.2 
±0.69 

11.7 
±2.75 

 
9.91a 
±0.65 

9.40ab 
±0.03 

8.79abc 
±0.63 

8.07bc 
±0.73 

7.65c 
±0.51 

POM-C/SOC  

0-5 
52.9a 
±7.38 

45. 7a 
±7.17 

40.4b 
±10.38 

31.8c 
±2.69 

31.5c 
±2.10 

 
27.8 
±6.99 

23.8 
±6.84 

24.6 
±3.44 

19.0 
±5.06 

18.0 
±1.99 

5-10 
35.5 

±12.97 
26.1 
±7.48 

23.4 
±5.24 

24.2 
±2.61 

29.6 
±11.96 

 
18.3 
±6.74 

18.5 
±2.84 

14.5 
±1.32 

12.8 
±2.71 

14.6 
±2.77 

10-20 
21.4 
±5.14 

26.2 
±14.15 

19.8 
±4.63 

18.9 
±6.25 

20.6 
±4.44 

 
15.2 
±2.32 

14.3 
±1.86 

14.0 
±4.87 

13.5 
±3.25 

12.2 
±2.91 

 

Exchangeable non-acid cations and extractable Al 

The sum of the concentrations of exchangeable non-acid cations (SB) was higher 

at TR than at HM, and was the highest in the 0-5 cm soil layer beneath the tree 

canopy, in the zone closest the tree trunk (Figure 3). At both sites, values of SB 

significantly decreased with the distance to the tree trunk, following the trend 

observed for the SOC and N concentrations. Values determined close the tree 

trunk in bot HM and TR were about twice those determined in the open. 
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In both HM and TR, the predominant exchangeable non-acid cation was the 

exchangeable Ca2+. Its concentration variation with the distance to the tree trunk 

was similar to that observed for the SOC and SB (Figure 3). Concentrations close 

the tree trunk in the 0-5 cm soil depth were about 2.2 and 2.5 times higher than 

those measured in the open, respectively at HM and TR. Concentrations of 

exchangeable Ca2+, at TR, significantly decreased towards the open, up to 20 cm 

depth, while at HM such trend only was observed for the 0-5 cm soil layer. Similar 

trends were observed for the concentrations of exchangeable Mg2+ and K+, and 

of extractable K (data shown). 

 

 

Figure 3 - Concentrations of exchangeable Ca2+, exchangeable Al3+, and sum of non-
acid cations (Ca2+, Mg2+, K+, Na+) in the 0-5, 5-10 and 10-20 cm soil layers, at different 
points relative to tree crown radius (R), at Herdade da Mitra (HM) and Tapada Real de 
Vila Viçosa (TR). Bars are mean ± standard deviation (n=5). Different letters in the same 
depth correspond to significant differences by the Tukey test (p< 0.05). 
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Concentrations of exchangeable Al3+ were much lower than those corresponding 

to the exchangeable Ca2+ and to the sum of the non-acid cations (Figure 3). At 

both HM and TR, exchangeable Al3+ concentrations were the lowest in the 0-5 

cm soil layer, and the highest in the 10-20 cm soil layer. At TR, inversely to other 

characteristics of the soil exchangeable complex, the concentrations of 

exchangeable Al3+ significantly increased from the tree trunk towards the open, 

in soil layers up to 20 cm depth. At HM, concentrations were much lower and did 

not show a definite trend with the distance to the tree trunk. 

 

Effective cation exchange capacity (ECEC) 

Values of the ECEC, as for the exchangeable Ca2+ and the SB, were greater at 

TR than at HM (Table 4) and decreased with the soil depth, especially in the 

zones close to the tree trunk. These values followed the spatial trend exhibited 

by the concentrations of organic C, significantly decreasing from the tree trunk 

towards the open. At TR, this trend was observed up to 20 cm depth, while at HM 

only occurred in the 0-5 cm soil layer. Values of the ECEC determined in the 0-5 

cm soil layer close to the tree trunk were about 1.9 and 2.3 times higher than 

those measured in the open, respectively at HM and TR. 

 

Soil pH 

Soil pH (in water), at HM, was in general higher in the 0-5 cm soil layer 

independently of the distance from tree trunk (Table 4) and increased with the 

distance to the tree trunk; only in the 0-5 cm soil layer the differences were 

significantly different. At TP, pH values were slightly higher than at HM and also 

decreased from the 0-5 to the 10-20 cm layer. Negligible differences were 

observed according to the distance to the tree trunk. 

 

Extractable phosphorous  

Extractable P concentrations were higher at HM than at TR (Table 4), in all study 

soil layers. Concentrations in both sites significantly decreased from positions 

close to the tree trunk, to those in the open, following the trend observed for the 

SOC. In the 0-5 cm soil layer, the decreasing was about two and four times, 

respectively at the HM and TR. 
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Table 4 - Means (± standard errors; n=5) of the effective cation exchange capacity 
(ECEC), soil pH (in H2O), and extractable P (Pext) concentrations in the 0-5, 5-10 and 10-
20 cm soil layers, at different points relative to tree crown radius (R), at Herdade da Mitra 
(HM) and Tapada Real de Vila Viçosa (TR). Values followed by the same letter are not 
statistically different by the Tukey (p <0.05). 

Depth  HM   TR 

(cm) 0.33R 0.66R 1R 1.33R 2R   0.33R 0.66 1R 1.33R 2R 

ECEC (cmolc kg-1) 

0-5  
5.45a 
±0.49 

4.41b 
±0.21 

3.54c 
±0.17 

3.04d 
±0.23 

2.81d 
±0.34 

 
9.07a 
±0.99 

6.51b 
±0.74 

5.11bc 
±0.38 

4.54c 
±0.49 

3.90c 
±0.15 

5-10  
3.53a 
±0.80 

2.86a 
±0.19 

2.84a 
±0.67 

2.78a 
±0.70 

2.38b 
±0.19 

 
5.59a 
±0.38 

4.72ab 
±0.49 

3.81bc 
±0.33 

3.33c 
±0.53 

3.29c 
±0.26 

10-20  
2.53a 
±0.51 

2.69a 
±0.37 

2.59a 
±0.28 

2.62a 
±0.57 

2.80a 
±0.25 

 
4.55a 
±0.62 

3.57ab 
±0.46 

3.60ab 
±0.50 

3.11b 
±0.41 

3.08b 
±0.34 

pH (H2O) 

0-5  
5.07a 

±0.09 
5.12a 

±0.14 
5.30b 

±0.13 
5.33b 

±0.06 
5.30b 

±0.06 
 

5.68 
±0.48 

5.59 
±0.42 

5.53 
±0.37 

5.51 
±0.39 

5.56 
±0.37 

5-10  
4.88 
±0.15 

5.03 
±0.16 

5.07 
±0.09 

5.15 
±0.06 

5.12 
±0.10 

 
5.53 

±0.50 
5.43 

±0.49 
5.41 

±0.33 
5.35 

±0.41 
5.38 

±0.38 

10-20  
4.93 
±0.05 

4.99 
±0.09 

5.06 
±0.10 

5.12 
±0.11 

5.11 
±0.08 

 
5.50 

±0.47 
5.40 

±0.41 
5.43 

±0.36 
5.41 

±0.45 
5.41 

±0.38 

Pext (mg kg-1) 

0-5  
11.5a 
±0.6 

10.1a 
±1.3 

6.8b 
±1.3 

6.4b 
±1.0 

5.1c 
±0.5 

 
7.7a 
±1.4 

5.3ab 
±1.1 

4.7abc 
±3.0 

3.3bc 
±1.0 

1.8c 
±0.6 

5-10  
5.2 
±1.9 

4.1 
±0.3 

4.5 
±1.2 

3.3 
±0.6 

3.4 
±0.5 

 
3.1a 
±1.2 

2.5ab 
±1.2 

2.3ab 
±0.6 

0.9b 
±1.1 

1.2ab 
±0.3 

10-20  
4.0 
±0.9 

3.9 
±1.5 

4.9 
±1.2 

3.9 
±1.1 

4.3 
±1.8 

 
1.9 

±1.3 
2.2 

±1.1 
1.4 

±0.4 
1.4 

±0.3 
1.1 

±0.9 

 

Accumulation of organic C 

The logarithm transformed linear regressions of soil organic C content (C) as a 

function of the distance from tree trunk, relative to tree crown radius (R), for each 

study site and for each considered soil layer, are shown in the Figure 4, and the 

estimated model adjustment parameters are presented in the Table 5. 

 

 

Figure 4 - Logarithm transformed linear regression models for the soil organic C 
accumulation (Cc) as a function of the distance to the tree trunk (R), in the 0-5, 5-10 and 
10-20 cm soil depth layers, at the Tapada Real de Vila Viçosa (TR) and Herdade da 
Mitra (HM). 
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It is notable that the regression models are significant for each of the considered 

soil layers (p<0.001) at TR (Table 5). Similar trend was observed at HM, but the 

adjustment was only significant for the 0-5 and 10-20 cm soil layers. 

 

Table 5 - Estimated parameters values and standard errors of the logarithm 
transformed linear regression of the soil organic C accumulation (Cc) for any 
distance relative to the tree crown radius (R), for each studied soil layer (0-5, 5-
10 and 10-20 cm depth) at Tapada Real de Vila Viçosa (TR) and Herdade da Mitra 
(HM). 

Depth (cm) log(b) Std. Error b a Std. Error R2
adj p-value 

HM 

0-5 0.310 0.083 1.363 0.344 0.068 0.859 0.015 

5-10 -0.359 0.085 0.698 0.200 0.070 0.639 0.066 

10-20 -0.017 0.011 0.984 0.099 0.009 0.967 0.002 

TR 

0-5 0.644 0.033 1.905 0.509 0.025 0.988 <0.001 

5-10 0.139 0.043 1.149 0.418 0.033 0.969 <0.001 

10-20 0.499 0.045 1.646 0.366 0.035 0.957 <0.001 

 

In both TR and HM, the highest amounts of accumulated soil organic C were 

estimated for the circular area between 0.66R and 1R points (Figure 5): 74 and 

29 kg, respectively at TR and HM (Figure 5). The soil organic C accumulation in 

this area due to the tree cover represented 26.5%, at TR, and 29%, at HM, of the 

total amount accumulated around each tree. The lowest contribution for the soil 

organic C accumulation in the area considered influenced by trees was estimated 

for the area closer to the tree trunk (up to 0.33R), which added only about 10% 

of the total soil organic C accumulated in the tree-influenced area, at both study 

sites. 

It is notable that high amounts of soil organic C, associated with the single tree 

influence, were also estimated beyond tree crowns (115 and 36 kg, respectively 

at TR and HM), which corresponded to 41 and 38% of the total accumulated 

around each tree (Figure 5). 
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Figure 5 - Estimated soil organic C accumulated in each study soil layers (0-5, 5-10 and 
10-20 cm), as influenced by a single tree, for the 0-0.33, 0.33-0.66, 0.66-1, 1-1.33 and 
1.33-2 circular areas, defined relatively to the tree crown radius (R), at Tapada Real de 
Vila Viçosa (TR) and Herdade da Mitra (HM) sites. 

 

The soil organic C accumulation in the area considered affected by scattered 

trees (up to 2R) was much higher at TR than at HM (respectively 280 and 101 

kg; Figure 6). The proportion of the organic C accumulated in the 0-5 cm soil 

layer, at TR, was higher (46%) than that estimated in the 5-10 and 10-20 cm 

layers (24 and 30%, respectively); the difference was stronger at HM, as the 

proportion accumulated in the 0-5 cm soil layer reach 60% of the total, whereas 

in others was only 14 and 26% (5-10 and 10-20 cm soil layers, respectively). 

 

 

Figure 6 - Estimated soil organic C accumulation in the area affected by a single tree -
from the tree trunk up to two times the tree crown radius -, in the 0-5, 5-10 and 10-20 cm 
soil layers, at the Tapada Real de Vila Viçosa (TR) and the Herdade da Mitra (HM). 
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DISCUSSION 

 

Litter layer mass  

The litter layer mass measured at Herdade da Mitra is of the same magnitude of 

that reported for an agroforestry system with wide spaced ash trees (Fraxinus 

angustifolia L.) in North-eastern Portugal (Pereira et al., 2004), and is within the 

range reported in dehesas by Escudero et al. (1985) for the litter layer mass 

accumulated beneath Quercus rotundifolia and Q. pyrenaica, situated to the West 

of the Province of Salamanca (Spain); also, it is close to that measured by 

Lecomte et al. (2018) in an oak woodland grazed by ungulates. Meanwhile, it is 

much lower than that observed for an ungrazed cork oak woodland with higher 

oak tree density (about 170 trees/ha) (Rodrigues et al., 2019; chapter 1). 

Naturally, the litter layer mass measured in the present study is much lower than 

that reported for forest plantations in Portugal (Madeira and Ribeiro 1995; 

Madeira et al., 1995). 

At Herdade da Mitra, the litter layer mass shows a strong spatial variability as it 

decreases from tree trunk onwards, which is in accordance with the spatial 

variability observed for the amount of litterfall in a similar site (Sá, 2001), which 

was considerably greater at 2 m than at 4 m from the tree trunk. Also, it agrees 

with observations reported by Pereira et al (2004) for wide spaced ash trees, in 

which the amount of litterfall close to (0.5 m) the tree trunk was 2-3 times higher 

than that measured in the limit of the tree crown vertical projection, and by 

Escudero et al. (1985) for scattered Quercus spp. trees, in which the litterfall 

measured at 0.5 m from the tree trunk was almost twice the amount at the edge 

of the tree crown  

It is noteworthy that high amounts of litterfall (0.43-0.51 kg m-2 year-1; leaf litter 

0.14-0.32 kg m-2 year-1) were estimated for the same study area holm and cork 

oak trees, at a tree crown area basis (Sá et al., 2005), but the mass of the soil 

litter layer accumulated underneath tree canopies was relatively small. This trend 

is unexpected taking into account the Q. rotundifolia leaf litter decomposition rate 

(k= -0.48 year-1) determined in a long-term litterbag experiment in the study site 

by Sá et al. (2005), which is much lower than the calculated turnover rate (0.73 

year-1; sensu Olson,1963). Indeed, the average annual litterfall was 4.7 Mg DM 

ha-1 year-1 (Sá et al., 2005) and the necromass on the soil surface before the 
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litterfall peak was only 1,7 Mg DM ha-1 year-1. The difference between the 

expected and the actual litter layer accumulation suggests a considerable high 

organic residues turnover rate, which may be related to the activity (consumption 

and transference of new litterfall) of grazing and other herbivorous animals (and 

possibly of meso and macrofauna), as reported by Escudero et al. (1985) for 

dehesa systems, and by Simões et al. (2009) for shrub encroached montados. 

Lecomte et al. (2018) results also support this trend, as the amount of the litter 

layer mass on grazed areas was about half of that measured in those in which 

the grazing was prevented. Meanwhile, it should be also emphasized that the low 

litter layer mass beneath isolated tree crowns may also be related to the 

distribution of litterfall beyond the tree crown projection (Pereira et al., 2004) and 

to the removal of litter components other than leaf litter. 

Despite the low average mass (about 31 kg) and spatial distribution of the litter 

layer accumulated around scattered single trees, it may cause a positive 

feedback (Ehrenfeld et al., 2005) on the tree-soil system, given its effect on soil 

temperature (Rhoades, 1997), soil protection from erosional forces and 

improvement of water infiltration rates, nutrient supply and biological activity 

(Cadish and Giller, 1997; Fisher and Binkeley, 2000; Hoosbeek et al., 2018). 

 

Organic C concentration and accumulation 

The presence of oak trees in agroforestry systems is a decisive factor to increase 

the concentration of organic C in the soil (Lorenz and Lal, 2014). This trend, 

commonly found in tropical regions (Albrecht and Kandji, 2003; Hoosbeek et al., 

2018; Somarriba et al., 2013; Takimoto et al., 2008, 2009), undoubtedly occurs 

in the study montado sites, following results reported by Dahlgren et al. (1997; 

2003) for California oak woodlands, by Gallardo (2003), Cubera and Moreno 

(2007), Gerardo and Obrador (2007) and Howlett et al. (2011) for dehesas in 

Spain, and by Cardinael et al. (2015) and Pardon et al. (2017) for alley cropping 

agroforestry in agroforestry sites (silvoarable and silvopastoral) in sub-humid 

Mediterranean and non-Mediterranean climate. Also, our results are in fully 

agreement with those reported by Gómez-Rey et al. (2013) for similar 

Mediterranean oak woodlands with shrub encroachment, and by Gómez-Rey et 

al. (2011; 2012) for Mediterranean oak woodlands with natural and improved 

pastures. Moreover, the results of the present are in accordance with those 



 

122 

 

reported by Simões et al. (2009) for soil properties under Mediterranean shrub 

cover as compared to those observed in the open areas. 

The increment of the organic C concentration beneath tree canopy observed in 

both sites mostly occurred in the 0-5 cm soil depth layer, suggesting that it is 

mostly in relation with the amounts of organic residues annually deposited on the 

soil surface by litterfall (Escudero et al. 1985), and with the root litter produced in 

such layer (Moreno et al., 2007). This trend agrees with the strong relationship 

between the organic C concentration in the top soil layer and the amount of the 

organic litter layer mass (r=0.9496; p<0.0134) observed at Herdade da Mitra. 

Also, this trend is in accordance with the fact that the increment of the organic C 

concentration in the top soil layer associated with the particulate organic matter 

fraction (that is, the fraction in soil particles higher than 50 µm), in relation to that 

in the 5-10 cm layer (3.4 and 2.5 times, at HM and TR, respectively), was higher 

than the increment of the total organic C (2.3 and 1.7 times, respectively). 

Moreover, the concentration of the POM-C at Herdade da Mitra was strongly 

correlated with the organic layer mass (r=0.9493, p<0.0136). The similar 

concentration of POM-C in both sites also suggests the effect of residues 

associated with the litterfall. Hence, it is assumed that the influence of the 

herbaceous understory mass (above- and belowground) on the differences of soil 

organic matter concentration, observed under tree crowns and in the open, may 

be negligible at this study site, as the amounts of such understory biomass were 

lower underneath trees than in the open, as reported by Sá (2001) at Herdade da 

Mitra. 

Despite the similar variation pattern according to the position relatively to trees, 

the concentrations of the soil organic C, at Herdade da Mitra, were much lower 

than those observed at Tapada Real. This difference could be related to the soil 

finer texture (silty-loam) in the latter as compared with the former (sandy-loam), 

which may determine strong differences on the potential soil organic carbon 

saturation (sensu Hassinck, 1997). In spite of the higher proportion of the POM-

C observed at Herdade da Mitra, differences in soil organic C concentrations in 

the 5-10 and 10-20 cm soil layers, according to the distance to tree, were 

negligible, while at Tapada Real these were observed up to 20 cm depth. Similar 

trend was observed for differences in concentrations of the mineral-associated C 

(that is, the difference between the soil organic C concentration and that POM-C; 
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Bayer et al., 2004), which increased 2.1, 1.9 and 1.7 times in the 0-5, 5-10 and 

10-20 cm soil layers at Tapada Real, while at Herdade da Mitra, the increment 

was only 1.5, 1.4 and 1.1 times. These differences are unexpected, as trees had 

similar size at both study sites, and might be explained by the disturbances 

associated with the contrasting management histories (Plieninger et al., 2003), 

which were stronger at Herdade da Mitra than at Tapada Real. 

 

The continuous decreasing of the soil organic C accumulation (up to 20 cm depth) 

observed from the zones closest the tree trunk to those in the open, is similar to 

the trend obtained for the variation of organic C concentrations. This pattern 

highlights the strong influence of oak trees, in the montado system, on the spatial 

variability of the soil organic C accumulation. This result is in accordance with the 

greater soil carbon storage measured underneath tree canopies in the dehesa 

cork oak silvopasture of central-west Spain (Howllet at al., 2011), and with the 

spatial variability of the organic C pool, measured up to 5 cm depth, in a holm oak 

dehesa (Simón et al.; 2013). Indeed, these authors stated that the association 

between trees and soil organic C levels occurs beyond the tree crown, in a 

distance equal to the double of the tree crown projection radius. 

 

The organic C accumulation estimated up to 20 cm depth in the open (2.08 and 

2.05 kg C m-2 at TR and HM, respectively), are smaller than those reported, for 

the same soil depth and in similar sites, by Gómez-Rey et al. (2012) in a natural 

pasture (3.0 kg C m-2) and a 35-year old improved pasture (3.18 kg C m-2), and 

by Rodrigues et al (2019; see chapter 1), for a 5-year old improved pasture (2.30 

kg C m-2) and an oak woodland with natural understory (2.75 kg C m-2), where 

tree density was higher (177 trees/ha) than those in study sites. Our results 

emphasize that, for a deep understanding on the organic C accumulation in the 

montado system, it is indispensable to take into account the soil type, the land 

use type, soil management, tree density and the site history. 

Data of the current study indicate that scattered single trees in the montado can 

largely contribute for the level of organic C storage. In fact, at Tapada Real, an 

increment of about 280 kg of soil C was accumulated up to 20 cm depth in the 

area influenced by each tree, as compared with the open. If the stand tree density 

is considered (at least 50 trees per hectare), the accrual of accumulated organic 
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C per hectare can reach about 14 000 kg, which corresponds to 1.4 kg C m-2. 

Similar estimation for the Herdade da Mitra indicates an accrual of about 0.51 kg 

C m-2; if the estimated organic C accumulated in the soil litter layer around each 

tree (about 15 kg) is taken into account, the accrual should be about 1.48 and 

0.59 kg C m-2. It is noteworthy that this level of organic C accumulation is, for 

example, much higher than that reported by Gómez-Rey et al. (2012) for a 26-

year old open improved pasture (only 0.18 kg C m-2), as compared with a natural 

pasture. These results undoubtedly indicate a greater potential of the scattered 

trees, in the montado, for the enhancement of soil C sequestration. 

For an estimation at the system level, the role of trees on the organic C 

accumulation should be considered. If the biomass of trees is taken into account, 

considering data reported by Lecomte et al. (2018) for the Tapada Real site, we 

estimate that the average amount of C in a single cork oak tree is about 350 kg, 

and that in a single holm oak is about 476 kg (for trees with similar dendrometric 

features as those selected in the present study). Therefore, in a montado with at 

least 50 trees per hectare, the amount of C accumulated in the trees can reach 

17 500 and 23 800 kg per hectare, which corresponds to 1.75 and 2.38 kg C m-

2, for cork and holm oak stands, respectively. Schematically, this means that the 

accumulation of organic C (biomass plus soil accrual), in the montado at TR, due 

to cork oak trees is approximately 3.2 kg C m-2, whereas that in the montado at 

HM can reach 2.9 kg C m-2 (see Figure 7). 

In short, the amounts of organic C associated with scattered trees can be much 

higher than those estimated for open soils (2.08 and 2.05 kg C m-2, respectively 

at TR and HM), assumed as treeless pasture areas. 

Notwithstanding, it must be noted that the current study was developed in sites 

where mature oak trees with an even-aged distribution occurred. In such a case, 

the aforementioned results suggest that they can be a useful tool for the 

evaluation of the organic C accumulation in the montado at landscape level, but 

deeper studies are necessary for a broader implementation of such approach. In 

fact, sites with uneven aged tree distribution may show a much wider spatial 

variability, including that related to the residual effect of dead trees. 
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Figure 7 - Estimated C accumulation in the open soil, and accruals associated 
with oak trees, for a tree density of 50 trees ha-1, at the Tapada Real de Vila 
Viçosa (TR) and the Herdade da Mitra (HM). 
 

Soil physical conditions 

Bulk density is a very useful indicator for assessing soil quality and degradation 

(Weil and Brady, 2017; Pulido et al., 2017). Lower values of soil bulk density 

observed in the current study underneath tree crowns than in the open grassland 

are in agreement with results and trends reported by Belsky et al. (1989) and 

Belsky et al. (1993) for a semiarid savannah and low and high rainfall savannas, 

by Dahlgren et al. (1997, 2003) for California oak woodlands, by Cardinael et al. 

(2015) for alley cropping agroforestry in a Mediterranean context, and by Gómez-

Rey at al. (2012) for oak woodlands with improved and natural pastures, or with 

those reported in the Chapter 2 of the present thesis. 

The lowering soil bulk density in the upper soil layer beneath the tree crowns is 

most likely associated with the higher soil organic matter contents (and organic 

residues inputs), which coupled with increased mixing of soil biota and soil 

fauna/flora activity may enhance soil structure, resulting in increased total 

porosity (Dahlgren et al., 1997, 2003). Although the accumulation of organic 

matter itself contributes to decrease the soil bulk density (Weil and Brady, 2017), 

differences between soil bulk density observed underneath tree crowns and in 

the open, may be mostly explained by the increasing of soil porosity (and 

eventually macroporosity). Indeed, the soil porosity in the 0-5 cm layer, at both 

sites, increases from about 0.42 and 0.41 cm3 cm-3, in the open grassland, to 

about 0.57 and 0.54 cm3 cm-3 (at HM and TR sites, respectively) in the zones 
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closer the tree trunk, following the spatial trends observed for the increasing of 

the litter layer mass and for the organic C concentration in the soil mineral layers 

under canopy. Such a trend may be a result of higher amounts (flux of organic 

debris) of decomposing residues (both litterfall and root litter) and the associated 

stronger biological activity, resulting in dead root channels and biopores, as 

explained by Weil and Brady (2017). This improvement of soil porosity may 

enhance the saturated soil hydraulic conductivity and soil aeration, which in turn, 

promotes an improved environment for soil organisms (Fisher and Binkley, 2000). 

It is noteworthy that the values of bulk density observed up to 10 cm depth in the 

open at Tapada Real (1.56 and 1.58 g cm-3) and at Herdade da Mitra (1.50 and 

1.54 g cm-3) are of the same magnitude, but are higher than those reported by 

Gómez-Rey at al. (2012) for natural (1.40 g cm-3) and improved (1.36 g cm-3) 

pastures growing in soils with sandy loam texture. Such a difference suggests the 

diagnosis of soil compaction, a documented process associated with the stocking 

rate increasing (Billota et al., 2007; Pulido et al., 2017), especially at the TR site. 

In fact, the soil at this site, due to its finer texture (silty loam), may be much more 

susceptible to compaction (Weil and Brady, 2017) than that at Herdade da Mitra. 

Indeed, the measured bulk density at Tapada Real is above the critical value 

(about 1.5 g cm-3) which is reported to cause strong reductions on aeration 

porosity and soil drainage, and, therefore, restrictions in rooting and water 

resource use by plants (Weil and Brady, 2017; Leão et al. 2006). Despite these 

features observed in the open, scattered trees in both sites tend to reverse the 

soil compaction tendency (that is, increasing porosity, by reducing bulk density), 

creating patches of more favourable soil physical conditions, in which soil 

degradation is avoided or alleviated. 

Therefore, results of the present study highlight that scattered trees in the 

montado system play an important role in the landscape by improving soil 

conditions which enhances soil aeration and biological processes, and facilitates 

plant rooting, and soil water infiltration and drainage, which decreases rainfall 

losses by run-off and allows quicker water recharge of deeper layers, leading to 

an improvement of water conditions under tree crowns as reported by Joffre & 

Rambal (1988) for similar systems. 
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Soil fertility 

Soils underneath tree crowns of both study sites are more fertile than soils from 

the surrounding open grassland, following trends reported for other oak 

woodlands occurring in California (Dahlgren et al., 2003) and in the Iberian 

Peninsula (Gallardo, 2003; Moreno et al., 2007; Moreno and Obrador, 2007). 

Also, they follow trends which have been reported for several agroforestry 

systems in tropical regions (Weltzin and Coughenour, 1990; Isichei and 

Muoghalu, 1992; Belsky et al., 1993), and for agroforestry systems occurring in 

Belgian (Pardon et al., 2017). Moreover, results of the present study follow those 

reported for nutrient availability in soils beneath Mediterranean shrubs, as 

compared with those in the open (Simões et al., 2009). 

In both study sites, the different soil fertility indices (e.g. organic matter 

concentration, extractable P, exchangeable Ca2+ and Mg2+) were similarly more 

elevated underneath trees than in the open. This alteration regarding the soil 

environment surrounding the scattered trees is reported to primarily occur 

through the addition of organic matter residues and nutrient cycling (Dahlgren et 

al., 1997). Although the exact source of the nutrient enrichment of soils beneath 

trees in both study sites was not specifically investigated, it was probably, in part, 

associated with the nutrient redistribution by tree litterfall (and via their 

decomposition), because trees transfer nutrients from the surrounding surface 

and deep soil layers to their canopy, and then drop them in their sorounding soil 

surface, through leaf and stem litter (Escudero et al., 1985; Moreno and Obrador, 

2007). The expansion of the oak tree roots to large distances beyond the edge of 

the canopy (David, 2000; Moreno et al., 2005) may also decisively contribute to 

translocate nutrients from the open grassland, thus enhancing nutrient 

concentrations differences between open and tree-covered soils. Then, the 

greater concentration of exchangeable non-acid cations in the soil beneath tree 

crowns is a consequence of the nutrient cycling by oak trees, which selectively 

replenishes the Ca2+, Mg2+, and K+ concentrations while Na+, a non-essential 

plant nutrient, is not accumulated beneath the tree canopy. In fact, the leaf litterfall 

of cork ok and holm oak is known to return high amounts of these nutrients to the 

soil (Escudero et al., 1985; Andivia et al., 2010), and the average flux of Ca, Mg, 

and K to the soils beneath these oak canopies, measured at the Herdade da Mitra 

site, was about 21, 5 and 9 kg ha-1 yr-1, respectively (Sá, 2001). 
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The amount of nutrients transported by throughfall and stemflow will also affect 

the difference of nutrient availability in soil under and outside tree canopy, as 

reported in studies of several authors (Wolfe et al., 1987; Kretinin, 1993; Seiler & 

Matzner, 1995). Indeed, at Herdade da Mitra, the measured returns of deposition 

and canopy throughfall reach about 21, 7 and 38 kg ha-1 yr-1 respectively for Ca, 

Mg and K (Nunes et al., 2001; Nunes, 2004). 

A further effect of scattered trees on nutrient cycling occurs through canopy 

processes, which increases transpiration and rainfall interception (David, 2000; 

David et al., 2006; Cubera and Moreno, 2007), thus reducing the water available 

for leaching in the soils beneath the tree crowns. In short, it means that much of 

such flux represents nutrients that would have been lost from the soil profile in 

the absence of oak trees (Dahlgren et al., 1997). Other factors may also 

contribute to the soil nutrient enrichment underneath oak trees. For instance, 

shading up by grazers may also result in some transport of nutrients from the 

open grassland to soils beneath tree crowns as they may preferably defecate 

beneath the oak canopy (Dahlgren et al., 1997). 

Results of the current study also indicate that the enrichment of the soil in 

nutrients beneath tree crowns shows a wide variability from the tree trunk to the 

edge of the canopy. Such a variability may be partly associated with the 

aforementioned variability related to the litterfall distribution beneath tree crowns 

(Sá et al. 2005; Escudero et al., 1985). Furthermore, the soil nutrient spatial 

variation might be also dependent on the spatial variability of the nutrient fluxes 

related to the throughfall and stemflow, which at Herdade da Mitra showed a wide 

variability with the distance to the tree trunk, reaching the highest values close 

the trunk and the lowest at the edge of the crown (Nunes et al., 2001; Nunes, 

2004), following trends reported by Wolfe et al. (1987) and Seiler & Matzner 

(1995) for other ecosystems. It should be emphasized that the redistribution of 

nutrients in the soil close the tree trunk, is strongly influenced at a local level by 

the stemflow, which corresponds to a high devolution in a relatively small area 

effectively influenced by it (Voight, 1960). This trend, observed by Nunes et al. 

(2001) and Nunes (2004) at Herdade da Mitra, can assume relevance in the 

nutrient availability in the soil closer to the tree trunk, especially regarding K. 

Indeed, the variability observed for the characteristics of the top soil layer with 

distance to the tree trunk, is in fully agreement with the distribution of nutrients by 
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the precipitation solutions and litterfall spatial distribution, as pointed by Zinke 

(1962). 

It is noteworthy that soil fertility in the open was overall more pronounced at 

Tapada Real than at Herdade da Mitra, which may be associated with differences 

in soil texture (silty loam in the former and sandy loam in the latter) and soil 

organic matter concentrations (higher in the former than in the latter). Despite 

such soil differences, the enhancement of soil fertility beneath tree crowns in both 

sites showed a similar trend, mostly associated with the accumulation of soil 

organic matter. This accumulation leads to a higher concentration of nitrogen and 

higher capacity to retain cations, which is supported by the fact that the effective 

cation exchange capacity close the tree trunk was 1.9 and 2.3 times (at TP and 

HM, respectively) higher than that estimated for the open areas, and by the strong 

correlation between the soil organic carbon concentration and the effective cation 

exchange capacity (see Annex I). That is, the increment of soil fertility beneath 

tree crowns is strongly associated with the carbon cycle and driven by the soil 

organic matter accumulation. 

Despite of the stronger accumulation of organic matter in the 0-5 cm soil layer, 

pH values in this layer were higher than in the other layers, which may be 

associated with the retention of non-acid cations (and decreasing aluminium) in 

the top soil layer. However, it is noteworthy that the saturation degree at the soil 

pH in both sites was similar in all soil depths (97-98%). 
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CONCLUSIONS 

The present study undoubtedly shows that scattered cork and holm oak trees in 

the montado system create gradients of soil physical and chemical properties, 

from the tree trunk into open areas, up to distances that can be twice the tree 

crown radius. This trend evidences the important role of the oak trees in the 

capture, devolution and retention of nutrients in the top soil layers. Soils 

underneath oak tree canopies are more fertile and show higher quality than soils 

from the surrounding open pastures. The current study also shows that soil 

fertility indices (e.g. organic matter, extractable P, K and Ca) were similarly 

elevated in the canopy zone of both study sites as compared to outside the 

canopy. Also, the transference of great amounts of organic residues to the soil 

surface under tree canopy leads to soil protection and a considerable 

improvement of soil physical conditions (e.g. lower soil bulk density and higher 

soil porosity) which favour soil aeration and drainage. However, physical 

conditions and nutrient levels may be dependent on soil type, land and soil 

management and tree age. Results suggest that oak trees are an important 

component of the ecosystem that serve a valuable role in the retention of 

nutrients and organic carbon which in turn will contribute to the long-term 

ecosystem sustainability. 

Trees in the montado are responsible for huge amounts of organic C 

accumulation at landscape scale, a high proportion being sequestered into the 

soil. Consequently, the decline of montado and associated loss of oak trees, may 

lead to considerable organic C and nutrient losses from the ecosystem. In these 

circumstances, management practices and policies should be developed to 

support tree regeneration rates that can maintain or increase tree cover in oak 

woodland areas. Such a strategy is crucial to enhance organic carbon 

sequestration, aiming the accomplishment of international commitments as well 

as the improvement of soil resistance to face degradation risks. 
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ANNEX I 

Pearson correlation coefficients (r) between relevant soil properties in the 0-5 cm soil layer at Tapada Real de Vila Viçosa 
 

r 
    pH  Extractable 

a 

Exchangeable  

C POM-C N C:N H2O KCl  P K 
 

Ca2+ Mg2+ Na+ K+ Sum Al3+ ECEC Dist. 

 BD -0,966 -0,804 -0,964 -0,751 -0,333 -0,841  -0,915 -0,867 
 

-0,937 -0,932 -0,232 -0,848 -0,941 0,666 -0,940 0.888 

 C  0,891 0,975 0,838 0,236 0,818  0,922 0,858 
 

0,935 0,914 0,276 0,837 0,934 -0,648 0,934 -0.920 

 POM-C   0,845 0,773 -0,042 0,550  0,802 0,673 
 

0,758 0,747 0,462 0,622 0,758 -0,390 0,761 -0.801 

 N    0,706 0,257 0,828  0,925 0,852 
 

0,934 0,909 0,272 0,860 0,935 -0,640 0,934 -0.894 

 C:N     0,146 0,634  0,710 0,678 
 

0,708 0,691 0,199 0,603 0,704 -0,615 0,701 -0.838 

p
H

 H2O      0,582  0,094 0,388 
 

0,465 0,512 -0,396 0,361 0,465 -0,641 0,457 -0.291 

KCl        0,732 0,865 
 

0,920 0,882 0,007 0,888 0,916 -0,805 0,912 -0.760 
                    

E
x
t.

 P         0,784 
 

0,836 0,809 0,242 0,827 0,840 -0,551 0,840 -790 

K          
 

0,905 0,893 0,323 0,966 0,921 -0,676 0,919 -0.824 
                    

E
x
c
h

a
n

g
e
a
b

le
 

Ca2+          
 

 0,981 0,189 0,893 0,998 -0,678 0,998 -0.853 

Mg2+          
 

  0,199 0,861 0,987 -0,669 0,987 -0.846 

Na+          
 

   0,209 0,212 0,128 0,218 -0.337 

K+          
 

    0,906 -0,651 0,905 -0.760 

Sum          
 

     -0,677 0,999 -0.857 

Al3+          
 

      -0,665 0.719 

ECEC          
 

       0.338 

 

  



 

II 

 

Pearson correlation coefficients (r) between relevant soil properties in the 5-10 cm soil layer at Tapada Real de Vila Viçosa 
 

r 
    pH  Extractable  Exchangeable  

C POM-C N C:N H2O KCl  P K  Ca2+ Mg2+ Na+ K+ Sum Al3+ ECEC Dist. 

 BD -0,948 -0,777 -0,906 -0,801 -0,399 -0,732  -0,789 -0,813  -0,824 -0,822 -0,573 -0,809 -0,851 0,661 -0,861 0.852 

 C  0,808 0,940 0,867 0,501 0,817  0,814 0,849  0,906 0,882 0,586 0,858 0,927 -0,777 0,933 -0.915 

 POM-C   0,854 0,750 0,162 0,568  0,526 0,599  0,744 0,743 0,671 0,541 0,762 -0,574 0,773 -0.744 

 N    0,651 0,442 0,779  0,772 0,703  0,882 0,846 0,665 0,734 0,896 -0,766 0,900 -0.873 

 C:N     0,450 0,669  0,679 0,874  0,717 0,715 0,392 0,822 0,745 -0,192 -0,080 -0.808 

p
H

 H2O      0,809  0,456 0,593  0,704 0,675 0,234 0,658 0,710 -0,864 0,689 -0.428 

KCl        0,745 0,805  0,928 0,807 0,390 0,878 0,918 -0,933 0,908 -0.683 
                    

E
x
t.

 P         0,702  0,746 0,711 0,312 0,839 0,762 -0,640 0,767 -0.634 

K           0,799 0,806 0,434 0,895 0,831 -0,760 0,831 -0.807 
                    

E
x
c
h

a
n

g
e
a
b

le
 

Ca2+            0,893 0,482 0,838 0,990 -0,910 0,989 -0.776 

Mg2+             0,578 0,812 0,945 -0,831 0,947 -0.803 

Na+              0,274 0,533 -0,507 0,530 -0.709 

K+               0,861 -0,774 0,861 -0.713 

Sum                -0,909 0,999 -0.812 

Al3+                 -0,893 0.703 

ECEC                  -0.815 

 

  



 

III 

 

Pearson correlation coefficients (r) between relevant soil properties in the 10-20 cm soil layer at Tapada Real de Vila Viçosa 
 

r 
     pH  Extractable  Exchangeable  

C POM-C N C:N  H2O KCl  P K  Ca2+ Mg2+ Na+ K+ Sum Al3+ ECEC Dist. 

 BD -0,801 -0,804 -0,744 -0,726  -0,067 -0,409  -0,350 -0,640  -0,531 -0,699 -0,746 -0,553 -0,615 0,474 -0,628 0.707 

 C  0,845 0,934 0,911  0,121 0,540  0,381 0,560  0,593 0,748 0,684 0,576 0,671 -0,532 0,683 -0.866 

 POM-C   0,763 0,803  -0,125 0,323  0,118 0,455  0,419 0,568 0,648 0,413 0,490 -0,260 0,524 -0.741 

 N    0,707  0,339 0,655  0,494 0,570  0,673 0,805 0,545 0,623 0,741 -0,617 0,748 -0.811 

 C:N      -0,146 0,316  0,216 0,469  0,392 0,535 0,733 0,429 0,466 -0,333 0,481 -0.805 

p
H

 H2O       0,825  0,566 0,459  0,726 0,514 -0,151 0,665 0,680 -0,771 0,646 -0.189 

KCl         0,659 0,629  0,931 0,731 0,166 0,878 0,905 -0,866 0,891 -0.511 
                     

E
x
t.

 P          0,511  0,595 0,442 0,065 0,672 0,575 -0,550 0,567 -0.400 

K            0,651 0,657 0,411 0,703 0,685 -0,622 0,682 -0.755 
                     

E
x
c
h

a
n

g
e
a
b

le
 

Ca2+             0,845 0,287 0,837 0,987 -0,879 0,985 -0.552 

Mg2+              0,493 0,721 0,918 -0,836 0,912 -0.716 

Na+               0,292 0,383 -0,390 0,372 -0.685 

K+                0,845 -0,794 0,835 -0.537 

Sum                 -0,900 0,996 -0.632 

Al3+                  -0,858 0.543 

ECEC                   -0.634 

 

  



 

IV 

 

Pearson correlation coefficients (r) between relevant soil properties in the 0-5 cm soil layer at Herdade da Mitra 
 

r 
    pH  Extractable 

a 

Exchangeable  

C POM-C N C:N H2O KCl  P K 
 

Ca2+ Mg2+ Na+ K+ Sum Al3+ ECEC Dist. 

 BD -0.943 -0.900 -0.951 -0.695 -0.047 -0.712  -0.894 -0.808  -0.923 -0.344 -0.337 -0.814 -0.879 0.272 -0.877 0.897 

 C  0.937 0.983 0.787 -0.086 0.632  0.847 0.892 
 

0.933 0.409 0.516 0.810 0.910 -0.132 0.913 -0.8871 

 POM-C   0.936 0.687 -0.119 0.584  0.870 0.848 
 

0.894 0.438 0.438 0.765 0.885 -0.028 0.892 -0.892 

 N    0.669 0.027 0.720  0.906 0.917 
 

0.951 0.376 0.482 0.868 0.917 -0.227 0.917 -0.904 

 C:N     -0.483 0.199  0.449 0.595 
 

0.613 0.461 0.461 0.423 0.653 0.225 0.699 -0.642 

p
H

 H2O      0.596  0.109 0.129 
 

0.203 -0.327 -0.486 0.351 0.068 -0.902 0.033 -0.041 

KCl        0.707 0.727 
 

0.808 0.171 0.109 0.876 0.737 -0.708 0.716 -0.697 
                    

E
x
t.

 P         0.836 
 

0.908 0.491 0.371 0.839 0.918 -0.294 0.915 -0.911 

K          
 

0.853 0.317 0.381 0.913 0.824 -0.240 0.823 -0.871 
                    

E
x
c
h

a
n

g
e
a
b

le
 

Ca2+          
 

 0.373 0.358 0.905 0.954 -0.376 0.948 -0.911 

Mg2+          
 

  0.300 0.305 0.633 0.173 0.646 -0.547 

Na+          
 

   0.268 0.403 0.324 0.420 -0.273 

K+          
 

    0.866 -0.482 0.854 -0.874 

Sum          
 

     -0.262 0.999 -0.938 

Al3+          
 

      -0.225 0.229 

ECEC          
 

       -0.938 

 

  



 

V 

 

Pearson correlation coefficients (r) between relevant soil properties in the 5-10 cm soil layer at Herdade da Mitra 
 

r 
    pH  Extractable  Exchangeable  

C POM-C N C:N H2O KCl  P K  Ca2+ Mg2+ Na+ K+ Sum Al3+ ECEC Dist. 

 BD -0.782 -0.671 -0.880 -0.167 0.140 -0.353  -0.558 -0.701  -0.430 -0.496 0.194 -0.668 -0.504 0.300 -0.504 0.632 

 C  0.739 0.864 0.623 -0.215 0.254  0.385 0.725  0.544 0.534 0.075 0.632 0.612 -0.043 0.612 -0.666 

 POM-C   0.843 0.260 -0.234 0.051  0.487 0.538  0.432 0.729 0.176 0.517 0.635 0.115 0.647 -0.479 

 N    0.151 -0.134 0.331  0.578 0.762  0.622 0.663 0.095 0.773 0.729 -0.189 0.719 -0.723 

 C:N     -0.177 0.004  -0.103 0.228  0.118 0.075 0.022 0.035 0.106 0.203 0.122 -0.155 

p
H

 H2O      0.764  0.316 0.241  0.047 -0.112 -0.191 0.236 -0.014 -0.788 -0.074 0.074 

KCl        0.556 0.618  0.193 -0.017 -0.209 0.575 0.140 -0.876 0.074 -0.456 
                    

E
x
t.

 P         0.364  0.363 0.530 0.030 0.414 0.489 -0.481 0.455 -0.528 

K           0.569 0.341 0.046 0.907 0.556 -0.429 0.527 -0.714 
                    

E
x
c
h

a
n

g
e
a
b

le
 

Ca2+            0.642 0.325 0.714 0.936 -0.188 0.927 -0.499 

Mg2+             0.112 0.368 0.868 0.022 0.875 -0.452 

Na+              0.099 0.278 0.460 0.315 -0.148 

K+               0.660 -0.435 0.631 -0.626 

Sum                -0.114 0.997 -0.550 

Al3+                 -0.039 0.245 

ECEC                  -0.535 

 

  



 

VI 

 

Pearson correlation coefficients (r) between relevant soil properties in the 10-20 cm soil layer at Herdade da Mitra 
 

r 
     pH  Extractable  Exchangeable  

C POM-C N C:N  H2O KCl  P K  Ca2+ Mg2+ Na+ K+ Sum Al3+ ECEC Dist. 

 BD -0.252 -0.094 -0.388 0.048  0.648 0.017  -0.321 -0.285  0.121 -0.120 0.039 -0.240 -0.004 -0.044 -0.010 0.319 

 C  0.261 0.783 0.654  -0.310 0.187  0.331 0.473  -0.130 -0.091 0.130 0.358 -0.075 0.065 -0.063 -0.402 

 POM-C   0.180 0.179  0.030 0.338  -0.201 0.193  -0.174 -0.234 0.215 0.175 -0.178 -0.066 -0.181 -0.430 

 N    0.045  -0.421 0.190  0.366 0.750  -0.127 -0.107 0.135 0.678 -0.047 0.165 -0.022 -0.351 

 C:N      0.015 0.045  0.083 -0.139  -0.056 -0.013 0.047 -0.244 -0.061 -0.092 -0.072 -0.194 

p
H

 H2O       0.460  -0.127 -0.181  0.208 -0.215 -0.242 -0.108 0.005 -0.613 -0.081 0.372 

KCl         0.334 0.271  -0.217 -0.568 -0.441 0.325 -0.367 -0.828 -0.471 -0.274 
                     

E
x
t.

 P          0.104  -0.237 -0.310 0.012 0.068 -0.269 -0.389 -0.315 0.061 

K            -0.054 -0.064 -0.010 0.977 0.038 0.015 0.039 -0.560 
                     

E
x
c
h

a
n

g
e
a
b

le
 

Ca2+             0.822 0.225 0.000 0.963 0.019 0.932 0.320 

Mg2+              0.262 -0.053 0.933 0.342 0.949 0.139 

Na+               -0.095 0.285 0.394 0.331 -0.043 

K+                0.074 -0.031 0.069 -0.507 

Sum                 0.177 0.990 0.197 

Al3+                  0.312 0.027 

ECEC                   0.194 

 

 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

 

Influence of pasture management on carbon and nutrient 

fluxes in evergreen oak woodland (montado) soils 
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Influence of pasture management on carbon and nutrient 

fluxes in evergreen oak woodland (montado) soils 

 

 

ABSTRACT 

Montado (dehesa in Spain) is the largest agroforestry system in the Iberia Peninsula, 

characterized by the combination of scattered evergreen oak trees with agriculture, 

pasture or shrubs understorey. Despite its acknowledged values, most montado 

areas are now threatened by lack of proper management and climate changes, 

highlighting the need for guidelines that can ensure the continuity of their economic 

and environmental services, as a base for their long-term sustainability. In order to 

identify possible effects of some current management practices on soil carbon and 

nutrient fluxes, a lysimetric study was performed. Undisturbed soil blocks from two 

montado farms were considered, representing different soil types (textures), long-

term improved, recently renewed and natural pastures, under different stocking rates 

and grazer species. Soils greenhouse gases (GHG) fluxes (CH4, N2O, CO2), nutrient 

leaching and N, P and C soils fluxes were monitored along a 15-month period, under 

even climatic conditions. Significant variations of GHG fluxes between management 

practices were observed, namely differences in hourly emissions were largely 

explained by sampling date and soil texture. Long-term improved pasture 

management have showed generally higher accumulated CO2 emissions, prominent 

initial N2O fluxes and enhanced P leaching. Pasture renewal was associated with 

higher soil microbial activity and increasing nitrate and cations leaching. Soils with 

finer texture showed higher potential to transfer C to the atmosphere, mainly due to 

higher CH4 emissions. Our study highlighted the major role of abiotic factors over 

open grassland soils C and nutrient fluxes, but further studies are still needed to 

address climate factors and eventual global changes effects over these soils 

functions. 

 

Keywords: grassland; greenhouse gases; nitrogen; organic carbon; phosphorus; 

soil leachates.  
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INTRODUCTION 

Driven by the increase in anthropogenic greenhouse gases (GHG) emissions - 

particularly carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) - climate 

changes are already affecting the Mediterranean region, with higher temperatures, 

and increasing drought frequency (IPCC, 2014a). Soil is the largest terrestrial sink 

of carbon (C) and nitrogen (N) (Batjes, 1996) and is a key component of ecosystems, 

maintaining and regulating all biogeochemical cycles. Adequate soil management 

practices are being studied and suggested worldwide as mitigation strategies to 

minimize impacts of climate change (Bispo et al., 2017; Minasny et al., 2017; 

Stockmann et al., 2013). Agroforestry systems, the combination of trees with 

intercropped agricultural productions, are among the most promising land use 

options to sequester C from the atmosphere, in both soil and biomass (Kim et al., 

2016; Kumar and Nair, 2011). 

Evergreen oak woodlands (montado in Portugal, dehesa in Spain) are the most 

important agroforestry system in the Iberian Peninsula, where it occupies more than 

three million hectares (Eichhorn et al., 2006). Shaped by human needs along 

centuries, these multipurpose agroecosystems combine scattered oak trees - mainly 

Quercus suber L. and Q. ilex L. - with diverse understorey land uses, such as 

pastures, agricultural crops and/or shrubs (Belo et al., 2009; Moreno and Pulido, 

2009). Despite their widely recognized social, environmental and economic values, 

crucial sustainability issues have been related to recent management trends 

(Bugalho et al., 2011; Escribano et al., 2018). Soil degradation and tree decline 

appear as a direct consequence of shifts in land use, namely intensification or 

abandonment (Costa et al., 2010; Hernández-Lambraño et al., 2018; Pulido-

Fernández et al., 2013). A generalized decrease of tree natural regeneration has 

also been associated with grazing intensity and timing (Carmona et al., 2013; López-

Sánchez et al., 2014; Plieninger, 2007). Furthermore, as climate changes become 

more evident in the Mediterranean region (IPCC, 2014a), montado adaptation and 

resilience is being questioned (Duque-Lazo et al., 2018; Lozano-García et al., 2017). 

In the last decades, Portuguese montado management has been mainly driven by 

subsidy policies, which are currently favouring silvo-pastoral systems, particularly 
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those including cattle (IFAP, 2016). Indeed, national statistics show that, over the 

last decades, permanent pasture area strongly increased and traditional sheep and 

pig herds have been replaced by cattle, (GPP, 2018). A recent European survey 

estimates that livestock production under woodlands is the major agroforestry 

system in Portugal, occupying about 799.1 thousand hectares (den Herder et al., 

2017). 

In this context, sowing improved pastures - selected species mixtures, with high 

proportions of legumes - has become attractive to meet the higher livestock 

nutritional requirements (Hernández-Esteban et al., 2018). Furthermore, some 

studies reported positive impacts of improved pasture sowing on soil quality 

restoration, mainly due to organic carbon sequestration and nitrogen availability 

enhancement (Crespo, 2006; Teixeira et al., 2011). A financial support granted since 

2009 by the Portuguese Carbon Fund has also stimulated the increase of national 

sowed pasture area (APA, 2017). 

Some recent studies suggest potential positive effects of pasture sowing on organic 

C and N pools of montados top soil (Gómez-Rey et al., 2012; Hernández-Esteban 

et al., 2018). But the rate and extent of these soil quality improvements seem to rely 

on other site-specific and management factors, while tree regeneration problems 

remain overlooked (Rodrigues et al., 2019; see Chapter 2). Moreover, simple soil 

organic C stock increment does not ensure an effective C sequestration, since 

information on the net transfer of C from the atmosphere to the soil, as well as other 

soil GHG fluxes balances, is still lacking  

The increase of soil organic matter may lead to significant modifications of the 

nitrogen dynamics, namely nitrification, with potential increases of nitrate leaching 

(Di and Cameron, 2002; Trolove et al., 2019). Also, since improved pasture 

management usually implies mineral phosphate (P) applications, soil high P 

saturation levels may lead to P runoff or leaching (Horta and Torrent, 2010). 

In this context, a study was developed to assess soil C and N fluxes from open 

pastures under montado systems, as affected by different soil type and pasture 

management. By assembling a lysimetric experiment, with minimally disturbed soil 

blocks from six differently managed pastures, we were able to compare soil initial 
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physical and biochemical status, CO2, N2O and CH4 fluxes, and top soil nutrient 

leaching along a 15-month period. It was hypothesized that, under similar 

meteorological conditions, pasture and livestock management, along with soil type 

(texture), would influence the soil biogeochemical cycles and associated C and N 

fluxes. Our main objectives were to discuss how recent management modifications 

influence soil functions in montado, and to suggest adequate practices to overcome 

major sustainability challenges, namely, soil degradation, tree regeneration and 

overall system resilience in the face of climate change. 
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MATERIALS AND METHODS 

 

Study systems 

Two montado farms located in the Alto Alentejo region (Portugal) were considered: 

Herdade dos Esquerdos (HE; 39°07’-39°08’ N, 7°29’-7°30’ W - Vaiamonte) and 

Herdade do Olival (HO; 38°51’-38°52’ N, 7°32’-7’°33’ W - Mamporcão). Both farms 

have a tree density of 30 to 40 oak trees ha-1 (mostly Quercus suber L. with fewer 

Q. ilex L.), with approximately 35% ground cover. Topography is generally gentle 

undulated, and climate is typically Mediterranean, with hot and dry summer and mild 

and wet winter. Mean monthly temperature varies from 8 to 25 °C, and mean annual 

rainfall is between 620 and 670 mm (Ferreira, 1970; INMG, 1991). Soils in the HE 

are developed over gneisses, have sandy loam texture and are classified as Leptic 

Regosols associated with Leptosols with dystric characteristics (IUSS Working 

Group WRB, 2015). In the HO, soils are developed on granitic bedrock and are 

classified as Eutric Luvisols (IUSS Working Group WRB, 2015), showing loam to 

clay loam texture. 

Three pasture management systems were considered in HE: 

1)  a 37 years old improved pasture (IP), grazed by 5 to 8 sheep per hectare 

every year (0.5 to 0.8 LU ha-1 year-1); improved pasture seed mixture included 

mainly Trifolium spp., Ornithopus spp. and Lolium spp., and application of 300 

kg ha-1 of natural rock phosphate (26.5% P2O5, 35% CaO, 3.2% SO3 and 

0.8% MgO) is carried out every two years. 

2)  a recently renewed improved pasture (IPr), managed as the IP and grazed 

by the same sheep herd at similar annual stocking rate; Pasture renewal was 

carried out by direct drilling (maximum 5 cm depth), approximately six months 

before the present study soil sampling. 

3) a natural pasture that is occasionally grazed (OG) by less than one sheep per 

hectare (< 0.1 LU ha-1 year-1).  Herbaceous vegetation at the occasionally 

grazed area is mainly composed by Chamaemelum mixtum (L.) All., 

Leontodon taraxacoides (Vill.) Mérat, Trifolium spp., Ornithopus spp. and 

Biserrula pelecinus L. (FCT, 2014). 
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Three management systems were also selected in the HO farm: 

1)  an improved pasture (IP) established 18 years ago and grazed by cattle (0.7 

LU ha-1 year-1); Improved pasture species mixture included Trifolium spp., 

Ornithopus spp. and Lolium spp. 350 kg ha-1 of calcium phosphate fertilizer 

(18% P, 10% Ca and 27% S) are applied every two years 

2)  an adjacent natural pasture grazed by the same cattle herd (NP) at similar 

annual stocking rate; Dominant herbaceous species include Agrostis 

castellana Boiss. et Reut., Chamaemelum nobile (L.) All., Vulpia geniculata 

(L.) Link, Lolium rigidum Gaudin and Carduus tenuiflorus Curtis (FCT, 2014). 

3) a control area with natural herbaceous vegetation and shrub encroachment, 

that is occasionally grazed (OG) by less than one sheep or pig per hectare (< 

0.1 LU ha-1 year-1).  Dominant herbaceous species are the same as those 

present in NP. Natural occurring shrubs are mainly Cistus spp. and Quercus 

coccifera L., and their control is made when needed, at approximately 6 to 8 

years intervals, by soil harrowing. 

 

Experimental design 

A lysimetric experiment was conducted from July 25th 2016 to October 4th 2017, at 

Tapada da Ajuda, in Lisbon. The climate is Mediterranean, with mean annual 

precipitation of 774 mm, 85% of which occurring from October to April, and mean 

annual temperature of 17.4 °C (IPMA, 2018a). Accumulated rainfall, and mean soil 

(10 cm depth) and air temperatures were registered daily by a nearby automatic 

meteorological station (IPMA, 2018b), being presented in Figure 1. 

Thirty wooden lysimeters (three-layer spruce plywood, coated with synthetic 

melamine resin) were built to contain soil blocks with 0.203 m2 surface area and up 

to 25 cm depth (boxes outer dimensions 50×50×28 cm). The bottom was isolated 

with a plastic film (PE, 200 µm), topped by a gravel layer (ca. 5 cm), a filtering 

geotextile fabric layer (Terram 2000, Fiberweb Geosynthetics Ltd.) and a sand layer 

(ca. 3 cm). A draining tube (PVC, 16 mm) was carved to one bottom corner of each 

lysimeter in a 45° downward angle, and the diagonally opposite corner was slightly 
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elevated (ca. 1 cm) to ensure that all infiltrating water will flow through the tube and 

into a collecting bottle (ca. 2 L). 

 

 

Figure 1 - Daily meteorological parameters registered by the Tapada da Ajuda automatic 
station between 25-07-2016 and 04-10-2017. 

 

In May 2016, a 100×100 m plot was randomly chosen in each study area, and a 

10×10 m grid was considered inside it. Ensuring absence of trees and the maximum 

possible distance from trees canopies, one sub-plot was randomly selected, and a 

5×1 m rectangle was delimited inside it. A 0.5 m depth trench was dig around the 

rectangle to facilitate undisturbed soil blocks collection. Five 0.40×0.40×0.20 m soil 

blocks were collected in each sampling area. For that, a wooden frame 

(0.45×0.45×0.25 m) was carved into the soil profile, cutting the bottom by running a 

stainless-steel plate through a proper gutter system attached to the frame. The soil 

blocks were lifted and transferred to the lysimeters by carefully removing the bottom 

plate of the collecting frame placed upon them. 

The lysimeters were then transported to the experiment location at Tapada da Ajuda, 

where four out of the five from each study system where randomly chosen for 

greenhouse gases emissions measurements, while in the fifth lysimeter, an access 

tube was installed for a soil moisture probe (PR2, Delta-T Devices). Experimental 

layout was assembled in June 2016 and lysimeters were kept undisturbed for a 

month before any data collection. 
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Samplings and measurements 

 

Greenhouse gases fluxes 

Gases fluxes from soil to the atmosphere were measured using a closed dynamic 

manual chamber technique (Oertel et al., 2016) along 14 months, from July 25th 2016 

to October 4th 2017. The chambers (23 cm width and 24 cm height) were inserted 

into the soil to a depth of 8 cm at the beginning of the experiment and remained there 

until the end of the experiment. One chamber was installed per lysimeter, adding two 

litters of distilled water to facilitate installation. For measurement of gas emissions, 

the chambers were covered with a gas-tight cap equipped with a Teflon tube, which 

allowed air sampling in the headspace atmosphere using a syringe. Air samples (30 

mL) were taken 30 (T1) and 60 (T2) min after closure and transferred to vials (20 

mL) sealed with PTFE–silicon septa. Four surrounding air replicates were also 

collected, two before T1 and two after T2, to represent T0 chambers conditions 

(Chadwick et al., 2014). Gases concentrations were measured by gas 

chromatography (GC) using a GC-2014 (Shimadzu, Japan), with an electron capture 

63Ni detector (ECD), a thermal conductivity detector (TCD) and a flame ionization 

detector (FID), for N2O, CO2 and CH4 determinations, respectively. The N2O, CO2 

and CH4 flux rates were calculated from the slope of the temporal change of the 

concentration within the chamber, and corrected for daily mean air temperature, 

chamber volume and the surface area of the chamber. A total of 71 sampling dates 

were considered, with a maximum interval of 15 days in periods without precipitation, 

and in at least three consecutive days following any rain event. 

Cumulative emissions were estimated by multiplying the average flux between 

consecutive measurements, by the respective time interval. To consider the 

treatment effects on greenhouse gas emissions as a whole, N2O and CH4 emissions 

were converted to CO2 equivalents using conversion factors of 298 and 25 for N2O 

and CH4, respectively for the global warming potential (GWP) at 100-year time scale 

(IPCC, 2014b). 

 

  



148 
 

Leachate solutions 

Throughout the study period, leachate collecting bottles were checked after each 

rain event. Leachates volumes were measured, and a subsample was taken (ca. 

300 ml) and kept refrigerated in 25 dates. Leachate samples were filtered (0.45 µm) 

and a 15 mL subsample was immediately frozen. Total N and dissolved organic C 

were determined in a elemental analyser (Skalar FORMAC Combustion TOC/N) 

using a chemiluminescence detector and near-infrared spectroscopy, respectively. 

Determinations of NO3
--N and NH4

+-N were made in a segmented flow autoanalyzer, 

using α-naphthylamine and sulphanilamide method, after reduction with Cd, and the 

modified Berthelot method, respectively. Remaining filtered leachates solutions were 

kept refrigerated (4 °C), pH was measured, concentrations of Ca, Mg, Na and K were 

determined by atomic absorption spectroscopy (AAS; Aanalyst 300, Perkin Elmer) 

and P by the molybdate blue method. 

 

Herbaceous biomass 

Shortly after the first significant rain events, in December 2016, the IPr system 

lysimeters were abundantly encroached by Urtica dioica L., a specie known to 

opportunistically develop in high inorganic N and P availability conditions (Taylor, 

2009). A selective cutting was performed, removing only U. dioica L. individuals. 

Aboveground herbaceous biomass was cut in all lysimeters at the beginning of 

spring 2017, ensuring that soil was left covered by ca. 5 cm high vegetation layer. 

All samples were oven dried at 65 °C, weighed and mechanically grounded (0.5 

mm). Total N was determined by Kjeldahl digestion. Mineral elements were 

determined after ashing at 450 °C for 6 hours with HNO3 solution and measured by 

colorimetry for P and AAS for Ca, Mg, K and Mn. 

 

Soil moisture and properties 

Soil moisture was registered at each GHG sampling date (71 times), throughout the 

lysimetric experimental period. A PR2 profile probe with a HH2 moisture meter 

reading unit (Delta-T Devices) was used. 
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By the time soil blocks were collected from each studied pasture system, a set of 12 

soil samples was also taken with an auger from the 0-10 cm soil layer, within the 

10×10 m sampling plot. Samples from each management system were randomly 

paired to obtain six replicates per management system, which were immediately 

sieved (<2 mm) and field-moist subsamples were taken for microbial biomass C and 

N estimation by the fumigation-extraction procedure (Vance et al., 1987). Remaining 

soil was air dried and used to determine total N by Kjeldahl digestion, total and 

particulate (> 53 µm by wet sieving) organic C (De Leenheer and Van Hove, 1958), 

and extractable P (Egnér Riehm, 1958), measured by colorimetry. 

Six replicates of undisturbed soil samples were also collected in field conditions, 

along with soil blocks collection. By carving metallic cylinders (ca. 590 cm3) into the 

upper 10 cm soil layer, undisturbed soil cores were carefully trimmed to the cylinders 

volume and oven dried (105 °C) until constant weigh. Soil bulk density was 

calculated dividing the soil cores dry weigh by the cylinders volume (Blake and 

Hartge, 1965). 

 

Statistical analysis 

Soil properties, leachates pH and nutrient contents, vegetation biomass and nutrient 

concentrations, were considered as independent variables and analyses of variance 

(ANOVA; α=0.05) were performed to test differences between management 

systems, separately for each farm (IP, IPr and OG for Herdade dos Esquerdos; IP, 

NP and OG for Herdade do Olival). If samples normal distribution (Shapiro-Wilk test) 

and homogeneity of variances (Levene ‘s test) could not be accepted, even with data 

transformations (e.g. logarithm, square root), Kruskal-Wallis test (α=0.05) procedure 

was performed. When significant differences between management systems 

averages were assumable, Tukey’s or Waerden’s (non-parametric) tests (α=0.05) 

were used to discriminate differences between management systems. 

Greenhouse gases fluxes determinations were also analysed for significant 

differences between management system, sampling date, and lysimeter box, 

expressed by the following mixed effects model: 
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𝐺𝑙𝑝𝑑 = µ + 𝑃𝑙𝑝 + 𝐷𝑙𝑑 + (𝑃𝐷)𝑙𝑝𝑑 + 𝛿𝑙𝑝 + 𝜖𝑙𝑝𝑑 

 

Where 𝐺 represents each GHG gas flux mean, µ is the population mean, 𝑃 is the 

pasture management effect with 𝑝 = 1, … , 3 levels (IP, IPr and OG at Herdade dos 

Esquerdos; IP, NP and OG at Herdade do Olival), 𝐷 is the sampling date effect, with 

𝑑 = 1,… , 71 levels, 𝛿 is the lysimeter associated error, with 𝑙 = 1, … , 4 subjects, and 

the errors are assumed as 𝜖~𝑁(0, 𝜎). ANOVA procedures for non-parametric 

longitudinal data were applied, for each GHG gas and farm, and when significant 

differences were found between management system, mean separation was 

achieved by pair comparison. 

Since accumulated GHG emissions, respective global warming potential and relative 

proportions of emitted C and N, to the initial soil organic C and total N contents did 

not show any significant differences between management systems averages, within 

each farm, an ANOVA procedure (α=0.05) was used to test for differences between 

all management systems, as a nested factor of their respective farm (HE/IP, HE/IPr, 

HE/NG, HO/IP, HO/NP and HO/OG). Whenever significant differences were found 

for the interaction, Tukey’s test (α=0.05) was used for means separation. 

All data analysis were conducted in the R environment (R Core Team, 2014), using 

adequate packages such as ‘car’ (Fox and Weisberg, 2011), ‘agricolae’ (De 

Mendiburu, 2009) and ‘nparLD’ (Noguchi et al., 2012). 
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RESULTS 

 

Soil properties and moisture content 

Soil moisture content along the experimental period (Figure 2) agrees with the 

precipitation pattern presented in Figure 1. Soils from the HO farm showed higher 

soil water content along the rain season (October 2016 to January 2017), compared 

to the HE soils, but no differences were observable for lower frequency rain events. 

 

 

J A S O N D J F M A M J J A S O 

 2016   2017  

Figure 2 - Soil water content (v/v) measured in the lysimeter soil blocks from Herdade dos 
Esquerdos (HE) and Herdade do Olival (HO) systems along the experimental period (July 
25th 2016 to October 4th 2017). Line points are means and error bars are standard errors 
(n=9). 

 

Soils from the HE improved pastures showed significantly lower bulk density, and 

higher organic C and total N concentrations and accumulation, as compared to the 

no occasionally grazed area (Table 1). Extractable phosphorus concentration was 

also lower for the occasionally grazed soil than for those with sowed pasture. 

In the HO farm, soil bulk density was higher for the natural than the improved pasture 

(Table 1). Occasionally grazed soil showed significantly lower bulk density than both 

cattle grazed systems. Significantly higher total N concentrations were determined 

in cattle grazed pasture soils (IP and NP), compared to the occasionally grazed 

system. Soil extractable P was significantly higher in the improved compared to 

natural pasture, while the occasionally grazed soil showed the lowest extractable P 

value, compared to both cattle grazed pastures. 
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Table 1 - Bulk density (BD), organic C (Corg), total N (Ntotal) and particulate organic matter C 
(POM-C) concentrations, POM fraction of organic C (POM-C/C), and accumulation of 
organic C (Cc) and N (Nc), in the 0-10 cm depth soil layer of the study farms improved (IP), 
renewed (IPr), natural (NP) and occasionally grazed (OG) pasture systems. Values are 
means and standard deviations in brackets (n=6), different letters indicate significant 
differences between management systems by the Tukey test (p<0.05). 

System 
BD  Corg Ntotal  P  C:N  POM-C/C  Cc Nc 

g cm-3  g kg-1  mg kg-1    %  kg m-2 

HERDADE DOS ESQUERDOS 

IPr 1.21 b (0.06)  25.6 a (6.0) 2.70 a (0.90)  179.7 a (37.5)  11.58 a (7.99)  36.4 a (6.7)  2.16 a (0.50) 0.228 a (0.076) 

IP 1.31 b (0.13)  26.8 a (4.5) 2.36 a (0.51)  211.0 a (95.4)  11.49 a (0.96)  39.2 a (14.4)  2.47 a (0.42) 0.217 a (0.047) 

OG 1.54 a (0.04)  14.2 b (0.5) 1.10 b (0.02)  19.3 b (2.7)  12.89 a (0.70)  26.9 a (4.1)  1.57 b (0.06) 0.122 b (0.003) 

HERDADE DO OLIVAL 

IP 1.62 b (0.05)  14.5 a (7.4) 1.43 a (0.58)  29.2 a (16.5)  10.19 a (0.84)  35.6 a (25.3)  1.16 a (0.59) 0.114 ab (0.047) 

NP 1.72 a (0.09)  14.6 a (4.6) 1.41 a (0.28)  4.3 b (1.6)  10.34 a (1.65)  22.9 a (9.4)  1.45 a (0.45) 0.137 a (0.028) 

OG 1.57 c (0.10)  9.1 a (0.9) 0.79 b (0.06)  1.5 c (1.0)  11.55 a (0.65)  32.8 a (12.4)  0.85 a (0.08) 0.074 b (0.006) 

 

In the HE systems, soil microbial biomass C and N concentrations and relative 

proportions of organic C and total N were significantly higher in renewed improved 

pasture, compared to both the occasionally grazed and the older improved pasture 

areas (Table 2). Soil microbial biomass C and N concentrations were also 

significantly higher in the older improved pasture, compared to the occasional 

grazing area at the HE farm. 

 

Table 2 - Soil microbial biomass C (Cmic) and N (Nmic), respective fractions of organic C and 
N (Cmic/C and Nmic/N), and microbial biomass C:N ratio (Cmic/Nmic) in the 0-10 cm depth soil 
layer of of the study farms improved (IP), renewed (IPr), natural (NP) and occasionally 
grazed (OG) pasture systems. Values are means and standard deviations in brackets (n=6), 
different letters indicate significant differences between management systems by the Tukey 
test (p<0.05). 

System 
Cmic Nmic v Cmic/C Nmic/N  Cmic/Nmic 

mg kg-1  %   

HERDADE DOS ESQUERDOS 

IPr 201.5a (16.5) 35.86a (18.92)  0.73a (0.06) 1.33a (0.70)  7.30a (4.83) 

IP 99.59b (22.73) 10.67b (4.33)  0.48b (0.11) 0.45b (0.18)  9.93a (2.23) 

OG 50.74c (6.03) 5.07c (0.23)  0.35b (0.04) 0.46b (0.02)  10.0a (1.21) 

HERDADE DO OLIVAL 

IP 318.4a (19.12) 38.15a (3.22)  1.76a (0.11) 2.95 a (0.25)  8.38b (0.80) 

NP 240.1ab (46.24) 25.90b (3.67)  1.86a (0.36) 1.84b (0.26)  9.22b (0.55) 

OG 205.7b (29.14) 14.80c (0.77)  1.61a (0.23) 1.88b (0.10)  13.94a (2.16) 
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Improved pasture soil from the HO showed significantly higher microbial biomass C 

concentration than the occasionally grazed one. Microbial biomass N concentrations 

were significantly different for all HO systems, the higher values being measured in 

improved pasture soil, followed by the natural pasture, while the occasionally grazed 

soil showed the lowest mean microbial N concentration. The ratio (microbial biomass 

N: soil total N) was significantly higher under the sowed pasture, compared to both 

natural pasture and occasionally grazed area at the HO farm. The microbial biomass 

C:N ratio was significantly higher in the occasionally grazed than in the both pasture 

soils (natural and improved) from the HO. 

 

Herbaceous biomass production and nutrient concentrations 

Herbaceous vegetation biomass productivity was significantly higher in soil blocks 

from improved pasture areas of both HE and HO (Table 3), pasture productivity in 

sowed areas being about 2 to 3 times greater than that in the occasionally grazed or 

natural pasture soils. 

Significantly higher P and N concentrations in the improved pasture systems 

herbaceous biomass, compared to those in the natural pasture systems, were the 

most relevant differences regarding the herbaceous vegetation nutrient 

concentrations, in both studied farms. It is noteworthy that herbaceous biomass C:N 

ratios were similar in all study pastures, ranging between 25 and 35. 

 

Table 3 - Aboveground herbaceous biomass dry matter (HB) and nutrient concentrations 
(N, P, K, Ca, Mg and Mn) in the lysimeters containing soil blocks from the study farms 
improved (IP), renewed (IPr), natural (NP) and occasionally grazed (OG) pasture systems. 
Values are means and standard deviations in brackets (n=6), different letters indicate 
significant differences between management systems by the Tukey test (p<0.05). 

System HB  N P K Ca Mg Mn 
 g m-2  mg g-1 

HERDADE DOS ESQUERDOS 

IPr 296.44a (41.34)  17.34a (3.37) 4.85a (1.09) 25.96a (5.95) 32.41a (7.36) 3.27a (0.66) 0.17a (0.06) 

IP 242.38b (24.53)  14.61ab (0.74) 4.06a (0.71) 17.79b (2.40) 26.38ab (7.16) 2.66a (0.34) 0.27a (0.12) 

OG 91.44c (21.50)  12.43b (2.03) 2.37b (0.54) 13.71b (0.45) 15.93b (1.18) 3.03a (0.34) 0.33a (0.13) 

HERDADE DO OLIVAL 

IP 147.81a (38.85)  15.89a (3.41) 2.27a (0.67) 15.73a (1.95) 15.06ab (3.43) 2.40ab (0.23) 0.45a (0.27) 

NP 67.94b (19.98)  13.05a (1.72) 1.51b (0.30) 15.48a (1.68) 17.72a (1.71) 2.79a (0.21) 0.27a (0.05) 

OG 46.74b (14.07)  15.27a (2.16) 1.38b (0.34) 16.00a (0.48) 11.58b (2.63) 2.00b (0.37) 0.40a (0.39) 
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Leachate nutrient contents 

Mean value of leached dissolved organic carbon was higher in the improved pasture 

than natural pasture or occasionally grazed systems from the HO (Table 4). Among 

the HE systems, the renewed improve pasture soils showed significantly higher 

dissolved organic C in leachates, compared to old improved pasture and 

occasionally grazed systems. 

Nitrate leaching was higher in the renewed improved pasture than in the older 

improved pasture and occasional grazing soils from the HE; while leached 

ammonium was significantly lower in the occasionally grazed soils, compared to both 

improved pasture ones. Higher amounts of total dissolved N were leached from the 

recently renewed improved pasture soils, compared to the occasionally grazed or 

older improved pasture ones, from the HE. The natural pasture soils from the HO 

have lost higher amounts of nitrate through leaching, in comparison to improved 

pasture soils in the same farm, along the experimental period. 

 

Table 4 - Cumulative dissolved organic C (DOC), soluble N (Nsol), ammonium (NH4
+-N), 

nitrate (NO3
--N), organic N (Norg), and proportions of mineral N per unit of initial soil N 

(Nmin/Ntotal), and of DOC per unit of initial soil organic C (DOC/Corg), in the leachate solutions 
of the study farms improved (IP), renewed (IPr), natural (NP) and occasionally grazed (OG) 
pasture systems. Values are means and standard deviations in brackets (n=6), different 
letters indicate significant differences between management systems by Tukey’s test 
(p<0.05). 

System 
DOC  Nsol NH4

+-N NO3
--N Norg  Nmin/Ntotal DOC/Corg 

  mg m-2
 

 % 

Herdade dos Esquerdos 

IPr 17.22a (3.16)  2837.4a (690.6) 21.7a (3.9) 1820.2a (428.0) 995.7a (266.1)  0.81a (0.19) 0.80a (0.15) 

IP 7.33b (2.98)  614.9b (261.7) 16.8a (2.9) 119.1b (59.9) 479.1b (202.1)  0.26b (0.39) 0.30b (0.12) 

OG 2.71b (6.22)  419.6b (113.8) 8.1b (2.2) 212.2b (68.2) 199.3b (46.9)  0.18b (0.06) 0.17b (0.04) 

Herdade do Olival 

IP 4.13a (0.83)  366.0a (71.9) 13.7a (4.4) 95.9b (30.4) 256.5a (50.1)  0.10b (0.02) 0.35a (0.07) 

NP 2.08b (0.35)  612.1a (109.5) 20.6a (10.9) 385.9a (110.5) 205.6a (5.3)  0.30a (0.08) 0.14b (0.02) 

OG 1.70b (0.45)  470.7a (202.4) 25.2a (13.7) 262.1ab (148.2) 183.6a (73.5)  0.39a (0.21) 0.20b (0.05) 

 

In the HE, average pH of leachates was significantly higher in the occasionally 

grazed soils, compared to the improved pasture ones (Table 5). In the HO, the 

natural pasture leachates showed significantly higher pH than the improved pasture 

and occasionally grazed soils. 



155 
 

Leached phosphorus amounts were higher in both sowed pasture soils from HE than 

in the occasionally grazed area. In the HO, soils from the improved pasture system 

have leached more P comparatively to natural pasture and occasionally grazed 

ones. 

Potassium in soil leachates was higher in the renewed improved pasture, followed 

by the older improved pasture and, lastly, the occasionally grazed soils from the HE. 

Amounts of Ca, Mg and Na in soil leachates where higher in the recently renewed 

improved pasture from the HE, and in the natural pasture from the HO, when 

compared to their respective IP and OG systems. 

 

Table 5 - Mean pH and cumulative nutrients (P, K, Ca, Mg and Na) in the leachate solutions 
of the soil blocks from the study farms improved (IP), renewed (IPr), natural (NP) and 
occasionally grazed (OG) pasture systems. Values are means and standard deviations in 
brackets (n=6), different letters indicate significant differences between management 
systems by Tukey’s test (p<0.05). 

System 
pH P K Ca Mg Na 

 mg m-2 

HERDADE DOS ESQUERDOS 

IPr 5.92ab (0.31) 241.4a (103.7) 3381.3a (1403.3) 2601.7a (408.0) 642.2a (102.6) 1606.9a (356.7) 

IP 5.52b (0.29) 168.6a (168.9) 1121.1b (495.0) 451.9b (180.3) 166.3b (104.8) 713.0b (341.1) 

NG 6.20a (0.03) 16.4b (4.6) 247.9c (30.9) 482.9b (96.7) 218.1b (53.6) 771.3b (155.1) 

HERDADE DO OLIVAL 

IP 6.26b (0.21) 28.6a (4.9) 317.2a (72.7) 524.0b (150.7) 168.2b (45.2) 543.8b (101.2) 

NP 6.52a (0.09) 13.0b (2.7) 311.3a (68.7) 746.3a (56.3) 294.6a (42.6) 884.0a (67.7) 

OG 6.15b (0.11) 11.6b (5.1) 205.3a (77.5) 464.8b (109.4) 180.6b (64.6) 538.8b (117.6) 

 

Soil greenhouse gases fluxes 

Soil GHG fluxes evolution along the experimental period was similar for all study 

systems (Figures 3 and 4). Methane emissions have ranged from -0.041 to 0.113 

mg m-2 h-1 and two significant peaks were observed at the end of August 2016 and 

February 2017. Nitrous oxide fluxes varied between -0.038 and 0.089 mg m-2 h-1 and 

several peaks were observed along the experiment, mainly following rain events. 

Carbon dioxide fluxes registered variations between -16.2 to 336.6 g m-2 h-1. 
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J A S O N D  J F M A M J J A S O 

2016  2017 

Figure 3 - Methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) fluxes from 
Herdade dos Esquerdos (HE) improved (IP), renewed (IPr) and occasionally grazed (OG) 
pasture soils, at each sampling date, from July 2016 to October 2017. Line points represent 
medians (n=4) and error bars represent global standard error for each farm (n=12). 
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J A S O N D  J F M A M J J A S O 

2016  2017 

Figure 4 - Methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) fluxes from 
Herdade do Olival (HO) improved (IP), natural (NP) and occasionally grazed (OG) pasture 
soils, at each sampling date, from July 2016 to October 2017. Line points represent medians 
(n=4) and error bars represent global standard error for each farm (n=12). 
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Longitudinal data analysis revealed a strong influence of sampling date, as the main 

factor controlling soils GHG fluxes, in both HE and HO farms (Table 6). Soil CO2 

fluxes were significantly different among differently managed HE systems. Pair 

comparison of HE pasture systems has revealed that mean soil CO2 fluxes were 

comparable for improved pasture systems, both renewed and old (p=0.245), while 

the mean soil CO2 flux from the occasionally grazed system was significantly lower 

than the former two (p=0.036 for IPr; and p<0.001 for IP). 

 

Table 6 - Statistic, degrees of freedom (dF) and p-values of the non-parametric factorial 
ANOVA (α=0.05) analysis of CH4, N2O and CO2 soil fluxes (mg m-2 h-1) longitudinal 
measurements (n=4), for HE and HO management systems. 

GHG Origins of variation Statistic dF p-value 

HERDADE DOS ESQUERDOS 

CH4 System 1.593 2.0 0.204 

 Date 7.087 7.6 <0.001 

 System×Date 0.887 8.1 0.528 
     

N2O System 0.486 1.4 0.548 

 Date 14.480 7.1 <0.001 

 System×Date 1.392 7.7 0.197 
     

CO2 System 5.876 1.6 0.006 

 Date 13.240 7.6 <0.001 

 System×Date 1.354 8.2 0.210 

HERDADE DO OLIVAL 

CH4 System 0.172 1.7 0.813 

 Date 7.399 7.4 <0.001 

 System×Date 0.834 8.0 0.573 
     

N2O System 0.192 1.5 0.763 

 Date 21.926 7.4 <0.001 

 System×Date 1.426 8.1 0.179 
     

CO2 System 2.073 1.6 0.135 

 Date 11.207 8.0 <0.001 

 System×Date 1.029 8.5 0.412 

 

Accumulated N2O and CH4 emissions did not differ between the study management 

systems and farms (Table 7). At the end of the experimental period, cumulative CO2 

emissions were significantly higher for the HE, compared to the HO soils, as both 

improved pasture areas (renewed and old) from the HE showed significantly higher 

accumulated CO2 emissions than any HO management system. Proportions of initial 
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organic C and total N, emitted as greenhouse gases throughout the experimental 

period, were significantly higher in the HE than in the HO soils (Table 7). Soil form 

the renewed pasture at HE, had the smallest N fraction emitted as N2O, which was 

significantly lower than those from the improved pasture from HO (HO/IP) and both 

occasional grazing systems (HE/OG and HO/OG). Global warming potential was 

significantly higher in the HE soils, compared to those from HO, the older improved 

pasture showing greater annual GWP than the occasional grazing system from HO. 

 

Table 7 - Soil accumulated methane (CH4), nitrous oxide (N2O) and carbon dioxide 
(CO2) emissions, respective emitted proportions of initial soil organic C (Cem/Corg) 
and total N (Nem/Norg) and annual global warming potential (GWP), in Herdade dos 
Esquerdos (HE) and Herdade do Olival (HO) pasture management systems (IP - 
improved; IPr - improved renewed; NP natural; and OG - occasionally grazed). 
Values are means and standard deviations in brackets (n=4), different letters 
indicate significant differences between management systems (Tukey’s test) with 
p<0.05. 

System 
CH4 N2O CO2  Cem/Corg Nem/Ntotal  GWP 

mg m-2  mg g-1  g CO2e m-2 year-1 

HE 29.2a (10.8) 42.7a (12.3) 340.5a (73.1)  45.3b (6.9) 0.16b (0.06)  296.3a (62.3) 

HO 36.6a (12.9) 37.7a (5.6) 256.3b (37.6)  55.9a (8.8) 0.21a (0.04)  224.7b (32.3) 
         

HE/IPr 23.5a (14.6) 35.6a (10.0) 349.8a (83.3)  44.2a (10.5) 0.10b (0.03)  302.2ab (72.3) 

HE/IP 36.3a (7.9) 49.5a (17.1) 394.8a (52.7)  43.7a (5.8) 0.15ab (0.05)  343.6a (43.0) 

HE/OG 27.9a (6.1) 43.1a (5.6) 276.9ab (21.9)  48.0a (3.8) 0.22a (0.03)  243.2ab (19.3) 

HO/IP 38.2a (13.5) 36.3a (5.3) 267.1b (28.7)  62.5a (6.7) 0.20a (0.03)  233.4ab (25.0) 

HO/NP 33.0a (17.7) 40.1a (2.4) 269.1b (44.2)  50.8a (8.4) 0.19ab (0.01)  236.0ab (37.2) 

HO/OG 38.7a (9.4) 36.8a (8.3) 232.6b (35.8)  54.2a (8.3) 0.23a (0.05)  204.7b (31.9) 
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DISCUSSION 

 

Soil organic C fluxes 

The range of soils CO2 fluxes observed here were similar to those reported by 

Shvaleva et al. (2011) and Correia et al. (2012) for oak woodlands, and by Shvaleva 

et al. (2014) for improved pastures under similar Mediterranean conditions. Also, 

study soils CH4 fluxes were relatively small, with soil uptake during some periods, 

and ranges were similar to those reported for savannas and seasonally-dry 

ecosystems (Castaldi et al., 2006), and for similar pasture systems under oak 

woodlands (Shvaleva et al., 2015). 

Accumulated CO2 emissions were higher under Herdade dos Esquerdos than 

Herdade do Olival pasture soils, which can be, at least partially, explained by the 

differences in soil organic C contents, although soil textural classes may have also 

contributed for this trend. Indeed, in a study under pasture and agricultural soils, 

Lohila et al. (2003) have reported soil respiration to be mostly explained by soil C 

contents, while soils with coarser texture appeared with higher CO2 emissions than 

those with clayey texture, with similar crop type. 

Nevertheless, the accumulated C transfer per unit of soil organic C, from the soil to 

the atmosphere, as both CH4-C and CO2-C, presented a reverse trend, being higher 

for finer texture soils, at Herdade do Olival, compared to those with coarser texture 

at Herdade dos Esquerdos. As this appears to be mostly associated with differences 

in soil CH4-C emissions, differences in soil texture and porosity may have been 

involved. Indeed, under the finer textured soils at Herdade do Olival, high soil bulk 

density values, compared to those at Herdade dos Esquerdos, may indicate reduced 

aeration porosity under field capacity conditions (see Chapter 2), suggesting that soil 

pores in the former may easily develop anaerobic sites, thus constraining methane 

oxidation, and enabling its accumulation and diffusion to the atmosphere (Oertel et 

al., 2016). 

At Herdade dos Esquerdos, the improved pasture soils showed higher CO2 fluxes 

throughout the experiment, under both renewed and long-term management, 

compared with the occasionally grazed soils, throughout the experimental period. 
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Availability of organic C substrates (additional 0.90 and 0.59 kg C m-2, in IP and IPr, 

respectively) may be the main reason for such a behaviour, which is most likely 

related to the increase in herbaceous productivity (more than the double). Also, the 

higher soil C and N microbial biomass concentrations determined at these improved 

pastures, indicates a more abundant soil microbial community, which can result in 

higher respiration, compared to the occasionally grazed pasture. Additionally, soil 

bulk density lowering at the improved pasture sites, may indicate soil physical 

conditions improvement. In fact, soil organic matter accumulation and higher root 

densities development may have increased soil porosity (see Chapter 2) and 

enhanced soil aeration and oxygen availability. Milne and Haynes (2004) have also 

associated improved soil physical status and soil microbial biomass concentration 

increments with soil respiration enhancement, under permanent pastures compared 

with native vegetation or annual (tilled) pasture systems in South Africa, and 

suggested that both the accumulation of soil organic matter and soil structural 

development, would influence microbial communities composition and potentially 

benefit its functioning. 

However, these trends were not fully verified at Herdade do Olival improved pasture, 

as compared with the similarly managed natural pasture. Although pasture 

productivity has showed a similar enhancement as that found at Herdade dos 

Esquerdos (nearly doubled), soil bulk density was significantly lowered, and 

microbial activity may have been slightly increased (increased leaching of dissolved 

organic C and slight higher microbial biomass C concentrations), soil organic C 

concentrations and accumulation were not significantly changed, and fluxes and 

accumulated CO2-C and CH4-C emissions were not changed. Hence, the compound 

effects of stocking rate intensification, shrub vegetation removal and pasture sowing 

becomes difficult to disentangle, highlighting the importance of all site-specific and 

management factors effects over soil organic matter dynamics following 

management changes (Abdalla et al., 2018; Whitehead et al., 2018). 

Dissolved organic C leaching from the upper 20 cm soil layer was positively 

influenced by the improved pasture management, at both farms, which is in 

agreement with the increase in these soils microbial biomass contents and expected 
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activity. The water soluble organic C fraction has been associated with soil microbes 

substrates and products, and is currently suggested as a good indicator of soil 

biochemical functioning (Iqbal et al., 2010; Marschner and Bredow, 2002). Also, 

organic C movement down the soil profile is an important process regarding its 

stabilization in deeper horizons (Kalbitz et al., 2000), which may favour the soil 

potential for C sequestration. 

It is also noteworthy that higher soil microbial biomass C and dissolved organic C 

proportions, per unit of soil organic C, were observed for the renewed improved 

pasture, compared to the older improved one. This trend agrees with the expected 

effects of disturbances associated with pasture renewal. In one hand, soil 

mechanical disturbance can facilitate access of microbial communities to organic 

matter substrates (Six et al., 1998), thus enhancing microbial growth and consequent 

release of soluble organic substrates (Kalbitz et al., 2000). On the other hand, 

several studies support that vegetation cover modifications can change soil microbial 

communities composition and functioning (e.g. Waldrop and Firestone, 2006). 

The relative proportions of soil C:N ratio, particulate organic matter fractions and C 

microbial biomass C, were not changed by the long-term improved pasture 

management, as compared to the respective natural pasture, at each study farms. 

Therefore, improved pasture may have not significantly changed these soils C 

cycling, agreeing with other studies on these pastures, under similar conditions 

(Gómez-Rey et al., 2012; Rodrigues et al., 2015; Rodrigues et al., 2019; see Chapter 

2). Accordingly, estimated global soil organic C transfers to the atmosphere, per unit 

of soil organic C, were similar between the study pasture management systems, in 

each farm. Therefore, improved pasture management appears as a usefulness tool 

to enhance montado soils pasture productivity and C sequestration potential. 

Results also suggest that pasture renewal by direct sowing procedures can be 

recommended to enable the introduced species persistence and consequent higher 

productivity (Hernández-Esteban et al., 2018), with negligible effects on the soil C 

balance. This is in agreement with Rutledge et al. (2017) observations on soils C 

balance after grassland renewal, where eventual soil C losses were easily reversed 

by the developing pasture C intake. 
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Soil N fluxes 

The soils N2O fluxes observed here were in the same range of those reported by 

Shvaleva et al. (2015) for pasture soils under evergreen oak woodland systems. The 

fact that, by the end of the experimental period, relative soil N2O-N losses, per unit 

of soil N, were higher at Herdade do Olival than at Herdade dos Esquerdos, may be 

mostly related to differences in these pasture soils N availability (Oenema et al., 

1997). 

At Herdade do Olival, soils N2O fluxes and accumulated emissions did not differ 

between pasture systems, although soil N accumulation under the 18-year old 

improved pasture (40 g N m-2) was accompanied by enhancement of soil microbial 

biomass N concentration (2.5-fold increase) and proportion (1.6 times greater), 

compared with the occasionally grazed system. Such a trend suggests that improved 

pasture establishment under these montado soils may be a viable option to enhance 

soil N availability (Gómez-Rey et al., 2012) and pasture productivity (Hernández-

Esteban et al., 2018), without relevant changes to its nitrous oxide emission patterns. 

At Herdade dos Esquerdos, notorious higher N2O fluxes were registered at the first 

rain events (September 13th, 2016 and September 7th, 2017) in the older improved 

pasture system, despite no differences were found between these and the 

occasionally grazed pasture soils accumulated nitrous oxide emissions, soil C:N 

ratio or microbial biomass C and N proportions. These peaks may be mainly 

associated with soil N accumulation (95 g N m-2 increase) along the 37 years of 

improved pasture management (Oertel et al., 2016). The fact that such a trend was 

not evident under the recently renewed improved pasture is probably explained by 

this pasture higher herbaceous productivity and respective N contents. Indeed, the 

newly sowed species growth have shown higher N intake, while their denser rooting 

system may have enhanced soil aeration, which may also favour N substrates 

complete oxidation (into NO3
-), thus reducing denitrification patterns (Oenema et al., 

1997; Trolove et al., 2019). 

The fact that soil mineral N leaching was not enhanced by improved pasture long-

term management at Herdade dos Esquerdos, and nitrate leaching was even 

reduced by the improved pasture at Herdade do Olival, compared to each farm 
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ocassionnaly grazed systema, suggests that the environmental contamination 

problems associated with mineral N movements down the soil profile should be 

considered negligible following pasture long-term managment under these montado 

systems (Di and Cameron, 2002; Kušlienė et al., 2015). Nevertheless, pasture 

renewal has greatly enhanced mineral N leaching, with NO3
--N amounts reaching 

values up to 18 kg ha-1, which are in agreement with those reported by Trolove et al. 

(2019), following pasture renewal with soil tillage in New Zealand. Considering the 

high capacity of oak roots to uptake nitrate (Nunes, 2004), and that in montado 

systems these can extend far into open grassland areas (Moreno et al., 2005), such 

soil nitrate availability would probably be easily cycled by the trees under field 

conditions. Additionally, the fast development of opportunistic herbaceous specie, 

such as Urtica dioica L. found at the present study renewed pasture soils at the first 

rainy season, may also efficiently cycle part of the available inorganic N, thus 

preventing losses through leaching. 

Due to the high global warming potential of N2O (298 times than of CO2; IPCC, 

2014b), eventual emission peaks should be taken in consideration when assessing 

soil potential to mitigate GHG emissions effects. Therefore, despite their confirmed 

potential to enhance soil C sequestration, current study results suggest that the long-

term establishment of improved pastures may unbalance the system N fluxes which 

can limit their potential as a mitigation strategy (Powlson et al., 2011).  

Yet, pasture renewal, with minimum soil disturbance, appears efficient to onset these 

soils N cycling, shifting the direction of their high N availability from the atmosphere 

to the vegetation. Moreover, under lower soil N availability levels and finer texture 

soils, long-term improved pasture management appeared suitable to enhance the 

system productivity, without significant N fluxes changes. 

 

Nutrient leaching 

Continuous phosphate fertilizer applications in the improved pasture systems have 

determined a strong increase in soil extractable P, in both Herdade dos Esquerdos 

and Herdade do Olival farms. Similar trends have been reported for long-term 

improved pastures under montado systems (Gómez-Rey et al. 2012; see Chapter 



165 
 

2), which highlights the need to consider possible soil P losses by run-off and 

leaching (Horta and Torrent, 2010). Accordingly, the amounts of P leached from the 

current study improved pasture soil blocks were two- to twenty-times higher, than 

those leached by the respective natural pasture or occasionally grazed ones. 

Therefore, improved pastures phosphate applications should be reviewed, regarding 

their long-term management. 

At Herdade dos Esquerdos, nitrate leaching enhancement under the renewed 

improved pasture system was accompanied by cations co-leaching, which may 

increase the risks of soil acidification (Weil and Brady, 2017). Although mineral 

phosphate applications are accompanied by Ca2+ additions at these areas, 

monitoring these soils pH, following such management intensification patterns 

appears crucial. 

 

Despite the present study main goal was to identify possible effects of pasture 

management on soil C and N global fluxes, results showed that the influence of 

pasture management was small, compared to the major influence of abiotic 

conditions variability, such as soil water availability and temperature. Results 

interpretation was constrained by the limitations associated with disturbances at 

sampling, moving and maintaining soil blocks under similar controlled conditions. 

Indeed, as soils were moved from their natural field conditions and management 

influences, presented results correspond to the residual effect of the complex 

pastoral systems under evaluation. Additionally, it was not possible to disentangle 

the effects of individual management options, namely grazing and vegetation 

features, as they coexist and overlap asymmetrically in our experimental design, for 

which further studied are needed. 
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CONCLUSIONS 

The results obtained in the current study, highlight the major role of abiotic factors 

over open grassland soils C and nutrient fluxes, further studies being needed to 

address climate factors and eventual global changes effects over these soils 

functions. 

Improved pastures role on soils C sequestration potential enhancement appeared 

confirmed, mostly by soil organic matter accumulation. Nevertheless, as soils 

structural status may change their potential to oxidize CH4, livestock intensification 

must be issued, especially for finer textured soils. Soil N storage is also achievable 

by these pastures long-term management, although changes in soil N cycling may 

strongly influence N2O transfers to the atmosphere. Pasture renewal, by direct 

drilling, appeared as an effective practice to increase pasture productivity and 

enhance soil C and N cycling. Chemical fertilizers additions under long-term 

improved pastures should be reassessed, regarding potential soil P losses through 

leaching and runoff. 

Highly variable and somewhat contrasting results have highlighted the need to 

render further consideration to all management aspects and soil characteristics, 

when attempting to evaluate changes in these systems C and N balances. 

Future studies should also address tree cover influence and actual management 

conditions, as these largely influence organic inputs to the soil, thus controlling soil 

C and nutrient budgets. 
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CONCLUSIONS 

 
Results obtained in the current study have evidenced the complex and 

heterogeneous nature of Mediterranean evergreen oak woodlands, that can broadly 

be related to the diversity of the land use history, the present management systems, 

and the physical environment (e.g. soil type). Therefore, for interpreting their 

functions and resulting services, it is of utmost importance that this multiplicity of 

factors enmeshed in montado systems are taken in account. 

 

Intensification management systems associated with livestock breeding and pasture 

sowing, can be a good option regarding soil organic C sequestration, soil physical 

status protection, soil fertility improvement and herbaceous productivity increments. 

The extent of these effects being dependent on the pasture age and all site-specific 

and management factors. 

Meanwhile, the establishment of improved pasture mixtures by itself may not ensure 

adequate soil physical status, particularly under finer textured soils, where excessive 

compaction due to grazers trampling, may still compromise soil water availability and 

movement. 

The stability of the tree cover is not by any means guaranteed by improved pasture 

establishment. To ensure proper tree recruitment the management of such pastures 

demands additional protective measures, for which proper research is still lacking. 

The influence of pasture management over greenhouse gases emissions in 

montado soils, were found to be negligible, despite disturbance on soil nutrient fluxes 

may occur. Environmental services associated with climate change mitigation and 

maintaining groundwater quality, are still poorly understood and need further 

research, considering the extent and the socio-economical relevance of montados. 

 

Results of the current study undoubtedly confirm the trees great potential to enhance 

C sequestration, improve soil quality and increase soil resistance to face 

degradation. Concerning threats associated with current management and climate 

changes, scattered trees in the montado play a crucial role in preventing and 
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reversing degradation patterns. Management practices that ensure tree cover long-

term conservation must be promoted, at both management and policy levels. 

 

Monitoring soil quality changes in the montado, associated with management 

systems and land use modifications, can be a useful tool to adress sustainable 

management and environmental quality issues. 

Among the current study methodology, soil organic C concentration appeared 

suitable to reflect the most relevant changes in soil organic matter global dynamics. 

Structural modifications associated with soil porosity and water availability conditions 

were more reliably inferred through soil bulk density measurements. Some 

straightforward categorical parameters, such as stocking rate, structure visual 

quality, and visual evidences of physical disturbance (e.g. soil compaction, soil 

erosion, soil bareness) may also be considered as prompt hazard indicators.  

Relevant and highly sensitive information on soil functions can be obtained by using 

soil biochemical indicators. However, these indicators still suffer from lack of 

reproducibility and simplicity, while their interpretation is generally more complex, 

requiring high level expertise. Therefore, the inclusion of these indicators in routine 

soil monitoring systems appears not pertinent. 

Additionally, the need for deep information on the diversity of soil characteristics at 

local level must also be emphasized. 

 

Future research must address the economic performance of these management 

options, as the montado profitability is undoubtedly the main driver of stakeholder 

decisions. A deeper knowledge on the relationship between management practices, 

soil quality trends and resulting system sustainability should be based on long-term 

studies, for which the establishment of national and international reference areas 

would be of major significance.



 
 

 




