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ABSTRACT 

 

Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) is an invasive pest seriously 

damaging conifer seeds. Native from North America, the insect was first detected in Europe 

in 1999, and recorded in Portugal in 2010. Both nymphs and adults feed on seeds of several 

conifer species. Bug impact on seed production of Stone pine, Pinus pinea, is of major 

concern in the Mediterranean Basin countries because cone production and seed yield have 

decreased during the last years quite simultaneously to the records of L. occidentalis. Thus, 

the insect has been considered the most plausible cause of this decrease. However, there 

was still a substantial lack of knowledge about the effective impact of bugs and their 

ecological adaptations on Stone pine. 

My main goal was to add valuable and pertinent knowledge to understand the interactions 

between seed bugs and Stone pine. At first, a careful revision of all the literature available 

about Leptoglossus occidentalis was carried out, together with discussions with other 

European researchers working on this pest, in order to define the PhD aims. The PhD plan 

was then divided into three main issues. I first characterized and measured the importance 

of bug damage on seeds of Stone pine. In a second part, I investigated the ecological 

interactions between invasive bugs and Stone pine cones and seeds. Bug host preference 

was tested between Stone pine and the other two main native pine species growing in 

southern Europe (P. pinaster and P. halepensis), and cues possibly underlying such 

preferences were suggested. I also evaluated the impact of the bug in Stone pine seed 

orchards under two different management strategies. In a third part, I suggested possible 

invasion routes of L. occidentalis in the Iberian Peninsula, using genetic data and field 

records.  

Trials of the bug damage on matured seeds of Stone pine gave an estimate of consumption 

of about a fifth of a seed kernel per bug per month with the consumed kernels appearing 

skunked and wrinkled. In addition to this result, these first trials revealed (and it was later 

confirmed) a collaborative feeding behaviour since all bugs of the same box fed through the 

same hole of the seed coat in most of the cases.  

When testing the bug host preferences, results showed that individual seeds and cones of P. 

pinea were 2 to 3 times more consumed than those of the two other pine species. I 

assumed that stone pine greater seeds and cones are highly rewarding for a polyphagous 

bug like L. occidentalis.  
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Field trials in pure stone pine seed orchards indicated that fertilized and irrigated trees are 

more susceptible to both conelet mortality and seed damage by biotic agents compared to 

trees with no treatment. Two adults enclosed in a bag for one month (August) damaged an 

average of 6% of seeds per cone. The partial damage of the kernel revealed to be a 

signature of L. occidentalis feeding in mid-summer.  

Lastly, my genetic results support a stratified expansion of L. occidentalis invasion in the 

Iberian Peninsula with at least three independent introductions: one in Barcelona, one in 

Valencia, or in the South, probably in Almeria and another in the North of the peninsula.  

In the end of the thesis, I present cues to help control this pest and suggest directions for 

further studies.  

 

Keywords: invasive insect species, Stone pine, pest control, seed damage, forest 

management 
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RESUMO 
 

 

Leptoglossus occidentalis Heidemann 1910 (Heteroptera: Coreidae), também conhecido 

como sugador de pinhas, é uma praga invasora nativa da zona Oeste da América do Norte 

de onde se expandiu até à costa atlântica dos Unidos da América (Gall, 1992) e daí para a 

Europa (Lesieur et al., 2018). O seu primeiro registo no continente europeu data de 1999 

na cidade de Vicenza do norte de Itália (Tescari, 2001). Nos dez anos que se seguiram foi 

observado na maioria dos países europeus, desde Portugal a Oeste, Rússia a Este, Suécia a 

Norte e a ilha italiana de Sicília a sul (Fent & Kment, 2011).  

O sugador de pinhas é um insecto picador-sugador, isto é, possui um conjunto de estiletes 

que insere entre as brácteas das pinhas até atingir as sementes sugando o seu interior. As 

pinhas atacadas não apresentam estragos externos aparentes. Tanto as ninfas como os 

adultos alimentam-se de pinhas de todas as fases de desenvolvimento. Alimenta-se de 

cones e sementes de coníferas de vários géneros: Pinus, Picea, Abies, Cedrus, Tsuga e 

Pseudotsuga (EPPO 2009). No Capítulo 1 apresento uma introdução geral ao tema da tese, 

descrevendo a biologia e ecologia do insecto, esta última focando no seu hospedeiro mais 

importante no país, o pinheiro manso (Pinus pinea). De facto, nos países mediterrânicos a 

preocupação recai no impacto que este insecto poderá ter na produção do pinhão de 

Pinheiro manso, Pinus pinea. A produção de pinhão é, juntamente com a cortiça, uma das 

explorações florestais de produtos não lenhosos economicamente mais importantes em 

Portugal. Relatórios da indústria de processamento de pinhão bem como de alguns 

investigadores reportam um decréscimo no rendimento em pinhão na última década 

(Roversi, 2009; Mutkle et al., 2014) apontando L. occidentalis como uma das causas mais 

prováveis. Contudo, ainda não existe uma quantificação precisa do impacto deste insecto 

nem conhecimento da sua ecologia no novo hospedeiro, P. pinea. Ciente destas lacunas, 

comecei por conduzir, em equipa, uma revisão exaustiva ao estado actual da investigação 

deste insecto e da sua interacção com o pinheiro manso, Capítulo 2 desta tese. Para além 

de identificar falhas no conhecimento e apontar linhas de foco futuros esta revisão juntou 

uma equipa de investigadores de vários países da Bacia mediterrânea que partilham a 

preocupação pela acção deste insecto.  

Este projecto de doutoramento procurou responder a questões relacionadas com o impacto, 

e ecologia desta espécie invasora em relação ao novo hospedeiro P. pinea bem como a sua 
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história de invasão na Península Ibérica. Para a questão do impacto comecei por 

caracterizar e avaliar impacto deste insecto nos pinhões de pinheiro manso. 

 

Dois outros objectivos foram definidos na questão relacionada com a ecologia: investigar se 

este insecto tem uma preferência de hospedeiro entre os pinheiros mais comuns na região 

da Bacia do Mediterrâneo e se selecciona árvores sob diferentes estratégias de gestão. Por 

último, procurei descodificar as rotas de invasão e a estrutura populacional de L. 

occidentalis na Península Ibérica; 

  

Relativamente ao cálculo do impacto do insecto no pinheiro manso, identifiquei logo no 

início do projecto uma lacuna que seria necessário colmatar. Para poder estimar este 

impacto era crucial caracterizar o estrago nos pinhões, i.e., identificar e separar o estrago 

causado pelo L. occidentalis de outros estragos possíveis. No Capítulo 3, apresento uma 

caracterização do estrago em pinhões negros, obtida em ensaios laboratoriais. Para uma 

caracterização precisa usei uma abordagem com três metodologias diferentes: raios-X, 

Micro-Tomografia Computorizada (Micro-CT) e observação directa. Os pinhões onde o 

insecto se alimentou apresentaram um endosperma enrugado e seco. A morfologia do 

estrago depende da duração do período de alimentação podendo ir de meio-consumido 

(Estrago tipo I) até totalmente seco e enrugado (Estrago tipo II).  

Para além da caracterização do estrago, estes ensaios laboratoriais revelaram um 

comportamento cooperativo de alimentação. Tendo vários pinhões negros à disposição, os 

insetos, de uma mesma caixa, consumiam um único pinhão usando, para tal, um único furo 

na casca. Este comportamento aparentemente cooperante leva a uma concentração do 

estrago o que, a acontecer em condições naturais, pode trazer benefícios na gestão das 

plantações.  

Com a invasão da Europa, o sugador de pinhas encontrou novas espécies de hospedeiros, 

que no nosso território são essencialmente o pinheiro bravo P. pinaster e o pinheiro manso 

P. pinea. Devido à relevância económica das sementes comestíveis de pinheiro manso, 

torna-se premente avaliar possíveis preferências do L. occidentalis entre vários hospedeiros. 

Assim, no Capítulo 4 testei a preferência deste insecto pelas três espécies de pinheiros 

mais importantes da Bacia do Mediterrâneo: o manso, o bravo e o de Alepo. São 

apresentados resultados de estudos de laboratório usando ramos, cones e sementes como 

substrato de escolha. Os ensaios usando ramos com pinhas revelaram que o 

comportamento gregário deste insecto prevalece sobre a taxonomia do ramo. O estado 

fisiológico do ramo é também sugerido como tendo sido um factor predominante na escolha 

dos insectos. Posteriormente ficou demonstrado num ensaio de selecção de hospedeiro em 



 

 

Page - 13 - of 164 

 

campo que estes insectos são efectivamente sensíveis à qualidade do hospedeiro (Capítulo 

6). Quando o substrato de escolha foram as pinhas, o insecto visitou e alimentou-se 

significativamente mais vezes nas pinhas de manso que das outras duas espécies de 

pinheiros. O sugador também consumiu sempre uma percentagem muito superior de miolo 

de pinhões de manso (cerca de 90%) relativas às outras espécies. Encontrei evidência para 

a escolha dos cones e sementes estar relacionada com a maior recompensa que o pinheiro 

manso oferece. De facto, as pinhas de manso são 2 a 3x maiores que as de bravo e Alepo, 

respectivamente. O mesmo acontece com as sementes em que o miolo de manso é 4 x 

maior que o de bravo e 13x maior que o de Alepo. 

A interacção entre as práticas de gestão florestal e o impacto de L. occidentalis é discutida 

no Capítulo 5. Os ensaios foram conduzidos em plantações enxertadas de pinheiros 

mansos. Numa mesma área comparámos o estrago em pinheiros submetidos a fertilização e 

irrigação (FR) e pinheiros sem tratamento (C). Adicionalmente, usámos mangas de rede em 

ramos seleccionados ao acaso onde colocámos insectos adultos ou ninfas de forma a seguir 

o seu estrago em condições de campo. Os resultados mostraram haver diferenças no 

estrago entre adultos e ninfas. A mortalidade de pinhas jovens de 2º ano foi 63% superior 

nas mangas com ninfas em comparação com as com adultos ou controlo. No geral as 

árvores FR foram mais susceptíveis à mortalidade de pinhas jovens e ao estrago em 

sementes. Contudo, esta diferença só foi significativa para as ninfas e ramos expostos.  

 

Um estudo genético recente mostrou que a invasão da Europa teve origem em populações 

da região oriental da América do Norte e não da região oeste, de onde é nativa, num 

mecanismo denominado de bridghead effect (Lesieur et al., 2018). A invasão de L. 

occidentalis na Europa foi ainda acelerada por múltiplas introduções independentes 

provenientes de populações invasivas europeias ou novas introduções da região oriental da 

América (Lesieur et al., 2018). A sua boa capacidade de voo e hábitos polífagos 

contribuíram para o sucesso da expansão dessa praga. Lesieur et al. (2018) identificou duas 

introduções independentes em Espanha, em Barcelona e em Valência as quais 

corresponderam às duas únicas amostras Ibéricas analisadas. Assim, a história completa da 

invasão deste percevejo na Península Ibérica ficou por clarificar. No Capítulo 6, usei 

marcadores genéticos, mitDNA e microssatélites, em conjunto com dados observacionais de 

primeiros registos de campo para analisar a estrutura genética e a diversidade das 

populações de L. occidentalis na Península Ibérica e inferir a sua rota de invasão. Os 

resultados comprovam a existência de, pelo menos mais uma introdução independente na 

costa norte ou oeste da Península Ibérica. O mercado intensivo de cones de P. pinea na 

Península Ibérica pode ser uma das principais causas de novas introduções. Este mercado 
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abrange o transporte de cones de plantações para fábricas a distância relativamente curta, 

mas também a longa distância com a exportação de cones de proprietários de terras ou 

fábricas para outros países, como a Turquia ou a Itália. Análises adicionais, por métodos 

Bayesianos deverão ajudar a decifrar os cenários de invasão.   

Os vários ensaios desenvolvidos nestes quatro anos revelam factos novos relativos ao 

impacto e ecologia deste insecto. A morfologia do estrago causado por L. occidentalis em 

pinhões negros de pinheiro manso desenvolvida neste projecto foi crucial como 

conhecimento base para o desenvolvimento de uma metodologia de estimativa de estrago a 

partir de amostras de campo. 

Relativamente ao estudo da sua ecologia, L. occidentalis mostrou uma tendência para 

escolher pinhas e sementes de pinheiro manso em detrimento do pinheiro bravo e do Alepo. 

Este resultado justifica-se pela maior recompensa que o pinheiro manso oferece. Do ponto 

de vista nutricional, podemos assim esperar que as árvores e plantações de manso possam 

favorecer o crescimento populacional de L. occidentalis.  

Dentro de uma plantação pura de pinheiro manso o insecto também mostrou uma tendência 

para causar mais estrago em árvores em melhor estado fisiológico, isto é, árvores 

fertilizadas e irrigadas em comparação com árvores sem qualquer tratamento. Uma 

selecção activa de árvores por parte de L. occidentalis já havia sido demonstrada noutros 

hospedeiros (Blatt, 1997; Blatt & Borden, 1996; Richardson et al., 2017). Estes resultados 

têm implicações na gestão dos povoamentos de pinheiro manso. Deverá ser conduzida uma 

análise de custo-benefício de forma a ponderar os custos da gestão e o aumento do estrago 

com a produção de pinha.   

O estudo genético das populações Ibéricas revelou que o L. occidentalis invadiu a Península 

Ibérica segundo um mecanismo de dispersão estratificada, isto é, usando a dispersão a 

curta-distância (dispersão contínua) como a longa-distância, usufruindo oportunisticamente 

de transportes casuais mediados pelo homem. É sugerido que o comércio intenso da pinha 

seja responsável pela translocação de muitos indivíduos.  

 

Com este projecto foram colmatadas algumas das lacunas detectadas no início. Os 

resultados apontam tendências que deverão ser agora integradas num futuro plano de 

gestão desta praga no pinheiro manso. Este plano tem de obrigatoriamente resultar de um 

esforço conjunto entre todos os países mediterrâneos de forma a realizar uma abordagem 

integrativa desta praga. 
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Chapter 1 - General introduction and Thesis outline 

 

Invasive species are generally considered as the third-leading threat to biological diversity 

behind, only, habitat loss and fragmentation (Baillie et al., 2004). This expansion of alien 

insects into new areas is likely to cause serious economic or ecological hazards (Rabitsh, 

2008) and actions must be taken promptly on the path to mitigate their impacts (Junker & 

Lupi, 2011). Biological invasions are constantly increasing with globalization without any 

signs of saturation (Seebens et al., 2017), especially in insects (Roques, 2010), and most of 

the recently-arrived invaders (i.e. since the 1990s) are spreading across Europe faster than 

before (Roques et al., 2016). The seed bug is representative of such an invasive history and 

fast spread. 

The Western Conifer Seed Bug, Leptoglossus occidentalis, is a Western North America cone 

and seed insect native from Western North America where it is a relatively serious pest of 

conifer seed orchards (Koerber, 1963; Hedlin et al., 1980; Bates et al., 2000). In the middle 

of the last century it started spreading across America in the West-East direction (Gall, 

1992). During the 1950’s and 1960s it was newly recorded in Mid-West (Indiana, Iowa, 

Montana, Nebraska, Kansas), and in the 1970’s it was discovered in Connecticut on the 

Atlantic coast (Gall, 1992). In the 1990’s it extended its range to North-Eastern USA and 

South-Eastern Canada (McPherson et al., 1990; Gall, 1992). Human-mediated 

transportations were indicated as the main responsible for the spreading of this species 

(Gall, 1992).  

The European invasion began in Italy where it was first recorded in 1999 (Tescari, 2001). 

Only ten years after, it can be observed in most European countries (Fent & Kment, 2011) 

(Figure 1). In Portugal, its first record dated from 2010 (Grosso-Silva, 2010; Sousa & 

Naves, 2011). Then, this species also invaded other continents; i.e., North Africa (Gapon, 

2015; Jamâa et al., 2013), Asia (Korea, Japan and China; Ishikawa & Kikuhara, 2009;  Zhu, 

2010; Ahn et al., 2013), and South America (Chile; Faúndez & Rocca, 2017).  

The arrival of this seed feeder to Mediterranean Basin countries where Stone pine is 

distributed raised serious concerns. This pest was observed feeding on Stone pine cones in 

several regions (Pimpão, 2014; Bracalini et al., 2015; Calama et al., 2016; Ponce et al., 

2017a; Farinha et al., 2018b). There have been reports suggesting an important impact of 

this bug on the profitable Stone pine edible nuts (Roversi, 2009; Bracalini et al., 2013; 

Mutke et al., 2014, 2017; Ponce et al., 2017a; Farinha et al., 2018a, 2018b) but an 
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accurate impact estimation as well as studies on the ecology and adaptation of this bug to 

this recent host are lacking. 

 

 

 

 

 

 

 

 

Figure 1. World distribution of L. occidentalis in CABI (2018) (www.cabi.org/isc) and first records of 

L. occidentalis in Europe (in Fent & Kment, 2011) 

 

In Chapter 2, I am presenting a review article on the current state of the knowledge of L. 

occidentalis interactions with Stone pine. This review article is an attempt to create a much-

needed baseline for future research and focus on this issue. Moreover, it also serves as a 

compiled background for the reader to better understand the gaps and challenges related to 

this recent invasive pest.  

 

Can we measure the effective impact of the bug on Stone pine seeds?  

 

Regarding its impact, L. occidentalis is considered a significant pest in some European 

countries and held responsible for a decrease in Stone pine nut production in Italy and 

Spain (Roversi, 2009; Bracalini et al., 2013; Mutke et al., 2014; Farinha et al., 2018b) and 

in natural regeneration of native pine stands in France (Lesieur et al., 2014). Beyond the 

ecological impacts, this species poses a serious threat to pine nut production (Farinha et al., 

http://www.cabi.org/isc
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2018b). Stone pine in Portugal occupies an area close to 176,000 hectares corresponding to 

6% of the forest area of the country. Pine nut production is currently one of the major 

economic activities of Portuguese forests representing 4-5% of all country exports with a 

total value of 60-80 Million of euros each year and 13.3% of the employment related to 

forest (ICNF 2013).  

Despite this bug being considered the most probably cause for the decrease production of 

the Mediterranean pine nut, there is still a substantial lack of knowledge on the 

quantification of its impact on Stone pine seeds as well as some debate about the bug 

relative impact compared to that of other biotic and abiotic factors.  In Chapter 3, I aimed 

at characterizing the impact of LO on cones and seeds of Stone pine. The use of X-raying 

technique in force feeding trials allowed me to follow L. occidentalis damage on seeds week 

by week. Previous studies have shown the impact of this insect on other Pinus spp. but in 

which P. pinea was not included (Bates et al., 2000; Lesieur et al., 2014). A full 

characterization of the type of damage on P. pinea seeds caused by this insect was then a 

critical first-step to allow the development of an accurate impact quantification methodology 

for field-based studies.  

  

 

Comparing life history and ecology in the native range and the invaded 

Portugal 

 

The Western Conifer Seed Bug, L. occidentalis, is a hemipteran insect in the family Coreidae 

characterized by a brownish colour, hind tibia with expansions resembling a leaf and a zig-

zag white line across the hemelytra (Koerber, 1963). Adults leave their winter shelters in 

April / May, depending on the climatic conditions (Barta, 2016) and fly to a pine stand to 

feed and mate. Eggs are laid on pine needles from which first instar nymphs emerge. This 

species has five instar nymphs all aptera. Young nymphs are orange and brown becoming 

reddish-brown as they develop (Bernardelli & Zandigiacomo, 2001). The total 

developmental time from egg to adult depends on external temperature ranging from 78 

days at 20ºC to 25 days at 30ºC (Barta, 2016).  The number of generations of this bug 

varies with latitude from one to several. Barta (2016) using climatic data and laboratory 

studies to infer L. occidentalis life cycle at different temperatures predicted the number of 

generations for most of the European countries. In general, in central Europe the bug would 

complete one generation, two in the south, three in Spain and Malta and four in Cyprus 

(Barta, 2016). Field data is now needed to corroborate and calibrate these results.  
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This bug is a polyphagous sucking insect that feeds on pine cones of various host species, 

namely those belonging to the genera Pinus, Picea, Abies, Cedrus, Tsuga and Pseudotsuga. 

Both adults and nymphs feed on cones and seeds in all development stages. 

With the invasion of Europe, L. occidentalis expanded its host range to new pine species 

such as the Maritime pine, P. pinaster, and Stone pine, among other European pine species. 

Due to the economic relevance of Stone pine edible seeds it become preeminent to assess 

L. occidentalis host preferences in the new invasive continent. Therefore, Chapter 4 

explores the preference by L. occidentalis for the three most important pines species 

growing in the Mediterranean Basin: Stone pine, Maritime pine and Aleppo pine P. 

halepensis. Results from laboratory studies using branches, cones and mature seeds are 

presented and discussed.  

Besides preference among host species, preference between trees of one given host (host 

selection) is also pertinent to assess since it has implications in control and management 

measures. It has been demonstrated that L. occidentalis is capable of distinguishing 

between clones of P. contorta Douglas in its native range of Western North America (Blatt & 

Borden, 1996; Blatt, 1997; Richardson et al., 2017). Suggested cues for this selection are 

the size of the cones, chemical volatiles profile of the tree and cone reflectance (Blatt & 

Borden, 1996, Richardson et al., 2017) which can be related to the tree physiological status. 

We can then hypothesize that the physiological status of the tree is probably an important 

cue for L. occidentalis when choosing a tree to colonize. In fact, experiments with a close 

species, L. phyllopus, demonstrated that the quality of the host prevailed in all times over 

the host species (Mitchell, 2006). Resourcing to seed orchards under different management 

practices we evaluate the cue of the tree physiological status in Stone pine. I compared the 

impact of L. occidentalis on trees that were fertilized and irrigated and trees that were not. 

Results and conclusions can be found in Chapter 5. All trials were conducted in one Stone 

pine seed orchard of grafted trees. 

 

Can we reconstruct the invasion history of L. occidentalis in the Iberian 
Peninsula? 
 

A recent genetic study suggested that the source population of the primary European 

invasion in Italy originated from Eastern America, a primary invaded region, and not from 

the native Western America, a phenomenon named as “bridgehead effect” (Lesieur et al., 

2018). It was also hypothesized that L. occidentalis invasion of Europe was further 

accelerated by several other independent introductions from Eastern America, combined to 

long-range translocations of European invasive populations (Lesieur et al., 2018) and to 

good flight capacities and polyphagous habits which contributed to the successful expansion 
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of this pest. Additional introductions in Spain, namely in Barcelona and Valencia, were thus 

suggested by Lesieur et al. (2018) but the complete invasion history of the Iberian 

Peninsula still needed to be clarified. A multi-marker strategy combining molecular markers, 

mitochondrial and nuclear, has been widely used to analyse populations’ structure and have 

been proved to be useful for elucidating the invasion history and the reconstruction of the 

invasion routes (Kirk et al. 2013). Lesieur (2014) had already developed 11 microsatellites 

to L. occidentalis that now can be used to disentangle the invasion route of the Iberian 

populations.  In Chapter 6 of this thesis I present insights of how the invasion of L. 

occidentalis in the Iberian Peninsula may have occurred taking into analysis new genetic 

data of mtDNA and microsatellites and observational data of field first records.  

 

Project plan and objectives 

 

The overall objective of this PhD project was to characterize the impact and ecology of the 

invasive seed feeder L. occidentalis in Portugal. Emphasis was given to the interaction with 

Mediterranean pines, especially with Stone pine due to its major importance for nut 

production. First, I start by (1) do an exhaustive review of what we know and what we still 

need to know about L. occidentalis and its host Stone pine (Task 1 - Figure 2).  

 

 

Figure 2. Concept model of the PhD plan. Review (1) and the three parts of the PhD: impact, ecology 

and invasion history. Yellow task (2) is impact- related; green tasks (3 and 4) are ecology- related; 

blue task (5) is invasion history- related. 

 

 

After, the PhD plan was divided into three big issues: the impact, the ecology of L. 

occidentalis on Stone pine in Portugal and the invasion history of the bug in the Iberian 



Chapter 1 - Introduction 

 

Page 21 of 164 

 

Peninsula. For the impact I began by (2) characterizing and assessing the impact of the bug 

on seeds of Stone pine. The second big issue related to ecology had two tasks: (3) to 

investigate if this bug has a host preference among the most common pines in the 

Mediterranean Basin region and (4) to analyze if it selects differently trees of Stone pine 

under different management strategies (Figure 2). Finally, I studied the (5) invasive 

pathway and population structure of L. occidentalis in the Iberian Peninsula.  

Research questions and hypothesis were set for each objective (Table 1). 

This PhD project will present insights on important issues related to this serious invasive 

pest which will help decipher its ecology and impact on Stone pine.   

Three scientific publications were accepted in indexed journals reporting the work that I 

developed during this Ph.D.  

 

Table 1. Research questions and hypothesis of the PhD project. Hypothesis were formulated based on 

the available literature results. 

  

Objective Research question   Research hypothesis 

1 Review 

What do we know and what are the 
major knowledge gaps in the 
interaction of L. occidentalis with the 
host Pinus pinea? 

  n.a. 

2 
Impact 
characterization 

How can we descriminate L. 
occidentalis feeding on cones and 
seeds of P. pinea? 

  
L. occidentalis has a damage 
signature in cones and pines of P. 
pinea 

3 Host preferences 

Does L. occidentalis have a 
preference among the most common 
pines in south Europe (stone pine, 
maritime pine and aleppo pine)? 

  
L. occidentalis prefers Stone pine 
compared to other 
Mediterranean pines 

4 Host management 
Will P. pinea management in grafted 
seed orchards influence L. 
occidentalis impact? 

  
Fertilized and irrigated trees have 
higher losses of pine nuts and 
cones due to L. occidentalis. 

5 Population genetics 

Does the Iberian invasion proceed 
from the introductions in Barcelona 
and Valencia? Was there any other 
introduction in the Peninsula? 

  

The invasion of the Iberian 
Peninsula resulted from the 
spread of bugs from Barcelona 
and Valencia 

Can we find a genetic structure in the 
Iberian populations of L. occidentalis? 

  

There is no genetic differentiation 
in the populations of L. 
occidentalis in the Iberian 
Peninsula  
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How important is the non-native seed feeder 

Leptoglossus occidentalis on the sustainability of 

the Mediterranean Stone pine?  
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Chapter 2 – How important is the non-native seed feeder L. 

occidentalis on the sustainability of the Mediterranean Stone 

pine? A review  

 

Farinha, A., Mutke S., Lesieur, V., Calama, R., Roques, A., Sousa, E., Branco, M. 

 

 

Abstract 

 

 

Stone pine edible seeds market is an important sector across the Mediterranean Basin 

countries where this pine is distributed. There is an increased investment in new plantations 

by landowners, mainly in Portugal, Spain and Turkey. However, evidence of a decrease in 

cone production and in seed yield has alarmed producers, researchers and the industry. In 

the last five years much has been hypothesized about the responsibility of the invasive 

insect L. occidentalis on the losses of P. pinea. Research should be oriented towards 

clarifying the determinants of this decrease.  

Here we gather information on the insect L. occidentalis, the host Stone pine (Pinus pinea) 

and the insect-plant interaction in the Mediterranean Basin countries. It reviews the 

literature on these subjects focusing on the recent breakthroughs in the bug ecology and 

impact.   

We start by describing the Mediterranean Stone pine and its edible seeds presenting data on 

cone and seed economy as well.  Losses on production of cones and seed yield are then 

discussed. After, it follows a chapter on the bug. General biology and ecology of L. 

occidentalis is presented. A review on this bug impact estimations and control measures are 

also presented. We then identify important research gaps and suggest future research lines 

that could help understand the interaction between this bug and the Stone pine. An 

integrative management plan of Stone pine forests combining nut production with L. 

occidentalis impact and market demands on a Mediterranean scale it is urgently needed in 

the near future. 

 

Keywords: stone pine, seed bug, Hemiptera, pine nut 
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Mediterranean Stone pine and its edible pine nut kernels  

 

1. Distribution and silvicultural management of Stone pine 

 

Native to the Iberian Peninsula, the Stone Pine, Pinus pinea L., has been an important 

planted forest tree in Mediterranean countries since the Antiquity for provision of timber, 

firewood and pine nuts (Thirgood, 1981; Agrimi & Ciancio, 1993; Prada et al., 1997; Gil, 

1999). In the last decades, the increasing world market demand on its nuts has led to 

increased demand for this species as alternative crop on farmland of Mediterranean 

climates. The tree performs well on poor soils even with reduced cultural practices, and it 

resists well to climate adversities such as droughts or late frosts (Bilgin et al., 2000; 

Sülüşoğlu, 2004; Mutke et al., 2007b; Loewe & Delard, 2015; Guadaño et al., 2016; 

Guadaño & Mutke, 2016). 

Stone pine is a conifer tree up to 25-35 m high and with 1-2 m stem diameter in 

monumental trees. In forests Stone pines more likely culminate at 12–20 m height and 40–

50 cm diameters at the end of the silvicultural rotation (80–120 years). Open-grown Stone 

pines present a characteristic umbrella-like crown shape, often overtopping a lower layer of 

Mediterranean shrubs and oak woodlands (Lanner, 1989; Fady et al., 2004; Mutke et al., 

2005b, 2012). Native to the Mediterranean Basin, Stone pine is distributed sparsely from 

the Portuguese Atlantic coast to the shores of the Black Sea and the slopes of Mount 

Lebanon, growing from sea level up to 1 000 m, occasionally to 1 400 m a.s.l. (Blanco et 

al., 1997; Prada et al., 1997; Quézel & Médail, 2003) (Figure 1). Since 1900, its forest area 

has more than doubled to more than 0.7 million hectares as results of a series of 

afforestation initiatives, aiming often for soil protection, especially in case of bare dunes or 

former estuary marshes where other tree species cannot grow. Other objectives for 

afforestation were ecosystem restoration on degraded pastures or scrubland, landscaping, 

as well as the expected production of both timber and pine nuts (Feinbrun, 1959; Agrimi & 

Ciancio, 1993; Prada et al., 1997; Gil 1999; Scarascia-Mugnozza et al., 2000; Fady et al., 

2004; Konstantinidis & Tsiourlis 2011; Loewe et al., 2012; Mutke, 2013; Yılmaz et al. 2013). 

 

2. Phenology of Pinus pinea  

 

Within the taxonomic group of Mediterranean pines, Stone pine is the only species with 

seeds larger than 15 mm, reaching up to 20 mm, and ripening only two and a half years 

after pollination, a year later than in most other pine species (Klaus & Ehrendorfer, 1989; 
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Montero et al., 2004). Annual shoot growth and cone formation is verticiled, and this 2.5-

year time lag implies that up to three consecutive cone cohorts can be found simultaneously 

on the same tree, placed in three consecutive whorls. In spring, the new receptive female 

conelets emerge from canopy on the tips of vertical, recently elongated spring shoots, 

sticking in mid-air to be pollinated by wind before new needles grow and involve the shoots 

(Abellanas & Pardos, 1989; Abellanas, 1990).  

              

 

Figure 1. Natural distributions of P. pinea (EUFORGEN 2009). 

 

Timing of pollination phenology varies between climatic zones. It can happen from April to 

June depending on the accumulated degree day sums, knowing that it requires about 

1,000-degree days above a threshold of 1ºC (Mutke et al., 2003). At the same time and 

just one whorl beneath the shoot apex, last year’s conelets are growing between new lateral 

shoots, to reach about 2-3 cm until summer. Meanwhile, those cones pollinated two springs 

ago, placed at the second whorl from the shoot tip, are finally ripening. After fertilization 

and start of embryogenesis in late spring, cones will grow to a final size of 12-15 cm length 

until mid-July. While internal seed development will further progress until maturity in 

autumn. This upcoming cone yield will be harvested in the following winter. Considering that 

also primordia of next year’s strobili are already being formed within the new shoot buds in 



Chapter 2 – What do we know about L. occidentalis and its host Stone pine 

 

 

Page 26 of 164 

 

late spring, even four consecutive cohorts do coincide on the tree. For instance, studies of 

cone yield time series at forest, stand, tree and even shoot scale have observed a negative 

autocorrelation with a lag of 3 years. Indeed, heavy cone crop ripening in one spring does 

reduce the number of induced primordia, that is, the conelet number for next spring and the 

resulting cone crop three yields later (Mutke et al. 2005a; Calama et al., 2008, 2016a). 

 

3. The edible seed  

 

Edible conifer seeds are extracted from cones that are usually gathered from trees in forests 

rather than in agronomic plantations. In case of Mediterranean Stone pine however, 

ongoing domestication is aiming at orchard production of Mediterranean pine seed, a 

traditional ingredient of many Mediterranean and Arabian dishes (Mutke et al., 2007b, 

2012; Salas-Salvado et al., 2011). Stone pine seeds are large (around 2 centimetres long) 

and pale brown with a powdery black coating. They consist of a thick seed coat (around 1.4 

mm) and an ivory-white edible kernel. In general usage, when a seed has an edible kernel, 

the seed coat plus the kernel, can also be called nut. These nuts are considered one of the 

most emblematic and economically relevant non-wood forest products of Mediterranean 

forests and woodlands (Sheppard et al., 2016). Stone pine nut kernels are among the most 

expensive nuts in the world, highly esteemed as gourmet and health food. They are rich in 

unsaturated fatty acids (mainly omega-9 and omega-6) and proteins (35%), doubling the 

protein content of other traded pine nuts species, mainly the Asiatic Pinus koraiensis, P. 

gerardiana or P. sibirica, which differ clearly in taste, dietetic values and lower wholesale 

prices from genuine Mediterranean pine nuts. Human consumption of Mediterranean pine 

nuts benefits health due to high contents in bioactive carbohydrates, e.g. low-molecular 

weight carbohydrates such as fagopyritol in concentrations similar to that found in 

buckwheat; and richness in minerals (phosphorus, iron, zinc, magnesium), thiamine and 

riboflavin (vitamine B1/B2), tocopherols (vitamine E), phytosterols and polyphenols 

(Carrascal, 1994; Cañellas et al., 2000; Ferreira & Pestana, 2000; Nasri et al. 2005, 2007, 

2009; Costa & Evaristo, 2008; Evaristo et al., 2010, 2012; González et al., 2012; Ruiz-

Aceituno et al., 2012; Özcan et al., 2013). Kernels are obtained by shelling pine nuts after 

extraction from cones. The seed coat is thick and woody, pine nuts yielding only 25% kernel 

in weight, i.e. in average 0.15 g out of 0.6 g per unit, respectively. Mean cone weight is 

250-350 g when harvested in winter (relative humidity 50%), yielding 15-20% seeds and 

only 3.5-4% kernels in weight. Cone picking has traditionally been done by tree climbers 

using long, hooked poles, although during the last decades, the use of specific mechanical 
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tree shakers has been generalised where tractors can access tree stems, reducing 

occupational risks associated with manual cone harvest (Martínez-Zurimendi et al., 2009; 

Castro-García et al., 2011; Mutke et al. 2012).  

 

4. Cone and seed economy  

 

In the last 30 years private land owners have being investing directly into more than 0.25 

million hectares of new P. pinea orchard-like plantations, often on farmland that renders 

higher cone crops than poor sandy sites where traditional pine forests grow. Portugal and 

Turkey are leading this evolution, both having multiplied nearly fourfold their historic Stone 

pine area since the 1980’s. Also, in Chile and New Zealand, there are now ongoing 

initiatives of planting Stone pine for pine nut production (Loewe & Delard, 2016, 2017; 

Küçüker & Baskent, 2017). Management of these plantations does focus on optimised cone 

production rather than on multipurpose forestry (DGF, 1985; Acar, 1995; Calado, 2012; 

Mutke et al., 2012; Kilci et al., 2014; Santos, 2015; Can, 2016; Loewe & Delard, 2016). 

Mechanic harvesting, as well as modern automatized cone processing facilities, has strongly 

lowered associated labour and costs (Mutke et al., 2000a, 2000b, 2007a, 2012; Loewe & 

Delard, 2012). Together with a sustained high price for kernels, exceeding 60 €/kg in retail, 

lately even 100 €/kg, it has made cone harvesting more profitable, giving higher revenues 

to forest owners than the slow-growing, low-value timber of Stone pine (Mutke et al., 

2000b; Gordo, 2004; Ovando et al., 2010; Pasalodos et al., 2016; Gordo et al., 2016). 

World market demand for pine nut kernel moves several hundred million euros annually 

(Awan & Pettenella, 2017; EUROSTAT, 2017; Küçüker & Baskent, 2017; Mutke et al., 2015, 

2017b), but production in each country varies among years from one-half to five times the 

average yield, owing to mast synchronising of regional crops mainly by weather cues (Mutke 

et al., 2005a; Gonçalves & Pommerening, 2012; Calama et al., 2008, 2016b). In Portugal, 

mean production of cones is about 700 kg/ha and in Spain 100 Kg/ha (Mutke et al., 2012). 

Considering that kernel-per-cone yields are around 2-4%, one hectare may generate 2 - 28 

Kg of kernel sold later by the industry at a price between 25 and 45 €/kg (Mutkle & Calama, 

2016). Global Mediterranean pine nut production is about 16,000-20,000 metric tons of pine 

nuts annually, i.e. 4,000-5,000 tons of shelled kernels (FAO 2010; INC, 2012).  

Nevertheless, the bases of national and European import-export data are not sound, 

because declaration starts often only with kernels obtained in factory and does not reflect 

quantity and actual origin of cones processed. Combined nomenclature trade codes 

subsume within the same code NC 0802 90 50 any kind of ‘pine nuts, fresh or dried, 
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whether or not shelled’ (Council Regulation EEC 2658/87, Annex I; Mutke et al., 2013; 

Awan & Pettenella, 2017). From per kilogramme prices it can be deduced that data for 

shelled kernel (25-45 €/kg), pine nuts in shell (2-5 €/kg) and occasionally even closed cone 

exports (less than 1 €/kg) are mingled. E.g., part of export from Portugal to Spain has been 

traditionally in form of unprocessed cones, not pine nuts, and hence added to apparently 

“Spanish” pine nut kernel production that is (re)exported. Moreover, code NC 0802 90 50 

doesn’t even allow for distinction between genuine Mediterranean pine nuts (Pinus pinea) 

and imports of lower-priced seeds of other, Asiatic pine species, such as P. koraiensis, P. 

sibirica or P. gerardiana, whose volumes (re)exported by Germany or the Netherlands 

exceed the genuine Mediterranean pine nut exports widely (Agri-Ciência, 2014; Pastor, 

2014; Mutke et al., 2015; EUROSTAT, 2017). 

 

5. Conelet abortion and seed yield loss – The dry cone syndrome (DCS) 

 

On the background of this short overview for pine nut production from Mediterranean 

forests and orchards, during the last few years alarms have been raised by actors along the 

supply chain that production has dropped drastically in most Mediterranean countries. 

Ongoing climate change and increased cone pests’ prevalence have been named as putative 

causes, reducing severely the per-hectare number of cones harvested in the last few years 

(Tiberi, 2007; Sousa et al., 2012; Parlak et al., 2013, 2017; Mutke et al., 2014; Can, 2016; 

INC, 2016). Occurrence of low cone crops is relatively frequent related to the effect of 

severe droughts and can be neatly modelled using deficient rainfall sums during cone 

induction and development as predictive variables (Mutke et al., 2005a; Calama et al., 

2008, 2011, 2016b). However, in the last years, cone pickers have reported an unusual 

high number of aborted conelets i.e. unripe first and second year conelets which dry before 

maturation. This phenomenon has contributed to decrease the final cone yield. Additionally, 

processing industries have reported an alarming drop in kernel-per-cone yield obtained in 

factory for Stone pine cones collected in main producing countries, namely Turkey, Portugal, 

Spain, Italy, and Lebanon. When cracking apparently sane cones, up to half of the seeds are 

empty or contain only withered remains of the kernel. As consequence, income for forest 

owners, cone pickers and processors has plumped, and economical sustainability of the 

forest system and value chain is seriously jeopardised (Mutke et al., 2014; Mutke & Roques, 

2015). 

The fast-coincident rise and expansion of both phenomena, some ten years ago in Italy, 

2008 in Catalonia, and since 2011/12 generalised in the rest of the countries, has coined 
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the common name Dry Cone Syndrome (DCS), suggesting a possible common agent (Tiberi, 

2007; Mutke et al., 2014, 2017a). Only in these last five years, awareness has grown in the 

respective national pine nut value chains about the emergence of DCS.  Similar to the case 

of other wild collected Non-Wood Forest products (NWFP), the lack of sound official statistics 

on yields has been hindering to back up the severity of the problem. Though in several 

countries, statistics of non-wood forest products are published by Ministries of Agriculture, 

they are often mere estimates for number of annual crops, based on processing industries’ 

declarations or extrapolated from public forests sales, lacking information for private 

forests. One direct source for information about the incidence of the DCS has been a survey 

in processing industries about the seed and kernel-per-cone yield, conducted since 2014, to 

assess the impact of DCS (Mutke & Roques, 2015). Though only a short number of 

responses were obtained from cone processors, their cone supply comes from a wide 

geographic range and includes all relevant Stone pine growing areas in Spain and Portugal. 

Also, the Lebanese Pine Farmers Association contributed with yield series of forest 

management units reported by 15 forest owners who harvest and process their own cones 

and have registered the proportion of empty seeds in the last 7 years (Mutke et al., 2017a). 

Available time series of seed per cone yield data from Iberian cone processors showed that 

average pine nut per cone weight yield had dropped from a stable yield of 17 % before 

2010 to 5-12 % since 2012. Average kernel per cone weight yield had decreased from 

stable 3.8 % before 2008 to 2.2-2.8% since 2011. Unusual increases in percentage of 

empty or internally damaged among normal-sized seeds were specified as main reason: 

historic values were less than 10%, but currently proportions of 30-50% are observed. The 

same increase of empty seed proportion has been observed in the Lebanese data series 

(Mutke et al., 2017a). 

As putative causes for conelet abortion and empty or damaged seeds, different biotic agents 

or abiotic factors have been discussed (e.g. droughts & climate change, poor pollinization, 

cone pests and the fungus Diplodia pinea). One special clear hint was the coincidence of the 

appearance of the Dry Cone Syndrome with the parallel expansion of an invasive exotic 

seed pest, Leptoglossus occidentalis. This bug was introduced accidentally in Italy probably 

during the late 1990s and has quickly spread since across all Europe and the Mediterranean 

countries. Evidence that the seed bug damage can result in abortion of seeds or even 

conelets in several conifer species, including those of genus Pinus (Bracalini et al., 2013; 

Lesieur et al., 2014; Farinha et al., 2018a, 2018b) points even more strongly for this insect 

to be a major agent responsible for decreased seed production observed in P. pinea. 
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The Western Conifer Seed Bug, Leptoglossus occidentalis 

 

 

1. Origin, history of invasion (record and genetic data), current 

distribution  

 

The Western conifer seed bug, Leptoglossus occidentalis Heidemann 1910 (Heteroptera, 

Coreidae) is a conifer seed feeder native to western North America (wNA). This species is 

widely found from British Columbia to Mexico in the North-South direction and from the 

Pacific coast to Colorado in the West-East direction (Figure 2; Koerber, 1963; Hedlin et al., 

1980; Zhu et al., 2013). However, its range probably corresponds more accurately to the 

western distribution of the Pinaceae, its host plants. Probably accidentally introduced by 

human activities, the bug was discovered outside its native range to eastern North America 

(eNA) with a first record in Iowa in the middle of the 1950s (Schaffner, 1967). Since then, 

L. occidentalis spread eastwards and its eastern invasion has been largely documented. In 

the 1970s, it was observed in Wisconsin and Illinois and the bug was reported to reach the 

Atlantic coast in the 1990s (McPherson et al., 1990; Marshall, 1991; Gall, 1992; Wheeler, 

1992). It further spread in eNA as far east as Nova Scotia (Ridge-O'Connor, 2001; O’Shea 

et al., 2005; Scudder, 2008). In eNA, the species is now established in four Canadian 

provinces and 18 US states (Figure 2). 

In Europe, the species was first reported in 1999, in northern Italy, in Vicenza area (Tescari, 

2001). This first observation was followed by many records in Italy (Bernardinelli & 

Zandigiacomo, 2001; Olivieri, 2004; Taylor et al., 2001; Villa et al., 2001) until Sicily, 

where the species was reported in 2002 (Maltese et al., 2009). Shortly thereafter, the 

species was observed in southern Switzerland (Colombi & Brunetti, 2002) and Slovenia 

(Gogala, 2003) and  in 2003, the species was reported for the first time in Spain, near 

Barcelona in Catalonia (Ribes & Escolà, 2005). The bug continued to expand its range and, 

in a very short time frame, L. occidentalis has conquered, if not all, almost the entire 

European continent (Figure 2). The bug has now been observed from Portugal (Sousa & 

Naves, 2011) to Ukraine and Russia (Gapon, 2012), and from Norway and Sweden 

(Lindelöw & Bergsten, 2012; Mjøs et al., 2010) to Sicily and Turkey (Maltese et al., 2009; 

Fent & Kment, 2011).  

Following the European invasion, L. occidentalis has become a highly successful worldwide 

invader with observations in Asia (China; Zhu (2010), Japan; Ishikawa & Kikuhara (2009) 

and South Korea; Ahn et al. (2013)) but also in North Africa (Morocco; Gapon (2015), 
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Tunisia; Jamâa et al. (2013)) and the most recent record, in Chile, South America (Faúndez 

& Rocca (2017). 

When considering the edible pine seed production of the Stone pine, P. pinea, the species 

seems to be well established in all main producing countries (Figure 2) namely Portugal 

(Pimpão, 2014; Grosso-Silva, 2010; Farinha et al., 2018b), Spain (Pérez Valcárcel & Prieto 

Piloña, 2010; Mutke et al., 2015a), Italy (Roversi et al., 2011; Bracalini et al., 2013), 

Turkey (Fent & Kment, 2011; Özgen et al., 2017), France (Dusoulier et al., 2007; Lesieur et 

al., 2014) and Greece (Petrakis, 2011; Van der Heyden, 2017) but also in Morocco (Gapon, 

2015) and Lebanon (Nemer, 2015). 

The European invasion of L. occidentalis is a complex scenario. The fast colonization of 

Europe is likely the result of multiple introductions combined with spread from established 

populations (Lesieur et al., 2018). Indeed, in addition to the first Italian outbreak, several 

introductions were suspected because of spatially disconnected first records in Spain (Ribes 

& Escolà, 2005; Pérez Valcárcel & Prieto Piloña, 2010), France (Dusoulier et al., 2007), 

Belgium (Aukema & Libeer, 2007) and Great Britain (Malumphy et al., 2008). Recent 

advances confirmed that European invasion results from multiple independent introductions 

in Europe originating from eNA (the North American invaded area) coupled with secondary 

spread within Europe (Lesieur et al., 2018). At least, two independent introductions are 

confirmed by molecular data; the first one in northern Italy and the second one in 

Barcelona’s area in Spain. Additional introductions from eNA in Spain, France and Austria 

are also highly suggested by the results. Likewise, this study also shed light on movements 

of individuals within Europe by their own dispersal or by anthropogenic activities which 

likely enhanced the rapid spread of this invasive species (Lesieur et al., 2018).   

Many observations confirmed that L. occidentalis seems to be a “perfect hitchhiker” 

(Dusoulier et al., 2007; Malumphy et al., 2008; Sciberras & Sciberras, 2010; Lesieur, 2014; 

Endrestøl & Hveding, 2017). Records near important harbor areas (e.g. Venice, Barcelona, 

Le Havre, Ostend or Weymouth) suggested that the propagules may have been transported 

by ships in containers. Moreover, interceptions of adults with timber shipments suggested 

that the introduction pathway could be related to such shipments (e.g. timber logs or wood 

panels) from the USA, associated with the bug habits to aggregate inside man-made 

structures in the fall to seek shelter for overwintering (Dusoulier et al., 2007; Malumphy et 

al., 2008). Furthermore, individuals (eggs, nymphs or adults) may also spread with the 

trade of their host plants, e.g. with the intense Stone pine cone trade along the 

Mediterranean basin region or with commercial Christmas trees or other ornamental trees 

(Gall, 1992; Sciberras & Sciberras, 2010; Gapon, 2012). For instance, Sciberras & Sciberras 
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(2010) noted that the first specimens detected in Malta were observed in 2004 when a 

small group of trees were being loaded out of a container arriving from Italy. A genetic 

study aiming at deciphering L. occidentalis invasion routes in the Iberian Peninsula found 

evidence for a stratified dispersal mechanism which encompasses short diffusion of 

individuals and long-distance dispersal probably human-mediated (Farinha et al., in prep). 

Such mechanism of dispersal greatly accelerates the rate of invasion and leads to 

intraspecific hybridization (admixture) in populations. Both the greater speed and the 

constant entry of new individuals into a given location and also the increased admixture are 

difficult challenges to overcome when designing successful management strategies to this 

pest. Stone pine cone trade is probably an important human-mediated transportation of 

bugs across the peninsula and the rest of Europe.  

In addition to long-distance dispersal, the rapid expansion of the range over a very broad 

front may also be due to the insect’s own dispersive capabilities. Adults of L. occidentalis 

are considered as strong fliers (Koerber, 1963; Ridge-O'Connor, 2001; Malumphy et al., 

2008;) and the evaluation of flight capabilities in laboratory conditions using flight mills 

confirmed previous observations; some individuals were able to cover distances of more 

than 20 km (Lesieur, 2014).  

 

 
Figure 2. Currently world distributions of L. occidentalis.                

(https://gd.eppo.int/taxon/LEPLOC/distribution consulted in 5/2018). 

 

2. LO biology and ecology (life cycle, hosts, feeding activity) 
 

The bug L. occidentalis, is a leaf-footed bug for having expansion on the hind tibia that 

resemble leafs (Koerber, 1963). Adults are 9 to 18 mm long (Figure 3) with females being 
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larger than males. The life cycle of the bug is represented in Figure 3. Females lay eggs in 

rows on the ventral side of the host needles from late April / May (Barta, 2016) depending 

on the climatic region. A single female lay on average 30 eggs in the field during its lifetime 

but in laboratory conditions it can be up to nearly 80 eggs (Bates & Borden 2005; Barta, 

2016). Eggs are semi-cylindrical, barrel shape and measuring about 2 mm long. The colour 

is light brown after deposition becoming dark brown along the development of the nymph 

inside which takes about two weeks (Koerber, 1963). There are five nymphal instars. Young 

nymphs are orange and brown becoming reddish-brown as they develop (Bernardelli & 

Zandigiacomo, 2001) until reaching adult stage. Total developmental time from egg to adult 

depends on external temperature ranging from 78 days at 20ºC to 25 days at 30ºC (Barta, 

2016). 

The number of generations that this bug has per year varies with latitude. It is described as 

univoltine in North America (Koerber, 1963) but multivoltine in Mexico (Cibrián-Tovar et al., 

1986). In Europe, it has been observed to complete one to three generations depending on 

location: one generation in an Alpine region of Northern Italy (Tamburini et al., 2012), two 

generations in South Italy, in areas of low altitude level in Northern Italy and in South Spain 

(Maltese et al., 2009; Tamburini et al., 2012; Mas et al., 2013) and three generations in 

North-eastern Italy (Bernardinelli et al., 2006). Phenology of this insect is highly dependent 

on weather conditions (Barta, 2016). In southern Europe countries overwintered adults 

emerge from overwintering sites as soon as late March / April (Tamburini et al., 2012; Mas 

et al., 2013; and personal observations) when the mean daily air temperature starts to 

exceed 14.5ºC (Bernardinelli et al., 2006; Barta, 2016). Second generation of adults 

emerges in late July/August when a peak of the bug density can be observed in the field. 

Adults can be spotted on trees until October (Mas et al., 2013) or even November 

depending on air temperatures (personal observation). 

As other Coreidae, L. occidentalis has a gregarious behaviour that is more notorious in the 

younger development stages (Mitchell, 2000; Wertheim et al., 2005) that are often 

observed to rest and eat in groups in the same branch. Studies on L. occidentalis ecology 

have showed that the bug tends to colonize always the same trees in a given orchard (Blatt, 

1997; personal observations). Protection from the enemies and efficiency in resource 

exploitation has been pointed out as benefits associated with the gregarious strategy 

(Mitchell, 2000; Wertheim et al., 2005; Mitchell, 2006; Fernandes et al., 2015). Cues for 

the selection of trees can be related to the number of cones, chemical volatiles, tree 

physiological status and type of clone (Blatt & Borden, 1996; Richardson et al., 2017; 
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Farinha et al., 2018b). Furthermore, adults form large aggregations for overwinter purposes 

(Blatt, 1994). 

The population dynamics of this species is classified as chaotic (i.e. high inter-annual 

population fluctuations) both in the native area (W. Strong, comm. pers.) and in the 

invaded areas (Tamburini et al. 2012; Lesieur et al. 2014;). So far, the reasons underlying 

these high population fluctuations are still poorly understood. Future research must focus on 

this key-stone issue.  

L. occidentalis is a pine seed feeder. It is frequently observed on top of the cones inserting 

its stylets between the cone scales to reach the content of seeds. It has sucking mouthparts 

composed by modified mandibles and maxillae to form a stylet of two channels, the salivary 

and the food channel, sheathed within a modified labium (Cobben, 1978). When feeding, 

first the salivary channel injects two types of saliva, gelling saliva to line the path of the 

stylets and watery saliva with enzymes to digest tissues exteriorly. The liquefied food is 

then sucked through the food channel and ingested (Cobben, 1978). Although, feeding 

mainly on seeds it also feed on xylem for hydration (Mitchell, 2000) as previously described 

in a related species, L. phyllopus (Linnaeus,1767) (Mitchell, 2006).  

Both adults and nymphs feed on cones and seeds of several coniferous. In the field this bug 

can feed upon cones in all development stages. When feeding on young conelets L. 

occidentalis can cause abortion compromising the seed production of the followed years.  
 

    
 

Figure 3. (A) Adult L. occidentalis and its’ (B) life cycle. Photo: Leptoglossus occidentalis at 
Mulderskop zuid, the Netherlands. Photo by B. Schoenmakers at waarneming.nl, a source of nature 

observations in the Netherlands (uploaded number 15027646). 
https://commons.wikimedia.org/w/index.php?curid=62780536 

A B 
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3. L. occidentalis impact on cones and seeds 
 

 

As said, both adults and nymphs feed on cones and can potentially create significant 

economic losses in high-value seed orchards for regenerations and afforestation proposes 

(Strong et al., 2001; Bates et al., 2002b; Bates & Borden, 2005) or for edible seed 

production (Calama et al., 2016a, 2017b; Ponce et al., 2017a; Farinha et al., 2018b). 

Feeding activity extends from late spring, when adults leave overwinter sites, until the 

onset of the hibernation conditions, that can range from September to November depending 

on the latitude (Barta, 2016) and altitude (Tamburini et al., 2012). Damage estimations are 

scarce mainly because L. occidentalis leaves no visible external signs on cones (Lait et al., 

2001). Moreover, pine cones have a maturation time that can be of one, two or even three 

years depending on species (Owens & Blake, 1985; Kolotelo, 1997). Thus, damage 

assessment is hard to follow, from flowering up to ripen cone, specially in three-year 

development cones like the ones of P. pinea (Mutke et al., 2003; Valdiviesso et al., 2017).  

Differences on the impact of adults and nymphs of L. occidentalis in conelets are not 

consistent between hosts. In Pinus contorta var. latifolia, experiments showed that the 

majority of nymphs fed only on conelets fail to develop to the next instar (Bates et al., 

2002a). In Pinus monticola, both nymphs and adults cause considerable damage to conelets 

(Bates et al., 2002a) but in Pinus sylvestris mortality of conelets did not differ among bags 

implemented with adults, with nymphs and control ones without insects (Lesieur et al., 

2014). All three pine species, P. contorta var. latifolia, P. monticola and P. sylvestris have 

cones that take two years to develop; conelets refers to first year cones (Bates et al., 

2002a; Lesieur et al., 2014). A recent study in P. pinea suggested that adults choose 

mature cones over young ones and that nymphs fed on both young and mature cones 

although no significant preference was noted (Farinha et al., 2018b). However, it is 

important to highlight that L. occidentalis has different feeding behavior according to the 

season (Koerber, 1963; Schowalter & Sexton, 1990; Connelly & Schowalter, 1991; 

Schowalter 1994; Bates et al., 2001, 2002a, 2002b, 2005; Strong et al., 2001; Strong 

2006; Calama et al., 2016a, 2017b; Ponce et al., 2017a). In field experiments using insects 

in caged branches of P. pinea, Ponce et al. (2017a) observed a high mortality of first-year 

conelets in the beginning of summer (around 90%) while second-year conelets mortality 

extend until August. 

Concerning damage on seeds of matured cones, it has been characterized in several conifer 

species in both the native and invaded range using X-rays (Bates et al., 2000b; Lesieur et 

al., 2014; Farinha et al., 2018a, 2018b). This methodology is expeditious and allows a fast 
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damage diagnosis. However, damage can be underestimated because seeds with light 

damage can appear sound in X-ray, especially when analyzing small seeds like the ones of 

Pinus pinaster or Pinus halepensis (Farinha et al., 2018c). Opening seeds is a more reliable 

method for damage assessment although underestimation have also been reported due to 

the similarity between aborted seeds because of environmental or genetic reasons and 

aborted seeds because of L. occidentalis feeding in early stage of seed development 

(Schowalter & Sexton 1990). In its native range, estimate losses caused by L. occidentalis 

range from < 5 to 50% in Douglas-fir Pseudotsuga menziesii (Schowalter & Sexton, 1990; 

Blatt & Borden, 1996). In P. contorta, Bates & Borden (2005) estimated that for a 

hypothetical density of one seed bug per tree early in the season the expected seed loss 

would be of 310 seeds. In P. pinea seed damage estimations are clearly season dependent. 

In the beginning of summer, the higher percentage of damaged seeds are characterized as 

empty seeds, i.e., seeds that fail to develop while as the summer continues most of 

damaged seeds in cones present a kernel partially damaged or with a different colour 

(Calama et al., 2016a, 2017b; Ponce et al., 2017a).  

Besides the fully developed seeds that are damaged, L. occidentalis is also believed to be 

the agent responsible for fused seeds, i.e., seeds that do not grow and get fused to the 

cone scale of ripen cones due to a feeding in an early stage of the seed development (Bates 

et al., 2000, 2002b; Strong et al., 2001; Lesieur et al., 2014). This phenomenon leads to 

the reduction in the total number of extractable seeds per cone. 

Laboratory force feeding experiments have showed that Stone pine mature seeds fed upon 

by L. occidentalis became shrunken and totally dry or only partially damaged according to 

the duration of feeding (Farinha et al., 2018a). The same damage morphology was detected 

in force feeding studies englobing also seeds of P. pinaster and P. halepensis (Farinha et al., 

2018c) (Figure 4). 

The notable variation of impact estimations and feeding behavior reveal great adaptability 

of L. occidentalis to different hosts, climates and environments.  

An accurate impact estimation of this bug in P. pinea is mandatory to define economic 

thresholds before applying any control measure. Data from processing industries for Stone 

pine cones collected in the main producing countries, namely Portugal, Spain, Italy, and 

Turkey have showed an increase of 50% in the percentage of empty seeds from 2011 to 

2014 (Mutke et al., 2014). No data could be found to the followed years. Although L. 

occidentalis is pointed as the main biotic agent causing this loss (Mutke et al., 2014, 2017a; 

Mutke & Roques, 2015; Calama et al., 2016a), doubts still exist on the possible implications 

of increasing draughts and phenological shifts due to climatic change (Mutke et al., 2005a; 
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Calama et al., 2011) or even other biotic agents such as Dioryctria mendacella (Calama et 

al., 2017a) and pathogen fungi like Diplodia spp. (Luchi et al., 2011). The latter is a serious 

pest of Stone pine in Italy (Feducci et al., 2009). Molecular studies (real-time PCR) proved 

that L. occidentalis is a potential vector for D. pinea in Stone pine forests (Luchi et al., 

2011). On this work, the fungi were found simultaneously on the bodies of L. occidentalis 

and on the symptomless P. pinea cones where the insect fed. Other study showed an 

average of 38% infected bugs in three different regions of North Italy (Tamburini et al., 

2012).  

Both the bug and the fungi share similar habitat conditions. The hypothesis for the increase 

in damage in Stone pine cones be related to this fungi-insect interaction must be seriously 

study.  

In conclusion, increased damage to Stone pine cones and seeds is a reality. However, 

discrimination of damage causalities in P. pinea cones is blurred and must be elucidated by 

ongoing research. 

 

 

 

Figure 4. Photos of damage caused by Leptoglossus occidentalis on seeds of (from top) P. pinea, P. 

pinaster and P. halepensis. Seeds arranged in each row from the less (left) to the more damaged 

(right). Photographs taken by Canon 1100 D. The marks on the scale correspond to 1mm. (Photos 

were taken by Charlene Durpoix). 

 

 

4. Host preference and selection 
 

 

Information on the plant preferences of L. occidentalis is of central importance for pest 

management. This bug is known as a polyphagous insect quickly adapting to new hosts 
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when expanding its geographic range. More than 30 different conifer species belonging to 

several genera (Abies, Calocedrus, Cedrus, Cupressus, Picea, Pinus, Pseudotsuga and 

Tsuga) (EPPO, 2018) and even the pistachio tree, are described as hosts of this pest (Rice 

et al., 1985). These polyphagous habits have been pointed out as crucial for the success of 

its world expansion. To our knowledge, only two studies have been conducted on L. 

occidentalis host preferences and both concerned the European invaded region (Lesieur et 

al., 2014; Farinha et al., 2018c). Comparison of bug preferences among mature seeds of 

several European conifers (P. sylvestris, Pinus nigra, Abies nordmanniana subsp. 

bornmuelleriana, Larix decidua and Picea abies) and those of the native pine P. 

menziesii var. glauca, did not reveal any clear preference among these host species (Lesieur 

et al., 2014). Yet, on another study using cones instead of mature seeds the insect 

expressed a preference for P. pinea compared to P. pinaster and P. halepensis (Farinha et 

al., 2018c). In this study, the bug spent more time feeding and visit more frequently the 

cones of P. pinea. The larger cones with consequently greater seeds, providing higher 

reward to the bug, were hypothesized to justify L. occidentalis preference on P. pinea cones.  

More literature is available on L. occidentalis preference between trees of a same host (host 

selection) than between different host species. In its native range, it has been 

demonstrated that L. occidentalis is capable of distinguish between clones of P. contorta 

(Blatt & Borden, 1996; Blatt, 1997; Richardson et al., 2017). The cues explaining this 

selection are the size of the cones, chemical volatiles profile of the tree and cone reflectance 

(Blatt & Borden, 1996, Richardson et al., 2017).  

Concerning P. pinea, studies on orchards with trees under different management regimes 

revealed higher percentage of damage on conelets and ripen cones on trees that were 

fertilized and irrigated compared to control ones (Farinha et al., 2018b). The physiological 

status of the tree may be a cue for L. occidentalis when it needs to choose a tree to 

colonize. Similar results were already demonstrated for a close species, L. phyllopus, to 

which the quality of the host had always prevailed over the host species in multiple 

experiments (Mitchell, 2006). Assessing L. occidentalis host preferences and host selection 

is pertinent both for ecological and economic reasons, especially having in mind the 

differentiate value of P. pinea seeds.  
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Leptoglossus occidentalis control  

 

 

1. Natural enemies and biological control 

 

Natural enemies are most relevant for the control and regulation of prey populations. By 

reducing prey populations, natural enemies frequently help to keep other organisms at 

sustaining low levels. Yet, when organisms establish themselves outside their native range 

they benefit from the resulting isolation from the natural enemies existing in the native 

range. In consequence, non-native populations may have larger growth rates, as predicted 

by the enemy-release hypothesis (Keane & Crawley, 2002; Shea & Chesson, 2002).  

However, the reverse may also happen, that is, native natural enemies of similar species 

may further shift to invasive species widening its feeding range (Mack et al., 2000). In this 

context, it is very pertinent to test if native predators and parasitoids may shift to L. 

occidentalis. This could widen opportunities for the biological control of the bug. 

Few studies document the activity of native predators and parasitoids of L. occidentalis. The 

impact of the natural enemies on the mortality of different developmental stages of the bug 

and its consequence on the population dynamics is poorly studied in its native range. 

Therefore, a complete depiction is required for the natural enemy’s complex of L. 

occidentalis. On the other hand, very few studies address the impact of natural enemies on 

L. occidentalis mortality on the invaded range. Nevertheless, this information is most crucial 

for the development of control strategies, including the use of classical and conservation 

biological tactics. Here, we review current knowledge on the predators and parasitoids of L. 

occidentalis, on both its native and introduced range, and on the different developmental 

stages. 

 
 

Eggs 

Like many other bugs of the Coreidae family, the eggs of L. occidentalis are predated by 

generalist predators. Ants and orthopterans are considered common egg predators of 

Leptoglossus species. Signs of egg predation may be assigned to specific groups of 

predators. Missing eggs are mostly attributed to ant predation. Chorion with chewing 

damage can be a predation sign from orthopterans. Shrunken eggs may be charged to 

sucking activity by hemipteran predators, although egg desiccation may be also a result of 
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abiotic factors (Bates & Borden, 2005). Among these groups, ants are probably the major 

predators of the eggs. Still, egg mortality by predation is overall low. In a study conducted 

by Maltese et al. (2012) predation contributed to about 2% of egg mortality. Still, for the 

congeneric species L. phyllopus, also present in eastern North America, predation was 

observed to account to 28% of egg masses mortality (Mitchell & Mitchell, 1986). At the 

extent of our knowledge, there are no studies of potential predation rates of the egg masses 

of L. occidentalis by generalist predators in Europe. Since the egg masses of L. occidentalis 

are exposed in the needles of conifers, particularly pines, we hypothesize those eggs might 

be preyed also by ants and orthopteran present on this habitat. There is information that 

the eggs of the pine processionary moth, also positioned on pine needles, are commonly 

preyed by ants and tettigoniid orthopterans (Way et al., 1999; López‐Sebastián et al., 

2004; Mirchev et al., 2015). We presume that these predators may also feed on the eggs of 

L. occidentalis. Still, the predation rates by generalist predators may be highly variable, 

depending on local populations of the predators, further depending on habitat and 

alternative prey available. It would be interesting to address the impact of the habitat 

diversity and landscape heterogeneity on the putative predators of L. occidentalis in Europe. 

In North America, the egg mortality of L. occidentalis is major due to the activity of 

parasitoids. The solitary parasitoid, Gryon pennsylvanicum (Hymenoptera: Platygastridae) 

(Ashmead) is the main responsible for the egg parasitism of L. occidentalis.  This parasitoid 

species frequently represents 80% or more of the eggs parasitized (Bates & Borden, 2004; 

Maltese et al., 2012). Still, egg parasitism rates are highly variable and moderate. Using 

sentinel egg masses Bates & Borden (2004) found c.a. 30% egg mortality from parasitism. 

In another study, egg parasitism varied seasonally from 3% in June till a peak of 25% in 

July (Maltese et al., 2012).  

G. pennsylvanicum is polyphagous; it parasitizes several species within the Coreidae family 

from the genera Leptoglossus, Narnia and Anasa (Masner, 1983; Mitchell & Mitchell, 1986; 

Yasuda, 1990). In a study with another host, Leptoglossus australis, Yasuda & Tsurumachi 

(1995) found that G. pennsylvanicum uses volatile chemicals released from the male bugs 

as kairomone to find the substrate where eggs are laid. It might happen a similar 

kairomonal attraction for L. occidentalis. All known hosts for G. pennsylvanicum are great 

sized bugs, from North America or Japan. European coreids are smaller and therefore 

Roversi et al. (2011), considered that G. pennsylvanicum would not represent a risk to 

European species within the Coreidae family. This parasitoid species was thus proposed to 

be introduced in Italy, to controls L. occidentalis through a classical biological control 

program (Roversi et al., 2011). A laboratory population of G. pennsylvanicum was kept in 
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quarantine conditions to perform rearing and risk assessment studies (Peverieri et al., 

2015). So far, there are no records of field releases. 

Other egg parasitoids were also found associated with L. occidentalis in North America, 

mainly from genus Anastatus (Hymenoptera: Eupelmidae) and Ooencyrtus (Hymenoptera: 

Encyrtidae), but always emerging in lower numbers in comparison with G. pennsylvanicum 

(Bates & Borden, 2004; Maltese et al., 2012). Two species of egg parasitoids were reported: 

Anastatus pearsalli and Ooencyrtus johnsoni. The former species is widely distributed in the 

Nearctic region and is highly polypaghous, parasitizing host from different orders and 

families (Bates & Borden, 2004). Little is known about the host range of O. johnsoni. This 

species is considered an important egg parasitoid of pentatomid species in North America 

(Ludwig & Kok, 1998). In general, the genus Ooencyrtus comprises polyphagous species, 

many of which are known to parasitize Lepidoptera or Heteroptera, or even alternate hosts 

between the two orders (Samra et al., 2015).  

In Europe, two native parasitoid species, Ooencyrtus pityocampae and Anastatius 

bifasciatus were recovered from field collected egg masses of L. occidentalis (Camponogara 

et al., 2003). Both parasitoid species also parasitize the eggs of the pine processionary 

moth. This occurrence reinforces the idea that both the native moth and the non-native 

seed bug may partially share the same natural enemies’ complex. Another Ooencyrtus 

species was also recovered in Europe from L. occidentalis egg masses (Lesieur and Farinha 

pers. obs.), but a complete picture of its impact and distribution is still lacking. Nonetheless, 

these preliminary results open research questions on the impact of native egg parasitoids 

on the control of L. occidentalis and how biological control conservation tactics may help to 

reduce the bug populations.  

 

Nymphs and adults 

Little is known about the predators of the nymphs. Nymph predation by ants was observed 

in the congeneric species L. fulvicornis (Wheeler & Miller, 1990). In life table studies for L. 

occidentalis Bates & Borden (2005) found that only 2.5% to 15% of first instar nymphs 

exposed in the field survived to adulthood. Yet, protection from predators with cages, 

resulted only in 14.5% to 17.8% survival. Therefore, the mortality of nymphs by predators 

is probably minimal. Also, other factors, such as wind or rain could increase mortality on 

unprotected nymphs, rather than predators. Further, under optimal temperature laboratory 

conditions the mortality of nymphs is also high (Barta, 2016), with no evident explanatory 

reason.  
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Group feeding activity, keeping nymphs close to each other and to the adults, may provide 

protection against predators. Group feeding behavior of L. occidentalis was observed on 

laboratory experiments (Farinha et al., 2018c) and field observations (Farinha, pers. obs.). 

Both nymphs and adults of Leptoglossus species produce an alarm pheromone (Blatt et al., 

1998). In concert with the bug gregarious behavior, alarm pheromone may help protect 

nymphs and adults from their predators. Again, there is not much information on the 

natural enemies of the adults. The big size of the adults might make them noticeably for 

vertebrate predators. Some authors suggest that some predation by birds, bats and frogs 

may occur (Petrakis, 2011). In laboratory studies, the mantids Ameles decolor Charpentier 

1825, Mantis religiosa Linnaeus 1758 and Sphodromantis viridis Forskal 1775 can devour 

several L. occidentalis individuals. However, these predators are not frequently seen in the 

same habitats of L. occidentalis and therefore are not potential predators of this pest 

(Petrakis, 2011). The generalist parasitoid Trichopoda pennipes (Diptera: Tachinidae) 

attacks adults of L. occidentalis in its native range (Ridge-O’Connor, 2001).  Yet, the impact 

of this parasitoid is small. 

Barta (2010) tested isolates of three entomopathogenic fungi, Beauveria bassiana, Isaria 

fumosorosea, and Metarhizium anisopliae in bioassays under laboratory and outdoor 

conditions. Pathogenicity was highly variable and lower in field conditions in comparison 

with those in laboratory. Overall best results were achieved with isolates of Isaria 

fumosorosea, suggesting that this could be a potential microbial control agent of the seed 

bug. 

 

2. Pheromone, trapping and chemical control 

 

Pheromones are frequently used to monitor and control insect pest (e.g. Peso et al., 2015; 

Walsh et al., 2016; Cokl & Borges, 2017; Rice et al., 2017). Researchers are trying to 

isolate pheromones efficient for chemical trapping of L. occidentalis. So far, only an alarm 

pheromone has been isolated (Blatt et al., 1998) but with no successful results in controlling 

this bug populations. There are evidences for the existence of aggregation pheromones 

(Blatt & Borden, 1996) but the isolation of the chemical(s) compound(s) has never been 

done so far. Added to the difficulty inherent of the complex chemical communication in 

insects, little is known on the behavior of this bug that triggers what could be important 

pheromones to its control. One specific pheromone-mediated aggregation behavior is winter 

aggregation which results in the population gathering in autumn when adults seek shelter to 

overwinter. A better knowledge of this behavior may lead to increase the possibilities to 
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chemically isolating this pheromone and use it to control L. occidentalis populations with a 

mass-trapping tactic.  

Multimodal communication systems e.g. the use of acoustic signs in addition to pheromones 

are described for several insects (Rowe & Guildford, 1996). Takács and team (2009) 

explored L. occidentalis communication. The team tested sonic and vibrational signals as 

well as cone infra-red radiation in an attempt to develop traps for L. occidentalis 

monitorization or even control (Takács et al., 2009; Takács et al., unpublished) but did not 

achieve effective results with any of the techniques. Other study explored the possible 

attractiveness of L. occidentalis to more reflective cones of P. contorta (Blatt, 1997). Results 

from field trials showed that preferred cones were neither more nor less reflective than non-

preferred cones indicating that this factor might not be relevant for the bug (Blatt, 1997). 

However, it may be a cue used in long-range attractiveness by distinguishing cone-bearing 

trees from those not bearing any food resource (Blatt, 1997) as already found for another 

insect, the larch cone fly, Strobilomyia melania Ackl (Roques, 1986).  

Visual and spatial cues were also tested in interception traps. Traps with different colors and 

conformations were tested but all performed negatively to attract L. occidentalis (Strong, 

2010). The use of heated traps with and without a male bug inside was also tested on field 

during the period when the bug seeks winter shelter but with no result as well (Farinha, not 

published). The trapped male was tested based on findings from Blatt (1997) that only 

males produce an aggregation pheromone that both males and females respond.  

Regarding chemical control, broad spectrum insecticides are used in the native region of the 

bug to control populations (Strong et al., 2001; Strong, 2006). In Europe, only in Turkey we 

could find indications of a chemical control strategy in P. pinea orchards (Mutke & Calama, 

2016) but details and results are not known. 

In conclusion, to our knowledge there is no effective trapping technique for L. occidentalis.  

A study using models of climatic niche predicted a low suitability for L. occidentalis 

populations in south Spain and center and south of Portugal (Zhu et al., 2014). Distributions 

data of the pest combined with climatic data should be explored to understand regions at 

higher risk of developing outbreaks. 

 

Conclusions and future guidelines  

 

L. occidentalis is currently an invasive species in the whole European territory (EPPO, 2018). 

However, the Mediterranean countries are the most concerned with this invasive species 

due to its putative impact on the high valuable edible seeds of P. pinea. Preference and 

https://link.springer.com/article/10.1007/s00265-013-1590-x#CR48
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performance studies showed a tendency for this insect to choose and to have higher 

performance in P. pinea (Farinha et al., 2018c; Ponce et al., 2017b). Therefore, the Stone 

pine large and rich seeds could favor and enhance the bug populations. Further, fertilization 

and irrigation, currently practiced in intensive Stone pine orchards, seem to favor the bug 

feeding activity and consequently the damage. Altogether, these results point to a high risk 

for P. pinea producing regions. 

The populations of the seed bug are characterized by high inter-annual fluctuations. Several 

authors mentioned the chaotic population dynamics of the seed bug (Richardson, 2013; 

Lesieur, 2014). Future research on this behavior is paramount to be capable of predict this 

species movements and possible fragilities.  Being a Mediterranean species well adapted to 

water scarcity, P. pinea is largely distributed along hot and dry regions. Some of these 

regions might be less suitable for the seed bug. Therefore, the effect of climate on the 

species distribution and population dynamics requires further studies.  

Predators or parasitoids may be partially controlling the seed bug populations. Field 

prospecting of these agents should be carried on. Regarding L. occidentalis impact, it is 

mandatory to conduct more studies on seasonal variation of its feeding behavior resourcing 

to field covered branches with different densities of bugs inside. This knowledge is crucial to 

define economic thresholds in management plans. Joint trials in different climatic regions 

would be a great asset.  

Ultimately, the management plans of P. pinea natural forests and seed orchards must 

integrate the management of L. occidentalis populations. Future research should integrate 

the insect, the pine and the market in a strategy common to all pine nut producer countries.  
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Chapter 3 - Micro-CT and X- ray suggests cooperative feeding 

among adult invasive bugs Leptoglossus occidentalis on mature 

seeds of Stone pine Pinus pinea 

 

 

 

 

 

 
 

Farinha AO, Branco M, Pereira MF, Auger-Rozenberg, Marie-Anne, Maurício A, Yart 

A, Guerreiro V, Sousa E, Roques A. 

Abstract  
 

1. The consumption of edible pine seeds of Stone pine by the invasive Leptoglossus 

occidentalis represents a major concern for the producers of Mediterranean countries 

but so far little knowledge is available about its feeding process on these seeds. 

2. We tested whether L. occidentalis is capable of feeding upon mature pine seeds and 

estimated the impact they may induce. 

3. Sound pine seeds were offered to bugs in laboratory conditions. The seed content 

was afterward analyzed through a multi-technique approach using stereomicroscope, 

X-rays and Micro Computed Tomography which was expected to better characterize 

the damage caused by this bug. 

4. Adults of L. occidentalis were capable of feeding on mature seeds by piercing the 

hard and thick coat. Yet, the consumption was low and with a slow start presumably 

due to the time and effort taken to drill a feeding hole.  

5. A collaborative feeding process was suggested since all bugs of the same box 

seemed to have fed through the same hole in most of the cases.  

6. Consumption was estimated to be about a fifth of a seed kernel per bug per month. 

Consumed kernels looked skunked and wrinkled. 
 

Keywords: Cooperative feeding, Leptoglossus occidentalis, Pinus pinea, Micro-CT, 

matured seed 

How is cooperative feeding related to impact estimations? 

When I started this Ph.D. there were no references to L. occidentalis capability to feed upon 

matured seeds of Pinus pinea. With a much thicker seed coat compared with the other coniferous 

in Europe or North America I presumed that it could be an obstacle, or at least an increased effort, 

for the insect to suck the seed inside. Thus, I start to study the impact of L. occidentalis by 

exposing matured seeds of stone pine to adult bugs and track the damage with x-rays. Not only 

was the insect able to pierce the seed coat and feed on the kernel inside but also seemed to do so 

by resorting to an intriguing feeding behavior involving cooperation between bugs. What started as 

a laboratory experiment to evaluate the impact of the bug ended with a new question. Are L. 

occidentalis adults collaborating to feed on a resource hard to obtain? 
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Introduction 

 

Invasive seed feeders can cause serious disturbance to forest ecosystems as they may 

affect the demography, spatial distribution, diversity and evolution of the plants (Boivin & 

Auger-Rozenberg, 2016). Furthermore, these insects may have a direct economic impact on 

seed orchards by reducing the quality and quantity of seeds for reforestation or 

afforestation purposes and for the production of edible seeds or fruits (Roques, 1983; 

Auger-Rozenberg & Roques, 2012). An exotic seed feeder bug, Leptoglossus occidentalis 

Heidemann (Hemiptera: Coreidae), native from Western North America, was first introduced 

in Europe through Italy in 1999 (Taylor et al., 2001). However, the European introductions 

appeared to originate from a primary invasion in Eastern North America (Lesieur, 2014). 

The bug quickly spread across most of the continent, probably through additional accidental 

introductions combined with both natural and man-mediated dispersal, the species being a 

good hitchhiker (Lesieur, 2014). Indeed, new invasion events have been recently registered 

in Asian countries such as Japan (Ishikawa & Kikuhara, 2009), China (Zhu, 2010) and South 

Korea (Ahn et al., 2013) and also in North Africa, in Tunisia (Ben Jamâa et al., 2013). In the 

Mediterranean basin, this invasive species is of particular concern amongst the producers of 

the edible pine seeds of Stone pine, Pinus pinea L., because of the high commercial and 

social value of this crop (Roversi, 2009; Bracalini et al., 2013). This issue is particularly 

relevant to the Iberian Peninsula where Stone pine plantations correspond approximately to 

70% of the world range of this pine species distributed by 175 000 ha in Portugal and 490 

000 ha in Spain (Mutkle & Calama, 2016). Annual cone productions vary greatly between 

years and sites. In Portugal, mean production of cones is about 700 kg/ha and in Spain 100 

Kg/ha (Mutke et al., 2012). Considering that kernel-per-cone yields are around 2-4%, one 

hectare may generate 2 - 28 Kg of kernel sold later by the industry at a price between 25 

and 45 €/kg (Mutkle & Calama, 2016). 

Like other seed-feeding Hemipterans, L. occidentalis has sucking mouthparts composed by 

modified mandibles and maxillae to form a stylet of two channels, the salivary and the food 

channel, sheathed within a modified labium (Cobben, 1978). First, the salivary channel 

injects two types of saliva, gelling saliva to line the path of the stylets and watery saliva 

with enzymes to digest tissues exteriorly. The liquefied food is then sucked through the food 

channel and ingested (Cobben, 1978). Bugs from the family Coreidae can feed either on 

vegetative and vascular tissues or on reproductive plant parts (Mitchell, 2000). The 

hemiptera L.occidentalis feeds mainly on reproductive conifer structures but can also, 

https://en.wikipedia.org/wiki/Mandible_(insect)
https://en.wikipedia.org/wiki/Insect_mouthparts
https://en.wikipedia.org/wiki/Labium_(insect)
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occasionally, feed on xylem for hydration (personal observations) as previously described in 

a related species, Leptoglossus phyllopus (Linnaeus, 1767) (Mitchell, 2006).  

During its active period (May - November in the Mediterranean basin), L. occidentalis can 

feed on cones at different maturation stages, from conelets (first year cones) to developing 

cones and mature seeds until the onset of the hibernation conditions (Koerber, 1963). In 

Douglas-fir Pseudotsuga menziesii (Mirb.) Franco and in Lodgepole pine Pinus contorta var. 

latifolia Engelmann, damage caused by L. occidentalis was observed to differ among these 

various cone development stages (Koerber, 1963; Bates et al., 2001; Strong et al., 2001; 

Bates et al., 2005).  

The edible seed of P. pinea has an average length of 15-20 x 10 mm (Frankis, 1999) which 

is about 2-3 times larger than those of most other European conifers. The average seed 

weight is about 0.92 g and coat thickness is greater than 1.5 mm (pers. observ.). Seeds of 

Douglas-fir, a native host species of the insect, are 5-6 mm long (Morin, 1993). Other 

European pines consumed by L. occidentalis such as Pinus halepensis Miller and P. sylvestris 

L. have seeds with a length varying from 5-6 mm and 3-5 mm, respectively (Frankis, 1999) 

with the last having around 1.5 mm of thickness (Kaliniewicz et al., 2014). Therefore, the 

large size of the pine seed in P. pinea can be a pull factor to seed-eaters like this bug. On 

the other hand, the thicker coat of its seeds, when compared to others may represent an 

obstacle for the piercing mouthparts of L. occidentalis.  

So far, little is known on the impact of this bug on P. pinea seeds whereas the damage to 

mature seeds has been characterized in a number of other conifer species in both the native 

and invaded range using X-rays (Bates et al., 2000; Lesieur et al., 2014). This methodology 

is expeditious and allows for a fast diagnosis of the damage caused by L. occidentalis. 

Although the concern of the impact of this insect on P. pinea is currently focused on the first 

and second year cones or on last year cones still with the seeds in soft coat (from March 

until August), the impact on mature seeds should not be neglected.  With our climate and 

for this pine species hardening of the seed coat takes place at the end of August (A. Nunes, 

H. Pereira, M. Tomé, J. Silva and L. Fontes, unpublished data) and thus, hard coat seeds is 

a resource available to the insect during its active phase which may extent to early 

November (Bernardinelli et al., 2006; Tamburini et al., 2012; Mas et al., 2013; Pimpão, 

2014). In addition, feeding on mature seeds has a further possible important impact on 

seed germination and natural regeneration (Tamburini et al., 2012; Bracalini et al., 2012; 

Lesieur et al., 2014). 

A multi-technique approach using stereomicroscopy, radiography and Micro X-ray computer 

tomography (Micro-CT) may allow to get a better characterization of L. occidentalis damage 

on mature seeds of P. pinea. Micro-CT is a non-invasive and non-destructive 3D 

https://en.wikipedia.org/wiki/Carl_Linnaeus
https://en.wikipedia.org/wiki/12th_edition_of_Systema_Naturae
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radiographic microscopy imaging technique, which uses multiple digital two dimension 

radiography images to produce a three-dimensional (3D) computerized volume of an 

opaque sample (Kalender, 2006). Although more expensive and time consuming, Micro-CT 

has micrometric to scale range resolution enabling greater accuracy in 3D volume 

measurements and visualization. This technique has been used successfully to study insect 

damage in other seed species (Tarver et al., 2006; Jennings & Austin, 2011; Arkhipov et al., 

2015; Suresh & Neethirajan, 2015).  

Therefore, our study aimed at using this multi-technique approach in order to test whether 

the adults of L. occidentalis are capable of feeding on mature seeds of P. pinea despite the 

hard coat. If so, we intended to characterize the damage, the seed region consumed by the 

bug, and estimates the average daily consumption rate of an adult bug. 

 

Methods 

 

Sampling 

 

Twelve mature cones were randomly harvested in January 2015 in three stands of P. pinea, 

two located in Santarém (38°44’N; 8°31’W) and one in Évora (38°39’N; 8°32’W), Portugal. 

At the laboratory, cones were dried at 45ºC for 72 hours in order to open, and their seeds 

were manually extracted. Seeds from each stand were mixed and a random sample of 100 

was taken from each of the three stands. The 300 seeds were X-radiographed in order to 

separate the sound seeds from damaged ones. 

 

Feeding experiment  

 

A permanent laboratory colony of L. occidentalis was set by collecting adult bugs in the 

Orleans region, France in September of 2009 and then supplemented periodically with more 

bugs from the same region to avoid consanguinity. Therefore, it consisted of bugs with 

mixed ages and mixed proveniences. The colony was reared at INRA Orléans, France in 

climatic chambers under the following controlled conditions: 21ºC with 60% RH and 16:8 

light/dark cycle. Twigs and cones from Pinus nigra were used as food source. Nine plastic 

boxes of 15x15x5cm, each containing 10 sound seeds of P. pinea were used. In six of the 

boxes, four adults of L. occidentalis from the colony were added whereas the other three 

boxes were free of bugs, to act as controls. The sex of the specimens was not taken into 

account since previous studies found no significant differences in the consumption of conifer 

seeds between sexes (Bates et al., 2000, 2002; Lesieur et al., 2014). Bugs were kept 

javascript:void(0)
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without food with only water 48 hours before the experiments except for the replacement 

bugs. Individuals who died were replaced immediately, using the stock available from the 

colony. The experiment was carried out from February 11th to March 11th 2015 at INRA 

under the controlled climatic conditions mentioned above. Each seed was identified by two 

numbers separated by a dot in which the first number corresponds to the box and the 

second to the seed position on the box reading from left to right starting at the top (see 

results chapter). 

The seeds offered to insects and control ones were simultaneously x-rayed weekly using a 

HP Faxitron-43855® X-raying apparatus and X-ray sensitive films (Kodak® ‘Industrex M’), 

following the procedures described in Roques and Skrzypczyńska (2003) but optimized for 

larger seeds of P. pinea. Through radiography, the size of the damaged area of the kernel 

was estimated weekly, using the total kernel area at the beginning of the experiment as a 

baseline. Damage categories were set following a three-level scale starting with sound 

seeds: (1) no apparent damage (fully filled seed), (2) light to moderate damage (less than 

1/2 of the whole seed content consumed), (3) severe damage (more than 1/2 of the seed 

consumed). Damaged areas visualized on the x-rays were also measured using Image J® 

software.  

 

Micro-CT study (3D seed processing and measurements) 

 

Before breaking the seed coat to observe the kernel´s damage under a stereomicroscope, a 

sub-sample of seeds was submitted to a Micro-CT analysis. This sub sample consisted of a 

group of ten seeds, three sound and seven bug-damaged previously characterized with X-

rays, that were scanned through computerized micro tomography using Skyscan® 1172. 

The experimental parameters were optimized by considering the relatively large size of the 

mature seeds and the best possible pixel resolution (14 to 18 µm) and contrast of the 

acquisition images. Reconstructed tomographic images were processed using a 3D 

processing visualization and analysis software from Bruker®. The following variables were 

measured: seed volume, seed coat volume, kernel volume, thickness of the coat, length 

and width of the feeding hole made by the insect. The volume measures obtained by Micro-

CT combined with the weight measures made in a precision scale allowed to estimate 

density values for the entire seed (global density), for the coat and for the kernel before 

and after the feeding experiment (Fig. 1). The entire coat of each seed was carefully 

examined to look for feeding holes. The dimensions (diameter and length) of each hole were 

measured, and its position on the seed was recorded. Furthermore, the thickness of the 
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coat where the feeding hole was drilled was compared with that of the other parts of the 

seed coat. 

In order to investigate if the thickness of the seed coat could be related to the insect’s 

choice to pierce a specific seed and/or a specific region in the seed, the volume of the seed 

coat in each of the regions, was measured in both bug damaged and sound seeds. The 

volume of the region(s) with the feeding hole was compared with the average volume of all 

parts of the same seed. Top and bottom quarters of the seeds were not included.  

Diameter of the insect inner stylets (mandibles and maxilla) and the proboscis (labium) 

were measured in order to look the possible relationships with the hole dimensions. 

Measurements were made using software CTAn (v. 1.16) from Bruker® and Imaje J®. 

 

 

Figure 1. Sequence of images illustrating the imaging methodology for quantitative volumetric 

measurement of the different components of the pine seed from a reconstructed slice (A) obtained by 

CT rays X. Sound seed (1.8) on top and consumed seed (1.6) on bottom. (A) 256 grey level images 

and (Bi) binary images (Seed total volume (B1), volume of the seed coat and kernel (B2), volume of 

the seed coat (B3) and volume of the kernel (B4)). 

 

Stereomicroscopy observations 

 

At the end of the feeding experiment, and after the radiographic and micro-CT examination, 

all seeds of the experiment were also externally observed under a stereomicroscope to 

check for damage in the seed coat caused by insects. Feeding holes, when found, were 

measured and photographed. Then, all seeds were carefully opened and all components 

(seed coat, seed tegument and kernel) were weighted and photographed.  

Radiographic and Micro Tomography data from the kernels was compared with the visual 

examinations.  
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Statistical analysis 

 

Non-parametric statistical test Kruskal-Wallis (X2) was used to test for differences in seed 

densities (global, coat and kernel) between all seeds and between seeds belonging to the 

same damage category. Differences in thickness between seeds were tested with one-way 

analysis of variance (ANOVA). Response variables (i.e. seed densities and thickness) were 

tested for normality (Shapiro–Wilk test) and homogeneity (Levene’s test). Statistical 

analyses were performed using IBM SPSS Statistics for windows version 23.0 with a 

statistical significance level of 0.05.  

 

Results 

 

Feeding experiment  

 

Along the four weeks, seed feeding was observed in all the boxes containing insects (Fig. 

2). Yet, in each box only one or two of the ten seeds presented signs of feeding damage by 

L. occidentalis, i.e. dark spots in the seed endosperm or, when the consume was higher, 

deformation or reduction of this part of the seed. Seeds in the control boxes without insects 

(boxes 7, 8 and 9) remained with their endosperms intact throughout the experiment. 

During the entire time of the experience 6 bugs died, 4 bugs in box 2 and 2 bugs in box 3. 

They were replaced immediately. By the end of the experiment, four of the six boxes with 

bugs included two damaged seeds (boxes 1, 3, 4 and 6) whereas the other two presented 

only one seed with bug damage (boxes 2 and 5) (Fig. 3). In three of the four boxes where 

two damaged seeds were observed, the bugs were noticed to start feeding on a single seed, 

and only after this seed had been significantly depleted they turned to another one.  This 

temporal development of the feeding damage (Fig. 3B) revealed to have a rather general 

pattern: damage started slowly with consumptions per box up to 22.62%, accelerated on 

the second or third week when consumption rate doubles, slowed down again, and 

eventually accelerated again. Box number 5 was an exception with a very high consumption 

soon in the first week.  

Seed kernel damage at the end of the experiment varied between two entire seeds in box 1 

to less than half a seed in box 2. Of the ten damaged seeds, five presented light to 

moderate damage (2.9; 3.4; 3.5; 4.10; 6.3) and five displayed severe damage (1.6; 1.7; 

4.8; 5.3; 6.5). The image analyses of the X-rays allowed estimating an average 

consumption of one third of a seed (0.31) per bug per month. 
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Kernel weight measurements showed that L. occidentalis consumed, in average, 0.08 ± 

0.02 g (39.67% of kernels mass) in light-moderately damaged seeds and 0.17 ± 0.03 g 

(78.76%) in severely damaged seeds. Taking all boxes with bugs together, the total kernel 

consumption was of 1.15 ± 0.08 g, amount equivalent to approximately 5.15 seeds which 

gives approximately a fifth of a seed (0.05 ± 0.07g) per bug per month.  

 

Figure 2.  Evolution of the seed kernel exposed to L. occidentalis along the four weeks using X-rays 

technique.  Grey boxes correspond to control boxes. 
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Figure 3. Weekly consumption of the seed kernel by four adults of L. occidentalis presented in 

categories of damage per seed (A) and in percentage per box in relation to the total consumption of 

the box (B). Leg.   No damage,  Light/moderate damage (less than ½ of kernel consumption) 

and  severe damage (kernel consumption of ½ and more). Seeds with no damage are not 

represented.  

 

Micro-CT results 

 

Before exposition to L. occidentalis, seed global density did not differ between sound seeds 

(p<0.05), averaging 1.11 ± 0.02 g/cm3. Following the feeding experiment, seed global 

density decreased to an average of 1.02 ± 0.04 g/cm3 in the lightly/moderately damaged 

seeds and to 0.90 ± 0.02 g/cm3 in severely damaged seeds. Seed global density was 

significantly different between seed categories (KW test: X2=8.27, d.f.=2, P=0.016). Sound 

and severely damaged seeds appeared significantly different from each other in density 

(Man-Whitney pairwise comparison test: p<0.001), but densities of lightly/moderately 

damaged seeds did not differ significantly from those of sound (p=0.235) nor severely 

damaged ones (p=0.142).  

Differences in coat and kernel densities between damage categories were not significant 

(KW test: X2=1.169, d.f. =2, p=0.557 and X2 =2.927, d.f. =2, p=0.231, respectively). 

Micro-CT analysis revealed the presence of a single hole per damaged seed (Fig. 4) with the 

exception of seed 2.10 which presented three holes. Feeding holes were all made into the 

middle section of the seed and never on the tips. Holes presented an average diameter of 

51.60 ± 10.40 μm with an average length of 1.60 ± 0.20 mm.  

Micro-CT measurements on the insect piercing parts showed that inner stylets, which 

correspond to mandibles and maxilla, are much smaller in diameter than the proboscis 
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(Labium) (Fig. 5) measuring on average 35.90 ± 7.40 µm and 119.80 ± 23.70 µm, 

respectively. 

No significant differences in the average thickness of the seed coat was observed between 

all seeds, damaged and sound ones (ANOVA test: F=0.118, d.f.=9, P=0.890). The path of 

the hole was always longer than the thickness of the coat in the same region, meaning that 

in all damaged seeds, bugs pierced diagonally.  

 

 

Figure 4. L. occidentalis feeding hole in matured seed 1.7. Micro-CT image. (A)Transversal view and 

(B) coronal view of the seed (C) 3D image of the kernel.   

 

 

 

    Figure 5. A section of L. occidentalis mouthpart using Micro- CT. 
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Seed results 

 

Examination of the seed’s coat under a stereomicroscope confirmed the presence of holes, 

which were surrounded by a darker zone with some white spots in all the damaged seeds 

(Fig. 6). The average diameter of holes was 45.70 ± 4.50 µm. No holes could be found on 

seeds that showed no consumption in the x-rays.  

A comparative analysis of the kernel of all damaged seeds and one sound, to contrast, using 

images from the three methodologies (stereomicroscope, X-ray and Micro-CT) revealed a 

shrunken and wrinkled effect on seeds damaged by L. occidentalis (Fig. 7). Even seeds with 

light damage showed noticeable deformation. When the eating process was complete the 

entire kernel was shriveled. If damage was low the seed presented a wrinkled area in the 

kernel just beneath the hole found in the seed coat. 

 

 

Figure 6. Feeding hole in the coat of the seed 5.3 of P. pinea made by L. occidentalis. Magnification of 

9.6x (A) and 120x (B) Zeiss Stereo Lumar V.12. 
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Figure 7. Comparative photos of damaged and sound seeds using binocular microscope, X-rays and Micro-CT. 

Bar corresponds to 0.5 cm. Seed 3.5 could not be photographed under binocular microscope due to 

accidental crushing when opening. na – not analyzed. 

 

Discussion 

 

Our results suggest that adults of L. occidentalis can overcome competition, benefiting from 

a group behavior of sharing the same resource. However, we do not know if this hypothesis 

is a common strategy for this bug or if it is an exclusive behavior in this particular host 

species, explained by the fact that this seed is too hard to perforate. In fact, P. pinea seeds 

are one of the hardest seeds in Pinaceae family (Perry Jr, 1991). Moreover, these results 

have been obtained in captivity and may simply correspond to a behavior induced by these 
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artificial conditions. They have to be confirmed under field conditions. Even so, it was 

proved here that L. occidentalis can feed on mature seeds. 

The radiographic weekly follow up in the feeding experiment showed without contest that L. 

occidentalis bugs can perforate the hard coat of mature seeds of Stone pine and consume 

the inner content. However, the number of seeds damaged per box remained very low, 

reaching only one or two seeds per box whereas each box contained four adults who were 

offered ten healthy seeds for one month. Mass consumption was estimated to be about a 

fifth of a seed kernel per bug per month with a total of ten seeds damaged during the four 

weeks feeding trial with 24 adults of L. occidentalis divided in 6 boxes. Other feeding 

experiments on other hosts namely, P. sylvestris, P. nigra, P. contorta and P. menziesii 

reported an average feed between 0.7 and 1.7 seeds per bug per day depending on the 

host species, time of the year and sex of the bug (Hanson 1978, Strong 2006, Lesieur et 

al., 2014). Knowing that one Stone pine matured seed corresponds grossly to a batch of 

100 seeds of the other hosts mentioned, our result (0.014 Stone pine seeds per day per bug 

corresponding) fits between the average feed reported for the other host species.   

When analyzing the feeding rate, a general pattern arises: a slow rate at the beginning of 

consumption of a given seed, followed by a rapid depletion of its kernel. In one box (n. 5) 

consumption was already high in the first week maybe due to a more efficient group work in 

drilling the coat or to a more voracious or dominant bug, when compared to the other 

boxes. A second slow step in the damage curve was observed in boxes in which two seeds 

were damaged. This slower rate at the beginning of consumption of a seed tends to indicate 

that L. occidentalis has to make an effort in drill the harden seed coat of P. pinea mature 

seeds before starting feeding on it. Since all bugs were starved previously to the 

experiments and are proven polyphagous i.e., does not influence the fact that the colony of 

origin is fed with P. nigra twigs and cones, we would expect that they should begin feeding 

voraciously. Furthermore, the low number of damaged seeds per box, together with the 

temporal asynchrony in the seed feeding process (deplete a seed and only then move on to 

another), suggests a cooperative feeding strategy with all the bugs feeding on the same 

seed presumably because of that initial effort of puncturing the seed coat. 

The gregarious behavior in the family Coreidae is already documented for the younger 

development stages (Mitchell, 2000; Wertheim et al., 2005) but studies reporting adult 

gregarious behavior, excluding for overwinter purposes, are scarce and concern 

heteropteran from families other than Coreidae (Ralph, 1976; Aller & Caldwell, 1979). 

Efficiency in resource exploitation has been pointed out as one of the benefits associated 

with the gregarious strategy (Ralph, 1976; Aller & Caldwell, 1979; Lockwood & Story, 1986; 

Cloutier, 1997; Mitchell, 2000; Wertheim et al., 2005; Mitchell, 2006; Fernandes et al., 
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2015). This efficiency comprises cooperative efforts to overcome host physical barriers, 

such as waxy layers on leafs and seed coats (Cloutier, 1997; Prado & Tjallingii, 1997). In 

the present research, the analysis of the seed coat of the damaged seeds may be in 

agreement with the concept of communal feeding. In fact, nearly all damaged seeds 

presented only one perforating hole in the seed coat, which could mean that all four bugs 

shared the same hole to suck the endosperm. If so, we may further deduce that these bugs 

do not avoid seeds consumed by others. They may actually profit from using a feeding 

cooperation strategy.  

Thinking that just one of the bugs in each box could be feeding upon the seed is also a 

possible explanation for the temporal asynchrony although it does not explain why all the 

other bugs in the box did not feed on the seeds since there were four healthy starved bugs 

per box. However, the maximum survival time of this insect without food as well as its 

territorial dynamics and individual ability to drill for feeding has not been tested. Further 

behavior studies must be carried on verifying the hypothesis of only one insect is feeding 

while the others are starving. 

Koerber (1963) was the first to notice the signs of feeding by L. occidentalis on mature 

seeds of P. menziesii in the native Eastern North America range which he described as 

“punctures with a minute conical fleck of white material around, possibly dried saliva”. 

Binocular microscope observations of the punctures in P. pinea damaged seeds revealed a 

hole surrounded by a darker area with small white spots. These holes can be undoubtedly 

assigned to L. occidentalis because all seeds without damage showed an intact coat and the 

measurements of the diameters of these punctures are similar to the ones obtained by 

DeBarr (1970) for Leptoglossus corculus (Say 1832), a very close species, on seeds of slash 

pine (Pinus elliottii) in North America. Furthermore, the holes diameter is also consistent 

with the diameter of the insect stylets.  

Bug mortality along the experiment was negligible (4 out of 36 bugs) and happened only in 

two boxes, indicating that mature seeds of P. pinea are suitable for adult bug feeding. 

However, and although dead bugs were immediately replaced, these two boxes presented 

the lowest seed consumption in total. Abiotic factors may be discarded as a reason since all 

boxes were under the same conditions. The undetermined age of the insects and differences 

in the ability in drilling the seed coat are possible explanations for this mortality. We can, 

nevertheless, suspect also of territorial behavior. The sex of the individuals was not 

controlled following Bates et al., (2000) and Lesieur (2014b) conclusions of no differences in 

total seed damage with sex. However, boxes in the present study contained four bugs and 

therefore male-male competition for females and resources, could influence bugs mortality 

and seed consumption inside the box. In fact, several behavior studies report territorial 
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defense by males in Coreids (Mitchell, 1980, 2000; Miyatake, 1993, 1995) with the 

presence of a female being a strong influence factor (Miyatake, 1993). This territorial 

behavior should therefore be tested as another possible explanation for the presence of just 

one hole per damaged seed in each box conducting experiments which take sex and number 

of individuals per box into account. 

The use of micro computerized tomography on the P. pinea seeds consumed by L. 

occidentalis allowed for the first time to look at the damaged kernel in a 3D perspective 

without breaking the seed coat. The damaged kernels presented a shrunken and wrinkled 

appearance corresponding to the sucking of its endosperm. Mass density values of damage 

coated seeds resulting from this 3D analysis corroborates the efficient use of the expedite 

method of immersing seeds into water to differentiate sound from damaged seeds. In fact, 

we found significant differences in mass density between sound and severely damaged 

seeds, with the last ones revealing values considerably lower than 1 g/cm3 which allow them 

to float on water. However, seeds with light/moderate damage may be wrongly classified as 

good by immersing them in water since their mass densities varied between 0.96 and 1.06 

g/cm3. It is important to note that these last seeds are no longer viable for the market of P. 

pinea edible seeds. Furthermore, germination tests carried on with mature seeds of other 

Pinus species exposed to adults of L. occidentalis had a success rate of less than 30% in 

seeds with less than 1/3 of the whole seed content consumed (Bates et al., 2001; Lesieur et 

al., 2014b). Thus, even a low damage to the seed can have a serious impact on seeding 

programs and in natural regeneration of the plant, because it may reduce seed chances of a 

successful germination. In addition, L. occidentalis perforation in the seed coat may provide 

an entrance point for pathogens (Mitchell, 2004; Luchi et al., 2012). 

A complete analysis of the seed coat in damaged and sound seeds revealed no significant 

differences in the average thickness between similar sections of all seeds. Thickness of the 

seed coat region where the bug perforated was not proved to be thinner than the other 

seed regions (excluding the extremities). In addition, 78% of the measured holes in the 

seed coat were made diagonally not thereby optimizing the distance that the stylet had to 

cross. All these results suggest that seed selection as well as choice of the area where to 

perforate should be determined by variable(s) other(s) than the thickness of the seed coat.  

At a tree scale, some host preferences exhibited by L. occidentalis were already found. Blatt 

and Borden (1999) revealed a clonal preference in seed orchards of Lodgepole pine and 

Douglas-fir and Richardson et al. (2017) demonstrated that cone terpenes and cone size 

may also play an important role in the selection of the host by this bug species. Studies on 

cues mediating mature seed selection do not exist.  
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P. pinea seeds gain complete maturation concerning the hardness of the coat from August 

to late September (A. Nunes, H. Pereira, M. Tomé, J. Silva and L. Fontes, unpublished data) 

and L. occidentalis hibernation dates in Mediterranean countries can extend up to November 

(Bernardinelli et al., 2006; Tamburini et al., 2012; Mas et al., 2013; Pimpão, 2014). This 

means that cones containing mature seeds are an available resource to the bug in natural 

conditions. A deeper insight on L. occidentalis adults and nymphs feeding behavior in the 

field, especially on preferences of cones from different development stages, throughout its 

active period, is essential before considering any control strategy as already stated by Bates 

et al. (2005). Also, new knowledge on the maturation and development of P. pinea cones 

and seeds must be cross referenced with the biology of this insect. 

This investigation should provide researchers and producers with a reliable and visual 

characterization of the damage caused by L. occidentalis in mature seeds of P. pinea.   
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Chapter 4 - The Stone pine, Pinus pinea, a new highly rewarding 

host for the invasive Leptoglossus occidentalis 

 

Farinha AO, Durpoix C, Valente S, Sousa E, Roques A, Branco M 

 

Abstract 

 

The invasive seed bug Leptoglossus occidentalis, a species native to Western North 

America, is of major concern for the producers of stone pine seeds in the Mediterranean 

countries. The large size of these edible seeds and their nutritive content may represent a 

pull factor for the seed bug. Cone and seed traits of three main Mediterranean pine species: 

P. pinea, P. pinaster, and P. halepensis, were evaluated. Preference trials with cone-bearing 

branches, individual cones and seeds were conducted to test host preference among the 

three host species.  

Considering the kernel size, stone pine seeds provide 4 to 13 times more reward than P. 

pinaster and P. halepensis seeds, respectively, but also needed a greater effort to be 

reached as measured by coat thickness. Still, the benefit/cost ratio was higher on P. pinea. 

Individual seeds and cones of P. pinea were 2 to 3 times more consumed than those of the 

two other pine species. However, branch preference trials did not reveal any difference in 

bug visits. Moreover, adults manifested strong group behaviour on branches, frequently 

dissociating into two persisting groups. The implications of these results for P. pinea 

producing areas are discussed.  

 

Keywords:  seed feeder, host preference, P. pinea, P. pinaster, P. halepensis 
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Introduction 

 

The invasive seed bug, Leptoglossus occidentalis, Heidemann 1910 (Hemiptera: Coreidae), 

originating from Western North America, was first recorded in Europe in Italy in 1999 

(Taylor et al., 2001). Due to its high dispersal ability, and also probably assisted by more 

than one introduction event, this bug quickly spread all over Southern and Central European 

countries and later to the whole continent (Lesieur et al., 2018). Besides of Europe, there 

has also been new records on other continents in the last decade: Asia (Ishikawa & 

Kikuhara, 2009; Zhu et al., 2010; Ahn et al., 2013), Africa (Jamâa et al., 2013; Gapon, 

2015) and more recently, South America (Faúndez & Rocca, 2017).  

With the European invasion, this polyphagous insect, which feeds on cones and seeds of 

many conifer species in its native range (Koerber, 1963), encountered new potential hosts. 

In Europe, it has been observed feeding on Mountain pine (Pinus mugo), European black 

pine (P. nigra), Scots pine (P. sylvestris), Maritime pine (P. pinaster), Aleppo pine (P. 

halepensis) and on Stone pine (P. pinea) (Villa et al., 2001; Tescari, 2004; Tiberi, 2007; 

Kment & Baňař, 2008; Lis et al., 2008; Rabitsh, 2008; Roversi, 2009; Petrakis, 2011; Hizal, 

2012).  The last three hosts are the predominant pines species in the Mediterranean region 

of Europe. Maritime pine is native to the Western Mediterranean Basin, but it can be found 

in other parts of southern Europe and North Africa (EUFORGEN 2009). The Aleppo pine is 

distributed mainly along the coastal areas in the western Mediterranean regions, being an 

important forest species in North Africa, France and Italy (EUFORGEN 2009). Finally, the 

European distribution of P. pinea extends across the entire Mediterranean basin, from 

Portugal to Syria (EUFORGEN 2009). For more than a century, all three have been 

important species in reforestation and afforestation programs since they can grow in arid 

and unstable soils (EUFORGEN 2009). Maritime pine is also planted for timber and to extract 

resin. Aleppo pine, in turn, is also used in the pulp and paper industry (EUFORGEN 2009). 

Differently, the stone pine P. pinea is largely known by its ecological and landscape value 

but also by its edible seeds, known as Mediterranean pine nuts, of high commercial value, 

which may reach 100 € per kg in retail (Mutke et al., 2012). In response to this high market 

value, the plantation area of P. pinea has increased in the last decades in several 

Mediterranean countries, like Spain, Portugal, Italy and Turkey (Mutke & Calama 2016). The 

high value of this non-wood forest product is precisely the focus of the vast majority of 

impact studies on the seed feeder L. occidentalis, in the Mediterranean countries (Bracalini 

et al., 2015; Calama et al., 2016, 2017; Farinha et al., 2018a, 2018b). During the last ten 

years, several countries have reported a strong decrease in cone production and cone yield 

(i.e., the percentage of commercial kernels per kg of fresh cones) (Mutke et al., 2014), and 

https://www.sciencedirect.com/science/article/pii/S0378112718307746#b0130


Chapter 4 – Seed bug host preferences  

 

 

Page 81 of 164 

 

L. occidentalis has been suggested as the most plausive cause of such decrease (Roversi, 

2009; Bracalini et al., 2013; Mutke & Calama 2016; Parlak, 2017). Like all hemipterans, L. 

occidentalis has sucking mouthparts and, it feeds by inserting its stylets deep into the cone 

until reaching the seed from which it removes the endosperm (Koerber, 1963).   

Although feeding on a wide range of conifers, L. occidentalis seems capable of distinguishing 

between clones of P. contorta (Blatt & Borden 1996, 1999; Richardson et al., 2017) and 

between cones of P. pinea of different physiological status (Farinha et al., 2018b). This host 

selection capability strongly indicates that the bug can probably discriminate between 

different host conifers.  

Evaluating host preference of this seed feeder under natural conditions is not a 

straightforward task due to the difficulty in detecting the bug and the absence of visible 

damage on cone surface. The only study on L. occidentalis feeding preference was carried 

on under laboratory conditions using individual mature seeds, extracted from cones (Lesieur 

et al., 2014). Having offered such seeds to adults in choice tests, Lesieur et al. (2014) did 

not find any preference among several European conifers (P. sylvestris, P. nigra, Abies 

nordmanniana subsp. bormuelleriana, Larix decidua and Picea abies) compared to the 

Nearctic Douglas-fir, Pseudotsuga menziesii var. glauca. However, although quite extensive 

this study did not include P. pinea seeds and to our knowledge, no other studies tested bug 

preferences for this host species. 

Seeds of P. pinea are large-sized and highly nutritive which can be a pull factor to a seed-

eater like L. occidentalis. On the other hand, larger seeds also mean a thicker seed coat 

which may represent an obstacle for the piercing mouthparts of the bug. We hypothesized 

that in preference trials using seeds, the bigger individual seeds of P. pinea might visually 

lead to a host preference towards a higher reward whereas the harder seed coat may 

constitute an additional cost. Seed volume is a proxy to the seed reward and thickness may 

represent a proxy to the effort. Selective behaviour in the field is known to operate at 

sequential levels. First, individuals select a tree, then a cone and lastly a seed to feed upon 

(Blatt, 1997). So, we presumed that host preference may differ regarding the plant 

component tested; either using seeds, cones, branches or trees. Furthermore, it would be 

relevant to compare results and discuss the pros and cons when using different 

methodologies.  

In this study, our objectives were to evaluate the host preferences of L. occidentalis for 

branches, cones, and seeds of the three main pine species in the Mediterranean Basin, P. 

pinaster, P. halepensis and P. pinea. For this purpose, we compared cone volume, seed 

volume and seed thickness of the three species, and then tested bug preferences in choice 

tests. 
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Methods 

 

Three separated choice experiments using different substrates, cone-bearing branches, 

fresh last year cones and mature seeds, were conducted to evaluate the preference of L. 

occidentalis adults among Pinus pinea, P. pinaster and P. halepensis. All the experiments 

were carried out under laboratory conditions. Only adults of L. occidentalis were used since 

nymphs are apterous and thus not capable of actively choosing the tree or the host where 

they will feed. All individuals came from a permanent laboratory colony with adults collected 

in Santarém region, Portugal during the summer of 2015. The colony was supplemented 

each summer with more adults from the same region to avoid consanguinity thus consisting 

of individuals with mixed ages. The colony was reared at Centro de Estudos Florestais, 

Lisbon, Portugal in a climatic room under the following controlled conditions: 21ºC with 60% 

RH and 14:10 light/dark cycle. Branches and cones from P. pinea were used as food source. 

Trials began by removing experimental adults from the permanent colony and marking 

them with an individually coloured and numbered label painted in the thorax (as seen in 

Fig.2). All marked adults were put in a cage with cone-bearing branches and seeds of the 

three hosts during one week. Individuals were then subjected to a 24-hour starvation period 

after which the trials began. Adults used to replace dead ones were removed from the 

permanent colony, marked but were immediately placed in the cages or test boxes. 

Cone-bearing branches used in trials were collected in different locations for each of the 

pine species: stone pine branches were collected in Monsanto, Lisboa (38º43.09´N; 

09º12.41´W) in a natural pure stand of adult trees; Maritime pine branches were collected 

in Sobreda, Almada (38º38.06´N; 09º12.66´W) in an urban patchy stand; finally, branches 

of Aleppo pine were collected in the university campus, Lisbon (38º72.80´N; 09º12.66´W). 

Cones / seeds used in preference trials were from branches / cones from the same locations 

as above with the exception of stone pine seeds which came from a pure, grafted stand in 

Santarém region, Portugal (39º6.50´N; 08º21.91´W) and Maritime pine seeds in the two-

choice trail which came from Setúbal region, Portugal (38º34.82´N; 09º11.09´W).   

 

 

1. Assessing the differences in size of cones and seeds among the three Mediterranean pine 

species 

The volume of a sample of the cones used in the experiments was measured by 

displacement of water in a graduated cylinder (n=6 for P. pinea and P. pinaster and n=12 

for P. halepensis). 
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Respecting mature seeds, all that were used in preference trials were weighted at the 

beginning and at the end of the experiments. At the end of the trials, all seeds from the 

three pine species were opened, and the volume of the kernels showing no feeding damage 

were measured by displacement of water in a graduated cylinder with a sensitivity of 0.25 

ml. Due to the very small size of P. pinaster and P. halepensis, these seeds were measured 

in batches of 20 seeds and then the individual volume was extrapolated. The thickness of 

the seed coat for each host species was measured on the images collected by the Scanning 

Electron Microscope (SEM) using Image J® software. The coats of three seeds per host 

were photographed in SEM with 20 measures taken in each photo.   

 

2. Branch preference trials 

Choice experiments were conducted in large cages (100x50x40) cm made up of a wooden 

frame and mesh walls. Preference among the three host species, P. pinea, P. pinaster and 

P. halepensis was tested in pairs by offering two potted branches of different plant species 

per cage to ten adults. All branches used in the trials bear cones at all development stages 

(1st and 2nd year for P. pinaster and P. halepensis and 1st, 2nd and 3rd year for P. pinea). The 

number of last-year cones (2nd year for P. pinaster and P. halepensis and 3rd year for P. 

pinea) in the tested branches was the same for the pair P. pinaster - P. pinea (ranging from 

1 to 2 cones each), but not for the pairs P. pinaster - P. halepensis and P. pinea - P. 

halepensis in which the number of P. halepensis cones varied between 2 and 5 due to their 

smaller size. Young conelets (1st cones for P. pinaster and P. halepensis and 1st and 2nd 

cones for P. pinea) varied in number in all three species between 1 and 4. The experiment 

was replicated three times, on 21-22 April, 28-29 April and 5-6 May 2016. Branches for 

each experiment were collected at the end of the afternoon of the day before the start of 

the experiment and kept in the refrigerator until then. Ten adult bugs were assigned to each 

of the three big cages. Cage number 1 had three males and 7 females and cages number 2 

and 3 had four males and 6 females. All adults were individually marked in the thorax with 

a colour and number. The group of insects of each cage remained constant in all three trials 

varying only the host pairs to be tested. Between trials all individuals were kept together in 

a single big cage in the laboratory under controlled conditions and with branches from all 

the three hosts. For each trial, the ten adults were introduced into the cages by placing 

them one by one, within a two minutes interval, at the centre of the cage, between the two 

potted branches. Individual bug’s behaviour and localization was recorded after that, at 1-h 

intervals from 8 a.m. until 6 p.m. for two days.   
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3. Cone preference trials 

Three separate laboratory trials, with 3 to 5 days length each, were conducted from April to 

September 2017, using a video camera BRINNO® TLC200 Pro. In each trial, two video 

cameras each videotaping two plastic boxes (23x20x19) cm simultaneously, were set. Each 

box contained a small branch of P. pinea, a petri dish with wet cotton to keep moisture and 

small aluminium cases filled with sand to place the cone. In this way, the insect was not 

allowed to hide underneath the cones. Similarly as in the branch preference trials, the bugs 

were individually marked with a coloured label (Fig. 2). One cone of P. pinea, one of P. 

pinaster, two of P. halepensis and three adults of L. occidentalis were then added to each 

box. All cones were from last year of development which corresponds to the 3rd year in P. 

pinea and 2nd year in P. pinaster and P. halepensis. Experiments were carried on in a room 

under control conditions (26°C, 60 % RH, 16:8 L:D) from 20-24 April, 2-6 May and 12-14 

September of 2017. The videotaping was done using the time lapse function with one 

picture taken every two minutes, and played back at a speed of one frame per second. 

Videos were analysed with the program VLC media player 2.2.6 Umbrella for windows 

(https://www.videolan.org/vlc/index.html). Both the number of times each bug started 

feeding on a cone (frequencies), and the duration of the feeding was recorded. Feeding was 

assumed to have occurred whenever stylet insertion was observed. 

 

 

4. Testing bug preference for seeds among the three pine species 

Two laboratory trials were carried out to evaluate bug preferences for individual seeds of 

the Mediterranean pines. A two-choice test compared P. pinea and P. pinaster whereas a 

three-choice test included the three species. The first trial lasted three weeks whilst the 

second one lasted four weeks. The experiments were carried out using small plastic boxes 

(20 x 15 x 10) cm with a perforated lid for gas exchange in a climatic chamber under 

controlled conditions (21°C, 60 % RH, 16:8 L:D).  

The two-choice trials were carried out at INRA Orléans, France, and the three-choice one at 

CEF Lisbon, Portugal.  

In the two-choice experiments boxes containing both P. pinea and P. pinaster seeds 

(nseeds=5 and nseeds=12, respectively) were set (nbox =2). No-choice, control experiments 

were conducted using boxes with only P. pinea seeds (nseeds=10 per box; nbox=6) and boxes 

only with P. pinaster seeds (nseeds=24 per box; nbox=2). The experiments were carried out in 

February and March of 2015 with four adults per box.   
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The three-choice experiment was performed during January and February of 2017. Twelve 

boxes, each with ten seeds per pine species, acted as replicates. Each box had three adults.  

All boxes included for water supply and as a substrate for resting and laying eggs, a twig of 

P. nigra in the two-choice and of P. pinea in the three-choice trial. Previous trials using 

boxes have shown that insect mortality increases greatly when there is no fresh twig inside 

(personal observation). The use of different pine species was dependent on conifer 

availability near the laboratory where the experiments took place. In addition to the twig, a 

petri dish with wet cotton to keep moisture and foam to support the seeds were also added 

to each box. Control boxes with no bugs were present in both trials. The sex of the adult 

specimens was not considered since previous studies found no significant differences in the 

consumption of conifer seeds between sexes (Bates et al., 2000, 2002; Lesieur et al., 

2014). Bug mortality was checked every working day, and dead individuals were replaced 

immediately, using the stock available from the permanent colony. All seeds from the two-

choice trial were radiographed before the trial using the HP Faxitron-43855® X-raying 

apparatus and X-ray sensitive films (Kodak® ‘Industrex M’), following the procedures 

described in Roques & Skrzypczyńska (2003) but optimized for the seeds of the pine species 

tested. Seeds from the three-choice trial were X-rayed at the University of Lisbon, Faculty 

of Veterinary using the Philips Practix 300 machine and the constants 45Kv / 25mAs-1. Only 

seeds showing no damage on the X-rays were used in the trials. Each seed was followed 

individually. Kernel consumption was estimated by subtracting the final seed weight from 

the initial. During the trial, seeds were radiographed every week for four weeks to track the 

damage by L. occidentalis. In the end, all seeds were opened manually, and kernels were 

separated into damaged and not damaged. Damaged kernels were photographed using a 

camera Canon 1100 D and their seed coat was carefully analysed under a stereomicroscope 

and a Scanning Electron Microscope (SEM) TM3030Plus Tabletop microscope Hitachi.  

 

5. Statistical analysis 

The size of the mature seeds, the thickness of the seed coat and the volume of the cones all 

had a normal distribution. The analysis was made using a one-way ANOVA, with three levels 

corresponding to the three-host species (P. pinea, P. pinaster and P. halepensis). Post-hoc 

pairwise comparisons were made using the Student-Newman-Keuls (SNK) test. In both the 

cone and branch preference trials we used Generalized Linear Models (GLM) with repeated 

measures (each bug was an individual with repeated observations). To compare frequencies 

among cones and branches, we used GLM with a Poisson distribution, log link function, and 

Wald Chi-Square test. In the branch preference trials, we performed the analysis for the 
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overall data for each pine species combination, pulling the three cages, as well as per cage. 

Finally, we used GLM with normal distribution and log link function to analyse differences in 

the feeding duration time in the cone trials. Again, each bug was considered an individual 

with repeated measures. For the seed preference trials, to compare frequencies among 

seeds, we used GLM with a Poisson distribution, log link function, and Wald Chi-Square test. 

In the two-choice seed trial, we compared:  i) the mean number of seeds consumed 

between choice and non-choice tests for each pine species; ii) the mean number of seeds 

consumed between pine species on both choice and iii) on non-choice tests. In the three-

choice trial, we analysed the differences in the mean number of seeds consumed between 

the three pines species with boxes considered as repeated measures. We further compared 

the seed weight consumed and the percentage of kernel consumed per host and box in both 

seed trials using GLM with normal distribution and log link function. Boxes with no 

consumption were removed from the analysis.  

All statistical analyses were performed using SPSS, version 24.0 (IBM Corp., Armonk, New 

York) with a statistical significance level of 0.05.  

 

Results 

 

1.  Size of seeds and cones and coat thickness  

 

The volume of last-year cones differed significantly among pine species (F=92.38; df=2; 

p<0.001), with the volume of P. pinea cones being two and three times larger than those of 

P. pinaster and P. halepensis, respectively. The weight of mature coated seeds also differed 

significantly among species (F=10387.92; df=2; p<0.001) as well as the kernel volume (F= 

1526.33; df=2; p<0.001), and coat thickness (F= 4681.251; df=2; p<0.001: Table 1). 

Seed kernel was four times larger in P. pinea than in P. pinaster and 13 times larger than in 

P. halepensis. Seed coat thickness was more than three times greater in P. pinea than in P. 

pinaster and 12 times greater than in P. halepensis. The ratio Kernel volume/coat thickness 

(KV:CT) that could be used as a proxy of benefit/cost for the bug showed a higher value in 

P. pinea (Table 1). 
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Table1. Seed and cone average measures (± SE) of the three host species. Different letters within a 
column indicate significant differences between the values per host species after ANOVA tests (p-
value=0.05) followed by SNK test. 

 

Host species 
Cone 

volume (cm
3
) 

Mature seed 
weight (g) 

Kernel volume 
(KV) (mm

3
) 

Coat thickness 
(CT) (mm) 

KV: CT 

P. pinea 90.0 ± 7.6
a
 0.867 ± 0.008

a
 202 ± 17.0

a
 1.438 ± 0.030

a
 140.5 

P. pinaster 43.0 ± 1.7
b
 0.062 ± 0.001

b
 50 ± 11.0

b
 0.380 ± 0.009

b
 131.6 

P. halepensis 27.3 ± 7.7
c
 0.022 ± 0.000

c
 15 ± 1.0

c
 0.117 ± 0.003

c
 128.2 

 

 

2.  Branch preference 

No host preference was detected in either of the three host pine choice combinations on the 

frequencies of visits per bug (P. halepensis x P. pinea: Wald Chi2=2.485, p=0.115; P. 

pinaster x P. pinea: Wald Chi2=0.005, p=0.943; P. halepensis x P. pinaster: Wald 

Chi2=0.008, p=0.927). Overall, 70% of the individuals remained on the same host species 

during the trial period (48h) with the few changes happening on the first day. When each 

cage was consider separately, a significant preference was observed for one branch or the 

other, whereas preferred host species may differ from one trial to the other for the same 

host species combination (Figure 1). 

As a general trend, we observed that the ten individuals from each cage dissociated into 

one or two fix groups in the three trials (Figure 1). The record of the specific place in the 

plant where the adults were revealed that in more than 80% of the observations the insects 

were resting between the needles or on the last year cones, regardless the host. 

 

3. Cone preference 

We found no differences between the three trials and so results were analysed together. 

The adults were observed visiting and feeding more frequently on P. pinea cones in 

comparison with cones from the other two species (visiting: Wald Chi2 =17.42; p<0.001; 

feeding: Wald Chi2 =15.31; p<0.001). Per feeding meal, the adults also spent more time 

feeding on P. pinea cones in comparison with other cones (Wald Chi2 =12.05; p=0.002) 

(Table 2). 
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Figure 1. Branch preference trials. Bugs distribution per host in each cage and for each host pair 
comparison in the preference trials using potted branches. Numbers with asterisk on the x axis 

correspond to male bugs. The absence of bars means that individuals were never observed on the 
branches during the trial, but remained on the floor or on the walls of the cage. 

 

 

Table 2. Bug behaviour averages (± SE) in the cone preference trials. Different letters within a 

column indicate significant differences between the values per host species after GLM tests (p-
value=0.05). 

 

Host species 
Visiting 

frequency 
Feeding 

frequency 
Time spent per feeding 

meal (minutes) 

P. pinea 13.4 ± 4.2
a
 5.5 ± 1.2

a
 131.9 ± 25.9

a
 

P. pinaster 5.1 ± 1.2
b
 2.0 ± 0.6

b
 53.2 ± 12.0

b
 

P. halepensis 3.7 ± 1.5
b
 1.1 ± 0.5

b
 62.5 ± 13.3

b
 

 

p=0.8

89 
p=0.4

00 
p=0.04

0 

p=0.5

88 
p=0.0

73 
p=0.1

89 

p<0.0

01 
p<0.0

01 
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4. Seed preference trials 

 

4.1 Bug preference between seeds of P. pinea and P. pinaster  

For four weeks, the four individuals always ate two, out of ten, seeds of P. pinea per box, 

either if it was offered alone (non-choice tests) or mixed with P. pinaster seeds (choice 

tests) (Table 3). Conversely, when adults fed on P. pinaster alone, the number of seeds 

consumed was on average 5.5 ± 1.7, which was higher than the P. pinaster seeds 

consumed in choice tests, 0.5 ± 0.5 (Wald Chi2=5.271, df=1, p=0.022). Considering non-

choice tests alone, the number of P. pinaster seeds was significantly higher than those of P. 

pinea (Wald Chi2=4.74, df=1, p=0.029).  Nevertheless, the consumption of seeds 

expressed on kernel weight consumed was higher on P. pinea than P. pinaster both on the 

choice test (Wald Chi2=6.800, df=1, p=0.009) and non-choice test (Wald Chi2=25.450, 

df=1, p<0.001). 

 

4.2 Testing bug preference among seeds of P. pinea, P. pinaster, and P. halepensis 

Seed consumption was observed on eight out of the 12 boxes (Figure 2). On these boxes 

overall, there were no significant differences in the number of seeds consumed between 

species (Wald Chi2=0.011, df=2, p=0.995) (Table 3). The total number of seeds consumed 

was 15, 16 and 15, respectively for P. pinea, P. pinaster, and P. halepensis. However, when 

considered the weight of the seed kernel eaten by the adults, we found significant 

differences among pine seeds (Wald Chi2=117.632, df=2, p<0.001). On average the bugs 

ate more P. pinea seed kernel than the two other species (p<0.001) which, in turn, had no 

difference between them (p=0.726). When analysing the consumption in terms of the 

percentage of consumed kernel per host in each box and trial differences were obtained in 

both two and three-choice trial (Wald Chi2=1002.485 df=1, p<0.001, Wald Chi2=15.625, 

df=2, p<0.001, respectively). The adults consumed a higher percentage of P. pinea kernels 

that the other two hosts (p<0.001 for both comparisons) (Table 3).  
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Figure 2. Seed three-choice trial. A sample of seeds consumed by L. occidentalis on the three-choice 

trial. Each row corresponds to a different host pine: (from top to bottom) P. pinea, P. pinaster and P. 
halepensis, with seeds arranged in each row from the less (left) to the more damaged (right). 
Photographs taken by Canon 1100 D. The marks on the scale correspond to 1mm. (Photos were taken 
by Charlene Durpoix). 

 

Table 3.  Seed consumption in choice and non-choice trials. Average number (± SE) of consumed 
seeds per box, kernel weight consumed per box and bug and percentage of the kernel that was 
consumed in each of the seed preference trials. Different letters within a trial indicate significant 
differences between the values per host species after GLM tests (p-value=0.05). 

 

Type of trial Host (s) 
Seeds 
(total) 

number of seeds 
consumed 

kernel consumed 
(mg) 

kernel consumed 
(%) 

two-choice 
P.pinea 5 2.0 ± 0.0 11.71± 2.53

a
 97.12 ± 15.01

a
 

P. pinaster 12 0.5 ± 0.5 1.28 ± 3.58
b
 5.77 ± 21.23

b
 

non-choice 
P. pinea 10 2.5 ± 0.7 21.03± 2.21 - 

P. pinaster 24 5.5 ± 1.7 4.13 ± 2.12 - 

three-choice 

P. pinea 10 2.7 ± 1.2 23.91 ± 1.40
a
 92.30 ± 10.62

a
 

P. pinaster 10 3.0 ± 1.8 3.69 ± 1.76
b
 29.14 ± 10.61

b
 

P. halepensis 10 5.3 ± 2.7 4.51 ± 1.55
b
 39.73 ± 12.26

b
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Discussion 

 

The impact of an invasive species must be assessed at different levels from the individual to 

the ecosystem processes level (Parker et al., 1999). The seed feeder, L. occidentalis is 

classified as having a negative impact to the native biodiversity at the individual level 

(herbivory, predation, competition, disease transmission) and, in addition, a negative 

economic impact (Rabitsch, 2008). Indeed, the presence of the bug in the Mediterranean 

Basin is a severe threat to the Mediterranean pine nut production as very relevant non wood 

forest product (Roversi, 2009; Calama et al., 2016, 2017; Mutke et al., 2017) by causing 

direct damage to cones and seeds and as putative vector of the fungus Diploidia pinea 

(Luchi et al., 2012; Tamburini et al., 2012). Here we tested the preference of the bug on 

the three main lowland conifer species in the Mediterranean Basin region, P. pinea, P. 

pinaster and P. halepensis at three levels of selection: branch, cone, and mature seed. 

These three pine species significantly differ in the shape of the tree silhouette and also in 

the cone size, seed size, and seed coat thickness. Cues behind tree selection by cone 

feeders may be related to these morphology traits (Turgeon et al., 1994), but also to 

chemical factors which are indicators of the tree nutritional quality or of its level of chemical 

defence (Schultz, 1988). In fact, there are two predominant hypotheses for the process of 

host selection by insects: first, that an increased abundance of insects is explained by 

increased plant vigor (Plant Vigor Hypotheses: Price, 1991), or secondly, that it is explained 

by increased plant stress (Plant Stress Hypotheses: White, 1969). Studies on how 

herbivores select the host plant reported responses according to the theory of plant vigor 

(Moran & Whitham, 1988; Waring & Price, 1988; Kimberling et al., 1990; Mopper & 

Whitham, 1992; Hull-Sanders & Eubanks, 2005; Mitchell, 2006), plant stress (Bjorkman et 

al., 1991, Rappaport & Wood, 1994; Cobb et al., 1997; Virtanen & Neuvonen, 1999) or 

even both simultaneously (Fernandes, 1992; Pérez-Contreras et al., 2008) depending on 

the insect species, its trophic sub-guild (e.g. herbivores that feed on growing plant parts 

seems more likely to attack vigorous plants (Price, 1991; White, 1993) or even on the type 

of experiment (Waring & Cobb (1992), in a review found that on observational studies, 

White’s theory was prevalent whilst on experimental studies was the vigor hypothesis). 

Under natural conditions, L. occidentalis has been shown to select a host in a multi-level 

process. At first, the bug selects a tree, then a cone and finally a seed where to feed upon 

(Blatt, 1997). Regarding the selection of the tree, the bug tends to select vigorous trees, 

i.e. denser canopies and longer needles, (Farinha et al., 2018b) bearing moderate crops 
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because it is usually a sign of having larger cones and therefore larger seeds (Blatt, 1997; 

Blatt & Borden, 1999; Richardson et al., 2017).  

With all that has been said in mind, we hypothesized that branch selection by this bug, a 

polyphagous insect that feeds on growing plant parts, should rely mostly on vigour (e.g., 

increased resources, higher food quality, and lack of induced defensive compounds) and 

cone size and not so much on plant species and their chemical profiles. 

 

In our experimental trials using potted branches with cones, the seed bug showed no clear 

preference between the three host species but rather a preference for one of the two 

branches on each trial. The plant vigour hypothesis (Price, 1991) for the selection of the 

host may explain this result. The vigour of the chosen branch (e.g. nutritional state, 

morphology) and the size of the cones on the branch may have been more critical for a 

polyphagous insect like L. occidentalis than the species of the host plant. Although, we 

choose branches with similar size, with no signs of diseases and always bearing cones of all 

ages, yet differences on the number of cones and on its physiological status (e.g. nutritional 

quality, allelochemicals) might have caused differences between host species and between 

trials. Furthermore, since branches came from different locations and trees, there could be 

both a tree and site effects. 

Preference studies on a related species, L. phyllopus (L.), which is also polyphagous, have 

evidenced that nutritional and host quality issues (wild vs cultivated plants) are more 

determinant in host plant selection rather than plant species (Mitchell, 2006). A study of L. 

occidentalis impact in a P. pinea plantation, also revealed higher bug damage on irrigated 

and fertilized trees than on control ones, showing a bug preference for high vigour trees 

(denser canopies, greater needles) (Farinha et al., 2018b). 

The branch preference trial also revealed an overall trend for L. occidentalis to form two 

groups of individuals per cage, one in each plant. In general, the composition of the two 

groups remained similar in each cage in all three trials. During the time between trials, all 

insects (n=30, 10 from each cage) were placed together in a single cage but when they 

were replaced one by one again in the test cage they regrouped in the same way as in the 

very first trial. Furthermore, once the individuals had chosen one of the plants, they 

remained there, in 70% of the cases, throughout the experiment. Group dynamics and not 

an individual host selection is, thus, a more suitable explanation for the results obtained. 

The gregarious behaviour of this insect has already been proposed by other authors 

(Koerber, 1963; Mitchell, 2006).  

 

https://en.wikipedia.org/wiki/Carl_Linnaeus
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Preference for a host species was further tested exposing cones to adults in trials using 

video cameras. The use of video recording can be very informative on the insect preference 

because it allows capturing the behaviour of the insect continuously. Moreover, the use of 

cameras with time lapse mode made it possible to process all data since it condenses 

several days of filming in movies of few minutes. So, by tracking the feeding behaviour, a 

clear bug preference could be observed for visiting and feeding on P. pinea cones. 

Furthermore, the individuals spent twice more time feeding, by each feeding meal, on this 

host species than on the other two species. A higher reward per seed would probably keep 

insects feeding longer times. It has also to be noted that the seed coats were not yet totally 

hardened inside cones because we used last year cones collected in the spring. Under 

natural conditions, the larger cones of P. pinea could be more attractive since visual stimuli 

are important to this bug in the process of host selection (Blatt & Borden 1999; Richardson 

et al., 2017). The higher reward value may further benefit the performance of L. 

occidentalis, when feeding on P. pinea seeds, namely through a higher survival rate and 

faster development, as indicated by Ponce et al. (2017). Bernays & Minkenberg (1997) in 

an experimental study with seven polyphagous insects (four Lepidoptera and two 

Hemiptera) came to the conclusion that it is the greater resource availability rather than the 

nutritional enhancement or differences in allelochemicals among host species that resulted 

in a higher performance (survivorship, gain in mass and fecundity). We assume that in our 

cone preference experiments, the larger cones of stone pine represent a greater resource 

availability comparing to the other hosts.  

 

In respect to seed trials, no clear preference between mature seeds of P. pinea, P. pinaster 

and P. halepensis was observed if we compare the number of seeds consumed. However, P. 

pinea kernels are much larger than the others. Furthermore, it has been shown that the 

same insect feeds several times on the same seed and that different insects may also feed 

on that same seed by sharing the feeding hole (from video recording observations, data not 

showed) (Farinha et al., 2018a). Therefore, the mass or the percentage of kernel consumed 

is a better indicator of the real consumption by the individuals. When considering kernel 

consumption, P. pinea emerges as the most consumed host species in all trials. When 

expressed in percentage of consumed kernel per host species and per box, L. occidentalis 

consumed about 97% and 92% of P. pinea kernels in two-choice and three-choice tests, 

respectively.  

 

Other preference study at the seed level showed that L. occidentalis appeared capable of 

differentiating a viable seed from one infested by chalcid, Megastigmus spermotrophus 
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(Hymenoptera: Torymidae), discarding the latter (Blatt, 1997). However, since all the seeds 

used in our trial were first radiographed and only the healthy ones were used, we 

hypothesize that feeding onset in a given seed might be random or visually determinate. 

After first opening a hole on the seed, feeding activity would be concentrated on that seed, 

which in the case of P. pinea seeds would satiate longer, further requiring less number of 

consumed seeds per bug. Also, bigger seeds may result in higher nutrients income in 

shorter periods which optimize the feeding. This result becomes evident when we compare 

P. pinea and P. pinaster kernel consumption in non-choice tests (over 5 times more mass 

consumed in boxes with P. pinea seeds) (Table 2). In another preference trial using mature 

seeds, Lesieur et al. (2014) found no difference between host species. Still, in that study, 

the size of the seeds did not differ so much among tested host species. 

Despite the larger size of P. pinea seeds, which constitute a more significant reward, the 

seed coat implies a higher cost, being three and twelve times thicker than that of P. 

pinaster and P. halepensis, respectively. Even so, a benefit/cost analysis pointed to P. pinea 

seeds as being more advantageous. Feeding behaviour videos show that drilling a hole in P. 

pinea seeds can take more than 8 hours to complete (unpublished data) but then the 

benefit is high and, most importantly, it is shared by the remaining insects of the box as 

other bugs use the same hole to feed. We should note that, although easy to replicate 

under laboratory conditions, host selection trials resourcing to mature seeds have a limited 

ecological significance because the seeds, enclosed within the cones, are not subjected to 

selection in natural conditions. 

 

Conclusions 

 

In spring or early summer, depending on the climatic conditions, this insect becomes active 

and begins to search for a site with coniferous where to feed and reproduce. No data can be 

found on the bug behaviour when leaving its winter shelter except for an inconclusive study 

by Richardson (2013) in Lodgepole pine seed orchards for two consecutive years. Does it 

return to the same place as the year before or disperse elsewhere? How does it select the 

site to colonize? Is there any host preference at this moment?  

 

Among the three main pine species in the Mediterranean Basin, P. pinea, P. pinaster and P. 

halepensis, our results support evidence that the cones and seeds of P. pinea are highly 

rewarding for L. occidentalis. From a nutritional point of view, we may then expect that P. 

pinea trees and plantations may favour L. occidentalis population growth. Whereas in seeds 
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and cones there was always a preference trend for P. pinea, no clear preference for host 

species was detected when we used potted branches.  

It must be highlighted that the quality of the host plant rather than the species, and the 

aggregation behaviour of this bug are important factors to take into account when designing 

the methodology of future host preference studies. Furthermore, larger scale trials are 

required. The population dynamics of this insect must be a priority research topic. No 

management plan will succeed without understanding which factors influence the 

distribution and abundance of this pest, including the availability of, and its performance on, 

different hosts. 
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Abstract 

 

The uncertainty surrounding the part played by an invasive North American seed bug, 

Leptoglossus occidentalis, in the observed decrease in seed production of the Mediterranean 

pine, Pinus pinea, is a limiting factor for its management. Furthermore, the possibility of 

increasing cone production through irrigation and fertilization regimes is gaining interest 

among landowners, but its effects on insect pests are still unknown. 

Using bagged branches in the field, we aimed at evaluating the impact of L. occidentalis on 

young and mature cones of Stone pine trees submitted to fertirrigation (FR) compared to 

trees with no treatment (C). For two consecutive years (2015 and 2016), we carried out 

both an insect-exclusion trial and an insect-bagged trial. In the first one, polyester-covered 

branches, excluding insects, were compared to branches exposed to natural insect 

infestation. In the second trial, bags included either two adult bugs or 3-4 third-instar 

nymphs, placed there for one month during mid-summer, or were kept without insects. 

Branch protection resulted in a significant decrease in the mortality of second-year conelets 

which dropped to 6% compared to 30% in exposed branches. Seed damage also decreased 

from 60% on exposed branches to 10% on protected ones. The presence of nymphs in the 

bags resulted in a mortality of second-year conelets 63% higher than in exclusion bags, 

whereas adults had no effect. In contrast, bags with adults presented the highest seed 

Brief introduction to the chapter 

This chapter corresponds to part of the field experiments that I conducted during this thesis. By 

working at a seed orchard of Stone pine trees under different managment regimes I could evaluate 

two important aspects: the effect of different tree management regimes on the damage by biotic 

agents and by L. occidentalis and also the impact of L. occidentalis on young and matured cones 

instead of matured seeds (chapter 3). Thus, this chapter is not only about tree managment vs 

insect damage but it also presents an estimate of L. occidentalis damage in field conditions. Results 

from chapter 3 respecting the characterization of damage on seeds that can be assigned to this 

bug were crucial to further estimate the damage on this field trial. 
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damage. The partial damage of the kernel can be a signature of L. occidentalis feeding since 

such damage was not observed in exclusion bags. Additionally, another type of seed 

damage, showing a wholly shrunken and dry embryo without remaining endosperm, and a 

reduction in the number of extractable seeds may also be attributed to this seed bug. 

Overall, seed damage per mature cone reached up to 12% in bags with two adult bugs 

enclosed for a month, i.e., twice the seed damage in protected cones. Overall, FR trees 

were more susceptible to both conelet mortality and seed damage. In the particular case of 

L. occidentalis, FR regime influenced the consumption positively by the nymphs but not by 

adults.  

 

Keywords: seed damage, conelet abortion, orchard management, seed feeder 

 

Introduction 

 

Since its introduction in Europe in 1999, the invasive insect pest Western Conifer Seed Bug, 

Leptoglossus occidentalis Heidemann, (Hemiptera: Coreidae), has been gaining increasing 

attention by the Mediterranean Basin countries. This interest is mainly due to the putative 

impact of L. occidentalis on the edible, and of high commercial value seed of the Stone Pine, 

Pinus pinea L. with current retail prices that can exceed 100 euros/Kg (Mutke et al., 2014). 

The tree species, P. pinea, commonly known as Stone pine or Umbrella pine, is native to the 

Mediterranean region (Costa et al., 2008). Cones of this species have a 3-yr reproductive 

development cycle, which begins with the burst of the female strobili (conelet) in the spring 

of the first year, with wind pollination occurring a few weeks after that. Strobili fertilization, 

however, takes place only in the spring/summer of the third and last year of cone 

maturation when the nutritious edible seeds are thus formed (Valdiviesso et al., 2017). The 

total area of P. pinea represents now nearly 1 million hectares in the Mediterranean Basin 

resulting from new plantations during the last decades (Mutke & Calama, 2016). Great 

investigation efforts have been made to disentangle the drivers of cone production. 

Irrigation and fertilization, for example, are becoming a common practice in young 

plantations aiming to increase the number and weight of the harvested cones (Calama et 

al., 2007; Montero et al., 2004).  

Several countries recently report a significant decrease in cone production per hectare and 

substantial cone yield losses (percentage of commercial kernels per kg of the fresh cone) 

(Mutke et al., 2005, 2014; Mutke & Calama, 2016). Biotic factors like the invasive L. 

occidentalis have been pointed out as most plausive cause (Bracalini et al., 2013; Mutke & 

Calama,  2016; Parlak, 2017; Roversi et al., 2009) although climate change is also often 
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referred (Calama et al., 2011; Mutke et al., 2005). This bug can damage the seeds of P. 

pinea last-year cones (Bracalini et al., 2015; Calama et al., 2017; Elvira-Recuenco et al., 

2016; Farinha et al., 2018). First-year and second-year conelets although without 

developed seeds are also susceptible to be fed upon by L. occidentalis (Mutke et al., 2014; 

Parlak, 2017). 

Assigning damage to this bug is not as easy as no visible external signs of feeding can be 

detected in cones where the bug pierced. Antibody (Lait et al., 2001) and DNA techniques 

(Bracalini et al., 2015) were able to track seeds fed by L. occidentalis although limited by 

the time that has elapsed since the feeding and also by the high costs associated which 

makes these techniques not expeditious.  

The slow maturation process of the cones means that the same cone may be exposed to the 

insects for two to three years, resulting in an accumulation of damage which is difficult to 

track. This fact, along with the asymptomatic damage, makes the task of assessing the 

impact of the bug extremely difficult. One alternative to characterize and quantify the 

damage by L. occidentalis is force-feeding mature seeds under controlled laboratory 

conditions (Bates et al., 2000; Farinha et al., 2018; Koerber, 1963; Lesieur et al., 2014). 

However, extrapolating these results to the natural environment where live conelets and 

cones are the primary food source becomes a questionable exercise. Another relevant 

setback is the absence of specific traps able to capture the insect and estimate its density in 

the field. This methodological limitation makes it difficult to correlate the damage found on 

cones with the natural insect density and distribution. In fact, up to the present, it has 

never been demonstrated that the current increase in damage to P. pinea cones and seeds 

reported by several Mediterranean countries is directly attributed to an increase in the 

population of L. occidentalis.  

In an attempt to overcome these limitations, and to obtain a field assessment of bug 

damage, several studies used branches bearing cones covered by bags, into which insects 

were then either added (Bates et al., 2001, 2002a, 2002b; Connelly & Schowalter, 1991; 

Lesieur et al., 2014; Schowalter & Sexton, 1990; Strong et al., 2001; Strong, 2006;) or 

excluded (Blatt & Borden, 1996; Elvira-Recuenco et al., 2016; Strong, 2016). Variables 

such as the host species, the period and duration of the experiments as well as the density 

of the insect inside the bags vary significantly between studies. Pinus contorta Douglas and 

Pseudotsuga menziesii (Mirb.) Franco are the most referenced hosts which comes from 

most publications being from the North American continent where these species are of 

relevant importance, especially in seed orchards (Bates et al., 2001, 2002a, 2002b; Blatt & 

Borden, 1996; Lesieur et al., 2014; Schowalter & Sexton, 1990; Strong et al., 2001; 

Strong, 2006, 2016). Regrettably, the reported damages caused by L. occidentalis on these 
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two hosts vary greatly depending on the experimental and local conditions (Bates et al., 

2001, 2002a, 2002b; Blatt & Borden, 1996; Lesieur et al., 2014; Schowalter & Sexton, 

1990; Strong et al., 2001; Strong, 2006, 2016;) making it difficult to compare impact 

estimates or even extrapolate damages between different hosts.  

In Europe, publications on L. occidentalis are mostly from the Mediterranean Basin countries 

and are essentially concerning P. pinea (Bracalini et al., 2015; Calama et al., 2017; Farinha 

et al., 2018; Mutke & Calama, 2016). Lesieur et al. (2014) however, provided a typology of 

seed bug damage on many European conifers, but the study did not include P. pinea. 

Moreover, accurate quantification of seed bug damage on P. pinea is not yet available 

(Kenis et al., 2017).  

There is also a lack of knowledge on how tree growing conditions will influence tree 

susceptibility to the bug. In fact, site productivity is one of the critical factors influencing the 

colonization and establishment of insect pests in a specific area (Liebhold & Tobin, 2008). It 

is known, for example, that changes in water and nutrient availability affect not only the 

plant productivity but also its susceptibility to herbivores (Ayres, 1993; Moon & Stiling, 

2000; Netherer & Schopf, 2010; Rusch et al., 2010). For many invertebrate herbivores it 

has been demonstrated they could discriminate, for the same host species, plants of high 

nutritional quality from those of low quality (Awmack & Leather, 2002; Firempong & 

Zalucki, 1989; Kareiva, 1982; Santiago Lastra et al., 2006). 

The pine, P. pinea, is known to be quite resistant to drought. Nonetheless, trees growing in 

arid sites tend to show a lower leaf area index and lower cone production than trees 

growing with irrigation (Bono & Aletà, 2013; Calama et al., 2007, 2011; Correia et al., 

2017; Loewe-Muñoz et al., 2016; Mutke et al., 2005).  

Concerning fertilization, nitrogen (N) is the most widely used fertilizer (Chen at al., 2010). 

The increase in N availability can enhance host attractiveness to an herbivore-insect by 

altering herbivore-induced plant volatiles (Holopainen & Gershenzon, 2010; Saha et al., 

2012) or by modifying the plant structure (Chen at al., 2010).  

The expansion of P. pinea orchards for cone production using irrigation and fertilization 

(Calama et al., 2007; Loewe et al., 2017; Mutke, 2017b) are excellent opportunities to 

study plant-insect interactions related to the tree vulnerability status.  

Thus, in this work we had two main objectives: i) characterization and assessment of  L. 

occidentalis impact on cone and seeds of P. pinea under natural conditions, using branches 

covered with mesh insect-exclusion bags and ii) analyze the effect of tree fertirrigation in L. 

occidentalis feeding activity.  



Chapter 5 – Stone pine management and seed feeder impact 

 

Page 104 of 164 

 

This study allows us to isolate the type of damage caused by L. occidentalis feeding on 

mature seeds of P. pinea during part of its active period, which is essential to the future 

development of impact quantification methodologies related with this bug.  

 

Methods 

 

1.  Study site and management protocols 

 

The study site is located in Coruche, in center Portugal, in a ten years old pure P. pinea 

stand grafted at the age of four. The climate is Mediterranean with a cold and moist winter 

and dry and hot summers, with annual precipitation of 641 mm and a mean annual 

temperature of 15.1ºC. Within site, an area of 3 ha was selected and eight randomized 

plots, corresponding to 2 treatments with four repetitions each, were installed during the 

summer of 2014. The two plot treatments were Control (C) and Fertirrigation (FR). Each 

plot comprehends 15 to 21 trees spaced by 3 x 8 m. FR trees were irrigated with diluted 

fertilizer (40 kg N*ha-1) every day from March until June. The trees were also irrigated for 

3.5 hours during October of both years. Besides the natural precipitation occurring each 

year, this irrigation regime corresponded to an additional water input to the system of 

approximately 400 mm ha-1 year-1.  

Climatic data were obtained from a local meteorological station on site. The year of 2015 

was a dry year, totaling 315 mm of precipitation from January to December and with an 

unusually dry spring. In 2016, total precipitation was above the annual average (529 mm). 

Regarding air temperature, August 2016 was particularly warm with 17 days with maximum 

temperatures above 35°C contrasting with only four days observed in 2015. No rain events 

were recorded during August 2016 and in 2015 only rained 3mm. August corresponds to the 

insect trial establishment in the field. 

 

 

2.  Tree physiological traits 

 

Trees from the C and FR treatments were characterized by their ecophysiological traits 

regarding leaf and crown structure during the two years of the experiment. For that, we 

selected harvested trees from both treatments for component biomass separation and 

weighing. All the aboveground components were then separated and weight according to 

the methodology described in Correia et al. (2010). The total tree needle area, used as an 

indicator of the primary photosynthetic production, was calculated using the tree needle 
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biomass and an average of the specific needle area by age cohort. For the needles’ 

morphological characterization, we randomly selected one branch from each node. A sample 

of current year needles (2015 and 2016) was collected in each branch, scanned in a flatbed 

scanner and analyzed with Winseedle software (Regent Instruments Inc.) for the needles’ 

length and projected area calculations. The needles were then oven dried and, together with 

the needles’ projected area, used for specific needle area calculations. 

 

3.  Cone and seed production 

 

All mature cones (third-year cones) in the sampled branches of the field trials were 

harvested in the winter of the sampled year (November/December), dried in the laboratory 

(at 45ºC until opening) and weighted. We then evaluated the average weight of cones and 

number of seeds per cone. The average number of cones per tree in each year and plot 

treatment was estimated using all trees from the site (n=246).   

 

4.  Field trials  

 

The experiment occurred during two consecutive years: 2015 and 2016. Ten trees from 

each treatment, C, and FR, bearing at least six branches with second and third-year cones 

simultaneously, were randomly selected each year. Two trials were conducted on the same 

trees: i) an exclusion trial and ii) a bagged insect trial.    

Branches bearing second year and third-year cones were selected for both trials. Bagged 

branches were enclosed from the base of the fork to the tip within a mesh of 0.5 mm, about 

50-90 cm long depending on the branch length, leaving room for it to grow. All bags had an 

inner wire structure to keep the cones away from the bag walls thus preventing insects from 

outside from feeding on the cones, and also to provide more space for the insects in the 

case of the bagged insect trial. In both trials, bags were set up in April, before the 

emergence of the overwintering adult bugs, and removed in December of the same year, 

when the third-year cones were collected. 

All second-year conelets and third-year cones present on the selected branches were 

counted in spring and their mortality assessed by December of the same year. Conelets of 

the second-year were considered dead when they appeared dried or if they broke easily 

when touched. Last year cones were classified as dead when more than 1/3 of the scales 

were damaged thereby making them non-marketable. Conelets of the first-year were not 

followed because by the time the bags were set up they were not formed yet.  
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Mature cones (third-year cones) were opened after drying and the number of seeds 

counted. Seed health status was then evaluated using X-ray (Philips Practix 300) and by a 

manual opening. Seed kernels were counted and separated into the four following 

categories:  i) apparently sound (kernel intact); ii) kernel partially damaged /with a 

different colour /serous appearance (named as “damage type I”); iii) completely shrunken 

and dry embryo with no endosperm (named as “damage type II”); and, iv) empty shell 

without embryo (named as “damage type III”). This classification follows Calama et al. 

(2017), but we changed the description of type I damage by type II, and vice versa, 

because it seemed to be more evident to consider an increasing level of damage (Figure 1).    

 

                                

        Figure 1. Damage categories of P. pinea kernels. Bar corresponds to 1 cm.  

4.1 Exclusion trial 

  

Branches enclosed by bags were set up in April, in two consecutive years, 2015 and 2016 

(Figure 2). Simultaneously 2-3 branches on the same trees were marked with a rubber ring 

and left exposed throughout the year. Chosen branches were preferably from the same and 

most recent fork of the tree to minimize variations of abiotic factors such as solar 

exposition, wind or humidity. The exclusion trial tested the effect of the protection of the 

cones of P. pinea from April until December in comparison with exposed ones.  

Two bags were removed from the analysis, one from each treatment, FR, and C, 

respectively, because they were found unsealed at the time of removal. Also, three exposed 

cones from FR were removed from the analysis for presenting symptoms of Diploidia pinea. 

 

4.2 Bagged insect trial  

To determine the number of insects to use inside bags we conducted a pilot study in 2014 

aiming to estimate the density of L. occidentalis in the experimental site. Monthly 

observations were carried out spending, at least, 3 minutes in each tree (n=20), observing 

all cones and tree crown. This pilot study showed a maximum average density of 1.6 
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bugs/tree during July-August. Taking into account that visual monitoring techniques may 

underestimate real insect density (Richardson, 2013) we rounded the ratio obtained by 

excess, and we use it by branch rather than by tree. Therefore, in each bagged branch with 

insects, either two adults, one male and one female, or 3 to 4 nymphs, were added to 

simulate a high natural impact.  

Three types of bags were randomly assigned to three cone-bearing branches: Adults (bag 

with one couple), Nymphs (bag with 3-4 nymphs of third-instar) and Exclusion bag (a 

branch with a bag but without insects).  

Insects were placed inside the bags at the beginning of August and removed after four 

weeks (Figure 2). All bugs used in one year were from the F1 generation of wild adults 

captured in May /June of that same year and kept in the laboratory under natural 

temperature and photoperiod. Bags were monitored twice a month. Any dead or missing 

individuals were replaced whenever possible with other F1 individuals from the lab colony.  

The bagged insect trial tested the effect of the bugs on P. pinea for one month (August). 

From March till December, these branches remained covered by the exclusion bags. Data 

were compared with exclusion bags with no bugs. 

One bag with nymphs from a C tree was removed from the analysis because it was found 

with a hole at the time of removal.  

 

Figure 2. Field trials. The top diagram concerns field trials methodology: shade corresponds to the 
time during which the sampled branches were covered with bags (Exclusion trial), and the insect 
represents the time when the adults and nymphs of L. occidentalis were placed inside sampled bags 

(Bagged insect trial). The bottom table shows the number of branches and cones sampled by 
treatment and year. 
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5. Statistical analysis 

 

To examine the differences among the ecophysiological traits, we used a two-way ANOVA: 

factors were tree treatment (2 levels, FR and C) and year (2 levels, 2015 and 2016). Tested 

variables were the needle's maximum length and the total leaf area following Normal 

Distribution. Post-hoc pairwise comparisons were performed using the Student-Newman-

Keuls Method. 

For the differences on the cone and seed production between the two plot treatments, C 

and FR, and years, the t-student test or the Mann-Whitney test was used whenever 

normality of the data was not accomplished. Tested variables were the number of cones per 

tree, the cone weight and the number of seeds per cone.  

For both the exclusion trial and the bagged insect trial, statistical analysis was performed 

using generalized linear models (GLM) with a Binomial distribution or Negative Binomial 

distribution, according to the variable distribution and a link model binary probit. The 

following variables were analyzed: i) mortality of second-year conelets; ii) proportion of 

seeds from mature cones with total damage and proportion of seeds with damage type I 

and II, and iii) number of extractable seeds per cone. Type III damage were rare and 

analyzed with Man-Whitney test. Tested factors were the plot treatment and type of bag 

and its interaction. A separate analysis was done to test the factor year. The Wald Chi-

Square (W Chi2) was used to test the effect of the factors in the model. Post-hoc pairwise 

comparisons were performed with the Least Significant Difference (LSD) test between all 

pairs of groups.  

All statistical analyses were performed using SPSS, version 24.0 (IBM Corp., Armonk, New 

York) with a statistical significance level of 0.05. 

 

Results 

 

1. Tree physiological traits 

Trees from FR plots presented longer needles and a higher total leaf area in both years.  FR 

trees showed better vegetative growth conditions when compared with C trees (Table 1). 

Trees from control group also exhibited better vegetative physiological parameters in 2016 

than in 2015 (Table 1). 
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Year 
Tree 

treatment 

Needles maximum 

length (cm) 

Total leaf area 

(m2) 

2015 C 10.4 ± 0.6 a 31.6 ± 2.9 a 

FR 15.6 ± 0.6 b 55.2 ± 5.5 b 

2016 C 14.2 ± 0.6 b 40.3 ± 3.7 ab 

FR 15.5 ± 0.4 b 57.3 ± 5.7 b 

 

Table 1 - Leaf and canopy characteristics in the Control (C) and Fertirrigated plots (FR) by treatment 

and year (average ± standard error). Differences between average values for each tree characteristic 
are indicated by different letters.  

 

2. Cone and seed production  

A total of 237 last year cones were harvested in the two years with all seeds inside (20 849) 

being checked and categorized. In 2015, the overall average cone fresh weight was lower 

than in 2016, and no significant differences were found between C and FR trees in this first 

sampled year. By contrast, in 2016 cones from C trees were significantly heavier than cones 

from FR trees (Table 2). The number of seeds per cone did not differ between the two plot 

treatments in each year, but differences were found between the years. The heavier cones 

in 2016 lead to a significantly higher number of seeds per cone in that year (Table 2).  

In respect to the number of cones per tree, it did not differ significantly between treatments 

or years although in 2016 a higher number of cones was observed in FR trees (Table 2).  

 

 

Year 
Tree 

treatment 

Fresh weight 

per cone (g) 

Number of 

cones per tree 

Number of 

seeds per cone 

2015 C 249.4 ± 11.1 a 3.6 ± 2.7  68.1 ± 4.3 a 

FR 254.48± 13.2 a 2.6 ± 1.2  76.5 ± 3.7 a 

2016 C 361.2 ± 11.7 b 6.2 ± 3.2  99.9 ± 4.1 b 

FR 310.0 ± 8.7 c 12.4 ± 6.1  95.9 ± 6.1 b 

 

 
Table 2 - Characterization of the site trees and cones regarding production (average ± standard 
error) in control (C) and in fertirrigated (FR) plots. Differences between averages in each column are 
indicated by different letters.  
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3. Field trials 

3.1 Exclusion trial  

 

Cone mortality 

 

In both years of experiment, the branches exposed to natural infestation presented 

mortality of second-year conelets almost six times higher than the protected ones (W Chi2= 

51.246; df =1, p<0.001) (Figure 3A). Furthermore, mortality was higher in 2015 compared 

to 2016, regardless of plot treatment (W Chi2= 13.730; df =3, p=0.003). Overall mortality 

of young conelets was higher in FR trees than in C (W Chi2= 4.531; df =1, p=0.033). 

However, in pairwise comparisons, this difference was only significant in the exposed 

branches (p=0.047) (Figure 3B). 

Mortality of mature cones (third-year cones) happened only in 2015 on exposed branches, 

still corresponding uniquely to 4.3% (n=6) of all exposed cones collected (n=137). 

Accordingly, the year and the type of bag influenced the mortality of last year cones (W 

Chi2=36.736, df =1, p<0.001 and W Chi2=5.089, df=1, p=0.024, respectively). 

 

 

Figure 3. Mortality (± SE) of second-year conelets per year (A) and per plot treatment (B) in the 
protected and exposed branches of the exclusion trial. C- Control trees; FR – fertirrigated trees. 
Whenever there are significant differences (P<0.05) between years (A) or between treatments (B) 
they are indicated by different letters.  

 
 

Seed damage 

 

Exposed cones presented on average ca. 30% damaged seeds while on protected ones it 

was only 6% (Figure 4). Neither the protected nor the exposed cones showed differences in 
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the proportion of damage per cone between years. In respect to the plot treatment, FR 

trees always had a higher proportion of damaged seeds than C trees whether they were 

exposed or protected (p<0.001). 

Most of the damage found on cones was of type II with 20.6% and 4.6% seeds damaged in 

exposed and protected cones, respectively. A statistically significantly higher proportion of 

damage in FR trees was found when compared to C (p<0.001) (Figure 5). 

Nearly all the remaining damaged seeds per cone were of type I (7.1% and 0.8% of total 

seeds, respectively for exposed and protected cones). In respect to the plot treatment, the 

proportion of type I damaged seeds was similar on FR and C cones from exposed cones 

(p=0.396) but differed in the protected ones (p=0.039). 

Type III damaged seeds, also known as empty seeds, were residual, corresponding to less 

than 2% of the total number of seeds per cone and did not differ between treatments, FR 

and C trees, or between protected and exposed cones (Figure 4). 

In respect to the average number of extractable seeds per cone, significant differences were 

noted between exposed (80.4 ± 1.3) and protected cones (88.8 ± 2.3) (p=0.005). When 

comparing the FR and C cones, although the former presented slightly lower mean values of 

extractable seeds, these were not significant, regardless of the type of branch.  

 

Figure 4. Mean percentage (± SE) seeds per cone per damage category and type of bag in each of 
the plot treatment in the exclusion trial. C - control trees; FR - fertirrigated. Whenever there are 
significant differences (P<0.05) between treatments, they are indicated by different letters.  

 

3.2 Bagged insect trial  

 

Cone mortality 

 

Overall mortality of second-year conelets was in average 18.4% in the bags with adults, 

31.6% in the bags with nymphs and 11.7% in the exclusion bags, with only the last two 
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being significantly different between them (p<0.001). However, we observed high 

variability in the conelet mortality (Figure 5).  

None of the three types of bags presented different second-year conelet mortality between 

the two sampled years. Likewise, no significant differences were noted between FR and C 

cones in each type of bag (Figure 5).  

We did not observe mortality of third-year cones, except two cones which died with Diplodia 

pinea and were removed from the analysis.  

 

 

Figure 5. Average mortality (± SE) of second-year conelets in the two years, per plot treatment in 
the bagged insect trial. C- control trees; FR – fertirrigated trees.  

 

 

Seed damage 

 

The mean percentage of seeds damaged per cone was highest in the bags with adults 

(11.9%), followed by those containing nymphs (10.8%) and finally by exclusion bags with 

no bugs (5.7%). These proportions were significantly different between the exclusion bags 

and both types of bags with insects (p<0.001) but not between these last two ones 

(p=0.374). 

Total damage per cone in the bags with adults and with nymphs was significantly higher in 

2016 than in 2015 (p<0.001). However, total damage in the exclusion bags was similar in 

both years (Figure 6).  

Regarding the two plot treatments, the damage was higher on FR compared to C on bags 

with nymphs (p<0.001) and exclusion bags (p<0.001), but not on bags with adults 

(p=0.551). 
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Figure 6. Mean percentage (± SE) of seeds damaged per cone in each year (A) and plot treatment 
(B) in the bagged insect trial. C - control trees; FR - fertirrigated trees. Whenever there are significant 

differences (P<0.05) between types of branches in each sampled year or between treatments, they 
are indicated by different letters.  

 

We found no differences on the number of extractable seeds per cone from the three types 

of bags (Adults: 89.0 ± 2.1; Nymphs: 88.5 ± 2.1; Exclusion bag: 88.8 ± 2.3). Regarding 

the plot treatment, none of the types of bags had different values between FR or C. 

Analyzing damage seed by category, the overall average proportion of type I damaged 

seeds per cone was significantly different between the three types of bags (p<0.001). Bags 

with adults had the highest proportion (6.9%), followed by bags with nymphs (4.1%) and 

lastly by the exclusion bags with only 0.7%. On the contrary, the average proportion of type 

II damaged seeds was similar between cones from all types of bags with exclusion bags 

presenting damage as well (Adults – 5.2%; nymphs – 5.7%; exclusion bags – 4.3%) 

(p>0.05). Also, the proportion of type III damaged seeds in cones was not different 

between the three types of bags and was always below 1.5%. 

Differences between damaged seed in cones from FR and C trees were observed in bags 

with nymphs and in exclusion bags for both type I (nymphs’ bag: p<0.001; exclusion bag: 

p=0.039) and type II (nymphs’ bag: p<0.001; exclusion bag: p=0.002) damaged seeds by 

cone (Figure 7). FR cones always presented greater damage (Figure 7). The average 

percentage of seeds with damage type III was not different between the two plot 

treatments in the bags with insects. The cones from FR were the only ones showing type III 

damages (Figure 7C). 
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Figure 7. Percentage (± SE) of type I (A), type II (B), and type III (C) seeds damaged per cone in 

each type of bag and plot treatments in the bagged insect trial. C - control trees; FR - fertirrigated 
trees. Whenever there are significant differences (P<0.05) between years or between treatments are 
indicated by different letters. 

 

 

Discussion 

 

During the two years of the experiment, we found differences in the ecophysiological 

performance of the trees from the FR and C plots, with fertirrigated trees showing denser 

canopies and a higher cone production average. However, with only two years of data and 

having in mine that cone production shows a very high interannual fluctuation (Calama et 

al., 2008, 2011; Mutkle et al., 2005), the conclusions regarding cone production should be 
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carefully analyzed. What has already been demonstrated in other studies on P. pinea is that 

water can be a limiting factor for P. pinea growth in some arid Iberian Peninsula regions 

(Natalini et al., 2015) and that artificial watering can increase the induction of first-year 

conelets, the survival of second-year conelets, the yield in ripening cones and the area and 

number of leafs (Bono & Aletà, 2013; Correia et al., 2017; Loewe et al., 2017; Mutke et al., 

2005, 2014). Our study confirms a high vigor in FR trees, but a lower survival of second-

year conelets, apparently contradicting the results from other studies. 

 

Second-year conelet mortality 

 

Overall, the mortality rate of second-year conelets on site was very high, with each tree 

losing on average more than half of the cones (ca. 60%) between spring and the harvest of 

matured cones in December. Protecting branches with a bag reduced second-year conelets 

mortality rate by 83%, leading to the conclusion that biotic agents such as the insects L. 

occidentalis (Hemiptera), Dioryctria mendacella (Lepidoptera), the fungus Diploidia pinea 

and other unknown agents are, most certainly, involved in the considerable mortality 

observed in young cones of P. pinea. 

The highest mortality of young cones was recorded in 2015. The spring of 2015, with only 

84 mm of rain from February to May (tree times lower than the recorded in 2016), may 

have compromised the trees’ physiological performance. The observed decrease in total 

needle length expansion and overall leaf area affected photosynthetic activity (data not 

shown) and therefore available carbon resources for growth. Concomitantly, it is likely that 

the spring drought influenced the insect’s activity, along with other biotic agents, probably 

making them more active in a context of exacerbated tree vulnerability.  

It must be stressed that the high number of aborted conelets of P. pinea reported here does 

not come as a surprise.  Several Mediterranean countries have revealed alarming data on 

an unusually high abortion rate of unripen conelets in the last decade in a phenomenon 

known as the Dry Cone Syndrome (DCS) for which the cause is not yet completely 

understood (Mutke et al., 2017a). Although L. occidentalis is pointed out as one of the most 

plausible causes, we were not able to support this hypothesis straightforwardly in this 

study. More research is needed to fully understand this phenomenon. Bagged branches with 

bugs inside showed that both adults and nymphs of L. occidentalis could feed on second-

year conelets, but only nymphs caused significant damage in one of the sampled years. The 

impact of the bagged bugs on these young cones was always much lower than on the 

exposed ones. We must note that the second-year conelets were exposed to the insects for 
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only one month, whereas exposed cones were vulnerable to the seed bug for more than six 

months. We thus hypothesize that nymphs of L. occidentalis might be, in part, responsible 

for the mortality of conelets. These findings are following field observations where nymphs 

were very often spotted feeding on conelets, unlike the adults which were almost always 

found feeding on last year cones. The impact of adults on second-year conelets was 

negligible in our trials with these insects showing a preference for mature cones, at least 

during August, when the trial was set up. It is important to note, however, that the 

variability in the mortality of second-year conelets found inside the bags, including in the 

insect exclusion bag, was very high (around 10% in the exclusion bags) which might be due 

to physiological or reproductive causes which we were not able to track properly. 

Effectively, our data suggest that L. occidentalis is most certainly not the only responsible 

for the high mortality rate of young conelets in P. pinea. A multiple cause scenario 

combining climatic effect, tree physiological responses as well as biotic agents other than L. 

occidentalis are more plausible hypothesis according to our findings. 

Other studies showed that differences in preference between young and mature cones of 

adults and nymphs of L. occidentalis are not consistent between hosts. In Pinus contorta, 

nymphs only feed on conelets if cones are not available and even then, fail to develop to the 

next instar (Bates et al., 2002a). In Pinus monticula, both nymphs and adults cause 

considerable damage on conelets (Bates et al., 2002a) and in P. sylvestris no difference in 

young cones mortality was found between bags with adults and with nymphs and control 

ones (Lesieur et al., 2014). In addition, L. occidentalis also has different feeding behavior 

according to the season (Bates et al., 2001, 2002a, 2002b; Calama et al., 2017; Connelly & 

Schowalter, 1991; Schowalter & Sexton, 1990; Schowalter, 1994; Strong, 2006). All reveal 

great adaptability of L. occidentalis to different hosts and climates. 

In opposition, mortality of all last year cones (mature cones) analyzed summing the two 

sampled years was negligible (less than 5%) with these cones being much less vulnerable 

than second-year cones. 

 

Seed damage 

 

This study shows nearly one-third of damaged seeds in mature cones that were exposed. 

The protection of the cones inside a bag from early spring until harvest resulted in an 80% 

reduction (from 30% on exposed cones to 6% on protected ones) of damage per cone. 

Thus, suggesting that biotic agents and not physiological or environmental factors are 

involved in this ratio. Still, damaged seeds were also found in protected cones (5-7% of all 
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seeds) which we attribute to both physiological causes and biotic factors affecting the cones 

in the previous years of the cone development when a bag did not protect it. Studies in P. 

pinea seed orchards in Central Spain where cones protected by mesh bags were compared 

to unprotected cones shows very similar ratios of damage per cone in exposed (36%) and 

protected cones (6%) (Elvira-Recuenco et al., 2016). 

In addition to the higher damage in matured seeds of the exposed cones, the number of 

extractable seeds per cone was 10% lower in these cones when compared to the protected 

ones. The reduction in the total number of extractable seeds per cone has been related to L. 

occidentalis feeding of seeds not yet fully formed, of several different conifers: Pinus 

monticula (Connelly & Schowalter, 1991), P. contorta (Bates et al., 2002b; Strong et al., 

2001, 2006), Pseudotsuga menziesii (Bates et al., 2000; Schowalter & Sexton, 1990) and P. 

sylvestris and P. nigra (Lesieur et al., 2014). Our results reveal that, most probably, the 

same fused seeds phenomenon happens for pine cones of P. pinea.  Cones from the bags 

that had insects inside had an average of extractable seeds similar to cones that were 

always protected, but we only bagged insects during one month in August. Feeding by L. 

occidentalis in August, when the seed is already fully formed, does not cause fused seeds. 

The lower number of extractable seeds on the exposed cones presumably resulted from the 

feeding of the bug before the end of July, when the seed is not yet fully formed (Calama et 

al., 2016).  

When seeds were separated by damage categories, we note that type II damage (totally 

shrunken embryo) was the most represented, corresponding to around 80% of all the 

damaged seeds per cone inside the protected bags and 70% of all the damaged seeds in 

exposed cones. The type II damaged seeds on protected cones suggest it can be either 

climatic, physiological or caused by biotic agents before the settlement of the bag, that is, 

in the previous years of cone development. Results from the bagged insect trial support, in 

part, this hypothesis since cones from this trial presented a similar overall proportion of 

type II damaged seeds per cone whether they came from a bag with L. occidentalis adults 

or nymphs during one month or from an exclusion bag that had no insect at all. However, in 

2016 when the total damage per cone was higher than in 2015, there were some 

differences. Cones from bags with insects, especially with nymphs, had two times more type 

II damaged seeds per cone than cones from the exclusion bags indicating that this bug may 

also be responsible for part of the seeds with this type of damage in the tested period. We 

admit that if the insects were allowed to feed during a more extended period, the type II 

damage could have been higher. In fact, this utterly shrunken seed, classified as damage 

type II, was observed in laboratory forced feeding studies when one or more adults of L. 

occidentalis feed over an extended period on the same mature seed (Farinha et al., 2018). 
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However, we still do not know precisely how the seeds of P. pinea that have not yet been 

fertilized, that is, in the years before harvest, develop after L. occidentalis feed on it. 

Studies on the impact of L. occidentalis on other hosts, particularly on P. menziesii, have 

shown differentiated damage accordingly to the period when the feeding occurs (Bates et 

al., 2001; Schowalter & Sexton, 1990).  

Concerning damaged type I seeds (partially damaged kernel), the almost nil percentage 

observed in the protected cones, which contrasts with the consistent percentage of 7% in 

the exposed cones, indicates that this type of damage is due to biotic agents. The results 

from the bagged insect trial strongly support the hypothesis that L. occidentalis adults are 

responsible for type I damage. A study using exclusion bags hypothesized that also damage 

type I could be a signature of L. occidentalis feeding since no seeds with this damage were 

recorded on the cones protected from the bug (Elvira-Recuenco et al., 2016). In practical 

terms, this means that we may use type I damage to assess damages caused by L. 

occidentalis among sites and years, being an accurate indicator of the seed bug activity. 

Lastly, the proportion of seeds with damage type III (empty seeds) per cone was constantly 

negligible regardless if the cone was protected, fully exposed or exposed uniquely to L. 

occidentalis for one month. These results showed unambiguously that L. occidentalis or 

other biotic agents do not cause this type of damage. In fact, studies on other pines have 

shown that the lack of fertilization leads to an empty seed (Owens, 2006).  

 

Host management  

 

From a plant protection point of view, several studies showed that insects perform 

nonrandom foraging, being able to distinguish plant quality in a heterogeneous patch of the 

host (Awmack & Leather, 2002; Firempong & Zalucki, 1989; Kareiva, 1982; Santiago Lastra 

et al., 2006). A higher total leaf area together with a higher average production of pine 

cones in the FR plots leaves little doubt for this study site to be considered heterogeneous 

about the quality of the host in the period that the field experiments occurred. It is expected 

that seed feeders like L. occidentalis choose the tree to colonize by the number and quality 

of the available cones. Nevertheless, the canopy should also be a critical factor as it serves 

as a refuge to weather conditions, to natural enemies (Chen et al., 2010) and is also a 

source of water. In fact, whereas second-year conelets protected by a bag revealed no 

differences in mortality between C and FR trees, exposed ones had higher mortality rates in 

the FR trees. This result may indicate that a preference for FR conelets or trees by the biotic 

agents may be occurring. However, other factors should be considered. Bagging L. 
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occidentalis for one month in mid-summer revealed differences only for the nymphs in FR 

trees with a mortality of second-year conelets 63% higher in nymphs’ bags compared to the 

insect exclusion bags. Mortality in the bags with adults was not significantly different from 

the exclusion bags whether it was FR or C trees suggesting that adults had a similar feeding 

rate in both types of trees.  

In the matured cones, the number of extractable seeds per cone did not vary between the 

two plot treatments in any of the trials. However, looking at the proportion of damaged 

seeds per cone, we could see that the influence of the plot treatment was noteworthy. Both 

exposed and protected cones from FR trees had a higher damage percentage (more 22% 

and 67%, respectively) than cones from C trees. This result suggests that the cause for 

such increase should be related with the management regime although we cannot identify 

which particular factors or processes are involved in it.  

This same pattern of higher damage on FR cones was observed in the bags with nymphs of 

L. occidentalis but not on adults. We hypothesize that for the nymphs, the cone and seed 

wall tissue on FR trees are more suitable for piercing and feeding, with nymphs being more 

demanding for nutritional and water food requirements for growth, whereas an adult would 

not be so sensitive to food quality at this level. However, for detailed and proven knowledge 

of such an effect, more experimental work is needed.  

Furthermore, cones from the nymphs’ bags had a much higher proportion of type II and 

type I seeds than the exclusion cones which indicates that nymphs were responsible for part 

of these damage types.  

Finally, type III damaged seeds (empty seeds) appear in similar proportions in cones from C 

and FR, which reinforces that causes are probably physiologic and ecologic and not biotic.   

 

Conclusions  

 

The production of the edible seed of P. pinea is now facing a challenging reality with the 

rate of production falling. Researchers are struggling to understand the impacts of L. 

occidentalis and its relation to the Dry Cone Syndrome. Our study shows that type I 

damage is a signature of L. occidentalis and therefore can be used in future studies to 

assess its impact on seed damage. However, seed type II damage must also be partly 

attributed to L. occidentalis feeding in mid-summer. Moreover, this bug may also have a 

significant impact on the number of extractable seeds per cone when feeding of seeds not 

yet fully formed (before late July) causing them to fuse to the seed coat. Hence, inferring 

the impact of this insect using just type I damage is underestimating its real impact.  
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The increasing market demand for this seed has been leading producers to invest in 

management programs using artificial watering and fertilization in an attempt to increase 

production. The present study is a first attempt to evaluate the impact of L. occidentalis on 

young and ripen cones in trees that are fertirrigated compared with trees growing in natural 

conditions. In general, fertirrigated trees were more susceptible to seed damage and cone 

mortality, which appear to be driven by biotic agents. It is possible that these trees are 

more attractive to the seed bug L. occidentalis, as well as to other seed and cone pests, like 

D. mendacella. In the particular case of the seed bug, nymphs demonstrate a higher 

feeding activity on fertirrigated cones compared to control ones, when forced to feed inside 

a bag. 

Overall, we found that the activity of two adult insects in one month in mid-summer could 

contribute to as much as 6% of seed damage. Still, efficient field monitoring techniques are 

needed to determine an economic threshold density to L. occidentalis in this host. The high 

price of P. pinea seed implies that this threshold will be low, thus justifying prophylactic 

management.  
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Abstract 

 

 

The seed bug, Leptoglossus occidentalis, a native from North America is considered a 

significant pest in several European countries since its first record in Italy in 1999. In 

Spain and Portugal, it was first observed in 2003 and 2010, respectively, and its 

impact on seeds (nuts) of Stone Pine (Pinus pinea) is of major concern. Before trying 

to develop control measures for this insect pest, it is paramount to clarify its invasion 

dynamics. Therefore, our aims were to (a) characterize the genetic structure, diversity 

and (b) invasion pathways of L. occidentalis populations in the Iberian Peninsula. 

Specimens of L. occidentalis were collected in 13 regions covering most of the Iberian 

Peninsula. The genetic analysis followed a multi-marker strategy using both mtDNA 

(Cytb) and microsatellites (11 loci). 

Our genetic results combined with the dates of first records strongly supported a 

stratified expansion for the invasion process of L. occidentalis in the Iberian Peninsula. 

At least three independent introductions have probably occured: one in the Barcelona 

area, one in the Valencia area or further South (possibly in Almeria) and another one 

in the North of the peninsula.  

 

Keywords: stratified dispersal, Iberian Peninsula, Stone pine, pine nut, seed feeder, 

Hemiptera 
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Introduction 

 

 

Invasive insect species are often cited as drivers of biodiversity loss (Ricciardi, 2003; 

Clavero & García-Berthou, 2005; Che et al., 2006; Didham et al., 2007; Kenis et al., 

2009), as well as responsible for significant economic losses (Schaefer & Panizzi 2000), 

and they can largely change the dynamics and functions of the invaded ecosystems.  

An invasive hemipteran, Leptoglossus occidentalis Heidemann, 1910 (Hemiptera: 

Coreidae), is originating from western North America. This polyphagous seed feeder is 

preying seeds in developing and mature cones of several species of conifers in genus 

Picea, Pinus, Cedrus, and Abies (Lesieur et al., 2014). It was first spotted in Europe in 

Italy in 1999 (Bernardinelli & Zandigiacomo 2001; Taylor et al., 2001), and then it 

invaded quite the entire continent during the following decade (Lesieur et al., 2018).  

Historical and observational data on the spread of invasive populations are often 

sparse but complementation with genetic data can result in important insights into the 

sources, routes and mechanisms of the invasion process. 

When entering Europe, L. occidentalis faced new conifer species with regard to those of 

its nativEastern North America n range. Thus, Stone pine, Pinus pinea, is a rather 

recent host of L. occidentalis but several observational records already exist over the 

Mediterranean basin where this pine is distributed (Roversi et al., 2009; Hizal, 2012; 

Bracalini et al., 2015; Calama et al., 2016, 2017, Farinha et al., 2018b). Besides its 

ecological and landscape value, stone pine has an important economic value due to its 

edible seeds (pine nuts) which can reach retail prices around 100 € per Kg (Mutke et 

al., 2014). Almost 70% of the world P. pinea plantations are located within the Iberian 

Peninsula (Portugal and Spain), making this region one of the major producers of this 

valuable seed (EUFORGEN 2009). It is not surprising, therefore that almost all the 

impact and ecological studies of this bug in the Iberian peninsula are focused on the 

host pine P. pinea (Bracalini et al., 2015, Mutke & Calama, 2016; Calama et al., 

2017; Farinha et al., 2018a, 2018b). 
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Inferring invasion routes and source populations of invasive alien species is a first key 

stage to decipher its population dynamics and ecological characteristic in the new 

environment with obvious practical applications for designing and implementing control 

measures (Handley et al., 2011), and for better prevention. However, tracing the 

invasion routes of this bug is a rather complex task primarily due to the large flight 

capacities of the insect, which allows a rapid dispersal (Lesieur, 2014), and to its 

autumnal aggregation behavior during which populations are mixed. This aggregation 

usually takes place in man- made structures or under the bark of coniferous trees, 

which can be translocated far way with wood trade between countries (Lesieur, 2014). 

This may lead to a genetic homogenization of the populations, making it difficult 

reconstructing the history of the invasion (Boubou et al., 2012). In addition, the 

difficulties of sampling small populations typical from recent introductions further 

complicate the historical reconstructions. Indirect methods such as molecular markers 

have proven to be relevant in helping to decipher invasion routes in many species 

(Estoup & Guillemaud 2010; Fitzpatrick et al., 2012). 

Using such molecular markers, Lesieur et al. (2018) showed that the bug invasion to 

Europe included two successive phases. The insect first moved from its native range in 

western North America to invade Eastern North America, resulting in a strong decrease 

in genetic diversity. Then, the insect invaded Europe, and the European invasive 

populations were more genetically related to those of the primary invaded region, 

Eastern North America, rather than to those of the native range in a phenomenon 

known as ‘bridgehead effect’ (Figure 1). Lesieur et al. (2018) results also suggested 

that the European invasion proceeded from several different introductions originating 

from the Eastern part of thEastern North America n continent. Moreover, translocations 

of individuals within the European continent were also suggested in a global scenario of 

bug invasions in Europe (Lesieur et al., 2018) (Figure 2). Biological traits of the bug 

such as a strong flight capacity and its polyphagous habits may have significantly 

accelerated the expansion. Regarding the Iberian Peninsula, Lesieur et al. (2018) 

presented evidence for two additional introductions in Spain, one in Barcelona most 

probably originating from Eastern North America, and one in Valencia possibly 

corresponding to an admixture between invasive populations from Europe and Eastern 

North America (Figure 2). Nevertheless, the invasion scenario in the entire Iberian 
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Peninsula still needs to be largely precised with regard to the high economic value of 

Stone pine nuts, the main attacked host in this region.   

Deciphering the origin of the Iberian populations from the first Spanish records in 

Barcelona and Valencia as well as the invasion routes in the Iberian Peninsula may 

contribute not only to find susceptible points of entry of insect in the Peninsula but also 

to understand the insect dispersal dynamics, leading this way to a more efficient 

monitoring and control strategy in the future.  

This study aimed at understanding the spatial and temporal invasion patterns of L. 

occidentalis in the Iberian Peninsula, relying on the genetic study of Lesieur et al. 

(2018) which raised important issues concerning this region that needs to be 

answered. The following questions were thus addressed: (i) does the genetic and 

observational evidence suggest more than two introductions events in Iberian 

Peninsula? (ii) Does it support natural and continuous expansion? Or (iii) does it 

indicate stratified dispersal, which involves both local diffusion and long-distance 

translocations?  
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Figure 1. Geographic distribution of L. occidentalis mitochondrial haplotypes in (A) North 

America, (B) Europe and (C) haplotype network in Lesieur et al., 2018. Single haplotype or 

haplotype found in a single site are represented in white.  

 

 
 

Figure 2. Most probable scenario of the European invasions by L. occidentalis in Lesieur et al., 

2018. 

 

 

 

Methods 

 

 

Sampling and DNA extractions 

 

Samples were collected between 2011 and 2015 from 14 sites distributed all over the 

Iberian Peninsula (Table 1). The different dates of collection were due to the insect 

population dynamics, in which population densities are highly fluctuating from one year 

to the next. Whenever possible, the insects were collected on different trees and sites 

within a region in order to minimize consanguinity. However, it has been possible to 

capture only a few individuals in southern Portugal (Faro), but none were obtained 

from the far south of Spain (Huelva, Cadiz), where we faced very low population 

densities during the years of collection. Insects were collected manually and 

immediately put into individual vials with absolute ethanol. A total of 239 bugs were 

thus obtained (233 adults, 6 nymphs).  
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DNA was extracted from one or two legs of adults following procedures from the 

DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) and eluted in 200 µL of AE 

buffer. The numbers of individuals per population used for sequencing (mtDNA) and 

genotyping (microsatellites) are presented in Table 1.  

 

Molecular analysis (mit DNA) 

In 60 individuals from 14 populations, a segment of cytochrome b was amplified by 

polymerase chain reaction (PCR) using the PCR reaction mix and procedure described 

in Lesieur et al., (2018). All PCR products were purified with QIA - quick PCR 

purification kit (Qiagen) and sequenced with the amplification primers. Sequencing was 

performed using the BigDye terminator sequencing kit (Applied Biosystems) and 

carried out with an ABI Prism 3500 Genetic Analyzer (Applied Biosystems). All 

sequences were obtained in the forward and reverse directions, assembled using 

CodonCode Aligner V.3.7.1 (www.codoncode.com) and then aligned using CLUSTAL W  

(Thompson et al., 1994) as implemented in BioEdit 

7.05    (http://www.mbio.ncsu.edu/bioEdit/bioedit.html). All sequences were truncated 

to the same length (662 bp) not having observed any insertion, deletion or stop 

codons.  Stop codon were checked with MEGA v.6 (Kumar et al., 2008). 

To infer the genetic diversity and invasion routes of L. occidentalis populations in the 

Iberian Peninsula sequences from Lesieur et al., (2018) (n=48) were downloaded from 

GenBank and added to the dataset (n=60) for a joint analysis (ntotal=108) (Table 1 - 

populations in bold typeface). Data from Lesieur et al. (2018) included two populations 

from Eastern North America (Montreal and Pittston): the source of the European 

invasion was downloaded to check if there were additionnal introductions from Eastern 

North America to the Iberian Peninsula. We also added data from four populations 

representative of invaded areas in Western Europe (Yvoy-le-Marron in north Central 

France, Lavercantière in Central France, Serre-Ponçon in the Southern French Alps, 

and Alessandria in Northern Italy) that could be secondary insect sources for new 

introductions in the Iberian Peninsula due to geographic proximity and also based on 

the history of invasion of other insects (Lopez et al., 2011; Grosso-Silva & Maia, 2012; 

Salvatore, 2013). Lastly, data of the populations suggested as new introductions in the 
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Iberian Peninsula (Barcelona and Valencia) were also added to the dataset. For mtDNA 

analysis three extra bugs from Coruche were added from the Lesieur’s samples. 

 

The number of haplotypes, haplotype diversity, and nucleotide diversity was obtained 

using DNASP 5.0 (Librado & Rozas, 2009). Statistical parsimony network was 

computed with TCS v. 1.21 (Clement et al., 2000). To evaluate the variation in genetic 

diversity at different hierarchical levels and between different groups of populations, 

we used the analysis of molecular variation (AMOVA; Excoffier et al., 1992). We tested 

several groups of populations suggested by FST values, Principal Component Analysis 

and Structure analysis to find the group configuration that maximize the global value 

of FCT (variation among groups) and is significantly different from random distributions. 

Populations with very few sequenced individuals were not used in the analysis (Murcia, 

Islas Cies, and Huelva in Spain and Faro in Portugal). All AMOVAs were performed with 

Arlequin v 3.5 (Excoffier et al., 2010) and tested with 1000 permutations. The program 

Arlequin was also used to estimate Fst values between all pairs of populations in 

Europe.  

 

Molecular analysis (microsatellites) 

Data analysis: The whole dataset included 374 individuals from 17 populations: 195 

individuals from 8 populations from Lesieur et al. (2018) (Table 1 - populations in bold 

typeface) and 179 individuals from 9 populations corresponding to new Iberian 

samples (Table 1). Data from Lesieur et al. (2018) included sequences of individuals 

from 2 populations of Eastern North America, and 3 populations from France, 1 from 

Italy and 2 from the Iberian Penisula.To be able to compare the two datasets, we used 

samples already analyzed by Lesieur et al. (2018) as controls in our genotyping 

procedure. 

All individuals were genotyped at 11 microsatellites loci (Lep04, Lep05, Lep07, Lep16, 

Lep17, Lep25, Lep31, Lep36, Lep43, MSLO07 and MSLO15) previously developed for L. 

occidentalis (Lesieur et al., 2014). PCR amplifications were conducted following the 

protocol described by Lesieur et al., (2014) and PCR products were run in an ABI 3500 

Genetic Analyzer using the size standard GeneScan-600 LIZ (Applied Biosystems). The 

program GeneMapper v. 4.1 (Applied Biosystems) was then used to score the alleles. 
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Allelic richness (AR) and frequencies, as well as observed and expected heterozygosity 

(Ho and He), was calculated for each locus and population using GENALEX 6.41 

(Peakall & Smouse, 2006). The richness of private allele (PAR) was calculated in HP-

RARE using the rarefaction procedure (Kalinowski, 2005) which compensates for the 

increase in the likelihood of sampling rare alleles as sample size increases. Hardy–

Weinberg equilibrium was tested using GENALEX 6.41 (Peakall & Smouse, 2006) for 

each locus and population, with 1000 permutation steps and 100 000 steps in the 

Markov chain. Linkage disequilibrium was tested in each population for all pairs of loci 

with 10 000 permutations using ARLEQUIN 3.1 (Excoffier et al., 2005). Sequential 

Bonferroni corrections (Rice, 1989) for multiple comparisons were applied for both 

tests. FREENA package (Chapuis & Estoup, 2007) was used to estimate the null allele 

(NA) for each locus in each population using the expectation-maximization algorithm.   

Population genetic structure was first analyzed by calculating pairwise Fst estimates as 

described by Weir & Cockerham (1984) with and without the null alleles (ENA) 

correction implemented in FREENA. The 95% confidence intervals were obtained by 

bootstrapping 1000 times over loci. A population-based neighbor-joining (NJ) tree was 

reconstructed using Populations 1.2.30 software (Olivier Langella, 

http://bioinformatics.org/~tryphon/populations/) using Cavalli-Sforza and Edwards 

chord distance on the genotype dataset corrected for null alleles. Bootstrap values 

were computed by resampling loci and are given as a percentage of 2000 replicates. 

Both the pairwise FST and the phylogenetic trees of populations were assessed after 

exclusion of the two populations for which the sampling size was insufficient, namely 

those from “Caceres” and “Faro." After, we used the program STRUCTURE 2.3.1 

(Pritchard et al., 2000) to estimate the number of genetic clusters represented in the 

data set and, in this way, try to disentangle the genetic structure over the sampled 

area. We used 200 000 burn-in steps followed by 500 000 MCMC simulation steps with 

a model allowing admixture in all runs. To ensure the consistency of results, 20 

independent runs for each value of K were performed. This analysis was first run on 

the whole dataset (17 populations) with the number of clusters (K) varying from 1 to 

10. It was then run on subsets of the data containing (1) all the European populations 

(15 populations) and (2) only the Iberian populations (11 populations), with K ranging 

from 1 to 8 in both runs (see Results). The optimal number of clusters (K) represented 

by the data was determined with the method described in Evanno et al. (2005), 
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implemented in STRUCTURE HARVESTER (Earl & vonHoldt, 2012).  We also performed 

assignment tests using all genotyped individuals, i.e., also including the populations 

with low sample size. 

 

Results 

 

Molecular analysis (mit DNA) 

In total, sequences from 108 individuals (60 sampled in the field and 48 downloaded 

from GeneBank) distributed in 22 sites were analyzed. Only four haplotypes were 

detected in these European populations (Figure 2). The most frequent haplotypes were 

H20 and H51 which were observed in 51% and 35% of the individuals, respectively 

(Table 1). However, different relative haplotype frequencies were found, the haplotype 

H20 being more frequent in Iberia whilst H51 was more frequent in the nearby French 

populations. H05 and H23 presented frequencies below 10% with H23, being only 

observed in Iberian individuals. One haplotype, H27, was found only in one individual 

from Eastern North America (Montreal, Canada). The overall haplotype and nucleotide 

(π) diversity were estimated at 0.613 and 0.0026, respectively, with the three regions, 

Eastern North America, France+Italy and Iberia presenting similar mean values. Five 

populations from the Iberian Peninsula had a haplotype diversity of 0 (table 1).  

To estimate population differentiation, several groups of populations were tested with 

AMOVA analysis based on the geographic distance between populations, dates of 

occurrence and the results from Fst values and Structure analysis of microsatellites 

data. When considering the whole dataset, the group configuration that maximized the 

FCT value was separating the dataset into three groups: [Eastern North America, 

Barcelona, Lleida], [France, Italy, Northern Iberia] and [Southern and Central Iberia] 

(Table x). Considering only Iberia, none of the group configurations result in a 

significant structure (p<0.05). Interestingly, the configuration that explained the 

highest percentage of variation among groups was defined by occurrence dates 

(13.09%). 

In all groups tested, most of the genetic variation was explained by differences 

between individuals within populations (always >86%). 
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Table 1. Sample information including: Region, site, host species, sample size, haplotype frequency, nucleotide frequency (π), mean expected heterozygosity 
(He), mean observed heterozygosity (Ho), allelic richness adjusted to a minimum sample size of 6 (AR) and private allelic richness (PAR) estimated after a 
rarefaction procedure. Bold correspond to samples downloaded from internet databases (Lesieur et al., 2018).  
 

N Haplotype Hd π N He Ho AR PAR

Montreal, Canada 45,562 -73,563 2011 5 H20 (1); H51 (3); H27 (1) 0,700 0,004 14 0,540 0,519 2,88 0,636

Pittston, USA 44,222 -69,756 2011 7 H20 (5); H51 (2) 0,536 0,002 25 0,568 0,524 2,88 0,909

Yvoy-le-Marron, France 47,632 1,854 2012 5 H5(2); H20 (1); H51 (2) 0,800 0,003 31 0,623 0,508 2,96 0,091

Lavercantière, France 44,637 1,318 2011 7 H5(2); H20 (1); H51 (4) 0,667 0,003 30 0,606 0,547 2,91 0,182

Serre-Ponçon, France 44,523 6,332 2011 5 H20 (2); H51 (3) 0,600 0,003 29 0,571 0,468 2,89 0,000

Alessandria, Italy 44,897 8,406 2011 5 H20 (3); H51 (2) 0,600 0,003 26 0,603 0,531 2,91 0,182

Barcelona, Spain* 41,520 1,687 2012 5 H23 (1); H51 (4) 0,400 0,002 20 0,491 0,486 2,48 0,091

Valencia, Spain* 39,447 -0,463 2012 6 H20 (4); H51 (2) 0,533 0,002 20 0,487 0,385 2,51 0,000

Almeria, Spain 37,712 -2,172 2012 8 H20 (8) 14 0,386 0,392 2,08 0,000

Burgos, Spain 42,672 -3,417 2015 P. pinaster 3 H20 (1); H51 (2) 0,667 0,003 25 0,576 0,475 2,88 0,000

Galicia,Spain 42,364 -8,622 2015 P. pinaster 4 H5 (1); H23 (1); H51 (2) 0,833 0,004 30 0,607 0,528 2,96 0,000

Lleida, Spain 42,637 1,247 2013 5 H20 (2); H23 (1); H51 (2) 0,800 0,003 20 0,603 0,468 2,97 0,000

Cáceres, Spain 40,451 -6,19 2015 P. pinea 2 H5 (1); H20 (1) 1,000 0,003

Segovia, Spain 40,902 -4,007 2012 11 H5 (2); H20 (6); H51 (3) 0,733 0,003 14 0,564 0,410 2,84 0,000

Soria, Spain 41,536 0,023 2013 3 H20 (2); H51 (1) 0,667 0,003 12 0,564 0,410 2,55 0,182

Valladolid, Spain 41,304 -5,233 2015 P. pinea 6 H20 (5); H23 (1) 0,333 0,001 14 0,555 0,413 2,77 0,000

Murcia, Spain 37,826  0,016 2013 3 H20 (3)

Islas Cies 44,897 8,406 2012 2 H20 (2)

Huelva, Spain 37,211 -6,563 2012 P. pinea 1 H20 (1)

Aveiro, Portugal 40,674 -8,727 2015 P. pinaster 3 H20 (2); H51 (1) 0,667 0,003 23 0,596 0,437 2,96 0,000

Coruche, Portugal 38,961 -8,527 2015 P. pinea 5+3 H5 (1); H20 (3+2); H51 (1+1) 0,700 0,003 27 0,615 0,506 3,02 0,182

Faro, Portugal 37,236 -7,922 2015 P. pinaster 4 H51 (4)

Eastern 

America

Europe

Iberian 

Peninsula

Microsatellites
Origin Region Latitude Longitude

Year of 

collection

mtDNA
Host
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Molecular analysis (microsatellites) 

 

In total, we analyzed microsatellites data of 374 individuals from 17 populations (Table 1). 

The analysis on linkage disequilibrium revealed five cases of significant disequilibrium in the 

605 pairwise tests carried out, but a given pair of loci was never in significant linkage 

disequilibrium more than two times. Thus, the eleven microsatellite markers were 

considered independent. The average proportion of null allele for each locus was below 5% 

except for four loci (Lep04, Lep05, Lep31 and Lep36) which showed a mean estimated 

proportion of null alleles above 8 %. All populations were in Hardy-Weinberg equilibrium for 

all loci after the Bonferroni correction for multiple comparisons except in 8 out of 99 

combinations of population x locus (Lep04 in Lleida, Galiza, Aveiro and Coruche; Lep36 in 

Segovia and Aveiro; MSLO07 in Lleida and MSLO15 in Coruche). However, in global tests 

across all loci, no population deviated significantly from HWE. Some of the high rates in null 

allele’s frequencies namely in Lep04 and Lep36 loci, corresponded to deviations from Hardy-

Weinberg equilibrium. To ensure more robust and unbiased results, the following analysis 

was performed with and without the loci Lep04 and Lep36. As the results were similar in 

both cases, only the results with the entire dataset are presented.  

 

 

 

Figure 2. Geographic distribution of Leptoglossus occidentalis mitochondrial haplotypes and Iberia, 

France and Italy first record dates.  
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Table 2. Analysis of molecular variance (AMOVA) of Leptoglossus occidentalis populations from 

Eastern North America, France+Italy and Iberian Peninsula groups according to different criteria. 
 
 

 

 

The estimated genetic variability across the 11 loci and for each population is summarized 

in Table 1. The observed and the expected heterozygosity (Ho and He) ranged from 0.478 

to 0.623 in the Eastern American and French populations and from 0.385 to 0.615 in the 

Iberian populations. A total of 97 alleles were detected across all eleven loci, with 4 alleles 

at the Lep04, Lep05 and Lep07 loci to 20 alleles at locus Lep43. The parameter allelic 

richness (AR) corrected for 6 individuals per sample was employed to compare among 

populations. Allele richness was slightly higher in the invading European populations from 

France (2.92 alleles per locus) than in those of Eastern North America (2.88). Populations 

from the Iberian Peninsula presented the lowest and the highest allele richness in all 

dataset, in Almeria (2.08) in Coruche (3.02), respectively.   

The matrix of Fst values estimated using the ENA correction is given in Table 2. Pairwise 

genetic differentiation between all the European populations and Pittston in Eastern North 

America was lower than with Montreal also from Eastern North America, with no European 

population presenting significant differences with Pittston except for Almeria. In fact, 

Almeria was the most differentiated population, presenting high and significant Fst values 

with all populations in Eastern North America, France, Italy and with the two Spanish 

populations of Barcelona and Lleida.  

Source of variation d.f.
Sum of 

squares

Variance 

components

Percentage of 

variation
p-value

Among groups 2 8.172 0.10898 12.28* 0.01466

Among populations within groups 14 10.542 0.00575 0.65 0.52395

Within populations 77 60.361 0.78390 88.36 0.07234

Among groups 3 9.742 0.13644 15.49* 0.01075

Among populations within groups 11 7.480  0.01496 1.70 0.54252

Within populations 67 50.875 0.75933 86.21 0.05474

Among groups 2 4.185 0.08423 9.96 0.07136

Among populations within groups 9 6.243 0.02079 2.46 0.58553

Within populations 40 31.283 0.78208 92.50 0.27273

Among groups 4 6.484 0.10968 13.09 0.06647

Among populations within groups 7 3.944 0.05353 6.39 0.71750

Within populations 40 31.283 0.78208 93.30 0.26491

Among groups 2 4.571 0.10379 12.14 0.06354

Among populations within groups 9 5.857 0.03103 3.63 0.60704

Within populations 40 31.283 0.78208 91.49 0.28152

AMOVA - Global dataset grouped by Structure results

AMOVA - Europen populations grouped by Structure results

AMOVA - Iberian populations grouped by geographic proximity

AMOVA - Iberian populations grouped by date of first detection

AMOVA - Iberian populations grouped by Structure results
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Considering only the Iberian Peninsula samples, Barcelona and Almeria presented the 

highest Fst indices (0.164 and 0.99, respectively) with all other population’s pairwise 

comparisons obtaining no significant Fst values that ranged from 0.013 to 0.079. Overall, 

the highest FST value was observed between the sample Montreal of Eastern North America 

and the Spanish sample of Almeria (0.194). The phylogenetic tree of populations showed a 

differentiation of Almeria from all other populations, which is consistent with high Fst values 

between these sample site and all others. The french populations formed a monophyletic 

clade whereas those of Eastern North America and Barcelona formed another one.  

 

Table 2. Pairwise Fst divergence between populations of L. occidentalis. Populations with less than 12 

individuals were excluded.  
 

 
  

Principal components analysis (PCA) gave similar results except for the population of 

Valencia which appeared closer to the Eastern North America/Barcelona clade than to all the 

other samples (Figure 3). 
 

 
Figure 3. Principal component analysis diagram.  

Italy

Mont Pitt Yvoy Lave SePo Ales Barc Llei Vale Alme Sego Vall Burg Gali Avei Coru

Mont 0,000

Pitt 0,037 0,000

Yvoy 0,066 0,030 0,000

Lave 0,067 0,031 0,009 0,000

SePo 0,060 0,029 0,018 0,021 0,000

Ales 0,058 0,028 0,025 0,024 0,030 0,000

Barc 0,055 0,041 0,071 0,066 0,049 0,067 0,000

Llei 0,087 0,036 0,026 0,036 0,034 0,045 0,056 0,000

Vale 0,081 0,036 0,067 0,071 0,064 0,056 0,086 0,064 0,000

Alme 0,194 0,125 0,128 0,151 0,121 0,146 0,164 0,098 0,121 0,000

Sego 0,094 0,041 0,031 0,040 0,032 0,055 0,080 0,025 0,053 0,079 0,000

Vall 0,126 0,078 0,052 0,068 0,054 0,078 0,111 0,045 0,079 0,060 0,031 0,000

Burg 0,088 0,040 0,023 0,030 0,026 0,040 0,077 0,028 0,044 0,095 0,014 0,036 0,000

Gali 0,095 0,042 0,020 0,026 0,022 0,042 0,079 0,025 0,059 0,099 0,020 0,036 0,013 0,000

Avei 0,083 0,036 0,024 0,031 0,024 0,033 0,077 0,028 0,050 0,091 0,020 0,045 0,017 0,014 0,000

Coru 0,097 0,043 0,021 0,029 0,031 0,036 0,088 0,024 0,064 0,095 0,026 0,038 0,024 0,021 0,016 0,000

Spain Portugal
Populations

E America France
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The STRUCTURE analysis using the Evanno’s method showed a distinctive peak at K= 3 and 

a smaller one at K= 7 for the global dataset (Figure 4).  

 

A 

 

                                               

                    B                 

 

 

 

 

 

 

 

 

                  
 

Figure 4. Graphical representations of genetic clusters for samples from (A) the global dataset and 

(B) the Iberian Peninsula inferred from STRUCTURE simulations, with the corresponding Evano’s 

DeltaK. Each vertical line represents an individual, and each color represents a cluster. Individuals are 

grouped by sample location. 

 

For K=3, two of the clusters were more defined than the third one. The two clusters were 

[Eastern North America, Barcelona and Alessandria] and [southern and central parts of the 

K=3 

K=3 

A B 

K=7 

K=2 

K=2 
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Iberian Peninsula]. The third cluster was formed by the French populations and those of 

northern and western Iberia. Lavercantière (south-central France) and Lleida (north-eastern 

Spain) were intermediate between clusters.  For K=7, southern and central Iberia remained 

a separated group.  

The same method was used to analyze only the individuals from the Iberian Peninsula. The 

highest ΔK was K=3. The three clusters corresponded to populations from (1) the Eastern, 

Southern and Central parts, (2) the Northern region, and (3) the Western region of the 

Peninsula.  

Restriction of the Bayesian clustering analysis to the nine loci with low proportion of null 

alleles had no qualitative effect on the results obtained and the use of other Structure 

models (with or without correlated allele frequencies or sampling location information) gave 

similar results (data not shown). 

 

 

Discussion 

 

By combining occurrence records with mtDNA and microsatellites data we characterized the 

invasion dynamics of L. occidentalis in the Iberian Peninsula. The former genetic study by 

Lesieur et al. (2018) presented evidence for the occurrence of two independent 

introductions in the Iberian Peninsula (Barcelona and Valencia) corresponding to the only 

two Iberian populations analyzed by them. We found evidence for, at least, a third 

introduction in the northern or western part of the peninsula.  

 

Diversity and Structure of Iberian populations 

 

The observation of the same haplotypes in Iberia as in the rest of Europe suggests that the 

bug invasion in the Iberian Peninsula results from populations having already invaded 

Europe, and not from Western North America, the native region of L. occidentalis.  However, 

a similar or even slightly higher haplotype and nucleotide diversity observed in Iberia with 

regard to those of Eastern America and European populations indicates no loss of diversity 

in the Peninsula. Populations of invasive alien species are traditionally thought to have 

reduced genetic diversity relative to their source populations due to founder effects related 

to small population sizes during the stage of introduction of the invasion (Dlugosch & 

Parker, 2008). However, several other studies of different invasion processes did not find 

significant loss in the genetic diversity of the invasive populations using neutral molecular 

markers (for e.g.  Facon et al., 2003; Kolbe et al., 2004; Bossdorf et al., 2005; Kang et al. 

2007; Ciosi et al., 2008, 2010). We should note that redoing the same studies using 
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molecular markers other than neutral ones, which are irrelevant for selection and 

adaptation of the individuals to the new environment, could have told a different story 

(Handley et al., 2011). 

The Almeria population in southern Spain was an exception to the average genetic diversity 

of the Peninsula presenting very low values. All individuals had the same haplotype (H20) 

and the lowest values of heterozygoty and allele richness in microsatellite loci. One possible 

explanation is the occurrence of a strong demographic bottleneck associated with a genetic 

bottleneck due to environmental conditions that reduced the population to a few number of 

individuals. Southern Iberia regions were very difficult to sample because of low insect 

densities. Indeed, climatic niche models reveal that Southern Iberia is presenting a low 

suitability to L. occidentalis survival due to high temperatures (Zhu et al., 2013).  

Regarding the presence of genetic structure among all studied populations, AMOVA results 

point to structured populations between the three invaded areas: Eastern North America, 

France+Italy, and Iberia after grouping the populations in accordance to the results 

obtained for microsatellite data. However, no structure was detected within the Peninsula 

using mtDNA. In contrast, the analysis of microsatellite data revealed the presence of three 

clusters in the Iberian Peninsula, two quite well-defined (the Barcelona cluster and the one 

grouping populations from Southern and Central Spain) and another constituted by 

populations with a great level of mixture (Northern Iberia and Central Portugal). Because of 

the very low diversity of the Almeria population, the analysis was repeated without this 

population. Still, a strong southern and central Iberian group including populations from 

Valencia, Valladolid, Segovia and Soria was defined. Barcelona and Lleida, which are only a 

little over 150 km apart, grouped together in most of the analysis despite Lleida having a 

great admixture population. The strong differentiation of the Barcelona population from the 

other European populations was tentatively explained by Lesieur et al. (2018) as a result of 

a new independent introduction from Eastern North America populations. In the Iberian 

peninsula, Barcelona still forms a strongly differentiated cluster, occasionally grouped with 

Lleida, which indicates a possible spatial isolation of this population as suggested by the 

lower suitability of the Ebro Valley located at its left (Zhu et al., 2013) and the Pyrenees 

mountains at its right. The fact that the first record of L. occidentalis in Barcelona was in 

2003, long before all the other Iberian regions (between 2008 and 2010) suggests that this 

isolation has probably been maintained over time. 
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Routes of invasion in the Iberian Peninsula 

 

If we consider only the dates of observation, the primary record of the bug was in Barcelona 

in 2003 (Ribes & Escolà, 2005), while all the first records in other regions of the Iberian 

Peninsula began 5 years later (2008) and extended over 3 years until 2010 (Ribes et al., 

2008; Valcárcel & Portillo, 2009; Vázquez et al., 2009; Grosso-Silva, 2010; Pérez Valcárcel 

& Prieto Piloña, 2010). Such a large time difference between the first Iberian record and 

most of the other detections without intermediate occurrences raises doubts on the 

hypothesis of a continuous geographic dispersal from the source population of Barcelona.   

Genetic data also refute this hypothesis. Lesieur et al. (2018) already found that Barcelona 

and Valencia were two independent introductions in Iberia with divergent source 

populations.  In our study, high Fst values (from 0.077 to 0.164) between Barcelona and all 

the other Iberian populations except Lleida and the constant separate cluster for all tested K 

further proved that the mechanism of invasion in Iberia cannot be a natural expansion from 

Barcelona. A natural expansion would also mean a loss in the genetic diversity (Dlugosch & 

Parker, 2008; Handley et al., 2011) in the other Iberian populations which was not detected 

in both the mtDNA and microsatellites data.  

Microsatellites analysis detected three well-defined clusters in the Iberian Peninsula. One 

cluster formed by the populations in the eastern part (Barcelona and Lleida), another one 

by those of south and center of the peninsula (Valencia, Almeria, Valladolid, Segovia, Soria) 

and a third one by those from the northern and western part (Burgos, Galiza, Aveiro, 

Coruche).  

Putting together first observational dates, the absence of a decrease in genetic diversity, 

former genetic analysis and cluster analysis on the whole Peninsula, is suggesting the 

occurrence of multiple introductions that could be transatlantic, from Eastern America, 

intracontinental from the rest of the invaded Europe, intra-Peninsular or combining all of 

these processes. The occurrence of multiple introductions is a common phenomenon to the 

history of invasion of many alien species (Fonseca et al., 2000; Facon et al., 2003; Kolbe et 

al., 2004; Bossdorf et al., 2005; Kang et al., 2007; Roman & Darling, 2007; Ciosi et al., 

2008, 2010), and was already proved for the seed bug in Europe as shown by Lesieur et al. 

(2018). Stratified dispersal, i.e. a combination of short- and long-distance dispersal during 

geographic expansion has also been widely reported (Davies et al., 2004; Bialozyt et al., 

2006; Facon et al., 2008; Ciosi et al., 2010). Note that long-distance dispersal includes 

primarily human-mediated transportation of insects (Handley et al., 2011). This type of 

dispersal mechanism accelerates the invasion and may maintain genetic diversity in 
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expanding populations (Davies et al., 2004; Bialozyt et al., 2006; Facon et al., 2008; Ciosi 

et al., 2010). 

Our results showed that the population from Valencia is genetically similar to other 

populations of southern and central Spain (Almeria, Valladolid, Segovia, Soria; grouped 

together for all K), suggesting a common source population to the invasion of this part of 

the Peninsula. Historical data shows that the bug was first detected at the same time in the 

south and center of the peninsula (Almeria and Segovia) in 2008 despite the separation of 

more than 400 km between occurrence points. Which population corresponds to the source 

population is difficult to assess. However, relying on observational dates, there had to be 

human-mediated transportations within the region (south and center). Even with a good 

flight capacity (Koerber, 1963), estimated at 20 Km / day maximum in laboratory studies 

(Lesieur, 2014), it would probably be a too narrow period for L. occidentalis populations to 

invade all Iberia (approximately 1 000 x 800 Km) by natural and continuous dispersal. This 

insect flies great distances at specific periods such as when searching for winter shelter in 

the end of summer. 

Microsatellites results also indicate a high probability for an independent introduction in the 

north and west of the Peninsula. The populations of Coruche, Aveiro, Galiza and Burgos had 

low Fst between them and always clustered together in the PCA and Structure analysis. The 

source population of north and west populations is, this way, genetically different from the 

source population of the south and center clade. Moreover, given that the first occurrence 

dates in Northern Iberia are only one year after the southern ones, a natural expansion 

from the South to the North would be very unlikely. Very low values of Fst and the joint 

clade of north and west Iberia with France for K=3 in the whole dataset, could suggest 

France to be the origin of the source population for the invasion of northern and western 

Iberia. In fact, pairwise Fst comparisons revealed very low values between the French 

population of north-central France, Yvoy-le-Marron, and north and west Iberian populations 

(0.020 to 0.024).  

 

Cone trade market and the invasion 

Leptoglossus occidentalis has been frequently spotted on Stone pine, Pinus pinea cones 

(Bracalini et al., 2015; Calama et al., 2016, 2017; Farinha et al., 2018b). World market 

demand for P. pinea nut kernel moves several hundred million euros annually (Awan & 

Pettenella, 2017; Mutke et al., 2017). The Iberian Peninsula produces nearly 70% of the 

world traded nuts (Mutke et al., 2014). Cones are collected from December to April of the 

year after and then sold to processing plants to be open and commercialized. A high volume 
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of cones is transported within and between the main producer’s countries, Portugal, Spain, 

Italy and Turkey to be processed and sold (Mutke et al., 2012). These intensive 

translocations of cones may easily serve as ride to L. occidentalis individuals from one place 

to another justifying in part both the rapid rate of invasion in the Peninsula and the high 

genetic diversity of Iberian invasive populations. In the north part of the Peninsula, where 

Stone pine is not distributed, the trade of timber may play an important role in dispersing 

the bug. Above all, L. occidentalis is considered a very good hitchhiker, which can come in 

cars, trucks or containers even not related to the cone or timber market.   

Multiple introductions of individuals from genetically divergent populations results in high 

levels of intraspecific hybridization (i.e. ‘‘admixture’’) which can confer survival advantages 

(Facon et al., 2010) and greater adaptation of the admixed individuals.  

Human activities, namely the intensive cone trade, timber trade and other commercial 

exchanges between European countries, may therefore be the prominent responsible for 

long-distance L. occidentalis dispersal in the Iberian Peninsula. Stratified dispersal is 

probably affecting this pest population dynamics increasing its capacity to disperse and 

ultimately leading to high levels of admixture which, in turn, are likely to increase the 

probability of adaptation to new environments potentially increasing the invasiveness and 

economic impact of this pest. 

 

Conclusion 

 

Genetic evidence combined with first record dates suggest that stratified dispersal 

mechanism characterized by short-distance dispersal and long-distance primarily 

commanded by human-mediated is what better explain the history of L. occidentalis 

invasion in the Iberian Peninsula.  The intensive trade of cones of P. pinea in Iberia and the 

high capacity of this bug to highjack is probably leading to a constant gene flow between 

populations.  

Besides the two independent introductions already suggested by Lesieur et al. (2018) we 

showed evidence for at least a third introduction in the north or west of the Peninsula.  

These multiple introductions and translocations are the main obstacle to pest control and 

future management strategies  

In addition, ecological studies of L. occidentalis populations, namely the climatic suitability, 

host preferences, natural barriers are crucial to understand what can determine the range 

expansion of this bug. An accurate prediction and consequent management of the invasion 

dynamics of this bug is only possible after a strong knowledge of its population dynamics 
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The use of ABC analysis (Estoup & Guillemaud 2010; Handley et al., 2011) may help to 

precise the invasion scenarios in Iberian peninsula and the number of introduction events.  
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Chapter 7 – Conclusions and guidelines for future research  

 

 

The establishment of non-native insects in Europe has increased exponentially since the 

1950s, triggered by globalization of trade (Roques, 2010). Added to this, forests are also 

under pressure from climate change (Allen et al., 2010; Lindner et al., 2010). L. occidentalis 

is currently an invasive species in the whole European territory (EPPO, 2018). However, 

Mediterranean countries are the most concerned with this invasive species due to its 

putative impact on the high valuable edible seeds of P. pinea 

 

 

Is this seed feeder entirely responsible for the observed decrease in Stone 
pine seed crop?  

 

The impact quantification of L. occidentalis on Stone pine still needs precision to allow the 

definition of economic thresholds in management’s strategies.  

This impact represents a major concern for the countries that are producers of the edible 

seeds. The records of a decrease in seed production during the last years (Roversi, 2009; 

Bracalini et al., 2013; Mutke et al.,2014) led to speculate a lot about the possible causes: 

climate change, phenological shifts (Mutke et al., 2005; Calama et al., 2011) and biotic 

agents. L. occidentalis has often been cited as one of the main causes for the cone decline 

(Bracalini et al., 2013; Mutke et al., 2014). However, doubts about the amount of damage 

that can be attributed to the bug remain present.  

In this Ph.D. thesis I started the impact study by fully characterizing this bug damage on 

mature seeds of Stone pine. Following force-feeding trials and using a multi-technique 

strategy with stereomicroscopy, X-rays, Micro Computed Tomography and direct 

observation, I obtained a better and more useful characterization of the bug damage.  

The damaged kernels presented a shrunken and wrinkled appearance corresponding to the 

sucking of the endosperm. I observed two types of damaged kernels in these trials that 

were later named as Type I and Type II (see chapter 6). Type I corresponded to a kernel 

partially damaged / with a different colour / serous appearance and Type II corresponds to 

a completely shrunken and dry embryo with no endosperm. In this trial these two 

typologies of damage varied according to the duration and frequency of feeding. Type II 

corresponded to a longer or more frequent feeding. Consumption was estimated to be about 

a fifth of a seed kernel per bug per month with only one to two seeds being damaged by 

box. The low number of seeds consumed was an unexpected result that led me to explore 
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the reasons for it. Firstly, I hypothesized that this concentration of feeding on 1-2 seeds per 

box out of 10 was due to a possible “collaborative” feeding process between all bugs in a 

box. The first cue for this collaborative feeding behaviour was the existence of only one 

feeding hole per damaged seed. Another question arose: Are insects sharing the hole or are 

some feeding on while others are starving? Videotaping trials later confirmed the 

collaborative behaviour with several bugs using the same hole for feeding. Opening the hole 

on the thick and woody coat represents a great effort for the bug. It can take more than 8 

hours to do it (personal observations). Once it is open, all bugs may use it for feeding, 

although they fight for it. Sharing resources may lead to a concentration of damage in trees 

or sites which has implications in impact estimations.  

Field trials (Chapter 5) revealed a very high overall mortality rate (ca. 60%) of second-year 

young conelets. Caging L. occidentalis adults and nymphs in cone bearing branches of Stone 

pine showed that only nymphs caused a significant mortality of conelets. I thus 

hypothesized that, in mid-summer, nymphs of L. occidentalis might be, in part, responsible 

for the mortality of conelets but adults prefer ripening cones. This hypothesis is in 

accordance with field observations where nymphs were very often spotted feeding on 

conelets, unlike the adults which were almost always found feeding on ripening cones (last 

year cones).  

Several Mediterranean countries have revealed alarming data on an unusually high abortion 

rate of unripen conelets in the last decade in a phenomenon known as the Dry Cone 

Syndrome (DCS) for which the cause is not yet completely understood (Mutke et al., 2017). 

Although L. occidentalis is pointed out as one of the most plausible causes, I was not able to 

support this hypothesis straightforwardly with the experiments that I conducted during this 

thesis. The coinciding dates of the first observations of DCS phenomenon in Stone pine in 

Europe with the first records of L. occidentalis strongly suggested that this bug is the main 

responsible for DCS (Mutke et al., 2017). However, field studies that explore the temporal 

and spatial variation of conelets mortality combined with an assessment of insect density 

are needed. My field records on conelet mortality presented a high variance between trees 

and years which suggests that other causes, such as climate, may also be related to DCS. A 

multiple cause scenario combining climate effects, tree physiological responses as well as 

the impact of biotic agents is the more plausible hypothesis for explaining DCS according to 

my findings. 

 

Concerning seed damage, field trials showed that mature cones exposed to biotic agents 

had an average of 30% damaged seeds whereas cones that were protected during the 

entire spring and summer had only 6% of their seeds damaged. Thus, biotic agents are 
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damaging nearly one quarter of the seeds and this must be ascribed mostly to the feeding 

activity of L. occidentalis but in laboratory experiments feeding of two L. occidentalis adults 

inside a bagged branch during August only damaged 6% of the seeds. Damage type I was 

demonstrated to be a signature of L. occidentalis feeding in mid-Summer. Additionally, the 

seed damage type II may also be attributed to this seed bug although to a lesser extent. 

Other causes such as physiological ones may also contribute in large part to type II 

damage.  Furthermore, these trials indicated that the reduction in the number of extractable 

seeds, often called fused seeds, could be caused by L. occidentalis feeding in an early stage 

of seed development (between March and June) as it has been reported in other pine 

species (Schowalter & Sexton, 1990; Connelly & Schowalter, 1991; Bates et al., 2000, 

2002b; Strong et al., 2001, 2006; Lesieur et al., 2014).  

 

This Ph.D. provided a reliable and visual characterization of the damage caused by L. 

occidentalis in mature seeds of P. pinea. Moreover, it also provides cues for L. occidentalis 

damage signature in mid-summer, when field populations reach high densities. 

Still, efficient field monitoring techniques as well as seasonal feeding studies comparing 

diferent insect densities are needed to determine an economic threshold density to L. 

occidentalis in this host.  

 

 

Plant-insect interaction: the seed feeder and the Stone pine  

 

 

I explored both the insect host preference and the insect host selection.  

Laboratory trials that tested the preference of the bug among the three main conifer species 

in the Mediterranean Basin region, Stone pine, Maritime pine and Aleppo pine obtained 

different outcomes depending on the level of selection that was used: branch, cone, or 

mature seed. No clear preference for host species was detected when I compared branches 

indicating that individual branch quality (i.e. higher nutritional content and high vigour) 

rather than plant taxonomy seemed more important for a polyphagous insect like L. 

occidentalis. Moreover, bugs manifested strong group behaviour in branches, frequently 

splitting into two persisting groups. The gregarious behaviour of this insect has already 

been demonstrated (Koerber, 1963; Mitchell, 2006). In addition, results from chapter 4 

which suggested group feeding further support this behaviour.  

In contrast, in both the cone and seed preference trials, L. occidentalis showed a preference 

for Stone pine. The large differences in size of cones and seeds among the three pine 
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species, with Stone pine presenting much larger seeds and cones, may be the reason for 

the preference. Stone pine represents a higher reward which for a polyphagous insect may 

be the cue to the preference behaviour. In fact, visual stimuli are important in the process 

of host selection by L. occidentalis (Blatt & Borden, 1999; Richardson et al., 2017). From a 

nutritional and visual point of view, we may then expect that Stone pine trees and 

plantations may favour L. occidentalis population growth.  

Field studies in forest sites mixing P.pinea with other pines, e.g. P. pinaster, must now be 

carried out to test if any bug preferences are effectively occurring under natural conditions. 

I highlight though, that to be able to design efficient field methodologies to test preferences 

it is critical to control the quality of the host plants and consider the aggregation behaviour 

of the bug. Such trials may also contribute to clarify the population dynamics of this bug.  

 

Host selection was tested in field trials in relation to tree physiological status. Trials were 

carried on in a Stone pine seed orchard with plots under two different management 

regimes: plots with fertilization and irrigation and plots with no treatment (control). Trees 

from the two groups differed on physiological parameters and cone production. Regarding 

second-year conelets, results showed a significantly higher mortality rate in trees that were 

fertilized and irrigated compared with trees with no treatment. This result may indicate that 

a preference for conelets or trees under fertilization and irrigation regimes by the biotic 

agents may be occurring. My results using caged adults and nymphs in branches for one 

month in mid-summer showed that only nymphs are influenced by the tree treatment 

causing higher mortality of conelets in fertilized and irrigatet trees compared to control 

ones. Adults had a similar feeding rate in both types of trees.  

Regarding damage on seeds from ripe cones; the cones from fertilized and irrigated trees 

had a higher damage than cones from control trees, with no treatment. However, this 

outcome was observed similarly in exposed cones and protected cones during spring and 

summer. Therefore, an endogenous treatment related cause might justify the results.  

Once more, like noticed for second-year conelets in terms of seed damage only nymphs 

presented a differentiated damage between fertilized and irrigated and the control trees 

with the first having higher values. Thus, I hypothesized that for the nymphs, the conelets 

and the cone and seeds on fertilized and irrigated trees would be more suitable for piercing 

and feeding and more nutritious. Differences might be explained by the fact that nymphs 

are more demanding for nutritional and water food requirements for growth and survival, 

whereas adults are not so sensitive to food quality. 
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In general, trees that were fertilized and irrigated were more susceptible to seed damage 

and cone mortality, which appear to be driven by biotic agents. It is possible that these 

trees are more attractive to the seed bug L. occidentalis, as well as to other seed and cone.  

 

Bug invasion history in the Iberian Peninsula still to be confirmed 

 

By combining the occurrence records with mtDNA and microsatellites data I characterized 

the invasion dynamics of L. occidentalis in the Iberian Peninsula and analyzed together with 

the characteristics of the pine nut market. The former genetic study by Lesieur et al. (2018) 

presented evidence for the occurrence of two independent introductions in the Iberian 

Peninsula (Barcelona and Valencia). I found evidence for a third introduction in the north or 

west of the peninsula.  

Cluster analysis using microsatellite revealed three clusters in the Peninsula: [Barcelona, 

Lleida], [Southern and Central Iberia – Valencia, Almeria, Valladolid, Segovia, Soria] and 

[Northern Iberia and central Portugal: Burgos, Galiza, Aveiro, Coruche]. A former study 

already showed that the Barcelona population originated from an independent introduction 

from Eastern America (Lesieur et al., 2018). By analyzing new genetic data from the rest of 

the Peninsula, Barcelona still forms a strong differentiated cluster which indicates a possible 

spatial isolation of this population as suggested by the lower suitability of the Ebro Valley on 

the left (Zhu et al., 2013) and the Pyrenees Mountains on the right. It also suggests that 

the other Iberian populations are not a result of a natural expansion from the Barcelona 

population, the first one to be detected in the Peninsula. 

if we remove the record of Barcelona in 2003, record dates of the first field observations of 

the bug in the Peninsula differ only by three years going from 2008 to 2010 (Ribes et al., 

2008; Pagola Carte, 2009; Valcárcel & Portillo, 2009; Vázquez et al., 2009; Grosso-Silva, 

2010; Pérez Valcárcel & Prieto Piloña, 2010).  

The very close first observational dates, the absence of a decrease in genetic diversity and 

the cluster analysis on the whole Peninsula, points to the occurrence of multiple 

introductions that could be transatlantic, from Eastern America, intracontinental from the 

rest of the invaded Europe, intra-Peninsular or all of them. The occurrence of multiple 

introductions is a common phenomenon in the invasion history of many alien species 

(Fonseca et al., 2000; Facon et al., 2003; Kolbe et al., 2004; Bossdorf et al., 2005; Chen et 

al., 2006; Kang et al., 2007; Roman & Darling, 2007; Ciosi et al., 2008, 2010), and was 

already proved for the seed bug in Europe (Lesieur et al., 2018). Besides multiple 

introductions, L. occidentalis is also known to be a strong flyer with high dispersal capacities 

(Lesieur, 2014). 
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Altogether, our results and the dispersal capacities of the bug strongly suggest that the 

rapid invasion of the Iberian Peninsula was due to stratified dispersal, i.e. a combination of 

short- and long-distance dispersal. Short due to the high dispersal capacities of the pest and 

long due to human-mediated transportations possibly related to the intensive pine nut 

market in this Peninsula. A high volume of cones is transported within and between the 

main producer’s countries, Portugal, Spain, Italy and Turkey to be processed and sold 

(Mutke et al., 2012). These intensive translocations of cones may easily serve as ride to L. 

occidentalis individuals from one place to another justifying both the rapid rate of invasion 

in the Peninsula and the high genetic diversity of Iberian invasive populations. Multiple 

introductions lead to high levels of intraspecific hybridization (i.e. ‘‘admixture’’) which can 

confer survival advantages and greater adaptation of the admixed populations (Ellstrand & 

Schierenbeck, 2000; Ryan et al., 2009; Facon et al., 2010). One test of the effect of 

admixture on invasive success was carried out in the invasive harlequin ladybug, H. axyridis 

(Facon et al., 2010) combining genetic analysis and laboratory experiments. Admixed 

individuals developed quickly, had a larger size and a higher genetic variance for survival in 

starvation conditions. 

All these features potentially increase the invasiveness and the economic impact of L. 

occidentalis and greatly constrain the pest control and future management strategies.  

The use of ABC analysis (Estoup & Guillemaud 2010; Handley et al., 2011) may help (or will 

be required) to precise the invasion scenarios in Iberian peninsula and the number of 

introduction events. However, L. occidentalis invasion history of the Iberian Peninsula is 

probably a complex process difficult to reconstruct such as in some other case studies insect 

invasions to Europe; e.g., the harlequin ladybug, H. axyridis (Lombaert et al., 2014), the 

Asian long-horned beetle, Anoplophora glabripennis (Javal et al., 2017), and even L. 

occidentalis (Lesieur et al., 2018). Multiple introductions from different sources, human-

mediated spread and natural dispersal are arguments put forward by these authors to 

justify this complexity. 

 

Guidelines for future research 

 

With an economically and socially valuable market behind, research focus on this pest and 

on its interaction with Stone pine is an urgent matter and should be in all producer countries 

agenda.  

Research on Stone pine physiological mechanisms and ecology is as pertinent as studying 

the insect. Although being a native pine species we still have to go a long way to decipher 

its physiological processes and ecological interactions.  
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My results and of others, suggest that L. occidentalis tend to choose and to have a higher 

survival rate in Stone pine (Farinha et al., 2018a, 2018b; Ponce et al., 2017). However, 

climatic models predict a low suitability of L. occidentalis for a large part of the distribution 

area of Stone pine (Zhu et al., 2014). This apparent mismatch must be checked in the field. 

In 2014, the density of L. occidentalis field populations was very high in Stone pine seed 

orchard in the regions of Setúbal, Santarém and Évora in Portugal (correspond to the main 

productive region of pine nuts in Portugal). Yet, since 2015 population densities have been 

decreasing. In the last two years the density of this bug populations in the same regions 

was very low being hard to see any bug (Ana Farinha, personal observations). What led to 

this decrease? Several authors already mentioned this chaotic population dynamics 

(Lesieur, 2014; Richardson, 2013) but it is not known what set it. It is thus crucial to 

answer the question: Are climatic conditions determining the highly variable population 

dynamics of this bug in the Mediterranean Basin? And if not, what is it? Future research on 

this behavior is paramount to be capable of predict this species movements and possible 

fragilities. Studies should be large-scale and encompassing different biotypes and climatic 

conditions. 

 

Other important question concerns the natural control of this invasive insect. Both, 

predators or parasitoids are important agents for the control of insect populations. However, 

L. occidentalis main native parasitoids do not exist in the European continent and little is 

known about its predators. Exploratory field trials in Spain found that parasitoids of native 

pests such as Thaumetopoea pityocampa (pine processionary moth) can lay eggs and 

develop on L. occidentalis eggs in natural conditions. It is now necessary to carry on 

intensive and systematic field studies aiming at assess the composition of L. occidentalis 

native parasitoid communities and its efficiency in controlling these bug populations.   

However, before thinking of control measures it is mandatory to better characterize this bug 

impact. Studies on seasonal variation of its feeding behavior using field covered branches 

with different densities of bugs inside are crucial and it should be the next step. Only then 

we define economic thresholds for these bug populations. In addition, survey of the bug-

associated pathogenic fungi like Diploidia pinea is equally necessary since it is possible that 

L. occidentalis is an important vector of this pathogen fungi (Luchi et al., 2011). 

Most importantly, future control strategies of L. occidentalis populations must integrate 

Stone pine forests management plans in a three-player strategy: the insect, the pine and 

the pine nut sector, in a Mediterranean scenario. 
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