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Abstract 
 

The physiologically based pharmacokinetic (PBPK) modelling has been accepted as one of the 

most effective mechanistic techniques to analyze pharmacokinetics (PK) of drugs in the drug 

development process. Its effectiveness in predicting the PK of drugs is important not only to the 

current drug development industry but also to potential growth of the pharmaceutical industry as 

it helps resolve ethical challenges.  

 

The PK of cisplatin as an anticancer drug, and its metabolic disposition are investigated by 

proposing a PBPK modelling framework. A plausible PBPK model is developed to test and 

validate its predictive utility for extrapolation to other species with the drug. Building and testing 

a PBPK modelling workflow for translating from rat to human PK scenarios for cisplatin is 

particularly emphasized. Moreover, this workflow may be helpful to studying and understanding 

the PK of cisplatin analogues in future studies.  

 

In this thesis, the PK of cisplatin is quantitatively studied by employing the PBPK modelling 

technique, and the modality of interspecies extrapolation from rat models to human models is 

then tested. As the metabolic mechanism of cisplatin is not evidently revealed, several 

assumptions have been made to successfully construct the PBPK model which would closely 

reproduce observed PK data of cisplatin for rats as well as for humans. Based on these 

assumptions, several parameters which define cisplatin ADME in an organism are reasonably 

selected. These parameters are optimized based on observed rat PK data by using a numerical 

optimization process. The PBPK model constructed based on the rat PK data is then evaluated by 

means of validating the optimized values of the parameters through comparing the PK 

simulations with other observed PK data for rats. Lastly, the validity of the model for the 

predictive performance on humans is assessed by translating the model into a human model and 

evaluating it based on observed PK data for humans. 

 

 

 

 

 



iv 

 

Acknowledgements 
 

I would like to express my deep and sincere gratitude to my supervisor, Dr. Qing-Bin Lu of 

Department of Physics at the University of Waterloo for giving me the opportunity to work on 

this project learning the pharmacokinetics of cisplatin and for his patience, enthusiasm and 

immense knowledge that led to the successful completion of my thesis. His expertise in study of 

cisplatin is invaluable throughout the thesis work and I cannot be grateful enough for his 

continued support and advice.  

 

I would also like to express special thanks to the team of Dr. Edginton (Dr. Andrea Edginton, and 

Dr. Paul Malik) from the School of Pharmacy at the University of Waterloo for providing me the 

pharmaceutical knowledge and the modelling tools to perform the simulations. I would also like 

to thank Dr. Anton Burkov and Dr. Kesen Ma for kindly serving on my committee.  

 

I am sincerely thankful to them for helping lead me to the new findings. This accomplishment 

would not have been possible without their supports.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Table of Contents  

Author’s declaration ............................................................................................................................................................................ ii 

Abstract ................................................................................................................................................................................................... iii 

Acknowledgements .............................................................................................................................................................................. iv 

List of Figures ...................................................................................................................................................................................... vii 

List of Tables .......................................................................................................................................................................................... ix 

Chapter 1 Introduction ....................................................................................................................................................................... 1 

1.1 Chemotherapeutic Anticancer Drug, Cisplatin ........................................................................................................ 1 

1.2 Pharmacokinetics (PK) and Physiologically based Pharmacokinetic (PBPK) Modelling ......................... 3 

1.3 Software used ........................................................................................................................................................................ 5 

1.4 PBPK Modelling of Cisplatin by ‘17 Compartment Model’ ................................................................................ 6 

Chapter 2 Research Design and PBPK Modelling Workflow ............................................................................................... 7 

2.1 Research Design ................................................................................................................................................................... 7 

2.2 PBPK Modelling Workflow ............................................................................................................................................. 8 

Chapter 3 Required Data and Assumptions Prior to the PBPK Modelling .................................................................. 10 

3.1 Requirements Prior to the PBPK Modelling .......................................................................................................... 10 

3.2 Physicochemical Properties of Cisplatin and Available ADME Data ............................................................ 11 

3.3 Metabolism of Cisplatin ................................................................................................................................................. 12 

3.3.1 Experimental Observations .................................................................................................................................. 12 

3.3.2 Necessary Assumptions ........................................................................................................................................... 16 

3.4 Parameters .......................................................................................................................................................................... 19 

Chapter 4 Model Development ..................................................................................................................................................... 20 

4.1 Introduction ....................................................................................................................................................................... 20 

4.2 Method ................................................................................................................................................................................. 22 

4.2.1 PK Data Acquisition ................................................................................................................................................ 22 

4.2.2 Basic Building Block Setting................................................................................................................................. 22 

4.2.3 Simulation Setup ....................................................................................................................................................... 26 

4.3 Results .................................................................................................................................................................................. 30 

4.3.1 Initial Model Development .................................................................................................................................... 30 

4.3.2 Parameter Optimization ........................................................................................................................................ 31 

4.3.3 The PK Analysis with PK Simulations with Optimized Parameters ...................................................... 34 

4.4 Conclusions......................................................................................................................................................................... 42 

Chapter 5 Model evaluation ........................................................................................................................................................... 43 

5.1 Introduction ....................................................................................................................................................................... 43 

5.2 Method ................................................................................................................................................................................. 44 

5.2.1 PK Data Acquisition ................................................................................................................................................ 44 



vi 

 

5.2.2 Basic Building Block Setting................................................................................................................................. 44 

5.3 Result .................................................................................................................................................................................... 47 

5.3.1 Visual Predictive Check with Observed PK Data of Rats .......................................................................... 47 

5.3.2 Validity of the PBPK Model for Humans ......................................................................................................... 53 

5.3.3 Prediction of Fraction Unbound, Responsible for Therapeutic Effect .................................................. 59 

5.3.4 PK Analysis by Comparing PK Parameters ................................................................................................... 62 

5.4 Conclusion .......................................................................................................................................................................... 65 

Chapter 6 Conclusions ..................................................................................................................................................................... 66 

6.1 Summary ............................................................................................................................................................................. 66 

6.1.1 Reproducibility of Cisplatin PK by PBPK model ......................................................................................... 66 

6.1.2 Analysis of the Parameters .................................................................................................................................... 68 

6.2 Promising Technique ....................................................................................................................................................... 69 

References ............................................................................................................................................................................................. 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

List of Figures 
 

Figure 1: Illustration of the chemical structure of cisplatin ................................................................................ 1 

Figure 2: Illustration of how pharmacokinetics is defined .................................................................................. 3 

Figure 3: Scheme for the pharmacokinetic 17 compartment model .................................................................... 6 

Figure 4: PBPK modelling workflow for cisplatin ............................................................................................... 9 

Figure 5: Metabolism of cisplatin based on experimental evidences ................................................................ 17 

Figure 6: Monte-Carlo method (in red) ............................................................................................................ 31 
Figure 7: Three numerical optimization results run from different starting values of the parameters 

(generated by Open systems pharmacology (2019) ................................................................................... 33 

Figure 8: Simulation reproducing experimental PK study by Hanada et al. [20] showing PK simulations (solid 

lines) of intact cisplatin (in red), ultrafilterable platinum (in orange), mobile metabolite (in blue), and 

fixed metabolite (in black); solid dots represent experimentally observed values (generated by Open 

Systems Pharmacology (2019) platform [9]) ............................................................................................. 35 

Figure 9: Simulation reproducing experimental PK study by Hanada et al. [20] showing PK simulations (solid 

lines) of mobile metabolite (in blue), and fixed metabolite (in black); solid dots represent experimentally 

observed values (generated by Open Systems Pharmacology (2019) platform [9]) .................................. 36 
Figure 10: Simulation reproducing experimental PK study by Yates and McBrien [15] showing PK 

simulations of intact cisplatin (solid line in red), ultrafilterable platinum (solid line in orange), and 

fraction unbound (dotted line in green); solid dots represent experimentally observed values (generated 

by Open Systems Pharmacology (2019) platform [9]) ............................................................................... 37 

Figure 11: Simulation reproducing experimental PK study by Nagai et al. [17] showing PK simulations of 

intact cisplatin (solid line in red), ultrafilterable platinum (solid line in orange), mobile metabolite (solid 

line in blue), and fraction excreted to urine (dotted line in pink); solid dots represent experimentally 

observed values (generated by Open Systems Pharmacology (2019) platform [9]) .................................. 38 

Figure 12: Simulation reproducing experimental PK study by Fukushima et al. [44] showing PK simulation of 

intact cisplatin (solid line in red); solid dots represent experimentally observed values .......................... 40 
Figure 13: Simulation reproducing experimental PK study by Okada et al. [45] showing PK simulation of 

intact cisplatin (solid line in red); solid dots represent experimentally observed values .......................... 40 

Figure 14: Simulation reproducing experimental PK study by Fukushima et al. [48] showing PK simulation of 

intact cisplatin (solid line in red); solid dots represent experimentally observed values .......................... 48 
Figure 15: Simulations reproducing experimental PK study by Fukushima et al. [48] showing PK simulations 

of intact cisplatin (solid line in red) with intravenous (IV) infusion administrations with different doses; 

solid dots represent experimentally observed values (generated by Open Systems Pharmacology (2019) 

platform [9]) ............................................................................................................................................... 49 

Figure 16: Simulations reproducing experimental PK study by Nagai and Ogata [49] showing PK simulations 

of intact cisplatin (solid line in red) with administrations of intravenous (IV) bolus and intravenous (IV) 

infusion with different infusion times; solid dots represent experimentally observed values (generated by 

Open Systems Pharmacology (2019) platform [9]) .................................................................................... 51 
Figure 17: Simulation reproducing experimental PK study by Verschraagen et al. [16] showing PK 

simulations of intact cisplatin (solid line in red), ultrafilterable platinum (solid line in orange), mobile 

metabolite (solid line in blue), fixed metabolite (solid line in black), and fraction unbound (dotted line in 

green); solid dots represent experimentally observed values (generated by Open Systems Pharmacology 

(2019) platform [9]) .................................................................................................................................... 54 
Figure 18: Simulation reproducing experimental PK study by Andersson et al. [50] showing PK simulation of 

intact cisplatin (solid line in red); solid dots represent experimentally observed values (generated by 

file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137588
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137589
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137590
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137591
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137592
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137593
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137594
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137594
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137595
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137595
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137595
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137595
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137596
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137596
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137596
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137597
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137597
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137597
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137597
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137598
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137598
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137598
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137598
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137599
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137599
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137600
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137600
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137601
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137601
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137602
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137602
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137602
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137602
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137603
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137603
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137603
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137603
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137604
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137604
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137604
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137604
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137604
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137605
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137605


viii 

 

Open Systems Pharmacology (2019) platform [9]) .................................................................................... 56 
Figure 19: Simulation reproducing experimental PK study by Nagai et al. [18] showing PK simulations of 

intact cisplatin (solid line in red), and fraction excreted to urine (dotted line in pink); solid dots represent 

experimentally observed values (generated by Open Systems Pharmacology (2019) platform [9]) ......... 57 
Figure 20: Simulation reproducing experimental PK study by Nagai et al. [18] showing PK simulations of 

intact cisplatin (solid line in red), and fraction excreted to urine (dotted line in pink); solid dots represent 

experimentally observed values (generated by Open Systems Pharmacology (2019) platform [9]) ......... 58 
Figure 21: Simulation reproducing experimental PK study by Fukushima et al. [48] showing PK simulations 

of intact cisplatin (solid line in red), fraction unbound for platinum species (dotted line in green), and 

fraction unbound for cisplatin (dotted line in purple); solid dots represent experimentally observed 

values (generated by Open Systems Pharmacology (2019) platform [9]) ................................................. 59 

Figure 22: Simulations reproducing experimental PK study by Fukushima et al. [48] showing PK simulations 

of intact cisplatin (solid line in red), fraction unbound for platinum species (dotted line in green), and 

fraction unbound for cisplatin (dotted line in purple) with intravenous (IV) infusion administrations with 

different doses; solid dots represent experimentally observed values (generated by Open Systems 

Pharmacology (2019) platform [9]) ........................................................................................................... 60 

Figure 23: Simulation reproducing experimental PK study by Nagai et al. [18] showing PK simulations of 

intact cisplatin (solid line in red), fraction unbound for platinum species (dotted line in green), and 

fraction unbound for cisplatin (dotted line in purple); solid dots represent experimentally observed 

values (generated by Open Systems Pharmacology (2019) platform [9]) ................................................. 61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137606
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137606
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137606
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137607
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137607
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137607
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137608
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137608
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137608
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137608
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137609
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137609
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137609
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137609
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137609
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137610
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137610
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137610
file:///C:/Users/Hyunjin%20Park/Desktop/MSc%20Thesis/Park_Hyunjin.docx%23_Toc22137610


ix 

 

List of Tables 

Table 1: Physicochemical and ADME properties of cisplatin ........................................................................... 11 
Table 2: Molecular weights of cisplatin, chlorine ion, glutathione, methionine, cysteine, and the 3 major 

cisplatin-metabolites .................................................................................................................................. 15 

Table 3: Seven parameters to be optimized ....................................................................................................... 19 

Table 4: Administration protocols used by cisplatin PK groups ....................................................................... 24 

Table 5: Simulation matching with observed data and resulting parameter optimization .............................. 32 

Table 6: Administration protocols for rats used by cisplatin PK groups .......................................................... 45 

Table 7: Administration protocols for humans used by cisplatin PK groups ................................................... 46 

Table 8: PK parameter comparison on rats ...................................................................................................... 63 

Table 9: PK parameter comparison on humans ............................................................................................... 63 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 



1 

Figure 1: Illustration of 

the chemical structure of 

cisplatin 

Chapter 1 Introduction 

   

 

 

1.1  Chemotherapeutic Anticancer Drug, Cisplatin 

      

Cisplatin, or cis-diamminedichloroplatinum(II) (CDDP, 

Pt(NH3)2Cl2,) is the first and most widely used platinum-based 

chemotherapy drug. US Food and Drug Administration (FDA) granted 

approval of cisplatin for testicular and ovarian cancer treatments in 

1978 [1]. It is now the cornerstone agent in treating a variety of cancer, 

including ovarian cancer, testicular cancer, cervical cancer, bladder cancer, breast cancer, lung 

cancer, head and neck cancer, lymphomas cancer, brain tumors, germ cell tumors, malignant 

pleural mesothelioma and neuroblastoma [2], [3], [4]. Cisplatin has revolutionized treatments of 

many types of solid tumors. In particular, chemotherapy treatment with cisplatin shows very high 

response and cure rates for testicular tumors [5]. It is given into a patient intravenously (IV) and 

is commonly used with other drug(s) in combination chemotherapy or with radiotherapy.  

 

Cisplatin is one of the most popular alkylating agents as it effectively disrupts the DNA 

function and causes cancer cell death by adding an alkyl group to the DNA base (mainly guanine, 

G base). The high binding affinity of cisplatin to the G base can be explained by the preferential 

electron transfer from the G base to cisplatin [6]. Electron transfer or dissociative electron 

transfer (DET) reaction is a reaction where electron transfer causes cleavage of chemical 

compound. The dissociation of chlorine ions from cisplatin and following alkylation 

preferentially to the G base can be demonstrated by the DET reaction of cisplatin occurring in 

the electron-rich G base: 

e
-
  +  Pt(NH3)2Cl2  =>  [Pt(NH3)2Cl2]*

-
  =>  Pt(NH3)2Cl

•
  +  Cl

-
    (1) 

e
-
  +  Pt(NH3)2Cl   =>  [Pt(NH3)2Cl]*

-
   =>  Pt(NH3)2

•  +   Cl
-
     

 



2 

e
-
 represents an electron available from the DNA G base, and * and 

•
 respectively denote that the 

compound is in an extremely short transient state, and the compound is a radical which is to be 

alkylated to the to the G base in this context. 

 

Despite its effective cancer killing action, cisplatin-induced nephrotoxicity has been 

reported as a serious dose-limiting side effect in the anticancer treatment [7]. Consequently, there 

have been an enormous number of cisplatin-analogues synthesized over decades, aiming to 

minimize side effects while achieving effective treatment when compared with the treatment by 

cisplatin. However, only a very small portion of them have entered clinical trials and a few have 

been approved by the FDA to treat certain types of cancer. 

 

Both efficacy and safety of the drug are of the utmost importance in the drug industry 

and are significantly influenced by many pharmacological factors such as drug permeability and 

tissue-to-plasma partition coefficients. Therefore, there is a compelling need to develop 

mechanistic tools and methods to achieve further pharmaceutical insight on the fate of the drug 

after it is administered to an organism. 
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Figure 2: Illustration of how pharmacokinetics is defined 

1.2  Pharmacokinetics (PK) and Physiologically based Pharmacokinetic 

(PBPK) Modelling 
        

Pharmacokinetics (PK) is the study of 

the journey of an administered drug in a living 

organism and is useful in investigating the 

intensity of a drug’s effectiveness or toxicity 

over time. The PK is accordingly defined by a 

drug’s physicochemical properties and its 

interaction with the anatomy and physiology 

of an organism in terms of absorption, 

distribution, metabolism, and excretion 

(ADME) as illustrated in Figure 2. For 

example, two different PK profiles will be produced when two different individuals having 

different anatomical and physiological properties take the same drug with particular 

physicochemical properties. In the course of the modelling process adopted in this thesis, the 

interactions between the two systems (drug and organism) are represented by the ADME 

parameters such as intrinsic clearance, tissue-to-plasma partition coefficients, or fraction 

unbound.  

 

Physiologically based pharmacokinetic (PBPK) modelling is a novel technique to build a 

mathematical model to predict and study the PK of drugs in organisms. The PBPK model 

provides a mechanistic representation of drug kinetics and generates simulations of the PK 

profiles by integrating the drug information with the anatomical and physiological system. As 

will be detailed in section 1.3, the PBPK model surpasses capabilities of empirical or classical 

compartmental models by accounting all major physiological and biochemical processes 

occurring in anatomical organ compartments connected via blood flow. It enables quantitative 

assessments of dispositions of several species in plasma under a variety of clinical settings which 

are essential in studying the PK of cisplatin, as will be elaborated throughout the thesis. It is 

widely used in the drug development process, as well as in pharmaceutical research [8].  

       



4 

In this thesis, a PBPK modelling technique is employed, in which a plausible rat model 

is firstly constructed, then evaluated based on observed PK datasets of rats, and finally translated 

into a human model; the latter is validated by comparing with observed PK datasets of humans. 

The convenient and practical use of the PBPK technique in translating from preclinical to clinical 

scenarios is carefully justified. In addition, the constructed model on one drug can be 

conveniently translated to predict and study the PK of other drugs as well, and this capacity may 

be explored in a future project.  
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1.3  Software used 

        

In this thesis, open source platforms for the PBPK modelling, PK-Sim and MoBi v8.0 

(www.open-systems-pharmacology.org) were used to construct and evaluate the PBPK model of 

cisplatin. PK-Sim provided an easy access to anatomical and physiological data for rats and 

humans, and enabled integrations of the data with input physicochemical data of cisplatin to 

perform numerous PK simulations [9]. MoBi was used to add several equations to generate new 

PK simulations that are not available by PK-Sim. To extract numerical PK data from plots in 

scientific literature, open source web-browser-based digitizing software, WebPlotDigitizer was 

used for a quick access to accurate data extraction [10].  
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   Figure 3: Scheme for the pharmacokinetic 17 compartment model  

1.4  PBPK Modelling of Cisplatin by ‘17 Compartment Model’ 

        

The whole body pharmacokinetics (PK) of cisplatin will be ascribed by a ‘17 

compartment model’ supported by the platforms PK-Sim and MoBi. The mechanistic PK process 

of cisplatin occurs in each of 17 anatomical organ compartments connected via physiological 

blood flow (indicated with arrows) to the systemic circulation as illustrated in Figure 3. The 

central blood compartments (Arterial blood and venous blood) are further divided into blood 

cells and plasma [9]. Solid organs are further divided into plasma, blood cell, interstitial and 

intracellular spaces. As cisplatin is intravenously (IV) injected into a vein, it subsequently enters 

each vascular organ compartment by 

arterial blood flow and leaves by 

venous blood flow in the systemic 

circulation. It is noted that using the 

PBPK modelling technique, the PK of 

a drug can also be predicted for 

individuals with particular organ 

impairments. For example, for a 

patient with a renal impairment, the 

metabolism of the drug in kidney can 

easily be manipulated. The basic 

principle is that the PK of cisplatin is 

studied and predicted by measuring 

the plasma drug concentration of the 

whole body that is accessed with 

different algorithms for particular 

organ compartments interconnected by 

the physiological blood flow.   
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Chapter 2 Research Design and PBPK Modelling Workflow 

      

 

2.1  Research Design 

        

In order to construct a PBPK model, experimentally obtained PK datasets of cisplatin for 

both rats and humans must first be collected as they are of primary importance in optimizing the 

parameters, validating the PBPK models, and most of all in ensuring that sufficient data are 

available to create a model. The details of the parameters such as to how they can be selected are 

addressed in Chapter 3. Physicochemical data such as lipophilicity, molecular weight, and the 

ADME parameters (from drug-organism interaction) are also collected from the experimental 

data reported in the literature.  

        

 In this thesis, the pharmacokinetics (PK) of cisplatin is analyzed by reproducing a 

number of observed PK data which describe the drug kinetics as the drug mean concentration in 

plasma over time profile. The experimentally obtained physicochemical data of cisplatin and 

applicable anatomical and physiological data that are stored in the PK-Sim platform are fused 

with defined drug administration protocols to construct an initial PBPK model. While the 

simulated PK profiles from the model are fitted with the in-vivo PK data, the parameters are 

simultaneously optimized. It should be noted that despite the presence of several reported values 

of lipophilicity of cisplatin, the most uncertain physicochemical parameter, lipophilicity, also has 

to be optimized because it is a very sensitive parameter in PBPK simulations. 
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2.2 PBPK Modelling Workflow 

        

In model development, an initial PBPK model is constructed based on observed PK 

datasets for rats following cisplatin administration using various methods: different doses of 

Intraperitoneal (IP) bolus and Intravenous (IV) bolus. Through numerous simulations, 

parameters are optimized numerically by fitting the PBPK model to the experimental cisplatin 

PK profiles or cisplatin mean concentration in plasma over time profiles. This numerical 

optimization is based on a Monte-Carlo algorithm and it will be described in Chapter 4. 

 

In the next step for model evaluation, the developed model is evaluated by comparing 

the simulated PK profile with other observed PK data with different administration protocols. As 

will be addressed in detail in the following sections, a successful PBPK model must obtain the 

consistency of PK predictions against any change in administration protocol, though 

discrepancies between simulated and experimental data inevitably occur. In other words, a good 

PBPK model would consistently produce a PK profile in good agreement with observed data for 

any administration route or dosing regimen. In this thesis, the PBPK model constructed based on 

observed PK datasets with cisplatin administrations of IP bolus and IV bolus is evaluated by 

simulating the PK profiles of IV bolus and IV infusion administrations with different doses and 

comparing them with the corresponding observed PK datasets. With the use of the PK-Sim, the 

consistency of the PBPK model can still be obtained even against systemic changes like 

ontogeny variability [11]. Lastly, the PBPK model constructed and evaluated based solely on 

observed PK datasets for rats is translated into a human model and the validity of the interspecies 

extrapolation is assessed. As will be discussed in more detail in Chapter 5, the parameters that 

have been optimized from the rat model are directly applied to the human model and then the 

simulated PK profile is compared with observed PK datasets for humans. Additionally, the drug 

and enzyme kinetics that make it possible to directly transfer the optimized values to different 

models will be demonstrated in Chapter 4.  
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Figure 4: PBPK modelling workflow for cisplatin  

The PBPK modelling workflow is summarized in Figure 4, which illustrates how 

reliable pharmacokinetics (PK) predictions of cisplatin can be made theoretically. This workflow 

is universal and can be applied to further investigations of other scenarios of interest. For 

instance, the PK prediction of a different drug may be achieved by following this workflow 

description. However, during the modelling process, different parameters will be utilized 

depending on the absorption, distribution, metabolism, and excretion (ADME) details of the 

specific drug in an organism.  
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Chapter 3 Required Data and Assumptions Prior to 

the PBPK Modelling 

     

 

 

3.1  Requirements Prior to the PBPK Modelling 

        

For the PBPK model of one drug to be generated, the drug’s physicochemical data and 

information on drug absorption, distribution, metabolism, and excretion (ADME) are necessary. 

The physicochemical data should include the drug’s molecular weight, number of halogens in the 

molecule (if applicable), acidity, and lipophilicity. As previously stated, lipophilicity, a very 

sensitive parameter in PK simulations, is the only physicochemical parameter that is to be 

optimized while other physicochemical data are fixed in the modelling process. The ADME 

information includes many pharmacokinetic details such as metabolizing enzymes, fraction 

unbound, protein transporters, renal clearance rate, inhibition and induction (if applicable), etc. 

The more are the ADME details, the more realistic and reliable is the constructed model, which 

better reflects the real pharmacokinetics (PK) of the drug in an organism. Sometimes, there may 

not be sufficient ADME information available for some drugs, including cisplatin, which makes 

the PBPK modelling challenging. In such a case, the PBPK modelling essentially requires 

reasonable assumptions which must be supported by solid justification.  

 

The data required for the PBPK modelling can be split into three groups: 

physicochemical data for the drug, ADME data, and PK datasets. The first two groups are used in 

constructing an initial PBPK model with proposed parameters, while the last group is used in 

optimizing and validating the parameters in both model development and model evaluation 

processes. This chapter describes the first two data groups for cisplatin, and the required 

assumptions that lead to the determination of the parameters. 

 

 



11 

3.2 Physicochemical Properties of Cisplatin and Available ADME Data 

    

As previously stated, the drug’s physicochemical data and absorption, distribution, 

metabolism, and excretion (ADME) data are fundamental elements in developing the PBPK 

model. During the optimization process, the organ specific tissue-to-plasma partition coefficients 

which account for the extent of drug distribution over the body are simultaneously determined 

from many physicochemical parameters and the ADME parameters such as fraction unbound, 

and fraction excreted to urine. Physicochemical and ADME data of cisplatin that are used in 

developing the PBPK model, either as input parameters or as references in the optimizing 

process, are listed in the table below. Two values for the lipophilicity exist in the literature. It 

should be emphasized that although lipophilicity is a physicochemical property of the drug, it is 

to be optimized in the range between the two reported values because it is a very sensitive 

parameter in the PBPK simulation. 

     

Table 1: Physicochemical and ADME properties of cisplatin                                  

   Cisplatin  

Molecular weight (g/mol)  300.046 [12] 

pKa  5.06 (Strong basic) [13] 

Lipophilicity, LogP  -2.19 [14], 0.041 [13] 

To be optimized in the model  

Fraction unbound 

 

Rat 

Human  

 

 

62.5%~4.4% (15mins~3hr) [15] 

93.51%~8.98% (30mins~3hr) [16] 

 

Fraction excreted unchanged to urine 

 

Rat 

Human  

 

 

3.46%~33.8% (10mins~1.5hr) [17] 

15.3% at 3hr & 22.5% at 5.5hr [18] 
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3.3  Metabolism of Cisplatin 

 

    

3.3.1 Experimental Observations 

 

Formation of Cisplatin-Metabolite and Cisplatin-Albumin/Intracellular protein/DNA Complex 

    

Cisplatin is not a substrate of active metabolic enzyme such as a member of cytochrome 

P450 which is responsible for metabolizing most drugs during the phase I reaction. Early on 

when cisplatin had just been approved by the FDA, it was conventionally known that once 

cisplatin is administered into an organism, the drug is converted into other compounds [19]. 

However, with the advent of chemical separation techniques, it is currently believed that cisplatin 

gets metabolized to form metabolites. Following a chromatographic procedure, Daley-Yates and 

McBrien successfully found 6 different cisplatin-metabolites [15]. Additionally, intact cisplatin 

binds to albumin, intracellular protein or DNA and recent studies have experimentally shown that 

the product of metabolized cisplatin, cisplatin-metabolite, also binds to the albumin, or 

intracellular protein [20].  

 

 

Anticancer Effect and Nephrotoxicity from Cisplatin-Metabolite and from Cisplatin-

Albumin / Intracellular protein / DNA complex 

    

The reaction of forming the cisplatin-albumin / intracellular protein / DNA complex is 

an irreversible process and the complex is commonly believed to be therapeutically inactive and 

it does not cause any significant nephrotoxicity [20], [21], [22], [23]. Therefore, the formation of 

cisplatin-albumin / intracellular protein / DNA complex is considered as a permanent inactivation 

of cisplatin in the anticancer treatment.  

 

Cytotoxicity and nephrotoxicity of cisplatin-metabolites have been ongoing subjects of 

investigation. Alden and Repta provided experimental evidence where adding the methionine in 

cisplatin treatment enhanced the nephrotoxicity, arguing that one of the most abundant cisplatin-

metabolites, cisplatin-methionine complex, contributes to the nephrotoxicity [24]. Cisplatin-GSH 
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complex, the most abundant cisplatin-metabolite, was also found to cause serious nephrotoxicity 

from the anticancer treatment [25]. On the other hand, several groups have reported that 

cisplatin-methionine does not show any significant anticancer activity [15] or nephrotoxicity [15], 

[26], [27]. One study showed that the parent drug, cisplatin, is the most toxic species among all 

other cisplatin-metabolites and therefore the cytotoxicity and nephrotoxicity decrease as more 

cisplatin-metabolites are formed [28]. Another group experimentally demonstrated that in plasma 

cisplatin-metabolites are less toxic than cisplatin and are not significantly contributing to the 

nephrotoxicity [20]. As will be addressed in followings, cisplatin-metabolites are assumed to 

cause no anticancer effect in this thesis.  

 

Hydrolysis of Cisplatin Before Being Metabolized or Binding to Albumin, intracellular 

protein or DNA 
    

After cisplatin administration, it is commonly believed that most cisplatin compounds 

undergo hydrolysis in biological fluids and they are transformed into hydrated cisplatin species 

[29], [30]. This is due to the replacement of chloride ions with water or hydroxide ions arising 

from the low concentration of the chloride ions in the surrounding and the tendency of the 

system to reach quasi-equilibrium between the unchanged cisplatin and its hydrated species {cis-

[Pt(NH3)2ClOH] cis-[Pt(NH3)2(OH)2], cis-[Pt(NH3)2Cl(H2O)], cis-[Pt(NH3)2(H2O)2], cis-

[Pt(NH3)2(OH)(H2O)]} [31]. In the quasi-equilibrium state, any residual hydrated species posses 

the same pharmacokinetics (PK) properties of unchanged cisplatin. This hydration reaction is the 

rate-limiting step [32], [33], so it is believed that the hydrated species which are more reactive 

and unstable are transient (or intermediates) before binding to albumin, methionine, or 

glutathione in plasma. Binding of the hydrated species to two neighboring guanine, G bases in 

DNA, however, may not likely occur as it was experimentally shown that this binding process is 

very difficult under normal physiological condition [34]. As stated in Chapter 1, binding of 

cisplatin to DNA is preferentially promoted by dissociative electron transfer (DET) reaction of 

cisplatin where cisplatin is attracted by G base which is the most nucleophilic among the four 

DNA bases [6]. It needs to be emphasized that the DET reaction occurs much faster than 

hydrolysis process and the displacement of chloride ions from cisplatin may be dominantly 

initiated by the DET reaction for other cisplatin bindings as well.  
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Formation of Major Cisplatin-Metabolites via DET reaction 
   

    

 

In the order of abundance (or preferential binding) in an organism, cisplatin targets 

peptides (predominantly Glutathione (GSH)), amino acids (mostly methionine and cysteine), 

albumin and DNA. Cisplatin-GSH complex constitutes approximately 60% of cisplatin-

metabolites [35] and it is therefore considered as a major cisplatin-metabolite. The essential and 

semi-essential amino acids methionine and cysteine respectively are the next most abundant 

targets for cisplatin [32], [33]. It was experimentally found that cisplatin strongly binds to 

methionine and cysteine [36], [37].  

 

The preferential binding of cisplatin which produces many cisplatin-metabolites is 

believed to be due to the high cisplatin affinity to nucleophiles or sulfhydryl groups of the 

addressed peptides and amino acids [37]. The sulfhydryl groups, having high nucleophilicity, 

attract cisplatin to induce nucleophilic displacement of the chloride ions via dissociative electron 

transfer (DET) reaction to form more electrically stable cisplatin-metabolites. The DET reaction 

is demonstrated in Equation 1.  

 

The anticancer effect arises when cisplatin binds to DNA after displacement of chloride 

ions. Once cisplatin-metabolite such as complex of cisplatin-GSH, -methionine, or -cysteine is 

formed, the complex is electrically stable enough so it does not require electron transfer from 

DNA guanine, G base. In other words, the cisplatin-metabolite will not bind to DNA and 

therefore, will cause no anticancer effect. It will either bind to albumin, intracellular protein, or 

be excreted through urine as will be detailed in later section. In addition, it has been reported that 

the GSH level is associated with resistance of cancer cells to cisplatin [38]. 

 

As will be explained in more details in the next section, the mean molecular weight of 

cisplatin-metabolites needs to be calculated because cisplatin-metabolite as well as the parent 

drug, cisplatin must be included as a fundamental component in the PBPK model. The 

calculation and steps to get the mean molecular weight of cisplatin-metabolites will be 

demonstrated. Table 2 shows the molecular weights of cisplatin, chloride ion, glutathione, 

methionine, and cysteine that are used to calculate the molecular weights of the 3 major 

cisplatin-metabolite complexes which are also shown. 
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 Table 2: Molecular weights of cisplatin, chlorine ion, glutathione, methionine, cysteine, and the 3 major 

cisplatin-metabolites 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Cisplatin Cl- 

Glutathione 

(GSH) 
Methionine Cysteine 

 

MW (g/mol) 

   

MW of the complex form 

(MW of 2Cl is subtracted) 

 

300.046 [12] 

 

35.45 [39] 

 

307.33 [40] 

   

536.4695 

 

149.208 [41] 

    

378.356 

 

121.16 [42] 

    

350.306 
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3.3.2 Necessary Assumptions  

   

As briefly described in section 3.1, in the PBPK model development process, making 

assumptions on ADME information is sometimes necessary, especially when drug’s metabolic 

details are not sufficiently established. For instance, cisplatin is not metabolized by commonly 

known enzymes but rather establishing quasi-equilibrium or electron transfer is found to promote 

the metabolism of cisplatin. In this section, necessary assumptions on ADME details are 

described and terms that are frequently used from here on are defined. 

 

Cisplatin-metabolite is subject to either bind to albumin, intracellular protein or be 

excreted out of the organism by having relatively low molecular weight and mobility in plasma, 

cell or interstitial space. Therefore, it is often called as a mobile metabolite. The mobile 

metabolite is any metabolized form of cisplatin that is not bound to albumin, intracellular protein, 

or DNA. On the other hand, by having relatively high molecular weight, cisplatin-albumin / 

intracellular protein / DNA complex is assumed not to be appreciably cleared or redistributed 

throughout the time course of pharmacokinetic (PK) analysis in animal studies (up to 4 hours) 

and in human studies (up to 6 hours). It is assumed to be fixed and accumulated in an organism 

and therefore, it is called as a fixed metabolite. The albumin, intracellular protein or DNA-

unbound platinum species including intact cisplatin and mobile metabolite are defined as 

ultrafilterable platinum.  

 

Based on the experimental evidence for the metabolism of cisplatin, following statements 

can be summarized. Cisplatin is metabolized to form a mobile metabolite, while a fixed 

metabolite is irreversibly formed from binding of either intact cisplatin or mobile metabolite to 

the albumin, intracellular protein or DNA. To be more specific for the formation of fixed 

metabolite, intact cisplatin binds to all albumin, intracellular protein, and DNA but mobile 

metabolite binds to only albumin, and intracellular protein. Therefore, only intact cisplatin is 

responsible for therapeutic effect due to its capacity to bind to DNA for cancer cell death. These 

formations can occur through the transient stage, the hydrolysis of cisplatin, but they can also be 

initiated immediately after cisplatin administration without going through the hydrolysis. In 

particular, binding of cisplatin to DNA is initiated immediately through the dissociative electron 
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Figure 5: Metabolism of cisplatin based on experimental evidences 
 

transfer (DET) reaction. The ultrafilterable platinum, including the intact cisplatin and the mobile 

metabolite, is albumin, intracellular protein or DNA-unbound platinum species. Additionally, the 

biliary clearance of cisplatin is negligibly small [43], so in the course of the PBPK modelling in 

this thesis, only urinary excretion is considered as a route of drug excretion.  

 

The metabolism of cisplatin based on the experimental evidence is illustrated in Figure 5 

below. Cisplatin is metabolized to form the mobile metabolites in both plasma space and cell 

space and the corresponding metabolizing rates are respectively represented by Kmet_Plasma 

and Kmet_Cell. Cisplatin may bind to a peptide or an amino acid, forming the mobile metabolite 

(solid rectangle in blue in Figure 5). The irreversible formations of fixed metabolite from intact 

cisplatin in plasma space and in cell space are handled by binding rates of Kbind1 (Albumin), 

Kbind1 (Int. Protein) and Kbind1 (DNA). Additional binding rates for the irreversible formation 

of fixed metabolite from mobile metabolite in plasma space and in cell space are represented by 

Kbind2 (Albumin) and Kbind2 (Int. Protein) respectively. It is noted that only Kbind1 (DNA) is 

responsible for the actual antitumor activity. Kp represents partition rate of low molecular weight 

species (excluding the fixed metabolite) through biological spaces.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

To minimize the complexity of constructing the PBPK model while concisely preserving 

the purpose of the thesis, a number of assumptions have been made. It should be emphasized that 

the new metabolizing and binding rates or parameters that will be presented, are chosen only for 

the purpose of analyzing the pharmacokinetics (PK) of cisplatin. 

  

The assumptions on cisplatin metabolism are the following: Kbind1 represents the rates 

of irreversible binding of the intact cisplatin to albumin in plasma and to intracellular protein, 

and DNA in cells. Kbind2 represents the rates of irreversible binding of the mobile metabolite to 

albumin in plasma, and to intracellular protein in cells. The two metabolizing rates, 

Kmet_Plasma and Kmet_Cell that are occurring in both plasma space and cell space are 

characterized by Kmet. The Km of the urinary excretion is assumed and set to be the same for the 

mobile metabolite as for the intact cisplatin, where Km, the Michaelis-Menten constant, is a 

concentration of a substrate (unchanged cisplatin or mobile metabolite) allowing the renal system 

to achieve half the maximum rate of urinary excretion in this context.  

 

 Based on these assumptions, the PBPK model must be constructed such that the mobile 

metabolite irreversibly binds to albumin or intracellular protein and also it is excreted through 

urine. To do so, virtual mobile metabolite, which physicochemically represents the mean mobile 

metabolite, needs to be created as the intact cisplatin is created. The three major mobile 

metabolites that are formed most abundantly are produced from cisplatin interaction with 

glutathione (GSH), methionine, and cysteine. By subtracting the molecular weight of 2 chlorine 

ions from the molecular weight of intact cisplatin and adding it to the molecular weight of the 

binding species, the molecular weight of the corresponding mobile metabolite can be estimated, 

and the molecular weights of the three are listed in Table 2. As stated earlier, approximately 60% 

of the mobile metabolites are cisplatin-GSH complex [35], so it can be expected that the other 40% 

are mostly constituted of methionine and cysteine metabolites. In this thesis, it is assumed that 

the other 40% are equally produced by the two mobile metabolites as no other data regarding the 

mobile metabolite composition was found. The molecular weight of the mean mobile metabolite 

is therefore calculated to be 467.6 g/mol.  
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3.4  Parameters 

  

Parameters are to be mathematically optimized based on observed rat PK data using a 

Monte Carlo algorithm during the PBPK model development process. Seven parameters are used 

for the purpose of the thesis. Three of them (Kbind1, Kbind2, and Kmet) are from cisplatin 

metabolic processes as described in previous section. The remaining parameters are two 

lipophilicity values and two TSmax values one each for intact cisplatin and mobile metabolite. 

TSmax represents the maximum tubular secretion rate. As will be described in more details in 

Chapter 4, the renal clearance is set to be handled by active passive process, glomerular filtration, 

and passive process, tubular secretion. The seven parameters are summarized in the table below.  

 

 

 Table 3: Seven parameters to be optimized 

           

 

 

 

 

 

  

 

 

 

  

     

 Intact cisplatin Mobile metabolite 

Metabolic process Kbind1 Kmet Kbind2 

Renal clearance TSmax (Intact cisplatin) TSmax (Mobile metabolite) 

Sensitive physicochemical parameter Lipophilicity (Intact cisplatin) Lipophilicity (Mobile metabolite) 
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Chapter 4 Model Development 

 

 

      

4.1  Introduction 

 

The PBPK model is mechanistic in nature as it integrates the physicochemical properties 

of a drug with the anatomical and physiological system to describe drug kinetics while 

investigating the absorption, distribution, metabolism, and excretion (ADME) information such 

as tissue-to-plasma partition coefficients and intrinsic clearance.  

 

Owing to the mechanistic pharmacokinetics (PK) modelling approach in each organ 

compartment, the detailed quantitative assessment of cisplatin and its tissue and plasma 

disposition can be determined. During the parameter optimization process in model development, 

the organ specific tissue-to-plasma partition coefficients which account for the extent of drug 

distribution over the body are simultaneously determined from the physicochemical properties of 

the drug and the drug interactions with anatomy and physiology based on the tissue composition.  

 

This chapter describes the development of a rat model which will be evaluated and 

translated into a human model for validation in Chapter 5. The initial PBPK model is constructed 

solely based on the physicochemical data of cisplatin, the anatomy and physiology of rats, and 

the assumptions made on the ADME details. This model will be fitted to the mean plasma 

concentration over time profiles of six observed PK datasets for rats while the parameters are 

optimized. Further model evaluation will be presented in Chapter 5. 
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Enzyme Kinetics in PK Analysis of Cisplatin 
    

The first order reaction rate constants, Kbind1, Kbind2 and Kmet that have a 

characteristic of an intrinsic clearance must be obtained to study and predict the PK of cisplatin 

because they need to be uniquely defined or optimized to work globally under different drug 

concentrations. In other words, one particular optimized value of the rate constant should be used 

to simulate various PK profiles according to the drug concentration that is administered. The 

relationship of the first order reaction rate constant, K with the drug concentration dependent 

metabolizing, or binding rate (M or B) is shown in equation below. 

                  M  or  B  =  K * [Drug]
1
               (2) 

   

Therefore, in the building block setting, the three metabolic clearance rates are to be set as 

intrinsic clearances which are under the so called linear first order kinetics to avoid enzyme 

saturation as will be demonstrated in section 4.2.2. 

 

As for renal clearance, the Michaelis-Menten constant, Km, defined as the concentration 

of a substrate (intact cisplatin or mobile metabolite) at half the maximum rate, Vmax of the drug 

elimination in the renal system should be set at a high value in order to achieve the linear first 

order kinetics. The actual ADME setting including the renal clearance of Km is presented in the 

next section. The rate of metabolism, M, and the clearance rate, CL, are defined respectively as: 

M = 
      

    
 ,  CL = 

 

 
          (3) 

 

where Vmax is the maximum rate of metabolism and C is drug concentration. If Km is much larger 

than C, Equation 3 becomes: 

M ≈ 
      

  
 ,  CL = 

    

  
        (4) 

 

and the drug concentration independence and the linear first order kinetics condition are fulfilled 

in the renal system as well. 

 

Accordingly, both metabolic and renal clearances in the PBPK model are to be set to 

follow the linear first order kinetics and this set-up is to be validated by observing the ‘real’ 

linearity of cisplatin kinetics during the model evaluation process.  
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4.2  Method 

        

   

4.2.1 PK Data Acquisition 

  

Six different mean plasma concentration over time profiles from five different cisplatin 

PK study groups have been chosen for the optimization process [15], [17], [20], [44], [45]. In the 

digitizing process, the web-browser-based digitizing software WebPlotDigitizer were used to 

extract numerical PK data from the plots [10]. With the molecular weights of cisplatin (300.046 

g/mol [12]) and platinum (195.08 g/mol [46]), the species concentrations in plasma have been 

converted into molar masses because it allows to avoid calculating the mass concentration (e.g 

ug/mL) for each molecular species such as concentration of cisplatin or platinum.  

 

 

4.2.2 Basic Building Block Setting 

   

Compounds: Cisplatin and Mobile Metabolite 
    

In creating cisplatin as a virtual compound in the PK-Sim platform, the physicochemical 

properties listed in Table 1 were used. As previously mentioned, lipophilicity is a very sensitive 

physicochemical parameter in the PK simulation. For example, a slight increase in lipophilicity 

will significantly increase the tissue-to-plasma coefficient and thus increase the volume of 

distribution. Consequently, the drug will be eliminated at a slower rate and this will be indicated 

by less steep slope in the PK simulation. Therefore, the lipophilicity is treated as a parameter and 

is expected to be optimized to a value between the two experimentally observed values.   
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Based on the assumptions presented in Chapter 3, the ADME setting of cisplatin was 

made as follows. Cisplatin is metabolically cleared by Kbind1 (binding to albumin, intracellular 

protein, or DNA) and by Kmet (being metabolized). When cisplatin is cleared by Kbind1, the 

resulting product, fixed metabolite gets accumulated. When cisplatin is cleared by Kmet, the 

mobile metabolite is formed and this is to be further processed as will be addressed later in this 

section. Cisplatin is also renally cleared by tubular secretion (Km set as 1000 mol/l), and 

Glomerular filtration (GFR fraction set as 1).  

 

It is noted that the first order process was chosen for all three Kbind1, Kbind2, and Kmet 

to avoid enzyme saturation. The enzyme saturation in this context represents a situation where 

metabolizing or binding rate (different from the first order reaction rate constant) stops 

increasing at certain cisplatin concentration when cisplatin concentration is increasing. A high 

number of Km, 1000 mol/l was chosen for the tubular secretion to achieve the linear first order 

kinetics under the Michaelis-Menten kinetics due to the reason addressed above. The tubular 

secretion of cisplatin is to be investigated by optimizing TSmax during the model development 

process. Given that tubular secretion occurs, it is often preferred to have the glomerular filtration 

rate, GFR at its maximum, GFRmax which will also contribute to the renal clearance process. To 

account for the GFRmax, defined below, GFR was set as 1. 

 

GFRmax  =  GFR * (Fraction Unbound)        (5) 

 

The mobile metabolite must also be included as a virtual compound in order to account 

for its elimination during the pharmacokinetics (PK) process. On the other hand, the fixed 

metabolite is assumed to be accumulated in the time course of pharmacokinetic (PK) analysis so 

it was not necessary to create one for the fixed metabolite. The ADME setting of the mobile 

metabolite was made the same as for cisplatin, except that it is missing the Kbind1 since Kbind1 

is a metabolic clearance rate only for the intact cisplatin to be metabolized whereas mobile 

metabolite is the final product after the Kbind1 action.  
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Individuals: Rats with Various Weights 
    

Virtual rats were separately created according to the anatomical data of rats presented in 

different studies. Weight is the only variable among virtual rats. The metabolic expression of the 

rat was then set to link to the three clearances (Kbind1, Kbind2, and Kmet) of cisplatin. It is 

noted that the renal clearances are already linked by default.   

 

 

Formulations and Administration Protocols 
     

The formulation type was set as ‘dissolved’ as cisplatin is always injected intravenously 

(IV) as a dissolved solution. Other formulation types such as ‘weibull distribution’ would require 

a drug dissolution time or lag time to be entered for an orally taken drug, such as tablet. For the 

administration protocols, different doses and administration types were separately assigned 

according to the protocols that the pharmacokinetics (PK) studies used. In this thesis, only an 

administration of a single dosing interval is used. However, developing cisplatin PBPK model of 

multiple dosing intervals is certainly practicable and may be pursued in a future project. The 

administration protocols of the six different PK profiles that have been used to optimize the 

parameters are shown in the table below. 

 

Table 4: Administration protocols used by cisplatin PK groups  

 Administered Drug Administration type Dose (mg/kg) 

Hanada et al. [20] Cisplatin Intravenous (IV) bolus 5 

Hanada et al. [20] Mobile metabolite Intravenous (IV) bolus 8.389 

Yates and Mcbrien [15] Cisplatin Intraperitoneal (IP) bolus 15 

Nagai et al. [17] Cisplatin Intravenous (IV) bolus 5 

Fukushima et al. [44] Cisplatin Intravenous (IV) bolus 5 

Okada et al. [45] Cisplatin Intravenous (IV) bolus 5 
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It is noted that the rat PK of mobile metabolite has been studied by Hanada et al. [20] 

and it is of particular importance in investigating the mobile metabolite kinetics associated with 

the fixed metabolite accumulation in the body. The elimination of the administered mobile 

metabolite and the resulting production of the fixed metabolite over time are well studied by the 

group. Therefore, by adopting this PK profile data of the mobile metabolite as one of the six 

optimizing components (six observed PK datasets), the rate of irreversible binding of the mobile 

metabolite to produce the fixed metabolite, Kbind2 can be determined. For the administered 

mobile metabolite dose, Hanada et al. used ‘platinum concentration’ in the plasma (3.5 mg (pt) / 

kg) while other PK studies with cisplatin administration used ‘cisplatin concentration’ in the 

plasma (e.g 5 mg (cisplatin) / kg). The mobile metabolite administration dose must be converted 

to be expressed as ‘mobile metabolite concentration’ which is essentially required to be entered 

in the PBPK model development process. The molecular weights of platinum and mobile 

metabolite (calculated in section 3.3.2) have been used to convert it as following: 

 

3.5 mg (pt) / kg * 
                                    

                           
 =  8.389 mg (mobile metabolite) / kg   

(6) 
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4.2.3 Simulation Setup 

    

The term simulation can be ambiguous to some extent because it can refer to a single 

species PK simulation or it can also refer to a simulation of one PK study containing many PK 

simulations. For example, a simulation reproducing an experimental PK study with cisplatin 

presented by Nagai et al. [17] contains four different PK simulations representing the 

pharmacokinetics (PK) of intact cisplatin, mobile metabolite, ultrafilterable platinum, and a 

fraction excreted to urine. Therefore, it needs to be more clearly defined. ‘The 6 PK-profile 

simulations’ refers to the six simulations, and each of them contains several PK simulations, 

developed for the purpose of optimizing the parameters. They are based on the rat PK datasets of 

six different cisplatin PK studies observed by five different cisplatin PK study groups. A brief 

description will be included with the result of each simulation. For example, “In the simulation 

reproducing experimental PK study by Nagai et al. [17], a great agreement can be found between 

ultrafilterable platinum PK simulation and the corresponding observed PK data” 

 

Additional PK Simulations 
    

     

As briefly discussed in section 3.3.2, there are species specifically defined for the purpose 

of this thesis such as mobile metabolite, fixed metabolite and ultrafilterable platinum. The 

pharmacokinetics (PK) profile of any created compound can be simulated by the PBPK 

modelling platform, PK-Sim, that is, the PK profiles of cisplatin and mobile metabolite are 

already formulated to be simulated. As for non-created species such as fixed metabolite and 

ultrafilterable platinum, however, the corresponding equation is required to be input manually. In 

the language of Open Systems Pharmacology [9], the formulation modality is referred as 

‘observers’, which allows the desired PK simulation to be generated. The addition of the new PK 

simulation using the observers has been done through another PBPK modelling platform, MoBi, 

and the necessary equations for the non-created species that have been added into observers are 

described in the following.  
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The fixed metabolite which is assumed to be accumulated in the body is a sum of 

irreversible binding products from intact cisplatin and mobile metabolite, handled by Kbind1 and 

Kbind2 respectively. So the fixed metabolite equation has been constructed as: 

   

Fixed metabolite  =  Kbind1-metabolite  +  Kbind2-metabolite  (7) 

 

The albumin, intracellular protein, or DNA-unbound platinum species, ultrafilterable 

platinum, consists of the intact cisplatin and mobile metabolite and therefore, the equation has 

been constructed as: 

     

Ultrafilterable platinum  =  cisplatin  +  mobile metabolite  (8) 

 

 Additionally, another equation for fraction unbound was required to be constructed, 

which by definition accounts for the fraction of therapeutically active species in plasma over the 

time course of PK analysis. As discussed in Chapter 3, only the parent drug, intact cisplatin 

which is unbound to albumin, intracellular protein, or DNA is responsible for therapeutic effect 

due to its capacity to bind to DNA guanine, G base via the dissociative electron transfer (DET) 

reaction. Therefore, the fraction unbound for cisplatin should be constructed as concentration of 

unbound cisplatin over sum of concentrations of unbound and bound cisplatin as:  

 Fraction unbound for cisplatin =  
                   

                                      
    (9) 

 

Given that fixed metabolite is produced from both intact cisplatin and mobile metabolite 

bindings, Equation 9 can be re-written as:  

  Fraction unbound for cisplatin =  
                   

                                                                
    (10) 

 

However, available in-vivo data of fraction unbound for cisplatin as defined in Equation 10, 

could not be found, implying that the fraction unbound can only be simulated without validation. 

This will be revisited after successfully developing and evaluating the PBPK model when ‘actual’ 

cisplatin fraction unbound for cisplatin is predicted in Chapter 5. 
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Alternatively, fraction unbound data for platinum species could be found and adopted in 

this thesis for the purpose of developing and evaluating the PBPK model with given PK datasets. 

Platinum species represents ultrafilterable platinum or any platinum species that is unbound to 

albumin, intracellular protein, or DNA. Due to the limited data availability of experimentally 

observed fraction unbound for cisplatin and platinum species, only two PK studies have been 

found, which presented observed PK profiles of cisplatin species as well as the fraction unbound 

that are suitable to be adopted in this thesis. For example, fraction unbound data that was 

observed from rats or humans in the PK analysis time course of less than 6 hours was required in 

order to have the same experimental settings as for other observed PK datasets adopted for the 

model development and evaluation processes. The observed data of fraction unbound for 

platinum species (not cisplatin) could be obtained from the two PK studies; Yates and Mcbrien 

[15] presented rat pharmacokinetics (PK) of intact cisplatin, ultrafilterable platinum, and fraction 

unbound for platinum species in the investigation of finding toxicity levels of intact cisplatin and 

mobile metabolites. This fraction unbound has been used in the PBPK model development 

process as will be described later in this section. Verschraagen et al. [16] presented human 

pharmacokinetics (PK) of intact cisplatin, ultrafilterable platinum, and total platinum in the study 

of evaluating a chemoprotectant candidate against cisplatin-induced side effects. The data of 

fraction unbound for platinum species could be estimated from given PK data of other cisplatin 

species as will be shown in Chapter 5 where the PBPK model is validated for its predictive 

utility for extrapolation from rats to humans. In order to account for the fraction of all albumin, 

intracellular protein, or DNA-unbound platinum species, a new equation has to be constructed as: 

 

   Fraction unbound for platinum species =  
                          

                                             
    (11) 
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Fitting PK Fractions to Observed Data 
    

     

 The PK simulation of the fraction unbound has been matched to the platinum species 

fraction unbound data observed by Yates and Mcbrien [15] to be used in the parameter 

optimization process along with other pharmacokinetics (PK) simulations.  

 

 Another PK fraction that is of paramount importance in the PBPK model development 

process is ‘fraction excreted to urine’ as it reflects the renal clearance which contributes to most 

of the elimination kinetics for the majority of the drugs. As the name implies, it represents the 

fraction of the administered drug that is excreted to urine as unchanged or intact. The PK 

simulation of the fraction excreted to urine has been matched to cisplatin fraction excreted to 

urine data observed by Nagai et al. [17]. 
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4.3  Results 

         

   

4.3.1 Initial Model Development 

  

The 6 PK-profile simulations have been carefully developed to reproduce the 

corresponding observed cisplatin PK profiles as closely as possible while parameters are 

optimized accordingly. All the 6 PK-profile simulations contain intact cisplatin simulation which 

describes cisplatin pharmacokinetics (PK), the main focus of this thesis. The ultrafilterable 

platinum simulation is presented in half of the 6 PK-profile simulations among which one 

requires a calculation to estimate the ultrafilterable platinum PK data. Hanada et al. [20] have 

presented the PK data for both intact cisplatin and mobile metabolite, so the PK data for 

ultrafilterable platinum can be estimated by summing the two. As mentioned, the simulations for 

the fraction unbound and fixed metabolite are presented in the two simulations reproducing 

experimental PK studies presented by Yates and Mcbrien [15] and Nagai et al. [17] respectively. 

In order to understand the PK of cisplatin and mobile metabolite with respect to metabolic 

clearance, it is necessary to observe fixed metabolite production over time. Hanada et al. [20] 

provided observed data of two PK profiles where the production or accumulation of the fixed 

metabolite from intact cisplatin administration and from mobile metabolite administration is 

described. It should be emphasized that the two observed PK profiles play an important role in 

finding relationships between parameters during the parameter optimizing processes. In 

particular, the simulated PK profile with mobile metabolite administration provides clear 

relationship between Kbind2 and renal clearances since there is no Kbind1 or Kmet on action 

due to absence of the intact cisplatin in the course of the PK analysis. The optimizing processes 

for determining the parameters by PBPK model fitting to the observed PK profiles is detailed in 

the following section. 
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Figure 6: Monte-Carlo method (in red) 

and gradient method (in blue) in 

optimization process 
 

4.3.2 Parameter Optimization 

  

The PBPK model fitting to the observed data 

has been done by using numerical optimization that is 

based on a Monte-Carlo algorithm. The Monte-Carlo 

algorithm provides more accurate results by taking the 

global minimum of the average error as opposed to 

taking local minima which are found in the general 

gradient method. Average error in this context 

represents an average of the errors from all the 

parameters that are used. Figure 6 illustrates one 

parameter being optimized by finding a global minimum value of the average error. In this thesis, 

this process is applied to all 7 parameters simultaneously. Additionally, in the optimization 

process, an optimized value of a parameter is said to be a ‘unique value’ or ‘uniquely identifiable 

value’ only if the same value (or a very close value) is obtained from multiple numerical 

optimizations with different initial values (referred as ‘start values’ in the platform) of the 

parameter. In this thesis, this numerical optimization is to be conducted multiple times with 

different initial values of all the parameters in order to find the unique values. 

 

A total of fifteen simulations, each representing cisplatin species PK, fraction unbound, 

or fraction excreted to urine in the 6 PK-profile simulations have been matched or coupled with 

the corresponding observed PK data to conduct the numerical optimization as shown in Table 5. 

Some of them were coupled with higher weights because their close matches are more significant 

than others or other matches present more abundantly. For example, all six cisplatin simulations 

from the 6 PK-study simulations were coupled with the observed data with higher weights 

because cisplatin pharmacokinetics (PK) is in fact more significant in this study. The two PK 

fraction matches for fraction unbound and fraction excreted to urine were also weighted higher 

because each fraction data was provided by one PK study group (e.g fraction unbound data and 

fraction excreted to urine data were only provided by Yates and Mcbrien [15] and Nagai et al. 

[17] respectively) 
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Table 5: Simulation matching with observed data and resulting parameter optimization  

 

 Simulations matched with 

observed data 
Parameters to be optimized 

Hanada et al. [20] 

 

 

Cisplatin PK 
Kbind1, Kmet, TSmax (cisplatin), and lipophilicity 

(cisplatin) 

Mobile metabolite PK 
Kmet, Kbind2, TSmax (mobile metabolite), and 

lipophilicity (mobile metabolite) 

Fixed metabolite PK 
Kbind1, Kbind2, lipophilicity (cisplatin), lipophilicity 

(mobile metabolite) 
 

Ultrafilterable platinum PK All 7 parameters 

 

Hanada et al. [20] 

 

Mobile metabolite PK 
Kmet, Kbind2, TSmax (mobile metabolite), and 

lipophilicity (mobile metabolite) 

Fixed metabolite PK 
Kbind1, Kbind2, lipophilicity (cisplatin), lipophilicity 

(mobile metabolite) 

Yates and Mcbrien [15] 

 

Cisplatin PK 
Kbind1, Kmet, TSmax (cisplatin), and lipophilicity 

(cisplatin) 

 

Ultrafilterable platinum PK All 7 parameters 

 

Fraction unbound All 7 parameters 

Nagai et al. [17] 

 

Cisplatin PK 
Kbind1, Kmet, TSmax (cisplatin), and lipophilicity 

(cisplatin) 

Mobile metabolite PK 
Kmet, Kbind2, TSmax (mobile metabolite), and 

lipophilicity (mobile metabolite) 

 

Ultrafilterable platinum PK All 7 parameters 

Fraction excreted to urine 
Kbind1, Kmet, TSmax (cisplatin), and lipophilicity 

(cisplatin) 

Fukushima et al. [44] 

 
Cisplatin PK 

Kbind1, Kmet, TSmax (cisplatin), and lipophilicity 

(cisplatin) 

Okada et al. [45] 

 
Cisplatin PK 

Kbind1, Kmet, TSmax (cisplatin), and lipophilicity 

(cisplatin) 
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Figure 7: Three numerical optimization results run from different starting values of the parameters (generated by Open systems pharmacology (2019) 

platform [9]) 
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 Three numerical optimizations have been attempted, all run from with initial values of 

the parameters as shown in Figure 7. On the very right side in the figure, the two diamonds in 

blue indicate the minimum and maximum values or ‘optimizing window’, the square in grey 

indicates the starting value initially set for the parameter to be optimized, and the circle in orange 

indicate the final optimized values.  

 

Notably, each optimized value for the lipophilicity of cisplatin, lipophilicity of mobile 

metabolite, and Kmet came out to be exactly the same values from all the three trials. For other 

parameters, Kbind1, Kbind2, and TSmax for mobile metabolite, very close optimized values 

could be obtained from the three trials all with less than 0.1% offset. However, the optimized 

values for the TSmax for cisplatin from the three trials do not appear to be close to each other. In 

other words, TSmax for cisplatin, which provides kinetic information of the intact cisplatin 

tubular secretion, was not uniquely identified, and so renal clearance is to be further investigated 

in a later section. It could be concluded that the parameters, Kbind1, Kbind2, Kmet, TSmax for 

mobile metabolite, lipophilicity of cisplatin and lipophilicity of mobile metabolite have been 

uniquely identified which would make the PBPK model closely fit to the observed PK data.  

 

 

4.3.3 The PK Analysis with PK Simulations with Optimized Parameters 

  

The last set of optimized values in Figure 7 has been chosen to be transferred to the 6 PK-

study simulations, although the other sets would work fairly well due to the reasons addressed 

above. It should be noted that the 6 PK-study simulations are each generated with the same set of 

optimized values to observe how closely the constructed PBPK model fits the observed PK data, 

and therefore the optimized parameters are often called as global parameters. These optimized 

parameters will be evaluated in Chapter 5 as to whether they work globally or not under 

administration protocols different from what are used in this chapter and moreover, after 

extrapolating to a human model. In the following, each of the 6 PK-study simulations will be 

presented with brief descriptions and the PK simulations generated with the optimized values 

will be compared with observed PK data. 
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Figure 8: Simulation reproducing experimental PK study by Hanada et al. [20] showing PK simulations 

(solid lines) of intact cisplatin (in red), ultrafilterable platinum (in orange), mobile metabolite (in blue), 

and fixed metabolite (in black); solid dots represent experimentally observed values (generated by Open 

Systems Pharmacology (2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure 8 illustrates PK simulations of intact cisplatin, ultrafilterable platinum, mobile 

metabolite, and fixed metabolite, reproducing the observed PK data by Hanada et al. [20]. The 

following descriptions are necessary to understand cisplatin PBPK analysis adopted in this thesis:  

 

 Dots represent the observed values and solid lines represent the PK simulations. 

 Different colors represent different species: 

“Intact cisplatin in red”, “ultrafilterable platinum in orange”, “mobile metabolite in blue”, 

“fixed metabolite in black” 

 

The intact cisplatin simulation and the ultrafilterable platinum simulation predict the 

concentrations of both species to be a little higher than what are observed in the first hour. The 

relatively steep decrease in concentration of the intact cisplatin is from the metabolic clearances 

of all Kbind1, Kmet and renal clearance. The production of fixed metabolite is well reflected by 

the fixed metabolite simulation. Also, the production of mobile metabolite from the administered 

cisplatin at the beginning that is handled by Kmet, and the elimination of the mobile metabolite 

later handled by the balance of Kmet, Kbind2 and renal clearance are in detail described by the 

mobile metabolite simulation.  
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Figure 9: Simulation reproducing experimental PK study by Hanada et al. [20] showing 

PK simulations (solid lines) of mobile metabolite (in blue), and fixed metabolite (in black); 

solid dots represent experimentally observed values (generated by Open Systems 

Pharmacology (2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 illustrates PK simulations of mobile metabolite and fixed metabolite after the 

mobile metabolite administration, reproducing another observed PK data by Hanada et al. [20]. 

The significance of this simulation in finding relationships between the metabolic clearances of 

the parameters (Kbind1, Kbind2, and Kmet) and renal clearance is emphasized in section 4.3.1. 

 

As previously mentioned, there is only Kbind2 as a metabolic clearance process since 

the mobile metabolite is administered and the intact cisplatin is absent. As a result, the 

production of the fixed metabolite as shown in Figure 9 is solely made from the mobile 

metabolites handled by Kbind2 only and is well reflected by the fixed metabolite simulation. The 

pharmacokinetics (PK) of mobile metabolite is also well described by the mobile metabolite 

simulation. It is noted that the decrease in the concentration of mobile metabolite is from both 

Kbind2 and renal clearance, while fixed metabolite is only accumulated because it is neither 

metabolically nor renally cleared in the time course of the PK analysis.  
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Figure 10: Simulation reproducing experimental PK study by Yates and McBrien [15] showing 

PK simulations of intact cisplatin (solid line in red), ultrafilterable platinum (solid line in orange), 

and fraction unbound (dotted line in green); solid dots represent experimentally observed values 

(generated by Open Systems Pharmacology (2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 illustrates PK simulations of intact cisplatin, ultrafilterable platinum, and 

fraction unbound reproducing the observed PK data by Yates and Mcbrien [15]. One additional 

simulation described here is a fraction unbound simulation represented by the dotted line in 

green. 

 

All simulations generated here appear to adequately reflect the observed PK data except 

that at an observed time of 15 min, a significant difference is found between concentration of 

ultrafilterable platinum and that of intact cisplatin by experimental observation whereas only a 

small difference is predicted by the simulations. According to the observed data, at the start of 

cisplatin administration, there must be enormous metabolizing activities which cause the split of 

the intact cisplatin and the ultrafilterable platinum by producing an excess of mobile metabolite. 

This observation appears to agree with the idea of cisplatin metabolism via dissociative electron 

transfer (DET) reaction which occurs much faster than hydrolysis under normal physiological 

condition. Note that an important ADME parameter, fraction unbound, which represents the 

fraction of albumin, intracellular protein, or DNA-unbound platinum species, or ultrafilterable 

platinum has also been reproduced in an excellent agreement with the observed data.  
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Figure 11: Simulation reproducing experimental PK study by Nagai et al. [17] showing PK 

simulations of intact cisplatin (solid line in red), ultrafilterable platinum (solid line in orange), 

mobile metabolite (solid line in blue), and fraction excreted to urine (dotted line in pink); solid 

dots represent experimentally observed values (generated by Open Systems Pharmacology 

(2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 illustrates PK simulations of intact cisplatin, ultrafilterable platinum, mobile 

metabolite, and fraction excreted to urine, reproducing the observed PK data by Nagai et al. [17]. 

Fraction excreted to urine simulation is represented by the dotted line in pink. 

 

The same administration protocol is followed as in the PK study by Hanada et al. [20] 

with cisplatin administration, and consequently the same corresponding PK simulations have 

been generated. For instance, simulations of intact cisplatin, ultrafilterable platinum, and mobile 

metabolite generated here are the same as those generated in the simulation reproducing 

experimental PK study by Hanada et al. [20] as shown in Figure 8. Note that by comparing 

Figures 8 and 11, discrepancies of observed PK data can be easily found between the two PK 

studies. The observed concentrations of the intact cisplatin and ultrafilterable platinum presented 

here are appreciably higher than those that are observed by Hanada et al. A considerable 

difference in the concentration of the mobile metabolite is also found.  
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The fraction excreted to urine represents the fraction of the intact cisplatin excreted to 

urine as unchanged and it is particularly important in investigating the renal clearance process. 

From conducting multiple numerical optimizations with different starting values, it was found 

that the TSmax for cisplatin is the only parameter that is not uniquely identifiable as 

demonstrated in section 4.3.2. Additionally, the TSmax for cisplatin was found to be about six 

orders of magnitude less than TSmax for mobile metabolite from all three attempts of the 

numerical optimization. Therefore, it was suspected that the intact cisplatin may not be 

significantly excreted through the tubular secretion process but rather through the glomerular 

filtration process. So an attempt was made to re-run the Nagai et al. [17] simulation with 0 

mol/h TSmax for cisplatin and the same values of the uniquely found parameters to determine 

the dependence of TSmax for cisplatin parameter on the fraction excreted to urine simulation. 

There was no change found in any PK simulation, implying that the intact cisplatin is not 

excreted through the tubular secretion or the tubular secretion process for cisplatin is negligibly 

small. The initial hypothesis on the renal clearance was that cisplatin and its metabolites are 

renally cleared by both the active process, tubular secretion and the passive process, glomerular 

filtration.  

 

Based on this practice, it could however be concluded that the renal clearance of the 

intact cisplatin is only processed by the passive process, glomerular filtration, or that the two 

active and passive processes are both occurring but there is also tubular reabsorption which 

hinders the tubular secretion. This idea of the glomerular filtration being a dominant renal 

clearance process and the possible action of the tubular reabsorption were suggested by Yates 

and McBrien [47]. However, their focus was on the renal clearance of the platinum containing 

species, the ultrafilterable platinum, rather than on the intact cisplatin or mobile metabolite as 

investigated in this thesis.  
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Figure 12: Simulation reproducing experimental PK study by Fukushima et al. [44] showing PK 

simulation of intact cisplatin (solid line in red); solid dots represent experimentally observed values  

(generated by Open Systems Pharmacology (2019) platform [9]) 

Figure 13: Simulation reproducing experimental PK study by Okada et al. [45] showing PK 

simulation of intact cisplatin (solid line in red); solid dots represent experimentally observed values  

(generated by Open Systems Pharmacology (2019) platform [9]) 
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Figures 12 and 13 illustrate PK simulations of intact cisplatin reproducing the observed 

PK data by Fukushima et al. [44] and Okada et al. [45]. It should be noted that only those with 

observed PK data have been simulated, although other PK profiles can also be predicted by the 

simulations without the available PK data. For example, as shown in Figure 12, the Fukushima et 

al. [44] simulation only contains the intact cisplatin simulation because an observed data of only 

cisplatin PK has been presented by the group, but it is also possible to simulate or predict other 

PK profiles such as mobile metabolite PK and fraction unbound even if the observed data are not 

available.  

 

Both PK studies followed the same administration protocol employed in the PK studies 

by Hanada et al. and Nagai et al. and again the same intact cisplatin simulations could have been 

generated. In essence, the Figures 8, 11, 12, and 13 show the same simulation for the 

pharmacokinetics (PK) of the intact cisplatin. In the first hour of the PK analysis, Figure 12 

shows a better agreement, but after one hour, Figure 13 shows a better agreement between the 

simulation and the observed PK data.  
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4.4 Conclusions  

        

In this chapter, the development processes of the PBPK model for cisplatin have been 

described, from constructing the initial PBPK model, optimizing and determining the parameters, 

to analyzing the simulated PK profiles. Most PK simulations appear to have great agreements 

with the observed PK datasets. The discrepancies among observed PK data arising from different 

PK study groups even with the same followed administration protocols resulted in inevitable but 

insignificant discrepancies between the simulations and the observed data. At this point, one 

should not be confused between this ‘check-up’ step conducted in the model development and an 

actual evaluation process in the model evaluation. As the last step in the model development, the 

constructed PBPK model is checked or tested if the model is acceptable enough to proceed to the 

model evaluation process or the optimization process will be re-conducted otherwise.  

 

In conclusions, the PBPK model for cisplatin has been successfully developed and 

therefore, the model is to be evaluated by using the same values of accessed parameters under 

different scenarios as will be demonstrated in Chapter 5. One significant physiological finding 

has been discovered from the multiple numerical optimization processes and from analyzing a 

PK profile simulated based on one PK study with fraction excreted to urine data. It was that the 

renal clearance of the intact cisplatin is only or mostly processed by the passive process, 

glomerular filtration. This could be due to either an only presence of the glomerular filtration or a 

situation where all the renal clearances occur but the tubular reabsorption drastically hinders the 

action of the tubular secretion.  
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Chapter 5 Model evaluation 

      

 

 

5.1 Introduction 

 

        

Since the main objective of this thesis is to construct a reliable PBPK model that closely 

represents the real kinetics in agreement with existing observed pharmacokinetics (PK) data of 

cisplatin for rats and as well as for humans, the validity of the developed model needs to be 

evaluated by means of validating the simulated values of parameters under diverse settings. This 

will be discussed in this chapter. The evaluation of the model reliability in this thesis will 

therefore follow steps of assessing the predictive model operation on cisplatin PK on various rats 

and humans. Owing to the mechanistic nature of the PBPK model, the extrapolation can be 

performed by merely modifying the anatomy and physiology of an organism while keeping the 

physicochemical properties of the drug constant. The only challenge in the extrapolation process 

is to find the absorption, distribution, metabolism, and excretion (ADME) details that may differ 

among the species. As an example, the ratio of Kbind1 to Kmet in humans could be different 

from what has been found in the rat model because humans may have different contents of 

available albumin or peptides such as glutathione (GSH) in plasma as compared with rats. This is 

to be investigated during the process of assessing the validity of the PBPK model for humans. 

The approach taken here is to assume that humans have the same ADME details as rats, generate 

the PK simulations accordingly, and analyze the predictive utility by comparing the simulated 

results with observed human PK data. Thus, the same values of the parameters obtained from the 

rat model are to be applied to the human model in order to preserve the same ADME details prior 

to analyzing the human PK profiles. The model evaluation will be completed by reviewing 

predicted values of PK parameters that are specific to one simulation of a PK study, such as total 

plasma clearance, maximum concentration, and half-life.   
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5.2  Method 

        

 

5.2.1 PK Data Acquisition 

  

Nine different PK profiles from two different cisplatin PK study groups have been chosen 

for evaluation of the rat model [48], [49]. All nine PK profiles contain only cisplatin 

pharmacokinetics (PK). Therefore, they are more suitable to be used in the model evaluation 

process because cisplatin PK is the actual resultant or reciprocal element of other cisplatin PK 

influences such as mobile metabolite PK or fraction unbound, and the detailed PK information 

for optimizing the parameters is not required at this stage. Four different PK profiles from three 

different cisplatin PK study groups have been chosen for extrapolating the rat model to human 

model and evaluating the outcome [16], [18], [50]. The molar mass conversion made for the 

concentration of species in the plasma during the model development process has also been 

performed in the model evaluation. 

 

 

5.2.2 Basic Building Block Setting 

  

Compounds: Cisplatin and Mobile Metabolites 
    

 The same virtual compounds, cisplatin and mobile metabolites that have been created 

during the model development process are used in the model evaluation for both rats and humans. 

In other words, the same physicochemical properties of cisplatin and mobile metabolites and 

their ADME settings are adopted for both rats and humans for the purpose of evaluating the 

developed PBPK model.  
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Individuals: Rats with Different Weights and Humans with Various Variables 
    

As before, the virtual rats were separately created according to the anatomical data of 

rats presented in different studies. Weight is the only variable among virtual rats. For the human 

model, virtual humans were also separately created but with more variables such as ethnicity, 

gender, age, weight, and height. The mean values of these variables have been used. The 

metabolic expressions of both rats and humans have been set to link to the three clearances 

(Kbind1, Kbind2, and Kmet) of cisplatin.  

 

 

Formulations and Administration Protocols 
     

The same formulation type, ‘dissolved’ was used for the administration of a dissolved 

cisplatin solution. As for the administration protocols, different doses and administration types 

were separately assigned according to the protocols that the pharmacokinetics (PK) studies used. 

They are all administered with cisplatin as a single dosing interval. The administration protocols 

for rats and humans that have been used to evaluate the model are shown in Tables 6 and 7. 

 

Table 6: Administration protocols for rats used by cisplatin PK groups  

 
Administration type 

Infusion time (hr)   

(if applicable) 
Dose (mg/kg) 

Fukushima et al. [48] Intravenous (IV) bolus N/A 7.5 

Fukushima et al. [48] Intravenous (IV) infusion 2 1 

Fukushima et al. [48] Intravenous (IV) infusion 2 2.5 

Fukushima et al. [48] Intravenous (IV) infusion 2 5 

Fukushima et al. [48] Intravenous (IV) infusion 2 7.5 

Nagai and Ogata [49] Intravenous (IV) bolus N/A 1 

Nagai and Ogata [49] Intravenous (IV) bolus N/A 5 

Nagai and Ogata [49] Intravenous (IV) infusion 2 5 

Nagai and Ogata [49] Intravenous (IV) infusion 3 5 
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Table 7: Administration protocols for humans used by cisplatin PK groups  

 
Administration type 

Infusion time (hr)   

(if applicable) 
Dose (mg/m

2
) 

Verschraagen et al. [16] Intravenous (IV) infusion 1 75 

Andersson et al. [50] Intravenous (IV) infusion 1 100 

Nagai et al. [18] Intravenous (IV) infusion 2 80 

Nagai et al. [18] Intravenous (IV) infusion 4 80 

 

 

 It is noted that another administration type, the intravenous (IV) infusion that is often 

used for cancer treatment in the clinic, is introduced in the model evaluation process. Previously 

in the model development process, the PBPK model has been constructed based on the PK 

profiles with intraperitoneal (IP) bolus and intravenous (IV) bolus types of administration. 

Therefore, in the following sections, the model’s predictive operations on different types of 

administration will also be evaluated. 
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5.3  Result 

        

The simulated values of parameters that have been determined from the model 

development process are to be validated by conducting several visual predictive checks. As 

addressed before, the PK profiles reproducing the observed PK data will be simulated by 

applying the same optimized values of the parameters into both the rat and human models. 

According to the assumptions made on cisplatin metabolism as described in Chapter 3, the 

parameters define the absorption, distribution, metabolism, and excretion (ADME) details of 

cisplatin in an organism. Therefore, validating the optimized values of the parameters is an 

essential step in cisplatin PBPK modeling and furthermore it may help revealing any unclear 

mechanism of cisplatin ADME.  

 

  

5.3.1 Visual Predictive Check with Observed PK Data of Rats 

 

In this section, the last set of optimized values in Figure 7 is applied to the specified rat 

models describing the nine different PK profiles in order to check the predictive performance in a 

consistent manner while validating the optimized values of the parameters. 
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Figure 14: Simulation reproducing experimental PK study by Fukushima et al. [48] showing PK 

simulation of intact cisplatin (solid line in red); solid dots represent experimentally observed values  

(generated by Open Systems Pharmacology (2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 illustrates PK simulation of intact cisplatin reproducing the observed PK data 

by Fukushima et al. [48]. There is an excellent agreement between the simulation and the 

observed PK data except that the simulation has a slightly higher concentration of cisplatin in the 

beginning. It should be noted that although the concentration was last observed at 2 hour by 

Fukushima et al. [48], the end time of the simulation was set to be 4 hour to have the same time 

scale as other PK simulations adopted in the evaluation of the rat models. The discrepancies in 

cisplatin concentrations predicted from 2 hours can be considered as insignificantly small, given 

that the concentration axis is shown with a logarithmic scale as for all other simulations in this 

thesis.  
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Figure 15: Simulations reproducing experimental PK study by Fukushima et al. [48] showing PK simulations of intact cisplatin (solid line in red) with 

intravenous (IV) infusion administrations with different doses; solid dots represent experimentally observed values (generated by Open Systems Pharmacology 

(2019) platform [9]) 
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Four PK profiles of cisplatin pharmacokinetics (PK) with the intravenous (IV) infusion 

administration have been reproduced from the PK observations by Fukushima et al. [48]. The 

only administration protocol variance among them is the administered dose. Therefore, the 

consistency of the model’s PK predictions versus different doses can easily be assessed. 

Following the administration protocols, the infusion times in the simulations are set to be 2 hours 

and as expected, the highest cisplatin concentrations have been found to be at 2 hours, in 

agreement with the observed data. As in the case with bolus administration from the same group 

shown in Figure 14, the initial concentrations have been simulated to be slightly higher until they 

reach the highest concentrations at 2 hours. However, it can apparently be seen that at a higher 

administered cisplatin dose, a better agreement between the simulation and observed data is 

found. Additionally, by observing higher cisplatin concentrations simulated for higher 

administered doses and vice versa, with excellent agreements between the four simulations and 

the four observed PK data, it can be found that the PBPK model maintains the consistency of the 

PK predictions independent of administered doses, as expected from Equation 2. 

 

 Another PK study group, Nagai and Ogata [49] conducted a similar experiment where 

they observed cisplatin PK with administrations of IV bolus and IV infusion but with different 

infusion times rather than the administered dose. The next visual predictive checks of the PBPK 

model are shown in Figure 16.  
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Figure 16: Simulations reproducing experimental PK study by Nagai and Ogata [49] showing PK simulations of intact cisplatin (solid line in red) with 

administrations of intravenous (IV) bolus and intravenous (IV) infusion with different infusion times; solid dots represent experimentally observed values 

(generated by Open Systems Pharmacology (2019) platform [9]) 
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The two simulations with the intravenous (IV) bolus administrations gave almost exactly 

the same starting concentration data points as those observed by Nagai and Ogata [49]. Among 

all the observed PK data that have been used in this thesis, these two datasets with the IV bolus 

administration provided the earliest observed time (45 seconds) which made it possible to 

evaluate the PBPK model’s predictive performance even at the very starting time of the injection. 

Based on the results as shown, it can be concluded that the model is very accurate at the outset of 

the injection as it is supposed to be, given that the exact administration protocol is followed. As it 

was found from the visual predictive check with the PK data with the IV infusion administration 

observed by Fukushima et al. [48], the simulation here with the IV bolus administrations with 

higher administered dose also align better with the observed data. Therefore, it can be deduced 

that with administration of higher cisplatin doses, better agreements between the simulation and 

observed PK data can be achieved for administrations of both IV bolus and IV infusion and 

possibly for other administration methods as well.  

 

Comparing the two simulations with IV infusion administrations generated based on the 

observed PK data by Nagai and Ogata [49], it can be found that the infusion time may also be a 

factor that affects the extent of the model agreement with the observed data. The simulation with 

infusion time of 3 hours as compared with the simulation with infusion time of 2 hours aligns 

better with the corresponding observed data.  
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5.3.2 Validity of the PBPK Model for Humans 

 

As previously mentioned, the human model can be easily constructed based on the 

constructed rat model by only modifying the anatomy and physiology. Therefore the virtual rat is 

replaced with a virtual human and the physicochemical properties of cisplatin and mobile 

metabolite remain the same in the human model. Moreover, for the purpose of assessing the 

validity of the model’s predictive utility for extrapolation from rats to humans, it was assumed 

that humans have the same absorption, distribution, metabolism, and excretion (ADME) details 

of cisplatin that were found in rats. So the same optimized values of the parameters are applied to 

the human model to preserve the ADME details. 

 

 The human model evaluation process is conducted based on four observed human PK 

profiles of which some present more detailed PK information other than intact cisplatin 

pharmacokinetics (PK) data. Due to the difficulty, unnecessity, or inefficiency of using 

sophisticated techniques to collect PK of species other than intact cisplatin (e.g mobile 

metabolite or fixed metabolite) on humans, the relevant human PK data are very limited. One 

found PK data adopted in this thesis required several calculations for more PK details. 
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Figure 17: Simulation reproducing experimental PK study by Verschraagen et al. [16] showing 

PK simulations of intact cisplatin (solid line in red), ultrafilterable platinum (solid line in 

orange), mobile metabolite (solid line in blue), fixed metabolite (solid line in black), and 

fraction unbound (dotted line in green); solid dots represent experimentally observed values 

(generated by Open Systems Pharmacology (2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that Verschraagen et al. [16] only presented pharmacokinetics (PK) of 

intact cisplatin, ultrafilterable platinum, and total platinum. The total platinum is a sum of all 

unbound and bound species containing the platinum. Thus, following the definitions described in 

section 3.3.2, it is a sum of ultrafilterable platinum and fixed metabolite. Therefore, the fixed 

metabolite data could be estimated as: 

    Fixed metabolite  =  Total platinum  –  Ultrafilterable platinum     (12) 

    

Based on Equation 11, the fraction unbound data could also be estimated as: 

         Fraction unbound  =  
                          

                
      (13) 

   

Lastly, the mobile metabolite data could be estimated as: 

         Mobile metabolite  =  Ultrafilterable platinum  –  Intact cisplatin  (14) 

 

Therefore, it should be emphasized that the three sets of the PK data points for fixed metabolite, 

fraction unbound and mobile metabolite are only estimated using Equations 12, 13, and 14 

respectively and they are not actual observed data. 
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The comparisons of the two simulations with observed PK data granting more reliable 

assessments are firstly made. It appears that the ultrafilterable platinum pharmacokinetics (PK) 

has been extrapolated quite accurately while cisplatin PK has been simulated to have slightly 

lower concentrations than the observed values. Observing the small differences between the 

observed data points of the ultrafilterable platinum and those of the intact cisplatin, it can be 

suspected that the intact cisplatin is not readily metabolized in humans. This observation is very 

different from what was observed by Yates and McBrien [15] for cisplatin PK study with rats 

where it showed high metabolizing activity with intact cisplatin at the start of administration as 

shown in Figure 10. 

    

Given that mobile metabolite concentration is the difference between the ultrafilterable 

platinum concentration and the intact cisplatin concentration, the mobile metabolite PK has been 

simulated to have higher concentrations than the observed values of the mobile metabolite as 

expected. In other words, the wider gap between the two PK simulations of ultrafilterable 

platinum and intact cisplatin results the higher mobile metabolite concentration while the 

narrower gap between the two data points results the smaller mobile metabolite concentration.  

    

The fixed metabolite is a product of albumin / intracellular protein / DNA binding from 

both intact cisplatin and mobile metabolite handled by Kbind1 and Kbind2 respectively. During 

the PBPK model development process, Kbind1 (0.00284 l/h) was optimized to be about 3 times 

higher than Kbind2 (0.000974 l/h) implying that the fixed metabolite is accumulated 3 times 

more from the intact cisplatin binding, or the fixed metabolite accumulation in the simulation is 

more contributed from the intact cisplatin PK simulation. Therefore, the fixed metabolite PK has 

been simulated to have lower concentrations than the concentrations from the data.   

  

An excellent agreement is found between simulated fraction unbound and the estimated 

data of the fraction unbound. The exact match at 1 hour (fraction unbound of 0.78) is very 

surprising and the extrapolating trends thereafter are also very similar. This excellent result could 

be expected from the observations of the alignments between simulations of both ultrafilterable 

platinum PK and fixed metabolite PK and the corresponding data since the fraction unbound is 

defined to be composed of only the two PK concentrations as shown in Equation 11 or 13.  
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Figure 18: Simulation reproducing experimental PK study by Andersson et al. [50] 

showing PK simulation of intact cisplatin (solid line in red); solid dots represent 

experimentally observed values (generated by Open Systems Pharmacology (2019) 

platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 illustrates PK simulation of intact cisplatin reproducing the observed PK data 

by Andersson et al. [48]. The intact cisplatin PK is accurately reproduced, particularly in the 

beginning of the simulation. However, the maximum cisplatin concentration was not observed at 

1 hour as it is expected for the 1 hour infusion time-administration protocol, and accordingly a 

discrepancy occurred with the simulation at that point. Cisplatin elimination trend is well 

predicted noting the logarithmic scale concentration axis. For instance, at 3 hours, the largest gap 

between the observed data point and the simulation is observed, but the concentration difference 

is only 0.64 mol/l (Data point: 0.85 mol/l, simulation: 0.21 mol/l). 
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Figure 19: Simulation reproducing experimental PK study by Nagai et al. [18] 

showing PK simulations of intact cisplatin (solid line in red), and fraction excreted 

to urine (dotted line in pink); solid dots represent experimentally observed values 

(generated by Open Systems Pharmacology (2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 illustrates PK simulation of intact cisplatin and fraction excreted to urine, 

reproducing the observed PK data by Nagai et al. [18]. Based on the comparison between 

cisplatin pharmacokinetics (PK) simulation and the observed data in the figure, it must be stated 

that the PBPK model constructed based on the rat PK data has been successfully extrapolated to 

fit the data for humans. The fraction excreted to urine has also been reproduced very precisely. 

At 3 hours, the fraction excreted to urine was observed to be 0.15 whereas the simulation 

produces 0.18. 
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Figure 20: Simulation reproducing experimental PK study by Nagai et al. [18] showing 

PK simulations of intact cisplatin (solid line in red), and fraction excreted to urine 

(dotted line in pink); solid dots represent experimentally observed values (generated by 

Open Systems Pharmacology (2019) platform [9]) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 illustrates PK simulations of intact cisplatin and fraction excreted to urine 

reproducing the observed PK data by Nagai et al. [18]. The same administration protocol was 

followed by the group except for the infusion time when compared to the PK study shown in 

Figure 19. The maximum cisplatin concentration was not observed at 4 hours for the 4 hour 

infusion time-administration protocol and rather it appears as if cisplatin pharmacokinetics (PK) 

data was recorded about 30 minutes later than actually observed. It is noted that cisplatin 

concentration discrepancies found here do not agree with the finding from section 5.3.1 that 

cisplatin PK may be more accurately simulated for the administration protocol with longer 

infusion time. The fraction excreted to urine, however, has been reproduced in agreement with 

the observed data.    
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Figure 21: Simulation reproducing experimental PK study by Fukushima et al. [48] 

showing PK simulations of intact cisplatin (solid line in red), fraction unbound for 

platinum species (dotted line in green), and fraction unbound for cisplatin (dotted line in 

purple); solid dots represent experimentally observed values (generated by Open 

Systems Pharmacology (2019) platform [9]) 

5.3.3 Prediction of Fraction Unbound, Responsible for Therapeutic Effect   

 

As addressed in Chapter 4, an ‘actual’ fraction unbound for cisplatin which is 

responsible for therapeutic effect in the anticancer treatment is investigated in this section. After 

an administration of cisplatin, the fraction unbound for cisplatin measures the fraction of 

unbound cisplatin over all unbound and bound cisplatin in plasma over the time course of PK 

analysis, as defined in Equation 10. Since the two experimental PK studies of cisplatin by 

Fukushima et al. [48] and by Nagai et al. [18] have been reproduced the most closely by the 

PBPK model as shown during the model evaluation processes for rats and humans respectively 

(Figures 14, 15, and 19), they have been chosen to investigate the fraction unbound for cisplatin 

by simulating the predicted values.  

 

Figures 21 and 22 show simulations reproducing cisplatin PK study on rats by 

Fukushima et al. [48] and simulation of the predicted fraction unbound for cisplatin. The fraction 

unbound for cisplatin is represented by dotted line in purple and the fraction unbound for 

platinum species which has been used for the purpose of accessing parameters is also shown for 

comparison. 
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Figure 22: Simulations reproducing experimental PK study by Fukushima et al. [48] showing PK simulations of intact cisplatin (solid line in red), fraction 

unbound for platinum species (dotted line in green), and fraction unbound for cisplatin (dotted line in purple) with intravenous (IV) infusion administrations 

with different doses; solid dots represent experimentally observed values (generated by Open Systems Pharmacology (2019) platform [9]) 
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Figure 23: Simulation reproducing experimental PK study by Nagai et al. [18] 

showing PK simulations of intact cisplatin (solid line in red), fraction unbound for 

platinum species (dotted line in green), and fraction unbound for cisplatin (dotted 

line in purple); solid dots represent experimentally observed values (generated by 

Open Systems Pharmacology (2019) platform [9]) 

Notably, an ‘actual’ fraction unbound for cisplatin decreases faster as it accounts for the 

concentration of unbound cisplatin only while the fraction unbound for platinum species (or 

ultrafilterable platinum) accounts for both unbound cisplatin and unbound mobile metabolite. All 

simulations in Figure 22 show that the two fraction unbound simulations almost align with each 

other until the end of infusion time then split from that point implying that significant cisplatin 

metabolic process is occurring. It should be noted that while cisplatin is administered, the 

fraction unbound for platinum species is only slightly higher because it accounts not only 

unbound mobile metabolite but also bound mobile metabolite which results greater amount of 

accumulated fixed metabolites as compared with that in the case of measuring the fraction 

unbound of cisplatin.   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 shows a simulation reproducing cisplatin PK study on humans by Nagai et al. 

[18] and simulation of the predicted fraction unbound for cisplatin. The same aspect of the two 

fraction unbound simulations observed around the end of infusion time indicates that cisplatin 

metabolism of humans may be very comparable to that of rats.    
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5.3.4 PK Analysis by Comparing PK Parameters 

 

As a last step in the model evaluation, predicted values of PK parameters are assessed by 

comparing with observed data. The PK parameters such as total plasma clearance, and half-life 

are PK study specific and are not intrinsic to a particular drug or organism. It should be noted 

that not all experimental PK studies with cisplatin adopted in this thesis provided a set of PK 

parameters, and therefore the comparisons were made only with those that are available.  

 

Table 8 and 9 show the PK parameter comparisons conducted for the purpose of 

evaluating the PBPK model and the PK parameters are defined as:  
    

 CL_tot (ml/min/kg) :  Total plasma clearance 

 V_d,ss (ml/kg) :      Aparent volume of distribution at steady-state 

 AUC (mol*min/l) :  Area under the curve from the start to specified time 

 C_max (mol/l) :     Maximum drug concentration in plasma        

 t_max (h) :          Time at which C_max occurs                       

 t_1/2 (h) :           Half-life 

 MRT (h) :           Mean residence time 
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Table 8: PK parameter comparison on rats  

 

 

 

 

 

 

 

 

 

 

 
 

 

Table 9: PK parameter comparison on humans 
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The dark grey shade in the table indicates that the data for the particular PK parameter is 

not available from the study. The orange shade in the table indicates that the presented value 

obtained from the PK study with the IV bolus method may not be reliable. The IV bolus always 

gives the C_max, the maximum drug concentration in plasma at the very starting time of the 

administration, and it does not necessarily mean that the first data point presented is actually 

obtained at the starting time of the administration due to a technical difficulty or unnecessity of 

obtaining the C_max in a PK study.  

 

Unit conversions have been made to follow default units given by the Open Systems 

Pharmacology platform. Mass units were converted to molar units using the molecular weight of 

cisplatin mobile metabolite or platinum as demonstrated in Equation 6. For example, AUC 

(mg*min/L) or C_max (ug/mL) was converted to AUC (mol*min/l) or C_max (mol/l). 

Another conversion method had to be applied to convert the human equivalent dose or body 

surface area (BSA) dose (ie. mg/m
2
) to animal dose (ie mg/kg). FDA guideline recommends the 

following conversion method [51]:     

mg/m
2
 = km * mg/kg       (15) 

where km is a body weight (W) specific factor, km = 9.09 * W
0.35 

 

    

As an example, in cisplatin PK study by Andersson et al. [50], the total plasma clearance was 

provided as 0.32 L/min/m
2
 and the mean body weight of the seven patients was calculated to be 

69.86kg. Therefore the unit conversion is made as: 

km = 9.09*(69.86)
0.35

 = 40.2 kg/m
2
    (16) 

therefore AUC =  
            

          
 * 

       

  
  = 7.96 ml/min/kg 

 

 Generally, those PK studies that showed excellent agreements between the simulations 

and observed PK data also provided very similar PK parameter values as expected. Particular 

examples would be the PK studies shown in the first and last columns in Table 8 (for rats) and 

the second column in Table 9 (for humans) showing very similar values of CL-tot and AUC.  
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5.4 Conclusion  

        

The PBPK model that was constructed based on the rat PK data has been evaluated by 

conducting the predictive check with more rat PK data and also with human PK data after 

extrapolating to a human model. From the evaluation process with the rat model, it was found 

that for administrations of both intravenous (IV) bolus and IV infusion, the model showed better 

predictive performance on cisplatin pharmacokinetics (PK) at a higher administered dose. The 

model also reasonably shows the consistency of the PK predictions independent of administered 

doses, as shown in Figures 15 and 16. Overall, the rat PK data have been well reproduced with 

high precision in cisplatin elimination trend in plasma represented as the slope in the plot. For 

the PK studies with the IV infusion administration, cisplatin accumulation trend up to the point 

of infusion end time is also well described in the simulations.  

 

The purpose of evaluating the PBPK model on humans is to validate the model’s 

predictive utility for extrapolation from rats to humans. Therefore, the optimized values of the 

parameters that had already been evaluated from the rat model needed to be re-evaluated by 

applying them into a human model and assessing cisplatin PK reproducibility on humans. The 

same predictive check procedure was followed and the level of reproducibility of cisplatin PK on 

humans appeared to be comparable with that on rats. There was one disagreement found between 

a simulation and the PK observed data but the data did not seem to agree with general PK 

observation that the maximum drug concentration is found at the end of the infusion time. 

However, other PK profiles including fraction unbound and fraction excreted to urine have been 

reproduced precisely. The results could be verified by comparing the PK parameters predicted 

from the simulations and those from the observed PK data. Therefore, the conclusions would be 

that the PBPK model has been validated for its predictive performance on cisplatin PK on 

humans and the absorption, distribution, metabolism, and excretion (ADME) of cisplatin that are 

defined by the parameters may be similar in both species, rats and humans. 
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Chapter 6 Conclusions 
      

 

 

6.1  Summary 

        

A physiologically based pharmacokinetic (PBPK) model of cisplatin has been constructed, 

and evaluated according to a proposed PBPK modelling framework. The validity of predictive 

utility for extrapolating from a rat model to a human model has also been assessed. The model 

could adequately characterize and reproduce the pharmacokinetics (PK) of cisplatin in plasma 

for both rats and humans based on observed PK data. This confirmed that the assumptions made 

on absorption, distribution, metabolism, and excretion (ADME) details of cisplatin prior to 

constructing the model are reliable upon the successful validation of the parameters from the 

model evaluation processes. 

 

 

6.1.1 Reproducibility of Cisplatin PK by PBPK model 

 

The constructed PBPK model has been evaluated for its predictive performance on rats 

and humans by assessing the reproducibility of cisplatin PK based on observed data. It must be 

emphasized that reproducibility of other species PK or fraction data can also be observed 

simultaneously given that the PBPK model is mechanistically structured to describe the kinetics 

of cisplatin-metabolized products that are pharmacologically related. For example, ultrafilterable 

platinum PK is formulated to be simulated as a sum of concentrations of intact cisplatin and 

mobile metabolite over the course of the PK analysis. 
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Repeatability is assessed from multiple measurements of the same methods by the same 

observers so any variability should come from a possible measurement error. Reproducibility is 

assessed from multiple measurements of the same methods but by different observers so there 

may exist systemic bias between observers. The physiologically based pharmacokinetic (PBPK) 

model will always generate the same PK simulation following one particular administration 

protocol. Therefore, it can be useful in comparing and analyzing PK profiles that are observed by 

different study groups or by the same group at different times but all with the same 

administration protocol followed. In other words, the PBPK model can also be a great tool to 

assess repeatability and reproducibility of PK profiles when the experimental data are observed 

by following the same administration protocol. For example, during the model development 

process, the reproducibility of cisplatin PK was discussed on the two data separately observed by 

Fukushima et al. [44] and Okada et al. [45] (Figures 12 and 13) by comparing them to the 

simulation generated following the same administration used by the two groups. 

 

Reliability on the other hand is assessed from different measurement methods. The PBPK 

model has been constructed based on rat PK datasets obtained with administrations of 

Intraperitoneal (IP) bolus and Intravenous (IV) bolus and it has been evaluated based on 

observed PK datasets which followed different administration protocols such as different 

cisplatin dose amount and/or IV infusion administration. The model has also been evaluated for 

its modality of interspecies extrapolation from rat to human model by using human PK datasets. 

This thesis is essentially about testing the reliability of the PBPK model of cisplatin under 

various clinical settings with cisplatin.  

 

From the model evaluation process, it was found that the reproducibility of cisplatin PK 

by the PBPK model is slightly higher for an administration protocol with higher cisplatin dose. 

This was confirmed from both cases of IV bolus and IV infusion administrations. Given that the 

PBPK model is constructed to consistently simulate cisplatin PK regardless of dose amount, 

there could be a measurement error at low dose of cisplatin administrations. More significantly, 

the better reproducibility of cisplatin PK found at a higher dose shows that the nonlinear kinetics 

of cisplatin does not exist indeed. If the nonlinear kinetics of cisplatin exists, cisplatin PK would 

encounter the nonlinearity when higher doses of cisplatin are administered. In other words, at 
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higher doses of administration, there would be more significant discrepancies found between 

simulated and observed PK data because the PBPK model is constructed to always follow the 

linear first order kinetics regardless of the dose, as described in Chapter 4. The better agreement 

achieved at a higher dose implies that cisplatin PK in fact follows the linear kinetics, validating 

the first order linearity assumption made in the model. 

 

From evaluating the rat model, it was also found that the reproducibility of cisplatin PK is 

higher for a longer infusion time so the infusion time may also be another factor for the 

predictive performance but this finding was disagreed by the human model which did not closely 

reproduce the human data with the longer infusion time. It was argued that there may have been 

a measurement error with the observed PK data pointing that the maximum drug concentration 

was not found at the end of the infusion time. This finding is subject to be investigated with more 

available human PK data in a future project.  

 

 

 

6.1.2 Analysis of the Parameters 

 

During the PBPK model development process, physiological relevance has been 

identified. One of the parameters, TSmax for cisplatin was pronounced to be not uniquely 

identifiable from multiple numerical optimization processes and its optimized value was found to 

be about six orders of magnitude less than the optimized value of TSmax for mobile metabolite 

implying that the tubular secretion of cisplatin may not be a significant contribution to the urine 

excretion of intact cisplatin. Conclusion was made that the intact cisplatin is renally cleared by 

either glomerular filtration (passive process) only or all the renal clearance processes: glomerular 

filtration, tubular secretion (active process), and tubular reabsorption (active process) but the 

action of the tubular secretion is drastically hindered by the tubular reabsorption. 

 

 Another finding on cisplatin metabolism may be established by comparing the optimized 

values of the parameters that represent binding and metabolizing rates: 
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   Kmet (0.01 l/h) > Kbind1 (0.00284 l/h) > Kbind2 (0.000974 l/h)     (17) 

As shown in Equation 17, the intact cisplatin is metabolized at the highest rate compared to the 

rates of fixed metabolite formations. This explains the slow accumulation of the fixed metabolite 

relative to the rapid elimination of the intact cisplatin as shown in Figures 8 and 17. 

 

By comparing the optimized values of Kbind1 and Kbind2, it can be found that 

compared to the mobile metabolite, the intact cisplatin binds with higher affinity to albumin, 

intracellular protein, or DNA. This was expected as both simulation and observed data of PK 

profiles presenting pharmacokinetics (PK) of the two species show that that the intact cisplatin is 

excreted at much higher rate, compared to the mobile metabolite as shown in Figures 8, 11, and 

17.  

 

 

 

6.2 Promising Technique 

        

In this thesis, pharmacokinetics (PK) of cisplatin has been investigated by using 

physiologically based pharmacokinetic (PBPK) technique in a relation to developing and 

validating PBPK model for rats and humans. Reliability of the PBPK model has been assessed 

by evaluating the predictive performance based on observed PK datasets which followed various 

administration protocols. The PBPK model of cisplatin was able to closely predict and 

characterize the PK behavior of cisplatin and its metabolites in plasma in rats and humans. The 

PBPK modelling workflow presented in this thesis provides a means for understanding kinetics 

characteristics of cisplatin, which might be useful for understanding and/or predicting the PK of 

cisplatin-analogues in future studies. 
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