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Abstract

In this thesis, we aim at a quantitative understanding of extreme risks and extremal depen-
dence in insurance and finance. We use regularly varying distribution functions in extreme
value theory (EVT) to model extreme risks, and apply various tools in multivariate ex-
treme value theory (MEVT) to capture extremal dependence. We focus on developing
asymptotics for certain risk measures.

We start with a portfolio diversification problem. In finance, investors usually construct
a mixed portfolio in order to diversify away the individual risks. However, this is not always
the case when heavy-tailedness and tail dependence of large losses are considered. Chapter
3 applies the multivariate regular variation (MRV) model to study this problem in an
asymptotic sense and provides an applicable portfolio optimization strategy. A practical
performance test for our strategy is also provided in this Chapter.

The mainstream of the literature on the limitation of portfolio diversification follows
the assumption that risks have unbounded distribution support, i.e., no cap for potential
loss. However, real-world firms usually have limited liability. Then a natural question
arises whether the non-diversification effect strictly depends on the tail behaviour of the
loss distribution. For risks with bounded support, will similar non-diversification results
still exist? We answer this question in Chapter 4 and we argue that diversification is still
possible to be inferior as long as the risks are truncated at sufficiently large threshold level.

In Chapter 5, we consider the risk of a large credit portfolio of multiple obligors subject
to possible default. Contrary to the Gaussian and t copulas that are widely used in practice,
we assume a portfolio dependence structure of Archimedean copula type. Under this
setting, we derive sharp asymptotics for portfolio credit risk that highlight the impact of
extremal dependence among obligors. By utilizing these asymptotic results, we propose
two different algorithms that are shown to be asymptotically optimal and can be applied
to efficiently estimate portfolio credit risk via Monte Carlo simulation. In order to capture
hierarchical dependence structure among the obligors in a large credit portfolio, we also
extend our asymptotic analysis to the structure of nested Gumbel copulas and an efficient
algorithm of bounded relative error is also developed for this more complex structure.
Numerical results are provided at the end of the chapter to illustrate the performance of
our algorithms, as well as their respective merits.
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Chapter 1

Introduction

1.1 Objectives of the Thesis

Loosely speaking, extreme risk is the risk of rare events that typically could lead to a
disastrous financial and social consequence. From the 1987 stock market crash, to the
2008 financial crisis, to the 2011 Fukushima Daiichi nuclear disaster, it is evident that rare
events substantially affect insurance and financial institutions. Responses to rare events
are stressed in recent regulatory reform. For example, the minimal capital ratio of the
Basel III has been doubled and banks are directed to hold excess capital as conservation,
see BCBS (2011); a pillar in Solvency II requires insurers to hold risk capital to remain
solvency at a confidence level of 99.5%.

Considering the severe consequences of rare events and motivated by the regulatory
frameworks, we conduct asymptotic analysis of extreme risks in this thesis. The reason to
perform asymptotic analysis is that the asymptotic expressions of risk measures usually
are easier to compute compared with the expressions at finite levels. More importantly,
the asymptotic expressions can provide us a better understanding of extreme risks, and of
ways to managing and controlling them. In such analysis, it is important to realize that
the aforementioned rare events often involve highly associated underlying risk across space
and time, which leaves a strong possibility of large losses that could happen simultane-
ously. If one recall the 2008 financial crisis, company defaults occur in clusters; that is, if
one company defaults, this may have a chain reaction of triggering other companies to a
financial distress, or even to default. For this reason, the intricate dependence structure
introduced by such events can be viewed as another source of risk, and it is of paramount
importance to “correctly” model the extremal dependence among large individual losses.
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In this thesis, we use heavy-tailed distribution functions to model potentially large
losses; while to model dependence, we use tools such as copulas and multivariate regular
variation (MRV) structures. An important difference between copulas and MRV struc-
tures in describing dependence is that copulas provide a complete description while MRV
structures focus on the tail part only. Quantities of interest to us include:

• the amount of capital a financial institution or an insurance company has to hold as
required by its regulator,

• characterization of diversification effects for extreme risks and the resulting portfolio
optimization problem,

• the diversification effects for extreme risks with limited liability,

• the tail behaviour of the loss from defaults of a large portfolio.

1.2 Structure of the Thesis

In Chapter 2, we prepare some mathematical concepts and tools regarding heavy-tailed
distributions and extremal dependence that will be widely used in the rest of the thesis.

In Chapter 3, we study a portfolio optimization problem. More specifically, we in-
vestigate the optimal portfolio construction aiming at extracting the most diversification
benefit. We employ the diversification ratio based on the Value-at-Risk (VaR) as the mea-
sure of the diversification benefit. With modeling the dependence of risk factors by the
multivariate regularly variation model, the most diversified portfolio is obtained by opti-
mizing the asymptotic diversification ratio. Theoretically, we show that the asymptotic
solution is a good approximation to the finite level solution. Our theoretical results are
supported by extensive numerical examples. By applying our portfolio optimization strat-
egy to real market data, we show that our strategy provides a fast algorithm for handling
a large portfolio, while outperforming other peer strategies in out-of-sample risk analyses.

In Chapter 4, we revisit the limits of diversification for truncated risks. It is a known
fact that diversification is not necessary a preferred risk mitigation strategy for extremely
heavy-tailed (infinite first moment), independent and unbounded risks. This finding has
important implications in the management of extreme risks, especially in catastrophe in-
surance market. However, in many real world applications, the extremely heavy-tailed
risks are not just independent and unbounded; they can be dependent and often trun-
cated. In this chapter, we provide a comprehensive study on how the truncation affects

2



the diversification for extremely heavy-tailed risks with different dependence structures.
For both real-valued and nonnegative risks, we derive the bounds of the truncation such
that the diversification is suboptimal or optimal. We find that the diversification effect
is much easier to become suboptimal for nonnegative risks than that for real-valued risks.
For nonnegative risks, when the truncation level is sufficiently high, the diversification ef-
fect is not affected by the dependence structure or the heavy-tailedness of the marginals.
Simulation studies are provided to highlight the key findings of our results.

In Chapter 5, we study the asymptotic behaviour of the loss from defaults of a large
credit portfolio. Contrary to the widely used Gaussian copula, we assume the portfo-
lio dependence structure of Archimedean copula family, in which latent variables govern-
ing individual defaults follow a mixture structure incorporating extremal dependence and
asymmetry. Under the assumption that the mixing variable or the so-called systematic
risk factor has a regularly varying tail, we derive sharp asymptotics for the tail probabil-
ity of portfolio losses and the expected shortfall. The asymptotic results further help us
design two different numerical algorithms that can efficiently estimate portfolio risk via
simulation. In order to capture potential hierarchical structure in a large portfolio, we also
extend our work to a special case of nested Archimedean copulas, namely partial nested
Gumbel copulas. An efficient algorithm for this particular type is provided as well. At the
end of this chapter, an extensive simulation study is conducted to justify the accuracy and
variance reduction performance of our proposed algorithms.

Several potential topics for further research are presented in Chapter 6.

1.3 Notation and Conventions

In this section, we provide a list of notation and conventions to be used throughout the
thesis. Some of the definitions may be repeatedly mentioned in the main text for reference.

A summary of notation used in this thesis is given in the following table

Table 1.1: Notations

0 a vector with all components being 0
1E the indicator function of an event E
|I| cardinality of set I
v−→,

w−→ vague convergence, weak convergence
⌊x⌋ the greatest integer less than or equal to the real number x

3



Table 1.1: (continued): Notations

⌈x⌉ the smallest integer greater than or equal to the real number x
B Borel σ-field
E expectation
f←(y) inf{x ∈ (−∞,∞) : f(x) ≥ y} for a non-decreasing function f
f(x) ∼ g(x) limx→x0 f(x)/g(x) = 1, where x0 is clear from the context
f(x) = o(g(x)) limx→x0 f(x)/g(x) = 0, where f and g are positive functions, and x0 is

clear from the context
f(x) = O(g(x)) lim supx→x0

f(x)/g(x) <∞, where f and g are positive functions, and x0 is
clear from the context

f(x) ≲ g(x) lim supx→x0
f(x)/g(x) ≤ 1, where f and g are positive functions, and x0 is

clear from the context
f(x) ≳ g(x) lim infx→x0 f(x)/g(x) ≥ 1, where f and g are positive functions, and x0 is

clear from the context
F̄ the tail function, 1− F , where F is a distribution function
γ Euler’s constant

K [−∞,∞]d \ {0}
λL, λU lower tail dependence, upper tail dependence
LV (s) Laplace-Stieltjes transform of random variable V
MRV−α(Ψ) the class of multivariate regularly varying tailed distribution functions

with tail index α and spectral measure Ψ
P probability measure
ϕ generator of an Archimedean copula
R (−∞,∞)
R+ [0,∞)
Rd d-dimensional real vector space
Rd

+ nonnegative d-dimensional real vector space
RV−α the class of regularly varying tailed distribution functions with tail index α
Sd−1 {

s ∈ Rd : ∥s∥ = 1
}

Sd−1
1

{
s ∈ Rd : ∥s∥1 = 1

}
Sd−1
+

{
s ∈ Rd

+ : ∥s∥ = 1
}

tA {tx : x ∈ A} for a set A and a real number t
tv Student-t distribution with degree of freedom v
var variance
x ∨ y max{x, y}
x ∧ y min{x, y}
xi the i-th element of vector x

4



Table 1.1: (continued): Notations

X(k) the k-th smallest order statistics

Some conventions that we shall follow are listed below:

• All limits are taken to ∞ unless otherwise stated;

• All regularly varying functions are studied at ∞ unless otherwise stated;

• All convergences are weak convergence unless otherwise stated;

• The right tail of a distribution function is of our interest unless otherwise stated;

• Let x = (x1, . . . , xn)
⊤ and y = (y1, . . . , yn)

⊤, then relation x ≤ y means that xi ≤ yi
for all i = 1, . . . , n.

5



Chapter 2

Preliminary

In this chapter, we prepare some mathematical concepts and tools necessary for the rest
of the thesis.

2.1 Univariate Regular Variation

2.1.1 Definition

Note that there is still some discrepancy over the use of the term heavy-tailed in the
literature. In this thesis, we follow Embrechts et al. (2013).

A distribution function F on R is said to be heavy-tailed, if it holds for every ε > 0
that ∫ ∞

0

eεxdF (x) = ∞.

Otherwise, the distribution F is referred to as light-tailed. Clearly, for any light-tailed
distribution on R+, all moments are finite.

Table 2.1 below provides a list of common light-tailed and heavy-tailed distributions.
In the given table, c is the scale parameter and α is the shape parameter for correspond-
ing distributions. Apparently, the tail of a heavy-tailed distribution function F is not
exponentially bounded, therefore it assigns a relatively large probability to the right tail.

According to the application area (finance or actuarial science), the loss variable X is
of our interest, i.e., X > 0 quantifies losses and X < 0 quantifies gains. Thus, heavy-tailed

6



Light-tailed Heavy-tailed
Exp(λ) Pareto(c, α)
N(µ, σ2) tv
Gamma(α, β) α-Stable (α < 2)
Weibull(c, α), α ≥ 1 Weibull(c, α), α ∈ (0, 1)

Table 2.1: Common light-tailed and heavy-tailed distributions

distribution functions can be considered as an effective tool to model loss variables that
are likely to be extremely large.

The heavy-tailed property is strengthened by the assumption of (univariate) regular
variation (RV). We first define regularly varying functions as follows. Let f denote a
positive real-valued function on R+.

Definition 2.1.1 The function f is said to be regularly varying at infinity with index
α ∈ R, written as f ∈ RVα(∞), if f(tx)/f(t) → xα as t → ∞, for all x > 0. If
f ∈ RV0(∞), then f is slowly varying at infinity.

Intuitively, a function f is regularly varying at infinity if it behaves like a power law
function near infinity. Interested readers are referred to Bingham et al. (1989) and Resnick
(2013) for textbook treatments. The definition of regular variation at zero is a simple
modification of the definition of regular variation at infinity.

Definition 2.1.2 The function f is said to be regularly varying at zero with index α ∈ R,
written as f ∈ RVα(0), if f(tx)/f(t) → xα as t ↓ 0, for all x > 0. If f ∈ RV0(0), then f
is slowly varying at zero.

One can easily check that the function f ∈ RVα(0) if and only if the function x 7→
f(1/x) is in RV−α(∞). We also define the regular variation at one as follows.

Definition 2.1.3 The function f is said to be regularly varying at one with index α ∈ R,
written as f ∈ RVα(1), if f(1− tx)/f(1− t) → xα as t ↓ 0, for all x > 0. If f ∈ RV0(1),
then f is slowly varying at one.

Actually RV can be defined at any positive point x0 other than 0, 1 or ∞. We often
drop the argument x0 as long as the meaning of regularity is clear in the context. Now, we
are able to define regular variation of loss variable X with tail index α ∈ [0,∞).

7



Definition 2.1.4 A distribution function FX corresponding to a loss variable X is said to
be regularly varying with tail index α, if its tail is regularly varying at ∞ with index −α,
i.e., F̄X ∈ RV−α(∞).

The definition above immediately indicates that a smaller value of tail index α means a
heavier tail of distribution function F . Consider two loss variables X and Y with unequal
tail indices, it is well known that the contribution of lighter tail to the aggregated loss
X + Y is asymptotically negligible compared to that of heavier one. Consequently, the
later study of portfolio diversification effect will be reduced to the non-trivial case by
assuming identical tail index α for each component.

2.1.2 Properties of Regular Variation

In the following lemma, we list some important properties on regular variation.

Lemma 2.1.1 Let f ∈ RVα(∞) for some 0 < α <∞. We have the following:

1. (Potter’s bounds) For every ε > 0, there exists some x0 > 0 such that for x, y ≥ x0,

(1− ε)

((y
x

)α+ε

∧
(y
x

)α−ε)
≤ f(y)

f(x)
≤ (1 + ε)

((y
x

)α+ε

∨
(y
x

)α−ε)
.

2. Let f : R+ → R be a non-decreasing function with f(∞) = ∞. Then f ∈ RVα(∞) if
and only if f← ∈ RV1/α(∞).

3. (Karamata’s theorem) Suppose there exists x0 > 0 such that f(x) is positive and
locally bounded for x ≥ x0. If α ≥ −1 then

lim
x→∞

xf(x)∫ x

x0
f(s)ds

= α + 1.

If α < −1, or α = −1 and
∫∞
0
f(s)ds <∞, then

lim
x→∞

xf(x)∫∞
x
f(s)ds

= −α− 1.
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Proof. 1. See Theorem 1.5.6 of Bingham et al. (1989).

2. See Proposition 0.8(V) of Resnick (2013).

3. See Theorem B.1.5 of de Haan and Ferreira (2006).

The applicability of regular variation can be further enhanced by Karamata’s Taube-
rian theorem for Laplace-Stieltjes (L-S) transforms; see, e.g., Feller (1971), pp.442–446.
Especially for a distribution function and its L-S transform, the relation between their
asymptotic behaviours is given by Corollary 8.1.7 of Bingham et al. (1989).

Proposition 2.1.1 Suppose FX is a distribution function for a positive random variable
X with Laplace-Stieltjes transform LX . For 0 ≤ α < 1 and l ∈ RV0(∞), the following are
equivalent:

(a) 1− LX(s) ∼ sαl(1/s), s ↓ 0,

(b) F̄X(x) ∼
x−αl(x)

Γ(1− α)
, x→ ∞.

As we can see, not only the index α but even the slowly varying function l is preserved
after taking L-S transform.

2.1.3 Second-order Condition

In this section, we introduce a refinement of the concept of regular variation, namely
second-order regularly varying (2RV). This concept is especially useful for studying rates
of convergence in extreme value theory. The definition below seems more complex with
use of the second-order auxiliary function A, however, the meaning itself is still clear in
that it measures the convergence rate of the first-order asymptotic.

Definition 2.1.5 A positive measurable function f is said to be second-order regularly
varying with first-order index α ∈ R and second-order index ρ ≤ 0, denoted by f ∈ 2RVα,ρ,
if there exists an auxiliary function A, which does not change sign and limx→∞A(x) = 0,
such that, for all y > 0,

lim
x→∞

f(xy)
f(x)

− yα

A(x)
= yα

yρ − 1

ρ
. (2.1.1)
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The function A, describing the rate of convergence in 2.1.1, is regularly varying with
index ρ. Thus, ρ governs the speed of convergence, if ρ < 0, we have an algebraic speed of
convergence; if ρ = 0, the convergence is logarithmic. More discussions about the second-
order condition can be found in Resnick (2002), de Haan and Ferreira (2006) and Hua and
Joe (2011).

2.2 Copulas

For modeling the dependence structures between heavy-tailed random variables, the con-
cept of copula plays an important role and provides practitioners a promising tool to
model the dependence structure independently of the marginal behaviors. See the mono-
graph Nelsen (2007) for a complete reference on copula functions, and see Cherubini et al.
(2004) and McNeil et al. (2015) for discussions on copula methods applied in finance and
quantitative risk management.

A function C : [0, 1]n → [0, 1] is called copula if C is a multivariate distribution function
with uniform margins, i.e.,

C(u, 1, . . . , 1) = u, ∀u ∈ [0, 1].

It is useful because it can couple marginal distributions with the joint distribution. Sklar
(1959) shows that for each joint distribution function with marginal distributions F1, . . . , Fn,
there exists an n-dimensional copula C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)),

and the copula C is unique when the marginal distributions are continuous. By Sklar’s
theorem, it is also possible to derive the relationship between the survivor joint distribution
and the survival copula distribution Ĉ(1− u1, . . . , 1− un).

The survival joint function is given by

F̄ (x1, . . . , xn) = P(X1 > x1, . . . , Xn > xn),

and it follows that

F̄ (x1, . . . , xn) = Ĉ(1− F1(x1), . . . , 1− Fn(xn)).

Moreover, given C(u1, . . . , un) is a copula, the corresponding survival copula is defined as

Ĉ(u1, . . . , un) = 1 +
∑

I⊂{1,...,n}

(−1)|I|CI(1− ui, i ∈ I),
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where CI is the I-margin of the copula C with |I| the cardinality of the set I.

Commonly used copulas include elliptical copulas (Gaussian copulas, t copulas), Archimedean
copulas, and Farlie–Gumbel–Morgenstern (FGM) copulas.

2.2.1 Archimedean Copulas

Exchangeable Case

Multivariate Archimedean copulas are widely used in insurance and financial risk analyses.
Differently from the elliptical copulas, Archimedean copulas have a simple closed form and
can be represented by a generator ϕ, rather than a multivariate distribution. We use the
generator ϕ to define the class of Archimedean copulas as follows:

C(u1, . . . , un) = ϕ−1(ϕ(u1) + . . .+ ϕ(un)). (2.2.1)

The generator function ϕ : [0, 1] → [0,∞] is continuous, decreasing and convex such that
ϕ(1) = 0 and ϕ(0) = ∞, and ϕ−1 is the inverse of ϕ. We further assume ϕ−1 is completely

monotonic, i.e. (−1)i (ϕ−1)
(i) ≥ 0 for all i ∈ N. These requirements ensure that C is a

copula for all dimensions n ≥ 2; see Kimberling (1974). By using Bernstein’s theorem (see
Feller (1971), pp. 439), ϕ−1 is completely monotonic if and only if ϕ−1 is a L-S transform of
the distribution of some positive random variable V . We recall that the Laplace-Stieltjes
transform of V is given by

LV (s) =

∫ ∞
0

e−svdFV (v) = E
[
e−sV

]
.

Because of the importance of such copulas in our following analysis, we will call these
copulas LT-Archimedean and make the following definition.

Definition 2.2.1 An LT-Archimedean copula is a copula of the form (2.2.1), where ϕ−1

is the Laplace-Stieltjes transform of the distribution of some positive random variable V .

For many popular Archimedean copulas, the random variable V has a known distri-
bution. For example, V is Gamma distributed for Clayton copulas. While for Gumbel
copulas, V is a one-sided Stable random variable. A detailed specification about the pa-
rameters can be found in Table 1 of Hofert (2008).

The following result providing a mixture representation for an LT-Archimedean copula
is first proposed by Marshall and Olkin (1988) and later formally proved in McNeil et al.
(2015).
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Proposition 2.2.1 Consider an LT-Archimedean copula C with generator ϕ. Let V be
a positive random variable with Laplace-Sieltjes transform ϕ−1 and let R1, . . . , Rn be a
sequence of i.i.d. standard exponential random variables that are also independent of V .
Then the random vector

U =

(
ϕ−1

(
R1

V

)
, . . . , ϕ−1

(
Rn

V

))
(2.2.2)

is distributed according to copula C.

The above construct is especially useful in the field of credit risk. One can regard random
variable V as a proxy for systematic risks. Conditioning on V , random variables U1, . . . , Un

are independent with conditional distribution function P(Ui ≤ u|V = v) = exp(−vϕ(u))
for u ∈ [0, 1].

Non-exchangeable Case

In higher dimensions, the Archimedean copula functions we considered above suffer from
the deficiency that they impose too much structure on the dependency. In particular,
all uniform variables Ui are exchangeable. In applications such as portfolio credit risk
discussed in Chapter 5, this means that we cannot have some groups of obligors with
higher dependency, and others with less dependency. In order to capture the multi-level
dependence structure of the underlying portfolio, many nested constructions are possible.
One of them is to use a partially exchangeable construction with two levels of nesting. Let
C0 be an outer LT-Archimedean copula with generator ϕ0 and Cj be inner LT-Archimedean
copulas with generators ϕj. Then we can define a partially nested Archimedean copula as
follows:

C(u) = ϕ−10

(
J∑

j=1

ϕ0 ◦ ϕ−1j

(
nj∑
l=1

ϕj(ujl)

))
, (2.2.3)

where u = (ujl), 1 ≤ l ≤ nj and 1 ≤ j ≤ J . One can think of the partially nested
Archimedean copula of (2.2.3) as capturing the inner dependence structure by Archimedean
copula Cj, j = 1, . . . , J and combining these inner copulas by an overall dependence struc-
ture, C0. The corresponding tree structure is depicted in Figure 2.1.

In order for (2.2.3) to be a proper copula function, McNeil (2008) has shown that the
composite function ϕ0 ◦ϕ−1j must have completely monotonic derivatives for any 1 ≤ j ≤ J
(a condition that will later make sense in Chapter 5). Let

ϕ−10,j(·;x) := exp
(
−xϕ0 ◦ ϕ−1j (·)

)
12



C0(·;ϕ0)

C1(·;ϕ1)

u11 · · · · · · u1n1

· · · Cj(·;ϕj)

uj1 · · · · · · ujnj

· · ·

Figure 2.1: Tree structure of a partially nested Archimedean copula

for 1 ≤ j ≤ J . The following proposition given by Hofert (2012) provides us a stochastic
representation for the random vector U of a partially nested Archimedean copula defined
by (2.2.3).

Proposition 2.2.2 Let C be a nested Archimedean copula defined in (2.2.3). Further, let
U ∼ C. Then, U admits the following stochastic representation,(

Uj1, . . . Ujnj

)
=

(
ϕ−1j

(
Rj1

Vj

)
, . . . ϕ−1j

(
Rjnj

Vj

))
, 1 ≤ j ≤ J, (2.2.4)

where Rjl’s are i.i.d. standard exponential random variables for 1 ≤ j ≤ J and 1 ≤ l ≤ nj.
The variables Vj are uniquely determined by its Laplace-Stieltjes transform ψ−10,j (·;V0) for
1 ≤ j ≤ J and V0 follows the distribution function whose Laplace-Stieltjes transform is
given by ϕ−10 .

Note that although nested Archimedean copulas involve multiple Archimedean generators
and more complicated distributions for the variables Vj, there still exists some resemblance
in the stochastic representation as compared with Archimedean copulas.

2.2.2 Tail Dependence

In this subsection, we focus on the dependence in the tail area, i.e., the tail dependence. The
coefficients we describe as follows are defined in terms of limiting conditional probabilities
of quantile exceedances.

Definition 2.2.2 Let X1 and X2 be two random variables, distributed by F1 and F2, re-
spectively. The coefficient of upper tail dependence of X1 and X2 is

λU = lim
q↑1

P (X2 > F←2 (q)|X1 > F←1 (q)) ,
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provided a limit λU exists. Analogously, the coefficient of lower tail dependence is

λL = lim
q↓0

P (X2 ≤ F←2 (q)|X1 ≤ F←1 (q)) ,

provided a limit λL exists.

The motivation for looking at these coefficients is that they provide measures of ex-
tremal dependence. Specifically, if λU ∈ (0, 1], then X1 and X2 show upper tail dependence
or extremal dependence in the upper tail.

When a multivariate distribution is characterized by an Archimedean copula, simple
expressions for λU and λL are introduced in Charpentier and Segers (2009), where the
coefficients of tail dependence are measures of pairwise dependence that depend only on
the generator ϕ of the copula. Their result is summarized as follows.

Proposition 2.2.3 Let C be a multivariate Archimedean copula with generator ϕ.

1. If ϕ ∈ RVα(1) for some α ≥ 1, then the upper tail dependence is

λU = lim
q↑1

P(Ui > q|Uj > q) = 2− 21/α,∀i ̸= j,

2. If ϕ ∈ RV−α(0) for some α ≥ 0, then the lower tail dependence is

λL = lim
q↓0

P(Ui ≤ q|Uj ≤ q) = 2−1/α,∀i ̸= j.

It turns out that many Archimedean copulas used in practice have generators that
are regularly varying at zero or one. Some well-known examples are provided below. A
comprehensive list can be found in Table 4.1 of Nelsen (2007).

• Clayton copula: ϕ(t) = 1
α
(t−α − 1), α ∈ [−1,∞]\{0}. Provided that α > 0, ϕ−1 is

completely monotonic and ϕ ∈ RV−α(0).

• Gumbel copula: ϕ(t) = (− ln(t))α, α ∈ [1,∞). ϕ−1 is completely monotonic and
ϕ ∈ RVα(1).
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2.3 Multivariate Regular Variation

Besides copulas, the multivariate regular variation (MRV) structure introduced in this sec-
tion, can also be used to model tail dependence. Compared with the copula approach, this
approach provides a unifying framework for modeling both heavy-tailedness of marginal
distributions and tail dependence among loss variables, and it actually strengthens the
theory of (univariate) regular variation.

2.3.1 Vague Convergence of Radon Measures

Later we will see the concept of MRV is based on the interplay between regular variation
and vague convergence of Radon measures. Hence, in this subsection, we first review the
notions of vague convergence and radon measures. Consider a d-dimensional punctured
space K = [−∞,∞]d \ {0} equipped with a Borel σ-field B, a measure on such a space is
called Radon if its value is finite for every compact subset of K.

Remark 2.3.1 Note in the punctured space K, 0 is excluded and ∞ included. This is
required since vague convergence is only able to define on relatively compact sets. By
considering regular variation, sets of the form (xi,∞) are generally considered, yet are not
bounded under the usual topology with ∞ excluded.

Given a sequence of Radon measures {µn, n = 1, 2, . . .} on K, we say µn converges
vaguely to µ, written as µn

v−→ µ, if

µn(f) :=

∫
K
f(x)µn(dx)

w−→ µ(f) :=

∫
K
f(x)µ(dx)

holds for every nonnegative continuous function f with compact support. By Portmanteau
theorem, µn

v−→ µ on K if and only if the convergence

µn(B)
w−→ µ(B)

holds for all relatively compact continuity set B.

From above equivalent definitions, the notion of vague convergence is closely related to
that of weak convergence. For a full account of technical details related to the construction
of punctured space K and the notion of vague convergence, the reader is referred to Resnick
(2007).
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2.3.2 Definition and Implication of MRV

For nonnegative random variables, multivariate regular variation can be defined based on
MRV of the distribution function.

Definition 2.3.1 A d-dimensional random vector X is MRV if there exists a normalizing
function b(t) → ∞ and a non-zero Radon measure ν on B(K), called the limit measure,
such that ν

(
[−∞,∞]d \ Rd

)
= 0 and, as t→ ∞,

tP
(

X

b(t)
∈ ·
)

v−→ ν(·). (2.3.1)

Additionally to (2.3.1), we assume that the limit measure ν is non-degenerate in the
sense that

ν
({

x ∈ Rd : xi > ε
})

> 0, i = 1, . . . , d,

for all ε > 0. This assumption ensures that all components of X are comparable in the
upper tail. Therefore, by normalizing all components of X with the same function b,
the phrasing of MRV in Definition 2.3.1 indicates the univariate regular variation of the
marginals with the same tail index. One should also note that making different choices of
function b does not change the limit measure ν except for a constant factor.

From Proposition 2.3 in Resnick (2007), relation (2.3.1) implies that the limit measure
is homogeneous:

ν(sA) = s−αν(A) (2.3.2)

for some α ∈ (0,∞) and all sets A ∈ B(K). Hence, we write X ∈ MRV−α.

The MRV structure can also be defined with the polar coordinate transformation. Given
any arbitrary norm ∥·∥, in the restricted space K, the polar coordinate transformation of
a vector x is

T (x) =
(
∥x∥ , ∥x∥−1 x

)
. (2.3.3)

Note that
T : K 7→ (0,∞)× Sd−1,

where Sd−1 =
{
s ∈ Rd : ∥s∥ = 1

}
. Thus, the scaling property in (2.3.2) leads to a decom-

position of the induced measure νT := ν ◦ T−1, namely,

νT = c · ρα ×Ψ on (0,∞)× Sd−1 (2.3.4)

with the constant factor
c = ν

({
x ∈ Rd : ∥x∥ > 1

})
> 0,
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the measure ρα defined by

ρα((x,∞]) = x−α, x > 0,

and a probability measure Ψ on Sd−1 with respect to ∥·∥; see Theorem 6.1 in Resnick (2007).
The measure Ψ is often called the spectral or angular measure. Throughout the thesis, we
denote that X is MRV with tail index α and spectral measure Ψ by X ∈ MRV−α(Ψ), which
implies the corresponding limit measure ν as in (2.3.4). The dimension d is suppressed in
this notation as it is usually clear from the context.

Theoretically, it does not matter which norm is chosen in the polar representation
(2.3.3). For simplicity, we consider the ℓ1-norm ∥·∥1 and let Ψ denote the spectral mea-
sure on Sd−1

1 induced by ∥·∥1. Further, by constraining the measure ν to the set A1 :={
x ∈ Rd : ∥x∥1 > 1

}
, the constant c is normalized to 1. With a proper choice of b(t) =

F←R (1− 1/t) , R = ||X||1, the vague convergence in (2.3.1) implies the weak convergence
on B (A1), as

νt(·)|A1 =
P (t−1X ∈ ·)
P (∥X∥1 > t)

w−→ ν(·)|A1 , t→ ∞, (2.3.5)

where ν|A1 is the restriction of ν to the set A1.

With the MRV structure, all the information of upper tail dependence is provided by
the limit measure ν. For ease of explanation, suppose the random vector X = (X1, . . . , Xd)
consists of identical nonnegative components with distribution function F . Let the nor-
malizing function be b(t) =

(
1/F̄

)←
(t), then from (2.3.1) we have

1

F̄ (t)
P
(
X

t
∈ ·
)

v−→ ν(·) on B([0,∞]d\{0}).

Hence, for each pair (Xi, Xj), 1 ≤ i ̸= j ≤ d, the coefficient of upper tail dependence is
given by

λU = ν
{
x ∈ [0,∞]d\{0} : xi ∧ xj > 1

}
.

It is easy to see that if the limit measure ν spreads mass onto axes, then λU = 0, i.e. Xi

and Xj are pairwise tail independent for every 1 ≤ i ̸= j ≤ d. Otherwise, we say some
components of X are pairwise tail dependent. For further details on the limit measure ν
or the spectral measure Ψ, see Section 6.5 of Resnick (2007) for related discussions.
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Chapter 3

Asymptotic Analysis of Portfolio
Diversification

3.1 Introduction

In order to mitigating risks in portfolios of financial investment, a common tool used by
risk managers is the diversification strategy. The benefit from a diversification strategy can
be reflected in the reduction of tail risks in a diversified portfolio. Guided by regulation
rules such as the Basel II and III Accords for banking regulation and the Solvency II
Directive for insurance regulation, the Value-at-Risk (VaR) became the main concern of
the regulators, and therefore is also adopted by risk managers as the main measure of risks.
In this chapter, we investigate the optimal portfolio construction aiming at extracting the
most diversification benefit based on the VaR measure.

A key difficulty in evaluating the diversification benefit based on the VaR measure is
that there is often no explicit formula for calculating the portfolio VaR. Since a portfolio is a
linear combination of the underlying risky assets, only if the asset returns follow sum-stable
distributions such as the Gaussian distribution or the stable distributions, one can precisely
calculate the distribution of the portfolio return, and derive the VaR therefore. As an
alternative, Extreme Value Theory (EVT), in particular, the multivariate regular variation
(MRV) model, may provide an explicit approximation to the tail of the distribution of the
portfolio return; see e.g. Mainik and Rüschendorf (2010), Mainik and Embrechts (2013)
and Zhou (2010). By inverting the approximation formula on the tail of the distribution,
one may get an approximation for the VaR measure, when the probability level in VaR is
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considered to be close to 1. Therefore, the EVT approach opens a new door for investigating
the diversification benefit based on the VaR measure.

Nevertheless, when applying the EVT approach, two difficulties remain to be handled.
Both of them are due to the fact that the approximation holds only in the limit when the
probability level in VaR tending to 1. Firstly, the EVT approach provides an approximation
for “the VaR in the limit” when the probability level in VaR tends to 1. However, for
heavy-tailed portfolio returns as assumed in the setup of the MRV, when the probability
level in VaR tends to 1, the VaR converges to infinity. Consequently, the goal of portfolio
optimization turns to be minimizing “the VaR in the limit”, even if the limit is infinity. It is
difficult to provide an economic interpretation for such a mathematical exercise. Secondly,
the practical goal for risk managers is to minimize VaR at a given probability level, such as
99% (Basel II) or 99.5% (Solvency II), while “the VaR in the limit” is not of their concern.
Further, it is not guaranteed that the optimal portfolio based on minimizing “ the VaR in
the limit” is also close to the practical goal.

The first difficulty can be overcome by comparing the portfolio VaR to the VaRs of
marginal risks. For that purpose, we employ the measure diversification ratio (DR), or
sometimes with its alternative name: the risk concentration based on VaR; see, for example
Degen et al. (2010) and Embrechts et al. (2009a). The diversification ratio is defined as
follows. LetX := (X1, . . . Xd)

T be a random loss vector in Rd, whereXi > 0 indicates losses
and Xi < 0 represents gains. The portfolio loss is given by wTX, where the weights satisfy

w = (w1, w2, . . . , wd)
T ∈ Σd :=

{
x ∈ [0, 1]d : x1 + x2 + . . .+ xd = 1

}
. For this portfolio,

the diversification ratio based on VaR at level q ∈ (0, 1) is defined as

DRw,q =
VaRq(w

TX)∑d
i=1wiVaRq(Xi)

. (3.1.1)

The DR is a measure of diversification benefit in the following sense. Consider the
comonotonic case where all assets are completely dependent. Then DR is a constant one
regardless how the portfolio is allocated. This is a special case in which any diversification
strategy would not reduce the portfolio risk. Consequently, in a general case, 1 − DRw,q

can be regarded as the diversification benefit.

The first result in this chapter is to show that the DR converges to a finite value for
any portfolio as q → 1 under the MRV model. More specifically, by modeling the joint
distribution of the random vector X by MRV, we can derive an explicit formula for

DRw,1 := lim
q↑1

DRw,q
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with respect to the weight w and the two key elements characterizing the MRV model: the
tail index of the marginals and the spectral measure for the tail dependence structure.1

This result overcomes the first difficulty regarding the interpretation: one may target
minimizing the DR in the limit, which is at a finite level. We show that there exists a
unique solution to the optimization problem

w∗ := min
w∈Σd

DRw,1.

A portfolio that minimizes the DR is consequently extracting the most diversification
benefit based on the VaR measure. It is also worth noticing that by taking the marginal
VaRs in the denominator, the optimal portfolio based on the DR is mainly driven by the
dependence structure across the risky assets, while is more robust to changes in marginal
risks.

However, the second difficulty raised above remains valid after switching to minimizing
the DR. Is the optimal solution based on minimizing the DR in the limit close to the
practical goal of minimizing the DR at a given probability level? We formalize this question
by the following notations.

Practically, with introducing the DR, risk managers aim at solving the following opti-
mization problem:

min
w∈Σd

DRw,q. (3.1.2)

Denote the solution to (3.1.2) by wq.

We remark that solving (3.1.2) directly is computationally intensive. With observations
on the joint distribution of the random vector X, wq can be estimated by conducting a
numerical search. However, such a searching algorithm suffers from the dimensionality
curse: the computational burden increases exponentially with respect to the dimension d.

The second main result of this chapter is to show how close the solution w∗ is from the
solution of the original optimization problem wq. First, we show theoretically that

lim
q↑1

wq = w∗. (3.1.3)

The convergence in (3.1.3) ensures that one may use the solution to the optimization
problem in the limit as an approximation to the solution to the original problem with a

1As pointed out by Mainik and Embrechts (2013), under the MRV structure, when the tail index is
great than 1, DRw,1 < 1. In other words, the VaR measure possesses subadditivity as q → 1. Hence,
diversification is always optimal in this situation and the optimization problem (3.1.2) is well defined.
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finite level q close to 1. Further, define the distance between wq and w∗, measured by
∥wq −w∗∥ with respect to an arbitrary norm as Dq. In other words, given a finite level
of q close to 1, the solution wq is within an area defined as a Dq radius circle around w∗.
For a special case of MRV, the Farlie–Gumbel–Morgenstern (FGM) copula, we explicitly
determine Dq.

Empirically, with observations on the joint distribution of the random vectorX, one can
estimate the two main components for the MRV: the marginal tail index and the spectral
measure. By plugging in the estimates of these two elements, the solution w∗ can be
estimated using conventional convex optimization method. We show the consistency of the
estimator. Notice that the computational burden is much lower than the aforementioned
numerical approach for solving wq.

We use a few numerical examples to support our theoretical results and also apply our
method to empirical data. We find that portfolio constructed using our approach possess
the lowest DR and also suffers low losses in out–of–sample periods, compared to other
portfolio optimization strategies,

One possible drawback of our portfolio optimization strategy (3.1.2) is that it only min-
imizes the risk without taking into account the upper side potential: portfolio returns. In
fact, it is straightforward to consider the return components simultaneously. For example,
consider the “safety–first” criterion proposed by Roy (1952), which aims at first constrain-
ing the downside risk to a given level and then maximizing the profit. This is equivalent
to minimizing risk with a linear constraint on the returns. Comparing this optimization
problem with the aforementioned unconstrained convex minimization problem, taking the
return into consideration is just to impose an additional linear constraint. It is straight-
forward to verify that our current results remain valid for the constrained optimization
problem. To avoid complicating the discussion, in this chapter we opt to focusing on the
optimization of DR without considering the return side.

Our proposed portfolio optimization strategy is comparable to other strategies based
on tail risk. Mainik and Rüschendorf (2010), proposed to minimize the so-called extreme
risk index (ERI),

ERI = argmin
w

lim
q↑1

VaRq(w
TX)

VaRq(||X||1)
,

which essentially is minimizing the portfolio VaR. This strategy is more sensitive to marginal
tail risks and consequently load high on marginals with a low VaR. On the contrary, mini-
mizing DR in (3.1.1) scales off the effect of marginals and focuses more on the dependence
structure. Another advantage of our DR strategy is that the DR measure is leverage in-
variant. For example, being 100% exposed to a risky portfolio is as diversified as being
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50% exposed to such risky portfolio and leaving the rest in cash. However if we simply
minimize portfolio VaR, the best strategy is to put more weight in cash, which does not
increase diversification benefit.

Another closely related strategy is the so called most diversified portfolio (MDP)

MDP = argmin
w

var(wTX)∑d
i=1wivar(Xi)

,

proposed by Choueifaty and Coignard (2008). The MDP method shares the same structure
with our approach: it considers the ratio between portfolio risk and the sum of individual
risks measured by variances. Since variance is a measure of overall risk rather than focusing
on the tail region, the MDP method may fail to capture the extreme risks.

This chapter is organized as follows. In Section 3.2, we provide our main results on the
convergence of optimal portfolios. Section 3.3 discusses the convergence rate of the optimal
portfolio. In Section 3.4, we demonstrate the empirical performance of our strategy based
on two numerical examples. Section 3.5 and 3.6 provides the application of our strategy
to real market data. Proofs are postponed to Section 3.7.

3.2 Convergence of Optimal Portfolios

3.2.1 Preliminaries

In this subsection, we give a general result on the convergence of minimizers. Throughout
the chapter, for a function g : Z → R, we denote M(g) the set of all the minimizers of g.
That is,

M(g) =

{
x ∈ Z : g(x) = inf

y∈Z
g (y)

}
.

A minimizer of g is denoted by mg ∈M(g).

Lemma 3.2.1 Suppose that {fn} is a sequence of lower semi-continuous functions from a
compact metric space Z to R = [−∞,∞], and fn converges uniformly to a function f . If,
in addition, assume that f has a unique minimum point in Z, then

lim
n→∞

mfn = argmin f. (3.2.1)
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Proof. On the compact metric space Z, we have that the sequence {fn} is equi-coercive
and gamma-converges to f under the conditions of Lemma 3.2.1. Then by Corollary 7.24
in Dal Maso (2012), the relation (3.2.1) holds.

3.2.2 Main Results

The first result regards the weak convergence of DRw,q as q ↑ 1, which is a direct conse-
quence of known result in the literature.

Proposition 3.2.1 Suppose the random vector X ∈ MRV−α(Ψ) with α > 0. Then for
any w ∈ Σd, we have

lim
q↑1

DRw,q = DRw,1,

where

DRw,1 =
η
1/α
w∑d

i=1wiη
1/α
ei

(3.2.2)

with ηw =
∫
Sd−1
1

(wT s)α+Ψ(ds) and ei = (0, ..., 1, ..., 0)T only the ith component being 1 for

i = 1, .., d.

Proof. Note that

DRw,q =
VaRq(w

TX)/VaRq(∥X∥1)∑d
i=1wiVaRq(Xi)/VaRq(∥X∥1)

. (3.2.3)

For X ∈ MRV−α(Ψ) with α > 0, it follows that

lim
q↑1

VaRq(u
TX)

VaRq(∥X∥1)
= η1/αu , u ∈ Σd, (3.2.4)

which can be found in e.g. Mainik and Rüschendorf (2010), Mainik and Embrechts (2013)
and Zhou (2010). The proposition can be proved by letting u = w and u = ei in (3.2.4).

In the following theorem, we develop the uniform convergence of DRw,q, which is essen-
tial for proving the convergence of minimizers. It is also an interesting result on its own.
The proof is postponed to Section 3.7.
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Theorem 3.2.1 Suppose the random vector X is continuously distributed with a positive
joint density function. Further assume that X ∈ MRV−α(Ψ) with α > 0. Then

lim
q↑1

sup
w∈Σd

|DRw,q −DRw,1| = 0. (3.2.5)

The main result of this section, in the following theorem, shows that the convergence
of a sequence of optimal solutions of DRw,q to the unique minimizer of DRw,1.

Theorem 3.2.2 Suppose the random vector X is continuously distributed with a positive
joint density function. Further assume that

• X ∈ MRV−α(Ψ) with α > 1,

• Ψ
({

x ∈ Sd−1 : aTx = 0
})

= 0 for any a ∈ Rd\ {0},

• Ψ
({

x ∈ Sd−1 : wTx ≤ 0
})

= 1 for at most one vector w ∈ Σd.

Then w∗ = argminDRw,1 exists and is unique. Moreover,

lim
q↑1

wq = w∗, (3.2.6)

where wq is a solution of minw∈Σd DRw,q.

Proof. The existence w∗ is due to the continuity of DRw,1 and the compactness of Σd. To
show the uniqueness, first note that the minimization problem minw∈Σd DRw,1 is equivalent
to

min
w

η
1/α
w

s.t.
∑d

i=1wiη
1/α
ei = 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(3.2.7)

Since the set of constraints in (3.2.7) is nonempty, closed and bounded, it is compact.

By Theorem 2.6 of Mainik and Embrechts (2013), η
1/α
w is strictly convex when α > 1.

Suppose w1 and w2 are two different minimal points of the optimization problem. Let
w = (w1 + w2)/2. From the strictly convexity of the object function and compactness

of the set of constraints, it follows that η
1/α
w < η

1/α
w1 = η

1/α
w2 , which yields a contradiction.

Thus, w∗ is unique.

Now we prove (3.2.6). In the proof of Theorem 3.7.2, we showed that VaRq(w
TX) is

continuous with respect to w ∈ Σd for q large. Then there exists q∗ > 0 such that DRw,q

is continuous with respect to w ∈ Σd for every q∗ < q < 1. The desired result follows from
Theorem 3.2.1, the uniqueness of w∗ and Lemma 3.2.1.
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Remark 3.2.1 Endowment of the DR approach with a target return is straightforward.
Analogously to the classical Markowitz problem, it suffices to add the linear constraint

wTµ = −µ̄, µ̄ > 0, (3.2.8)

to the optimization problem
min
w∈Σd

DRw,1.

The condition α > 1 guarantees the existence of first moment for each Xi and the negative
sign of the target return is due to the fact that X is a loss vector. Note that the subspace
Σd ∩ {w : wTµ = −µ̄} is again compact. Then by the continuity of DRw,1, at least one
optimal solution exists. Since the objective function DRw,1 in (3.2.2) is the ratio of a convex
function and an affine function, our problem is in the field of fractional programming as
described in Schaible and Ibaraki (1983) and Avriel et al. (2010). A well-known result in
the theory of fractional programming is that a local minimum is global and unique if the
numerator is strictly convex, since in this case the objective function is strictly quasiconvex
and can be related to a convex optimization problem through transformations. Therefore,
we show the existence and uniqueness of w∗ for the optimization problem with constraint
in (3.2.8).

Remark 3.2.2 In Theorem 3.2.2, w∗ is the optimal portfolio obtained by minimizing the
diversification ratio with respect to VaR at limit 1. Due to the Karamata’s theorem (see
Theorem B.1.5 in de Haan and Ferreira (2006)), for α > 1, the following asymptotic
relation always holds,

lim
q↑1

ESq(w
TX)

VaRq(wTX)
=

α

α− 1
.

Consequently, w∗ also minimizes the diversification ratio with respect to ES for q ↑ 1. The
asymptotic result can be also generalized to the class of spectral risk measures by imposing
certain constraint on the admissible risk spectrum ϕ. Interested readers may refer to Section
5 in Mainik and Rüschendorf (2010).

3.2.3 Beyond the Main Theorem

In our main result, Theorem 3.2.2, some restrictions are imposed on the index α and
spectral measure Ψ to make sure that the optimization problem is well defined. In fact,
they are not necessary conditions. In the following several special cases, we show that the
conditions can be relaxed.
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The condition Ψ
({

x : aTx = 0
})

= 0 for any a ∈ Rd\ {0} means that the spectral
measure Ψ does not concentrate on any linear subspace. It ensures the uniqueness of
the solution w∗ of the limiting problem DRw,1. But it excludes the special cases such
as independent or comonotonic structure of X. If X has an independent structure with
regularly varying marginals, then it is not hard to show that

DRw,1 =
d∑

k=1

wα
k .

By Jensen’s inequality, DRw,1 is minimized when wk = 1/d for k = 1, 2, ..., d, which is
unique. Therefore, Theorem 3.2.2 holds for the independent case. If X is comonotonic,
then DRw,q = 1 for any w or q. There is no optimization problem to consider.

If we restrict ourselves to elliptical distributions, then Theorem 3.2.2 holds for any
random vector X ∈ Rd and any α > 0, without any restriction on Ψ, or even without the
MRV assumption. In the rest of the section, we focus on this special case.

A random vector X in Rd is elliptically distributed if it satisfies

X
d
= µ+ Y BU, (3.2.9)

where µ ∈ Rd, B ∈ Rd×d,U = (U1, ..., Ud)
T is uniformly distributed on the Euclidean

sphere Sd−1, and Y is a nonnegative random variable that is independent of U. The
matrix C := BBT is called ellipticity matrix of X. To avoid degenerate cases, we assume
throughout the following that C is positive definite.

It is well known that if X is elliptically distributed, then X ∈ MRV−α(Ψ) if and only
if Y ∈ RV−α; for example, see Hult and Lindskog (2002). By Theorem 6.8 of McNeil et al.
(2015), the subadditivity property of VaR always holds for 0.5 ≤ q < 1. It then follows
that DRw,q ≤ 1, which means that diversification is always optimal for 0.5 ≤ q < 1 no
matter what distribution Y follows and thus the optimization problem is well defined. In
the general MRV case, to have DRw,q ≤ 1 is ensured by restricting α > 1. In another
word, if X is elliptically distributed and Y ∈ RV−α, then Theorem 3.2.2 holds without any
restriction on α.

Actually, elliptical distributions leads to the explicit expressions of DRw,q and DRw,1.
This enables us to further relax the assumption of MRV. As long as Y is unbounded, we are
able to directly show the convergence of (3.2.6) without the assumption that Y is regularly
varying. A direct calculation yields that

VaRq

(
wTX

)
= wTµ+

∥∥BTw
∥∥
2
F←Z (q) , (3.2.10)
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where Z
d
= Y U1. The diversification ratio for elliptical distributions can then be obtained

as

DRw,q =
wTµ+

∥∥BTw
∥∥
2
F←Z (q)

wTµ+
∑d

i=1wi ∥BTei∥2 F←Z (q)
. (3.2.11)

If the random variable Y is unbounded, then by F←Z (q) → ∞ as q ↑ 1, we obtain

lim
q↑1

DRw,q =

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2
:= DRw,1. (3.2.12)

In the following lemma, we first show that the convergence in (3.2.12) is indeed uniform,
whose proof is postponed to the last section.

Lemma 3.2.2 For elliptically distributed X, if ∥µ∥1 < ∞ and random variable Y is un-
bounded, then the convergence in (3.2.12) is uniform for w ∈ Σd. Moreover, the mapping
w → DRw,1 is continuous.

Now we are ready to show that Theorem 3.2.2 holds in the most general setting of
elliptical distributions by dropping the MRV assumption.

Theorem 3.2.3 Under the conditions of Lemma 3.2.2, we have

lim
q↑1

argmin
w∈Σd

VaRq(w
TX)∑d

i=1wiVaRq(Xi)
= argmin

w∈Σd

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2
. (3.2.13)

Proof. By Lemmas 3.2.1 and 3.2.2, we only need to show that the solutions of the
minimization problems on both sides of (3.2.13) exist and are unique. To achieve it, first
note that the minimization problem

min
w∈Σd

VaRq(w
TX)∑d

i=1wiVaRq(Xi)

is equivalent to a convex optimization problem

min
w

wTµ+
∥∥BTw

∥∥
2
F←Z (q)

s.t. wTµ+
∑d

i=1wi

∥∥BTei
∥∥
2
F←Z (q) = 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(3.2.14)
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Similarly, the minimization problem

min
w∈Σd

∥∥BTw
∥∥
2∑d

i=1wi ∥BTei∥2
is equivalent to

min
w

∥∥BTw
∥∥
2

s.t.
∑d

i=1wi

∥∥BTei
∥∥
2
= 1 with wi ≥ 0 for i = 1, 2, . . . , d.

(3.2.15)

Denote the constraint sets in (3.2.14) and (3.2.15) by C1 and C2. It is obvious that C1 and
C2 are nonempty, closed, convex and bounded. Hence, they are compact by the Heine–
Borel theorem. By the triangle inequality and positive homogeneity of ∥·∥2, the objective
functions in (3.2.14) and (3.2.15) are convex over Rd, and they are continuous over the
constraint sets C1 and C2; see Rockafellar (2015). By the compactness of the constraint
set and continuity of the objective functions, the solutions to (3.2.14) and (3.2.15) exist
due to the Weierstrass extreme value theorem.

Next, we show the uniqueness of the solution to (3.2.15). Due to the convexity, we have
for any λ ∈ (0, 1),∥∥BT (λw1 + (1− λ)w2)

∥∥
2
≤ λ

∥∥BTw1

∥∥
2
+ (1− λ)

∥∥BTw2

∥∥
2
. (3.2.16)

The equality in (3.2.16) holds only when w1 = kw2 for k ∈ R+ and w1,w2 nonzero. If both
w1 and w2 belong to the constraint set C1 or C2, then k can only be 1. This means for
any w1 ̸= w2, the strictly inequality in (3.2.16) holds. Therefore, the objective function in
(3.2.15) is strictly convex. The uniqueness of the solution then follows from the similarly
arguments in the proof of Theorem 3.2.2.

3.2.4 Estimation of the Diversification Ratio

When the DR optimization strategy with MRV structure is applied in practice, the estima-
tions of MRV structure and DRw,1 are required. In this section, we propose an estimation
procedure and show the consistency of the estimators.

Assume X ∈ MRV−α(Ψ) with α > 1. Let X1, . . .Xn be an i.i.d. sample of X. By
Theorem 3.2.1, we propose the following estimation procedure.

1. Estimate the tail index α by an estimator α̂.
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2. Estimate the spectral measure Ψ by an estimator Ψ̂.

3. Estimate ηw by

η̂w =

∫
Sd−1

(wT s)α̂+Ψ̂(ds).

4. Estimate DRw,1 by

D̂Rw,1 =
η̂
1/α
w∑d

i=1wiη̂
1/α
ei

.

With the estimated diversification ratio, we can obtain an optimal portfolio by mini-
mizing D̂Rw,1. Denote the optimal portfolio weights following this procedure as ŵ∗.

More specifically, in the first two steps, we use standard estimators for α and Ψ as
follows. Let (R,S) and (Ri, Si) denote the polar coordinates of X and Xi with respect to
||·||1. That is,

(R,S) =

(
||X||1,

X

||X||1

)
. (3.2.17)

Assume in this section that the distribution function of R is continuous. Choose an inter-
mediate sequence k such that

k (n) → ∞,
k (n)

n
→ 0.

We use the observations corresponding to the top k order statistics of R1, . . . , Rn for es-
timating α and Ψ. Denote the k upper order statistics of R1, . . . , Rn by R(n) ≥ . . . ≥
R(n−k+1). The tail index α is estimated by some usual estimator as a function of these
order statistics:

α̂ = α̂
(
R(n), . . . , R(n−k+1)

)
.

Many existing estimators can be applied here, see for example, Hill (1975), Pickands III
(1975), Smith (1987), Dekkers et al. (1989), among others. They all possess consistency
and asymptotic normality.

Next, let π (1) , . . . , π (k) denote the indices corresponding to R(n), . . . , R(n−k+1) in the
original sequence R1, . . . , Rn. These indices are used to identify each “angle” Sπ(j) corre-
sponding to R(j). The spectral measure Ψ is estimated by the empirical measure of the
angular parts Sπ(1), . . . , Sπ(k),

Ψ̂ =
1

k

k∑
j=1

δSπ(j)
, (3.2.18)

where δ
π(j)

(·) is the Dirac measure.
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Lemma 3.2.3 Let X1, . . . ,Xn be an i.i.d. sample of X ∈ MRV−α(Ψ) with α > 1. Assume
that the distribution function FR of R in (3.2.17) is continuous. If the estimator α̂ is

consistent almost surely, and then the estimator D̂Rw,1 is consistent uniformly in w ∈Σd,
i.e.,

sup
w∈Σd

∣∣∣D̂Rw,1 −DRw,1

∣∣∣→ 0, a.s. (3.2.19)

Combining Theorem 3.2.1 and Lemma 3.2.3, we obtain the consistency in the optimal
portfolio weights in the following theorem.

Theorem 3.2.4 Under the conditions of Lemma 3.2.3 and Ψ
({

x : aTx = 0
})

= 0 for

any a ∈ Rd\ {0}, the estimator ŵ∗ and the estimated value D̂Rw∗,1 are consistent almost
surely, i.e.,

ŵ∗ → w∗, a.s.; D̂Rw∗,1 → DRw∗,1, a.s.

Here we only established consistency. Under some additional conditions, further asymp-
totic properties for the estimator of DRw,1 can be established in a straightforward way.
For example, Theorem 4.5 of Mainik and Rüschendorf (2010) shows that, under some ad-
ditional conditions, for any w ∈ Σd,

√
k (η̂w − ηw) converges to a multivariate Gaussian

distribution Gw. Then by the functional delta method (e.g. Theorem 20.8 in Van der Vaart

(2000)), it is easy to show that
√
k
(
D̂Rw,1 −DRw,1

)
converges to a Gaussian distribution

as well. However, to establish the convergence in an uniform way is difficult and may
be left for future research. Without a uniform asymptotic property on D̂Rw,1 we cannot
further investigate the asymptotic property of the optimal portfolio weights.

3.3 The Rate of Convergence to the Optimal Portfo-

lio: An Example

In this section, we discuss how w∗ approximates wq by determining the convergence rate
of (3.2.6) under some special dependence structure, such as the FGM copula.

The FGM copula was originally introduced by Morgenstern (1956) and investigated by
Gumbel (1960) and Farlie (1960). The FGM copula is defined as

C(u, v) = uv(1 + θ(1− u)(1− v)), (u, v) ∈ [0, 1]2, (3.3.1)
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where θ ∈ [−1, 1] is a dependence parameter. This model has been generalized in various
ways, for example, from two dimensions to higher dimensions or with more general form of
(1−u)(1−v) in (3.3.1); see Cambanis (1977), Fischer and Klein (2007), among others. Here
we focus on a high dimensional generalized FGM copula proposed by Cambanis (1977),
which is defined as

C(u1, . . . , un) =
n∏

k=1

uk

(
1 +

∑
1≤i<j≤n

aij(1− ui)(1− uj)

)
, (u1, . . . , un) ∈ [0, 1]n. (3.3.2)

The constants ai,j, 1 ≤ i < j ≤ n, are so chosen that C(u1, . . . , un) is a proper copula. A
necessary and sufficient condition on ai,j’s is that they satisfy a set of 2n inequalities

1 +
∑

1≤i<j≤n

ϵiϵjaij ≥ 0 for all (ϵ1, . . . , ϵn) ∈ {−1, 1}n.

An FGM copula defined as in (3.3.2) is asymptotically independent.

We intend to consider the random vector X following an FGM copula with identical
regularly varying marginals. For that purpose we need a second-order convergence in
Proposition 3.2.1. This further requires the second-order expansion of tail probabilities of
the weighted sum

FwTX(t) = P
(
wTX > t

)
,

where FwTX = 1− FwTX is the distribution function of wTX. In the next subsection, we
present this result.

3.3.1 Tail Expansion for the Weighted Sum

Assume that the random vectorX has a common marginal distribution function G = 1−G.
Further, assume G to be second-order regularly varying (2RV), denoted by G ∈ 2RV−α,ρ.
That is, there exist some ρ ≤ 0 and a measurable function A(·), which does not change
sign eventually and converges to 0, such that, for all x > 0,

lim
t→∞

G(tx)/G(t)− x−α

A(t)
= x−α

xρ − 1

ρ
=: H−α,ρ(x). (3.3.3)

When ρ = 0, H−α,ρ(x) is understood as x−α log x.

For simplicity, here we only consider the case α > 1 which implies that X has a finite
mean. The results for 0 < α ≤ 1 can be obtained in a similar way. The proof of the next
lemma is postponed.
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Lemma 3.3.1 Let X be a nonnegative random vector with identically distributed marginal
with common distribution function G satisfying that G ∈ 2RV−α,ρ with α > 1, ρ ≤ 0 and
auxiliary function A(·). Assume that X follows an n-dimensional generalized FGM copula
given by (3.3.2). Then as t→ ∞, we have that

FwTX(t)

G(t)
−

d∑
k=1

wα
k

=

{
αt−1µ∗G(1 + o(1)), ρ < −1,

(1 +Qa)
∑d

k=1H−α,ρ
(
w−1k

)
A(t)(1 + o(1)), ρ ≥ −1,

(3.3.4)

where H−α,ρ(·) is given in (3.3.3), Qa =
∑

1≤i<j≤n aij, µG =
∫∞
0
xdF (x), µG2 =

∫∞
0
xdF 2(x),

and

µ∗G =(1 +Qa)µG

∑
k ̸=l

wα
kwl

+
∑
i<j

ai,j

( ∑
k,l=i,j

(∑
l ̸=k

µG2wα
kwl − µGwk

∑
m̸=i,j

wα
m − 2µGw

α
kwl − µGw

α
kwl

))
−
∑
i<j

ai,j
∑
k ̸=i,j

∑
l ̸=k,i,j

µGw
α
kwl.

Further, the convergence in (3.3.4) is uniform for all w ∈ Σd.

3.3.2 Convergence Rate

We first show a general lemma regarding the convergence rate of minimizers under the
setup of Lemma 3.2.1. Define the distance between fn and f as Dn = ||fn − f ||∞, where
|| · ||∞ is the supremum norm. The distance between mfn and argmin f is defined as
||mfn − argmin f ||□ for a norm || · ||□ on the space Z. Since Z is a metric space, all the
norms on Z are equivalent in the sense that there exist constants c1 and c2 such that

c1||x||□ ≤ ||x||♢ ≤ c2||x||□, x ∈ Z,

for any two norms || · ||□ and || · ||♢ on Z. In case no confusion arises, the norm index ∞
or □ is dropped in the rest of the chapter.
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Lemma 3.3.2 Under the assumptions of Lemma 3.2.1, we have for n large

||mfn − argmin f || < C
√
Dn,

where Dn = ||fn − f ||∞ and C is a constant.

Lemma 3.2.1 shows that mfn , the minimizer of function fn, can be approximated by
the minimizer of the limiting function mf , which is usually much easier to calculate. The
result in Lemma 3.3.2 further explores how good the approximation is. In practice, if we
can determine Dn, which is related to the second-order expansion of fn, then the error of
the approximation can be determined.

Now we are ready to determine the convergence rate of the optimal portfolio under the
FGM copula.

Theorem 3.3.1 Under the conditions of Lemma 3.3.1, we have that

(1− q)(−1∨ρ)/α
∥∥wq − d−1

∥∥ = O(1),

where wq is a solution of minw∈Σd DRw,q, and d−1 = (1/d, ..., 1/d)T .

Proof. In this proof, all the limits are taken as q ↑ 1. We first derive the second-order
expansion of DRw,q. Similar to the proof of Theorem 4.6 in Mao and Yang (2015), we have
that

U

(
1

FwTX(F
←
wTX

(q))

)
= G←(q) + o(A(G←(q))),

where U(·) is the tail quantile function of G defined as U(·) = (1/G)←(·) = G←(1 − 1/·).
For simplicity, denote t = F←wTX(q). It is easy to see that t → ∞ as q ↑ 1. Then noting

that U(1/G(t)) = t+ o(A(t)) and by the uniform convergence of (3.3.3), it follows that

DRw,q =
F←wTX(q)

G←(q)
=

U(1/G(t))

U(1/FwTX(t))
+ o(A(t))

=

(
FwTX(t)

G(t)

)1/α

+H1/α,ρ/α

(
FwTX(t)

G(t)

)
α−2A(U(1/FwTX(t)))(1 + o(1))

=


(∑d

k=1w
α
k

)1/α(
1 + µ∗G

(∑d
k=1w

α
k

)−1/α−1
(G←(q))−1 (1 + o(1))

)
, ρ < −1,(∑d

k=1w
α
k

)1/α
(1 + ταA(G

←(q))(1 + o(1))) , ρ > −1.

(3.3.5)

33



where

τα =
(1 +Qa)

∑d
k=1H−α,ρ

(
w−1k

)
α
∑d

k=1w
α
k

+

(∑d
k=1w

α
k

)ρ/α
ρα

.

This gives the second-order expansion of DRw,q.

Immediately from (3.3.5), the limiting function is

lim
q↑1

DRw,q =

(
d∑

k=1

wα
k

)1/α

= DRw,1.

By Jensen’s inequality, DRw,1 is uniquely minimized at d−1 = (1/d, ..., 1/d)T . If ρ < −1,
then

DRw,q −

(
d∑

k=1

wα
k

)1/α

= µ∗G

(
d∑

k=1

wα
k

)−1
(G←(q))−1 (1 + o(1)).

By Lemma 3.3.1, the above convergence is uniform. Hence, we have that for some constant
C > 0 ∣∣∣∣∣∣DRw,q −

(
d∑

k=1

wα
k

)1/α
∣∣∣∣∣∣ < C (G←(q))−1 .

By Lemma 3.3.2, we get that

(1− q)−1/α
∥∥wq − d−1

∥∥ = O(1).

Similarly, if ρ > −1, then

DRw,q −

(
d∑

k=1

wα
k

)1/α

=

(
d∑

k=1

wα
k

)1/α

ταA(G
←(q))(1 + o(1)).

Since for any w ∈ Σd

τα ≤ (1 +Qa) ρd
(α−1)2/α + dρ(1−α)/α

ρα
,

we obtain that for some constant C > 0∣∣∣∣∣∣DRw,q −

(
d∑

k=1

wα
k

)1/α
∣∣∣∣∣∣ < CA(G←(q)).
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By Lemma 3.3.2 we get that

(1− q)ρ/α
∥∥wq − d−1

∥∥ = O(1).

This completes the proof.

3.4 Numerical Examples

In this section, we conduct two numerical examples to examine our theoretical results.
The first example is an elliptical distribution–the bivariate Student-t distribution, while
the second one is a non-elliptical distribution.

Consider X follows a bivariate Student-t distribution tα(µ,Σ), where µ = (1, 2)T and

the covariance matrix Σ is

(
1 ρ
ρ 1

)
. Then the marginals both follow Student-t distribu-

tion with the degree of freedom α but different shifts 1 and 2.

We construct portfolios as a linear combination of the two risk factors from X defined
above. As discussed in Section 3.2.3, both DRw,q and DRw,1 can be explicitly expressed for
elliptical distributions as in (3.2.11) and (3.2.12), which are used in this example. In Figure
3.1, we plot the diversification ratio of such portfolios for various values of q against the
weight w1. For the parameters, we choose α and ρ at α = 2, 4 and ρ = 0.3, 0.7, and plot the
results for different pairs of (α, ρ) in the four subfigures in Figure 3.1. The level of q is set
to 0.95, 0.99, 0.999 and 0.9999. For each q level, we indicates the optimal portfolio weight
on w1 by a vertical line, which is given at the lowest point of the convex diversification
ratio curve. Notice that due to the different shifts, the optimal portfolio at a finite q level
tends to load higher on the first dimension with a lower mean. However, as q → 1, the
difference in the mean plays no role in the limit of the diversification ratio. Therefore, due
to symmetry, the optimal portfolio for q = 1 load equal weights on the two dimensions.
We indicate this optimal solution for the limit diversification ratio by a thick vertical line
located at 0.5.

First, we observe that wq is converging to w1 as q ↑ 1. This verifies our theoretical
result in Theorem 3.2.2. Second, the absolute difference between wq and w1 remains at a
low level across all subfigures. For example, when focusing on approximating the optimal
portfolio based on diversification ratio at q = 0.99 level, if one takes the optimal weight for
the limit diversification ratio 0.5 as an approximation, then she makes an error for loading
2% less on the first dimension. Third, given the level of dependence (ρ), the heavier the
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Figure 3.1: Optimal portfolio from elliptical distribution risk factors
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Note: The portfolios are constructed as a linear combination of two risk factors from a bivariate Student-t

distribution tα(µ,Σ) with µ = (1, 2)T and Σ is

(
1 ρ
ρ 1

)
. The DRw,q of such portfolios for various values

of q against the weight w1 are plotted for different pairs of (α, ρ) with α = 2, 4 and ρ = 0.3, 0.7 in the four

subfigures. The level of q is set to 0.95, 0.99, 0.999 and 0.9999. For each q level, the optimal portfolio

weight on w1 is indicated by a vertical line of different style. The optimal solution for DRw,1 is indicated

by a thick vertical line.
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marginal tails reflected in a lower α, the faster the convergence rate. This is in line with
our finding in Theorem 3.3.1 α plays a role in the speed of convergence, the higher the
α, the slower the speed of convergence. Lastly, when fixing the level of heavy–tailedness
(α), the more dependence reflected in a higher ρ, the slower the convergence rate in the
limit relation wq → w1. Nevertheless, the slow convergence is not of a concern in practice.
With a strong dependence at the first place, the room for diversification benefit is limited.
As a result, the diversification ratio is in general at a high level and is less sensitive to the
variation of the weights. Therefore, with a strong dependence, although the solution in the
limit (0.5, 0.5)T might not be close to the optimal solution at a finite q, investing in the
portfolio (0.5, 0.5)T would not result in a large increase in diversification ratio at a finite q
level, compared to the actual optimal portfolio.

Next, we study a different numerical example based on a non-elliptical distribution.
We construct the example using linear combinations of heavy-tailed random variables. Let
Y1 and Y2 be two i.i.d. random variables with regularly varying tails. A random vector
X = (X1, X2)

T is then defined as

X = AY, A :=

(
1 0

ρ
√

1− ρ2

)
, (3.4.1)

where ρ ∈ (−1, 1). Such random vector follows a non-elliptical distribution. In the case
that the variance of Y1 and Y2 exists, ρ is the correlation coefficient between X1 and X2

Under this structure, the diversification ratio DRw,1 can be explicitly calculated. Following
Mainik and Embrechts (2013), we have that

ηw
ηe1

= (w1 + w2ρ)
α +

(
w2

√
1− ρ2

)α
,

and

ηw
ηe2

=
(w1 + w2ρ)

α +
(
w2

√
1− ρ2

)α
ρα +

√
1− ρ2

α .

Hence,

DRw,1 =

w1

(
(w1 + w2ρ)

α +
(
w2

√
1− ρ2

)α)− 1
α

+ w2

(w1 + w2ρ)
α +

(
w2

√
1− ρ2

)α
ρα +

√
1− ρ2

α

−
1
α

−1

.

We use this formula to determine DRw,1. Since the expression for DRw,q is less explicit,
its calculation is based on simulations.
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Figure 3.2: Optimal portfolio from non–elliptical distribution risk factors
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Note: The portfolios are constructed as a linear combination of two risk factors from a vector X defined

in (3.4.1) with Y1 and Y2 following a standard Student-t distribution with degree of freedom α > 1. The

DRw,q of such portfolios for various values of q against the weight w1 are plotted for different pairs of

(α, ρ) with α = 2, 4 and ρ = 0.3, 0.7 in the four subfigures. The level of q is set to 0.95, 0.99, 0.999 and

0.9999. For each q level, the optimal portfolio weight on w1 is indicated by a vertical line of different style.

The optimal solution for DRw,1 is indicated by a thick vertical line.

Consider a special case where Y1 and Y2 follow a standard Student-t distribution with
degree of freedom α > 1. By choosing α = 2, 4 and ρ = 0.3, 0.7, in Figure 3.2 we plot the
calculated diversification ratios DRw,q against the loading on X1, w1 for various values of
q: 0.95, 0.99, 0.999 and 0.9999. The optimal weight for each q level is again marked by a
corresponding vertical line, with thick vertical line indicating the optimal weight for the
limit case q = 1.

All four observations in the elliptical case remain qualitatively valid for the non–
elliptical case. Quantitatively, the distance between the optimal solutions for finite q and
the limit case can be far apart. For example, in the worst case scenario when the lower tail
index meets the stronger dependence (right bottom subfigure), the distance between the
optimal weight for q = 0.99 and that for q = 1 is around 0.25. In this case, the optimal
portfolio in the limit is not a good approximation for that based on a finite q. To sum-
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marize, we recommend using the optimal portfolio based on the limit diversification ratio
particularly for the case with low cross–sectional dependence and heavy marginal tails.

3.5 Empirical Study

In the numerical examples, the limit diversification ratio DRw,1 can be calculated explicitly.
With real data application, we need to estimate this function using historical data, and
then consider the optimal portfolio based on the estimated diversification ratio. In Section
3.2.4, we discuss the estimation methodology for DRw,1. In this section, we apply our
estimation method and the optimal portfolio construction procedure to real market data.

The dataset consists of underlying stocks in the S&P 500 index that have a full trading
history throughout the period from January 2, 2002 to December 31, 2015. This results in
425 stocks. We construct the continuously compounded loss returns of these stocks. That
is, if the price of asset i at time t is denoted by Pi(t), then the log loss at time t for asset
i, denoted by Xi(t) is given by

Xi(t) = − log

(
Pi(t)

Pi(t− 1)

)
.

We conduct three empirical studies. Firstly, we demonstrate the difference between the
optimal portfolio constructed based on minimizing a diversification ratio at a finite q level
and that based on minimizing the limit diversification ratio. Secondly, we show that our
proposed methodology has the advantage of bearing less computational burden. Lastly,
we evaluate the out–of–sample performance between our portfolio optimization procedure
and those existing in the literature.

The first empirical study is set up as follows. To avoid dimensional curse in the numer-
ical search strategy (see below), we select 10 stocks from the dataset that share a similar
level of tail index. Notice that having the same marginal tail index is a necessary condi-
tion for MRV. We estimate the tail indices of the 425 stocks using the Hill estimator (Hill
(1975)) as

α̂ =
k∑k

j=1 log
(
R(n−j+1)/R(n−k)

) .
We select 10 stocks with the lowest estimates that are not significantly different from each
other. Here, to test whether the 10 stocks have significantly different tail indices, we
employ the test constructed in Moore et al. (2013) for testing tail index equivalence. In
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other words, we select 10 stocks with the lowest estimates while not being rejected by this
test. The reason for selecting stocks with lower α follows from the numerical example: the
approximation works better when α is lower. The selected stocks are given in Table 3.1,
where the estimate of α and its standard deviation (std) for each stock are provided. From
Table 3.1, we observe that the point estimates of the tail index range from 1.989 to 2.040.

Table 3.1: Tail index estimates for the 10 selected stocks

Stock C FRT HST LM L RF TMK VTR VNO XEL
α̂ 1.989 2.000 2.002 2.007 2.012 2.014 2.019 2.036 2.036 2.040
std 0.168 0.169 0.169 0.170 0.170 0.170 0.171 0.172 0.172 0.172

Note: The table shows the tail index estimates for 10 selected stocks within the S&P 500 index based on

their daily returns in the period from January 2, 2002 to December 31, 2015. The tail indices are estimated

using the Hill estimator (Hill (1975)). The second row reports the standard deviations of the estimates.

Our empirical analysis is based on daily data in each five-year window, namely, 2002–
2006, 2003–2007, etc. Within each window, for a given q level, we first construct the
optimal portfolio that minimizes DRw,q by a numerical search. This is achieved by assigning
weights to the 10 stocks on a grid spanning the set Σ10, evaluating DRw,q at each grid
point and taking the weights that corresponds to the minimum diversification ratio. Then
we construct the optimal portfolio based on minimizing the estimated DRw,1 using the
procedure laid out in Section 3.2.4.

The numerical search strategy gives a numerical optimal while our portfolio optimiza-
tion strategy gives an approximation to that. To evaluate the difference between the two
optimal portfolios, we use ||wq −w∗||1/10. This distance indicates the average error made
on the weight for one stock. We conduct this analysis for nine different windows and four
different levels of q: 0.95, 0.975, 0.99 and 0.999.

In the estimation procedure, we need to select the intermediate sequence k. It should
be chosen by balancing the bias and variance of the estimation. Here, we choose k to be
4% for estimating α and 10% for estimating the spectral measure Ψ̂. Moreover, since we
only consider the loss, the estimator for ηw is slightly modified to

η̂w =
1

k

∑(
wTSπ(j)

)α̂
+
. (3.5.1)

Table 3.2 shows the results on the error made using our optimization procedure. We
observe that the distance is decreasing as q increases. This is in line with our theoretical
result.
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Table 3.2: Average error made on the weight for each stock

q 02-06 03-07 04-08 05-09 06-10 07-11 08-12 09-13 10-14
95% 0.1348 0.1091 0.125 0.0673 0.0868 0.0967 0.1447 0.1426 0.0941

97.50% 0.0838 0.0978 0.0967 0.0638 0.0795 0.0663 0.0985 0.0668 0.0802
99% 0.0837 0.0861 0.0858 0.0573 0.0636 0.0476 0.0834 0.0642 0.0731
99.9% 0.0442 0.0582 0.0688 0.0444 0.0397 0.0435 0.0435 0.0538 0.044

Note: Within in each five-year window, for a given q level, two portfolios are constructed. The numerical

search strategy provides the first optimal portfolio that minimizes DRw,q. This is achieved by assigning

weights to the 10 stocks on a grid spanning the set Σ10, evaluating DRw,q at each grid point and taking

the weights that corresponds to the minimum diversification ratio. The second optimal portfolio minimizes

the estimated DRw,1 using the procedure laid out in Section 3.2.4. The numbers reported are the distance

calculated by ||wq −w∗||1/10 between the two portfolios.

Next, we turn to analyzing the computation time for obtaining the optimal portfolio.
For this analysis, we use only data in the most recent six windows and only consider
q = 0.95. To show that the computational burden for the numerical search strategy
largely depends on the number of stocks, we also perform the numerical search when using
less stocks, namely the first 3, 5, and 8 stocks in Table 3.1. In contrast, we perform
our portfolio optimization strategy always based on 10 stocks. The computation time of
all the experiments run in Matlab 2013a on a Thinkpad T430 (dual core, 2.6GHz CPU,
4GB of memory) computer is reported in Table 3.3. We observe that as the number of
stocks increasing, the computation time for w95% increases significantly. On the contrary,
our portfolio optimization strategy for 10 stocks takes even less time than that using the
numerical search for 3 stocks.

Finally, we perform an out–of–sample analysis comparing our portfolio optimization
strategy with those in the literature. Within each five-year window, we perform our strat-
egy to construct the optimal portfolio based on the 10 selected stocks in Table 3.1. Then we
hold this portfolio for one year, and calculate the diversification ratio at 95% and the 95%
VaR using the one-year out–of–sample data. We focus on q = 95% here because one-year
loss data (roughly 250 daily observations) do not permit an accurate estimation of tail risk
measures with a higher probability level. With a similar setup, we also apply the numerical
search strategy laid out in the first empirical study which minimizes the DRw,95% within
each five-year window, and evaluates the out–of–sample performance of this strategy. In
addition, we apply four other strategies as competitors for out–of–sample performance,
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Table 3.3: Computation time

Strategy 05-09 06-10 07-11 08-12 09-13 10-14
Numerical search 3 Stocks 0.350s 0.310s 0.261s 0.249s 0.231s 0.235s
Numerical search 5 Stocks 0.483s 0.402s 0.417s 0.391s 0.570s 0.612s
Numerical search 8 Stocks 1.226s 1.265s 1.594s 0.861s 1.463s 1.397s
Numerical search 10 Stocks 2.418s 2.799s 3.673s 2.022s 2.016s 2.383s
Minimizing DRw,1 10 Stocks 0.218s 0.189s 0.164s 0.175s 0.304s 0.166s

Note: Within each five-year window, the numerical search strategy is performed for minimizing the DR

with q = 0.95 based on 3, 5, 8 and 10 stocks. The computation time are reported in the first four rows. The

last row reports the computation time when performing the portfolio optimization strategy minimizing

DRw,1 based on 10 stocks.

namely, the ERI, the MDP, global minimum variance (see, e.g. Merton (1972)), and lastly
a simple equal weight strategy.

Figure 3.3 shows the results on the out–of–sample diversification ratios. Our strategy
produces consistently the lowest diversification ratio only except in 2009, where our strat-
egy yields a diversification ratio slightly above that derived from the MDP, and in 2010
slightly higher than that derived from the numerical research strategy. To achieve the
tail diversification benefit measured by the diversification ratio, our portfolio optimization
strategy gives the best out–of–sample performance.

Figure 3.4 shows the results on the out–of–sample VaR. Our portfolio optimization
strategy produces the lowest VaR in 2007 and 2008, but not in the other years. Never-
theless, the VaR of the optimal portfolio from our strategy is never largely above ERI,
which minimizes VaR among the six strategies. Furthermore, it matters the most to get
an optimal portfolio with the lowest risk in the period ahead of the crisis. Therefore, we
conclude that our strategy also gives the best out–of–sample performance in terms of risk
management.

From all three empirical studies, we conclude that the computation burden of our
portfolio optimization strategy is much lower than the numerical search. Although there is a
moderate distance between the optimal portfolios obtained from our limit DR optimization
strategy and the numerical search strategy, it turns out in the out–of–sample analysis that
our strategy outperforms. It is therefore worth bearing the errors on the weights while
using the fast and better performed algorithm derived from our limit DR optimization
strategy.
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Figure 3.3: Out–of–sample diversification ratio
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Note: Within each five-year window, the optimal portfolio based on the 10 selected stocks in Table 3.1 is

constructed by minimizing DRw,1. These weights are held for one year. The diversification ratio at 95%

is reported using the one-year out–of–sample data and named as DR(Limit) in the figure. The same steps

are repeated for five other strategies, the numerical search strategy for minimizing DRw,95% (DR(NS)),

global minimum variance (GMV; see, e.g. Merton (1972)), the MDP, the ERI, and equal weight strategy

(Equal).
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Figure 3.4: Comparison of portfolio risks
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Note: Within each five-year window, the optimal portfolio based on the 10 selected stocks in Table 3.1 is

constructed by minimizing DRw,1. These weights are held for one year. The 95% VaR is reported using

the one-year out–of–sample data and named as DR(Limit) in the figure. The same steps are repeated for

five other strategies, the numerical search strategy for minimizing DRw,95% (DR(NS)), global minimum

variance (GMV; see, e.g. Merton (1972)), the MDP, the ERI, and equal weight strategy (Equal).
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3.6 Backtesting Study

Our dataset covers S&P 500 market index and its corresponding components, ranging
from January 2, 2002 to July 20, 2015, which has a history of 3410 days. Here, we exclude
certain stocks with missing data and we split 3410 days into two part. The first part
serves as history, which has 1500 days. The second part is regarded as backtest period,
containing 1910 days. Following the similar idea in Mainik et al. (2015), the estimated
optimal portfolio is based on moving window of 1500 historical data.

Specifically, for every trading day t > 1500, we use 1500 data points in the historical
observation window t − 1500, . . . , t − 1 to estimate tail index α and spectral measure Ψ.
From these estimates, we then calculate the estimator for DR based on steps provided in
Section 3.2.4 and search for the optimal portfolio by minimizing the DR estimator. Finally,
the estimated optimal portfolio is used to compose the portfolio for the trading day t. Such
a procedure is repeated for all trading days t > 1500, so that the portfolio is rebalanced
daily.

Following the procedure outlined above, the numerical result is shown in Figure 3.5.
For benchmarking, the graph provides two additional curve. One corresponds to the S&P
500 raw index price and the other is the portfolio price obtained based on the global
minimum variance (GMV) strategy (strategy that selects the portfolio with minimum risk,
i.e., minimal variance). The GMV strategy is implemented similarly as the DR portfolio
strategy involving rebalancing and over moving window of 1500 historical data. Over the
backtest period, it can be seen that the DR strategy tends to stabilize the price, especially
when price jumps with a big magnitude. Note that DR method takes into consideration
tail risk and hence is a strategy that is particularly suited when the loss distribution is
heavy-tailed and big jump of price exists over a certain period, DR strategy will smooth
the price and make it more stable. Additionally, it should be noted that when price tends
to increase, at a certain point, the GMV strategy will outperform the DR strategy due to
the fact that only downside risk is considered under the DR strategy. However, in terms of
stabilizing prices, GMV strategy does not perform better than DR strategy as confirmed
in Table 3.4 which reports the cumulative returns and standard deviations for S&P 500
and portfolio strategies based on DR and GMV.

Firstly, it can be seen that the standard deviation of the DR is the smallest for the
whole backtest period, which agrees with our anticipation and the model. Secondly, dur-
ing 09/30/2011-07/20/2015 when the overall price tends to go upward, the cumulative
return under the GMV strategy is better than that under the DR method, whereas during
12/17/2007-09/29/2011 it is the opposite. It is known that financial crisis does incur se-
vere loss to the market. However, since tail risk is the main focus of the DR method, the

45



Figure 3.5: Portfolio optimization backtest for the DR minimization strategy and global
minimal variance strategy. The resulting portfolio value is scaled to 100 for the first date
of the backtest period.
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Table 3.4: Cumulative Return and Standard Deviation

Cumulative Return DR GMV S&P 500
12/17/2007-09/29/2011 -0.2132 -0.2262 -0.2453
09/30/2011-07/20/2015 0.4535 0.6018 0.6311

Standard Deviation DR GMV S&P 500
12/17/2007-07/20/2015 18.3764 24.4042 25.0204

potential loss by DR approach should be slightly lower during this period, which accords
with our previous finding.

3.7 Proofs

In this section, we first prove Theorem 3.2.1, which is the key and the most difficult part
in the proof of Theorem 3.2.2, in two steps as Sections 3.7.1 and 3.7.2. Then the very last
section contains all the proofs of lemmas from previous sections.

3.7.1 Uniform Convergence in Radon Measures

Define a family of mappings from A1 =
{
x ∈ Rd : ∥x∥1 > 1

}
to R+ as

M =

{
fw(x) =

1

1 + (wTx)+
: w ∈ Σd, x ∈ A1

}
. (3.7.1)

Note that the construction of the mappings in M is not unique. Let Aw,1 denotes the
events where the portfolio loss wTX exceeds 1, namely for w ∈ Σd,

Aw,1 =
{
x ∈ Rd : wTx > 1

}
.

Theorem 3.7.1 If X ∈ MRV−α(Ψ) with α > 0, then

lim
t→∞

sup
w∈Σd

|νt (Aw,1)− ν (Aw,1)| = 0, (3.7.2)

where νt and ν are defined in (2.3.5).
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Proof. Since Aw,1 ∈ B (A1), by (2.3.5) we have that νt (Aw,1) converges weakly to ν (Aw,1).
To further show the uniform convergence, we apply Theorem 3.4 of Rao (1962). That is we
need to verify the following three conditions. (1) The mappings inM defined in (3.7.1) are
continuous mappings from a separable metric space to R+. (2) The family M is relative
compact; that is every sequence in M on a compact subset of A1 has a subsequence that
converges uniformly. (3) For each fw ∈ M , vf−1w has a continuous distribution. Next, we
prove them separately.

(1) By Theorem 1.5 of Lindskog (2004), there exists a metric ρ such that (A1, ρ) is a
locally compact, complete and separable metric space. It is easy to see that each fw ∈M
is continuous.

(2) Note that for x,y ∈ A1, we have
(
wTx

)
+
,
(
wTy

)
+
> 0. Then, by Cauchy–Schwarz

inequality,
|fw(x)− fw(y)| ≤

∣∣wT (x− y)
∣∣ ≤ √

d ∥x− y∥2 .

For arbitrary ε > 0, we can choose δ < ε/
√
d, which is independent of f , x and y, such that

when ∥x− y∥2 < δ, we have |fw(x)− fw(y)| < ε. This shows that M is equicontinuous
at each x ∈ A1. Moreover, M is uniformly bounded as for each x ∈ A1,

sup
fw∈M

{fw(x)} = sup
w∈Σd

{
1

1 + (wTx)+

}
≤ 1.

Therefore, from the Arzelà-Ascoli theorem, we know M is relatively compact.

(3) For x ∈ R+, we have

vf−1((0, x)) =

∫
Sd−1

∫
R+

1{wT s>0}1{r>( 1
x
−1)/wT s}ρα(dr)Ψ(ds)

=

(
1

x
− 1

)−α ∫
Sd−1

(
wT s

)α
+
Ψ(ds),

which is obviously continuous for any 0 < x < 1. Furthermore, we have ν(A1) = 1.

By far, we have verified the three conditions. By the weak convergence in (2.3.5) and
Theorem 3.4 of Rao (1962), we obtain

lim
t→∞

sup
w∈Σd

|νt (Aw,1)− ν (Aw,1)| = 0,

where the supremum is taken over all sets Aw,1 of the form Aw,1 =
{
x ∈ Rd : fw(x) <

1
2

}
={

x ∈ Rd : wTx > 1
}
with w ∈ Σd.
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Next corollary is a natural rewriting of relation (3.7.2). It yields a uniform convergence
of the ratio P

(
wTX >t

)
/P (∥X∥1>t) to ηw. However, only the weak convergence of it is

known in the literature.

Corollary 3.7.1

lim
t→∞

sup
w∈Σd

∣∣∣∣∣P
(
wTX >t

)
P (∥X∥1>t)

− ηw

∣∣∣∣∣ = 0, (3.7.3)

where

ηw =

∫
Sd−1

(wT s)α+Ψ(ds).

Further, the mapping w 7→ ηw is uniform continuous.

Proof. First note that Aw,t = tAw,1. Since Aw,1 ⊂ B (A1) for w ∈ Σd, we have that

νt (Aw,1) =
P
(
X
t
∈ Aw,1

)
P (∥X∥1>t)

=
P (X ∈ Aw,t)

P (∥X∥1>t)
.

Moreover ν (Aw,1) is actually

ν (Aw,1) =

∫
Sd−1

(wT s)α+Ψ(ds) = ηw.

The desired result (3.7.3) then follows. Lastly, since ηw is continuous on the compact set
Σd, it implies the uniform continuity of ηw.

3.7.2 Uniform Convergence in Quantiles

In order to show that the convergence in (3.2.4) is indeed uniform, we first prepare a key
lemma. For notational simplicity, we denote

l(w, q) :=
VaRq(w

TX)

VaRq(∥X∥1)
=
F←wTX(q)

F←∥X∥1
(q)

, (3.7.4)

where FwTX is the distribution function of wTX and F←wTX(q) = VaRq(w
TX).
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Lemma 3.7.1 Suppose the random vector X is continuously distributed with a positive
joint density function. Further assume that X ∈ MRV−α(Ψ) with α > 0. Given w ∈ Σd,
for any ε > 0 there exist 0 < q̃ < 1 and δ such that for all q̃ < q < 1 and z ∈ Σd satisfying
∥w − z∥ < δ, we have

|l(w, q)− l(z, q)| < ε. (3.7.5)

Proof. We start by showing that for any ε1 > 0, there exist t0(ε1) and δ(ε1) such that for
all t > t0 and all w, z ∈Σd with ∥w − z∥ < δ, we have∣∣FwTX(t)− F zTX(t)

∣∣ < ε1FwTX(t). (3.7.6)

Note that ηw > 0 for every w ∈ Σd. Since Σd is compact, there exists η > 0 such that
ηw > η > 0. Further, ηw is uniform continuous by Corollary 3.7.1. That is, for any ε1 > 0,

there exists δ(ε1) such that for all w, z ∈Σd with ∥w − z∥ < δ, we have

|ηw − ηz| <
η

6
ε1. (3.7.7)

Again, by Corollary 3.7.1, there exists t0(ε1) such that for all t > t0 and all w ∈Σd∣∣∣∣∣FwTX(t)

F ∥X∥1(t)
− ηw

∣∣∣∣∣ < η

6
ε1 ∧

η

2
, (3.7.8)

which implies that
FwTX(t)

F ∥X∥1(t)
> ηw −

η

2
>
η

2
. (3.7.9)

Then, combining (3.7.7), (3.7.8) and (3.7.9), for all t > t0 and all w, z ∈Σd with ∥w − z∥ <
δ, ∣∣∣∣FwTX(t)− F zTX(t)

FwTX(t)

∣∣∣∣ =
∣∣∣∣∣FwTX(t)− F zTX(t)

F ∥X∥1(t)

∣∣∣∣∣ · F ∥X∥1(t)FwTX(t)

≤

(∣∣∣∣∣FwTX(t)

F ∥X∥1(t)
− ηw

∣∣∣∣∣+ |ηw − ηz|+

∣∣∣∣∣ηz − F zTX(t)

F ∥X∥1(t)

∣∣∣∣∣
)

·
F ∥X∥1(t)

FwTX(t)

<
(η
6
ε1 +

η

6
ε1 +

η

6
ε1

) 2

η
= ε1,

which yields (3.7.6).
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Next, for the chosen t0(ε1), let us denote q0 = supz∈Σd FzTX(t0(ε1)). Then for any
q0 < q < 1 and all z ∈Σd, we have

F←zTX(q) ≥ F←zTX(q0) ≥ t0. (3.7.10)

By (3.7.6) and (3.7.10), it leads to that for all q > q0 and ∥w − z∥ < δ,∣∣FwTX(F
←
zTX(q))− (1− q)

∣∣ < ε1(1− q).

By the monotonicity of F←wTX(q), we obtain

F←wTX (q(1 + ε1)− ε1) < F←zTX(q) < F←wTX (q(1− ε1) + ε1) . (3.7.11)

Finally we handle |l(w, q)− l(z, q)| in (3.7.5). We only discuss the upper bound of
l(w, q) − l(z, q) in this step as the lower bound can be derived in a similar way. By
(3.7.11),

l(w, q)− l(z, q)

≤
F←wTX(q)

F←∥X∥1
(q)

−
F←wTX (q(1 + ε1)− ε1)

F←∥X∥1
(q)

=

(
F←wTX(q)

F←∥X∥1
(q)

−
F←wTX (q(1 + ε1)− ε1)

F←∥X∥1
(q(1 + ε1)− ε1)

)
+
F←wTX (q(1 + ε1)− ε1)

F←∥X∥1
(q(1 + ε1)− ε1)

(
1−

F←∥X∥1
(q(1 + ε1)− ε1)

F←∥X∥1
(q)

)
:=I1 + I2,

where
I1 = l(w, q)− l(w, q(1 + ε1)− ε1),

and

I2 = l(w, q(1 + ε1)− ε1)

(
1−

F←∥X∥1
(q(1 + ε1)− ε1)

F←∥X∥1
(q)

)
.

We show that I1 < ε/2 and I2 < ε/2.

For I1, note the random vector X is continuously distributed with a positive joint
density function. By using the change of variables, the density functions for random
variables ∥X∥1 and wTX can be shown to be positive as well, which implies that F∥X∥1(t)
and FwTX(t) are strictly increasing in t. By Proposition 1 (7) in Embrechts and Hofert
(2013), we have that F←∥X∥1

(q) and F←wTX(q) are both continuous in q for any fixed w.

Moreover, from (3.2.4), l(w, 1) can be continuously defined as η
1/α
w . Thus, given w, l(w, q)
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is uniformly continuous in q when q ∈ [1/2, 1]. That is, there exists λ1(w, ε) such that
when 1/2 ≤ p, q ≤ 1 and |p− q| < λ1, we have

|l(w, q)− l(w, p)| < ε

2
.

Then, for |q − (q(1 + ε1)− ε1)| < λ1 or q > 1− λ1/ε1, we obtain that I1 < ε/2.

For I2, we first show that l(w, q(1+ε1)−ε1) is bounded. Since limq→1 l(w, q) = l(w, 1),
there exists λ2(w) such that when 1− (q(1 + ε1)− ε1) < λ2 or 1 > q > 1− λ2/(1+ ε1), we
have

|l(w, q(1 + ε1)− ε1)− l(w, 1)| < 1.

Denote M0 = supw∈Σd l(w, 1). We obtain

l(w, q(1 + ε1)− ε1) < M0 + 1, for q > 1− λ2/(1 + ε1). (3.7.12)

Finally, we consider 1 −
F←∥X∥1

(q(1+ε1)−ε1)
F←∥X∥1

(q)
in term I2. It is known that if X ∈ MRV−α(Ψ)

then ∥X∥1 ∈ RV−α; e.g. see Basrak et al. (2002). Thus,

lim
q→1

F←∥X∥1
(q(1 + ε1)− ε1)

F←∥X∥1
(q)

= (1 + ε1)
1/α.

By Proposition B.1.10 of de Haan and Ferreira (2006), there exists q3(ε) < 1 such that for
all q > q3(ε) we have∣∣∣∣∣F

←
∥X∥1

(q(1 + ε1)− ε1)

F←∥X∥1
(q)

− (1 + ε1)
1/α

∣∣∣∣∣ < 1

M0 + 1

ε

4
.

Moreover, when ε1 is so chosen that∣∣1− (1 + ε1)
1/α
∣∣ < 1

M0 + 1

ε

4
, (3.7.13)

it leads to that∣∣∣∣∣F
←
∥X∥1

(q(1 + ε1)− ε1)

F←∥X∥1
(q)

− 1

∣∣∣∣∣ < ε

2 (M0 + 1)
, for q > q3(ε). (3.7.14)

Combining (3.7.12) and (3.7.14), I2 < ε/2 for q > 1− λ2/(1 + ε1) ∨ q3(ε).
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To sum up, given w, for arbitrary ε > 0, and for any ε1 so chosen that (3.7.13) holds,
there exist δ, q0, λ1, λ2, and q3 such that for all z ∈Σd with ∥w − z∥ < δ and for all q
satisfying that

1 > q > q0 ∨
(
1− λ1

ε1

)
∨
(
1− λ2

1 + ε1

)
∨ q3,

we have l(w, q)− l(z, q) < ε. The other side of the inequality can be derived similarly.

Now we are ready to show that the convergence in (3.2.4) is uniform.

Theorem 3.7.2 Suppose the random vector X is continuously distributed with a positive
joint density function. Further assume that X ∈ MRV−α(Ψ) with α > 0. Then

lim
q↑1

sup
w∈Σd

∣∣∣∣VaRq(w
TX)

VaRq(∥X∥1)
− η1/αw

∣∣∣∣ = 0. (3.7.15)

Proof. Consider the decomposition for some v ∈ Σd∣∣l(w, q)− η1/αw

∣∣ ≤ |l(w, q)− l (v, q)|+
∣∣l(v, q)− η1/αv

∣∣+ ∣∣η1/αv − η1/αw

∣∣ , (3.7.16)

where l(w, q) is defined as in (3.7.4). By properly choosing v, if the three terms can be
shown to be arbitrarily small for any w ∈ Σd as q close to 1, then (3.7.15) is proved. In
the following we show how v can be determined.

By Lemma 3.7.1 and the uniform continuity of ηw, for any ε > 0, there exist δ(w) > 0
and 0 < q̃(w) < 1 such that for any w, z ∈ Σd satisfying ∥w − z∥ < δ(w) and all q ≥ q̃(w),
we have

|l(w, q)− l(z, q)| < ε. (3.7.17)

and ∣∣η1/αw − η1/αz

∣∣ < ε. (3.7.18)

That is, δ(w) is so chosen that both (3.7.17) and (3.7.18) hold. Now we are ready to
determine v in (3.7.16) by constructing open coverings. Let Bw,δ(w) denote the open ball
of w; that is Bw,δ(w) = {z ∈ Σd : ∥w − z∥ < δ(w)}. Then the collection of all the sets
Bw,δ(w) for eachw is an open cover of Σd. By the compactness, there exists a finite subcover
denoted by Bw1,δ(w1), . . . , Bwm,δ(wm). For each selected wi, by the limit relation in (3.2.4),
there exists 0 < qi < 1 such that ∣∣l(wi, q)− η1/αwi

∣∣ < ε,
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for all qi ≤ q < 1. Let q∗ = max {q̃(w1), . . . , q̃(wm), q1, . . . , qm}. For any w ∈ Σd, one
can find i such that w ∈ Bwi,δ(wi), which means ∥w −wi∥ < δ(wi). This wi is the proper
choice of v in (3.7.16) since each term on the right-hand side of (3.7.16) is smaller than ε
for all q∗ ≤ q < 1. This completes the proof.

Now we are ready to prove Theorem 3.2.1.

Proof of Theorem 3.2.1. Since the convergence limq↑1VaRq(Xi)/VaRq(∥X∥1) = η
1/α
ei is

independent of w, applying Theorem 3.7.2 to the rewriting in (3.2.3) we obtain the desired
result.

3.7.3 Proofs of Lemmas

Lastly, we present the proofs of lemmas from previous sections.

Proof of Lemma 3.2.2. To prove DRw,q
unif−→ DRw,1, we need to show for any given

ε > 0, there exists a number q0 such that |DRw,q −DRw,1| < ε for every q > q0 and for
every w in Σd. Note the rewriting

|DRw,q −DRw,1| =

∣∣∣∣∣∣
wTµ

(∑d
i=1wi

∥∥BTei
∥∥
2
−
∥∥BTw

∥∥
2

)
(
wTµ+

∑d
i=1wi ∥BTei∥2 F←Z (q)

)∑d
i=1wi ∥BTei∥2

∣∣∣∣∣∣ .
For every w ∈ Σd, since ∥µ∥1 < ∞, there exists N1 > 0 such that wTµ < ∥µ∥1 < N1.
Let λmax, λmin denote the largest and smallest eigenvalues of C = BBT , then there exists
N2, N3 > 0 such that

0 <
d∑

i=1

wi

∥∥eTi B∥∥2 < d∑
i=1

∥∥BTei
∥∥
2
≤ d
√
λmax < N2,

and ∥∥BTw
∥∥
2
≤
√
λmax < N3.

Since Y is unbounded, there exists 0 < q0 < 1 such that

F←Z (q) >
N1 (N2 +N3)

N2
2 ε

− N1

N2

,

for every q > q0. Combining the above analysis, the desired result |DRw,q −DRw,1| < ε
for every q > q0 and for every w in Σd follows.
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Next, we show that DRw,1 is continuous. For w,v ∈ Σd, we have that

|DRw,1 −DRv,1|

≤

∣∣∣∣∣∣
∥∥BT (w − v)

∥∥
2

∑d
i=1 vi

∥∥BTei
∥∥
2
+
∥∥BTv

∥∥
2

(∑d
i=1 vi

∥∥BTei
∥∥
2
−
∑d

i=1wi

∥∥BTei
∥∥
2

)
(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
)

∣∣∣∣∣∣
≤

√
λmax ∥w − v∥1

∑d
i=1 vi

∥∥BTei
∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
) +

∥∥BTv
∥∥
2
∥w − v∥1 max

1≤i≤d

∥∥BTei
∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
)

= ∥w − v∥1

√
λmax

∑d
i=1 vi

∥∥BTei
∥∥
2
+
∥∥BTv

∥∥
2
max
1≤i≤d

∥∥BTei
∥∥
2

(
∑d

i=1wi ∥BTei∥2)
(∑d

i=1 vi ∥BTei∥2
)

≤∥w − v∥1

√
λmax

√
λmax +

√
λmax

√
λmax√

λmin

√
λmin

.

Therefore for fixed w, when ∥w − v∥1 is small enough, we have |DRw,1 −DRv,1| < ε. This
proves the mapping w → DRw,1 is continuous.

Proof of Lemma 3.2.3. First note that

sup
w∈Σd

∣∣∣D̂Rw,1 −DRw,1

∣∣∣
= sup

w∈Σd

∣∣∣∣∣∣ η̂
1/α
w

∑d
i=1wiη

1/α
ei − η

1/α
w

∑d
i=1wiη̂

1/α
ei(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣

≤ sup
w∈Σd

∣∣∣∣∣∣
(
η̂
1/α
w − η

1/α
w

)∑d
i=1wiη

1/α
ei(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣+ sup

w∈Σd

∣∣∣∣∣∣
η
1/α
w

(∑d
i=1wiη

1/α
ei −

∑d
i=1wiη̂

1/α
ei

)
(∑d

i=1wiη̂
1/α
ei

)(∑d
i=1wiη

1/α
ei

)
∣∣∣∣∣∣ .

(3.7.19)

Thus, to show that (3.7.19) converges to 0 almost surely, the key is the strong consistency
of η̂w uniformly in w. This is ensured by Theorem 4.4 of Mainik (2010). Further, by the

continuity of the mapping η̂w 7−→ η̂
1/α
w , we have

sup
w∈Σd

∣∣η̂1/αw − η1/αw

∣∣→ 0, a.s.,
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and

sup
w∈Σd

∣∣∣∣∣
d∑

i=1

wiη
1/α
ei

−
d∑

i=1

wiη̂
1/α
ei

∣∣∣∣∣ = sup
w∈Σd

∣∣∣∣∣
d∑

i=1

wi

(
η1/αei

− η̂1/αei

)∣∣∣∣∣→ 0, a.s.

Further notice that
∑d

i=1wiη
1/α
ei and

∑d
i=1wiη̂

1/α
ei are uniformly bounded away from 0

because both the empirical measure Ψ̂ and the limit measure Ψ are non–degenerated.
Combining all these, we obtain that (3.7.19) converges to 0 almost surely, which yields the
desired result.

Proof of Lemma 3.3.1. In this proof the limit is taken as t→ ∞. For t > 0, denote the
region St = {(x1, . . . , xd) ∈ Rd

+ :
∑d

i=1wixi ≥ t}. We can split FwTX(t) as

FwTX(t) =

∫
St

d

(
d∏

k=1

Gk(xk)

)
+
∑
i<j

ai,j

∫
St

d

(
(1−Gi(xi)) (1−Gj(xj))

d∏
k=1

Gk(xk)

)

= I(t) +
∑
i<j

ai,jJi,j(t),

where Gk(x) = G(x/wk) for k = 1, ..., d. The term I(t) can be understood as the survival
distribution function of w1X

∗
1 + · · · + wdX

∗
d , where X

∗
1 , . . . , X

∗
d are i.i.d. with common

distribution function G. For I(t), it follows from Theorems 4.7 of Mao and Ng (2015) that,

I(t)

G(t)
=

d∑
k=1

wα
k +

d∑
k=1

H−α,ρ
(
w−1k

)
A(t)(1 + o(1)) + αt−1µG

∑
k ̸=l

wα
kwl(1 + o(1)).

For Ji,j(t)’s, note that it suffices to study J1,2(t) by symmetry. Then we have

J1,2(t)=I(t)−
∫
St

d

(
G2

1(x1)
d∏

k=2

Gk(xk)

)
−
∫
St

d

(
G2

2(x2)
∏
k ̸=2

Gk(xk)

)

+

∫
St

d

(
G2

1(x1)G
2
2(x2)

n∏
k=3

Gk(xk)

)
=I(t)− J

(1)
1,2 (t)− J

(2)
1,2 (t) + J

(3)
1,2 (t).

Note that Gk(x) = G(x/wk) ∼ wα
kG(t) and G

2
1(t)/G1(t) → 2. Since α ≥ 1, by regarding
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G2
1(·) as a distribution function, Proposition 3.7 of Mao and Ng (2015) leads to

J
(1)
1,2 (t)

= (2wα
1 + wα

2 + · · ·+ wα
d )G(t) + o

(
G(t)A(t)

)
+ αt−1

(
2wα

1

d∑
k=2

wkµG + w1µG2

d∑
k=2

wα
k +

∑
k,l≥2,k ̸=l

wα
kwlµG

)
G(t)(1 + o(1)).

Similarly,

J
(2)
1,2 (t)

= (wα
1 + 2wα

2 + · · ·+ wα
d )G(t) + o

(
G(t)A(t)

)
.

+ αt−1

(
2wα

2

∑
k ̸=2

wkµG + w2µG2

∑
k ̸=2

wα
k +

∑
k,l ̸=2,k ̸=l

wα
kwlµG

)
G(t)(1 + o(1)).

and

J
(3)
1,2 (t) = (2wα

1 + 2wα
2 + · · ·+ wα

d )G(t) + o
(
G(t)A(t)

)
+ αt−1

(
2

2∑
l=1

∑
k ̸=l

wα
l wkµG2 + 2

2∑
l=1

d∑
k=3

wα
l wkµG

)
G(t)(1 + o(1))

+ αt−1

(
2∑

l=1

d∑
k=3

wα
kwlµG2 +

∑
k,l≥3,k ̸=l

wα
kwlµG

)
G(t)(1 + o(1)).

Combining all the asymptotics for I(t), J1(t), J2(t) and J3(t) yields that

FwTX(t)

G(t)
−

d∑
k=1

wα
k = (1 +Qa)

I(t)

G(t)
+

∑
i<j ai,j

(
−J (1)

ij (t)− J
(2)
ij (t) + J

(3)
ij (t)

)
G(t)

−
d∑

k=1

wα
k

=

{
αt−1µ∗G(1 + o(1)), ρ < −1,

(1 +Qa)
∑d

k=1H−α,ρ
(
w−1k

)
A(t)(1 + o(1)), ρ ≥ −1.

This completes the proof of (3.3.4).

The uniform convergence of (3.3.4) follows immediately from checking that for the
limit relations in Proposition 3.7 and Theorems 4.7 of Mao and Ng (2015). The details are
omitted here but are available upon request.
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Proof of Lemma 3.3.2. In this proof we denote argmin f bymf for notational simplicity.
By the definition of Dn, for any n, |fn(mf )− f(mf )| < Dn. It follows that

fn(mfn) ≤ fn(mf ) < f(mf ) +Dn.

Again, by |fn(mfn)− f(mfn)| < Dn we have

f(mfn) < fn(mfn) +Dn < f(mf ) + 2Dn.

Deriving the similar inequalities for the other side yields that

|f(mfn)− f(mf )| < 2Dn. (3.7.20)

By the Taylor’s theorem, for any x in a small neighborhood of mf we obtain that

f(x) = f(mf ) +
1

2
(x−mf )

T∇2f(mf )(x−mf ) + o
(
||x−mf ||22

)
, (3.7.21)

where we used the multi-index notation and ∇2f(mf ) is the Hessian matrix of f at mf .
Since Dn → 0 as n → ∞ by Lemma 3.2.1, mfn is in a small neighborhood of mf for large
n. It then follows from the expansion in (3.7.21) that

|f(mfn)− f(mf )| >
c

2
||mfn −mf ||22, (3.7.22)

where c is the smallest eigenvalue of ∇2f(mf ). Combining (3.7.20) and (3.7.22) leads to
the desired result.
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Chapter 4

Diversification of Truncated Risks

4.1 Introduction

One of the fundamental techniques in mitigating portfolio risks is by diversification. How-
ever, diversification is not always preferred. For a wide class of extremely heavy-tailed
risks with infinite first moment, the diversification is suboptimal even when they are inde-
pendent; see e.g., Embrechts et al. (2002), Ibragimov and Walden (2007) and Ibragimov
(2009). This phenomenon is related to the risk measure Value-at-Risk (VaR) being not
subadditive for extremely heavy-tailed risks. For a risk X with distribution function F ,
the VaR at level q ∈ (0, 1) of X is defined as

VaRq(X) = inf{x : F (x) ≥ q}.

With no surprise, the same non-diversification effect or the non-subadditivity of VaR is
observed for extremely heavy-tailed dependent risks. For example, Wüthrich (2003), Alink
et al. (2004) and Embrechts et al. (2009b) investigated the effect under the dependence
structure of Archimedean copulas; Ibragimov and Prokhorov (2016) studied the power-
type copulas, which includes Farlie–Gumbel–Morgenstern (FGM) copulas; Ibragimov and
Walden (2011) also considered dependence arising from common multiplicative and addi-
tive shocks. These studies indicate that investing in a single extremely heavy-tailed asset
has lower risk than investing in a portfolio of them.

The above results are obtained for unbounded risks. Nevertheless, in many real world
applications, risks may be truncated. For example, the reinsurance, especially in the
catastrophe insurance market, covers the last layer of loss. Borch (1960) and Arrow (1978)
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showed that if the reinsurance premium is calculated by the expected value principle, the
stop-loss reinsurance treaty is the optimal strategy. Thus, risks considered here are large
but truncated at a very high level. Intuitively, if the extremely heavy-tailed risks are
truncated, then they should behave like light-tailed risks so that the diversification may
become optimal. This is verified by Ibragimov and Walden (2007): for independent and
identically distributed (i.i.d.) risks, only when the truncation level is sufficiently large, the
diversification becomes suboptimal. Based on this result, the diversification is expected
to be suboptimal for dependent and truncated risks, just like the i.i.d. case, but rigorous
investigation has yet to be conducted. Besides the real-valued risks, nonnegative risks
are also practically needed in the modeling, for example the catastrophic risks, where the
“profit” does not have a meaningful explanation. Thus, the study of the diversification
effect for the truncated nonnegative risks is particularly crucial for catastrophe insurance.
In this chapter, we aim to provide a comprehensive study of the diversification effect for
the extremely heavy-tailed and truncated risks with different dependence structures for
risks that are either real-valued or nonnegative.

Next, we formalize our proposed line of inquiry. For a risk X, the truncated risk X(k)

is defined as

X(k) =

{
X, X ≤ k,
k, X > k.

Let S
(k)
n = 1

n

(
X

(k)
1 + · · ·+X

(k)
n

)
denote the aggregated risk. To simplify the analysis, we

assume the risks are identically distributed. In order to study the diversification effect of a

random vector X(k) =
(
X

(k)
1 , . . . , X

(k)
n

)T
, we define the diversification ratio (DR) at level

q as follows:

DRq(X
(k)) =

VaRq

(
S
(k)
n

)
VaRq

(
X

(k)
1

) . (4.1.1)

Since we are interested in extreme risks, we focus on the behavior of DR when q is close
to 1. We say that the diversification is asymptotically optimal if lim

q↑1
DRq(X

(k)) ≤ 1, and

the diversification is asymptotically suboptimal if lim
q↑1

DRq(X
(k)) ≥ 1. The study of the

diversification at a high level of q (close to 1) is critically important. The regulation rules
such as Basel II and III Accords and the Solvency II Directive have required to use a higher
confidence level of VaR, which is close to 1. Moreover, the diversification may be optimal
at a lower level of q, but this can be violated for extreme risks evaluated at a high level of
q. Thus, by studying the asymptotic behaviour of DR, we investigate the diversification
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effect for all high levels of q close to 1. This provides crucial insights for risk management,
especially for catastrophe insurance market.

The heavy-tailed risks are defined through regular variation. A risk X with distribution
function F = 1− F̄ is regularly varying with tail index α if for x > 0,

lim
t→∞

F̄ (tx)

F̄ (t)
= x−α,

denoted by F̄ ∈ RV−α. The tail index α represents the heavy-tailedness of X; the smaller
the α, the heavier the X. The extremely heavy-tailedness corresponds to the case 0 < α <
1. The dependence structure in this chapter is modeled through copulas. More specifically
we use Archimedean copulas, which covers a wide range of dependence from independence
to comonotonicity. Such modeling allows us to flexibly study how heavy-tailedness and the
dependence structure affect the diversification.

For real-valued risks, under both independent and dependent structures, we obtain a
lower bound of truncation when the diversification is suboptimal. For nonnegative risks,
we obtain a finer result that shows how the diversification is transitioned from optimal to
suboptimal by changing the truncation level. An interesting observation is that when the
truncation level is sufficiently high, the diversification stays suboptimal for any degree of
extremely heavy-tailedness of the marginal distribution or the dependence structure. Vice
versa, when the truncation is in a relatively low level, the diversification stays optimal,
regardless of the heavy-tailedness or the dependence structure.

This chapter is organized as follows. In Section 4.2 and Section 4.3, we discuss our main
results for truncated risks under independence and dependence structures. Simulation
studies are carried out in Section 4.4 to further illustrate our results. Section 4.5 makes
some concluding remarks. Proofs are postponed to Section 4.6.

4.2 Diversification Effect Under Independence

For i.i.d. regularly varying risks with tail index α, it is well known that VaR is non-
subadditive if and only if 0 < α < 1. In the following theorem, we show that similar
results hold for i.i.d. truncated risks as long as the truncation level k is large enough.

Theorem 4.2.1 Let X1, . . . , Xn be n i.i.d. risks with continuous distribution function

F such that F̄ ∈ RV−α with 0 < α < 1. If limq↑1
k(q)

VaRq(X1)
= c >

(
n1−α−1

n

)−1/α
, then

diversification is asymptotically suboptimal for truncated risks X
(k)
1 , . . . , X

(k)
n .
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The above theorem offers the same insight as Theorem 1 in Ibragimov and Walden (2007)
that VaR may also be non-subadditive for truncated risks. Our result is obtained in an
asymptotic way in a sense that for all q close enough to 1 and the truncation k growing
with VaRq(X1), the diversification is suboptimal; while their result is obtained for all
q ∈ (1/2, 1) and the truncation level k also depends on q. It is noteworthy in Ibragimov
and Walden (2007) that they assume distribution F falls into the class of symmetric stable
distributions. In establishing Theorem 4.2.1, we relax this technical assumption to regularly
varying distributions.

The above result holds for real-valued risks. However, when dealing with catastrophic
events, the “profit” does not have a meaningful interpretation. In the following theorem,
we focus on nonnegative risks and examine the asymptotic diversification behaviour for
different truncation levels.

Theorem 4.2.2 Let X1, . . . , Xn be i.i.d. nonnegative risks with continuous distribution
function F such that F̄ ∈ RV−α with 0 < α < 1. Assume limq↑1

k(q)
VaRq(X1)

= c > 0.

• If c > n, the diversification is asymptotically suboptimal for X
(k)
1 , . . . , X

(k)
n .

• If c < n, the diversification is asymptotically optimal for X
(k)
1 , . . . , X

(k)
n .

For nonnegative risks, Theorem 4.2.2 gives the basis of a qualitative picture for the asymp-
totic diversification effect. It clearly highlights the switch from optimal to suboptimal when
moving from a small truncation level (c < n) to a large truncation level (c > n). Compared
with the result in Theorem 4.2.1, we notice that diversification becomes suboptimal at a
much lower level of k. This is intuitive since the influence of the negative tails is removed,
positive extreme values can no longer be compensated by negative ones, which results in
less diversification benefit. Another interesting observation is that when the truncation
level is high enough, the diversification stays suboptimal for any degree of the extremely
heavy-tailedness of the marginal distribution.

A by-product of Theorem 4.2.2 is the following result on the asymptotic behaviour of
aggregated risks.

Corollary 4.2.1 Let X1, . . . , Xn be i.i.d. nonnegative risks with continuous distribution
function F such that F̄ ∈ RV−α with 0 < α < 1. Assume limt→∞

k(t)
t

= c > 0.
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• If c > n, we have

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) = n1−α.

• If 1 < c < n, we have

P
(
S(k)
n > t

)
= o

(
P
(
X

(k)
1 > t

))
.

4.3 Diversification Effect Under Dependence

In this section, we investigate the diversification effect for dependent risks. The dependence
structure is modeled by Archimedean copulas, which cover from independence to strong
dependence. Typical examples of Archimedean copulas are Clayton, Gumbel and Frank
copulas. An Archimedean copula is defined as

C(u1, . . . , un) = ϕ−1(ϕ(u1) + . . .+ ϕ(un)),

where the generator function ϕ : [0, 1] → [0,∞] is continuous, decreasing and convex such
that ϕ(1) = 0 and ϕ(0) = ∞, and ϕ−1 is the inverse of ϕ. We further assume ϕ−1 is

completely monotonic, i.e. (−1)i (ϕ−1)
(i) ≥ 0 for all i ∈ N. These requirements ensure that

C is a copula for all dimensions n ≥ 2.

Since we focus on the tail risks, an Archimedean survival copula Ĉ is assumed, that is,

P(X1 > x1, . . . , Xn > xn) = Ĉ
(
F̄1(x1), . . . , F̄n(xn)

)
,

where Ĉ is an Archimedean copula.

The diversification effect of truncated dependent risks is studied in the following theo-
rem.

Theorem 4.3.1 Let X1, . . . , Xn be identical risks with continuous distribution function
F such that F̄ ∈ RV−α with 0 < α < 1 and follow an Archimedean survival copula

with ϕ ∈ RV−β at 0+ with β > 0. If lim
q↑1

k(q)
VaRq(X1)

= c >
(

qn(α,β)n−α−1
cn(β)

)−1/α
, with cn(β) =∑n

i=1

(
n

n−i

)
(−1)i−1i−1/β and qn(α, β) =

∫
Rn
+
1{∑n

i=1
1
xi

>1
} dn

dx1···dxn

(∑n
i=1 x

−αβ
i

)−1/β
dx1 · · · dxn,

then the diversification is asymptotically suboptimal for X
(k)
1 , . . . , X

(k)
n .
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The tail index β of the generator function ϕ measures the upper tail dependence, i.e.
extreme losses tend to occur together. It is known from Embrechts et al. (2009b) that
lim
β→0

qn(α, β) = lim
β→0

cn(0) = n and lim
β→∞

qn(α, β) = nα, lim
β→∞

cn(β) = 1. Then one can easily

check when β → 0, the result in Theorem 4.3.1 is consistent with that in Theorem 4.2.1.
On the other hand, the above result also implies the diversification is always suboptimal
for truncated risks when β → ∞. Actually this reduces to a comonotonic case, where the
DR is 1 for any q.

If we restrict ourselves to nonnegative risks, more informative results can obtained as
follows.

Theorem 4.3.2 Let X1, . . . , Xn be identical nonnegative risks with continuous distribution
function F such that F̄ ∈ RV−α with 0 < α < 1 and follow an Archimedean survival copula
with ϕ ∈ RV−β at 0+ with β > 0. Assume limq↑1

k(q)
VaRq(X1)

= c > 0.

• If c > n, the diversification is asymptotically suboptimal for X
(k)
1 , . . . , X

(k)
n .

• If c < n, the diversification is asymptotically optimal for X
(k)
1 , . . . , X

(k)
n .

For nonnegative risks, Theorem 4.3.2 shows how the diversification is transitioned from
optimal to suboptimal by changing the truncation level. From the above result, the tran-
sition of truncation level does not depend on α or β. That is to say, having less heavy
marginals or less dependent structure on X will not make the diversification optimal, when
the truncation level is sufficiently high.

Similarly, a by-product of Theorem 4.3.2 is given as follows.

Corollary 4.3.1 Let X1, . . . , Xn be identical nonnegative risks with continuous distribu-
tion function F such that F̄ ∈ RV−α with 0 < α < 1 and follow an Archimedean survival
copula with ϕ ∈ RV−β at 0+ with β > 0. Assume limt→∞

k(t)
t

= c > 0.

• If c > n, we have

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) = qn(α, β)n
−α.
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• If 1 < c < n, we have

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) = qn(α, β)n
−α−

⌊n
c ⌋∑

i=1

(−1)i−1
(
n

i

)
(∆1,i(α, β, c)−∆2,i(α, β, c)), with

∆1,i(α, β, c) =

∫
Rn
+

1{∑n
j=1

1
xj

>n,x1<1/c,...,xi<1/c

} dn

dx1 · · · dxn

(
n∑

j=1

x−αβj

)−1/β
dx1 · · · dxn, and

∆2,i(α, β, c) =

∫
Rn
+

1{∑n
j=i+1

1
xj

>n−ic,x1<1/c,...,xi<1/c

} dn

dx1 · · · dxn

(
n∑

j=1

x−αβj

)−1/β
dx1 · · · dxn.

4.4 Simulation Study

In this section, we perform simulations to illustrate the theoretical results obtained in
Sections 4.2 and 4.3. For dependence model, we consider the Clayton copula, which is
a special case of Archimedean copula. The generator function of the Clayton copula is
ϕ(t) = 1

β
(t−β − 1) with β > 0. One can check that this generator function is regularly

varying at 0. By varying β, the Clayton copula covers from independence (β → 0) to
comonotonicity (β → ∞). This enables us to study how dependence plays a role in the
diversification effect. In all our reported experiments, we consider a portfolio consisting of
two risks. We simulate 1,000,000 times of such portfolio. After truncation at level k, we
compute the DR in (4.1.1) at level q by using the following approximation of VaRq of a
risk X

VaRq(X) ≈ X[1000000q],

where X[i] is the ith largest observation. We iterate above approach 100 times and ob-
tain 100 DR estimates. The average of these estimates is then used to characterize the
diversification behaviour.

In the first example, we consider real-valued risks. Assume each risk follows a Student-t
distribution, where the degree of freedom is exactly the same as the tail index α. This
example is designed to illustrate the results in Theorems 4.2.1 and 4.3.1. We keep α = 0.8.
By Theorem 4.2.1, the sufficient condition for diversification being suboptimal is approxi-
mately equivalent to c > 25.76. Thus, we pick k = 26VaRq(X1) in our simulation (Figure
4.1(a)). When dependence is introduced (Figure 4.1(b)), choosing β = 1, by numerical
integration and Theorem 4.3.1, the sufficient condition truncation for diversification being
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not preferred is approximately equivalent to c > 79.67. Thus, we pick k = 80VaRq(X1).
As seen in Figure 4.1, the DR always exceeds 1 under different levels of q starting from
0.95, which suggests that the diversification is indeed suboptimal under a high enough
truncation level. A point worthy of mention is that Theorems 4.2.1 and 4.3.1 only give
a sufficient condition on the truncation level such that the diversification is suboptimal,
which means the bound for c is not sharp.
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(b) α = 0.8, β = 1

Figure 4.1: DR for the portfolio with two Student-t risks is plotted against q. The left
graph is for independent risks with tail index α = 0.8. The truncation level k is chosen as
26VaRq(X1). The right graph is for dependent risks with tail index α = 0.8 and β = 1. The
truncation level k is chosen as 80VaRq(X1). The grey dotted line corresponds to DR = 1.

In the second example, we consider nonnegative risks. Assume the two risks follow a
Clayton copula and each risk follows a Pareto distribution with tail index α as F (x) =
1 − (1 + x)−α. The model parameters are chosen to be α = 0.8, β = 1. In Figure 4.2(a),
we keep k = VaR0.99(X1) fixed. By varying q from 0.95 to 0.999, the ratio k/VaRq(X1)
experiences a transition from greater than 2 to less than 2, and eventually close to 0. We
see a clear pattern in Figure 4.2(a) that, the DR first drops below 1 at lower levels of q,
then increases after q > 0.99 and finally approaches to 1. This finding supports our result
in Theorem 4.3.2 that there is a switch from suboptimal to optimal when moving from a
high enough truncation level to a relatively small truncation level. On the other hand, if
we let k grow with q, by selecting proper ratio, a large enough truncation level can always
be achieved for diversification to be suboptimal. This is confirmed in Figure 4.2(b) that
the DR is above 1 for all q by taking k = 3VaRq(X1).
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Figure 4.2: DR for the portfolio with two Pareto risks following a Clayton copula is plotted
against q. The model parameters are chosen to be α = 0.8, β = 1. The truncation level k
in the left graph is fixed at VaR0.99(X1); while in the right graph, k is set to be 3VaRq(X1).
The grey dotted line corresponds to DR = 1.

We use the last example to highlight the implication of our results that the transition
of truncation level does not depend on α and β. We first fix k = 1.5VaRq(X1). By varying
the tail index β of the generator function ϕ and the level of q for VaR, we plot the value of
DR in Figure 4.3. The left graph of Figure 4.3 is plotted for risks with tail index α = 0.8,
and the right graph of Figure 4.3 is plotted for risks with tail index α = 0.5. The level
of q is set to 0.95, 0.99 and 0.999. Then we proceed in a similar way by letting k equal
3VaRq(X1). Our results shown in Figure 4.3 and Figure 4.4 closely follow Theorem 4.2.2
and Theorem 4.3.2 that the diversification is asymptotically suboptimal (resp. optimal)
when c > 2 (resp. c < 2), regardless of the dependence structure and the heavy-tailedness
of the marginals. Besides, one can notice that in Figure 4.3, the DR is an increasing
function of β; while in Figure 4.4, the DR decreases as the dependence becomes stronger.
This finding is actually verified in our proof for Theorem 4.3.2.

4.5 Conclusion

In this chapter, we study the effects of diversification for truncated extremely heavy-
tailed risks with different dependence structures through the diversification ratio defined
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(a) α = 0.8
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(b) α = 0.5

Figure 4.3: DR for the portfolio with two Pareto risks following a Clayton copula is plotted
by varying the tail index β of the generator function. The left graph is for the risks with
tail index α = 0.8. The right graph is for the risks with tail index α = 0.5. The level of q
is set to 0.95, 0.99 and 0.999. The truncation level k is chosen as 1.5VaRq(X1). The grey
dotted line corresponds to DR = 1.

in (4.1.1). Intuitively, truncated extremely heavy-tailed risks behave like light-tailed risks,
which results in that diversification is always optimal. However, for the catastrophic risks,
the truncation of the risks are usually far in the tail. To this end, we investigate the diver-
sification effect when the truncation level increases asymptoticly with the VaR of the risk.
Under both structures, our finding suggests that the diversification effect is much easier
to become suboptimal for nonnegative risks (catastrophic risks) than that for real-valued
risks. For nonnegative risks with a sufficiently large truncation level, a finer result is ob-
tained on how the diversification effect transits from suboptimal to optimal by varying the
truncation level. It also implies that the transition of diversification effect does not depend
on the heavy-tailedness of the marginal distribution or the dependence structure, but the
number of risks matters. The simulation studies further illustrate our main results. From
the experiments on the real-valued risks, the bound on the truncation level is not sharp
and future improvement is needed.
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(b) α = 0.5

Figure 4.4: DR for the portfolio with two Pareto risks following a Clayton copula is plotted
by varying the tail index β of the generator function. The left graph is for the risks with
tail index α = 0.8. The right graph is for the risks with tail index α = 0.5. The level of
q is set to 0.95, 0.99 and 0.999. The truncation level k is chosen as 3VaRq(X1). The grey
dotted line corresponds to DR = 1.

4.6 Proofs

To make the notation simplified, we denote Sn = 1
n
(X1 + · · ·+Xn) throughout this sec-

tion.

First note that for k < VaRq(X1), P
(
X

(k)
1 = k

)
= P (X1 ≥ k) > 1 − q. Then

VaRq

(
X

(k)
1

)
= k. Since VaRq

(
S
(k)
n

)
≤ k, it immediately implies that DRq(X

(k)) ≤ 1

for all q. Thus, the diversification is asymptotically optimal for all c ≤ 1.

Our remaining proof focuses on the case where c > 1. Note that, for any two random
variables X and Y , if P (X > t) > P (Y > t) for all t ≥ t0, then VaRq(X) > VaRq(Y ) for
q0 ≤ q < 1. Thus, if the truncation level k > t, to prove diversification is asymptotically
sub-optimal or optimal, it suffices to study

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) ≥ (or ) ≤ 1. (4.6.1)
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Moreover, by letting t = VaRq(X1), the condition limq↑1 k(q)/VaRq(X1) = c is equivalent
to that

lim
t→∞

k(t)

t
= c.

These are how we start the proofs in the following.

Proof of Theorem 4.2.1. Since c >
(

n1−α−1
n

)−1/α
> 1, there exists t0 such that k(t) > t

for all t ≥ t0. First we consider the numerator of (4.6.1). Depending on on the number of
risks that exceed the truncation level k, we have

P
(
S(k)
n > t

)
= P (Sn > t, none of Xi > k) + P

(
S(k)
n > t, at least one of Xi > k

)
= P (Sn > t)− I,

where

I = P (Sn > t, at least one of Xi > k)− P
(
S(k)
n > t, at least one of Xi > k

)
. (4.6.2)

By noting that I ≤ P (at least one of Xi > k), it leads to

P
(
S(k)
n > t

)
≥ P (Sn > t)− P (at least one of Xi > k) . (4.6.3)

Next, since k(t) > t when t > t0, the denominator of (4.6.1) is indeed P
(
X

(k)
1 > t

)
=

P(X1 > t). Now combining the above analysis yields that

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) ≥ lim
t→∞

P (Sn > t)− P (at least one of Xi > k)

P(X1 > t)

= lim
t→∞

P (Sn > t)

P(X1 > t)
− lim

t→∞

1− (1− F̄ (k))n

F̄ (t)

= n1−α − nc−α > 1,

where the third step is due to Corollary 1.3.2 in Embrechts et al. (2013).

Proof of Theorem 4.2.2. First we consider the case c > n. In this case, there exists
t0 such that k > nt for all t ≥ t0. Since X1, . . . , Xn are nonnegative, it follows that
P (Sn > t,X1 > k) = P(X1 > k). Then, I = 0 for t ≥ t0, where I is defined in (4.6.2).
Under the same decomposition in the proof of Theorem 4.2.1, we have

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) = lim
t→∞

P (Sn > t)

P (X1 > t)
= n1−α > 1.
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Now we turn to the case 1 < c < n. In this case, there exists t0 such that t < k < nt
for all t ≥ t0. Depending on the number of risks that exceed k, we further split I as

I = P (Sn > t, only one of Xi > k) + P (Sn > t,more than one of Xi > k)

− P
(
S(k)
n > t, only one of Xi > k

)
− P

(
S(k)
n > t,more than one of Xi > k

)
:= J1 + J2 − J3 − J4.

For ε > 0, by symmetry we can rewrite J1 as

J1 = nP (Sn > t,X1 > k,X2 ≤ k, . . . , Xn ≤ k)

= nP (Sn > t,X1 > nt,X2 ≤ k, . . . , Xn ≤ k) + nP (Sn > t, (n− ε)t < X1 ≤ nt,X2 ≤ k, . . . , Xn ≤ k)

+ nP (Sn > t, k < X1 ≤ (n− ε)t,X2 ≤ k, . . . , Xn ≤ k)

:= n(J11 + J12 + J13).

By the independence of Xi’s and k → ∞ as t→ ∞, we have

lim
t→∞

J11
F̄ (t)

= lim
t→∞

P (X1 > nt,X2 ≤ k, . . . , Xn ≤ k)

F̄ (t)
= n−α,

and

0 ≤ lim
t→∞

J12
F̄ (t)

≤ lim
t→∞

F̄ ((n− ε)t)− F̄ (nt)

F̄ (t)
= (n− ε)−α − n−α.

For J13, applying Corollary 1.3.2 in Embrechts et al. (2013), we have

0 ≤ lim
t→∞

J13
F̄ (t)

≤ lim
t→∞

P(X2 + . . .+Xn > nt−X1, k < X1 ≤ (n− ε)t)

F̄ (t)

≤ lim
t→∞

P (X2 + . . .+Xn > εt,X1 > k)

F̄ (t)

≤ (n− 1)ε−α lim
t→∞

F̄ (k) = 0.

By the arbitrariness of ε, we obtain limt→∞ J1/F̄ (t) = n1−α.

For J2, if there are exactly two of Xi that are greater than k, without loss of generality
we assume they are X1 and X2. Then,

P (Sn > t,X1 > k,X2 > k) ≤
(
F̄ (k)

)2
.

which implies that J2 = o(F̄ (t)) as t→ ∞. Similarly, J4 = o(F̄ (t)).

71



For J3, by the symmetry, the independence and non-negativity of Xi’s, and nt−k → ∞
as t→ ∞, we have

0 ≤ lim
t→∞

J3
F̄ (t)

= lim
t→∞

nF̄ (k)P (X2 + . . .+Xn > nt− k,X2 ≤ k, . . . , Xn ≤ k)

F̄ (t)

≤ lim
t→∞

nF̄ (k)P (X2 + . . .+Xn > nt− k)

F̄ (t)

≤ n(n− 1)(n− c)−α lim
t→∞

F̄ (k) = 0.

Combining I, J1, J2, J3, and J4 yields the desired result.

Proof of Theorem 4.3.1. Recall the proof in Theorem 4.2.1,

lim
t→∞

I1
F̄ (t)

≤ lim
t→∞

P(at least one of Xi > k)

F̄ (t)

= lim
t→∞

1−
∑n

i=0

{(
n

n−i

)
(−1)i

[
ϕ−1

(
iΦ(F̄ (k))

)]}
F̄ (t)

= lim
t→∞

∑n
i=1

{(
n

n−i

)
(−1)i−1

[
ϕ−1

(
iΦ(F̄ (k))

)]}
F̄ (t)

= lim
t→∞

∑n
i=1

{(
n

n−i

)
(−1)i−1

[
i−1/βF̄ (k)

]}
F̄ (t)

=
n∑

i=1

{(
n

n− i

)
(−1)i−1i−1/β

}
c−α

= cn(β)c
−α,

where cn(β) =
∑n

i=1

(
n

n−i

)
(−1)i−1i−1/β. The fourth step and fifth step is because ϕ−1 ∈

RV−1/β and F̄ (·) ∈ RV−α, respectively.

Now consider the following limiting ratio, since c >
(

qn(α,β)n−α−1
cn(β)

)−1/α
, we prove that

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) = lim
t→∞

P (Sn > t)− I1
P(X1 > t)

≥ qn(α, β)n
−α − cn(β)c

−α

> 1.
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This completes the proof for the asymptotic sub-optimality of diversification.

Proof of Theorem 4.3.2. First we consider the case c > n. The proof is similar to
that of Theorem 4.2.2 by noting that P (Sn > t,X1 > k) = P(X1 > k) if X1, . . . , Xn are
nonnegative. Then, we have

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) = lim
t→∞

P (Sn > t)

P (X1 > t)
= qn(α, β)n

−α ≥ 1.

The last inequality holds for all α ∈ (0, 1) and β > 0, see Lemma 3.1 (d) in Embrechts
et al. (2009b).

Now we turn to the case 1 < c < n. For arbitrary small ε < c − n

⌊n
c ⌋+1

, there exists

t0 such that (c − ε)t < k < nt for all t ≥ t0. Define Ai = {Xi > k}. Applying the
inclusion-exclusion principle, the first part of I can be further split as

P (Sn > t, at least one of Xi > k) = P

(
X1 + . . .+Xn > nt,

n∪
i=1

Ai

)

=
n∑

i=1

(−1)i−1
∑

Z⊂{1,...,n}
|Z|=i

P

(
X1 + . . .+Xn > nt,

∩
j∈Z

Aj

)
=

⌊n
c ⌋∑

i=1

(
(−1)i−1

(
n

i

)
P

(
X1 + . . .+Xn > nt,

i∩
j=1

Aj

))

+
n∑

i=⌊n
c ⌋+1

(
(−1)i−1

(
n

i

)
P

(
i∩

j=1

Aj

))
. (4.6.4)

The first part of the third equality is by symmetry and the second part is due to the fact
that

X1 + . . .+Xn >
(⌊n

c

⌋
+ 1
)
k

>
(⌊n

c

⌋
+ 1
)
(c− ε)t

>
(⌊n

c

⌋
+ 1
) n⌊

n
c

⌋
+ 1

t

> nt.
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Similarly, the second part of I can be written as

P
(
S(k)
n > t, at least one of Xi > k

)
=

⌊n
c ⌋∑

i=1

(
(−1)i−1

(
n

i

)
P

(
Xi+1 + . . .+Xn > nt− ik,

i∩
j=1

Aj

))

+
n∑

i=⌊n
c ⌋+1

(
(−1)i−1

(
n

i

)
P

(
i∩

j=1

Aj

))
. (4.6.5)

Then it follows from (4.6.4) and (4.6.5), I in (4.6.2) can be reformulated as

I =

⌊n
c ⌋∑

i=1

(
(−1)i−1

(
n

i

)
P

(
X1 + . . .+Xn > nt,

i∩
j=1

Aj

))

−
⌊n

c ⌋∑
i=1

(
(−1)i−1

(
n

i

)
P

(
Xi+1 + . . .+Xn > nt− ik,

i∩
j=1

Aj

))

:=

⌊n
c ⌋∑

i=1

(−1)i−1
(
n

i

)
(J1,i − J2,i).

For J1,i, the key idea is to connect P (X1 + . . .+Xn > nt|X1 > k, . . . , Xi > k) together

with P
(
Xj >

t
xj
, j = 1, . . . , n|X1 > k, . . . , Xi > k

)
. By similar methods as in the proof of

Theorem 2.2 in Alink et al. (2004), we can take random variables
(
Y

(t)
1 , . . . , Y

(t)
n

)
with the

following distribution function:

P(Y (t)
1 ≤ x1, . . . , Y

(t)
n ≤ xn) = P

(
Xj >

t

xj
, j = 1, . . . , n|X1 > k, . . . , Xi > k

)
.

Then
(
Y

(t)
1 , . . . , Y

(t)
n

)
converges weakly to Y1, . . . , Yn, defined on (0, 1/c)i × (0,∞)n−i with
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distribution function Gβ,α
i,c , where

Gβ,α
i,c (x1, . . . , xn) = lim

t→∞

P
(
Xj >

t
xj
, j = 1, . . . , n

)
P(X1 > k, . . . , Xi > k)

= lim
t→∞

ϕ−1(ϕ(F̄ (t/x1) + . . .+ F̄ (t/xn)))

ϕ−1(iϕ(F̄ (k)))

= lim
t→∞

ϕ−1
((∑n

j=1 x
−αβ
j

)
ϕ(F̄ (t)

)
ϕ−1(icαβϕ(F̄ (t)))

=

(
n∑

j=1

x−αβj

)−1/β
i1/βcα. (4.6.6)

Therefore, we can find that

P

(
n∑

j=1

1

Y
(t)
j

> n

)
= P

(
n∑

j=1

Xj > nt|X1 > k, . . . , Xi > k

)

converges (again as t→ ∞) to

P

(
n∑

j=1

1

Yj
> n

)
= i1/βcα

∫
Rn
+

1{∑n
j=1

1
xj

>n,x1<1/c,...,xi<1/c

} dn

dx1 · · · dxn

(
n∑

j=1

x−αβj

)−1/β
dx1 · · · dxn

= i1/βcα∆1,i(α, β, c). (4.6.7)

(4.6.7) tells us that

lim
t→∞

J1,i
F̄ (t)

= lim
t→∞

P

(
n∑

j=1

Xj > nt|X1 > k, . . . , Xi > k

)
P(X1 > k, . . . , Xi > k)

F̄ (t)
= ∆1,i(α, β, c).

The same argument applied to J2,i yields that

lim
t→∞

J2,i
F̄ (t)

=

∫
Rn
+

1{∑n
j=i+1

1
xj

>n−ic,x1<1/c,...,xi<1/c

} dn

dx1 · · · dxn

(
n∑

j=1

x−αβj

)−1/β
dx1 · · · dxn

= ∆2,i(α, β, c).
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Combining I, J1,i, J2,i, we have

lim
t→∞

P
(
S
(k)
n > t

)
P
(
X

(k)
1 > t

) = lim
t→∞

P (Sn > t)

P (X1 > t)
− lim

t→∞

I

F̄ (t)

=qn(α, β)n
−α −

⌊n
c ⌋∑

i=1

(−1)i−1
(
n

i

)
(∆1,i(α, β, c)−∆2,i(α, β, c))

=∆n(α, β, c). (4.6.8)

By arguing as above, the limit (4.6.1) exists. In the following, we derive the monotonic-
ity of ∆n(α, β, c) as a function of β by using the concept of supermodular ordering. Such
an ordering is used to compare the dependence of multivariate distributions with equal
marginals; see Müller (1997) for details, definitions and further properties.

We choose two random vectors X and Y as follows: they have Archimedean survival
copula with parameters 0 < βX < βY and identical marginal functions. With Theorem 3.1
in Wei and Hu (2002) and equation (4.3) in Embrechts et al. (2009b), we know that X is
smaller than Y in supermoduar ordering. That is to say, for all supermodular functions f ,
we have Ef(X) ≤ Ef(Y). Note that the function x ∈ Rn 7→ Sn(x) is convex and super-
modular, so is the function x 7→ (Sn(x)− t)+ by preservation of convexity. It also follows
from Theorem 2.5(b) in Müller (1997) that the supermodular property is preserved un-
der coordinatewise increasing transformations. This immediately implies that the function

x 7→
(
S
(k)
n (x)− t

)
+
is supermodular. Hence for two real numbers t < k

E
(
S(k)
n (X)− t

)
+
≤ E

(
S(k)
n (Y)− t

)
+

=⇒
∫ k−t

0

P
(
S(k)
n (Y) > t+ y

)
dy −

∫ k−t

0

P
(
S(k)
n (X) > t+ y

)
dy ≥ 0.

Choose ε > 0. For sufficiently large t, one can let k ∈ ((c− ε)t, (c+ ε)t). By (4.6.8) and
the monotonicity of ∆n(α, β, c) in c, we have that

(1+ε)∆n(α, βY , c+ε)

∫ k−t

0

F̄ (t+y)dy−(1−ε)∆n(α, βX , c−ε)
∫ k−t

0

F̄ (t+y)dy ≥ 0. (4.6.9)

As t → ∞, the integral
∫ k−t
0

F̄ (t + y)dy tends to infinity, and therefore (4.6.9) forces
(1 + ε)∆n(α, βY , c+ ε) is at least equal to (1− ε)∆n(α, βX , c− ε). It then follows that the
limiting ratio (4.6.1) is an increasing function of β because ε was arbitrary.

76



Due to the monotonicity of ∆n(α, β, c) in β, to establish the desired result, it suffices

to show that limβ→∞∆n(α, β, c) = 1. Using the transform xj 7→ x
−1/α
j , we obtain

∆1,i(α, β, c) =

∫
Rn
+

1{∑n
j=1 x

1/α
j >n,x

−1/α
1 <1/c,...,x

−1/α
i <1/c

}gβ(x)dx, (4.6.10)

where x = (x1, . . . , xn) and gβ(x) =
dn

dx1···dxn

(∑n
j=1 x

β
j

)−1/β
. On Rn

+, we reformulate the

problem in polar coordinates. Let x 7→ (∥x∥1,x/∥x∥1). We rewrite (4.6.10) as follows.

∆1,i(α, β, c) =

∫
[0,∞)×Sn−1

+

1{
r>max

{
nα

(∑n
j=1 w

1/α
j

)−α
, c

α

w1
,..., c

α

wi

}}r−2gβ(w)drdw

=

∫
Sn−1
+

min

{
n−α

(
n∑

j=1

w
1/α
j

)α

, c−αw1, . . . , c
−αwi

}
gβ(w)dw,

where Sn−1
+ =

{
w ∈ Rn

+ : ∥w∥1 = 1
}
is the unit simplex and gβ(·)/n is a probability density

on Sn−1
+ ; see equation (3.7) of Kotz and Nadarajah (2000). By similar approach, we obtain

∆2,i(α, β, c) =

∫
Sn−1
+

min

{
(n− ic)−α

(
n∑

j=i+1

w
1/α
j

)α

, c−αw1, . . . , c
−αwi

}
gβ(w)dw.

Note that when β → ∞,
(∑n

j=1 x
β
j

)−1/β
converges to min

j=1,...,n

1
xj
. Then by Proposition

5.26 on p.294 of Resnick (2013), the probability density function gβ(w)/n can only place
all its mass on the point (1/n, . . . , 1/n), which means

lim
β→∞

∆1,i(α, β, c) = n ·min
{
1/n, c−α/n, . . . , c−α/n

}
= c−α,

lim
β→∞

∆2,i(α, β, c) = n ·min
{
((n− ic)/(n− i))−α /n, c−α/n, . . . , c−α/n

}
= c−α. (4.6.11)

Additionally, Lemma 3.3 of Embrechts et al. (2009b) shows that limβ→∞ qn(α, β) = nα. It
then follows by (4.6.8) and (4.6.11)

lim
β→∞

∆n(α, β, c) = 1−
⌊n

c ⌋∑
i=1

(−1)i−1
(
n

i

)(
c−α − c−α

)
= 1. (4.6.12)

The desired result holds by the monotonicity of ∆n(α, β, c) in β and (4.6.12).

77



Chapter 5

Portfolio Credit Risk with
Archimedean Copulas: Asymptotic
Analysis and Efficient Simulation

5.1 Introduction

Credit risk in banking and trading book is by far the largest financial risk exposure for many
financial institutions. One of the most prominent examples of the importance of credit risk
management and supervision is of course the 2007-2009 financial crisis. After experiencing
the financial crisis, regulators have been very active in the development of new, stricter
solvency guidelines. In particular, they recommend the banking and insurance industry
carefully choose the model for the dependence structure of the default events. Default
dependence has a direct impact on the upper tail of the credit loss distribution for a large
portfolio. Therefore, analyzing and modelling the dependence among a large number of
defaultable obligors is especially helpful for the description of credit portfolios and of large
insurance portfolios in the actuarial sciences.

The event of default for an individual obligor within the portfolio is often captured using
the so-called threshold models. These models can be viewed as multivariate extensions of
the Merton’s seminal firm value model, see Merton (1974). The idea is that default occurs
for an obligor i if some critical random variable Xi, usually called a latent variable, exceeds
(or falls below) a pre-specfied threshold. The dependence among defaults then stems
from the dependence among those latent variables. It has been found that the copula
representation is a useful concept for studying the dependence structures. Specifically, the
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copula of the latent variables determines the link between marginal default probabilities for
individual obligors and the joint default probabilities for groups of obligors. Although there
are numerous tractable copula functions, most threshold models used in industry are based
explicitly or implicitly on the Gaussian copula, for example, CreditMetrics (Gupton et al.
1997) and Moody’s KMV system (Kealhofer and Bohn 2001). Under the Gaussian copula
framework, default dependence is usually induced from a set of common factors affecting
multiple obligors. These factors are typically interpreted as systematic risks and with these
factors, many threshold models have convenient representations as mixture models, see the
monograph by McNeil et al. (2015).

In terms of the performance measures of portfolio credit risk, a main focus is on the
probability of large portfolio loss over a fixed time horizon, e.g., a one-year horizon. Credit
portfolios are often large; however, the default probabilities of high-quality obligors are
extremely small. These features then spurred a vast literature on the asymptotic study of
large portfolio loss. Vasicek (1987, 1991) show how to derive a simple closed-form solution
for the loss distribution of an asymptotically large, homogeneous portfolio. By assuming
a Gaussian copula between different borrowers, the losses from default are conditionally
independent and identically distributed (i.i.d.), the limiting loss distribution is therefore
immediate from the law of large numbers. By similar approach, Lucas et al. (2001) and
Gordy (2003) study the loss distribution for a large heterogeneous portfolio. The tail
behaviour of the loss for a large heterogeneous portfolio can also be analyzed using large
deviation arguments, see Dembo et al. (2004) and Glasserman et al. (2007). Despite
its popularity, the Gaussian copula-based models are criticized for lacking flexibility of
modelling the tail dependence. Regarding the problem of large homogeneous portfolio
approximation, Vasicek’s result is respectively extended to the case of the Archimedean
copula in Schönbucher (2002) and the t copula in Schloegl and OKane (2005). Bush et al.
(2011) further provide a dynamic extension of Vasicek’s model under the setting that the
common risk factor follows a Brownian motion and study the loss distribution through a
stochastic partial differential equation.

This chapter is concerned about portfolio credit risk with extremal dependence. The
model we develop builds on the threshold approach and assumes an Archimedean copula
to model the dependence structure among latent variables. Our main objective is to derive
sharp asymptotics for the tail of the portfolio loss distribution, in contrast to the existing
logarithmic asymptotics provided in Maier and Wüthrich (2009). It is also worth noting
that unlike the work of Schönbucher (2002), our model relies on a more general semipara-
metric assumption (generally speaking, a single parameter is used to capture the extent of
extremal dependence present in the portfolio). In addition, we develop sharp asymptotics
for expected shortfall, a risk measure that is widely used in both risk management and
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credit derivatives pricing. Another contribution of this work is that we construct two quite
different algorithms to efficiently estimate the portfolio risk via simulation. The first is an
algorithm based on hazard rate twisting (see Juneja and Shahabuddin (2002)), which is
shown to be asymptotically optimal. The second algorithm uses the idea of conditional
Monte Carlo (see, e.g., Asmussen and Kroese (2006)) and has bounded relative error. This
suggests that the second algorithm should outperform the first algorithm, and we indeed
verify this to be the case in our simulation study. However, the key contribution of the
first algorithm lies in estimating more general risk measures, such as expected shortfall,
whereas the second algorithm is specifically designed to estimate loss probabilities.

In order to capture a more realistic dependence structure, we also study portfolio credit
risk under nested Archimedean copulas. Nested Archimedean copulas are constructed by
recursive application of Archimedean geneartors; see McNeil (2008), Hofert (2008, 2011) for
technical details. Such a generalization provides a promising tool for multi-level dependence
modelling. Especially for a large credit portfolio, it allows us to classify obligors based on
a certain attribute such as industry sector, geographic location, or quality of risk. In this
chapter, we focus on a nested Archimedean copula with a Gumbel generator. Empirically,
it has been shown by many authors that Gumbel family is preferable for the modelling
of portfolio credit risk and the pricing of credit derivatives; see, e.g., Hofert and Scherer
(2011), Choroś-Tomczyk et al. (2013) and Jakob and Fischer (2014). With respect to the
probability of large portfolio losses, we provide an asymptotic lower bound on its decay
rate. An algorithm based on conditional Monte Carlo is given for the nested Gumbel
copula and it also exhibits bounded relative error.

The rest of the chapter is organized as follows. In Section 5.2, we formulate our problem
and link the portfolio structure with the LT-Archimedean copula and nested Archimedean
copula. Section 5.3, 5.4 and 5.5 exhibit the main results: the former section derives the
sharp asymptotics and the latter two sections provide efficient algorithms and investigates
their performance. The performance of the proposed algorithms is further demonstrated
via an extensive simulation study in Section 5.6. Proofs are relegated to Section 5.7.

5.2 Problem Formulation

5.2.1 General Portfolio Structure and Relation to Copulas

Consider a large credit portfolio of n obligors. Similarly to Bassamboo et al. (2008), we em-
ploy a static structural model for portfolio loss by introducing latent variables {X1, . . . , Xn}
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so that each obligor defaults if its latent variable exceeds some pre-specified threshold xi.
In the structural modelling framework, Xi can be interpreted as the loss on the assets of
obligor i. The threshold xi is implied from the marginal obligor default probability pi. The
associated risk exposure at default is denoted as ci > 0. The loss incurred from defaults is
then given by

Ln =
n∑

i=1

ci1{Xi>xi},

where 1A is the indicator function of an event A. Such a threshold model can first go back
to Merton (1974). We denote by Fi(x) = P(Xi ≤ x) the marginal distribution function of
Xi. It is clear that the marginal default probability of obligor i is given by pi = F̄i(xi).

When dealing with the above credit portfolios, dependence structure of the latent vari-
ables serves a critical role. Most threshold models popular in the financial industry are
based explicitly or implicitly on the Gaussian copula, where the vector of latent variables
follows a multivariate normal distribution. The underlying dependence structure is often
specified through a linear factor model

Xi = βia
′
iF+

√
1− β2

i εi, i = 1, . . . , n, (5.2.1)

where F is a vector of common factors satisfying F ∼ Np(0,Ω) with p < n. These factors
typically measure global, country and industry effects impacting all obligors and εi are
idiosyncratic variables. It follows that βi as a constant, can be viewed as a measure of
systematic risk of Xi. Usually ai is chosen by imposing the constraint a′iΩai = 1 for all i.
The model therefore assumes that a′iF and ε1, . . . , εn are i.i.d. standard normal random
variables.

However, in the credit risk context, it has been argued that the main source of risk in
large credit portfolios is the occurrence of many near simultaneous defaults. The Gaussian
copula models, although can accommodate a wide range of different correlation struc-
tures, become inadequate to model extremal dependence between the latent variables.
Alternatives have been proposed, most prominently the t copula and the large family of
Archimedean copula. In this chapter, we restrict ourselves to Archimedean copulas that
are able to capture upper tail dependence of latent variables. Formally, the upper tail
depedence is defined as

λU = lim
q↑1

P(X2 > F←2 (q)|X1 > F←1 (q)),

where F←(q) = inf{x ∈ R : F (x) ≥ q}. This means that latent variables may simul-
taneously take on very large values (we focus on loss distribution) with non-negligible
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probability. The importance of copulas in a threshold model is highlighted by Lemma 11.2
of McNeil et al. (2015). Their result shows that in a threshold model, the copula of the
latent variables determines the link between marginal default probabilities and portfolio
default probabilities, which is of our interest. Let Ui = Fi(Xi) for i = 1, . . . , n. Lemma
11.2 immediately implies that (Ui, pi)1≤i≤n and (Xi, xi)1≤i≤n are two equivalent threshold
models. Therefore, in our subsequent analysis, the credit portfolio loss is modelled as

Ln =
n∑

i=1

ci1{Ui>1−pi}. (5.2.2)

Note that one can also use survival copulas to describe the dependence structure among
latent variables. The only difference is that for those survival copulas, the property of
lower tail dependence is required.

5.2.2 Large Portfolio Loss and Low Default Probability

Following the idea of Bassamboo et al. (2008), the main focus of this chapter is on an
asymptotic regime where the credit portfolio is consisted of a large number of obligors
and each obligor has low default probability. Those rare but significant large loss events
are of our interest. As we target a large credit portfolio with low-default probability,
the probability of large portfolio loss should diminish as n increases. To set the stage,
we assume that the individual default probability equals lifn for i = 1, . . . , n, where fn
is a decreasing function converging to 0 as n → ∞ and {l1, . . . , ln} are strictly positive
constants accounting for variations effect on different obligors. In this way, we rewrite the
overall portfolio loss as

Ln =
n∑

i=1

ci1{Ui>1−lifn}. (5.2.3)

To characterize the potential heterogeneity among obligors, we adopt the same assump-
tion on the sequence {(ci, li) : i ≥ 1} as in Bassamboo et al. (2008).

Assumption 5.2.1 Let the positive sequence ((ci, li) : i ≥ 1) take values in a finite set
W. Denote nj by the number of each element (cj, lj) ∈ W in the portfolio. Further assume
that nj/n converges to wj > 0, for each j ≤ |W| as n→ ∞.

In practice, such an assumption can be interpreted as a heterogeneous credit portfolio
is comprised of a finite number of homogeneous sub-portfolios based on risk type and
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exposure sizes. We note that it is easy to relax this assumption to the case where ci and li
are random variables; see Tong et al. (2016) and Tang et al. (2019) for recent discussions.

Later in this chapter, we attempt to develop sharp asymptotics and efficient simulation
techniques for the tail probability of large portfolio losses, P(Ln > nb) and the expected
shortfall, as n→ ∞, where b is an arbitrarily fixed number smaller than c̄ :=

∑
j≤|W| cjwj,

i.e. the limiting average loss when all obligors default.

5.2.3 Archimedean Copulas

LT-Archimedean Copulas

Now consider the threshold model (5.2.2), and assume U = (U1, . . . , Un) has an LT-
Archimedean copula with generator ϕ. By Proposition 2.2.1, there exists a mixture rep-
resentation of Ui, i.e., Ui = ϕ−1

(
Ri

V

)
, where R1, . . . , Rn is a sequence of i.i.d. standard

exponential random variables that are also independent of V . By such a construction,
threshold models that we consider can be represented as one-factor Bernoulli mixture
models with mixing variable V .

As notably mentioned in McNeil et al. (2015), Bernoulli mixture models lend themselves
to practical advantages in Monte Carlo simulations. In order to simulate from a Bernoulli
mixture model, one can first simulate a realization v of V and then conduct independent
Bernoulli experiments with conditional default probabilities pi(v). Moreover, Bernoulli
mixture models offer more convenience for asymptotic analysis of large portfolio loss. In
particular, we will later see that in one-factor models the tail of the loss distribution is
essentially determined by the mixing distribution of V or its L-S transform ϕ−1.

Nested Archimedean Copulas

Following the structure of a partially nested Archimedean copula introduced in (2.2.3), in
this chapter, we have

C(u) = ϕ−10

 |W|∑
j=1

ϕ0 ◦ ϕ−1j

(
nj∑
l=1

ϕj(ujl)

) ,

where u = (ujl), 1 ≤ l ≤ nj and 1 ≤ j ≤ |W|. In conjunction with Assumption 5.2.1, Cj

actually describes the dependence structure within sub-portfolio j whose portfolio size is
nj. The number of inner copulas is equivalent to the number of sub-portfolios, which is
|W|.
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5.3 Asymptotic Analysis

In this section, an asymptotic analysis is performed on a regime where the number of
obligors is large, each individual obligor has an excellent credit rating (with small default
probability), and the focus is on large portfolio losses.

5.3.1 Discussion of the Assumption on fn

To get a rough idea on the tail behaviour of Ln, we take the form (5.2.3) as an example
and consider a simplified case with fn ≡ f being a constant. Furthermore, we assume the
latent variables follow an LT-Archimedean copula, see Definition 2.2.1.

Let

p0(v, i) := P (Ui > 1− lif |V = v)

= P
(
Ri

V
< ϕ(1− lif)

∣∣∣V = v

)
= P

(
Ri < vϕ(1− lif)

∣∣∣V = v
)

= 1− exp(−vϕ(1− lif)). (5.3.1)

Note that p0(v, i) is strictly increasing in v. Under the condition that V = v, due to
Kolmogorov’s strong law of large numbers, almost surely

Ln

n
→ r0(v) :=

∑
j≤|W|

cjwjp0(v, j), as n→ ∞,

where the limit follows from Assumption 5.2.1 and r0(v) denotes the limiting average
portfolio loss when V = v. Clearly, r0(v) is also strictly increasing in v. Let v∗0 be defined
as the unique solution to

r0(v) = b.

It then follows that for v > v∗0, the limiting average portfolio loss is greater than b, and
hence the event of large loss {Ln > nb} happens with probability one. For v ≤ v∗0, the
limiting average portfolio loss is less than or equal to b, and hence the probability of large
losses vanishes as n→ ∞. Thus, for any b ∈ (0, c̄),

lim
n→∞

P(Ln > nb) = F̄V (v
∗
0). (5.3.2)
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As we can see, the probability of large losses is no longer small. Above example therefore
explains the need for the assumption that fn diminishes to 0 as n→ ∞, to account for the
rarity of large loss. For the case that fn → 0, p0(v, i) in (5.3.1) converges to 0, so is Ln/n,
and then, the set {r0(v) > b} is empty. In order to develop an asymptotic approximation
for P(Ln > nb), we have to rely on the tail behaviour of V .

5.3.2 Sharp Asymptotics under LT-Archimedean Copulas

Consider the portfolio loss model given in (5.2.3). We restrict ourselves to LT-Archiemdean
copulas to fully take advantage of the Bernoulli mixture structure explained in Section
5.2.3. Inspired by Proposition 2.2.3, we impose an additional assumption on ϕ such that
ϕ ∈ RVα(1) to account for the upper tail dependence. Moreover, by convexity of the
generator ϕ, the condition α > 1 necessarily holds.

Motivated by the heuristic analysis in Section 5.3.1, by conditioning on V =
v

ϕ(1− fn)
,

we have

p(v, i) := P
(
Ui > 1− lifn

∣∣∣V =
v

ϕ(1− fn)

)
= P

(
Ri < v

ϕ(1− lifn)

ϕ(1− fn)

)
= 1− exp

(
−vϕ(1− lifn)

ϕ(1− fn)

)
. (5.3.3)

Since ϕ ∈ RVα(1), we immediately obtain that

lim
n→∞

p(v, i) = 1− exp (−vlαi ) := p̃(v, i).

Similarly to the derivation in Section (5.3.1), under the condition V =
v

ϕ(1− fn)
, by

Kolmogorov’s strong law of large numbers it follows that, almost surely

Ln

n
→ r(v) :=

∑
j≤|W|

cjwj p̃(v, j), as n→ ∞. (5.3.4)

Note that r(v) is strictly increasing in v and attains its upper bound c̄ =
∑

j≤|W| cjwj at

infinity. Thus, for each b ∈ (0, c̄), we let v∗ denote the unique solution to

r(v) = b.
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Essentially, v∗ represents the threshold value so that for V ∈ (0, v∗/ϕ(1−fn)), the limiting
average portfolio loss is less than b; for V ∈ (v∗/ϕ(1−fn),∞), the limiting average portfolio
loss is greater than b. The following theorem derives a sharp asymptotic for the probability
of large portfolio losses.

Theorem 5.3.1 Consider the portfolio loss (5.2.3) and assume the following:

• Assumption 5.2.1 holds true,

• U = (U1, . . . , Un) follows an LT-Archimedean copula with generator ϕ,

• ϕ ∈ RVα(1) for some α > 1,

• ϕ−1 is the Laplace-Stieltjes transform for some continuous random variable,

• exp(−nβ) = o(fn) for any β > 0.

Then the relation

P(Ln > nb) ∼ fn
(v∗)−1/α

Γ(1− 1/α)
(5.3.5)

holds true for any fixed b ∈ (0, c̄).

Our Theorem 5.3.1 shows that the probability of large portfolio loss diminishes to zero at
the same rate as fn. From expression (5.3.5), the asymptotic behaviour of the portfolio
loss is mostly governed by fn and α. The assumption that fn decays at a subexponential
rate ensures that a large portfolio loss occurs primarily when V takes large values, whereas
Ri, i = 1, . . . , n generally does not play any role in its occurrence. For α, it controls the
likelihood that obligors tend to default simultaneously.

Next we use an example to further illustrate the implications of our results.

Example 5.3.1 Assume a fully homogeneous portfolio, that is li ≡ l, ci ≡ c. Under this
assumption, (5.3.4) can be simplified to

r(v) = c (1− exp (−vlα)) .

Thus, v∗ = l−α ln
c

c− b
is the unique solution to r(v) = b. It immediately follows from

relation (5.3.5), that

P(Ln > nb) ∼ lfn

(
ln c

c−b

)−1/α
Γ(1− 1/α)

(5.3.6)
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holds for all b ∈ (0, c). Straight calculation further shows that the right-hand side of (5.3.6)
is an increasing function of α if ln c

c−b ≥ exp(−γ), i.e., b/c ≥ 1−e−e−γ
, where γ denotes the

Euler’s constant. This monotonic result can be interpreted in an intuitive way. A larger
α corresponds to a stronger upper tail dependence, therefore a joint default of obligors is
more likely to occur. However, the monotonicity fails if b is not large, in which a large
portfolio loss may occur due to a single default, therefore the result will not entirely based
on the upper tail dependence.

Note that the tail probability P(Ln > nb) appears as the denominator in the calcula-
tion of expected shortfall. Therefore, Theorem 5.3.1 becomes the key to establishing an
asymptotic for the expected shortfall in Theorem 5.3.2.

Theorem 5.3.2 Under the same assumption as in Theorem 5.3.1, the following relation

E [Ln|Ln > nb] ∼ nψ(α, b) (5.3.7)

holds true for any fixed b ∈ (0, c̄), where

ψ(α, b) := b+

∫∞
v∗
r′(v)v−1/αdv

(v∗)−1/α
.

The theorem above states that the expected shortfall grows almost linearly with the size
of the portfolio n.

5.3.3 Sharp Asymptotics under Nested Gumbel Copulas

In this section, we choose the partially nested structure in (2.2.3) with Gumbel families for
its ability and convenience to capture the hierarchical structure in the random vector U =
(Ujl)1≤l≤nj ,1≤j≤|W|. Recall that the sufficient condition for a proper nested Archimedean
copula is ϕ0 ◦ϕ−1j has completely monotonic derivatives for any 1 ≤ j ≤ |W|. If we restrict
ourselves to generators from Gumbel families, i.e., ϕ0(·) = ϕ(·;α0) and ϕj(·) = ϕ(·;αj), it
has been verified that the condition is automatically fulfilled if α0 ≤ αj, 1 ≤ j ≤ |W|; see
Joe (1997). This result implies that the upper tail dependence is increasing in the depth
of nesting, which means obligors in a sub-portfolio are more likely to default than obligors
belonging to different sub-portfolios.

We have a mixture representation for random vectorU in (2.2.4), where {Ujl}1≤l≤nj ,1≤j≤|W|
are conditionally independent given mixing variables Vj, 1 ≤ j ≤ |W|. Under Gumbel cop-
ula families, the mixing variables V0 and Vj of the outer copula C0 and the inner copulas
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Outer Inner
Parameter α0 ≥ 1 αj/α0 ≥ 1

Latent variable V0 ∼ S
(

1
α0
, 1,
(
cos π

2α0

)α0

, 0; 1
)

Vj(V0) ∼ S

(
α0

αj
, 1,
(
V0cos

πα0

2αj

)αj/α0

, 0; 1

)
L-S transform ϕ−10 (s) = exp

(
−s1/α0

)
ψ−10,j (·;V0) = exp(−V0sα0/αj)

Table 5.1: Partially nested Archimedean copulas defined by (2.2.3) for Gumbel families

Cj have same stable distributions but different parameters. Details are listed in Table 5.1;
see Nolan (2003) for the stable parametrization S(α, β, γ, δ; 1).

Note that γ is the scale parameter in above parametrization, then Vj(V0) can be further

represented as V
αj
α0
0 Ṽj, where Ṽj ∼ S

(
α0

αj
, 1,
(
cosπα0

2αj

)αj/α0

, 0; 1

)
and is independent of V0

for every 1 ≤ j ≤ |W|. Besides, for Gumbel generators, the following relation always holds,
ϕj(x) = ϕ0(x)

αj/α0 for all j.

Similarly to the derivation in Section 5.3.2, by conditioning on Ṽj, 1 ≤ j ≤ |W| and V0,
it holds that,

p(v0, vj, j) := P
(
Ujl > 1− ljfn

∣∣∣Ṽj = vj, V0 =
v0

ϕ0(1− fn)

)
= P

(
Rjl < Vjϕj(1− ljfn)

∣∣∣Ṽj = vj, V0 =
v0

ϕ0(1− fn)

)
= P

(
Rjl < vjv

αj/α0

0

ϕj(1− ljfn)

ϕj(1− fn)

)
= 1− exp

(
−vjv

αj/α0

0

ϕj(1− ljfn)

ϕj(1− fn)

)
, 1 ≤ l ≤ nj.

Since Gumbel generator ϕj ∈ RVαj
(1), we immediately obtain that

lim
n→∞

p(v0, vj, j) = 1− exp
(
−vjv

αj/α0

0 l
αj

j

)
:= p̃(v0, vj, j).

Therefore, by Kolmogorov’s strong law of large numbers it follows that, almost surely

Ln

n
→ r(v0, v1, . . . , v|W|) :=

∑
j≤|W|

cjwj p̃(v0, vj, j), as n→ ∞, (5.3.8)
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given the conditions V0 =
v0

ϕ0(1− fn)
and Ṽj = vj for all 1 ≤ j ≤ |W|. Note that for

the LT-Archimedean copulas discussed in Section 5.3.2, there is only one single direction
in which shifting the underlying factor could increase the limiting average portfolio loss,
i.e., increase the value for V . However, for nested Archimedean copulas, there might be
many different directions depending on the values of b and cjwj, 1 ≤ j ≤ |W|, which adds
substantial complexity to the asymptotic analysis of large portfolio loss.

In the following theorem, we provide an asymptotic lower bound for the probability of
large portfolio losses, which gives a general idea on the decay rate.

Theorem 5.3.3 Consider the portfolio loss (5.2.3) and assume the following:

• Assumption 5.2.1 holds true,

• U = (U1, . . . , Un) follows a partially nested Gumbel copulas defined by (2.2.3), where
ϕj = (− ln(t))αj ,

• αj > α0 > 1, for each 1 ≤ j ≤ |W|,

• exp(−nβ) = o(fn) for any β > 0.

Then the relation
lim inf
n→∞

P(Ln > nb)/fn ≥ K (5.3.9)

holds true for any fixed b ∈ (0, c̄), where K is a positive constant.

5.4 Importance Sampling Simulations for Large Port-

folio Loss under LT-Archimedean Copulas

In order to conduct an asymptotic analysis in Section 5.3, we assume the number of obligors
in a credit portfolio tends to infinity. However, as we later show in the numerical examples
section, the asymptotics given in Theorem 5.3.1 can produce inaccurate estimates unless
the portfolio size is very large. Hence, Monte Carlo methods become a practical alternative
to handle the estimation problem, although the problem of rare event simulation arises.
Since the estimated default probability for large portfolio losses is usually small, naive
Monte Carlo estimator is unstable and subject to high variability, unless the sample size is
large enough. To generate more scenarios with large losses in simulation, we provide two
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different algorithms. In this section, we focus on the first method, which is an importance
sampling (IS) algorithm based on a hazard rate twisting; see Juneja and Shahabuddin
(2002) for an introduction on hazard rate twisting. In the next section, we discuss the
second algorithm, which uses the idea on conditional Monte Carlo; see, e.g., Asmussen and
Kroese (2006) and Asmussen (2018).

5.4.1 Preliminary of Importance Sampling

The probability of our interest is P (Ln > nb), where Ln can be considered as a linear combi-
nation of conditionally independent Bernoulli random variables {1{Ui>1−lifn}, i = 1, . . . , n}.
For each Bernoulli variable, the associated probability is denoted as pi, i = 1, . . . , n, which
is a function of the generated variable V (We suppress this dependence for ease of notation,
the explicit form for pi is displayed in (5.3.3)). The simulation of above probability is usu-
ally conducted in two steps. In step 1, we simulate the common factor V using the density
function fV (·) and in step 2, we generate the corresponding Bernoulli random variables.
Since the default probability pi for each Bernoulli variable is small, estimation by naive
Monte Carlo simulation becomes impractical due to the large number of samples needed,
and therefore, one has to resort to variance reduction techniques.

As in other rare event simulation problems, importance sampling is often used as a
technique that gets around this problem by placing further probability mass on the rare
event of interest and then suitably unbiasing the resulting output. In our context, as
discussed in the previous section, the tail behaviour of large portfolio loss highly depends on
the tail distribution of V , i.e., the key to the occurrence of the large loss event corresponds
to V taking large value. Then a good biasing distribution for random variable V should
be more heavy-tailed than its original distribution, so that a larger probability could be
assigned to the event that the average portfolio loss conditioned on V exceeds the level
b. Let f̃V (·) denote the new density function for V after IS. Besides applying IS to the
distribution of V , one can also improve the efficiency of the numerical method by applying
IS on the conditional probabilities. For this particular type of problem, there is a fairly
well-established approach, see, e.g., Glasserman and Li (2005), which eventually increases
the default probabilities by exponentially twisting the corresponding Bernoulli random
variables.

Now suppose samples of V are drawn according to density function f̃V (·), and each
Bernoulli success probability pi is replaced by some other probability p̃i, for i = 1, . . . , n.
Let P̃ denote the corresponding probability measure and Ẽ be the expectation under the
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measure P̃. Then the following identity holds,

P (Ln > nb) = E
[
1{Ln>nb}

]
= Ẽ

[
1{Ln>nb}L̃

]
,

where L̃ =
dP
dP̃

is the Radon-Nikodym derivative of P and equals

fV (V )

f̃V (V )

∏
j≤|W|

(
pj
p̃j

)njYj
(
1− pj
1− p̃j

)nj(1−Yj)

,

where Yj = 1{Uj>1−ljfn}, njYj denotes the number of defaults in sub-portfolio j. We refer

to P̃ as the IS measure and L̃ as the unbiasing likelihood ratio.

The further questions arise are how to characterize the performance of the produced
IS estimators and how to choose the IS measure appropriately. For rare event simulation,
estimators are not only expected to provide a small variance but also a small relative
error. Asymptotically, the best performance commonly observed in realistic situations is
a bounded relative error; see, e.g., Asmussen and Kroese (2006) and McLeish (2010). We
say a sequence of estimators (1{Ln>nb}L̃ : n ≥ 1) under probability measure P̃ has bounded
relative error if

lim sup
n→∞

√
Ẽ
[
1{Ln>nb}L̃2

]
P (Ln > nb)

<∞.

A slightly weaker form criterion called asymptotically optimal is also widely used (see, e.g.,
Glasserman and Li (2005), Glasserman et al. (2007) and Glasserman et al. (2008)), if the
following condition holds,

lim
n→∞

log Ẽ
[
1{Ln>nb}L̃

2
]

logP (Ln > nb)
= 2.

This condition is equivalent to saying that lim
n→∞

Ẽ
[
1{Ln>nb}L̃

2
]
/P (Ln > nb)2−ε = 0, for

every ε > 0. It is readily to check that bounded relative error implies asymptotically
optimality.

5.4.2 Two-Step Importance Sampling

The First Step

As a first step in providing our IS algorithm for LT-Archimedean copulas, we apply IS
to the distribution of random variable V . In Theorem 5.3.1, we assume the generator
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ϕ ∈ RVα(1), where ϕ
−1 is the Laplace-Stieltjes transform of random variable V . Then by

Karamata’s Tauberian Theorem, see, e.g., Feller (1971), pp. 442–446, V is actually heavy-
tailed with tail index 1/α. As noted in Asmussen et al. (2000), traditional exponential
twisting approach cannot work directly for distributions with heavy tails, since a finite
cumulant generating function in (5.4.6) does not exist when a positive twisting parameter
is required. So an alternative method must be used. In this section we describe an IS

algorithm to assign a larger probability to the event
{
V > v∗

ϕ(1−fn)

}
by hazard rate twisting

the original distribution of V . We prove this leads to an estimator that is asymptotically
optimal.

Let us define the hazard function associated to the random variable V as

H(x) = − log(F̄V (x)).

By changing H(x) to (1− θ)H(x) for some 0 < θ < 1, the tail distribution is changed to

F̄V,θ(x) = (F̄V (x))
1−θ = exp((θ − 1)H(x)), (5.4.1)

and the p.d.f. turns out to be

fV,θ(x) = (1− θ)(F̄V (x))
−θfV (x) = (1− θ) exp(θH(x))fV (x). (5.4.2)

This is similar to exponential twisting, except that the twisting rate is θH(x) rather than
θx. By (5.4.1), one can also note that the tail of random variable V becomes heavier after
the twisting.

The key, then, is finding the best parameter θ. By (5.4.2), the associated likelihood
ratio for fV (x)/fV,θ(x) is

1
1−θ exp(−θH(x)), and this is upper bounded by

1

1− θ
exp

(
−θH

(
v∗

ϕ(1− fn)

))
(5.4.3)

on the set
{
V > v∗

ϕ(1−fn)

}
. We search for θ̃ by minimizing the upper bound on the likelihood

ratio, since this also minimizes the upper bound of the second moment of the estimator
1{Ln>nb}

fV (V )
f∗V,θ(V )

. By taking the derivative on the upper bound (5.4.3) w.r.t. θ, we obtain

θ̃ = 1− 1

H
(

v∗

ϕ(1−fn)

) .
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Then, the tail distribution in (5.4.1) corresponding to hazard rate twisting by θ̃ equals

F̄V,θ̃(x) = exp

− H(x)

H
(

v∗

ϕ(1−fn)

)
 . (5.4.4)

Explicit form of (5.4.4) is usually difficult to derive, because the tail distribution for random
variable V is only specified in a semiparametric way. Alternatively, we can replace the
hazard function H(x) by H̃(x) where H(x) ∼ H̃(x) and H̃(x) is available in a closed
form, Juneja et al. (2007) prove that estimators derived by such “asymptotic” hazard rate
twisting method can achieve asymptotic optimality.

By Proposition B.1.9(1) of de Haan and Ferreira (2006), F̄V ∈ RV−1/α(∞) implies
H(x) ∼ 1

α
log(x) as x → ∞. This, along with (5.4.4), suggests that the tail distribution

F̄V,θ̃ should be close to

F̄V,θ̃(x) ≈ x−1/(log v
∗−log ϕ(1−fn)).

For considerably large n, we can even ignore the term log(v∗) to achieve further simplifi-
cation. Hence, the corresponding p.d.f. can be taken as

1

− log ϕ(1− fn)
x

1
log ϕ(1−fn)

−1,

which is indeed a Pareto distribution with shape parameter −1/ log ϕ(1 − fn). Now we
define

f ∗V (x) =

{
fV (x), x < c1,

F̄V (c1)c
−1/ log ϕ(1−fn)
1

1
− log ϕ(1−fn)x

1
log ϕ(1−fn)

−1 x ≥ c1,
(5.4.5)

where c1 is chosen to remain the ratio fV (x)/f
∗
V (x) upper bounded by a constant for all

x. Thus, the tail part of random variable V becomes heavier from the twisting, but the
probability for small values remains unchanged.

Remark 5.4.1 The role of c1 is crucial for showing the asymptotic optimality of the al-
gorithm, which is later seen in the proof of Lemma 5.4.1. Theoretically, its value relies
on the explicit expression of the p.d.f. fV (x). For ease of implementation, one may fix c1
to an arbitrary constant in realizing the algorithm, numeric results are not sensitive to its
choice.
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The Second Step

We now proceed to apply exponential twisting to Bernoulli random variables {1{Ui>1−lifn}, i =

1, . . . , n} conditional on the common factor V . A measure P̃ is said to be an exponentially
twisted measure of P by parameter θ, for some random variable X, if

dP̃
dP

= exp(θX − ΛX(θ)), (5.4.6)

where ΛX(θ) = logE[exp(θX)] represents the cumulant generating function. Suppose
random variable X has p.d.f. fX(x), then the exponential twisted density has the form
exp(θx− ΛX(θ))fX(x).

Now we deal with p(v, i) as defined in (5.3.3) by conditioning on V =
v

ϕ(1− fn)
. In

order to increase the conditional default probabilities, followed by the idea in Glasserman
and Li (2005), we apply an exponential twist by choosing a parameter θ and taking

pθ(v, i) =
p(v, i)eθci

1 + p(v, i) (eθci − 1)
,

where pθ(v, i) denotes the θ-twisted probability conditional on V =
v

ϕ(1− fn)
. Note that

pθ(v, i) is a strictly increasing function if θ > 0. With this new choice of conditional
default probabilities {pθ(v, j) : j ≤ |W|}, straight calculation shows that the likelihood
ratio conditioning on V simplifies to∏

j≤|W|

(
p(v, j)

pθ(v, j)

)njYj
(

1− p(v, j)

1− pθ(v, j)

)nj(1−Yj)

= exp
(
−θLn|V + ΛLn|V (θ)

)
, (5.4.7)

where

ΛLn|V (θ) = logE
[
eθLn

∣∣∣∣V =
v

ϕ(1− fn)

]
=
∑
j≤|W|

nj log
(
1 + p(v, j)

(
eθcj − 1

))
(5.4.8)

is the cumulant generating function of Ln conditional on V . For any θ, the estimator

1{Ln>nb}e
−θLn|V+ΛLn|V (θ)

is unbiased for P
(
Ln > nb

∣∣∣V = v
ϕ(1−fn)

)
if probabilities {pθ(v, j) : j ≤ |W|} are used to

generate Ln. Equation (5.4.7) actually shows that applying an exponential twist on the
probabilities is equivalent to applying an exponential twist to Ln itself.
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It remains to choose the parameter θ. A standard practice in important sampling is
to select a parameter θ that minimizes the upper bound of the second moment of the
estimator to reduce the variance. As we can see,

Eθ

[
1{Ln>nb}e

−2θLn|V+2ΛLn|V (θ)

∣∣∣∣V =
v

ϕ(1− fn)

]
≤ e−2nbθ+2ΛLn|V (θ),

where Eθ denotes expectation using the θ-twisted probabilities. The problem is then iden-
tical to find a parameter θ that maximizes nbθ − ΛLn|V (θ). Straightforward calculation
shows that

Λ′Ln|V (θ) =
∑
j≤|W|

njcjpθ(v, j) = Eθ

[
Ln

∣∣∣∣V =
v

ϕ(1− fn)

]
. (5.4.9)

By the strictly increasing property of Λ′Ln|V (θ), the maximum is attained at

θ∗ =

{
unique solution to Λ′Ln|V (θ) = nb, nb > Λ′Ln|V (0),

0, nb ≤ Λ′Ln|V (0).
(5.4.10)

By (5.4.9), the two cases in (5.4.10) are distinguished by the value of E
[
Ln

∣∣∣V = v
ϕ(1−fn)

]
.

For the former case, our choice of twisting parameter θ∗ shift the distribution of Ln so that
the average portfolio loss is b; while for the latter case, the event {Ln > nb} is not rare, so
we use the original probabilities.

Algorithm

Now we are ready to present the algorithm. It consists of three stages. First, a sample
of V is generated using hazard rate twisting. Depending on the value of V , samples of
the Bernoulli variables 1{Ui>1−lifn} are generated in the second step, using either naive
simulation (original probabilities) or importance sampling. The details on how to adjust
conditional default probabilities have already been discussed in previous part. Finally we
compute the portfolio loss Ln and return the estimator by incorporating the likelihood
ratio.
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Importance Sampling (IS) Algorithm

Step 1. Generate a sample of V using the density f ∗V .

Step 2. If the average portfolio loss under V , is greater than b, for each i ≤ n, generate
samples of 1{Ui>1−lifn} independent of each other using the unchanged probability
p∗i = pi = p (V ϕ(1− fn), i) . Otherwise, we use p∗i = pθ∗(V ϕ(1− fn), i).

Step 3. Calculate the portfolio loss Ln and return the estimator

1{Ln>nb}
fV (V )

f ∗V (V )

∏
j≤|W|

(
pj
p∗j

)njYj
(
1− pj
1− p∗j

)nj(1−Yj)

, (5.4.11)

where njYj denotes the number of defaults in sub-portfolio j within in a single
simulation run.

Let P∗ and E∗ denote the probability measure and expectation corresponding to this
algorithm. Besides, the likelihood ratio is given by

L∗ =
fV (V )

f ∗V (V )

∏
j≤|W|

(
pj
p∗j

)njYj
(
1− pj
1− p∗j

)nj(1−Yj)

.

The following lemma is important in showing the efficiency of our IS Algorithm.

Lemma 5.4.1 Under the same assumptions as in Theorem 5.3.1, we have

logE∗
[
1{Ln>nb}L

∗2
]

log fn
→ 2, as n→ ∞.

In view of Theorem 5.3.1, which provides the asymptotic estimate of the tail probability
P (Ln > nb), we conclude in the following theorem that our proposed algorithm is asymp-
totically optimal.

Theorem 5.4.1 Under the same assumptions as in Theorem 5.3.1, we have

lim
n→∞

logE∗
[
1{Ln>nb}L

∗2
]

logP (Ln > nb)
= 2.

In other words, the importance sampling estimator in (5.4.11) achieves zero variance on
the logarithmic scale.
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Importance Sampling for Expected Shortfall

In risk management, one is usually interested in estimating the expected shortfall at a
confidence level close to 1, which is again a rare event simulation. In this subsection, we
discuss how to apply our proposed IS algorithm to estimate the expected shortfall.

First, note that the expected shortfall can be understood as follows,

E [Ln|Ln > nb] = nb+
E
[
(Ln − nb)+

]
P (Ln > nb)

. (5.4.12)

By involving the unbiasing likelihood ratio L∗, (5.4.12) now is equivalent to

nb+
E∗
[
(Ln − nb)+ L

∗]
E∗
[
1{Ln>nb}L∗

] ,

where E∗ is the expectation corresponding to the IS algorithm in Section 5.4.2. Suppose
m i.i.d. samples (L1

n, . . . , L
m
n ) are generated under measure P∗. Let L∗i denote the corre-

sponding likelihood ratio for each sample i. Then the IS estimator of the expected shortfall
is given as

nb+

∑m
i=1(L

i
n − nb)+L

∗
i∑m

i=1 1{Li
n>nb}L

∗
i

. (5.4.13)

Note that the samples generated to estimate the numerator in (5.4.13) take positive value
only when large losses occur. Therefore, one can expect the IS algorithm that works for
estimating the probability of the event {Ln > nb} should also work well in estimating
E[Ln − nb]+. This is later confirmed by our numerical results.

5.5 Conditional Monte Carlo Simulations

In this section, we introduce the conditional Monte Carlo approach, which is another
variance reduction technique. The broad motivation for the following efficient conditional
Monte Carlo algorithm is given in Chan and Kroese (2010), where the authors derive a
simple simulation algorithm to estimate the probability of large portfolio losses under the
t copula.
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5.5.1 Conditional Monte Carlo for Large Portfolio Loss under
LT-Archimedean Copulas

By utilizing the stochastic representation (2.2.2) for LT-Archimedean and the asymptotic
description in Theorem 5.3.1, the rare event {Ln > nb} happens primarily when the random
variable V takes large value, while R = (R1, . . . , Rn) generally has little influence on the
occurrence of the rare event. This simply suggests that an approach by integrating out V
analytically could lead to a substantial variance reduction.

Consider the following algorithm. Define

Oi =
Ri

ϕ(1− lifn)
, i = 1, . . . , n. (5.5.1)

Recall that the individual obligor defaults if Ui > 1− lifn, i.e., V > Oi. Then, the portfolio
loss in (5.2.3) can be rewritten as,

Ln =
n∑

i=1

ci1{V >Oi}.

Let O(1), . . . , O(n) be the order statistics of O1, . . . , On, and let c(i) denote the associated
exposure at default with O(i). Then, one can check that the event {Ln > nb} happens if

and only if V > O(k), where k = min{l :
∑l

i=1 c(i) > nb}. Particularly, if ci ≡ c for all
i = 1, . . . , n, then k = ⌈nb/c⌉. Now conditional on R, we have

P (Ln > nb|R) = P
(
V > O(k)|R

)
:= S(R). (5.5.2)

We summarize above procedure in the following algorithm.

Conditional Monte Carlo (CondMC) Algorithm 1

Step 1. Generate independent standard exponential random variables R1, . . . , Rn.

Step 2. For i = 1, . . . , n, transform Ri to Oi according to (5.5.1).

Step 3. Find O(k) and return the conditional Monte Carlo estimator S(R) in (5.5.2).

We now show that the conditional Monte Carlo estimator has bounded relative error, a
stronger notion of asymptotic optimality than that established in Theorem 5.4.1.
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Lemma 5.5.1 Under the same assumptions as in Theorem 5.3.1 except that 1
n
= O(fn),

we have

lim sup
n→∞

E [S2(R)]

f 2
n

<∞.

In view of Theorem 5.3.1, we immediately obtain the following theorem concerning algo-
rithm efficiency.

Theorem 5.5.1 Under the same assumptions as in Lemma 5.5.1, we have

lim sup
n→∞

√
E [S2(R)]

P (Ln > nb)
<∞.

In other words, the conditional Monte Carlo estimator in (5.5.2) has bounded relative error.

5.5.2 Conditional Monte Carlo for Large Portfolio Loss under
Nested Gumbel Copulas

For nested Gumbel copulas, the stochastic representation in (2.2.4) can be further simplified
as follows,

Ujl = ϕ−1j

(
Rjl

ṼjV
αj/α0

0

)
, l = 1, . . . , nj and j = 1, . . . , |W|.

Similarly to the idea for LT-Archimedean copulas, we define

Ojl =

(
Rjl/Ṽj

)α0/αj

ϕ0(1− ljfn)
, l = 1, . . . , nj and j = 1, . . . , |W|. (5.5.3)

Note that the individual obligor defaults if Ujl > 1 − ljfn, i.e., V0 > Ojl. Let Q(1) ≤
· · · ≤ Q(n) be the order statistics of Ojl for l = 1, . . . , nj and j = 1, . . . , |W|. Then,

the event {Ln > nb} happens if and only if V > Q(k), where k = min{l :
∑l

i=1 c(i) >

nb}. For notational convenience, let R = (Rjl)1≤l≤nj ,1≤j≤|W| and Y =
(
R, Ṽ1, . . . , Ṽ|W|

)
.

Conditional on Y, we have

P (Ln > nb|Y) = P
(
V0 > Q(k)|Y

)
:= S(Y). (5.5.4)

Above procedure is summarized in the following algorithm.
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Conditional Monte Carlo (CondMC) Algorithm 2

Step 1. Generate independent standard exponential random variables Rjl, l =
1, . . . , nj and j = 1, . . . , |W|.

Step 2. For each j and l, transform Rjl to Ojl according to (5.5.3).

Step 3. Sort Ojl, find Q(k) and return the conditional Monte Carlo estimator S(Y) in
(5.5.4).

Again we show the conditional Monte Carlo estimator for nested Gumbel copulas has
bounded relative error.

Lemma 5.5.2 Under the same assumptions as in Theorem 5.3.3 except that 1
n
= O(fn),

we have

lim sup
n→∞

E [S2(Y)]

f 2
n

<∞.

In view of Theorem 5.3.3, we immediately obtain the following theorem concerning algo-
rithm efficiency.

Theorem 5.5.2 Under the same assumptions as in Lemma 5.5.2, we have

lim sup
n→∞

√
E [S2(Y)]

P (Ln > nb)
<∞.

In other words, the conditional Monte Carlo estimator in (5.5.4) has bounded relative error.

5.6 Numerical Results

In this section, we demonstrate the performance of our proposed estimators via simulations,
and investigate its sensitivity to α, n and b. The broad conclusions drawn from following ex-
periments are that our algorithms provide considerable variance reduction when compared
to naive simulation, especially the CondMC algorithms, which supports our theoretical
result that all proposed algorithms are all asymptotically optimal.
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5.6.1 Gumbel Copulas

Motivated by the assumption that ϕ ∈ RVα(1), we consider the Gumbel copula in our
numerical experiment. The generator function of Gumbel copula is ϕ(t) = (− ln(t))α

with α > 1. By varying α, the Gumbel copula covers from independence (α → 1) to
comonotonicity (α → ∞).

In all the experiments below, only homogeneous portfolio are considered. However, it
is worth to emphasize that the performance of our algorithms is not affected by assuming
an inhomogeneous portfolio. Actually, Theorem 5.4.1 and Theorem 5.5.1 are proved under
the setting of an inhomogeneous portfolio. To access the accuracy of the estimators, for
each set of specified parameters, we generate 50,000 samples for our proposed algorithms,
estimate the probability of large portfolio loss, and provide the relative error (in %), which
is defined as the ratio of the estimator’s standard deviation to the estimator. To be precise,
if p̂ is an unbiased estimator of P (Ln > nb), its relative error is defied as

√
Var(p̂)/p̂. We

also report the variance reduction achieved by our proposed algorithms compared with
naive simulation. For naive simulation, it is highly possible that the rare event would not
be observed in any sample path with only 50,000 samples. Therefore, variance under naive
simulation is estimated indirectly by realizing the fact that variance for Bernoulli(p) equals
p(1− p).

Table 5.2 shows the comparison of our IS algorithm and CondMC algorithm with naive
simulation as α changes. The model parameters are chosen to be n = 500, fn = 1/n, b =
0.8, li = 0.5 and ci = 1 for each i. As can be seen in Table 5.2, the CondMC algorithm
performs significantly better than the IS algorithm, and both algorithms outperform the
naive simulation, especially when α is small and the probability of large portfolio losses
becomes smaller.

Prob. estimate Relative error (%) Variance reduction
α IS CondMC IS CondMC IS CondMC
1.1 6.112×10−5 6.208×10−5 1.468 0.023 1,519 6,248,304
1.5 2.652×10−4 2.726×10−4 1.554 0.017 312 2,658,936
2 4.436×10−4 4.457×10−4 1.542 0.012 189 2,910,515
5 7.706×10−4 7.815×10−4 1.575 0.005 105 10,338,790

Table 5.2: Performance of the proposed algorithms for Gumbel copula under different
values of α.

In Table 5.3, we perform the same comparison but now we vary b while keeping α
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fixed at 1.5. Under the setting that c = 1, the parameter b actually controls the level of
the proportion of obligors who default. As is clear from the table, when b increases, the
estimated probability decreases and the variance reduction becomes larger.

Prob. estimate Relative error (%) Variance reduction
b IS CondMC IS CondMC IS CondMC
0.3 7.415×10−4 7.437×10−4 1.414 0.024 135 447,754
0.5 4.714×10−4 4.776×10−4 1.462 0.019 198 1,130,242
0.7 3.293×10−4 3.306×10−4 1.506 0.017 268 2,129,103
0.9 2.101×10−4 2.151×10−4 1.569 0.017 386 3,090,169

Table 5.3: Performance of the proposed algorithms for Gumbel copula under different
values of b.

Table 5.4 provides the relative error and variance reduction of our algorithms compared
with naive simulation as the number of obligors changes. All other parameters are identical
to previous experiments by fixing α = 1.5, b = 0.8. In the last column, we also derive the
sharp asymptotic for the desired probability of large portfolio loss based on the expression
in (5.3.5). Note that as n increases, both the accuracy of the sharp asymptotic and the
variance reduction improve.

Prob. estimate Relative error (%) Variance reduction
n IS CondMC IS CondMC IS CondMC Asymptotic
100 1.373×10−3 1.381×10−3 1.398 0.037 74 105,710 1.359×10−3

250 5.372×10−4 5.470×10−4 1.487 0.023 168 670,052 5.436×10−4

500 2.723×10−4 2.727×10−4 1.529 0.017 314 2,671,423 2.718×10−4

1,000 1.356×10−4 1.361×10−4 1.640 0.012 582 10,608,750 1.359×10−4

Table 5.4: Performance of the proposed algorithms for Gumbel copula together with the
sharp asymptotic derived in Theorem 5.3.1 under different values of n.

5.6.2 Nested Gumbel Copulas

In this section, we assume the dependence structure follows a nested Gumbel copula. For
simplicity, we restrict ourselves to a large portfolio with exactly two different types and
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each type has same number of obligors. In the following example, α0 = 1.5 is the parameter
for the outer copula, and α1, α2 are the parameters for the inner copulas. For each set of
specified parameters, again we generate 50,000 samples for our proposed algorithm.

(α1, α2) Prob. estimate Relative error (%) Variance reduction
(3,3) 3.391×10−4 0.289 7,081
(3,5) 3.554×10−4 0.329 5,182
(3,7) 3.611×10−4 0.335 4,943

Table 5.5: Performance of the proposed CondMC algorithm for nested Gumbel copula
under different values of α1 and α2.

Table 5.5 provides the default probability under the nested Gumbel copula for varying
values of α1 and α2. Other model parameters are identical to the case in Table 5.2 for
direct comparison, i.e., n = 500, b = 0.8, li = 0.5 and ci = 1. If one looks at the second
row corresponding to α = 1.5 in Table 5.2, the estimated probability of large portfolio
losses is around 2.652 × 10−4. Once stronger dependence is allowed within each sub-
portfolio, the default probability is expected to increase, which can be seen from Table 5.5.
From simulation point of view, our conditional Monte Carlo algorithm still significantly
outperforms the naive simulation.

5.6.3 Constant Function fn

By fixing the function fn ≡ 0.1, we will redo the numerical studies in Table 5.2, Table
5.3 and Table 5.4 within this part. Other model parameters remain unchanged, i.e., li =
0.5, ci = 1. Therefore, each obligor has identical default probability, i.e., lifn = 0.05.
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Prob. estimate Relative error (%) Variance reduction
α IS CondMC IS CondMC IS CondMC
1.1 3.271×10−3 3.272×10−3 1.192 0.023 43 111,634
1.5 1.423×10−2 1.415×10−2 1.389 0.017 8 49,453
2 2.308×10−2 2.285×10−2 1.373 0.012 5 55,376
5 3.881×10−2 3.936×10−2 1.302 0.005 3 204,492

Table 5.6: Performance of the proposed algorithms for Gumbel copula under different
values of α.

Prob. estimate Relative error (%) Variance reduction
b IS CondMC IS CondMC IS CondMC
0.3 3.915×10−2 3.938×10−2 1.091 0.025 4 7,562
0.5 2.491×10−2 2.501×10−2 1.215 0.020 5 20,384
0.7 1.725×10−2 1.721×10−2 1.326 0.017 7 39,003
0.9 1.081×10−2 1.113×10−2 1.498 0.018 8 57,484

Table 5.7: Performance of the proposed algorithms for Gumbel copula under different
values of b.

As we have mentioned in Section 5.3.1, with a constant function fn, the probability
of large portfolio losses is no longer rare. However, according to Table 5.6 and Table
5.7, our CondMC algorithm can still achieve significant variance reduction compared to
naive simulation. This is mainly because the CondMC algorithm itself does not rely on
our asymptotic result. In contrast, our IS algorithm seems not to have a remarkable
computational advantage.

In Table 5.8, by changing the number of obligors in the credit portfolio, we provide the
relative error and variance reduction of our algorithms compared with naive simulation.
With the increase of n, a further improvement of the performance for our CondMC algo-
rithm is noticed. While for our IS algorithm, similar observation does not exist. At the
end of Table 5.8, based on (5.3.2), the limiting default probability when n → ∞ is also
provided. One may note that the convergence speed for our condMC algorithm is very
fast.
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Prob. estimate Relative error (%) Variance reduction
n IS CondMC IS CondMC IS CondMC
100 1.448×10−2 1.430×10−2 1.281 0.037 8 9,935
250 1.414×10−2 1.419×10−2 1.304 0.024 8 24,618
500 1.376×10−2 1.415×10−2 1.332 0.017 8 49,352
1,000 1.418×10−2 1.413×10−2 1.315 0.012 8 99,089
∞ 1.411×10−2

Table 5.8: Performance of the proposed algorithms for Gumbel copula together with the
limiting result derived in (5.3.2) under different values of n.

5.7 Proofs

5.7.1 Proofs for LT-Archimedean Copulas

We now prepare a series of lemmas for proving Theorem 5.3.1 and Theorem 5.3.2. The
following is a restatement of Theorem 2 of Hoeffding (1963).

Lemma 5.7.1 If X1, X2, . . . , Xn are independent and ai ≤ Xi ≤ bi for i = 1, . . . , n, then
for ε > 0

P
(∣∣X̄n − E

[
X̄n

]∣∣ ≥ ε
)
≤ 2 exp

(
− 2n2ε2∑n

i=1(bi − ai)2

)
,

with X̄n = (X1 +X2 + . . .+Xn) /n.

Applying Lemma 5.7.1, we obtain the following inequality:

Lemma 5.7.2 For any ε > 0 and any large M , there exists a constant β > 0 such that

Pv

(∣∣∣∣∣ 1n
n∑

i=1

ci1{Ui>1−lifn} − r(v)

∣∣∣∣∣ ≥ ε

)
≤ exp(−nβ),

uniformly for all 0 < v ≤M and for all sufficiently large n, where Pv denotes the original
probability measure conditioned on V = v

ϕ(1−fn) .
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Proof. Note that Ui are conditionally independent on V . Then by Lemma 5.7.1, for every
n,

Pv

(∣∣∣∣∣ 1n
n∑

i=1

ci1{Ui>1−lifn} −
1

n

n∑
i=1

cip(v, i)

∣∣∣∣∣ ≥ 2ε

)
≤ 2 exp

(
− 8n2ε2∑n

i=1 c
2
i

)
≤ exp(−nβ),

(5.7.1)
where β is some unimportant constant not depending on n and v.

Using (5.7.1), to obtain the desired result, it suffices to show the existence of N , such
for all n ≥ N , ∣∣∣∣∣ 1n

n∑
i=1

cip(v, i)− r(v)

∣∣∣∣∣ ≤ ε (5.7.2)

holds uniformly for all v ≤M . Recall that r(v) =
∑

j≤|W| cjwj p̃(v, j).

Recall that nj denotes the number of obligors in sub-portfolio j. Thus,∣∣∣∣∣ 1n
n∑

i=1

cip(v, i)− r(v)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
j≤|W|

cj

(
p(v, j)

nj

n
− p̃(v, j)wj

)∣∣∣∣∣∣
≤
∑
j≤|W|

cjp(v, j)
∣∣∣nj

n
− wj

∣∣∣
+
∑
j≤|W|

cjwj |p(v, j)− p̃(v, j)|

≤
∑
j≤|W|

cj

∣∣∣nj

n
− wj

∣∣∣+ c̄ max
j≤|W|

|p(v, j)− p̃(v, j)| (5.7.3)

By Assumption 5.2.1, there exists N1 satisfying
∑

j≤|W| cj
∣∣nj

n
− wj

∣∣ ≤ ε
2
for all n ≥ N1.

For the second part of (5.7.3), by noting that ex ≥ 1 + x for all x ∈ R, we have

|p(v, j)− p̃(v, j)| = exp

(
−v
(
ϕ(1− ljfn)

ϕ(1− fn)
∧ lαj

))(
1− exp

(
−v
∣∣∣∣ϕ(1− ljfn)

ϕ(1− fn)
− lαj

∣∣∣∣))
≤ v

∣∣∣∣ϕ(1− ljfn)

ϕ(1− fn)
− lαj

∣∣∣∣
≤M

∣∣∣∣ϕ(1− ljfn)

ϕ(1− fn)
− lαj

∣∣∣∣ . (5.7.4)

Since ϕ ∈ RVα(1), there existsN2 such that for all n ≥ N2, c̄ max
j≤|W|,v∈A

|p(v, j)− p̃(v, j)| ≤ ε
2
.
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Combining the upper bound for both parts in (5.7.3) and letting N = max{N1, N2},
(5.7.2) holds uniformly for all v ≤M . The proof is then completed.

Proof of Theorem 5.3.1. To perform asymptotic analysis, let v∗δ denote the unique
solution to the equation r(v) = b− δ. By using continuity and monotonicity of r(v) in v,
we have

v∗δ → v∗

as δ → 0.

Fix δ > 0. We decompose the probability of the event {Ln > nb} into two terms as

P (Ln > nb) = P
(
Ln > nb, V ≤ v∗δ

ϕ(1− fn)

)
+ P

(
Ln > nb, V >

v∗δ
ϕ(1− fn)

)
= I1 + I2.

The remaining part of proof will be divided into three steps. We first show that I1 is
asymptomatically negligible. Then we develop upper and lower bounds for I2 with the
second and third step.

Step 1. We show I1 = o(fn). Note that for any v ≤ v∗δ , r(v) ≤ b − δ. Thus, by Lemma
5.7.2, for all sufficiently large n, there exists a constant β > 0 such that

Pv (Ln > nb) ≤ Pv

(
1

n

n∑
i=1

ci1{Ui>1−lifn} − r(v) > δ

)
≤ exp(−nβ)

uniformly for all v ≤ v∗δ . So the same upper bound holds for I1. Due to the condition on
fn, I1 = o(fn).

Step 2. We now develop an asymptotic upper bound for I2. Note that

I2 ≤ P
(
V >

v∗δ
ϕ(1− fn)

)
= F̄V

(
v∗δ

ϕ(1− fn)

)
.

Recall that ϕ−1 is the L-S transform for random variable V . Then from the condition
ϕ ∈ RVα(1) and Karamatas Tauberian theorem, we obtain

I2 ≲ F̄V

(
v∗δ

ϕ(1− fn)

)
, F̄V ∈ RV−1/α(∞)

∼
1− ϕ−1

(
ϕ(1−fn)

v∗δ

)
Γ(1− 1/α)

, 1− ϕ−1 ∈ RV1/α(0)

∼ fn
(v∗δ )

−1/α

Γ(1− 1/α)
.
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Letting δ ↓ 0, we obtain

I2 ≲ fn
(v∗)−1/α

Γ(1− 1/α)
. (5.7.5)

Step 3. We now develop an asymptotic lower bound for I2. Denote v∗
δ̂
as the unique

solution to the equation r(v) = b+ δ. Similarly, we have v∗
δ̂
→ v∗ as δ → 0. It also follows

from the monotonicity of r(v) that v∗
δ̂
≥ v∗δ . Thus,

I2 ≥ P
(
Ln > nb, V >

v∗
δ̂

ϕ(1− fn)

)
.

Note that for any large M > 0, applying Lemma 5.7.2, it holds uniformly for v ∈
[
v∗
δ̂
,M
]

that

Pv (Ln > nb) ≥ Pv

(
1

n

n∑
i=1

ci1{Ui>1−lifn} − r(v) > −δ

)
→ 1.

Hence,

I2 ≳ F̄V

(
v∗
δ̂

ϕ(1− fn)

)
− F̄V

(
M

ϕ(1− fn)

)
∼ fn

(v∗
δ̂
)−1/α

Γ(1− 1/α)
− fn

M−1/α

Γ(1− 1/α)
.

Taking M → ∞ followed by δ → 0, we get

I2 ≳ fn
(v∗)−1/α

Γ(1− 1/α)
. (5.7.6)

Combining (5.7.5), (5.7.6) with Step 1 completes the proof of the theorem.

Proof of Theorem 5.3.2. We first note that the expected shortfall can be rewritten as
follows:

E [Ln|Ln > nb] = nb+ n

∫∞
b

P (Ln > nx) dx

P (Ln > nb)
. (5.7.7)

Using Theorem 5.3.1, in order to get the desired result, it suffices to show that∫ ∞
b

P (Ln > nx) dx ∼ fn

∫∞
v∗
r′(v)v−1/αdv

Γ(1− 1/α)
. (5.7.8)
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We decompose the left hand side of (5.7.8) into the following two terms∫ ∞
b

P (Ln > nx) dx =

∫ c̄

b

P (Ln > nx) dx+

∫ ∞
c̄

P (Ln > nx) dx

= J1 + J2,

where c̄ =
∑

j≤|W| cjwj. The remaining part of proof will be divided into three steps. We

first show P (Ln > nc̄) and J2 are asymptomatically negligible with the first and second
step. Then we develop the asymptotic for J1.

Step 1. In this step, we show

P (Ln > nc̄) = o(fn). (5.7.9)

Fix an arbitrarily small δ > 0. Proceeding in the same way as in step 1 in the proof of
Theorem 5.3.1, for all sufficiently large n, there exists a constant β > 0 such that

P
(
Ln > nc̄, V ≤ r←(c̄− δ)

ϕ(1− fn)

)
≤ exp(−nβ).

Due to the condition on fn and letting δ ↓ 0, we have the desired result in (5.7.9).

Step 2. In this step, we show J2 = o(fn). Note that J2 can be rewritten as follows,

J2 = E
[(

Ln

n
− c̄

)
+

]
= E

[(
Ln

n
− c̄

)
1{Ln>nc̄}

]
.

Since Ln

n
< max

j≤|W|
cj, we have

J2 ≤
(
max
j≤|W|

cj − c̄

)
P (Ln > nc̄) .

It follows from (5.7.9) that J2 = o(fn).

Step 3. To this end, we show

lim
n→∞

∫ c̄

b

Γ(1− 1/α)

fn
P (Ln > nx) dx =

∫ ∞
v∗

r′(v)v−1/αdv.
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First note that, for any x ∈ [b, c̄], by Theorem 5.3.1 and Step 1, there exists ε > 0 such
that the following inequality

Γ(1− 1/α)

fn
P (Ln > nx) ≤ Γ(1− 1/α)

fn
P (Ln > nb) ≤ (r←(b))−1/α + ε

holds for all sufficiently large n. Applying the dominated convergence theorem, which is
justified by the inequality above and the compactness of the interval [b, c̄], we obtain

lim
n→∞

∫ c̄

b

Γ(1− 1/α)

fn
P (Ln > nx) dx =

∫ c̄

b

(
lim
n→∞

Γ(1− 1/α)

fn
P (Ln > nx)

)
dx

=

∫ c̄

b

(r←(x))−1/αdx

=

∫ ∞
v∗

r′(v)v−1/αdv.

The last equality is by changing the variable and let v = r←(x).

Combing Step 2 and Step 3 completes the proof of the theorem.

5.7.2 Proofs for Nested Gumbel Copulas

We now prepare a key lemma for proving Theorem 5.3.3.

Lemma 5.7.3 For any ε > 0 and any large M , there exists a constant β > 0 such that

Pv0,v1,...,v|W|

∣∣∣∣∣∣ 1n
∑
j≤|W|

cj

nj∑
l=1

1{Ujl>1−ljfn} − r(v0, v1, . . . , v|W|)

∣∣∣∣∣∣ ≥ ε

 ≤ exp(−nβ),

uniformly for all vj ≤M, j = 0, 1, . . . , |W| and for all sufficiently large n, where Pv0,v1,...,v|W|

denotes the original probability measure conditioned on V0 =
v0

ϕ0(1−fn) and Ṽj = vj for every

j = 1, . . . , |W|.

Proof. Note that Ujl are conditionally independent given V0 and Ṽj, j = 1, . . . , |W|. Then
by Lemma 5.7.1, for every n,

Pv0,v1,...,v|W|

∣∣∣∣∣∣ 1n
∑
j≤|W|

cj

nj∑
l=1

1{Ujl>1−ljfn} − 1

n

∑
j≤|W|

cjnjp(v0, vj, j)

∣∣∣∣∣∣ ≥ 2ε


≤2 exp

(
− 8n2ε2∑n

i=1 c
2
i

)
≤ exp(−nβ), (5.7.10)
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where β is some constant not depending on n, v0 and vj for j = 1, . . . , |W|.
Recall that r(v0, v1, . . . , v|W|) =

∑
j≤|W| cjwj p̃(v0, vj, j). Consequently, to obtain the

desired result, it suffices to show the existence of N , such for all n ≥ N ,∣∣∣∣∣∣ 1n
∑
j≤|W|

cjnjp(v0, vj, j)− r(v0, v1, . . . , v|W|)

∣∣∣∣∣∣ ≤ ε (5.7.11)

holds uniformly for all vj ≤M, j = 0, . . . , |W|.
Similarly to the derivation of (5.7.3) in the proof of Lemma 5.7.2, we obtain that∣∣∣∣∣∣ 1n
∑
j≤|W|

cjnjp(v0, vj, j)− r(v0, v1, . . . , v|W|)

∣∣∣∣∣∣ ≤
∑
j≤|W|

cj

∣∣∣nj

n
− wj

∣∣∣+c̄ max
j≤|W|

|p(v0, vj, j)− p̃(v0, vj, j)| .

(5.7.12)
By Assumption 5.2.1, there exists N1 satisfying

∑
j≤|W| cj

∣∣nj

n
− wj

∣∣ ≤ ε
2
for all n ≥ N1.

For the second part of (5.7.12), the upper bound is easy to establish in a similar manner
as (5.7.4), that is,

|p(v0, vj, j)− p̃(v0, vj, j)| ≤M1+αj/α0

∣∣∣∣ϕj(1− ljfn)

ϕj(1− fn)
− l

αj

j

∣∣∣∣ .
Since ϕj ∈ RVαj

(1), there existsN2 such that for all n ≥ N2, c̄ max
j≤|W|

|p(v0, vj, j)− p̃(v0, vj, j)| ≤
ε
2
.

Combining the upper bound for both parts in (5.7.12) and letting N = max{N1, N2},
(5.7.11) holds uniformly for all vj ≤M, j = 0, . . . , |W|. The proof is then completed.

Proof of Theorem 5.3.3. Recall v∗
δ̂
is defined in Step 3 of the proof of Theorem 5.3.1,

where
r(v∗

δ̂
) =

∑
j≤|W|

cjwj

(
1− exp

(
−v∗

δ̂
lα0
j

))
= b+ δ.

Compared with r(v0, v1, . . . , v|W|) defined in (5.3.8), one can easily check that if vjv
αj/α0

0 l
αj

j >

v∗
δ̂
lα0
j , r(v0, v1, . . . , v|W|) > b+δ as well. A trivial case is v0 > v∗

δ̂
and vj >

(
v∗
δ̂

)1−αj/α0

l
α0−αj

j

for every j = 1, . . . , |W|.
Then the default probability of the event {Ln > nb} has the following lower bound,

P
(
Ln > nb, V0 ∈

(
v∗
δ̂

ϕ0(1− fn)
,

M

ϕ0(1− fn)

)
, Ṽj ∈

((
v∗
δ̂

)1−αj/α0 l
α0−αj

j ,M
)
, j = 1, . . . , |W|

)
.
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Taking limit and by Lemma 5.7.3, we obtain

P (Ln > nb) ≳ fn

(
(v∗

δ̂
)−1/α0

Γ(1− 1/α0)
− M−1/α0

Γ(1− 1/α0)

) ∏
j≤|W|

(
F̄j

((
v∗
δ̂

)1−αj/α0 l
α0−αj

j

)
− F̄j(M)

)
,

where F̄j is the tail probability for Ṽj, j = 1, . . . , |W|. Let M → ∞ followed by δ → 0.
The following inequality holds,

P (Ln > nb) ≳ fn
(v∗)−1/α0

Γ(1− 1/α0)

∏
j≤|W|

(
F̄j

(
(v∗)1−αj/α0 l

α0−αj

j

))
≳ Kfn,

where K > 0 is some constant.

5.7.3 Proofs for Algorithm Efficiency

Lemma 5.7.4 and 5.7.5 will be used in proving Lemma 5.4.1.

Lemma 5.7.4 For sufficiently large n, there exists a constant C such that

fV (x)

f ∗V (x)
≤ C (− log ϕ(1− fn)) (5.7.13)

for all x, where f ∗V (x) is defined in (5.4.5).

Proof. By definition of f ∗V (x), the ratio
fV (x)
f∗V (x)

equals 1 for x < c1. Hence, to show (5.7.13),

it suffices to show the existence of a constant C for all x ≥ c1.

Note that when x ≥ c1,

fV (x)

f ∗V (x)
=

fV (x)

F̄V (c1)
c
1/ log ϕ(1−fn)
1 (− log ϕ(1− fn))x

1− 1
log ϕ(1−fn) . (5.7.14)

For any small ε < 1/α, by properly selecting c1 based on ε and Potter’s bounds (see Lemma
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2.1.1(1)), it holds for all x ≥ c1 such that

F̄V (c1)

fV (x)
=

∫ ∞
c1

fV (t)

fV (x)
dt

> (1− ε)

((∫ ∞
c1

(t/x)−
1
α
−1−εdt

)
∧
(∫ ∞

c1

(t/x)−
1
α
−1+εdt

))
> (1− ε)x1/α+1c

−1/α
1

((
(x/c1)

ε

1/α + ε

)
∧
(
(x/c1)

−ε

1/α− ε

))
> (1− ε)x1/α+1c

−1/α
1

(
(x/c1)

−ε

1/α + ε

)
. (5.7.15)

From (5.7.15), an upper bound for (5.7.14) is derived as follows,

fV (x)

f ∗V (x)
<

1/α + ε

1− ε
(− log ϕ(1− fn))

(
x

c1

)−1/α− 1
log ϕ(1−fn)

+ε

(5.7.16)

≤ 1/α + δ

1− δ
(− log ϕ(1− fn)) ,

which yields our desired result by letting C = 1/α+ε
1−ε . The last inequality is due to the fact

that x/c1 ≥ 1.

Lemma 5.7.5 If ϕ ∈ RVα(1) for some α > 1 and fn is a positive deterministic function
converging to 0 as n→ ∞, then

log ϕ(1− fn) ∼ α log(fn). (5.7.17)

Proof. By Proposition B.1.9(1) of de Haan and Ferreira (2006), ϕ ∈ RVα(1) implies that

log ϕ(1− x) ∼ α log(x)

as x→ 0. This completes the proof.

Proof of Lemma 5.4.1. Let

L̂ =
∏

j≤|W|

(
pj
p∗j

)njYj
(
1− pj
1− p∗j

)nj(1−Yj)

.
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Note that if E
[
Ln

∣∣∣V = v
ϕ(1−fn)

]
< nb, p∗j = pθ∗(V ϕ(1−fn), j) where θ∗ is chosen by solving

Λ′Ln|V (θ) = nb; otherwise p∗j = p (V ϕ(1− fn), j) by setting θ∗ = 0. Besides, (5.4.7) shows

L̂ can be written as follows.

L̂ = exp(−θ∗Ln|V + ΛLn|V (θ
∗)). (5.7.18)

Then it follows that, for any v,

1{Ln>nb,V= v
ϕ(1−fn)}L̂ ≤ 1{Ln>nb,V= v

ϕ(1−fn)} exp(−θ
∗nb+ ΛLn|V (θ

∗)) a.s.

Since ΛLn|V (θ) is a strictly convex function, one can observe that −θnb + ΛLn|V (θ) is
minimized at θ∗ and equals 0 at θ = 0. Hence, the following relation

1{Ln>nb,V= v
ϕ(1−fn)}L̂ ≤ 1{Ln>nb,V= v

ϕ(1−fn)} a.s. (5.7.19)

holds for any v.

To prove the theorem, now we re-express

E∗
[
1{Ln>nb}L

∗2
]
= E∗

[
1{

Ln>nb,V≤
v∗
δ

ϕ(1−fn)

}L∗2
]
+ E∗

[
1{

Ln>nb,V >
v∗
δ

ϕ(1−fn)

}L∗2
]

= K1 +K2,

where v∗δ is the unique solution to the equation r(v) = b− δ.

The remaining part of proof will be divided into three steps.

Step 1. In this step, we show
K1 = o(f 2

n). (5.7.20)

By Lemma 5.7.4, for sufficiently large n, there exists a finite positive constant C such that

fV (v)

f ∗V (v)
≤ C (− log ϕ(1− fn))

for all v. From (5.7.19), it then follows that

1{
Ln>nb,V≤

v∗
δ

ϕ(1−fn)

}L∗2 ≤ C (− log ϕ(1− fn))

(
1{

Ln>nb,V≤
v∗
δ

ϕ(1−fn)

}L∗
)

a.s.
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Therefore, K1 is upper bounded by

E∗
[
1{

Ln>nb,V≤
v∗
δ

ϕ(1−fn)

}L∗2
]
≤ C (− log ϕ(1− fn))

(
E∗
[
1{

Ln>nb,V≤
v∗
δ

ϕ(1−fn)

}L∗
])

= C (− log ϕ(1− fn))

(
P
(
Ln > nb, V ≤ v∗δ

ϕ(1− fn)

))
≤ C (− log ϕ(1− fn)) exp(−βn).

The last step is due to step 1 in the proof of Theorem 5.3.1. And (5.7.20) is verified by
Lemma 5.7.5 and noting that fn has a sub-exponential decay rate.

Step 2. To this end, we show that

lim sup
n→∞

logK2

log fn
≤ 2. (5.7.21)

By Jensen’s inequality,

E∗
[
1{

Ln>nb,V >
v∗
δ

ϕ(1−fn)

}L∗2
]
≥

(
E∗
[
1{

Ln>nb,V >
v∗
δ

ϕ(1−fn)

}L∗
])2

=

(
P
(
Ln > nb, V >

v∗δ
ϕ(1− fn)

))2

∼ f 2
n

(
(v∗)−1/α

Γ(1− 1/α)

)2

.

Then (5.7.21) follows by applying the logarithm function on both sides and using the fact
that log (fn) < 0 for all sufficiently large n.

Step 3. To this end, we show that

lim inf
n→∞

logK2

log fn
≥ 2. (5.7.22)

First note that, on the set
{
Ln > nb, V >

v∗δ
ϕ(1−fn)

}
, the likelihood ratio L∗ is upper bounded

by fV (v)
f∗V (v)

and hence by (5.7.16), with sufficiently large n, it holds for all v >
v∗δ

ϕ(1−fn) that

fV (v)

f ∗V (v)
< C (− log ϕ(1− fn))

(
v∗δ/ϕ(1− fn)

c1

)−1/α− 1
log ϕ(1−fn)

+ε

< C (− log ϕ(1− fn))

(
v∗δ
c1

)−1/α+ε

ϕ(1− fn)
1/α−ε.
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Multiplying it with the indicator and taking expectation under E∗, we obtain

E∗
[
1{

Ln>nb,V >
v∗
δ

ϕ(1−fn)

}L∗2
]
≤ C2 (− log ϕ(1− fn))

2

(
v∗δ
c1

)−2/α+2ε

ϕ(1− fn)
2/α−2ε.

(5.7.23)

Then, taking logarithms on both sides, dividing by log fn and by Lemma 5.7.5, we obtain

lim inf
n→∞

logE∗
[
1{

Ln>nb,V >
v∗
δ

ϕ(1−fn)

}L∗2
]

log fn
≥ 2− 2αε.

Finally, (5.7.22) is yield by letting ε ↓ 0.

Combining Step 1, Step 2 and Step 3, the desired result asserted in the theorem is
obtained.

Lemma 5.7.6 below will be used in proving Lemma 5.5.1 and Lemma 5.5.2.

Lemma 5.7.6 Let R1, . . . , Rn be an i.i.d. sequence of standard exponential random vari-
ables. Suppose R(k) is the kth order statistic and limn→∞

k
n
= a < 1. Then, for every

ε > 0, there exists a constant β > 0 such that the following inequality

P
(∣∣∣∣R(k) − log

(
1

1− a

)∣∣∣∣ ≥ ε

)
≤ β

n
.

holds for all sufficiently large n.

Proof. For i.i.d. standard exponential random variables Ri, i = 1, . . . , n, it follows from
Rényi (1953) that

R(k)
d
=

k∑
j=1

Rj

n− j + 1
.

Then,

E[R(k)] =
k∑

j=1

1

n− j + 1
→ log

(
1

1− a

)
, as n→ ∞, (5.7.24)

and

Var[R(k)] =
k∑

j=1

(
1

n− j + 1

)2

∼ a

1− a

1

n
, as n→ ∞. (5.7.25)
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By Chebyshev’s inequality, it follows that, for every n > 0,

P
(
|R(k) − E[R(k)]| ≥ ε

)
≤

Var[R(k)]

ε2
.

Due to (5.7.24) and (5.7.25), there exists N , such that for all n ≥ N ,

P
(∣∣∣∣R(k) − log

(
1

1− a

)∣∣∣∣ ≥ ε

)
≤ β

n
,

where β only depends on ε and a.

Proof of Lemma 5.5.1. Recall that Oi =
Ri

ϕ(1−lifn) , for all i = 1, . . . , n. Then the order
statistic O(k) is almost surely lower bounded by

R(k)

ϕ

(
1− max

j≤|W|
ljfn

) .
Since k = min{l :

∑l
i=1 c(i) > nb}, we have

lim inf
n→∞

k

n
≥ b

max
j≤|W|

cj
:= b′. (5.7.26)
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Fix ε > 0. For all sufficiently large n, E [S2(R)] can be bounded as follows,

E
[
S2(R)

]
≤ E

P
V >

R(⌊nb′⌋)

ϕ

(
1− max

j≤|W|
ljfn)

)


2

≤ E


P

V >
R(⌊nb′⌋)

ϕ

(
1− max

j≤|W|
ljfn)

) , R(⌊nb′⌋) ≥ log

(
1

1− b′

)
− ε



+ P

V >
R(⌊nb′⌋)

ϕ

(
1− max

j≤|W|
ljfn)

) , R(⌊nb′⌋) < log

(
1

1− b′

)
− ε




2

≤

P

V >
log
(

1
1−b′
)
− ε

ϕ

(
1− max

j≤|W|
ljfn)

)
+ P

(
R(⌊nb′⌋) < log

(
1

1− b′

)
− ε

)
2

.

Then,

lim sup
n→∞

E [S2(R)]

f 2
n

≤

lim sup
n→∞

P

V >
log( 1

1−b′ )−ε

ϕ

(
1− max

j≤|W|
ljfn)

)


fn
+ lim sup

n→∞

P
(
R(⌊nb′⌋) < log

(
1

1−b′
)
− ε
)

fn



2

≤

(
max
j≤|W|

lj

(
log
(

1
1−b′
)
− ε
)−1/α

Γ(1− 1/α)
+M

)2

<∞.

The last step is due to the regular variation of V , Lemma 5.7.6 and the condition that
1
n
= O(fn).

Proof of Lemma 5.5.2. Recall that

Ojl =

(
Rjl/Ṽj

)α0/αj

ϕ0(1− ljfn)
,

118



for all l = 1, . . . , nj and j = 1, . . . , |W|. Let R(j,⌊njb′⌋) be the ⌊njb
′⌋-th order statis-

tic of (Rjl)1≤l≤nj
for any j = 1, . . . , |W|, where b′ is defined in (5.7.26), and let 1/Ṽ =

min
j≤|W|

(
1/Ṽj

)α0/αj

. The order statistic Q(k) is therefore almost surely lower bounded by

min
j≤|W|

{
R

α0/αj

(j,⌊njb′⌋)

}
/Ṽ

ϕ0

(
1− max

j≤|W|
ljfn)

) .
Fix ε > 0. For all sufficiently large n, E [S2(Y)] can be bounded as follows,

E
[
S2(Y)

]
≤ E

P
V0 > min

j≤|W|

{
R

α0/αj

(j,⌊njb′⌋)

}
/Ṽ

ϕ0

(
1− max

j≤|W|
ljfn)

)


2

= E

P
V0Ṽ >

min
j≤|W|

{
R

α0/αj

(j,⌊njb′⌋)

}
ϕ0

(
1− max

j≤|W|
ljfn)

)


2 (5.7.27)

≤

P

V0Ṽ >
log
(

1
1−b′
)α0/αmin ∧ log

(
1

1−b′
)α0/αmax − ε

ϕ0

(
1− max

j≤|W|
ljfn)

)


+ P

(
min
j≤|W|

{
R

α0/αj

(j,⌊njb′⌋)

}
< log

(
1

1− b′

)α0/αmin

∧ log

(
1

1− b′

)α0/αmax

− ε

))2

,

(5.7.28)

where αmin, αmax denotes the minimum and maximum of the set {αj, j = 1, . . . , |W|}.

Since V0 ∈ RV−1/α0(∞), Ṽj ∈ RV−α0/αj
(∞), we observe that Ṽ ∈ RV−1(∞) and there-

fore the well-known Breiman’s result implies

P(V0Ṽ > x) ∼ E(Ṽ 1/α0)P(V0 > x). (5.7.29)

See Cline and Samorodnitsky (1994) for a complete proof and Jessen and Mikosch (2006)
for details about the elementary functions of regularly varying random variables, such as
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products, minima, maxima. By (5.7.29), as n→ ∞, the first part of (5.7.28) is equivalent
to

E(Ṽ 1/α0)P

V0 > log
(

1
1−b′
)α0/αmin ∧ log

(
1

1−b′
)α0/αmax − ε

ϕ0

(
1− max

j≤|W|
ljfn)

)
 ∼M1fn,

where M1 is some constant. Also note that nj → ∞ as n→ ∞, then by Lemma 5.7.6 and
the condition that 1

n
= O(fn), the second part of (5.7.28) is upper bounded by M2fn.

Hence,

lim sup
n→∞

E [S2(Y)]

f 2
n

≤ (M1 +M2)
2 <∞.

The desired result is then obtained.
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Chapter 6

Future Work

In this chapter, we conclude with some potential extensions to consider in the future.

• In Chapter 3, we only provide the second-order result regarding the convergence speed
for the FGM copula, which may not be that popular in the literature. One possible
direction of future research is to investigate similar results involving Gaussian copulas
or mixture of Gaussian copulas. Besides, the main input for Chapter 3 lies in the
theoretical treatments of multivariate regular variation (MRV), which, however, is
criticized for its restrictive assumption of equality of tail indices. In our conducted
empirical study, the validity of the MRV model is simply checked by comparing the
tail indices of all marginal distributions. Since the tail index αi for each component
is estimated separately, one would hardly obtain identical values at the same time.
Therefore, as long as the confidence interval for αi overlap, we conjecture that the
MRV model is close enough to reality. A formal goodness-of-fit test of the MRV
model is recently proposed by Einmahl et al. (2018), where the authors compare the
tail indices of the radial component conditional on the angular component falling
in different, disjoint subsets. However, it remains an open question whether we can
apply their formal test to datasets that exhibit obvious serial dependence.

• In Chapter 5, we consider an Archimedean copula-based model for measuring port-
folio credit risk. We first derive sharp asymptotics for estimating the probability of
large portfolio losses and the expected shortfall. Using this as a stepping stone, we
develop an importance sampling algorithm based on hazard rate twisting and another
algorithm based on conditional Monte Carlo. The assumption of an Archimedean
copula may be more suitable for a large homogeneous portfolio. In order to capture

121



hierarchical dependence structure among the obligors in a large credit portfolio, the
nested Gumbel copula is taken into consideration due to its particular structure in
the stochastic representation. For this special case, we provide an efficient algorithm
for estimating the portfolio credit risk. A potential direction of future research is to
consider other Archimedean families in a hierarchical structure.

Also note that in our portfolio loss model (5.2.3), we assume the loss given default
(LGD) is 100%, which is impractical. To handle this issue, we can follow the literature
to model the default probability and LGD jointly by linking them with some common
risk factors; see, e.g., Rösch and Scheule (2014) and Betz et al. (2018). Alternatively,
we can follow the idea in Shi et al. (2017) to link the LGD to the severity of default
through a loss settlement function. Inspired by the work of Choroś-Tomczyk et al.
(2013), we can also model the relation between the joint defaults and the LGD using
nested Archimedean copulas by letting the LGD uniformly distributed on [0,1], see
Figure 6.1. In this way, we introduce heterogeneous LGDs for each sub-portfolio and
every LGD is further linked with the defaults in that sub-portfolio with a copula.

C0(·;ϕ0)

C1L(·;ϕ1L)

C1(·;ϕ1)

u11 · · · u1n1

LGD1

C2L(·;ϕ2L) · · · CdL(·;ϕdL)

Cd(·;ϕd)

ud1 · · · udnd

LGDd

Figure 6.1: Tree structure of the partially nested Archimedean copula with random middle-
level LGDs involved
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