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Abstract

The efficient realization of an Elliptic Curve Cryptosystem is contingent on the efficiency of

scalar multiplication. These systems can be improved by optimizing the underlying finite

field arithmetic operations which are the most costly such as modular reduction. There are

elliptic curves over prime fields for which very efficient reduction formulas are possible due

to the special structure of the moduli. For prime moduli of arbitrary form, however, use

of general reduction formulas, such as Barrett’s reduction algorithm, are necessary. Bar-

rett’s algorithm performs modular reduction efficiently by using multiplication as opposed

to division, an operation which is generally expensive to realize in hardware. We note,

however, that when an Elliptic Curve Cryptosystem is defined over a fixed prime field, all

multiplication steps in Barrett’s scheme can be realized through constant multiplications;

this allows for further optimization.

In this thesis, we study the influence using constant multipliers has on four different Bar-

rett reduction variants targeting the Virtex-7 (xc7vx485tffg1157-1). We use the FloPoCo

core generator to construct constant multiplier implementations for the different multipli-

cation steps required in each scheme. Then, we create a hybrid constant multiplier circuit

based on Karatsuba multiplication which uses smaller FloPoCo-generated base multipliers.

It is shown that for certain multiplication steps, the hybrid design provides an improve-

ment in the resource utilization of the constant multiplier circuit at the cost of an increase

in the critical path delay. A performance comparison of different Barrett reduction circuits

using different combinations of constant multiplier architectures is presented. Addition-

ally, a fully pipelined implementation of each Barrett reduction variant is also designed

capable of achieving operational frequencies in the range of 496-504MHz depending on the

Barrett scheme considered. With the addition of a 256-bit pipelined Karatsuba multiplier

circuit, we also present a compact and fully pipelined modular multiplier based on these

Barrett architectures capable of achieving very high throughput compared to others in the

literature without the use of embedded multipliers.
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Chapter 1

Introduction

1.1 Motivation

The algorithms which comprise public-key cryptographic schemes rely on the hardness of

the underlying mathematics on which they are based. Security is guaranteed by the fact

that the computational work required to break the core mechanisms of these schemes on

a conventional computer is infeasible. Elliptic Curve Cryptography (ECC) was developed

independently by Koblitz and Miller in 1985 [31, 39]. ECC is generally preferred over its

RSA counterparts as it achieves the same security guarantees while using smaller key sizes.

As a result, more efficient realizations of these cryptosystems are possible. Vital to the

efficiency of these elliptic curve operations is the underlying finite field primitives by which

they are implemented.

The computational complexity of division in hardware has given rise to the need for

efficient reduction algorithms. Many elliptic curve cryptosystems today are defined over

primes of special form which lead to efficient finite field operations. For instance, the

National Institute of Standards and Technology (NIST) recommends primes of the General

Mersenne Prime form for which efficient reduction algorithms have been devised which

are comprised of a handful of shifts, additions and subtractions. Despite this, there has

been growing interest in designing ECC cryptosystems over pseudo-random primes due to
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increased skepticism in the NIST primes and due to a number of attacks which exploit

this special form. Unfortunately, due to the pseudo-random nature of these prime moduli,

reduction must be performed using a generic reduction algorithm, such as that due to

Barrett or Montgomery [3, 40]. By consequence, the achievable performance of these

primes pales in comparison to those of special form. Modular multipliers in the literature

typically either focus on high-performance elliptic curve processors over specialized primes

or rather, provide a general implementation suitable for any finite field of a certain length.

The focus of this thesis is instead on designing a modular reduction circuit based on

Barrett’s algorithm targeting specifically pseudo-random or generalized moduli. The Bar-

rett reduction module is optimized by focusing on the multiplication steps within the

algorithm, all of which are multiplications by a constant provided that the finite field over

which the cryptosystem is designed is fixed. The goal of designing an efficient Barrett

reduction implementation then reduces to the problem of designing efficient constant mul-

tipliers. Consequently, additional efforts can be made to optimize the circuit to achieve

better area and performance metrics.

1.2 Contributions

As modular reduction is such a critical step in designing efficient ECC implementations,

there are many proposed works in the literature. There have been works which propose

special moduli sets with which the multiplication steps in Montgomery and Barrett re-

duction algorithms can be replaced by simple shift operations, offering further speed ups

[30, 50]; however, this again reduces to using only specific sets of prime moduli and cannot

be expanded to pseudo-random primes of arbitrary form.

First, a study of the hardware complexity of FloPoCo’s core generator Shift-and-Add

Directed Acyclic Graph (DAG) constant multiplier [12] is provided as it pertains to the

multiplication steps of four different Barrett variants. This constant multiplier is then used

as a base atop which Karatsuba’s algorithm is applied recursively at varying depths to study

whether this divide-and-conquer algorithm can improve constant multiplication modules.

To our knowledge, there has yet to be a work which marries these two ideas. It is shown
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that under certain conditions, the hybrid Karatsuba-FloPoCo constant multiplier requires

less resources to implement than a pure FloPoCo-generated constant multiplier. Next, we

apply the results of our constant multiplication study to four different Barrett reduction

variants that have been presented in the literature. We target specifically two elliptic

curve standards which are defined over pseudo-random prime finite fields: BrainpoolP256t1

and Agence nationale de la sécurité des systèmes d’information (ANSSI) FRP256v1. The

performance and resource utilization of the four different Barrett variants are contrasted.

Lastly, a fully pipelined architecture is also provided which is then used in conjunction with

a generic pipelined 256-bit Karatsuba multiplier to realize a 256-bit modular multiplier.

Our design is capable of operating around 500MHz on the Virtex-7 (xc7vx485tffg1157-1)

and is able to accept new data on every clock cycle. Compared to general 256-bit modular

multipliers in the literature, our design presents a compact and portable alternative which

achieves much better throughput.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 provides background information centered

around elliptic curves and finite field arithmetic, Karatsuba’s multiplication, and an intro-

duction to the different algorithms available to perform constant multiplication. Chapter

3 gives an overview of modular reduction with a focus on four different Barrett reduction

variants. Chapter 4 provides a description of the Karatsuba-based constant multiplier used

in the hybrid circuit. We also present synthesis results for the various constant multipli-

ers as required by the four Barrett variants, concentrating on four different prime finite

fields. Here, the FloPoCo-generated constant multiplier is compared against the hybrid

multiplier for each of the constant multiplication steps required by the different Barrett

forms studied. Chapter 5 presents full Barrett reduction circuits as based on the results

obtained in Chapter 4, as well as fully pipelined 256-bit modular multiplier architectures.

Lastly, concluding remarks and opportunities for future work are provided in Chapter 6.
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Chapter 2

Background

Presented here is general background information which will lay the ground work for the

remainder of this thesis. This consists of a mathematical background relevant to ECC as

well as multiplication methods of importance to this work. A short introduction to finite

field arithmetic is provided as a motivation for the work. An introduction to Karatsuba’s

algorithm is given which will later be adapted to suit the implemented multiplier. Further,

an exploration into the importance of constant multiplication is provided as well as a study

of the various existing methods in the literature.

2.1 Elliptic Curve Cryptography

Public-key cryptosystems are designed in a hierarchical manner. They can broadly be

categorized into three levels: primitives, schemes, and protocols [27]. A primitive is a

basic mathematical operation which is based in a complex number-theoretic problem. The

three main problems on which the majority of pubic-key systems today are based are

integer factorization, discrete logarithms over finite fields, and the Elliptic Curve Discrete

Logarithm Problem (ECDLP). Atop these primitives, a scheme can be designed which

provides complexity-theoretic security due to the underlying hard problem characteristic

to said primitives. From these schemes, application-specific protocols can be designed to

provide the desired security goal [27].
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ECC was first proposed as an alternative approach to carrying out the Diffie-Hellman

key exchange protocol. Since then, ECC has expanded tremendously and been applied to a

wider range of cryptographic applications. Its security lies in the hardness of the ECDLP.

This problem has been proven to be harder to solve than other public-key protocols which

rely on the hardness of factoring. As a result, practical implementations of these protocols

are more efficient in terms of time and space [24]. It is for this reason that many applications

have been upgrading to ECC.

2.1.1 Finite Fields

In ECC, elliptic curves are defined over finite fields. In general, a field is a set F of a finite

number of elements together with the addition (+) and multiplication (·) operations. A

prime finite field is a field which contains a prime number of members. The prime finite

field FP , where P is an odd prime, consists of the finite set of integers [0, P − 1] where

addition and multiplication operations are defined modulo the prime P . Given positive

integers a, b, c ∈ FP , prime finite fields satisfy the following properties:

1. Addition: the set of elements in FP together with the addition operation form an

abelian group with additive identity 0.

2. Multiplication: the set of elements in FP together with the multiplication operation

form an abelian group with identity 1.

3. Negatives: the element (−b) is the unique negative of b with the property that (b +

(−b)) mod P ≡ 0 mod P .

4. Inverses: the element (b−1) is the unique inverse of b with the property that (b·(b−1))
mod P ≡ 1 mod P .

5. Distributive: The distributive law holds so that (a+b)·c = a·c+b·c for all a, b, c ∈ FP.
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2.1.2 Finite Field Arithmetic

Suppose positive integers a, b ∈ FP are to be added. To compute (a+ b) mod P , the sum

is first obtained. Since a, b ∈ FP then it must be that a, b < P . As a result, (a+ b) < 2P .

Reduction would then involve at most one subtraction by P . Now, suppose these numbers

are to be multiplied. To compute a · b mod P in the classical way, the product is first

obtained and the result is then reduced to obtain a product in the range of [0, P −1]. Since

a, b < P , the size of the number to be reduced in the case of multiplication is (a · b) < P 2

[24].

Subtraction and division are also possible field operations. Both of these operations

are defined with regards to field addition and field multiplication. A modular subtraction

is defined as (a− b) mod P ≡ (a+ (−b)) mod P . To compute (a− b) mod P , a regular

subtraction a − b is first performed. In the case that a ≥ b then 0 < a − b < P and

no correction step is needed. When a < b, however, the lower bound on the value of the

difference is (a − b) > −P . Correction would then involve at most one addition by P

in order for the integer result to be in the range [0, P − 1]. Next, suppose with positive

integers a, b ∈ FP we wish to perform the division of a by b. If b 6= 0, then modular division

is defined as (a/b) mod P ≡ (a · (b−1)) mod P . To compute (a/b) mod P in the classical

way, the inverse of b must be obtained; the product is then computed. To obtain a result

in the range of [0, P − 1], the result must be reduced. Since a, b−1 < P , the size of the

number to be reduced in the case of division is (a/b) < P 2 [24].

Example By the above definitions, we demonstrate field operations over the prime

field F31. This prime finite field consists of the numbers [0, 30]. All field operations are

performed mod 31.

1. Addition: (24 + 27) mod 31 ≡ 51 mod 31 ≡ 20

2. Subtraction: (24 + (−27)) mod 31 ≡ −3 mod 31 ≡ 28

3. Multiplication: (24 · 27) mod 31 ≡ 648 mod 31 ≡ 28

4. Inversion: (27−1) mod 31 ≡ 23

5. Division: (24/27) mod 31 ≡ (24 · 27−1) mod 31 ≡ 552 mod 31 ≡ 25

6



2.1.3 Point Arithmetic in ECC over Prime Finite Fields

These ideas are now expanded with respect to elliptic curves. Elliptic curves over odd

prime finite fields can be described by the short Weirerstrass equation:

E/FP : y2 = x3 + ax+ b (2.1)

where a and b are integers modulo P such that 4a3 + 26b2 6= 0 mod P . An elliptic curve

defined over a finite field FP has a finite number of points Q = (x, y). The x and y

coordinates lie within the underlying field (x, y ∈ FP ). These points satisfy the given

Weierstrass equation. The number of points on the curve, including an additional point

known as the point at infinity (denoted as ∞) is called the order of the curve [24].

Points on an elliptic curve can be added to yield a third point on the curve. E/FP
forms an abelian group under addition with the point at infinity being the identity element.

The group law of elliptic curves which is used in elliptic curve cryptosystems defined over

a prime field is given below, where the use of affine coordinates is assumed. It should be

noted that the formulas for addition and doubling are defined over the prime finite field;

the resulting point coordinates must be obtained by applying the finite field arithmetic

operations described in the previous section.

1. Identity: Q+∞ =∞+Q = Q for all Q ∈ E/FP .

2. Negatives: (x, y) + (x,−y) =∞. The point (x,−y) is called the negative of Q and is

denoted by −Q.

3. Point Addition: For points Q = (x1, y1) and Z = (x2, y2) ∈ E/FP where Q 6= ±Z
the addition Q+ Z = (x3, y3) is obtained by computing

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2 and y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

4. Point Doubling: For point Q = (x1, y1) ∈ E/FP where Q 6= −Q then 2Q = (x3, y3)

is obtained by computing

x3 =

(
3x21 + a

2y1

)2

− 2x1 and y3 =

(
3x21 + a

2y1

)
(x1 − x3)− y1
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ECC 
Protocol

ECC Schemes
Signature, key 
generation, etc. 
ECC Primitives

Based on hardness of  ECDLP as 
it applies to scalar multiplication

Group Operations
Point addition and doubling

Finite Field Arithmetic
Modular addition, subtraction, multiplication, 

squaring, inversion and division

Figure 2.1: The hierarchy of Elliptic Curve Cryptosystems.

The hierarchy of ECC follows the same organization as previously described. ECC

protocols are designed using ECC schemes built on top of the operation of elliptic curve

scalar multiplication. This operation is a mathematical primitive based on the hardness

of the ECDLP. Scalar multiplication of a point on an elliptic curve essentially reduces to

repeated addition of the same point. The hierarchy of ECC can be seen in Figure 2.1.

Performing scalar multiplications efficiently is critical to the overall efficiency of an

ECC cryptosystem. As depicted by Figure 2.1, optimization at any of the lower levels

translates upwards to achieve a more efficient scalar multiplication operation. At the

primitive level, the main approach towards achieving better performance is through the

use of scalar recoding schemes such as the Non-Adjacent Form (NAF) which reduces the

overall density of non-zero digits in the representation of the scalar [49]. Such an approach

will reduce the number of additions needed when using the double-and-add approach to

scalar multiplication. At the group level, the use of different coordinate systems can

also improve the efficiency of elliptic scalar multiplication by adjusting the number of

field operations needed to perform a point addition and point doubling. This can be

advantageous as certain field operations (namely modular inversion) are quite costly to

perform. The reader is referred to [24] or [47] for further details on the point addition and
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doubling formulas which pertain to each coordinate system variant. Lastly, optimization

efforts can also target the finite field arithmetic by optimizing the modular operations

which are the most costly, such as modular multiplication. It is this level that is targeted

in this thesis.

2.1.4 Select Elliptic Curves Over FP

As the focus of this thesis is on the exploitation of constant multiplications, implementa-

tions are designed with four different fields in mind. The fields in this study are chosen

such as to show the impact a custom Barrett reduction deployment can have on the overall

area and performance of the scheme. Particularly, such an approach may be of use in cryp-

tosystems using a general prime field for which no efficient reduction scheme exists. To

demonstrate this contrast, we select two elliptic curves whose underlying prime field has a

special form and two curves which have been randomly constructed. Despite the different

forms the primes may take, all are 256 bits in length. The prime finite field parameter of

these four curves can be seen in Table 2.1.

In FIPS 186-4 Digital Signature Standard [53], NIST recommends the use of five prime

fields targeting different security strengths. Each of these primes are Generalized Mersenne

primes which are of the form:

P = bn + cn−1b
n−1 + ...+ c0 (2.2)

where b is a power of 2 corresponding to a machine’s native wordsize and ci is an integer.

When a number is to be reduced modulo this type of prime, specialized fast reduction

algorithms can be used [53]. In a method designed by Solinas, the number to be reduced

can be expressed as a sum or difference of a small number of terms, all of which are

scaled by powers of 2 [48]. Once computed, the final result may need to be subtracted by

multiples of P to be in the range [0, P − 1]. These powers are expressed as multiples of

32, leading to a very fast implementation on hardware. NIST curve P-256 (also known as

secp256r1) is one of the NIST recommended elliptic curves defined which will be studied in

this thesis. Reduction over NIST P-256 reduces to two doublings, four 256-bit subtractions,

and four 256-bit additions with the final result in the range (−4P, 5P ), requiring up to
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four additions/subtractions to achieve the final corrected result [22, 48, 53]. NIST’s curve

P-256 is one of the most widely used elliptic curves; it is supported in applications such as

OpenSSL and internet browsers such as Apple Safari, Google Chrome, Microsoft Internet

Explorer, and Mozilla Firefox [21].

Secp256k1 is a Koblitz curve of prime order defined in Certicom Research’s Standards

for Efficient Cryptography [43]. The finite field is specified by a Pseudo-Mersenne prime,

which are special primes of the form:

P = 2α − γ (2.3)

where α is a parameter corresponding to the desired security strength, and γ is a positive

integer that is relatively small compared to the modulus. Pseudo-Mersenne primes can

achieve even faster modular reduction compared to Generalized Mersenne primes. Reduc-

tion using secp256k1’s prime modulus can be designed in a compact way using a specialized

reduction formula [38]. An integer 0 ≤ z < (2α − γ)2 can be represented in radix-2α as

U(z)2α + L(z) where U(z) and L(z) represent the upper and lower bits of z. Then, us-

ing the fact that 2α ≡ γ mod P , we have U(z)2α + L(z) ≡ U(z)γ + L(z) mod P where

0 ≤ U(z)γ + L(z) < (γ + 1)2α. Another radix-2α split brings the intermediate result into

the range [0, 2α+γ2); the final result is obtained after additional subtractions by P [6, 11].

If it is assumed that γ is smaller than the machine wordsize, then this reduction requires

only shifts, additions, and single-precision multiplications. In addition to this custom re-

duction formula, Koblitz curves are especially efficient in practice as they possess efficiently

computable endomorphisms through which efficient scalar multiplication operations can be

performed by using the Gallant-Lambert-Vanstone (GLV) decomposition [5]. Due to its

high-performance, secp256k1 is used by cryptocurrencies such as the Bitcoin and Ripple

networks [20].

Although the special structure of the aforementioned curves leads to very efficient

implementations, it may also be the cause of security vulnerabilities, such as that presented

in [18]. This is among the reasons for which other elliptic curve standards defining elliptic

curves over pseudo-random prime fields are used. ANSSI FRP256v1 is one such curve

which has no special structure [14]. Unlike the previous curves mentioned, there is no

fast reduction formula for the ANSSI curve. Unfortunately, the standard provides no
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justification for the choice of its parameters, a cause for much skepticism regarding its

deployment.

Since the Snowden documents suggested that there exists a back door in NIST’s stan-

dardized Dual Elliptic Curve Deterministic Random Number Generator [52], there has

been a movement towards using elliptic curves whose parameters have been generated by a

verifiably deterministic way. The Brainpool standard curves were created with the goal of

providing standard elliptic curve parameters which were created in a pseudo-random, sys-

tematic, and reproducible fashion and to avoid the security vulnerabilities to which many

elliptic curves of special form fall victim [35]. These features make the Brainpool curves

attractive for applications requiring high-assurance such as vehicle-to-vehicle and vehicle-

to-infrastructure communication, where there has been a push to include the Brainpool

curves as part of the European Telecommunications Standards Institute (ETSI) standards

[36, 46]. Unfortunately, due to its pseduo-random nature, its deployment is usually much

slower in practice compared to other prime curves targeting the same security level [37].

2.2 Karatsuba Multiplication

The Karatsuba algorithm for integer multiplication was proposed in 1962 by Karatsuba

and Ofman as an alternative approach to conventional multiplication [29]. The algorithm

follows a divide-and-conquer approach which can be much faster than the classical method

of multiplication when working with very large operands, as is the case in ECC. Let X

and Y be two k-bit unsigned integers and k is even. These two operands can be split in

half and written as

X = 2k/2XH +XL and Y = 2k/2YH + YL

where the subscript denotes the most significant ( H) and least significant ( L) halves of the

operands. In the classical method, multiplying the two operands leads to the expression

below. This leads to four half-sized multiplications and three additions.

XY = 2kXHYH + 2k/2(XLYH +XHYL) +XLYL

11
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Karatsuba’s algorithm arises from rearranging the middle term such that it reuses the

XHYH and XLYL product terms.

(XLYH +XHYL) = (XH +XL)(YH + YL)−XHYH −XLYL

The final form of Karatsuba’s multiplication method is demonstrated in Equation 2.4. This

leads to a multiplication method which requires only three half-sized multiplications at the

expense of a few extra additions. The cost of these extra additions is generally minimal in

comparison to the savings obtained by eliminating a multiplication.

XY = 2kXHYH + 2k/2((XH +XL)(YH + YL)−XHYH −XLYL) +XLYL (2.4)

Computation of the product terms can be postponed by applying the algorithm recursively

so that at each level a product term is replaced by three multiplications of half size. Using

this recursive approach allows a multiplication of two n-bit integers to be computed with

complexity O(n1.58) as opposed to the O(n2) of schoolbook multiplication.

2.3 Constant Multiplication

The design of compact and efficient constant multiplier cores is critical in many applications

ranging from digital signal processing to cryptography. For public-key cryptosystems, it is

often the case that very large numbers are to be multiplied by a fixed parameter. Although

modern Field Programmable Gate Arrays (FPGAs) are equipped with embedded multiplier

blocks capable of performing efficient multiplication, it is not necessarily beneficial to use

these devices to perform a constant multiplication as more compact, logic-based techniques

are possible. Suppose we wish to multiply two n-bit numbers by the naive method. The

multiplier is a constant, C, and our multiplicand is a variable X. We may represent the

constant in its binary form as

C =
n−1∑
i=0

ci2
i

where ci ∈ {0, 1}. Then, computing the product CX can be written as

CX =
n−1∑
i=0

ci2
iX
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By this expression, constant multiplication reduces to the accumulation of shifted versions

of the multiplicand. The number of partial products is equal to the number of set bits

in the constant multiplier. Considering this operation in hardware, the shift operations

can be accomplished through appropriate wiring and thus, has no associated cost. The

complexity of this method can then be quantified by the number additions required. In

the worst case, all n bits of the multiplier are set and it is necessary to perform a total of

n n-bit additions, leading to an overall complexity of O(n2). This method is akin to the

schoolbook method of multiplication.

It is clear from the above evaluation that the complexity of constant multiplication

strongly depends on the weight of the multiplier; that is, it depends on the number of set

bits in a constant. This has motivated the use of recoding schemes where the weight of

a number is reduced through a redundant representation. Canonical Signed-Digit (CSD)

is one such number representation [2]. CSD recoding uses the digits {−1, 0, 1} to rep-

resent a number in such a way that no two adjacent digits are non-zero. Unlike in the

naive approach, subtraction is also required having similar cost to addition. By using this

redundant representation, at most n
2

bits of the constant will be set and on average, n
3

[55].

As an example, suppose we wish to compute 221X. We translate the multiplication into

adds and left shifts, which is represented by the � operator. Using the binary encoding

of 221, this multiplication reduces to:

221X = 110111012X = X � 7 +X � 6 +X � 4 +X � 3 +X � 2 +X

requiring 5 adders. If instead we represent the constant by its CSD representation, the

previous approach can be improved to use only 3 adders/subtractors:

221X = 1001̄001̄01CSDX = X � 8−X � 5−X � 2 +X.

Performing constant multiplication without the use of multipliers can lead to significant

savings and has thus garnered a great deal of attention from the research community. The

problem of realizing optimal single constant coefficient multiplication is considered to be an

NP-Complete optimization problem known as the Single Constant Multiplication (SCM)

problem [9]. It has been shown that the number of adders required to perform a constant
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Figure 2.2: Example of a possible DAG for the multiplication 221X.

multiplication is sub-linear [17]. An exhaustive search algorithm has led to an optimal

solution for any constant up to 12 bits [15] which was then extended to 19 bits in length

in [23], and most recently to 32 bits in [51]. For problems involving larger constants, other

algorithms can be used.

A constant multiplication decomposed into a series of shifts and additions can be rep-

resented by a DAG. Each vertex in the graph represents an adder (or subtractor) and each

edge represents a left bit shift by a certain weight. A negative weight indicates whether

the term is to be subtracted rather than added. Each vertex has an in-degree of two,

representing the two numbers to be added (or subtracted) except for the first vertex which

has an in-degree of 0. This vertex represents the variable multiplicand by which we are

multiplying. Every vertex has an out-degree of at least 1 except for the last vertex having

out-degree 0, representing the result, CX. By this representation, each vertex computes a

certain multiple of the input multiplicand.

The main strategies in the literature used to tackle the SCM problem are Common Sub-

Expression Elimination (CSE) algorithms and graph-based algorithms. CSE algorithms

find common subpatterns within a signed digit representation of a constant as a way of

reducing the number of adders required [8, 25, 33, 41]. The algorithm presented by Lefèvre

in [33] aims to minimize the number of adders by finding maximum repeating bit patterns

in the full CSD representation of the constant in question. The authors show through

experimentation that for an n-bit constant, the number of additions grows with O(n0.85).

On the other hand, Brisbarre et al. present a CSE-based constant multiplier algorithm

which, by means of parenthesizing the CSD representation and developing a cost model

with a hardware target in mind, tries to minimize the number of full adder cells to yield
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a low-latency and easy to pipeline architecture [8, 13]. Better results may be produced

when all possible graph topologies are considered to find the optimal decomposition of a

constant. Graph-based algorithms use heuristics to iteratively construct a DAG. Examples

of graph-based algorithms are Bernstein’s algorithm [4], Bull-Horrocks Modified (BHM)

algorithm [15], the n-Dimensional Reduced Adder Graph (RAG-n) algorithm [15], and

Hcub [54]. Each of these algorithms build the DAG bottom-up by using a heuristic which

will determine the next vertex to add to the DAG. The SPIRAL project has published an

online generator which produces constant multiplier DAGs based on the BHM, Hcub, and

RAG-n algorithms which the public can use [42].

The majority of algorithms in the literature focus on minimizing the number of adders

as a means of reducing the total amount of logic resources required. It is shown in [8] that

this does not necessarily provide the best implementation in hardware. Their constant

multiplier algorithm is included in the FloPoCo core generator. The FloPoCo project is

an open-source framework which, through a command-line interface, takes as input an

operator specification and user-defined parameters, and outputs synthesizable VHDL code

[12]. As this multiplier is geared specifically towards FPGAs, it is used in this thesis.

2.4 Summary

Basic concepts pertaining to ECC have been reviewed. Four different 256-bit prime fields

used in practice have been discussed. These primes will reappear throughout this work.

Different multiplication techniques have been presented. This includes Karatsuba’s al-

gorithm which has been shown to be more efficient than the schoolbook method when

multiplying large operands. Karatsuba’s multiplication is typically used for multiplication

by arbitrary numbers. A number of methods by which constant multipliers can be realized

have also been studied.
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Chapter 3

Barrett Reduction Variants

In this chapter, the Barrett algorithm for modular reduction is introduced. A brief survey of

different variants of the Barrett algorithm is provided. Each respective variant is analyzed

in order to compare the number of operations required to complete a single reduction.

3.1 Modular Reduction

Modular reduction is the operation of performing X mod P where, in our context, both

X and P are integers. Let us assume that the bitlength of P is k. When computing

modular addition and subtraction involving two k-bit integers, the result can be corrected

to be within the range of [0, P −1] by simply adding or subtracting the modulus, P . When

computing the product of two k-bit numbers, however, the 2k-bit result is significantly

larger than the k-bit modulus, P . In applications such as public-key cryptography where

P is very large and prime, correction of the product by simply subtracting or adding

multiples of the modulus would be extremely inefficient. As a result, the reduction step

would need to be replaced by a computationally less intensive algorithm. This gives rise

to the need for efficient modular reduction schemes.

As modular multiplication is a critical step in any public-key cryptosystem, there has

been extensive research in improving this operation in the literature. It is for this reason
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that many ECC systems in practice use prime P of special form for which there exists

efficient reduction techniques. When primes of arbitrary form are used, however, a general

reduction technique is necessary. The two most used include the Montgomery reduction

[40] and the Barrett reduction [3] algorithms. The primary source for the speedup these

algorithms provide over the classical reduction scheme is due to the replacement of the

costly division step by multiplication by a precomputed value. Montgomery reduction can

be considered a right-to-left approach whereas Barrett’s scheme reduces from left to right.

Many variants of the aforementioned algorithms have also been presented. Modular

multiplication can be separated (multply and then reduce) [50, 32] or interleaved [1, 30, 45].

There have also been works which propose special moduli sets with which the multipli-

cation steps in Montgomery and Barrett reduction algorithms can be replaced by simple

shift operations, offering further speed ups [30, 50]. The advantages of both Barrett and

Montgomery’s schemes can be combined to parallelize the modular multiplication opera-

tion as presented in the bipartite and tripartite modular multiplication alrogithms [28, 44].

In this thesis, focus is directed to four Barrett variants: the General Barrett scheme [3],

the Improved Barrett scheme due to Dhem [16], the Folding Barrett reduction algorithm

presented in [26], and a modular multiplication algorithm based on Karatsuba’s algorithm

and the Folding Barrett reduction scheme implemented in [56].

In the sections to follow, the following notations are used. For integers X and P there

exists integers q and r such that X = qP + r where r ∈ [0, P − 1]. We denote q as the

quotient and r as the remainder. The quotient, q, may also be represented as q =

⌊
X

P

⌋
and the remainder as r ≡ X mod P .

3.2 General Barrett Reduction

Barrett reduction [3] aims to compute X mod P given positive integers X and P . In the

notation described above, the numerator and denominator can be equivalently expanded

as in Equation (3.1). Rather than calculating the quotient directly, which would involve a

costly division operation, Barrett’s reduction computes a quotient estimate, q̂. Following

the representation of the quotient in Equation (3.1), the quotient estimate can be defined
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as in Equation (3.2).

q =

⌊
X

P

⌋
=

⌊
X
2k
× 22k

P

2k

⌋
(3.1)

q̂ =

⌊X2k ⌋×
⌊
22k

P

⌋
2k

 (3.2)

When analyzing the equation for q̂, we see that the numerator consists of the multiplication

of two terms, one of which is the quotient produced by dividing 22k by P . Although

Barrett’s reduction algorithm is motivated by the need to avoid costly division operations,

the modulus P is usually a fixed parameter in most cryptosystems. As a result, this term

can be precomputed and regarded as a constant. If the remainder obtained from a division

operation is defined as r = X−qP , then an estimate of the remainder, r̂, can be calculated

using the quotient estimate as r̂ = X− q̂P . In order for this to be a valid estimate, it must

be shown that the difference between r̂ and r is small.

By the definition of the floor function, it is true that for any number, z, 0 ≤ z−bzc < 1.

Using this property, the relationship between q and q̂ can be derived. We first define τ and

ζ where 0 ≤ τ, ζ < 1 such that τ = X
2k
−
⌊
X
2k

⌋
and ζ = 22k

P
−
⌊
22k

P

⌋
. This property can be

used to rewrite q.

0 ≤ q̂ ≤ q =

⌊
X
2k
× 22k

P

2k

⌋

0 ≤ q̂ ≤ q =

(
⌊
X
2k

⌋
+ τ)× (

⌊
22k

P

⌋
+ ζ)

2k


Next, after distribution and with knowledge of the bounds on the values τ and ζ, q can be

represented by the inequality below.

0 ≤ q̂ ≤ q <

⌊X2k ⌋×
⌊
22k

P

⌋
2k

+

⌊
X
2k

⌋
+
⌊
22k

P

⌋
+ 1

2k


Noting that the first term in the above expression is exactly our representation of q̂, the
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above inequality becomes:

0 ≤ q̂ ≤ q <

q̂ +

⌊
X
2k

⌋
+
⌊
22k

P

⌋
+ 1

2k


As it is assumed that the modulus is k bits long, it must be true that 2k−1 ≤ P < 2k;

however, in the case that P = 2k−1, a simple power of 2, the reduction can be performed

by a simple shift operation. Thus, we instead only consider the case where 2k−1 < P < 2k

Similarly, the integer being reduced is assumed to be 2k bits in length and can take on

the values in the range 0 ≤ X < 22k. We wish to find the upper bound on q. Thus, we

evaluate the inequality at X = 22k and P = 2k−1.

0 ≤ q̂ ≤ q <

q̂ +

⌊
22k

2k

⌋
+
⌊

22k

2k−1

⌋
+ 1

2k


0 ≤ q̂ ≤ q <

⌊
q̂ +

2k + 2k+1 + 1

2k

⌋
0 ≤ q̂ ≤ q < q̂ + 3

Since it is required that the quotient be an integer, then the quotient estimate can be

represented by the bounds below.

0 ≤ q̂ ≤ q ≤ q̂ + 2 (3.3)

The estimated quotient, q̂, will be at most equal to q and at least equal to q−2. Substituting

this into our estimate for the remainder, we see that r̂ = X − q̂P ≤ X − (q − 2)P =

x− qP + 2P = r + 2P . Then, extending from the fact that r ∈ [0, P − 1], r̂ < 3P < 2k+2.

Clearly, at most two additional subtractions by the modulus P would need to be performed

in addition to the aforementioned steps to arrive at the correct remainder. The reduction

procedure is described below in Algorithm 1.
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Algorithm 1 General Barrett Reduction [3]

Input Integers P,X and µ where 2k−1 < P < 2k, 0 ≤ X < 22k, µ =
⌊
22k

P

⌋
Output r ≡ X mod P

1: q1 ←
⌊
X
2k

⌋
2: q2 ← q1 × µ
3: q3 ←

⌊
q2
2k

⌋
4: r1 ← X mod (2k+2)− (q3 × P ) mod (2k+2)

5: r2 ← r1 − P
6: r3 ← r1 − 2P

7: return {r ∈ {r1, r2, r3}|0 ≤ r < P}

3.3 Improved Barrett Reduction

The procedure followed in Algorithm 1 computes a quotient estimate which satisfies q−2 ≤
q̂ ≤ q. By consequence, up to two additional subtractions are needed for correction of the

result. Dhem improved upon the classical Barrett reduction algorithm by reducing the

error between the quotient, q, and the quotient estimate, q̂, to 1; by consequence, one

of the extra subtraction steps can be eliminated [16]. In this approach, the quotient,

q, is written in terms of two parameters α and β to formulate a more general approach

to the problem, as seen in Equation (3.4). Following the same procedure as before, the

corresponding quotient estimate, q̂ can be described as in Equation (3.5).

q =

⌊
X

P

⌋
=

⌊
X

2k+β
× 2k+α

P

2α−β

⌋
(3.4)

q̂ =

⌊ X
2k+β

⌋
×
⌊
2k+α

P

⌋
2α−β

 (3.5)

In this form, the precomputed term is µ =
⌊
2k+α

P

⌋
. We now show the proper choice of α

and β. If for any natural z, z ≥ bzc > z − 1, all of the floor functions may be rewritten as
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below. With this, the multiplicative terms can then be expanded.

q̂ =

⌊ X
2k+β

⌋
×
⌊
2k+α

P

⌋
2α−β

 > ⌊ X
2k+β

⌋
×
⌊
2k+α

P

⌋
2α−β

− 1

q̂ >
( X
2k+β
− 1)× (2

k+α

P
− 1)− 2α−β

2α−β

q̂ >
(X
P

)× 2α−β − 2k+α

P
− X

2k+β
+ 1− 2α−β

2α−β

Following the property that z ≥ bzc, the inequality still holds when we replace the term

(X
P

) by
⌊
X
P

⌋
. Noticing that

⌊
X
P

⌋
= q, the expression can be further simplified.

q̂ >

⌊
X
P

⌋
× 2α−β − 2k+α

P
− X

2k+β
+ 1− 2α−β

2α−β

It is assumed that the modulus 2k−1 < P < 2k and that the integer being reduced is in the

range 0 ≤ X < 22k. Evaluating the inequality at these bounds arrives at the expression

below:

q̂ >
q × 2α−β − 2α+1 − 2k−β + 1− 2α−β

2α−β

q̂ > q − 2β+1 − 2k−α + 2β−α − 1

Next, values for β and α are chosen such that the difference between q and q̂ can be

minimized. Suppose α ≥ k + 1 and β ≤ −2. As the term 2β−α becomes fractional after

substitution, it is replaced by σ.

q̂ > q − 2(−2)+1 − 2k−(k+1) + σ − 1

q̂ > q − 1

2
− 1

2
+ σ − 1

q̂ > q − 2 + σ

Since it is required that q̂ be an integer by definition, then the difference between q and q̂

limited to 1.

q̂ > q − 2 + σ ≥ q − 1
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0 ≤ q̂ ≤ q ≤ q̂ + 1 (3.6)

By the above derivation, q̂ will be at most equal to q and at least equal to q − 1 provided

that α ≥ k + 1 and β ≤ −2. Substituting this into our estimate for the remainder, we see

that r̂ = X − q̂P ≤ X − (q − 1)P = X − qP + P = r + P . Then, extending from the

fact that r ∈ [0, P − 1], r̂ < 2P < 2k+1. Clearly, at most one additional subtraction by the

modulus P would need to be performed to arrive at the correct remainder. We choose to

work with the α and β values as determined in [32] to be consistent with the parameters as

required by the Improved Folding Barrett variant to be described later. In Kong’s method,

α = k + 3 whereas β = −2 so that the µ constant can be calculated as µ =
⌊
22k+3

P

⌋
. The

final procedure is given in Algorithm 2.

Algorithm 2 Improved Barrett Reduction [16] [32]

Input Integers P,X and µ where 2k−1 ≤ P < 2k, 0 ≤ X < 22k, µ =
⌊
22k+3

P

⌋
Output r ≡ X mod P

1: q1 ←
⌊

X
2k−2

⌋
2: q2 ← q1 × µ
3: q3 ←

⌊
q2

2k+5

⌋
4: r1 ← X mod (2k+1)− (q3 × P ) mod (2k+1)

5: r2 ← r1 − P
6: return {r ∈ {r1, r2}|0 ≤ r < P}

3.4 Folding Barrett Reduction

The authors in [26] modified the classical Barrett scheme with the aim of reducing the

size of the multiplications involved. Rather than just precomputing a single value which

is dependent on the modulus, P , the Folding Barrett scheme relies on multiplication by

two values, both of which are dependent on the modulus P and thus, can be computed

beforehand. Again, it is assumed that the modulus is a k-bit value. Representing s = k
2
,

these constants can be denoted µ =
⌊
23s

P

⌋
and P ′ = 23s mod P . Using these constants,

the integer to be reduced, X, can be partially reduced to a 3s+ 1 bit integer, represented
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by X ′ = X mod 23s +
⌊
X
23s

⌋
×P ′. It can be shown that X ′ ≡ X mod P and so reduction

proceeds to compute the value X ′ mod P as opposed to X mod P which is a smaller

number than the original 4s-bit number that needed to be reduced [26]. As a result, the

actual size of the multiplications involved in the reduction is smaller. Assuming Karatsuba

multiplication is used for all multiplications involved, the two k-bit multiplications in the

classical Barrett method would be equivalent to six s-bit multiplications, whereas the

Folding Barrett reduction scheme only requires five, amounting to a 20% savings [26]. The

new quotient, q′, may be represented as q′ =

⌊
X ′

P

⌋
. In this form, the numerator and

denominator can be equivalently expanded as in Equation (3.7) and the quotient estimate

can be defined as in Equation (3.8).

q′ =

⌊
X ′

P

⌋
=

⌊
X′

22s
× 23s

P

2s

⌋
(3.7)

q̂′ =

⌊X′22s

⌋
×
⌊
23s

P

⌋
2s

 (3.8)

We now study the number of final corrections required by this new quotient estimate. If the

remainder obtained from a division operation is defined as r′ = X ′− q′P , then an estimate

of the remainder, r̂′, can be calculated using the quotient estimate as r̂′ = X ′− q̂′P . Using

the property of the floor function, the relationship between q′ and q̂′ can be derived. We

first define τ and ζ where 0 ≤ τ, ζ < 1 such that τ = X′

22s
−
⌊
X′

22s

⌋
and ζ = 23s

P
−
⌊
23s

P

⌋
. This

property can be used to rewrite q′.

0 ≤ q̂′ ≤ q′ =

⌊
X′

22s
× 23s

P

2s

⌋

0 ≤ q̂′ ≤ q′ =

(
⌊
X′

22s

⌋
+ τ)× (

⌊
23s

P

⌋
+ ζ)

2s
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Next, after distribution and with knowledge of the bounds on the values τ and ζ, q′ can

be represented by the inequality below.

0 ≤ q̂′ ≤ q′ <

⌊X′22s

⌋
×
⌊
23s

P

⌋
2s

+

⌊
X′

22s

⌋
+
⌊
23s

P

⌋
+ 1

2s


Noting that the first term in the above expression is exactly our representation of q̂′, the

above inequality becomes:

0 ≤ q̂′ ≤ q′ <

q̂′ + ⌊
X′

22s

⌋
+
⌊
23s

P

⌋
+ 1

2s


As P is k bits in length (where k = 2s), it must be true that 22s−1 ≤ P < 22s. We assume

that 22s−1 < P < 22s since if P = 22s−1, reduction would be trivial. Similarly, X ′ is a

3s + 1 bit integer and can take on the values in the range 0 ≤ X < 23s+1. To find the

upper bound on q′, we evaluate the inequality at X ′ = 23s+1 and P = 22s−1.

0 ≤ q̂′ ≤ q′ <

q̂′ +
⌊
23s+1

22s

⌋
+
⌊

23s

22s−1

⌋
+ 1

2s


0 ≤ q̂′ ≤ q′ <

⌊
q̂′ +

(2s+1) + 2s+1 + 1

2s

⌋
0 ≤ q̂′ ≤ q′ < q̂′ + 4

0 ≤ q̂′ ≤ q′ ≤ q̂′ + 3 (3.9)

Thus, the estimated quotient, q̂′, will be at most equal to q′ and at least equal to q′ − 3.

Substituting this into our estimate for the remainder, we see that r̂′ = X ′ − q̂′P ≤ X ′ −
(q′ − 3)P = X ′ − q′P + 3P = r′ + 3P . Then, extending from the fact that r′ ∈ [0, P − 1],

r̂′ < 4P < 22s+2. Therefore, at most three additional subtractions by the modulus P would

need to be performed. The description of this procedure can be seen in Algorithm 3.
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Algorithm 3 Folding Barrett Reduction [26]

Input Integers X,P, µ, and P ′ where 2k−1 ≤ P < 2k, 0 ≤ X < 22k, µ =
⌊
23s

P

⌋
and P ′ = 23s

mod P . Assume k = 2s

Output r ≡ X mod P

1: q1 ←
⌊
X
23s

⌋
2: q2 ← q1 × P ′

3: X ′ ← X mod (23s) + q2

4: q3 ←
⌊
X′

22s

⌋
5: q4 ← q3 × µ
6: q5 ←

⌊
q4
2s

⌋
7: r1 ← X ′ mod (22s+2)− (q5 × P ) mod (22s+2)

8: r2 ← r1 − P
9: r3 ← r1 − 2P

10: r4 ← r1 − 3P

11: return {r ∈ {r1, r2, r3, r4}|0 ≤ r < P}

3.5 Modular Multiplier with Folding Barrett Reduc-

tion

All of the previous methods explored have only considered the operation of modular re-

duction; should a modular multiplation be required, the product would first need to be

computed separately. As demonstrated in the previous section, the Folding Barrett re-

duction algorithm proposed in [26] decreases the size of the multiplications required to

compute a reduction step at the cost of three extra subtractions performed at the end.

This is the largest number of subtractions required by all Barrett reduction variants stud-

ied thus far. Noting how Dhem was able to reduce the number of correction steps required

by proposing a more general form of the algorithm in [16], Wu et al. combine the benefits

of both the Folding Barrett and Improved Barrett scheme to produce a modular multiplier

which uses the folding technique while requiring only one additional subtraction step [56].
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By using both methods and integrating Karatsuba’s algorithm into the computation of the

product, the authors are able to realize a low-area design and decrease the critical delay of

the reduction step [56]. It is assumed that the modulus is a k-bit value and that k is even.

Representing s = k
2
, the precomputed constants can be denoted µ =

⌊
23s+3

P

⌋
and P ′ = 23s

mod P . Using these constants, the integer to be reduced, X, can be partially reduced to

a 3s+ 2 bit integer, X ′′. The new quotient, q′′, may be represented as q′′ =

⌊
X ′′

P

⌋
. In this

form, the numerator and denominator can be equivalently expanded as in Equation (3.10)

and the quotient estimate can be defined as in Equation (3.11).

q′′ =

⌊
X ′′

P

⌋
=

⌊
X′′

22s−2 × 23s+3

P

2s+5

⌋
(3.10)

q̂′′ =

⌊ X′′

22s−2

⌋
×
⌊
23s+3

P

⌋
2s+5

 (3.11)

Suppose we wish to compute the modular multiplication of two 2s-bit integers A and

B under the 2s-bit modulus P . By Karatsuba’s method, the product X = A× B can be

expressed as:

X = (A×B) = (2sAH + AL)(2sBH +BL)

X = 22sAHBH + 2s((AH + AL)(BH +BL)− AHBH − ALBL) + ALBL

Splitting the first product term AHBH into its upper and lower s bits can be written as

U(AHBH) = 2s
⌊
AHBH

2s

⌋
and L(AHBH) = AHBH mod (2s). The X ′ term from the Folding

Barrett reduction scheme is now replaced by X ′′, a 3s+2 bit integer which can be computed

as seen below.

X = 23sU(AHBH) + 22sL(AHBH) + 2s((AH + AL)(BH +BL)− AHBH − ALBL) + ALBL

X ′′ = (P ′U(AHBH) + 22sL(AHBH) + ...

...2s((AH + AL)(BH +BL)− AHBH − ALBL) + ALBL) mod P

X ′′ ≡ X mod P
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It now remains to show how the above definitions yield an implementation requiring only

one final reduction step.

0 ≤ q̂′′ ≤ q′′ =

⌊
X′′

22s−2 × 23s+3

P

2s+5

⌋

Again, τ and ζ are defined, where 0 ≤ τ, ζ < 1 such that τ = X′′

22s−2 −
⌊

X′′

22s−2

⌋
and ζ =

23s+3

P
−
⌊
23s+3

P

⌋
. This property can be used to rewrite q′.

0 ≤ q̂′′ ≤ q′′ =

(
⌊

X′′

22s−2

⌋
+ τ)× (

⌊
23s+3

P

⌋
+ ζ)

2s+5


Distributing the terms of the multiplication in the numerator and applying the bounds on

the values τ and ζ, q′′ can be represented by the inequality below.

0 ≤ q̂′ ≤ q′ <

⌊ X′′

22s−2

⌋
×
⌊
23s+3

P

⌋
2s+5

+

⌊
X′′

22s−2

⌋
+
⌊
23s+3

P

⌋
+ 1

2s+5


As P is k bits in length (where k = 2s), it must be true that 22s−1 < P < 22s. As derived

in [56], X ′′ is a 3s+ 2 bit integer, ranging in value from 0 ≤ X < 23s+2. To find the upper

bound on q′′, we evaluate the inequality at X ′′ = 23s+2 and P = 22s−1.

0 ≤ q̂′′ ≤ q′′ <

q̂′′ + ⌊
X′′

22s−2

⌋
+
⌊
23s+3

22s−1

⌋
+ 1

2s+5


0 ≤ q̂′′ ≤ q′′ <

⌊
q̂′′ +

(2s+4) + 2s+4 + 1

2s+5

⌋
0 ≤ q̂′′ ≤ q′′ < q̂′′ + 2

0 ≤ q̂′′ ≤ q′′ ≤ q̂′′ + 1 (3.12)

by the above evaluation, the estimated quotient, q̂′′, will be at most equal to q′′ and at

least equal to q′′ − 1. Substituting this into our estimate for the remainder, we see that

r̂′′ = X ′′− q̂′′P ≤ X ′′− (q′′− 1)P = X ′′− q′′P +P = r′′+P . Knowing that the remainder

must adhere to r′′ ∈ [0, P − 1], r̂′′ < 2P < 22s+1. Therefore, at most one additional
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subtraction by the modulus P would need to be performed. The final algorithm can be

seen in Algorithm 4.

Algorithm 4 Modular Multiplier by Folding Barrett Reduction [56]

Input Integers A,B, P, µ, and P ′ where 2k−1 ≤ A,B, P < 2k, µ =
⌊
23s+3

p

⌋
and P ′ = 23s

mod P . Assume k = 2s

Output r ≡ X mod P where X = A×B
1: q1 ←

⌊
AHBH

2s

⌋
2: q2 ← q1 × P ′

3: q3 ← 22s(AHBH mod (2s)) + 2s((AH + AL)(BH +BL)− AHBH − ALBL) + ALBL

4: X ′′ ← q2 + q3

5: q4 ←
⌊

X′′

22s+2

⌋
6: q5 ← q4 × µ
7: q6 ←

⌊
q5

2s+5

⌋
8: r1 ← X ′′ mod (22s+1)− (q6 × P ) mod (22s+1)

9: r2 ← r1 − P
10: return {r ∈ {r1, r2}|0 ≤ r < P}

As the previous Barrett variants studied only consider reduction and not modular

multiplication, we will largely only refer to the reduction aspects of Algorithm 4. Since the

aspects of reduction of the above algorithm can be viewed as a union of the ideas presented

by the Improved Barrett reduction scheme [16] and the Folding Barrett implementation

[26], we will refer to this as the Improved Folding Barrett reduction variant hereafter.

The reduction aspects of this scheme assume that q1 and q3 are provided and need not be

computed.

3.6 Comparison of Reduction Techniques

Each of the algorithms differ in terms of the precomputed constants that are used, the

number of subtractions necessary for the final reduction, as well as the size of the mul-

tiplications involved. Here, we summarize the differences in the variants of the Barrett
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schemes previously discussed. A comparison of the precomputed constants is provided in

Table 3.1.

Table 3.1: Precomputations pertinent to each variation of the Barrett reduction scheme

where k is the length of the modulus.

Scheme Precomputed Constants Size

General Barrett µ =
⌊
22k

P

⌋
k + 1

Improved Barrett µ =
⌊
22k+3

P

⌋
k + 4

Folding Barrett
µ =

⌊
2
3k
2

P

⌋
k
2

+ 1

P ′ = 2
3k
2 mod P k

Improved Folding Barrett
µ =

⌊
2
3k
2 +3

P

⌋
k
2

+ 4

P ′ = 2
3k
2 mod P k

Table 3.2: Operations required for each reduction scheme where k is the length of the

modulus.

Reduction Scheme Multiplications Additions

General Barrett 2[(k)× (k + 1)] 3[(k + 2)]

Improved Barrett
1[(k + 2)× (k + 4)]

2[(k + 1)]
1[k × (k + 1)]

Folding Barrett

1[(k
2
)× k] 1[(3k

2
)]

1[(k
2

+ 1)× (k
2

+ 1)] 4[(k + 2)]

1[(k
2

+ 2)× k]

Improved Folding Barrett

1[(k
2
)× k] 1[(3k

2
+ 1)]

1[(k
2

+ 4)× (k
2

+ 4)] 2[(k + 1)]

1[(k
2

+ 3)× k]

Using the sizes of the constants in question for each scheme, the computational com-

plexity of each scheme is now summarized (see Table 3.2). To provide a fair comparison,

we only consider the cost for the reduction part of the scheme; the multiplication to ob-
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tain the 2k-bit value X is excluded. This is due to the fact that although the scheme

in 3.5 uses Karatsuba to perform the multiplication, the three schemes before it can also

exploit the benefits of Karatsuba multiplication as the reduction scheme is separated. This

differs from the comparsion of computational complexity in [56] where the author’s have

compared their algorithm using Karatsuba multiplication against the Barrett scheme pre-

sented in [16] assuming that the latter used schoolbook multiplication. The general pattern

observed between the four algorithms presented is that a reduction in final correction steps

can be achieved by increasing the size of the precomputed µ constant. Thus, there is a

trade-off as the larger µ constant necessitates larger multipliers.

With knowledge of the bounds of each computation, the architecture for each Barrett

scheme studied can be devised. The block diagram of each is provided in Figure 3.1. In

these diagrams, k represents the bitlength of the modulus, P , s is equal to half of this

length (ie. k = 2s), X is the 2k-bit product to be reduced (except in the Improved Folding

Barrett scheme where X = (q1, q3) as per Algorithm 4), and R is the final k-bit result.

There are chances for optimization that can be made particularly when implementing these

schemes in hardware. When performing several subtractions of the modulus in sequence

as is necessary when performing the final correction, we note that r − P and r − 2P can

be performed in parallel since 2P can be easily represented by appropriate wiring. This is

taken advantage of in the cases of the General Barrett and Folding Barrett implementations

where the final subtractions are performed in 2 and 3 steps, respectively. This opportunity

for parallelization may make these schemes comparable to their improved variants in terms

of timing, which we expect to explore later in this thesis.

To make the final selection of the result, we use the theoretical bounds of the subtraction

results. The most significant bit is used to select the result, using the fact that if a

subtraction yields a negative result, then one of the preceding results must be correct. It

is important to emphasize here that we have not taken steps to mitigate potential side-

channel attacks. In particular, due to the fact that we rely on the sign bit to choose which

is the correct remainder, this architecture could also be susceptible to sign-change attacks.

It is noted that in all of these schemes, every multiplication is a multiplication either

by a precomputed constant or by the prime modulus. Thus, each of these sub-modules

may be replaced by an efficient constant multiplication circuit. In Tables 3.3 to 3.5 we
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calculate the constants for each Barrett scheme pertinent to the four fields which will be

studied in the sections to follow.
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Figure 3.1: Architectures of Barrett reduction schemes.

3.7 Summary

In this chapter, four different variants of Barrett reduction are presented. We have cal-

culated the precomputational constants required for each algorithm for each of the prime

fields studied in this thesis. Additionally, the bounds on the quotient estimate for each

scheme is obtained, thereby showing the number of correction steps required for each al-

gorithm. A comparison of the precomputation steps, as well as their sizes, is provided.

Based on this information, a comparison of the computational complexity of each is given.

The architectures on which our hardware implementation is based for each of the Barrett

reduction schemes is also provided.
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Chapter 4

Constant Multiplier Hardware

Implementation

In this chapter, a constant multiplier is designed based on a recursive Karatsuba module

with constant multipliers performing the base multiplication. Through experimentation,

the ideal level of recursion is found. This is performed for each of the Barrett reduction

variants presented in the previous chapter. The design is then fully pipelined, achieving

a reduced area constant multiplier circuit which can operate at very high frequency and

throughput.

4.1 Description of Multiplier Module

In each of the Barrett reduction schemes presented in the previous chapter, the most

computationally intensive operations are attributed to the constant multiplication step,

of which there are at least two. We design a hybrid constant multiplier module which

is based on Karatsuba’s multiplication algorithm. Normally, Karatsuba multiplication

is only viable in practice at very large bitlengths. Since Karatsuba’s algorithm can be

recursively applied, implementors typically stop recursion at a certain level, at which point

a different multiplication scheme is used to perform the so-called base multiplication steps,
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such as schoolbook multiplication. The same approach is used here when implementing

the constant multiplication module. Instead of recursing downto a multiplier based on

the schoolbook method, however, constant multipliers generated by FloPoCo’s constant

multiplier generator are used [8, 12].

It is assumed that two k-bit unsigned integers are being multiplied. X is used to denote

the constant multiplier whereas Y denotes the variable multiplicand. The actual value of

X depends on the constant multiplication being performed in each Barrett scheme and can

either represent µ, P , or P ′. Writing the two operands in terms of their upper and lower

halves leads to X = 2k/2XH + XL and Y = 2k/2YH + YL. The Karatsuba multiplication

implementation in this thesis is a modification of the multiplier presented in [10] using

similar hardware-oriented optimization techniques. Recall the classical Karatsuba method

obtains the product X × Y by computing:

X × Y = 2kXHYH + 2k/2((XH +XL)(YH + YL)−XHYH −XLYL) +XLYL.

Karatsuba’s algorithm as it is described above can produce some complications when im-

plemented, especially due to the computation of the middle product term (see Figure 4.1

a)). The result of computing (XH +XL) or (YH +YL) produces a carry, increasing the over-

all size of the multiplier necessary to compute its product. The middle term in Karatsuba’s

algorithm, originally expressed as (XLYH +XHYL) = (XH +XL)(YH +YL)−XHYL−XHYL

can also be represented in its negative form as:

(XLYH +XHYL) = XHYH +XLYL − (XH −XL)(YH − YL) (4.1)

In order to avoid the extra bit created by possible negative results, the absolute value can

be taken. Then, the middle product multiplies two operands which are of equal size as

compared to the two other products computed in Karatsuba’s algorithm. By this method,

it is then necessary to check whether we need to add or subtract this result based on the

comparisons of XH , XL, YH , and YL. Using this methodology, the Karatsuba multiplication

module implemented in [10] is expressed below. The final form of the multiplier to be

designed can be seen in Figure 4.1 b).

X × Y = 2kXHYH + 2k/2(XHYH +XLYL ± (|XH −XL|)(|YH − YL|)) +XLYL.
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(a) Original Karatsuba
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(b) Modified Karatsuba

Figure 4.1: a) Graphical representation of the original Karatsuba algorithm compared to

b) a modified version of Karatsuba using absolute value and conditional adder/subtractor

unit where 2s = k and k is the length of the operands being multiplied.

For ease of understanding, the topology of the design is explained assuming only one

level of recursion. The multiplier is split into seven sub-components. Three of these

components are responsible for computing the three products XH × YH , XL × YL, and

|XH−XL|×|YH−YL|. Each of these products can either be computed by another Karatsuba

module of half size or by a base multiplier unit (in our case, a constant multiplier). The

four remaining components are used to combine the upper, middle, and lower terms as

per Karatsuba’s algorithm. Figure 4.2 depicts the separation of these operations, where

U( ) denotes the most significant half of a number and L( ) the lower half. The different

operations are coloured to match those in Figure 4.3, where the top level architecture is

displayed, in order to demonstrate where in the design a certain computation is completed.

4.1.1 Absolute Value

The absolute value module (labeled ABS. VALUE in Figure 4.3) is responsible for com-

puting the absolute differences required for the middle product term and drives the A/S

control signal. This control signal decides whether the middle product is added or sub-

tracted and is dependent on the evaluations of the comparisons XH > XL and YH > YL.
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Figure 4.2: Top level of the Karatsuba arithmetic based on [10].
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39



By the properties of multiplication of signed numbers and recalling the middle term as

expressed in its negative form in Equation (4.1), we subtract when both upper halves are

larger than the lower halves or both are smaller; in all other cases, we add the middle

product term. The component also produces the result |YH − YL|. Furthermore, the

absolute value unit can be optimized compared to its implementation in [10] since the X

operand is constant; consequently, the value |XH −XL| and the comparison between XH

and XL does not need to be produced, but rather is hard-coded into the circuit. Thus, the

component need only take Y as input.

4.1.2 Middle Adder

The middle adder component is responsible for computing the sum of XHYH +XLYL and

adding it to the lower half of the upper product, L(XH×YH) and the upper half of the lower

product, U(XL × YL) which, due to the shifting as described by Karatsuba’s algorithm,

overlap into the middle 2s bits of the computation. As pointed out in [10], this addition can

be improved by noting that the addition of U(XL×YL) and L(XH ×YH) actually appears

twice (see Figure 4.2). As a result, U(XL × YL) + L(XH × YH) can first be computed and

the sum then added to L(XL× YL) and U(XH × YH), respectively. Further, implementing

this as a carry-save adder and diverting the carry propogation to the adder/subtractor

module allows these two additions to be performed in parallel [10]. In the non-pipelined

design, this carry-out is a single bit. In a pipelined design where additions are performed

on multiple limbs, the number of carry-out bits depends on the number of limbs into which

the operands are split.

4.1.3 Adder/Subtractor

The adder/subtractor block (labeled ADD/SUB in Figure 4.3) adds (or subtracts) the

product of the absolute difference terms as defined in the middle term to fully produce

the middle 2s bits of the product. Prior to computing this, however, the module adds the

carries produced by the middle adder component to the sum output produced by the same

module. The module, then, must take as input the carries from the middle adder, the
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sum it produces, as well as the absolute product term. To determine whether this term is

added or subtracted, the adder/subtractor block looks to the control signal produced by

the absolute value component. After successfully propagating the carries from the middle

adder block and adding (or subtracting) the absolute product term to this result, the output

is obtained. Two carry-outs are produced from this block–one from the carry-propagation

step and one from the adder/subtractor step. Both of these are given as outputs to be

handled in the final adder component. In both the non-pipelined and pipelined designs,

these carry-outs are each a single bit.

4.1.4 Final Adder

Last but not least, the final adder component handles all of the carry-propagation from

the preceding sub-blocks into the upper product term. There are four possible carries.

The middle adder and the adder/subtractor produce two carries, respectively. Since the

carry-out from the add or subtract step in the adder/subtractor block could possibly be a

borrow rather than a carry, the final adder must also take in the A/S control signal. Once

computed, the final adder produces an s-bit result which forms the upper s bits of the final

product.

4.1.5 Modifications for Fully Pipelined Design

The Karatsuba multiplier as it was previously described is fully combinational. Although

modern FPGAs have specialized circuitry to provide dedicated fast carry logic and can

realize ripple-carry adders quite efficiently, the propagation delay of such components grows

linearly with the size of the operands. The large size of operands required in our design

would require very large adders to be realized, hindering the achievable speed of the circuit.

Thus, in addition to this combinational multiplier, the design is also modified to achieve

better operating frequencies. This is done by using multi-precision arithmetic techniques

and extensive pipelining. It is observed that more favourable timing results of around

500MHz can be achieved by limiting the size of additions to approximately 32 bits. As the

design is fully pipelined, the pipelined version of the multiplier can accept a new input on
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every cycle. This, of course, comes at the cost of increasing the latency of the multiplier

and subsequently, the area required due to the insertion of pipeline registers. The pipeline

depth varies depending on the constant multiplier since the sizes of the constant multipliers

vary for each Barrett variant (see Chapter 3).

4.2 Study of Constant Multipliers

All of the hardware implementations in this thesis have been synthesized using Vivado for

the Virtex-7 (xc7vx485tffg1157-1). We have used most of the default Synthesis strategies,

except for using the -mode out_of_context option as the number of input and outputs

in most of our designs exceeds the number of I/O pins on the device. Before obtaining

our constant multiplier, it is necessary to determine the number of recursive calls by the

above Karatsuba module which would minimize the area. At each level, the size of the base

multiplier halves and the number of these base multipliers triples. As it is our intention to

study this effect on four prime fields across four different Barrett variants, the number of

constants needed to be realized is quite large; consequently, a suitable constant multiplier

generator was needed to facilitate this task. The authors of the Hcub algorithm provide

a constant multiplier generator available here [42]; however, it was found that the authors

have not used multi-precision libraries in their implementation, limiting their generator

to 32 bit constants. The rigo.c generator designed by Lefèvre does not suffer from the

previous limitation [33, 34]. Unfortunately, the output produced is a C-style pseudocode

representation of the DAG which would require hand-translating hundreds of constants to

a hardware description language. The constant multiplier generator used in this project

was that provided by the FloPoCo project [8, 12]. As mentioned, the FloPoCo integer

constant multiplier operator will generate a fully combinational constant multiplier based

on the CSE method. Their generator is designed with FPGAs in mind and aims to reduce

the cost of the constant multiplier by reducing the number of full-adder/Look-up Table

(LUT) cells as opposed to the actual number of adders. They have shown that for certain

constants, their cost model provides better results in terms of area and delay than other

CSE generators such as that by Lefèvre [8]. The FloPoCo constant multiplier also has the

added advantage of a target frequency option; once specified, the tool will fully pipeline
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Figure 4.4: Exploring the LUT cost of FloPoCo constant multipliers at varying bitlengths.

the shift-and-add DAG according to the constraint provided.

In this preliminary study, only the µ constant multiplication is considered. The size for

the integers was determined by the expected size of the base multipliers needed to realize

a recursive Karatsuba module for each Barrett reduction scheme, recalling that each has

a varying µ parameter. Each recursive call to the Karatsuba module splits the multiplier

and multiplicand into two approximately half-sized numbers, respectively. Since the µ

constants of all the Barrett schemes in question are not perfect powers of two and most

are not even, the split will be unequal. In the case of the 257-bit constant, we assume a

128-129 split, in the case of a 129-bit constant, we assume a 64-65 split. Lower recursion

levels follow the same pattern of splitting. Thus, we ensure that each multiplication has

an equal number of unequal multipliers [7]. Our study accounts for all constants in this

uneven method of splitting. A C-script was used to generate 100 random integers for

each possible µ bitlength. These 100 random values were given as input to the FloPoCo

constant multiplier generator. The results of this study can be seen in Figure 4.4. With
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the approximate hardware cost of the Karatsuba module and the results of Figure 4.4, an

estimate towards the hardware cost of the µ constant multiplication as it pertains to each

Barrett reduction scheme studied is formulated. It is our aim to examine whether there

is an advantage to using Karatsuba multiplication to perform a constant multiplication or

whether it is best to directly use a constant multiplier based on the shift-and-add DAG

algorithm. A recursion level of 0 indicates that the Karatsuba module is not used and the

results reported are for the constant multiplier as generated by FloPoCo. It is noted that

this cost is associated with performing a single constant multiplication, which is merely one

step required in a full Barrett reduction scheme. There is one level of recursion missing from

each of the plots; this level corresponds to a design which uses ∼32-bit base multipliers.

Unfortunately, for many constants at this bit level, the constant multiplier generator would

produce a fault. As a result, this level of recursion is omitted from our study.

Based on the results in Figure 4.5, we see the lowest area utilization when recursion

is applied up to base multipliers of size approximately 64 bits, corresponding to a 2-level

(General and Improved) and a 1-level (Folding and Improved Folding) recursive Karatsuba

implementation. This translates into a LUT savings on the order of 3-11% depending on

the variant as compared to just using the full-size multiplier produced by the generator.

Based on these results, the remainder of our Karatsuba modules implementing constant

multiplication will recurse downto ∼64-bit multipliers.

44



0 1 2 4 5
0

0.5

1

1.5

2

·104

15,262
14,024 13,572

15,011

18,595

Recursion Levels

F
A

/L
U

T

General Barrett

0 1 2 4 5
0

0.5

1

1.5

2

·104

15,185
13,842 13,826

15,271

18,969

Recursion Levels

F
A

/L
U

T

Improved Barrett

0 1 3 4
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

4,372 4,232

4,822

6,000

Recursion Levels

F
A

/L
U

T

Folding Barrett

0 1 3 4
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

4,380 4,317
4,862

6,129

Recursion Levels

F
A

/L
U

T

Improved Folding Barrett

Figure 4.5: Estimated cost when using Karatsuba multiplication and FloPoCo constant

multipliers as it pertains to each µ constant for the different Barrett variants studied.
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4.3 Results of Constant Multiplier (Not Pipelined)

In this section, we contrast two different methods of computing constant multiplication.

First, we consider using the FloPoCo-generated constant directly. We compare this against

the Karatsuba multiplier described in the previous section where smaller FloPoCo constant

multipliers are used as the base multipliers. We refer to this as the hybrid implementation.

As the Improved Barrett scheme is a slight modification to the General Barrett scheme

and the Improved Folding Barrett variant is based on the Folding Barrett scheme, we

perform this study on the General Barrett and Folding Barrett schemes only, under the

assumption that their improved implementations will yield similar performance metrics.

There are multiple constant multiplication steps in each Barrett scheme; each vary in size

and some of which only require the least significant bits. It is our hope to demonstrate

which multiplier would be suitable to perform the different multiplications required.

4.3.1 General Barrett

The General Barrett reduction scheme requires two constant multiplications. For a 256-

bit modulus, this requires a multiplication by the constant µ of size 256 × 257-bit and a

multiplication by the constant prime field of size 256×257-bit. When obtaining the constant

multiplier from FloPoCo, we can specify the bit width of the variable multiplicand. When

applying our Karatsuba module, however, we use the maximum size of the two operands.

When necessary, this involves padding the smaller operand with 0s. In Figures 4.6 and 4.7

we compare the resource utilization of the FloPoCo-generated constants against the hybrid

model. The total resource utilization as well as the delay and area×time metrics for each

design is summarized in Tables 4.1 and 4.2.
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Figure 4.6: Comparison of synthesized multiplier designs when considering the µ multiplier

in the General Barrett reduction scheme.

Table 4.1: LUTs, delay, and area×time metrics for the µ multiplier in General Barrett.

Curve Implementation LUT Delay (ns)
Area ×Time

((LUT× ns)10−3)

brainpoolP256t1
FloPoCo 15078 15.5 234.3

Hybrid 12915 24.3 313.7

ANSSI FRP256v1
FloPoCo 14183 15.0 212.4

Hybrid 12540 24.0 301.4

NIST P-256
FloPoCo 1869 11.0 20.6

Hybrid 4002 21.5 85.9

secp256k1
FloPoCo 1290 11.8 15.2

Hybrid 3101 21.9 68.0
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Figure 4.7: Comparison of synthesized multiplier designs when considering the P multiplier

in the General Barrett reduction scheme.

Table 4.2: LUT, delay, and area×time metrics for the P multiplier in General Barrett.

Curve Implementation LUT Delay (ns)
Area ×Time

((LUT× ns)10−3)

brainpoolP256t1
FloPoCo 8149 11.0 97.7

Hybrid 9827 17.6 173.0

ANSSI FRP256v1
FloPoCo 7846 11.8 92.3

Hybrid 10794 18.0 194.3

NIST P-256
FloPoCo 518 7.9 4.1

Hybrid 2076 14.4 29.8

secp256k1
FloPoCo 1238 11.8 14.6

Hybrid 3039 16.7 50.8

It is observed that for the µ multiplications, the area can be reduced by using the

hybrid constant multiplier, as was predicted. For the ANSSI and Brainpool curves which

are defined over pseudo-random primes, we see an area reduction between 11.6-14.3%
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as compared to the FloPoCo-generated multiplier. Due to the recursive nature of the

Karatsuba multiplier, the critical path delay is quite large and this reduction in area comes

at an increase in the delay of the circuit. When comparing the area×time metric, we see

that the FloPoCo-generated implementation is better across all curves studied. Although

the delay for our circuit is larger than that of FloPoCo, it should be mentioned that it

is still better than that of a general 256-bit Karatsuba multiplier. We consistently see no

improvement for the primes of special form, namely the P-256 and secp256k1 primes; these

constants can be more compactly expressed by a DAG as compared to the pseudo-random

primes (see Table 3.3).

4.3.2 Folding Barrett

For the Folding Barrett reduction scheme, it is necessary to perform three constant multi-

plications. For a 256-bit modulus, this requires a multiplication by the constantP ′ of size

128 × 256-bit, by µ of size 129 × 129-bit and a multiplication by the constant prime field

of size 130 × 256-bit. In Figures 4.8, 4.9, and 4.10 we compare the resource utilization of

the FloPoCo-generated constants and the hybrid constant. The total resource utilization

as well as the delay and area×time metrics for each design is summarized in Tables 4.3,

4.4, and 4.5.
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Figure 4.8: Comparison of synthesized multiplier designs when considering the P ′ multiplier

in the Folding Barrett reduction scheme.

Table 4.3: LUTs, delay, and area×time metrics for the P ′ multiplier in Folding Barrett.

Curve Implementation LUT Delay (ns)
Area ×Time

((LUT× ns)10−3)

brainpoolP256t1
FloPoCo 7904 13.7 108.3

Hybrid 8721 19.4 169.0

ANSSI FRP256v1
FloPoCo 7459 13.6 101.5

Hybrid 9239 19.3 178.2

NIST P-256
FloPoCo 901 10.1 9.1

Hybrid 2476 16.3 40.3

secp256k1
FloPoCo 509 5.5 2.8

Hybrid 737 8.9 6.6
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Figure 4.9: Comparison of synthesized multiplier designs when considering the µ multiplier

in the Folding Barrett reduction scheme.

Table 4.4: LUTs, delay, and area×time metrics for the µ multiplier in Folding Barrett.

Curve Implementation LUT Delay (ns)
Area ×Time

((LUT× ns)10−3)

brainpoolP256t1
FloPoCo 3973 10.9 43.3

Hybrid 4020 15.8 63.7

ANSSI FRP256v1
FloPoCo 4530 10.8 48.8

Hybrid 3958 15.7 62.1

NIST P-256
FloPoCo 517 7.0 3.6

Hybrid 907 13.0 11.8

secp256k1
FloPoCo 0 0 0

Hybrid 0 0 0
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Figure 4.10: Comparison of synthesized multiplier designs when considering the P multi-

plier in the Folding Barrett reduction scheme.

Table 4.5: LUT, delay, and area×time metrics for the P multiplier in Folding Barrett.

Curve Implementation LUT Delay (ns)
Area ×Time

((LUT× ns)10−3)

brainpoolP256t1
FloPoCo 6135 12.0 73.5

Hybrid 7812 17.8 139.0

ANSSI FRP256v1
FloPoCo 5801 12.0 69.3

Hybrid 8685 18.0 156.3

NIST P-256
FloPoCo 329 7.9 2.6

Hybrid 1811 14.6 26.4

secp256k1
FloPoCo 659 6.8 4.5

Hybrid 2718 16.7 45.2

From the data obtained, it is seen that for the multiplications by P and P ′, the hybrid

multiplier is always worse both in terms of time and area; this is likely due to the fact
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that the multiplications by these constants are very uneven. For the µ multiplier, there

is an improvement in area in the case of the ANSSI curve of about 12.6%, but not for

the case of the Brainpool curve. This is, however, consistent with our estimations where

we observed that for the case of Folding Barrett, the hybrid approach area utilization was

nearly the same as the FloPoCo-generated result (see Figure 4.5). Again, we see the trend

that the area×time metric for the FloPoCo-generated implementation is better across all

curves studied. We see no improvement for the primes of special form.

4.4 Results of Constant Multiplier (Pipelined)

For each of the four curves in question, we synthesize the constant multipliers necessary to

compute a modular reduction for each of the four Barrett variants studied. For brevity, we

again only explore the General and Folding variants of the Barrett scheme here. It should

be noted that we had to make a slight modification to each of the FloPoCo-generated

constant multipliers when considering the pipelined implementations. By their algorithm,

the negative of the variable multiplicand, −X, is always computed first [8]. Unfortunately,

when enabling pipelining, it was found that this step was never pipelined by the generator.

Since our input X can be of size up to 256 bits, this step prevented the circuit from actually

operating at the specified frequency. We thus split this step into multiple cycles using multi-

precision arithmetic on operands of ∼32-bit limbs. This has the effect of increasing the

cycle count of the FloPoCo-generated multiplier.

4.4.1 General Barrett

We follow the same approach to obtain the constant multiplier results for the pipelined

designs. The constant multipliers were designed to achieve a target frequency around

500MHz. In Figures 4.11 and 4.12 we compare the resource utilization of the FloPoCo-

generated constants against the hybrid constant. The total resource utilization as well as

the achievable frequency and pipeline depth for each design is summarized in Tables 4.6

and 4.7.
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Figure 4.11: LUT and Flip Flop cost for pipelined µ multiplier for the General Barrett

reduction scheme.
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Figure 4.12: LUT and Flip Flop cost for pipelined P multiplier for the General Barrett

reduction scheme.

Although the logic required to realize the constant multipliers for the hybrid scheme has

not changed, the LUT utilization has increased as compared to our non-pipelined design.

This is due to the fact that Xilinx FPGAs can efficiently realize shift registers using LUTs

[57]. Thus, the increase is due to the pipelining we have introduced. It is observed in Table
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4.6 that for computing µ, using the hybrid multiplier results in both a lower latency and

resource utilization than that generated by FloPoCo when considering those curves with

pseudo-random prime fields. Furthermore, this same trend persists for the multiplication

by the prime field P (see Table 4.7).

Table 4.6: Resource utilization, frequency, and pipeline depth metrics for the µ multiplier

in pipelined General Barrett.

Curve Implementation LUT Flip Flop
Frequency Pipeline

(MHz) Depth

brainpoolP256t1
FloPoCo 34329 60058 497.5 68

Hybrid 18010 41752 506.6 49

ANSSI FRP256v1
FloPoCo 32206 56766 496.5 68

Hybrid 18020 40308 506.6 50

NIST P-256
FloPoCo 4525 8067 523.6 33

Hybrid 7517 12094 506.6 41

secp256k1
FloPoCo 3731 6281 496.8 33

Hybrid 6532 11063 506.6 43

Table 4.7: Resource utilization, frequency, and pipeline depth metrics for the P multiplier

in pipelined General Barrett.

Curve Implementation LUT Flip Flop
Frequency Pipeline

(MHz) Depth

brainpoolP256t1
FloPoCo 18473 30362 499.3 68

Hybrid 13318 31043 503.8 37

ANSSI FRP256v1
FloPoCo 18253 30052 502.3 69

Hybrid 13888 33711 503.8 37

NIST P-256
FloPoCo 1389 2116 529.7 34

Hybrid 3611 5923 503.8 25

secp256k1
FloPoCo 3169 4932 529.7 34

Hybrid 4775 8927 503.8 33
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4.4.2 Folding Barrett

Now studied are the results obtained for the pipelined constant multipliers as they pertain

to the Folding Barrett scheme. We compare the resource utilization, frequency, and pipeline

depth for both the FloPoCo-generated constants and the hybrid constants for the three

different constant multiplication steps involved in the Folding Barrett scheme. Figures 4.13,

4.14, and 4.15 show the resource utilization in terms of LUT cost and flip flop utilization

for computing the P ′, µ, and P multiplications for this scheme under the four different

prime moduli considered. A more detailed analysis of the resource utilization as well as

the achievable frequency and required pipeline depth is shown in Tables 4.8, 4.9, and 4.10.
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Figure 4.13: LUT and Flip Flop cost for pipelined P ′ multiplier for the Folding Barrett

reduction scheme.
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Figure 4.14: LUT and Flip Flop cost for pipelined µ multiplier for the Folding Barrett

reduction scheme.
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Figure 4.15: LUT and Flip Flop cost for pipelined P multiplier for the Folding Barrett

reduction scheme.
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Table 4.8: Resource utilization, frequency, and pipeline depth metrics for the P ′ multiplier

in pipelined Folding Barrett.

Curve Implementation LUT Flip Flop
Frequency Pipeline

(MHz) Depth

brainpoolP256t1
FloPoCo 11226 29329 496.8 38

Hybrid 11803 26829 513.1 40

ANSSI FRP256v1
FloPoCo 10732 27756 499.0 39

Hybrid 12275 27847 513.08 40

NIST P-256
FloPoCo 1843 4119 503.77 21

Hybrid 4802 7695 513.1 31

secp256k1
FloPoCo 1202 2559 529.7 17

Hybrid 1905 3715 513.1 32

Table 4.9: Resource utilization, frequency, and pipeline depth metrics for the µ multiplier

in pipelined Folding Barrett.

Curve Implementation LUT Flip Flop
Frequency Pipeline

(MHz) Depth

brainpoolP256t1
FloPoCo 5782 14735 513.9 30

Hybrid 5311 13047 508.1 29

ANSSI FRP256v1
FloPoCo 6403 16421 512.0 31

Hybrid 5357 12683 508.1 30

NIST P-256
FloPoCo 877 2160 499 12

Hybrid 1795 3083 508.1 19

secp256k1
FloPoCo 0 0 - 0

Hybrid 0 0 - 0
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Table 4.10: Resource utilization, frequency, and pipeline depth metrics for the P multiplier

in pipelined Folding Barrett.

Curve Implementation LUT Flip Flop
Frequency Pipeline

(MHz) Depth

brainpoolP256t1
FloPoCo 9006 21906 496.0 38

Hybrid 12497 29909 506.6 37

ANSSI FRP256v1
FloPoCo 8454 20551 500.5 38

Hybrid 12929 32499 511.5 37

NIST P-256
FloPoCo 800 1414 529.7 17

Hybrid 3030 4654 506.6 25

secp256k1
FloPoCo 1319 2687 529.7 22

Hybrid 4775 8927 503.8 33

From the data displayed in Tables 4.8, 4.9, and 4.10, it is seen that for the multipli-

cations by P and P ′, the hybrid multiplier requires more resources across all the prime

moduli under consideration. For the µ multiplier, however, there is an improvement in

both the area utilization as well as the latency of the constant multiplier in contrast to the

FloPoCo-generated implementation for both the Brainpool and ANSSI standards’ prime

field. We note that the µ value for the secp256k1 prime field is a power of 2 and thus, the

multiplication can be accomplished through wiring having no associated cost. There is no

improvement for the primes of special form for area utilization or for latency.

4.5 Summary

In this chapter, the hybrid constant multiplier is described which is based on a recursive

Karatsuba module and uses FloPoCo-generated base multipliers. We demonstrate the

area and timing metrics required by each constant multiplication step characteristic to the

General and Folding Barrett reduction schemes. This is again repeated on a fully pipelined

architecture of each respective multiplication step.
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Chapter 5

Barrett Reduction Hardware

Implementations

In this chapter, we compare and contrast the different Barrett reduction variants. Using

the constant multiplier results from the previous chapter, we construct a Barrett reduction

implementation for the random prime fields being studied. We present these results for both

the non-pipelined and pipelined architectures. Additionally, we combine this realization

with our pipelined generic Karatsuba multiplier to construct a full modular multiplication

unit to compare our custom design against generic architectures in the literature.

5.1 Barrett Reduction Implementation (Not Pipelined)

Presented are the synthesis results for a Barrett reduction circuit which is not pipelined.

We only provide the Barrett schemes for the two pseudo-random moduli under study. The

four different Barrett variants are represented for each curve. Further, three results are

presented per scheme:

1. an implementation where a schoolbook multiplier is used for each multiplication,

2. an implementation using FloPoCo-generated constant multipliers for each multipli-

cation, and
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3. an implementation where the hybrid multiplier is only used for the µ multiplier and

FloPoCo multipliers are used for the remaining multipliers.

We have implemented each scheme by one based on schoolbook multiplication in order

to demonstrate the improvement one might expect when using fixed parameters. This is

accomplished simply by using the VHDL multiplication (∗) operator for each multiplica-

tion step. Schoolbook multiplication is chosen as the basis for comparison as it was shown

previously that the Folding variants, having multiplications of operands which are very

uneven in length (nearly half sized), may not be well suited for other multiplication algo-

rithms such as Karatsuba’s. Naturally, should a different type of multiplier be used, this

improvement would vary.

We also compare our results against a generic 256-bit Karatsuba multiplier. The mul-

tiplier is based on the design described in Chapter 4, however, with slight modifications as

both operands here are arbitrary 256-bit integers. In this case, the base multipliers are Vi-

vado’s LogiCORE IP Multiplier v12.0 which is a customizable high-performance multiplier

provided by Xilinx which supports inputs upto 64 bits in length [58]. Thus, we have only

considered recursing downto 64 bits (2 levels) and below. It was found that for the generic

Karatsuba multiplier, the best area×time metric was produced when recursing downto

32-bit multipliers. We use this multiplier as a basis of comparison as it is typically the case

that a reduction step follow a multiplication step. The results for the prime finite field

as described for the Brainpool curve specification [35] are presented in Table 5.1 whereas

those with respect to the ANSSI curve parameters [14] are shown in Table 5.2.
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Table 5.1: LUT, delay, and area×time metrics for the Barrett reduction under different

multiplication methods for the modulus characteristic to the Brainpool curve.

Barrett Multiplication
LUT

Delay Area ×Time

Variant Method (ns) ((LUT× ns)10−3)

General Barrett

Schoolbook 165520 112.7 18648.1

FloPoCo 24371 25.1 610.8

FloPoCo and Hybrid 23212 33.7 782.8

Improved Barrett

Schoolbook 165339 113.2 18715.4

FloPoCo 24676 24.9 615.5

FloPoCo and Hybrid 22578 32.4 731.0

Folding Barrett

Schoolbook 108471 114.2 12384.4

FloPoCo 19782 36.3 717.6

FloPoCo and Hybrid 19916 41.2 821.0

Improved Schoolbook 109425 111.5 12203.8

Folding FloPoCo 19718 35.8 705.5

Barrett FloPoCo and Hybrid 19376 39.6 768.2

- General 256-bit Karatsuba 32841 26.62 874.2

Based on the results in Tables 5.1 and 5.2, the different Barrett architectures are com-

pared. It is observed that for both prime fields considered, the design with the smallest

delay is attributed to the Improved Barrett variant for which the FloPoCo-generated con-

stant multipliers are used for all multiplication steps. On the other hand, the lowest area

design is characteristic to the Improved Folding Barrett variant where the hybrid multiplier

is used to compute the µ multiplication and the FloPoCo-generated constant multipliers

are used to compute the P ′ and P multiplication steps. To put this number into perspec-

tive, this reduction circuit occupies nearly half of the area a generic 256-bit Karatsuba

multiplier occupies (sizes of the reduction circuits are about 41% and 43% smaller for the

Brainpool and ANSSI curves, respectively). It is also seen that for all of the schemes stud-

ied, the hybrid architecture always has a larger area×time metric despite having smaller

area as compared to its full FloPoCo counterpart. It should be noted though that the
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area×time parameters of both the FloPoCo and hybrid architectures are still better than

that of a generic 256-bit Karatsuba multiplier.

Table 5.2: LUT, delay, and area×time metrics for the Barrett reduction under different

multiplication methods for the modulus characteristic to the ANSSI curve.

Barrett Multiplication
LUT

Delay Area ×Time

Variant Method (ns) ((LUT× ns)10−3)

General Barrett

Schoolbook 165520 112.7 18648.1

FloPoCo 23281 24.8 576.6

FloPoCo and Hybrid 22278 33.6 748.7

Improved Barrett

Schoolbook 165339 113.2 18715.4

FloPoCo 23180 24.4 564.5

FloPoCo and Hybrid 21819 31.2 679.9

Folding Barrett

Schoolbook 108471 114.2 12384.4

FloPoCo 19521 35.7 696.9

FloPoCo and Hybrid 19039 41.0 780.3

Improved Schoolbook 109425 111.5 12203.8

Folding FloPoCo 18990 35.5 673.4

Barrett FloPoCo and Hybrid 18730 39.4 738.2

- General 256-bit Karatsuba 32841 26.62 874.2

5.2 Barrett Reduction Implementation (Pipelined)

Now demonstrated are the results for a fully pipelined Barrett reduction circuit. In re-

alizing these circuits for the different Barrett variants studied, we refer to the constant

multiplier synthesis results as demonstrated in Chapter 4 and choose the best circuits for

each constant multiplier required. It was shown that for the case of the General Barrett re-

duction scheme, the hybrid multiplier achieved better area utilization and lower latency to

achieve a 500MHz target frequency than that obtained directly from FloPoCo’s generator
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for both the µ multiplier and the P multiplier. As a result, we use the hybrid multiplier

to perform all multiplications for the pipelined General Barrett and Improved Barrett re-

alizations. On the other hand, in the case of the Folding Barrett scheme, we saw that the

hybrid multiplier was only favourable in performing the µ multiplication, with FloPoCo’s

constant multiplier showcasing better resource utilization for the P and P ′ multipliers.

This methodology is then used to implement the Folding Barrett and Improved Folding

Barrett reduction circuits. In order to achieve our target frequency and consistency with

the rest of the design, the subtraction and/or addition steps in each respective Barrett

scheme are performed by using pipelined multi-precision arithmetic by splitting up the

operation into ∼32-bit limbs. The synthesis results for each pipelined Barrett variant are

depicted in Tables 5.3 and 5.4.

Table 5.3: Resource utilization, frequency, and pipeline depth metrics for various Barrett

reduction schemes under different multiplication methods for the modulus characteristic

to the Brainpool curve.

Barrett LUT Flip Flop Frequency Pipeline

Variant (MHz) Depth

General Barrett 33584 74793 503.8 102

Improved Barrett 33811 76073 503.5 102

Folding Barrett 29835 67878 496.0 141

Improved Folding Barrett 28968 67367 496.0 133
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Table 5.4: Resource utilization, frequency, and pipeline depth, metrics for various Barrett

reduction schemes under different multiplication methods for the modulus characteristic

to the ANSSI curve.

Barrett LUT Flip Flop Frequency Pipeline

Variant (MHz) Depth

General Barrett 34248 76115 503.8 103

Improved Barrett 34433 77804 503.5 103

Folding Barrett 29064 65240 499.0 143

Improved Folding Barrett 28210 65099 499 130

5.3 Modular Multiplier

We now present how our Barrett reduction circuits perform when computing a full modular

multiplication. This is done by implementing a fully pipelined generic 256-bit Karatsuba

multiplier and connecting its product output as input to each respective Barrett circuit.

Again, the base multipliers are Vivado’s LogiCORE IP Multiplier v12.0. It was found that

for the generic pipelined Karatsuba multiplier, the lowest area design which still operated

above our target frequency of 500MHz was achievable when resursing downto 16-bit base

multipliers. This circuit requires 35050 LUT, 57016 flip flops, and achieves a frequency of

502.5MHZ at a pipeline depth of 47 cycles.

It is also of interest to compare our modular multiplier to those in the literature. Un-

fortunately, a fair comparison is difficult. Most modular multipliers in the literature either

focus on a fully custom scheme catered to the NIST primes of special form using the spe-

cial reduction formulas due to [48] or rather take a general approach and design a generic

modular multiplier capable of supporting any prime modulus of a certain length. To

our knowledge, FPGA-based implementations targeting the 256-bit pseudo-random prime

moduli provided by the Brainpool and ANSSI standards are not widely reported. We thus

compare our designs against generic modular multipliers. First, a 256-bit modular multi-

plier based on the Improved Barrett reduction scheme is implemented in [19]. Here, the
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authors have implemented a circuit capable of performing a single modular multiplication

in 18 cycles; they have designed their multiplier in such a way that it can be shared by two

unrelated multiplications so that when the pipeline is kept full, n modular multiplications

can be completed in 9n + 3 cycles. We also compare our design against the Montgomery

Multiplier presented in [10] as the Karatsuba multiplier implemented by this work is the

one on which we have based our own. In this paper, the authors design a high throughput,

batch-pipelined modular multiplier which, on assumption that the pipeline is kept full, is

capable of producing a new result every 3 cycles. The authors have not, however, provided

the total pipeline depth nor the time to complete a single operation. To exploit data-level

parallelism, they also demonstrate the number of their modular multiplier cores that can

fit their target FPGA and the achievable throughput at different bitlengths; however, they

have only provided detailed resource utilization for the 512-bit level. We thus compare

against a single 512-bit modular multiplier core and also report the throughput achievable

for their 256-bit design consisting of 17 256-bit multiplier cores. We also compare our work

against a 2-stage pipelined 128-bit modular multiplier presented in [56] which is the work

from which the Improved Folding Barrett algorithm is derived.

The comparative results are shown in Table 5.5. We report resource utilization in terms

of the number of embedded multipliers, slices, LUTs, and flip flops used. We also indicate

the number of pipeline stages (cycles) required by the different designs. The overall latency

is also provided which is the total amount of time for the first output to emerge. The

throughput is reported as the number of modular multiplications which can be performed

per second. Only our design and that of [56] do not make use of the embedded multipliers on

Xilinx FPGAs, leading to a very portable design. The implementation provided by [19] only

occupies 4923 slices, each of which contains 2 4-input LUTs and 2 flip flops. Therefore, their

design consumes less resources than our design when considering the logic fabric; however,

their design has also made use of 64 embedded multipliers while our design has avoided the

use of these hardened components for increased portability. When looking at the timing-

related parameters, however, our implementation demonstrates better performance. The

achievable frequency of the design in [19] is much smaller than ours and their total latency

is larger, as well. Although the design in [56] has a much smaller latency, we achieve

better frequency albeit at the expense of a greater pipeline depth. Their design has broken
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up Algorithm 4 into two stages, placing pipeline registers to store the intermediate result

X ′′. In contrast, our design has used multi-precision arithmetic techniques which limits

any addition or subtraction operation to approximately ∼32-bit limbs which significantly

increases the overall pipeline depth as compared to the work in [56]. Although the results

reported for the circuit implemented in [56] are limited to 128-bit modular multipliers,

based on the trend in LUT-cost, we expect our multiplier to cost fewer LUTs than theirs

even at the 256-bit level. The 256-bit modular multiplier described in [10] reportedly

achieves a higher throughput than our design; however, this is only accomplished due to

data-level parallelism. Their implementation fits 17 256-bit modular multipliers onto the

FPGA. If their recorded throughput is adjusted to a single core by dividing the reported

throughput by 17, the result would be about 112M modular multiplications per second,

which is still smaller than ours.

5.4 Summary

In this chapter, the synthesis results for the full reduction circuits of the four different

Barrett variants are presented for the Brainpool and ANSSI curves. These results are

reported for both the non-pipelined and pipelined architectures. A fully pipelined 256-

bit modular multiplier is also constructed which is based on these reduction circuits. The

results are compared against general 256-bit modular multipliers presented in the literature

which relate to the our own implementations.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

The majority of modular reduction schemes in the literature demonstrate implementations

which exploit moduli of special structure, for example, Generalized Mersenne primes or

Pseudo-Mersenne primes, which are often used in elliptic curve cryptosystems for improved

efficiency. Others report general modular reduction schemes compatible for any moduli of

certain length. In this thesis, we instead focus our attention on demonstrating the type

of performance that various Barrett reduction variants can achieve when a fixed, pseudo-

random modulus is used. In the case that the prime finite field over which the elliptic curve

is defined does not change, all of the multiplication steps in Barrett’s algorithm can be

replaced by constant multiplications which can be realized in a more compact manner on

FPGAs without making use of the embedded multipliers on the device. The FloPoCo core

generator was used to generate constant multipliers required by each respective reduction

variant across the different finite fields studied. We also studied whether the use of a

hybrid multiplier based on Karatsuba’s multiplication algorithm using FloPoCo’s constant

multipliers as a base multiplier provided any improvement. It was shown that for certain

multiplication steps in the Barrett reduction variants studied, the hybrid design provided

a lower area implementation than the direct use of FloPoCo’s constant multipliers, albeit

at the cost of extra delay. We performed the same study on pipelined versions of said
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multipliers. Based on the best multiplier architectures, full Barrett reduction circuits

for each of the variants studied were designed and compared for the two pseudo-random

prime finite fields considered in this thesis. Lastly, we showed a pipelined 256-bit modular

multiplier achieving higher throughput than comparable designs reported in the literature.

6.2 Future Work

The majority of this thesis relied on the FloPoCo core generator for the creation of constant

multipliers. It would be interesting to see whether the hybrid multiplier approach provides

the same sort of area improvements should a different constant multiplier generator be

used. Further on the use of the FloPoCo core generator, we have used the pipelined

versions of these constant multipliers as automatically generated by the tool. It is possible

that manual pipelining would yield circuits with fewer pipelining stages and consequently,

a smaller resource utilization and latency.

We have also worked with improved variants of the Barrett reduction algorithms which

precompute the µ value on the basis that α = k + 3 and β = −2 based on the works of

[56] and [32]. Dhem shows that it is only required that α ≥ k + 1 for there to be only one

extra correction step at the end of Barrett’s algorithm [16]. This would lead to smaller

multiplications and could possibly change the relative performance of the different Barrett

schemes shown in this thesis.

Furthermore, we have only shown the Barrett reduction variants for the pseudo-random

primes since there exist highly efficient reduction algorithms for NIST P-256 and secp256k1.

It would be interesting to study the relative performance between these special reduction

formulas and the various Barrett reduction variants studied here.

Lastly, in this thesis we have focused only on the use of constant multipliers within

Barrett’s algorithm. Another commonly used reduction formula which is used for moduli

of arbitrary form is Montgomery’s algorithm [40]. In this reduction scheme, there are

also constant multiplications. It would be interesting to study the impact of constant

multiplication on this reduction scheme, as well.
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