
Parallel Paths Analysis Using
Function Call Graphs

by

Arman Naeimian

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Arman Naeimian 2019

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Call graphs have been used widely in different software engineering areas. Since call
graphs provide us with detailed information about the structure of software elements and
components and how they are connected with each other, they could be used in detecting
specific structures and patterns in the code such as malware, code clones, unreachable code,
and many other software symptoms that could be searched by their structural features. In
this work, we have analyzed parallel paths in function call graphs in three Java open-source
projects. Parallel paths emerge when there is more than one path between two nodes in
the call graph. We investigated the reasons such paths are created and used for and also
the problems that result in removing them. Moreover, we have used the results of our
analyses to find instances of parallel paths in the projects that we analyzed and suggest
some changes to developers based on that. Based on our results, we found three categories
of problems associated with parallel paths and four categories of usages of them.

iii

Acknowledgements

I definitely would not have finished this thesis had it not been for the people who
supported and helped me. I will try to thank everybody that comes to my mind here.

Foremost, I would like to thank my supervisors, Mei Nagappan and Semih Salihoglu, for
guiding me through this process while also providing me with every facility that I needed
to conduct this research.

To Mike Godfrey and Grant Weddell, thank you for being readers for my thesis and
giving me valuable feedback.

Thank you to my parents, Hedieh and Jahangir for all of your support and sympathy.

To all of my labmates, Ten, Aaron, Reza, Davood, Dan, Bushra, Gema, Cassiano,
Cosmos, Ashwin, Magnus, Sunjay, Jeremy, Kilby, Achyudh, and Lakshman, thank you for
making the office an enjoyable place for me.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Thesis Contributions . 3

1.2 Thesis Organization . 3

2 Background and Related Research 4

2.1 Call Graphs and Malware Detection . 4

2.2 Call Graphs Visualization . 5

2.3 Call Graphs and Software Metrics . 6

2.4 Network Motifs and Software Motifs . 7

2.5 Call Graphs and Detection of Bugs and Patterns 8

3 Methodology 11

3.1 Corpus and Data . 11

3.2 Building Projects . 13

3.3 Generating Call Graphs . 13

3.4 Parsing Call Graphs . 16

3.5 Calculating Diffs . 16

v

4 Results 18

4.1 RQ1: Why are parallel paths created and used? 19

4.2 RQ2: Why are parallel paths removed or changed? 24

4.2.1 Hadoop . 25

4.2.2 Flink . 28

4.2.3 Jmeter . 31

4.2.4 Conclusions . 32

4.3 Comparison of the first and the last versions 35

4.3.1 Hadoop . 35

4.3.2 Flink . 37

4.3.3 Jmeter . 38

4.3.4 Conclusions . 39

4.4 RQ3: Is it possible to suggest to developers to apply some changes to the
current version of the software based on the information gained from ana-
lyzed parallel paths? . 40

5 Conclusions 43

5.1 Threats to Validity . 44

5.2 Future Work . 44

References 45

APPENDICES 47

vi

List of Tables

3.1 Dataset projects . 12

4.1 Total number of triangles and analyzed triangles for each project 19

4.2 Categorization of triangles . 19

4.3 Results of automated analysis for each category 22

4.4 Hadoop Removed Triangles . 26

4.5 Hadoop Removed Triangles Categories . 27

4.6 Commit type distribution between Hadoop categories 29

4.7 Flink Removed Triangles . 32

4.8 Flink Removed Triangles Categories . 32

4.9 Commit type distribution between Flink categories 32

4.10 Jmeter Removed Triangles . 33

4.11 Jmeter Removed Triangles Categories . 33

4.12 Commit type distribution between Jmeter categories 33

4.13 Hadoop first and last versions comparison 35

4.14 Hadoop removed triangles of first version categories 36

4.15 Flink first and last versions comparison . 37

4.16 Flink removed triangles of first version categories 37

4.17 Jmeter first and last versions comparison 38

4.18 Jmeter removed triangles of first version categories 38

4.19 Double Check Group Instances . 41

4.20 Hook Methods Group Instances . 41

vii

List of Figures

1.1 An example of parallel paths . 2

2.1 An example of functions visualization in different levels of density 6

2.2 Software motifs structure . 8

3.1 The process of generating call graphs . 12

3.2 A sample code snippet and its corresponding call graph 14

3.3 An example of a change in code which changes the call graph 15

3.4 An example of a change in code which does not change the call graph . . . 15

3.5 The process of finding changed patterns 17

4.1 The simplest form of parallel paths . 18

4.2 Sample code showing SubSuperClass category 21

4.3 Sample code showing Overloaded Methods category 22

4.4 Sample code showing Delegation Category 23

4.5 Parallel Paths Changes . 25

4.6 Extract Method . 26

4.7 Double Check Category . 28

4.8 Hook Method Category . 29

4.9 Logging Issues Category. In function a , warn is replaced with debug. . . . 30

4.10 Parameters Category. In function a , the call to c should be removed because
it is called with a deprecated parameter. 31

viii

Chapter 1

Introduction

Using function call graphs for software analysis has gained considerable attention in the
research community. By definition, a call graph is a control flow graph, which represents
calling relationships between subroutines in a computer program. Each node represents
a procedure, and each edge (f, g) indicates that procedure f calls procedure g. [27]. In
function call graphs (FCGs), nodes are functions and edges are calls between functions.

Since call graphs provide us with symbolic, syntactic, and topological features of soft-
ware systems [28], they could be used in different areas. In many works, call graphs have
been used for malware detection [11][10][31][16]. Furthermore, some efforts have focused
on defining new software metrics based on call graphs to measure software complexity
[24][21][22]. Also, some other researchers have focused on using call graphs for clone de-
tection, similarity detection, and unreachable code detection [23][26].

Nevertheless, call graphs have been mainly used for analyzing software systems in high
levels to gain a big picture of the system and understand how its coarse-grained elements
(e.g. modules and components) interact [29] [8] [10]. There are still many paths for using
call graphs at lower levels, like in the level of functions. In this work we have used call
graphs in the level of single functions to investigate purposes and issues related to parallel
paths. Parallel paths emerge when there are more than one path between two nodes
(functions) in the function call graph. Figure 1.1 shows an example of parallel paths. In
this example, there are two paths between nodes main and printf , one with length 1
(main-printf) and one with length 3 (main-parse-execute-printf).

Therefore, the question would be why should one function call another function in two
ways. We are curious to know why parallel paths are created and used to find whether
there are reasonable and correct ways of using them. In addition, we want to know why

1

Figure 1.1: An example of parallel paths

parallel paths are removed after a while from being added. Moreover, we want to know
whether the changes or removals applied to parallel paths could be used to suggest some
changes to developers. In this regard, we explore three research questions:

• RQ1 Why are parallel paths created and used?

• RQ2 Why are parallel paths removed or changed?

• RQ3 Is it possible to suggest to developers to apply some changes to the current
version of the software based on the information gained from analyzed parallel paths?

2

1.1 Thesis Contributions

This thesis has two main contributions:

• We propose an approach for analyzing parallel paths in function call graphs and con-
duct an empirical study on three large Java projects using this approach to investigate
uses of parallel paths and their changes and removals.

• Based on our results, we suggest some changes to developers of analyzed projects
to improve the quality of the code, make it more readable and understandable, or
remove some bugs or issues from that.

1.2 Thesis Organization

This thesis is organized into five sections. In section 2, we talk about the background
and related research. In section 3, we elaborate on the methodology that we have used
for generating and using call graphs, the corpus and projects that we have used, and the
analysis approach that we have selected for each research question. In section 4, we present
the results for each research question and discuss them. Section 5 includes conclusions of
this research, threats to validity of results, and future work and some suggestions for
extending this work.

3

Chapter 2

Background and Related Research

Investigating call graphs and their uses and features has a long history in software engi-
neering research [9][13][18] . However, there are some recent works which have tried to use
call graphs to help software engineers in different phases of software development such as
debugging, maintenance, and code comprehension [8][25][26].

2.1 Call Graphs and Malware Detection

Gascon et al. propose a malware detection method for Android applications using function
call graphs. They use machine learning classification techniques to improve the efficiency
of finding similarities between call graphs which is used for finding similarities between
code samples [11].

DU et al.[10] also present a new malware detection method which solves the problems
and limitations of existing algorithms such as computation time and the need for manual
operation. In addition, their method outperforms other approaches in terms of malware
detection accuracy. They divide a function call graph into community structures and then
use the features of these structures to detect malware.

Zhou et al. based on the fact that reuse is widely adopted in the creation of malware
and they usually have similar structures, have used an approach to compare between an
existing known malware and a suspect malware in order to detect that. They propose a
framework called CGIDroid, which categorizes malware into families using API call graph
isomorphism and comparing characteristics of suspect malware with the samples of each
family [31].

4

Kinable and Kostakis use call graph clustering in order to classify malware into similar
categories. They represent malware as call graphs which enables them to detect structurally
similar malware and put them in the same category. This categorization helps anti-viruses
to detect different releases of malware which are deliberately created by authors to bypass
anti-viruses detection mechanisms [16].

The difference between our work and the works in this category is that we go through
the level of functions and investigate the interactions between them. However, these works
usually focus on higher levels (e.g., classes and modules) and the relations between them.

2.2 Call Graphs Visualization

Bhattacharya et al. use graph-based analysis to capture software projects evolution and
facilitate the process of development. They generate call graphs to show the project struc-
ture in levels product (e.g., the source code), and process (e.g., developer collaboration)
and define some graph metrics based on these call graphs to capture their properties.
Their results enable them to detect structural changes and estimate bug severity, prioritize
debugging and refactoring efforts, and predict defect-prone releases [8].

Code2graph is a prototype python tool which automates the process of analyzing
Python source code and its structure, generating static call graphs and visualizing them,
and constructing a similarity matrix of all possible execution paths in the system [12].

Shah and Guyer [25] have proposed an interactive call-graph visualization tool for
viewing large programs written in Java or C++. Their tool can scale to view huge numbers
of functions and their connectivity. Their technique is inspired by a DNA microarray
visualization from biology, which is a grid of pixels that packs information into a single
display densely. They use this grid for visualizing functions in a program. Figure 2.1
shows an example of such a grid. The far-left visualization shows the initial program. The
user selected a number of cells and then generated the middle visualization. The far-right
visualization is the result of filtering out more cells. They also keep metadata for each
node, which includes the number of callers, callees, and if the function makes a call to
itself. The interactive features provide the user with information about each function.
For example, hovering mouse over a cell highlights it in yellow. A details pane shows the
metadata associated with each function as we hover over each node. Right-clicking the
cell shows the function name and left-clicking the mouse highlights the cell in green, and
clicking again deselects the cell. When we mouse over a cell, the callees will be highlighted
with a black edge between them. Callers of the method will be drawn with a red edge
between them to distinguish the callees by holding down a keyboard shortcut.

5

Figure 2.1: An example of functions visualization in different levels of density

Hejderup et al. use call graphs for dependency management between open-source soft-
ware libraries. They mention that dependency graphs, which denote libraries as nodes and
dependencies between them as edges, are insufficient for assessing the severity, impact and
spread of bugs. Hence, they propose a fine-grained dependency network which includes
call graph information within and across dependencies and this granularity in source code
level enables them to investigate the effects and the propagation of bugs more accurately
[15].

Our focus on analyzing parallel paths in call graphs is the difference between our work
and the papers in this category, which focus on the visualization of call graphs.

2.3 Call Graphs and Software Metrics

Qu et al. [22] propose two new class cohesion metrics, MCC (Method Community Cohe-
sion) and MCEC (Method Community Entropy Cohesion) based on community structures
of software call graphs. By conducting an empirical study followed by two case studies,
they show that these metrics outperform existing commonly used metrics. First, they pro-
vide additional information about class cohesion which existing metrics can not. Moreover,
they lead to better results in class fault prediction.

Qingfeng et al. [21] have proposed an approach to defining three new software metrics
to reflect the complexity of software from the level of method call relationship. They
generate the call graph of the system and analyze defined metrics by call graph.

6

Sawadpong et al. [24] have used exception handling call graphs to propose some new
exception-based software metrics. Exception handling call graph is a graph in which func-
tions containing at least one form of Java exception handling constructs (e.g., try-catch) are
represented with black nodes and other functions are denoted with white nodes. Pruning
the methods without any exception handling construct results in a set of disjoint subgraphs.
They use these graphs to define metrics like sSize (Number of nodes in exception handling
subgraph), sComplexity (Number of edges of exception handling subgraph), mSize (Num-
ber of nodes within a class in exception handling subgraph), and mComplexity(Number of
edges within a class). Their results reveal that these metrics can predict the fault-proneness
of exception classes better than conventional software metrics.

There are also many works focused on software complexity metrics. Madhan et al.
[17] have used Halstead metrics to analyze the complexity of some genetic optimization
algorithms. Hariprasad et al. [14] have used Halstead metrics to compare two versions of
a program in terms of unpredictability, execution time, and exertion.

We do not focus on metrics and defining them, but our focus is on parallel paths uses,
changes, and issues. We categorize parallel paths in different groups, but we do not define
new metrics based on them, which is the difference between our approach and the works
in this category.

2.4 Network Motifs and Software Motifs

Zhang and Xuelin. [30] have used the concept of software networks and network motifs to
analyze the distribution of bugs in software systems. They define a software network as
a graph which contains software entities such as classes, functions, and variables as nodes
and the relationships between them as edges. Also, they define network motifs as recurrent
and statistically significant sub-graphs or patterns or sub-graphs which continuously repeat
themselves in specific networks or even among various networks. They choose a specific type
of network motifs named FeedForward Loop (FFL) motif which is one type of loop motifs
with the highest degree of uniqueness and is discovered and turned out to be statistically
significant in various types of complex networks. The structure of this motif is the same
as the structure of the simplest form of parallel paths that we are analyzing in our work.
Their results show that FFL motifs have a significant correlation with software bugs. It
can build a connection between software code structure and software logic.

Wu et al. [28] also use software motifs and function call graphs to detect software
homology which determines whether a pair of software evolves from the same code, belongs

7

to the same family, or is originated from the same author or organization. Their work is
based on the fact that call graphs provide us with both symbolic and syntactic information
of the code (e.g., writing styles, layout characteristics and author’s preferences). They first
generate the call graph from source code or binary executable files. Then, they extract
software motifs from the call graph. They only focus on motifs with three vertices, similar
to what we do in this work. Figure 2.2 shows three vertices motifs structures that they
have used. They repeat this process for both plaintiff and defendant (two software pieces
that they want to calculate their similarity).

Figure 2.2: Software motifs structure

They also calculate a metric called motif frequency distribution, which is the probability
distribution of the frequencies of different motif types in a graph. Using this metric, they
define a homology score which is used for determining the homology of two software pieces.
They show that their approach is efficient to detect software homology, especially for large-
scale source codes. Their results reveal that average homology detection accuracy of 10
well-known larger-scale homology source codes with 470 versions is 98.47

The works in this group are close to what we have done because software motifs are
different combinations of nodes and edges, and we focus on one of them, which is the
simplest form of parallel paths. The difference is that our focus is on parallel paths, their
uses, and the problems related to them, but to the best of our knowledge, none of the
mentioned works focus on this topic.

2.5 Call Graphs and Detection of Bugs and Patterns

Oruc et al. [20] have used a graph mining approach for detecting design patterns in object-
oriented code. Their process starts with analyzing source code and extracting Abstract
Syntax Trees out of it and then, based on ASTs, they create a graph model. After that,
they define templates for all Gang of Four design patterns by analyzing class and sequence

8

diagrams of all 23 GoF patterns. Finally, they use Subdues sgiso [7] sub-graph mining
algorithm to search for pattern templates in a model graph. They have developed a fully
automated tool named DesPaD (Design Pattern Detector) to do this process. In their
model graph, they use classes, abstract classes, template classes, and interfaces as nodes and
the relations between classes (e.g., inheritance, aggregation, association, and composition)
as edges. They have used JUnit 3.8, JUnit 4.1, and AWT 3.1 as their data sample. Their
tool can detect all GoF design patterns, and their results show that it outperforms other
similar tools by creating 47% better recall values.

Romano et al. [23] have defined a static approach named DUM (Detecting Unreachable
Methods) which detects unreachable methods by traversing the software call graph. This
tool works at Java byte-code level and takes internal and external classes as input. Internal
classes are in the source code of a project and external classes are related to external
packages and libraries. They consider almost all kinds of method calls (e.g., Virtual,
Static, Constructor) and also native methods which do not have a body in the graph.
They consider three types of nodes as reachable nodes. First, the main methods (specified
in MANIFEST files). Second, methods invoked to initialize a field and methods invoked
in initializer blocks. Third, methods used to customize the serialization/deserialization
process of objects (e.g., writeObject(java.io.ObjectOutputStream)) that are then invoked
by reflection. Every method that has a direct link from a reachable node is considered
reachable and whatever else is considered as unreachable. They performed the analysis of
finding unreachable methods on four open-source projects and then compared their results
with JTombstone and CodePro, which are other tools for detecting unreachable methods.
The results show that DUM outperforms other tools in terms of correctness, completeness,
and accuracy of results.

Turhan et al. [26] have used call graphs and data mining techniques to locate software
bugs. In order to create method level defect predictors to predict defect proneness of
modules, they have used static call graph based ranking (CGBR) and nearest neighbor
sampling. They have performed their analyzes on 25 large telecommunication systems,
and their results show that at least 70% of the defects can be detected by inspecting only
6% of the code using a Naive Bayes model and 3% of the code using CGBR framework.

Musco et al. [19] have used call graphs to propose an evaluation technique to predict
impact propagation. Impact analysis predicts the software elements (e.g., modules, classes,
methods) that are impacted by a change in the software. They have defined four types
of call graphs for propagation analysis. In the first type, overriding methods are not
considered and included in the graph. In the second type, the call graph uses the signature
of the class according to the static type of the receiver. The third type of call graphs
considers classes hierarchy, inheritance and interfaces implementation. The fourth type, in

9

addition to classes hierarchy, considers reads and writes to variables. For instance, when
a function reads a variable, the probable error might propagate from the variable to the
function (an edge exist from the variable to the function in the graph). However, when a
function writes to a variable, the error propagates from the function to the variable (an
edge exist from the function to the variable in the graph). In order to predict the impact
of software changes, they navigate graphs from the source of change to the reachable
nodes. The authors created 17,000 mutants to investigate how the error that they initiate
propagates. Their results show that one of the groups results in better precision and recall
and good execution times.

Zhang et al. use function call graphs for similarity detection in file level, which is useful
for plagiarism detection, code reuse, and information retrieval methods. They use static
analysis methods to construct function call graphs of files. For each node in the graph
(each function), they extract structural and functional features and use them to generate
the largest common call graphs of two files which will be used to judge the similarity of
two files [29].

The similarity between our work and the works in this category is that they try to detect
patterns, bugs, and issues. The difference is that we focus on the issues and patterns related
to parallel paths.

10

Chapter 3

Methodology

In this section, we describe the methodology used for generating call graphs and trans-
forming them into an appropriate format that helps us answer research questions. In order
to be able to record all of the changes of the project call graph, we need to generate a call
graph for each snapshot (the version of the source code after each commit). We first build
each version of the source code to get the Jar executable and then use that as the input
of java-callgraph tool to get the call graph. Then we run our Python scripts to transform
the call graph to our desired format. This approach works efficiently for large projects,
but the problem occurs when building the project (especially older versions) is difficult
or impossible due to obsolete, or removed dependencies. In contrast, using tools which
directly process source code and generate the call graph (without building the project)
solves the problems with dependencies, but spends much more time for large projects.

Figure 3.1 shows the whole process from the project source code to generated call graph
and specifies the tools and technologies used for each step. We describe the blocks of this
figure in the following subsections.

3.1 Corpus and Data

The first block of Figure 3.1 (from the top) is regarding the project source code, so here we
describe our dataset. We selected three open-source java projects from Apache repository.
We wanted our sample to include large projects with a rather long commit history. Hence,
we looked for projects that had at least 10,000 commits and at least five years of commit
history. In addition, since we needed exact information about the reason the commit was

11

Figure 3.1: The process of generating call graphs

created and the problem it is solving, we looked for projects that have an issue tracking
system. Table 3.1 introduces the 3 projects.

Project Description # Commits History

Hadoop Large Data sets Distributed Processing 21683 10 years
Flink Stream processing framework 16292 8 years

Jmeter Load testing tool 16127 20 years

Table 3.1: Dataset projects

Since some of these projects are written in more than one language, we only analyze
those commits that include at least one changed Java file.

12

3.2 Building Projects

The second and third blocks of Figure 3.1 are related to building the project. Since the
java-callgraph tool that we use for generating call graphs needs a Jar executable as its
input, we had to build each project first. We used the build automation tool that was
mentioned in the project documents (e.g., Maven or Gradle). The only issue of this phase
is that as we go through a project’s commit history, building the older versions of that
projects will be more difficult because of removed or obsolete dependencies.

3.3 Generating Call Graphs

The fourth and fifth blocks of Figure 3.1 are related to generating call graphs. There are
many approaches and tools for generating call graphs. Some of them work for multiple
languages [1] while others only work for a specific language [2][6]. We used java-callgraph
[2], which works only for Java applications. This tool gets the built Jar executable of the
source code as input and generates its call graph in a specific text format. It also specifies
the type of each call (each edge in the call graph) based on Java Virtual Machine specifi-
cations [3]. For example, it annotates Invoke Special edges, which are special handling for
superclass, private, and instance initialization method invocations, with (O).

Figure 3.2a shows a sample Java code snippet and Figure 3.2b shows a graphical rep-
resentation of the generated call graph for this code sample. Nodes are shown using circles
and function calls are denoted using arrows. Also, each edge is annotated with its type.
For example, since the edge between functions B.foo() and A.foo() represents a call from
subclass to a superclass, it is annotated with (O) which stands for Invoke Special. (S) and
(M) annotation are related to Invoke Static and Invoke Virtual respectively.

We use the info from edges for making different queries. For instance, when we are
looking for an inheritance relationship between the classes of two methods, we look for
edges with type Invoke Special.

Every change in the source code might change the call-graph of the project if the change
is related to function calls. Figure 3.3 shows an example of a change that changes the call-
graph. In this example, function foo is removing the call to function bar, and because a
function call is removed, it will affect the call graph of the code.

Figure 3.4 shows an example of a change that does not affect the call graph. Function
bar is changing the value of variable a to 5. Since no change is applied to function calls,
this change will not affect the call graph of the code.

13

c l a s s A {
void foo () {

// some code here
}

s t a t i c void bar () {
// some code here

}
}

c l a s s B extends A {
void foo () {

super . foo () ;
// some code here

}

void func () {
A. bar () ;
f oo () ;

}
}

(a) Code snippet (b) Call graph

Figure 3.2: A sample code snippet and its corresponding call graph

14

c l a s s Example {
void foo () {

bar () ;
}

void bar () {
i n t a = 10 ;
System . out . p r i n t l n (a) ;

}
}

(a) Before change

c l a s s Example {
void foo () {

int b = 10;
System.out.println(b);

}

void bar () {
i n t a = 10 ;
System . out . p r i n t l n (a) ;

}
}

(b) After change

Figure 3.3: An example of a change in code which changes the call graph

c l a s s Example {
void foo () {

bar () ;
}

void bar () {
i n t a = 10 ;
System . out . p r i n t l n (a) ;

}
}

(a) Before change

c l a s s Example {
void foo () {

bar () ;
}

void bar () {
int a = 5;
System . out . p r i n t l n (a) ;

}
}

(b) After change

Figure 3.4: An example of a change in code which does not change the call graph

15

3.4 Parsing Call Graphs

The last two blocks of Figure 3.1 are related to parsing call graphs. We use python to
parse the output of the java-callgraph tool, which is a text file, and load it in memory as a
python map and then serialize it into a text file. In this way, we can load the data quickly
whenever we need it.

3.5 Calculating Diffs

When we have the call graph for each version of the project, we calculate the difference
between every two successive versions to obtain added and removed functions and added
and removed function calls. It enables us to capture the change of project call graph
after each snapshot because each function removal results in removing one node and its
connected edges and each function call removal leads to removing an edge from the call
graph.This process is shown in Figure 3.5. In addition, we capture the commit type for
each commit from the project repository. Commit type helps us to determine the type of
additions and removals for each commit. For instance, when a commit has Bug tag, its
additions and removals are probably related to a bug or a bug fix.

Being able to observe the call graph of the project graphically is useful sometimes. It
can help us to understand the structure of the project and its different modules better since
it gives us a high-level picture. Also, we need to make different queries to find different
patterns in a call graph (e.g., finding all triangular loops in which a calls b, b calls c,
and c calls a). We use Neo4j [4], which is a graph database management system to get a
high-level picture of the code and to make queries. We also use a Python library named
networkx [5] for working with graphs and making queries on them when we do not need a
graphical view.

16

Figure 3.5: The process of finding changed patterns

17

Chapter 4

Results

In this section, we describe the results of our analyzes regarding the three research questions
from chapter 1. In order to simplify the problem, in all of our analyzes we worked on the
simplest form of parallel paths which is shown in Figure 4.1 and we call it a triangle from
now on. In this case, one function (a) calls two other functions b and c, and function b
calls function c. Therefore, the question is why a needs to call c in two different ways,
directly and indirectly through b.

Figure 4.1: The simplest form of parallel paths

18

4.1 RQ1: Why are parallel paths created and used?

Motivation: This question is important because we need to know the cases that parallel
paths are used so as to find the correct and incorrect use of them.

Analysis Approach: In order to answer this question, we first needed to do a manual
analysis to find instances of parallel paths in each project, and investigate the reasons they
were used. In this regard, we used Neo4j to get all triangles in the form of the triangle in
Figure 4.1 for the most recent version of each project. Then we selected 10% percent of
these triangles for each project randomly to investigate them manually. After doing this
analysis, we were able to categorize triangles in different groups which let us conduct an
automated analysis. We created queries for each group and used Neo4j to find all of the
instances of that group in each project.

Results: Table 4.1 shows the number of triangles we checked manually and the total
number of triangles for each project.

Project # Triangles # Analyzed Triangles Version commit

Hadoop 968 100 252c2b4d52e0dd8984d6f2a8f292f40e1c347fab
Flink 196 20 1e0a77959d27031048c1c4079a504274c82cc173

Jmeter 395 40 f1208484e3a0ac9263d0e43e436ca7ad8fa1749f

Table 4.1: Total number of triangles and analyzed triangles for each project

After this analysis, we were able to build a taxonomy based on what we found and
categorize triangles in specific groups. Table 4.2 shows these groups and the number of
instances of each group found in manual analysis.

Project Hadoop Flink Jmeter

SubSuperClass 2 1 2
Overloaded Methods 12 3 4

Delegation 10 1 5
Other 76 15 29

Table 4.2: Categorization of triangles

Our investigation revealed that in a large portion of triangles, function c is a utility
function. By utility functions, we mean small functions (usually less than ten lines of

19

code) that perform a simple task such as getting or setting variables, reading or writing
values, checking variable types and similar tasks. When c is a utility function, it is not
that difficult to explain why it is called in two different ways by function a , once directly
and once through function b because many functions need utilities to do simple tasks (e.g.
getString or setValue). We categorize such triangles (with c as a utility function) as a
group and call that utility functions. Nevertheless, other groups might have some overlaps
with this group. In addition, we found three other categories:

• SubSuperClass: This group represents triangles in which a’s class is subclass of b’s
class and a calls b by super keyword in Java and both a and b call c. Figure 4.2
shows an example of this category.

• Overloaded Methods: In this case, a and b are overloaded methods which both call
function c, or b and c are overloaded methods which a calls both of them. Figure
4.3 shows an example of overloaded methods category. In order not to confuse names
a and b with overloaded methods names, we selected different names for functions
a , b, and c. In other words, function foo in class A is function a , function bar with
one string parameter in class B is function b and function bar with two parameters
in class B is function c (which is an overloaded version of b).

• Delegation: Delegation category includes triangles in which b does nothing but calling
c and delegating its work to c. Figure 4.4 shows an example of this category.

After finding these categories by manual analysis, we performed an automated analysis
to find instances of each category in the most recent version of each project. To do this,
we made queries using Neo4j for each category to find its instances. Here we describe how
we make the query for each category:

• SubSuperClass: In this case, b is a function in class B which is the superclass of class
A which contains function a . So a SubSuperClass triangle is a regular triangle in
which the type of edge ab is Invoke Special (special handling for superclass, private,
and instance initialization method invocations) and the name of class A is not the
same as the name of class B.

• Overloaded Methods: In this case, abc is a regular triangle in which functions a and
b or functions b and c reside in a same class and have same names (but different
parameters), so the type of ab or bc should be Invoke Special.

20

c l a s s A extends B {
void a (){

super . b () ;
C. c () ;
// some code here

}
}
c l a s s B {

void b (){
C. c () ;
// some code here

}
}

c l a s s C {
s t a t i c void c (){

//some code here
}

}

Figure 4.2: Sample code showing SubSuperClass category

• Delegation: In this case, b is delegating its work to c, i.e., does not do anything but
calling c. So b does not have any outgoing edge in the call graph and resides in a
class different from c’s class (if the class is same the triangle will be in Overloaded
Methods group).

Table 4.3 shows the results of the automated analysis for each category and each project.
The results reveal that our detected categories comprise around 13% of triangles in Hadoop,
15% of triangles in Flink, and 9% of triangles in Jmeter. So many of the triangles still reside
in utility functions group. We named the fourth category Other because, in addition to
utility functions, there might be some other categories that we could not find in the manual
analysis which ”Other” category includes them as well. Nevertheless, after removing all of
the instances of three categories from all triangles, we selected a sample of 50 triangles to
see whether we can find other categories or not. We found that all of them were different
forms or subcategories of utility functions.

21

c l a s s A {
void foo (){

B. bar (” f o o S t r i n g ”) ;
// some code here
B. bar (” barSt r ing ” , 0)

}
}

c l a s s B{
s t a t i c void bar (S t r ing s t r){

bar (s t r , 0) ;
}
p r i v a t e s t a t i c void bar (S t r ing s t r , i n t i){

// some code here
}

}

Figure 4.3: Sample code showing Overloaded Methods category

Project Hadoop Flink Jmeter

SubSuperClass 11 10 7
Overloaded Methods 65 16 24

Delegation 49 4 6
Other 843 166 358

Table 4.3: Results of automated analysis for each category

22

c l a s s A {
void a () {

B. b () ;
// some code here
C. c () ;

}
}

c l a s s B {
s t a t i c void b () {

C. c () ;
}

}

c l a s s C {
s t a t i c void c (){

// some code here
}

}

Figure 4.4: Sample code showing Delegation Category

23

4.2 RQ2: Why are parallel paths removed or changed?

Motivation: This question is crucial for finding patterns related to bugs and issues.
Finding the answer of this question helps us to understand the cases that parallel paths
are not used in a correct way and should be removed or changed.

Analysis Approach: Parallel paths might be removed or changed because of removals
of edges (function calls) or nodes (functions). In each commit, a set of nodes or edges might
be removed. We need to check whether each removed node or edge was a part of a triangle
or not so as to determine the triangle is removed or not. Since we are curious about paths
we focused only on the removal of edges not nodes. So we created some python scripts
to go through all of the removed edges through all of the version of the software and find
those which were a part of a triangle. Then we categorized all of the removed triangles by
their removed edge(s). For example, we put all of the triangles that are removed because
of the removal of edge ac in one category.

Results: First, we discuss cases where parallel paths are changed. In many cases,
the original triangle (abc) is removed; however, it is not removal but it is a change. For
instance, it might be the case that a node is replaced by another node. An example is
when function b in the triangle is an inefficient function and is replaced by b’ which is
more efficient than b. In this case, edges ab and bc are removed, but edges ab’ and b’c are
added. This example is shown in Figure 4.5a. Dashed lines show added edges. Figure 4.5b
also shows another example of a change in triangles. Another common case of changes
in triangles is when refactoring tasks like extract method happen. In Extract Method, a
part of a complex function is extracted and moved to a new function which will be called
by the old function in order to reduce the complexity of the original function and increase
its readability. In terms of call graphs, when an Extract Method happens, one path is
extended, i.e., one new node and one new edge will be added to the path. Figure 4.6 shows
an example of Extract Method. Dashed lines show added edges.

Here we analyze the cases where parallel paths are removed. Based on the form of
parallel paths that we have analyzed (triangles), these paths could be removed or changed
because of the removal of any of the nodes a , b, c or edges ab, ac, bc. However, only two
of all of these cases are interesting to us since they have more probability of being related
to the problems of parallel paths. When only edge ac is removed, it can be interpreted as
a problem in the direct call of c from a while indirect call through b does not have that
problem. The situation is similar when edges ab and bc are removed, but edge ac is kept
since it can be related to a problem related to indirect call of c.

Using Python scripts, we started from the first commit and analyzed each removed

24

(a) function b changes (b) functions b and c changed

Figure 4.5: Parallel Paths Changes

edge to find whether the edge was part of a triangle. In that case, we checked which edge
or edges of the triangle are being removed (e.g., edge ab). In order to do this, we had to
analyze two versions of the code, the version before the commit and the version after the
commit. For instance, to find whether the removed edge was edge ac or not, we checked the
version after the commit and looked for paths with length 2 (including two edges) between
the source and the destination node of the removed edge. If such a path existed, it meant
that the removed edge was ac. Here we present and discuss the results for each project.

4.2.1 Hadoop

Table 4.4a shows the result of this analysis for Hadoop project. The frequency column in
this table indicates how many triangles are removed because of the removal of edge(s) in
the first column. As we mentioned earlier, a significant amount of removed triangles are
related to changes (e.g., refactoring tasks), so in order to separate these cases from real
removals, we filtered instances of each category to remove cases related to changes. Table
4.4a shows the results before filtering the data and Table 4.4b shows the results after that.
As Table 4.4b shows, categories ab-bc and ab-bc-ac did not have any instance not related
to changes.

Since we intended to analyze removals of ac and ab-bc as justified earlier, we only had

25

Figure 4.6: Extract Method

Removed Edge(s) Frequency

ab 16
bc 18
ac 12

ab - bc 3
ab - ac 15
ac - bc 89

ab - bc - ac 7
Total 160

(a) Including Changes

Removed Edge(s) Frequency

ab 6
bc 11
ac 9

ab - bc 0
ab - ac 4
ac - bc 4

ab - bc - ac 0
Total 34

(b) Without Changes

Table 4.4: Hadoop Removed Triangles

nine instances of ac removal to check. Table 4.5 shows the category of each removal and
the frequency of each.

We present the results of the analysis for each project and describe each category of
triangles removal in details. For all projects, the ”Other” category includes removed trian-
gles that we could not understand the reason of the removal, due either to the complexity
of the code or the lack of proper documentation and comments.

• Double Check: In this case, function c is doing a check (type, existence, not null, and
so on) and is called by a and b which means both of them are checking the condition.
But one of these checks is unnecessary and could be removed. This change could be
very helpful specially when c is an expensive function. Figure 4.7 shows a simple
example of this category.

26

Category Frequency

Double Check 2
Hook Method 1

Relaxing Conditions 1
Inconsistent Change 2

Logging Issues 1
Parameters 1

Other 1

Table 4.5: Hadoop Removed Triangles Categories

• Hook Method: A hook is a method that is declared in the abstract class, but only
given an empty or default implementation and gives the subclasses the ability to
implement it and change an algorithm based on their needs. In this case, c is a
hook method and a and b are calling it. But these are excessive calls to c since
subclasses might implement c in a wrong way and mess up the implementation of
other functions. So developers decide to remove one of the calls to c, for example,
the direct one. Figure 4.8 shows an example of this case.

• Relaxing Conditions: In this case, function c is doing a check to perform another
functionality and function a does not need this check but function b needs. So a
removes its call to c in order not to go through the condition. The figure of this
group is almost similar to the figure of Double check category except for function c
which is not called twice necessarily.

• Inconsistent changes: In this case, ac is removed because of a problem in c or a
problem in the way of calling c and due to this problem bc needs to be removed as
well, but it is left unattended.

• Logging Issues: Logging information could be done on different levels (e.g., error,
debug, warn, info). Logging issues are cases which c is a logging function and is
changed or removed only in one of the direct or indirect paths. One common case
is when the logging level is changed (e.g., from warn to debug), which is shown in
Figure 4.9.

• Parameters: In this case, ac is removed because of a problem with one or more of the
arguments of c so the problem is not with function c itself. An example is when a
getter function is requesting a deprecated item by using it as its parameter. Because

27

Figure 4.7: Double Check Category

the parameter is deprecated and not used anymore, the call to c should be removed.
Figure 4.10 shows an example of this category.

Based on the results, we see that the instances are scattered, so we have different cate-
gories which have one or two instances. Another information that is useful to understand
the type of changes and the importance of each category is the type of commit, which
includes that change. We extracted the type of each commit from the project repository
or its issue tracker. Hadoop and Flink projects use Jira issue tracker while Jmeter uses
Bugzilla. Table 4.6 shows commit types related to each category for Hadoop project.

4.2.2 Flink

Table 4.8 shows the result of the analysis for Flink project and Table 4.7 shows the cate-
gories. Same as project Hadoop, there were not any instance of ab-bc category, but only
three instances of ac removed triangles. From these three cases, Hook method is already
described in Hadoop categories, so we describe SubSuperClass.

28

Figure 4.8: Hook Method Category

Bug Improvement Sub-task None

Double Check 2
Hook Method 1

Relaxing Conditions 1
Inconsistent Change 2

Logging Issues 1
Parameters 1

Other 1

Table 4.6: Commit type distribution between Hadoop categories

• SubSuperClass: In this case, abc is a triangle of SubSuperClass group and function
a which is in the subclass removes its call to c but function b which is in super class
keeps it so a triangle of SubSuperClass category is removed because of the removal
of the edge ac.

Table 4.9 shows commit types related to each category for Flink project.

29

Figure 4.9: Logging Issues Category. In function a , warn is replaced with debug.

Although the instances in Flink project are too few to enable us to make strong conclu-
sions, they are interesting and useful because two of them are introducing SubSuperClass
which is a new group (compared to Hadoop categories) and the other one that is in Hook
Method group, adds strength and validity to another instance of this category in Hadoop
project. In other words, if we find only one sample for a category, it might be the case that
it is an accidental mistake and is not a common problem. However, the more instances
that we find for each category in different projects, we can conclude more confident that
we have found a common issue.

30

Figure 4.10: Parameters Category. In function a , the call to c should be removed because
it is called with a deprecated parameter.

4.2.3 Jmeter

Table 4.10 shows the result of the analysis for Jmeter project and Table 4.11 shows the
categories.

Overloaded: In this case, abc is a triangle of overloaded methods group in which b and c
are overloaded methods and a removes its call to c to call c’, another overloaded version
of c with more parameters but b keeps the call to c.

Incomplete Change: In this case, the removal of parallel paths (ac) is a part of a larger
change which includes the removal of the longer path (abc) later on. So ac is removed in
commit c1 at time t1 and bc is removed in commit c2 at time t2 (t2 ¿ t1). So we can
explain the removal of ac as an incomplete change. One example of this group which exists
in all three projects is the change of logging package. When the logging package needs to
be changed for the whole project, different classes might add their dependency to the new
package and remove it from the old package at different times.

Table 4.12 shows commit types related to each category for Jmeter project.

31

Removed Edge(s) Frequency

ab 5
bc 3
ac 3

ab - bc 0
ab - ac 9
ac - bc 35

ab - bc - ac 0
Total 55

(a) Including Changes

Removed Edge(s) Frequency

ab 3
bc 3
ac 3

ab - bc 0
ab - ac 0
ac - bc 2

ab - bc - ac 0
Total 11

(b) Without Changes

Table 4.7: Flink Removed Triangles

Category Frequency

SubSuperClass 2
Hook Method 1

Table 4.8: Flink Removed Triangles Categories

Bug Improvement Sub-task None

SubSuperClass 2
Hook Method 1

Table 4.9: Commit type distribution between Flink categories

4.2.4 Conclusions

In these categories, we are curious to know which of them are related to parallel paths
problems. In other words, we want to find the cases where double calling a function, once
directly and once indirectly causes a bug or a problem (e.g., efficiency) or makes the code
more complex and more difficult to understand and change. We describe whether each
category is related to parallel paths or not.

• Double Check: The problem in this category is obviously related to parallel paths
because a checking function is called twice whereas two calls are not necessary and
one of them is enough. Therefore, the solution to this issue is breaking the parallel
path and using only one branch of that.

32

Removed Edge(s) Frequency

ab 19
bc 40
ac 46

ab - bc 3
ab - ac 18
ac - bc 59

ab - bc - ac 1
Total 186

(a) Including Changes

Removed Edge(s) Frequency

ab 14
bc 33
ac 20

ab - bc 0
ab - ac 0
ac - bc 2

ab - bc - ac 0
Total 69

(b) Without Changes

Table 4.10: Jmeter Removed Triangles

Category Frequency

Overloaded 1
Inconsistent Change 3

Parameters 3
Incomplete Change 8

Other 5

Table 4.11: Jmeter Removed Triangles Categories

Bug Improvement Sub-task None

Overloaded 1
Inconsistent Change 2 1

Parameters 3
Incomplete Change 8

Other 4 1

Table 4.12: Commit type distribution between Jmeter categories

• Hook Method: In this category, function a removes its call to the hook method
because it is calling hook method through function b and another direct call will be
useless or even harmful when sub classes implement the hook method in a bad or
wrong way. So we can state that in this category the problem is with double calling
a function and only one call to that function is enough.

33

• Relaxing Conditions: In this case, function c is doing a check to perform a function-
ality, but a does not this check and wants to perform the functionality directly so
removes its call to c, but b still needs the check. So the change is related to functions
a and b and not related to double calling c.

• Inconsistent Change: In this category, the problem is not related to parallel paths
definitely, because we believe that the indirect path which is not removed should be
removed as well, but is left due to a mistake. This category helps to find bugs in the
source code which will be discussed in section 4.4 in details.

• Logging issues: In this category, the problem is related to inappropriate use of a
logging function in function a which results in the removal of edge ac. So the problem
is in function a and is not related to the fact that c is being called by a and b.

• Parameters: In this case, the problem is not with function c, but with its parameters
which might be obsolete or deprecated. Therefore, the problem is not related to
double calling a function.

• SubSuperClass: In this case, function a which is in a subclass is removing its call to
function c but function b which is in super class keeps the call. So we can conclude
that there is no need for double calling function c in both a and b and one of them
should be removed.

• Overloaded: In this case, function a needs to call an overloaded version of c which
has more parameters to provide more functionality, but function b does not need
that. So the reason of change is not that a and b both call c.

• Incomplete change: In this category, the removal of ac is a part of a larger change
which will remove the indirect path as well. Hence, the problem is not related to
parallel paths and double calling c.

To sum up, from above categories, the problem in Double Check, Hook Method, and
SubSuperClass is related to parallel paths and the fact that both a and b call c. In other
cases, the problem is related to either a or c or their parameters.

In addition, commit type distribution tables show that inconsistent change category is
almost always associated with bugs. Also, other categories related to parallel paths such
as Double Check, Hook Method, and SubSuperClass are usually related to improvement
commits and not bug commits.

34

4.3 Comparison of the first and the last versions

Regarding research question 1, we categorized triangles based on the structure of them,
and we found three main categories, SubSuperClass, Overloaded Methods, and Delegation.
In this section, we did an analysis to compare the number of each category in the first and
last version of each project. It enabled us to find the reasons each category was removed.
For example, we wanted to understand why triangles in SubSuperClass group might be
removed and whether there is a correlation between a specific type of removed and a
category. In order to do this, we used Neo4j to run the query of each category on the first
and the last version of each project. Then we compared the results for the first and the
last version to find added, remained, and removed instances. We explain and analyze the
results for each project.

4.3.1 Hadoop

Table 4.13 shows the results of comparison for Hadoop project.

First Version Last Version Remained Added Removed

SubSuperClass 11 15 9 6 2
Overloaded 35 65 31 34 4
Delegation 34 49 32 17 2

Table 4.13: Hadoop first and last versions comparison

Based on the results, 8 triangles in three groups were removed. We analyzed these
removals and put them in similar groups. Table 4.14 shows this categorization with the
frequency of each category.

Here we describe each category in details:

• Logging Package Change: The project changes its logging package, and every edge
that was connected to one of the logging functions from the old logging package is
removed.

• Deprecated Package Removal: An obsolete useless package is removed, and all of the
triangles including the functions of that package are removed.

35

SubSuperClass Overloaded Delegation

Logging Package Change 1 0 0
Deprecated Package Removal 1 0 0

Moving Classes Between Packages 0 2 0
Changing Overloaded Methods 0 1 0

Breaking Overloaded 0 1 0
Deprecated Parameters 0 0 1
Changing Mechanism 0 0 1

Table 4.14: Hadoop removed triangles of first version categories

• Moving Classes Between Packages: one new package is created which aggregates all
of the contents of two previous packages.

• Changing Overloaded Methods: Functions a and b which are parser functions are
changing the mechanism of stream reading, so remove the reader from their param-
eters and use a factory which is a global variable instead.

• Breaking Overloaded: Functions a and b are overloaded methods where b handles
specific types of input. Developers decide that b should not use c due to efficiency
issues, but b should define an alternative that does the functionality of c more
efficiently. So they rename b (because it is not doing something similar to a anymore)
and remove the call to c from it.

• Deprecated Parameters: One or more deprecated arguments of a function should be
removed, so the function is removed because there is no need for it anymore.

• Changing serialization mechanism: New serialization mechanism is used, and the old
one is removed because it had backward-compatibility issues. So all of the functions
related to serialization (e.g., read and write) use the new mechanism and remove
their calls to methods related to the old serialization approach.

36

4.3.2 Flink

Table 4.15 shows the results of comparison and Table 4.16 shows the categorization or
removals with the frequency of each category for Flink project.

First Version Last Version Remained Added Removed

SubSuperClass 11 10 4 6 7
Overloaded 24 16 16 0 8
Delegation 3 4 2 2 1

Table 4.15: Flink first and last versions comparison

SubSuperClass Overloaded Delegation

Consolidating Related Features 2 0 0
Dependencies Changes 5 8 0

Hook Methods 0 0 1

Table 4.16: Flink removed triangles of first version categories

Here we describe each category in details:

• Consolidating related features: all of the classes containing utility functions related
to serialization are consolidated and merged into a single utility class.

• Dependencies Changes: There are some dependencies to packages out of Flink project,
and many sub-modules in Flink use these packages. It causes some problems. For
example, the classes of these packages appear in the classpath multiple times which
is unclean. In addition, some of the dependencies require to include license files, and
it is difficult to build a good automatic solution for that. Thus, they build and de-
ploy a version of the external packages inside the project which solves the mentioned
problems.

• Hook Methods: Function b, which is a hook method is refactored in order to make
the interface more restricted to avoid users mess up the implementation. So function
a is changed and removed its call to function c because it can get its data from b as
a result of refactoring.

37

4.3.3 Jmeter

Table 4.17 shows the results of comparison and Table 4.18 shows the categorization or
removals with the frequency of each category for Jmeter project. Since Logging Package
Change is explained in Hadoop categories, we describe the other three categories here.

First Version Last Version Remained Added Removed

SubSuper 8 7 7 0 1
Overloaded 24 24 18 6 6
Delegation 6 6 3 3 3

Table 4.17: Jmeter first and last versions comparison

SubSuperClass Overloaded Delegation

Logging Package Change 1 0 2
Changing Access 0 0 1

Removing Useless Functions and Parameters 0 2 0
Overloaded to Extend Functionality 0 4 0

Table 4.18: Jmeter removed triangles of first version categories

Here we describe each category in details:

• Changing Access: Function a is renamed and is changed to private from public. A
new public function with the previous name of a is created. This new function calls
previous function a and adds some functionality to it. Therefore, users should not
be able to call the old a directly, but they should call it indirectly from new a, so we
can state that the access of users to function a is changed and limited.

• Removing Useless Functions and Parameters: Sometimes functions are removed be-
cause their useless parameters should be removed. For example, a call to a function
which creates menu items might be removed because a menu item is not needed.

• Overloaded to Extend Functionality: One function needs more parameters to im-
plement new functionality, so an overloaded version of that function is used. For
instance, a function which creates menu items needs one more parameter to define
mnemonics for menu items.

38

4.3.4 Conclusions

Based on the results of this section we can conclude that:

• For all three projects, most cases of SubSuperClass group are related to removing or
changing dependencies to some packages.

• In Hadoop and Jmeter projects, there is a similar pattern for overloaded methods.
In Hadoop, we have the category Changing Overloaded Methods in which one pa-
rameter is removed from overloaded methods, and in Jmeter we have overloaded to
extend functionality which adds one more parameter to previous overloaded func-
tions. Therefore, both are associated with overloaded methods changes.

• In Flink and Jmeter projects, one common pattern for Delegation category is that
for the Hook Methods category in Flink and Changing Access category in Jmeter
there is some kind of change in the interface which prevents or limits users to mess
up the implementation.

• In some cases (e.g., Consolidating Related Features in Flink or Changing Overloaded
Methods in Hadoop), the problem is related to the category. For example, for con-
solidating related features in Flink, some classes that were derived from a super class
were removed and merged into a single class. So we can interpret it in this way that
some useless SubSuperClass triangles were removed, so the problem is related to mis-
use of SubSuperClass category. Also, in Changing Overloaded Methods, the problem
is using an incorrect overloaded version of a function which should be replaced by a
correct one.

39

4.4 RQ3: Is it possible to suggest to developers to

apply some changes to the current version of the

software based on the information gained from

analyzed parallel paths?

Motivation: The importance of this question is that if we can find some ways to find the
cases of the patterns that we have found in the previous versions of each project, it will
enable us to detect problems in the current version of projects.

Analysis Approach: Suggesting changes to developers should be based on their
changes applied to previous versions of the software. We analyzed removed and changed tri-
angles for answering RQ2 and categorized removals and changes. Then we created queries
for some of the categories to find the instances of them in the most recent version of each
project. Then we needed to remove false positives and keep the real cases of each category.
It enabled us to make suggestions for either removing some bugs and mistakes from code
or refactoring it and making it more readable and understandable.

Results: Finding instances of each category in the last version of each project is not
an easy task since we have limited information about each category and a few instances
of that. Nevertheless, for some of the categories, it is possible to make queries to find
instances of that category and then try to find those cases which could be changed or
improved. We only focused on categories that are related to parallel paths issues. Here we
describe these groups and elaborate on the approach that we used.

Double Check: In this group, c is a function which is doing a check and is called by
a and b. In order to find instances of this group, one approach is to look for triangles
in which the name of function c starts with a word which is related to checking (e.g. is,
has, check, contains). We used this query and then removed false positives, i.e., cases in
which the word that we are looking for is a part of another word. For example, is could
be a part of visit. Table 4.19 shows the results of this analysis. It reveals that there
are 6 cases of double check in Hadoop project, 4 cases in Flink project, and one case in
Jmeter project which could be changed in order to either remove some unnecessary code
or improve efficiency by removing checks. Correct cases in the table are those triangles in
which the edge ac could be removed since function b is able to perform the check for a and
run the correct functionality based one that. In addition, in some correct cases, bc could
be removed because no function in the source code calls b without checking c before that,
so b is doing an unnecessary check and can remove that. Indeed we checked each instance
that our query found to check whether it is a correct instance of double check category or

40

not. For example, for the Hadoop project, in the 22 cases that were not correct, it is not
possible to remove the call to c from neither a nor b.

Project Query Result Filtered Result Correct Cases

Hadoop 105 28 6
Flink 33 18 4

Jmeter 23 9 1

Table 4.19: Double Check Group Instances

Hook Methods: In this category, all a and b and c reside in a same class and a and b
call c which is a hook method and either is a native function (without implementation) or
does a very simple task and lets sub classes to override it and change the implementation
based one their needs. So we have two criteria that could be used for making queries for
hook methods. In other words, we need all of the triangles which a , b, and c are in the
same class and c is not calling any other function. We executed this query for each project
and Table 4.20 shows the results. Based on the results, we only could find two cases of
hook methods in Hadoop project having the problem of double calling function c.

Project Query Result Filtered Result Correct Cases

Hadoop 40 14 2
Flink 4 2 0

Jmeter 9 0 0

Table 4.20: Hook Methods Group Instances

SubSuperClass: Regarding this category, we only found two instances in Flink project,
and these two cases were related to a refactoring task that was very specific to Flink project
and can not be generalized. So there is no obvious way to find other instances of this cat-
egory in each of the three projects.

Inconsistent Changes: Although we categorized this group as groups that are not
related to parallel paths problems, we believe it is essential to focus on this group since it can
reveal developers’ mistakes in applying inconsistent changes. In this category, one branch
of the parallel paths is removed, and the other branch is left, but that is a mistake, and
both should be removed. Finding instances of this category is only possible by analyzing
all cases of removal of edge ac and find those that are removed inconsistently. We found

41

two instances of this group in Hadoop (22% of ac removed triangles) and three instances
in Jmeter project (15% of ac removed triangles).

The two cases in Hadoop are related to avoiding logging some secure information. So all
of the logging functions that were using that information as their arguments were removed.
However, in one case, developers forgot to remove the logging function. We could find this
by analyzing the removal of an ac edge while ab and bc were kept. So developers should
have removed bc as well.

In two cases in Jmeter, c is a logging function called by a and concatenates some
variables and uses the result as one parameter. In one commit, developers have separated
these variables and called an overloaded version of logging function which accepts those
as its parameters. Therefore, concatenation which calls toString function for each variable
and might be inefficient sometimes, will not happen anymore. In the triangle, only function
a is changed, but function b also has the same condition and uses concatenation, so should
be refactored but is left unattended.

Regarding the other case in Jmeter, c is a logging function and function a removes its
call to c because there is a throw statement which is enough due to developers decision,
so they remove the call to c because they think it is useless and confusing to users. Based
on this decision they should have refactored function b and removed c from that as well
but it is left in the code.

Almost all of these cases are related to bugs, i.e., the edge ac was removed because of
a problem in c, which shows the importance of focusing on this group.

42

Chapter 5

Conclusions

In conclusion, we have proposed an approach to analyzing parallel paths in function call
graphs. Using three open-source large Java projects as our data set, we answered three
research questions. We used the simplest form of parallel paths which is a triangle for
the sake of simplicity. First, we concluded that in triangles, the function that is called
by the other two functions (function c) is usually a utility function which performs very
simple tasks. In addition, we found some other groups and categorized triangles in these
groups. Based on the structure of each group and the information we gained from our
analysis, we were able to create queries to find instances of each category in the projects.
Regarding the removals and changes of parallel paths, we stated that parallel paths are
mainly changed during refactoring tasks like extract method, which is the most common.
Also, after categorizing triangles removals, we were able to separate those categories which
are associated with parallel paths and the problem in them is double calling a function
by two other functions in the triangle. Finally, based on the cases and categories that we
found in our analyses, we made queries to find instances of some of the categories in the
most recent version of each project. It enables us to suggest some changes to developers
to avoid bugs and problems or reduce the complexity and improve the readability of it.
We believe that using this approach for more complex structures enables us to make more
accurate queries and find instances of each category easier. That is because, in contrast
to triangles that are the simplest form of parallel paths, complex structures give us more
detailed information that could be used for filtering and making queries.

43

5.1 Threats to Validity

There are some threats to our results and conclusions. First, we only used three projects
as our data sample. Although these projects are large well-known projects, all of them are
open-source projects from Apache repository, so they might not be a good representative for
all software projects. Also, all of the projects are in Java, so the analysis of other languages
might result in different conclusions. Moreover, because our tool for graph generation
needed Jar file of the project, we were not able to perform our analyses for the whole
history of each project due to the problems of building earlier versions (e.g., dependency
on obsolete packages). Furthermore, the categorization of changes and removals is based
on our understanding of the source code using commit messages, comments, and issue
tracking system for each project. Therefore, there might be some misunderstandings or
mistakes in our comprehension of source code. Finally, in our suggestions to developers, we
do not consider optimizations that compilers might apply. For example, when we suggest
developers to remove a double check to improve the performance, some compilers might
consider this and bypass the double check. However, we assume that compilers do not
perform such optimization tasks.

5.2 Future Work

There are different paths for continuing this work. First, one can use more complex forms
of parallel paths for analyses. We used only the simplest form of parallel paths (triangles)
for simplicity. There might be more interesting results in other forms of parallel paths like
diamonds or structures with more than two parallel paths. Moreover, more complicated
paths are easier to detect because they provide us with more information about the struc-
ture of parallel paths and help us to create more precise queries for detection. In addition,
analyzing more projects will result in finding new categories and creating new queries to
detect more instances of candidates for change or removal.

44

References

[1] Doxygen. http://www.doxygen.nl/, 2018.

[2] java-callgraph. https://github.com/gousiosg/java-callgraph, 2018.

[3] Java virtual machine specification. https://docs.oracle.com/javase/specs/jvms/
se7/html/jvms-6.html.

[4] Neo4j. https://neo4j.com/.

[5] Networkx. https://networkx.github.io/, 2014.

[6] Python call graph. http://pycallgraph.slowchop.com/en/master/, 2018.

[7] Subdue sgiso algorithm. https://github.com/gromgull/subdue/blob/master/

src/sgiso.c, 2012.

[8] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos. Graph-based analysis and
prediction for software evolution. In 2012 34th International Conference on Software
Engineering (ICSE), pages 419–429, June 2012.

[9] Johannes Bohnet and Jürgen Döllner. Visual exploration of function call graphs for
feature location in complex software systems. In Proceedings of the 2006 ACM Sym-
posium on Software Visualization, SoftVis ’06, pages 95–104, New York, NY, USA,
2006. ACM.

[10] Y. Du, J. Wang, and Q. Li. An android malware detection approach using community
structures of weighted function call graphs. IEEE Access, 5:17478–17486, 2017.

[11] Hugo Gascon, Fabian Yamaguchi, Daniel Arp, and Konrad Rieck. Structural detection
of android malware using embedded call graphs. In Proceedings of the 2013 ACM
Workshop on Artificial Intelligence and Security, AISec ’13, pages 45–54, New York,
NY, USA, 2013. ACM.

45

http://www.doxygen.nl/
https://github.com/gousiosg/java-callgraph
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-6.html
https://neo4j.com/
https://networkx.github.io/
http://pycallgraph.slowchop.com/en/master/
https://github.com/gromgull/subdue/blob/master/src/sgiso.c
https://github.com/gromgull/subdue/blob/master/src/sgiso.c

[12] Gharib Gharibi, Rashmi Tripathi, and Yugyung Lee. Code2graph: Automatic genera-
tion of static call graphs for python source code. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE 2018, pages 880–
883, New York, NY, USA, 2018. ACM.

[13] David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. Call graph construc-
tion in object-oriented languages. SIGPLAN Not., 32(10):108–124, October 1997.

[14] T. Hariprasad, G. Vidhyagaran, K. Seenu, and C. Thirumalai. Software complex-
ity analysis using halstead metrics. In 2017 International Conference on Trends in
Electronics and Informatics (ICEI), pages 1109–1113, May 2017.

[15] Joseph Hejderup, Arie van Deursen, and Georgios Gousios. Software ecosystem call
graph for dependency management. In Proceedings of the 40th International Con-
ference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER ’18,
pages 101–104, New York, NY, USA, 2018. ACM.

[16] Joris Kinable and Orestis Kostakis. Malware classification based on call graph clus-
tering. Journal in Computer Virology, 7(4):233–245, Nov 2011.

[17] M. Madhan, I. Dhivakar, T. Anbuarasan, and C. Thirumalai. Analyzing complexity
nature inspired optimization algorithms using halstead metrics. In 2017 International
Conference on Trends in Electronics and Informatics (ICEI), pages 1077–1081, May
2017.

[18] Gail C. Murphy, David Notkin, William G. Griswold, and Erica S. Lan. An empirical
study of static call graph extractors. ACM Trans. Softw. Eng. Methodol., 7(2):158–
191, April 1998.

[19] Vincenzo Musco, Martin Monperrus, and Philippe Preux. A large-scale study of
call graph-based impact prediction using mutation testing. Software Quality Journal,
25(3):921–950, Sep 2017.

[20] M. Oruc, F. Akal, and H. Sever. Detecting design patterns in object-oriented design
models by using a graph mining approach. In 2016 4th International Conference in
Software Engineering Research and Innovation (CONISOFT), pages 115–121, April
2016.

[21] D. Qingfeng, S. Kun, Y. Kanglin, and Q. Juan. Metrics analysis based on call graph
of class methods. In 2017 International Conference on Progress in Informatics and
Computing (PIC), pages 18–24, Dec 2017.

46

[22] Yu Qu, Xiaohong Guan, Qinghua Zheng, Ting Liu, Lidan Wang, Yuqiao Hou, and
Zijiang Yang. Exploring community structure of software call graph and its applica-
tions in class cohesion measurement. Journal of Systems and Software, 108:193 – 210,
2015.

[23] Simone Romano, Giuseppe Scanniello, Carlo Sartiani, and Michele Risi. A graph-
based approach to detect unreachable methods in java software. In Proceedings of
the 31st Annual ACM Symposium on Applied Computing, SAC ’16, pages 1538–1541,
New York, NY, USA, 2016. ACM.

[24] P. Sawadpong and E. B. Allen. Software defect prediction using exception handling
call graphs: A case study. In 2016 IEEE 17th International Symposium on High
Assurance Systems Engineering (HASE), pages 55–62, Jan 2016.

[25] M. D. Shah and S. Z. Guyer. An interactive microarray call-graph visualization. In
2016 IEEE Working Conference on Software Visualization (VISSOFT), pages 86–90,
Oct 2016.

[26] Burak Turhan, Gzde koak, and Ayse Bener. Data mining source code for locat-
ing software bugs: A case study in telecommunication industry. Expert Syst. Appl.,
36:9986–9990, 08 2009.

[27] Wikipedia. Call graph. https://en.wikipedia.org/wiki/Call_graph.

[28] P. Wu, J. Wang, and B. Tian. Software homology detection with software motifs
based on function-call graph. IEEE Access, 6:19007–19017, 2018.

[29] Jin Zhang, Dahai Jin, and Yunzhan Gong. File similarity determination based on
function call graph. In 2018 IEEE International Conference on Electronics and Com-
munication Engineering (ICECE), pages 55–59, 12 2018.

[30] S. Zhang, J. Ai, and X. Li. Correlation between the distribution of software bugs
and network motifs. In 2016 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pages 202–213, Aug 2016.

[31] H. Zhou, W. Zhang, F. Wei, and Y. Chen. Analysis of android malware family char-
acteristic based on isomorphism of sensitive api call graph. In 2017 IEEE Second
International Conference on Data Science in Cyberspace (DSC), pages 319–327, June
2017.

47

https://en.wikipedia.org/wiki/Call_graph

	List of Tables
	List of Figures
	Introduction
	Thesis Contributions
	Thesis Organization

	Background and Related Research
	Call Graphs and Malware Detection
	Call Graphs Visualization
	Call Graphs and Software Metrics
	Network Motifs and Software Motifs
	Call Graphs and Detection of Bugs and Patterns

	Methodology
	Corpus and Data
	Building Projects
	Generating Call Graphs
	Parsing Call Graphs
	Calculating Diffs

	Results
	RQ1: Why are parallel paths created and used?
	RQ2: Why are parallel paths removed or changed?
	Hadoop
	Flink
	Jmeter
	Conclusions

	Comparison of the first and the last versions
	Hadoop
	Flink
	Jmeter
	Conclusions

	RQ3: Is it possible to suggest to developers to apply some changes to the current version of the software based on the information gained from analyzed parallel paths?

	Conclusions
	Threats to Validity
	Future Work

	References
	APPENDICES

