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Abstract

Thermoacoustic instabilities arise in combustion systems from a coupling between the
unsteady heat release of the flame and the underlying acoustic field. Although thermoa-
coustics have been studied extensively with regards to premixed flames, where the fuel
and oxidizer are fully mixed before combustion, the study of thermoacoustics in diffusion
flames is much more limited. However, thermoacoustic instabilities are also of interest for
the design of systems which are better characterized by diffusion or nonpremixed flames, for
example, liquid rocket engines. As such, this thesis aims to investigate, using an in-house
developed combustion solver, the behaviour of thermoacoustic fluctuations in a diffusion
flame.

The thermoacoustics are studied in the counterflow diffusion flame configuration, where
the flame exists between two opposed jets containing the fuel and oxidizer respectively. An
unsteady compressible reactive flow solver is integrated into an in-house code. The code is
then coupled to Cantera to obtain the transport and thermodynamic properties. Finally, to
study the thermoacoustics, time-dependent Navier-Stokes Characteristic Boundary Con-
ditions are implemented in the code to account for fully reflecting, partially reflecting,
and nonreflecting boundary conditions. The code is validated against the steady solution
obtained from Cantera.

The flame under consideration consists of H2 as the fuel and a mixture of O2 and N2

as the oxidizer. Two different strain rates are studied. Under the assumption of perfectly
reflecting boundary conditions, the growth of the acoustic perturbations in the high strain
rate case is much more significant than the low strain rate case. Under the partially
reflecting boundary conditions, the high strain rate case also exhibits some slight growth
of the acoustic perturbations. An underlying standing wave behaviour can be identified
and the dominants modes extracted through a spectral analysis. For further investigation,
a number of forced sinusoidal pulses were introduced into the fuel stream, and the response
was measured via Rayleigh’s criterion. The results show that the acoustic fluctuations are
amplified for a larger range of frequencies in the high strain rate case compared to the low
strain rate case, which helps to explain why the acoustic growth in the high strain rate
case is much more significant.
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Chapter 1

Introduction

First explained by Lord Rayleigh [53], thermoacoustic instabilities arise from the interaction
between the unsteady heat release of the flame and the underlying acoustic field. This
coupling can create large amplitude oscillations [45], which can result in deleterious effects
such as noise generation or, in more severe cases, fatigue or excessive heat transfer to
the combustor walls [43]. The thermoacoustic instabilities are often a direct result of the
geometry of the combustion system. The typical mechanism is described as follows [24].
First, the unsteady heat release acts as a source of noise and creates acoustic waves which
reflect off of the various components of the combustor chamber, for example, the walls
or the plenum. Then, the reflected acoustic waves can modulate the flow conditions and
perturb the flame. This creates an unsteady heat release thereby closing the feedback loop.
Self-excitation of the acoustic waves can occur if the correlation between the pressure
and the heat release fluctuations are favorable, a condition which is now referred to as
Rayleigh’s criterion [24, 45]. For the one-dimensional laminar flamelets under a sine wave
acoustic perturbation, Rayleigh’s criterion can be expressed mathematically in terms of an
amplification factor H [65]:

H =
1

τ

∫ τ

0

Q−Qm

Qm

sin (2πft)dt (1.1)

where Q is the heat release rate, τ is the acoustic period, f is the frequency, and t is the
time. The subscript m refers to the mean heat release, or the steady heat release with no
effects of acoustic forcing. If the phase angle between the acoustic pressure and the heat
release is between −90◦ and 90◦, then acoustic amplification is predicted [65].

Although thermoacoustic instabilities have been a problem for rocket engine design
since the early 1930s, recently, the study of thermoacoustic instabilities has become more
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relevant and important for low emission gas turbine design [32]. Modern gas chambers
are designed with increasingly strict limits on pollutant emissions such as, NOx. As such,
the design principles have changed, and for a variety of reasons, the design of modern,
low emission gas turbines results in combustor walls which have very little attenuation of
noise [32]. Thus, from both a theoretical and practical point of view, understanding the
onset and propagation of thermoacoustic oscillations and instabilities is very relevant in
the context of modern day engineering applications.

Although the classical view is that the thermoacoustic instabilities are dependent on
the geometry and acoustic modes of the system, recently researchers have discovered the
existence of intrinsic thermoacoustic (ITA) instabilities, in which the feedback loop is closed
and thermoacoustic oscillations are sustained with no dependence on the combustor ge-
ometry [13, 23, 24, 26, 59, 60, 79]. These ITA instabilities are identified in the case of
premixed combustion, in which the fuel and oxidizer are fully mixed before combustion.
Experimental and numerical results show that even under the conditions of highly anechoic
boundary conditions, these instabilities can propagate purely based on the coupling be-
tween the unsteady heat release and the flow field. The main reason that thermoacoustic
instabilities are of primary interest in premixed flames is that they are very sensitive to
velocity perturbations [9]. In these cases, the velocity perturbations result in fluctuations
in the heat release which generate acoustic waves. Due to the sensitivity to velocity per-
turbations in premixed flames, the acoustic waves may be sufficient to alter the velocity
field and close the feedback loop. In this way, ITA instabilities are independent of the
combustor geometry and are of specific interest to the combustion community.

Most of the research on thermoacoustics is focused on the premixed flame. However,
in many applications, the diffusion (or partially pre-mixed) flames may be a more realistic
description of the combustion process. For example, in turbulent combustion, oftentimes
the turbulent flame is considered to be an ensemble of laminar diffusion flamelets [49]. The
model is particularly well-suited for reactive flows with a large scale separation between the
timescales of transport phenomena and chemical reactions; the ratio of these timescales
represents the Damkölher number. High Damkölher number reactive flows are particu-
larly prevalent in liquid rocket engines, since the higher pressures tend to reduce the flame
thickness [64] and, concurrently, reduce the time scales of the reaction. For example, re-
cent experimental results from researchers at DLR [1] have shown presence of self-excited,
high-frequency acoustic instabilities in high-pressure liquid rocket engines. As such, it is
important to study the thermoacoutic properties and behaviour for diffusion flames as well.
Although many practical applications are very complex, the simplified model of the coun-
terflow diffusion flame allows us to isolate specific aspects of interest to study in detail. The
one-dimensional counterflow diffusion flame allows us to fully resolve all of the acoustics in
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order to isolate the fundamental physics of the problem. Despite thermoacoustic instabil-
ities typically being three-dimensional, there are many factors which render the problem
very computationally expensive, for example, the large number of species transport equa-
tions used for heavier fuels. To reduce the complexity of modelling the thermoacoustics,
typically researchers introduce the flame transfer function which acts as a black box and
represents the response of the flame to velocity perturbations. The heat release rate, Q,
and upstream velocity perturbations, uu, are related through the flame transfer function
F (s) as [24]:

Q′

Q
= F (s)

u′u
uu

(1.2)

where the prime denotes a fluctuation. The flame transfer function can be obtained exper-
imentally or theoretically [19]. The flame transfer function is a useful model for premixed
flames. One of the defining characteristics of premixed flames is the laminar flame speed,
which determines how fast the flame propagates throughout the mixture. Because the fuel
and oxidizer are fully mixed, the limiting factor for the premixed flame is the chemical
reaction timescale. Because of this, a small velocity perturbation may directly influence
the location and total heat release of the flame, creating the onset of instabilities. In this
sense, the premixed flame is highly sensitive to velocity perturbations. It follows that the
flame transfer function is a technique which is used to model premixed combustors only.
However, thermoacoustic oscillations may also arise in diffusion flames for which there is
little to no literature regarding an analogous flame transfer function. For the diffusion
flame, the fuel and oxidizer must first undergo mass transfer and diffuse into each other
before a reaction can take place. In this case, the unsteady heat release may not be directly
sensitive to the velocity fluctuations as in the case of the premixed flame, and the response
of the flame to velocity perturbations is diffusion limited [22]. Instead, the pressure fluctu-
ations may impact the chemical mechanism and affect the production of certain species, an
effect which has been studied by Sohn and Sung [63]. The aim of this thesis is to investigate
thermoacoustics in the canonical counterflow diffusion flame configuration to simplify the
problem and study the fundamental behaviour of the thermoacoustic fluctuations.

The remainder of the thesis is structured as follows. Chapter 2 presents the background
on counterflow diffusion flames and introduces some of the relevant literature. Chapter 3
presents the governing equations and mathematical formulation of the problem, including
the governing equations and the boundary conditions. The numerical details and the
development of the code are also discussed. Chapter 4 presents the results of the thesis,
which include results on strain rate, boundary conditions, and an analysis of traveling
pressure waves. Finally, the conclusions are presented in Chapter 5, with discussions for
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how to extend the work in the future.

1.1 Contributions of the thesis

The main contributions of the thesis can be summarized as follows:

• Development and validation of a reactive flow solver for 1D counterflow diffusion
flames with time dependent boundary conditions

• Integration of the high-pressure Cantera kinetic package to the computation of the
1D flame

• Study the boundary condition effects on the self-sustaining thermoacoustic instability

• Evaluate the thermoacoustic behaviour for a propagating pressure wave

• First study of self sustaining thermoacoustic oscillations in a flame with a large
density gradient

• Investigate strain rate effects on the behaviour of the thermoacoustic waves
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Chapter 2

Background

2.1 Counterflow Diffusion Flame

The counterflow diffusion flame is a laminar flame which is dependent on the diffusion only
and, as such, is a pure diffusion flame [74]. In his review paper, Tsuji [74] describes four
different canonical cases for the counterflow diffusion flame; however, nowadays the most
commonly referred to case is the opposed jet configuration, in which the fuel and oxidizer
impinge upon each other at the stagnation plane between the two round jets. A schematic
diagram of the counterflow diffusion flame is shown in Figure 2.1. Note that the flame
sheet and the stagnation plane are not necessarily coincident, as the location of the flame
depends on the diffusion and composition of the fuel and oxidizer within the mixture. The
mathematical formulation of the counterflow diffusion flame is presented in Chapter 3.

Some important parameters governing the counterflow diffusion flame are the inlet
compositions, temperatures, and velocities. The counterflow configuration is also typically
referred to as ‘strained’, as the fuel and oxidizer streams are strained against each other.
The strain rate is commonly used to characterise the flame. In this thesis, we refer to the
strain rate a as the global strain rate, which is calculated as the velocity difference of the
two injectors divided by the separation distance [38]:

a =
|ufuel|+ |uoxidizer|

L
(2.1)

where u is the inlet velocity and L is the separation distance. Note that this is not the only
definition of strain rate; in some cases it may be beneficial to study the local strain rate,
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Figure 2.1: Schematic diagram of the laminar counterflow diffusion flame.

which can be considered as the velocity gradient a = −du/dx upstream from the thermal
mixing layer on the oxidizer side [12, 78] or the velocity gradient at the fuel boundary [55].
The strain rate affects the overall flame structure; however, one of the key parameters is
the extinction strain rate. In some cases, where the velocity of the inlets is too large, the
flame may not be able to sustain itself and will extinguish as a result. Typically this occurs
when the characteristic time scale of the rate of strain is smaller than the characteristic
chemical reaction timescale. The corresponding strain rate is deemed to be the extinction
strain rate. Typically, the heavier the fuel, the lower the extinction strain rate. The
extinction strain rate is also dependent on the nozzle separation distance and increases as
the separation distance is increased [20]. Additionally, a higher strain rate also leads to a
thinner diffusive region and flame.

Over the years, the counterflow diffusion flame has garnered a significant amount of
interest for a number of reasons. The simplicity of the problem allows one to isolate
specific physical phenomena of interest, for example, studying the effects of strain rate [71],
pressure [55], reduced chemical mechanisms [8], supercritical thermodynamics [4, 27, 30,
46], phase stability in supercritical combustion [73], and differential diffusion effects in
combustion with real-gas effects [36, 50]. The concepts of flamelets have also been applied
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to turbulent combustion simulations [49] where the turbulent flame is approximated as a
collection of laminar flamelets.

To characterise the progression of the diffusion flame, a variable called the mixture
fraction (z) is introduced. The mixture fraction is a scalar which represents, in a simplified
form, the ratio of fuel versus oxidizer at any point in the flame. In the pure oxidizer stream,
z = 0, and in the pure fuel stream, z = 1. In this work we define the mixture fraction for
the H2-O2 flames as a passive scalar based on the H atom [52]:

z = WH

(
2
YH2

WH2

+
YH
WH

+ 2
YH2O

WH2O

+
YOH

WOH

+
YHO2

WHO2

+ 2
YH2O2

WH2O2

)
(2.2)

Although the mixture fraction can be defined by the mass fractions of the fuel and oxidizer,
by defining the mixture fraction as a passive scalar based on the elemental mass fractions
we can account for the effect of multiple intermediate reactions and for unequal molecular
diffusivities. For other fuels including hydrocarbons, for example, methane, the mixture
fraction may be defined as a passive scalar based on the H and C atoms. The benefit of the
mixture fraction is that it normalizes the mapping of the flame and removes the dependence
on physical space to simplify comparisons between various operating conditions.

2.2 Literature Review

The unsteady counterflow diffusion flame has been the subject of many studies in the
past [17, 20, 29, 37, 47, 70]. Typical studies aim to elucidate the unsteady effects of the
flame through external forcing by introducing sinusoidal waves at the inlets. If φ is the
variable of interest (for example, the inlet velocity), then the unsteadiness is introduced
as:

φ = φm + φa sin (2πft) (2.3)

where the subscript m denotes the time-averaged mean value and the subscript a denotes
the oscillation amplitude. The frequency f is related to the angular frequency by ω = 2πf
and t is the time. The most commonly modified variable is the inlet velocity, which
corresponds to a varying or unsteady strain rate.

Egolfopoulos and Campbell [22] studied the frequency response of the counterflow dif-
fusion flame by varying the velocity, temperature, and composition of the inlets for a
methane/air diffusion flame. They showed that for low frequencies, the flame follows the
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externally forced oscillations in a quasi-steady manner, and at higher frequencies, the in-
duced oscillations of the flame are attenuated and phase shifted. The reduced amplitude
of the response is consistent with previous experimental results by Saitoh and Otsuka [56].
Interestingly, at the highest frequencies studied, the flame no longer responds to the forced
oscillations. The study was further extended by Egolfopoulos [21] to study the effects of
imposed oscillations on the extinction and re-ignition characteristics of the flame. At a
low velocity frequency of 1 Hz, the diffusive and convective profiles of fuel and oxidizer are
significantly different between the trough and peak profiles, meaning that the oscillations
propagate through the diffusive zones and as such, directly affect the flame. However, at
a higher frequency of 2000 Hz, the trough and peak profiles collapse in the diffusive zone,
meaning that the imposed oscillations do not directly affect the heat release or burning
rate. A study by Darabiha [16] showed that for strain rates far below the extinction strain
rate, the flame response is linear, but for strain rates near the extinction strain rate, the
response becomes nonlinear.

Studies by Cuoci et al. [14, 15] investigated the coupling between the chemistry and
the sinusoidal velocity oscillation. In this case, their goal was to investigate the effect of
unsteadiness on the pollutant formation of methane and propane flames. Similar to the
previous work, they identified upper limits on the frequency at which the flame would
respond. The main finding is that cut-off frequency is dependent on the timescale of
the chemical reactions; if the frequency was too high then the chemistry was not able to
respond to the strain rate oscillations. The cut-off frequency was found to be dependent on
the global strain rate but not the oscillation amplitudes. These results are consistent with
earlier findings by Xiao et al. [76], who showed experimentally that the pollutant formation
fails to respond to high frequency velocity oscillations for methane and propane.

Although the previous studies have given us insight on the coupling between the fluid
mechanics and the combustion process, one major drawback is that they do not consider the
effects of pressure oscillations. In the simulations, the pressure oscillations are assumed to
be small, and as such the pressure is assumed to have no spatial variation and the temporal
term, ∂p/∂t, in the energy equation is neglected. However, as noted by Egolfopoulos [21], at
the higher frequencies (f = 2000 Hz), the acoustic pressure effects may become important,
and in a complete study, the effects of pressure variation should be included. In the context
of thermoacoustic instabilities, the inclusion of the unsteady pressure effects is especially
important.

The earliest studies on the interaction of acoustic interactions with laminar flames were
conducted in the 1960’s by Strahle [66, 67, 68, 69]. The flames under consideration were
not of the counterflowing configuration; instead, they were focused on reacting boundary
layers or jet diffusion flames. The main limitation of these early studies is that they are
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conducted under the assumption of infinitely fast chemistry. Since the dominant nonlinear
term of the combustion process arises from the finite-rate chemistry [34], the importance
of the coupling between the acoustics and the chemistry was not studied.

To bridge the gap and introduce the effects of finite-rate chemistry, Kim and Williams [34]
conducted one of the earliest studies on acoustic pressure responses of counterflow diffu-
sion flames. Their study is analytical, and they employ the technique of activation-energy
asymptotics [75] which characterises a one-step Arrhenius-type reaction. According to
the theory of activation-energy, the counterflow diffusion flame consists of a thin reactive-
diffusive layer surrounded by convective-diffusive layers on either side [34], which allows
for different characteristic length and time scales to be extracted. Based on their analysis
of the linear acoustic response, they show that the linear response can be attributed to two
main mechanisms [34]. The first is the fluctuation of the reaction sheet due to the acousti-
cally modulated reaction rate fluctuations. This mechanism is found to be dominant when
the strain rate of the flame is near the extinction strain rate. The second is oscillations of
the field variables. This mechanism is found to be dominant for near-equilibrium flames.
The overall conclusion is that amplification of the acoustic waves is largest near extinction
strain rates.

The study of acoustics in counterflow diffusion flames was further extended by Sohn
et al. [64] through numerical simulations of hydrogen and oxygen flames at high pressures
using a mechanism of 8 species and 19 reactions. To close the governing equations at high
pressures, they employ the Soave-Redlich-Kwong equation of state [62]. The response of
the flame to acoustic perturbations is studied by imposing sinusoidal pressure oscillations,
with amplitudes from 5-30% of the mean pressure value. They show that variation of the
maximum flame temperature is largest at the trough pressure values. A more specific study
on the dependence of the mean pressure was carried out by Sohn and Sung [63], in which
they demarcated three extinction regimes dependent on the pressure. The first is where
the extinction strain rate increases with pressure, the second is where the extinction strain
rate decreases with pressure, and finally, the third consists of any flames at even higher
pressures. In each regime, the effects of pressure on the heat release of the intermediate
reactions is studied with respect to Rayleigh’s criterion. A pressure increase results in an
increase of the heat release due to the increase in branching and recombination reaction
rates in the low pressure regime and the radical rebranching of H2O2 in the high pressure
regime. As such, large acoustic amplifications are predicted in these regimes. In the
medium pressure regime, only a weak or neutral amplification of the acoustic pressure waves
is predicted. A final extension of the work was conducted by Sohn [65], in which the full
unsteady conservation equations are solved with oscillating pressures. At low pressures and
low frequencies, the amplification index is small; however, when the frequency is increased,
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the amplification index becomes large due to an accumulation of the nonlinear response of
the heat release rate. Similar to the studies without consideration of the acoustic pressure
oscillations, the flame response is decreased at high frequencies as the flame fails to respond.
At medium pressures and low frequencies, the amplification index is small, decreases with
increasing frequency, and then increases with a further increasing frequency.

These studies on thermoacoustic instabilities are based on Rayleigh’s criterion and an
imposition of pressure fluctuations. Although acoustic pressure amplification based on
these criteria are predicted, they did not show the existence of self-sustaining or acousti-
cally unstable results. The first study of self-sustaining thermoacoustic instabilities was
presented by Zambon and Chelliah [78] for methane and air flames in 2006. In this study,
they investigate the general acoustic pressure field determined by the geometry, and as
such, do not impose any external perturbations as in the previous studies. Under the as-
sumption of fully reflecting boundary conditions, they show the existence of self-sustaining
thermoacoustic oscillations. At higher strain rates, the amplification of thermoacoustic
instabilities is much larger. They also show that the implementation of a single-step re-
action exhibits much larger amplification than a detailed chemical kinetic model. A dual
counterflowing premixed flame is also studied, and the acoustic amplification of the pre-
mixed flame is shown to be much larger than the diffusion flame. This work is interesting
as it demonstrates many of the previous predictions of researchers, and at the same time,
demonstrates that the waves in a counterflow diffusion flame can be self-sustaining. The
work in this thesis aims to expand upon these results by studying the thermoacoustic
response of a counterflow diffusion flame with a different fuel, namely, hydrogen. It is pre-
dicted that the larger density gradient between the low density hydrogen and the air may
play a role in the thermoacoustic characteristics of the flame. In a slightly different configu-
ration, Balasubramanian and Sujith [3] conducted a study on ducted diffusion flames under
the assumption of infinite rate chemistry and found that the transient acoustic growth of
these systems was on the order of 105 to 107, which would be extremely large. However,
a correction by Magri and Juniper [2, 41] showed that, in fact, the transient growth was
on the order of 1 to 10 for these ducted diffusion flames. As such, the actual growth of
these acoustic perturbations is more modest than thought. A new study by Zhou et al. [80]
showed that the response of a non-premixed flame to acoustic excitations are dependent
on the resonance of the burner geometry.
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Chapter 3

Mathematical Formulation

3.1 Governing Equations

3.1.1 Steady Counterflow Diffusion Flames

Analytically and numerically, the appeal of the round jet counterflow diffusion flame lies
in its ability to be reduced to a quasi one-dimensional problem. The problem admits a
self-similar solution, and through an analysis along the stagnation streamline, the partial
differential equations can be expressed as a set of ordinary differential equations which
depend on the axial direction only. To reduce the problem, two primary simplifying as-
sumptions are made [31]:

• The velocity field can be described by a separable streamfunction Ψ(x, r) = r2U(x),
where x is the axial direction, r is the radial direction, and U(x) is a function of x
only.

• Properties such as density, temperature, and species composition vary only in the
axial direction.

The definition of the axisymmetric stream function is given by [31]:

∂Ψ

∂r
= ρur = 2rU (3.1)

−∂Ψ

∂x
= ρvr = −r2dU

dx
(3.2)
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These relationships are rearranged for substitution into the Navier-Stokes equations.
The resulting equations for the steady axisymmetric stagnation flow representing the coun-
terflow diffusion flame are written as follows [31]:

dρu

dx
+ 2ρV = 0 (3.3)

ρu
dV

dx
+ ρV 2 = −Λ +

d

dx

(
µ

dV

dx

)
(3.4)

ρu
du

dx
= −dp

dx
+

4

3

d

dx

[
µ

du

dx
− µV

]
+ 2µ

dV

dx
(3.5)

ρcpu
dT

dx
=

d

dx

(
λ

dT

dx

)
−

n∑
k=1

Jk
dhk
dx
−

n∑
k=1

hkω̇k (3.6)

ρu
dYk
dx

= −dJk
dx

+ ω̇k (3.7)

where u is the axial velocity, ρ is the density, Λ = (1/r)(∂p/∂r) is the pressure eigenvalue, λ
is the mixture thermal conductivity, cp is the mixture specific heat capacity, µ is the mixture
dynamic viscosity, p is the pressure, hk is the sensible enthalpy of species k, ω̇k is the mass
production rate of species k, and V = v/r is the scaled radial velocity. Note that the energy
equation in this case includes only the thermal energy. The term Jk = ρYkVk represents
the diffusive flux of species k, where Yk is the species mass fraction and Vk is the diffusion
velocity. The formulation of Jk depends on the diffusion model. Three primary diffusion
models are typically used: the unity Lewis number model, which assumes that all molecular
diffusivities are equal to the heat diffusivity; the mixture averaged model, which assumes
binary diffusion between a species and an average mixture of the remaining components;
and the multicomponent diffusion model, which solves the full mass diffusion matrix which
includes the interactions between every species. Physically, the multicomponent model is
deemed to be the most realistic; however, computationally, it is much more expensive. The
cheapest method computationally is the unity Lewis number assumption [77]; however, it
has been shown experimentally that in many cases the lighter species such as H2 may
experience preferential diffusion, and as such, have a higher diffusivity [7, 18, 40, 61].
The effects can alter the global flame structure and create other instabilties such as the
diffusional-thermal instabilities which manifest themselves as a striped pattern in diffusion
flames [35, 33]. The effects of the common diffusion modelling assumptions have been
studied by many researchers, for example, Bruno et al. [10], who show that the mixture
averaged model and the multicomponent model give comparable results. In this thesis, the
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mixture averaged model is employed. The diffusion velocity is calculated as [31]:

Vk = − 1

Xk

D′km∇Xk (3.8)

where Xk is the mole fraction of species k and D′km is the diffusion coefficient between
species k and the remaining mixture. Note that the governing equations must be closed
with an equation of state relating the pressure, temperature, and density of the mixture.

There are a number of codes which can solve the counterflow diffusion flame (many of
them in-house). One of the most popular codes is Cantera [25], which solves the steady
equations. Cantera is an open source software package which is used in solving problems
regarding thermodynamics, chemical kinetics, transport properties, and laminar reacting
flows. In this thesis, Cantera is used to obtain the steady one-dimensional flame solutions
and to evaluate the thermophysical and transport properties. Note that in Equations 3.3-
3.7, the axial momentum equation is decoupled from the other equations and is not nec-
essary for determining the temperature, composition, or velocity fields [31]. As such, in
the steady case, the axial momentum equation is only useful to obtain the axial pressure
gradient. With the assumption that the pressure variations due to the pressure gradient
are small relative to the mean thermodynamic pressure, Cantera calculates the solution
to these equations under the isobaric assumption and does not solve the axial momentum
equation.

3.1.2 Unsteady Counterflow Diffusion Flames

For the unsteady counterflow diffusion flame, we follow the formulation presented by Zam-
bon and Chelliah [78]. In order to consider the unsteady effects and perturbations, we can
expand any variable about r = 0. For any variable φ(x, r, t), the variable is expanded near
the axis of symmetry (x axis) as:

φ(x, r, t) = φ0(x, t), φ1(x, t)r + φ2(x, t)r
2 + . . . (3.9)

Due to symmetry, the first order term φ(x, t) ≡ 0 except for the radial velocity, which is
approximated as v = V (x, t)r where V is the first order term v1, or in the previous section,
the scaled radial velocity V = v/r.

The other variable which requires special attention is the pressure. The pressure is
expanded as:
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p(x, r, t) = p0(x, r, t) + p2(x, t) (3.10)

During the formulation of the governing equations, we obtained a term for the pressure
eigenvalue, Λ = (1/r)(∂p/∂r). The pressure eigenvalue is dependent upon the strain rate
of the problem, which is related to the nozzle separation distance and the inlet velocities.
Under the isobaric assumption, the pressure term is expressed as [58, 78]:

p(x, r, t) = p0 +
1

2
Λr2 (3.11)

where Λ = 2p2. Some studies have been conducted with p2 or Λ changing in time, which
corresponds to a changing strain rate over time and a constant axial pressure [78]. However,
to investigate the effects of thermoacoustic instabilities, we need to see how the axial
pressure field changes with time. Consequently, in this study the pressure eigenvalue is
held constant. Instead, the work is focused on the term p0, which is decomposed into a
constant mean and a fluctuating component:

p0(x, r, t) = p0 + p′0(x, t) (3.12)

Here, p0 is the base pressure of the system, and p′0 are the acoustic fluctuations from the
base pressure. Note that p0 is the thermodynamic pressure and can be calculated based
on the other thermodynamic properties using an equation of state, for example, the ideal
gas equation of state.

For the compressible unsteady solver, we would like to express Equations 3.3-3.7 in
the conservative form. Additionally, the energy equation includes the kinetic energy as
well, and the enthalpy is expressed in terms of the total enthalpy, ht = h + 1/2 (u2).

In conservative form, the fluxes are expressed as d(ρu)φ
dx

, where φ is the variable under
consideration. From the streamfunction relations given in Equations 3.1 and 3.2, we have:

ρu = 2U (3.13)

ρ
v

r
= ρV = −dU

dx
(3.14)

We use these relations to express the equations in conservative form. For example, for the
axial momentum, φ = u. The flux can be expanded by considering the chain rule:

dρuu

dx
= ρu

du

dx
+ u

dρu

dx
(3.15)
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Note that ρu = 2U , then the second term on the right hand side becomes:

u
dρu

dx
= 2u

dU

dx
(3.16)

Now, from Equation (3.14), the term becomes:

u
dρu

dx
= −2uρV (3.17)

Then, we can replace the flux with its conservative form by:

ρu
∂u

∂x
=
∂ρuu

∂x
+ 2uρV (3.18)

This method is applied to all of the steady governing equations to obtain the equations
in the conservative form. After conducting the necessary manipulations, the equations
for the compressible axisymmetric laminar counterflow diffusion flame can be written in
conservative form as follows [78]:

∂ρ

∂t
+
∂ρu

∂x
+ 2ρV = 0 (3.19)

∂ρYk
∂t

+
∂ρuYk
∂x

+
∂ρVkYk
∂x

+ 2ρYkV = ω̇k (3.20)

∂ρu

∂t
+
∂ρuu

∂x
+
∂p0
∂x

+ 2ρuV =
∂

∂x

[
4

3
µ

(
∂u

∂x
− V

)]
+ 2µ

∂V

∂x
(3.21)

∂ρV

∂t
+
∂ρuV

∂x
+ 3ρV 2 = −2p2 +

∂

∂x

[
µ
∂V

∂x

]
(3.22)

∂ρht
∂t
− ∂p0

∂t
+
∂ρuht
∂x

+ 2ρhtV =
∂

∂x

[
λ
∂T

∂x

]
−
∑
k

∂ρYkVkhk
∂x

+
∂

∂x

[
4

3
µ

(
∂u

∂x
− V

)
u

]
+ 2µ

∂V

∂x
u− 4

3
µ

(
∂u

∂x
− V

)
V (3.23)

The formulation here includes the axial momentum in the conservation of energy equation,
resulting in the enthalpy being expressed as the total enthalpy ht = h+0.5u2. Unlike in the
steady case where the axial momentum equation was neglected, in the unsteady case we
include the axial momentum equation in the solution to account for the effects of the un-
steady pressure fluctuations. Note that the inclusion of the term p0 in the axial momentum
equation eliminates the need for the external forcing [78] typical of other studies.
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3.1.3 Equation of State

The governing equations require closure through a relationship between various physi-
cal and thermodynamic properties, for example, the temperature, pressure, and density,
through an equation of state (EoS). One of the most commonly applied equations of state
is the ideal gas EoS:

p = ρRT (3.24)

where R = Ru/W , where Ru is the universal gas constant and W is the mixture molecular
weight. The ideal gas assumption is typically valid at low pressures and densities. At
high pressures, the ideal gas behaviour is also recovered at the high temperatures found
within the flame region where the compressibility factor approaches unity [4]. As such,
the applicability of the ideal gas assumptions must consider both the pressure and the
temperature. The speed of sound c for an ideal gas can be calculated as:

c =
√
γRT (3.25)

where γ = cp/cv is the specific heat ratio and R is the specific gas constant.

The present numerical code is developed with the ability to integrate more complex
state equations such as the Peng-Robinson, Soave-Redlich-Kwong or any other EoS for the
computation of high-pressure systems.

3.1.4 Chemical Kinetic Mechanisms

One of the difficulties in combustion simulations is the modelling of the chemical reactions.
The simplest model of the chemical reaction process is a one-step, global, irreversible
reaction. Typically, the overall global reaction can be written quite simply. For example,
for a hydrogen and oxygen flame, the global reaction can be written as:

2H2 + O2 −→ 2H2O (3.26)

The reaction rate can be determined through an Arrhenius-type law. Although the global
reaction can describe the overall conversion of reactants to products, this one-step global
reaction has embedded in it some unphysical assumptions about the underlying combustion
process. For the chemical reaction to progress, the molecules need to collide, dissociate, and
then recombine to form the products. Physically, this cannot happen simultaneously and
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this multi-step process is not reflected within the global reaction equation. In reality, there
are a number of intermediate reactions which occur to produce intermediate species. The
combustion process can be described by considering all of these intermediate reactions, and
this collection of reactions is referred to as the combustion or chemical kinetic mechanism.
Because the solution of the governing equations becomes very computationally expensive
with the addition of more species (each species requiring its own transport equation),
one active field of research is in identifying reduced combustion mechanisms. The goal
is to create the simplest mechanism possible which accurately reproduces the combustion
process. In this study, we employ the chemical kinetic mechanism for H2-O2 combustion
developed by Burke et al. [11]. The mechanism contains 9 species and 27 reactions to
describe the oxidation of H2. This chemical mechanism is particularly well-suited for high-
pressure hydrogen combustion.

3.1.5 Boundary Conditions

Steady State Simulation

The boundary conditions of the steady-state solutions obtained from Cantera are set based
on the desired operating conditions of the system. At the inlets, the temperature, species
mass fractions, and mass flow rates are prescribed. The scaled radial velocity V is set to 0
at the bounds. For a domain from x = 0 to x = L, the boundary conditions are given as:

Y (0) = Y0, Y (L) = YL (3.27)

T (0) = T0, T (L) = TL (3.28)

ρ(0)u(0) = ṁ0, ρ(L)u(L) = ṁL (3.29)

V (0) = V (L) = 0 (3.30)

The pressure is set to a constant base pressure throughout the domain in accordance with
the isobaric assumption. Typically, the momentum of both inflows is balanced such that
the stagnation plane lies in the center of the domain.

Unsteady Simulation

The boundary conditions for the unsteady solution are more complex because the treatment
of the thermoacoustic oscillations and resultant waves must be considered. To account for
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the reflection of the waves, we implement time-dependent boundary conditions, namely,
the Navier-Stokes Characteristic Boundary Conditions (NSCBC) [51]. At a high level, the
NSCBC aim to capture physically realistic reflections and transmissions of waves. First, the
characteristic waves which are exiting the boundary from the interior are calculated. Then,
this information can be used to calculate the characteristic waves which would be incoming
into the domain from the exterior of the boundary to obtain the desired behaviour, for
example, for fully reflecting waves. Finally, depending on the number of desired boundary
conditions, a number of conservation equations at the boundary are replaced by inviscid
boundary conditions which include the characteristic waves calculated previously. The
equations are then advanced in time at the boundaries to obtain solutions for all of the
variables in the system. At the left side inlet (x = 0), for an inflow boundary condition,
we have one outgoing wave with amplitude L1, and two corresponding incoming waves
with amplitudes L2 and L5. The amplitude of the outgoing wave is obtained through
calculations of the one-sided derivatives from the interior of the domain. The outgoing
wave is calculated as [51]:

L1 = (u− c)
[
∂p0
∂x
− ρc∂u

∂x

]
(3.31)

where c is the local speed of sound. If perfect reflection of the acoustic waves is desired,
the incoming waves are calculated as [51]:

L2 = 0 (3.32)

L5 = −L1 (3.33)

Using these relationships, a new equation for the axial velocity at the bounds is intro-
duced [78]:

∂ρu

∂t
+ u

1

c2

[
L2 +

1

2
(L5 + L1)

]
+

1

2c
[L5 − L1] = 0 (3.34)

By integrating this equation, we obtain a new value for the updated axial inlet velocity,
which we use as the target value when setting the ghost cells. The implementation of the
ghost cells is discussed in a later section. If we want to have partially reflecting boundary
conditions, we can calculate the incoming wave L5 as [51, 78]:

L5 = K (p0 − pa) (3.35)
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where K is a damping coefficient and pa is the ambient pressure. The term K is expressed
as [51]:

K = σ
(
1−M2

) c
L

(3.36)

where σ is a constant, M is the Mach number, and L is the characteristic length of the
flow domain. When σ = 0, the amplitude of the reflected waves is set to 0 and as such,
results in perfectly non-reflecting boundary conditions. For more physical dampening of
waves, σ = 0.25 is typically used [44]. In other cases, σ can be varied to yield partially
reflecting waves. Once L5 is calculated, we require another equation to update the density
or pressure at the inlet [78]:

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0 (3.37)

After determining the correct ρ, the pressure p0 can also be set through an equation of
state relating the thermodynamic properties.

For the right side inlet (x = L), the calculation of the characteristic waves is slightly
different from the left inlet, mainly due to the speed at which the wave is travelling. The
outgoing wave is calculated as:

L5 = (u+ c)

[
∂p0
∂x

+ ρc
∂u

∂x

]
(3.38)

For perfect reflection, the incoming waves are:

L2 = 0 (3.39)

L1 = −L5 (3.40)

For partial or no reflection, the incoming wave for L1 is calculated as:

L1 = K (p0 − pa) (3.41)

The equations which are integrated to advance the boundary conditions remain the same
as for the left side inlet. The one-sided derivatives of the outgoing waves are calculated via
the second order forward difference on the left:
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∂u

∂x
≈ −3ui + 4ui+1 − ui+2

2∆x
(3.42)

and the second order backward difference on the right:

∂u

∂x
≈ 3ui − 4ui−1 + ui−2

2∆x
(3.43)

3.1.6 Initial Conditions

Steady State Simulations

The steady state simulations are obtained using Cantera. The initial number of desired
grid points is given as an input. Based on the stoichiometry, the values for the grid points
are interpolated and then the solver is run to fit the solution to the governing equations.
In some cases where convergence is difficult, the solution may first be attempted with the
energy equation disabled (constant temperature profile). Once the solution is converged,
the energy equation can be enabled to ensure the solution satisfies all of the governing
equations.

Once the solution is fully converged, a grid refinement is conducted based on the user-
defined tolerances. In this case, grid points are added or removed depending on the re-
finement criteria. It is typical to initialize the solution on a small number of points, for
example, 7 points, and then have Cantera automatically refine the grid. Cantera has three
refinement criteria and one pruning criterion. The tolerances are defined based on the
ratio of grid spcing between points, the slope or fractional change of value between points,
and the curvature or fractional change of derivative between points. Cantera will then
automatically refine the grid and add points based on these criteria. Cantera can also
remove unnecessary grid points in a pruning process, although this may be disabled if
required. For situations where we require an over-resolved grid, it is important to disable
the pruning.

Unsteady Simulations

The initial conditions for the unsteady solution is provided by a steady solution obtained
through Cantera. Obtaining a solution from Cantera requires two main considerations.
First, the grid resolution for capturing acoustics in the unsteady case is much more strict
than in the steady case. Second, there is a requirement on the maximum grid spacing
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between two points in the unsteady case. As such, we must obtain a heavily over-resolved
steady state solution from Cantera to act as our initial conditions for the unsteady solution.
For example, we may achieve a grid converged solution with only around 120 points from
Cantera; however, such a grid does not satisfy the requirements for the unsteady case.
As such, the initial solution from Cantera must be initialized with a much larger number
of grid points, for example, 1000. This ensures that the final solution has a sufficient
resolution for use in the unsteady case.

After the steady solution is obtained from Cantera, the resultant values are used to
initialize the solution for the unsteady compressible solver. Because of the different dis-
cretization and solution schemes between the two solvers, this initialization strategy also
serves the purpose of introducing some broadband pressure fluctuations into the system. If
we set the boundary conditions to perfectly non-reflecting, these perturbations are allowed
to pass through the boundaries and we can obtain a steady state solution using the new
solver. If the boundary conditions are set to reflecting boundary conditions, then the char-
acteristic waves are reflected at the boundary, either perfectly or partially. In this way, we
may investigate the interaction between these reflected waves and the flame. In the case
of self-sustaining acoustic waves, these reflected waves will be excited by the interactions
with the flame and become self-sustaining without the need for any external input. In this
case, we do not depend on an external pressure forcing term to study the amplification of
the acoustic waves.

3.2 Numerical Method

3.2.1 Development of Code

The in-house Python code which has been developed for this project is a one-dimensional
finite volume code which solves the unsteady conservative form of the axisymmetric stag-
nation flow equations presented in Section 3.1.2. The code is parallelized and interfaces
with Cantera [25] to calculate the transport and thermodynamic properties. The time-
dependent NSCBC have also been implemented into the code to allow for a detailed study
of the acoustics.

Flux Reconstruction

To solve the governing equations, we require information about the fluxes at each cell wall.
To calculate the fluxes at the cell walls, we adopt a fairly new approach known as the flux
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reconstruction approach [28]. A schematic diagram of the technique is shown in Figure 3.1.
Consider the ‘true’ solution to be the solid black line. However, we only have information at
the markers. The question becomes, how do we obtain an approximate value for the ‘true’
solution in between the points, for example, at the dotted line? The flux reconstruction
approach relies on a polynomial interpolation using variable stencils to compute the flux.
The general approach is as follows:

1. The left-biased flux (red dotted line) is calculated using two points to the left of the
dotted line and one point to the right.

2. The right-biased flux (blue dotted line) is calculated using two points to the right of
the dotted line and one point to the left.

3. The left- and right-biased fluxes are averaged at the dotted line to obtain an approx-
imation for the ‘true’ solution at that location.

To calculate the biased fluxes, a second order polynomial is fit through the appropriate
points. The number of points required for interpolation is one more than the interpolation
order. By selecting a second order polynomial, we obtain a code that is between second
and third order accurate, although the exact accuracy is difficult to compute analytically.

The flux reconstruction approach has a number of benefits. First of all, the technique
introduces some slight numerical dissipation into the code, which helps with the stability
of the solution. Secondly, the stencil and polynomial order for the interpolations can be
increased to increase the spatial resolution. A schematic diagram of the flux reconstruction
approach in the context of the code is shown in Figure 3.2. On the computational side,
the flux reconstruction is well-suited for parallelization. As this approach only requires a
single ghost cell on each decomposed MPI block, only the flux at the internal boundary
faces need to be communicated between neighboring MPI processes.

The flux reconstruction scheme necessitates some special considerations on the bound-
ary conditions. Because we need information on either side of the cell faces, we add one
ghost cell to either end of the domain to calculate the flux at the boundaries. For the
boundary fluxes, the flux is interpolated from the inside of the domain only. The ghost
cell values are set to obtain the correct behaviour at the boundary cell face, for example,
to maintain a Dirichlet or Neumann boundary condition. The details of the boundary
conditions are presented in Section 3.1.5. In most cases, the ghost cells are set for Dirichlet
conditions based on the values obtained through the NSCBC; however, in other applica-
tions, Neumann or Robin boundary conditions could also be applied.
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Figure 3.1: Schematic diagram of the flux reconstruction approach. The solid black line
represents the ‘true’ solution, whereas the markers represent the available information.

For the solution of the governing equations, we can express the system of questions in
vector form:

∂Q

∂t
+
∂F

∂x
=
∂R

∂x
+ S (3.44)

where Q are the conserved variables, F are the convective fluxes, and R are the source
terms. The vectors are:

Q =


ρ
ρYk
ρu
ρV

ρht − p0

 (3.45)

F =


ρu
ρuYk

ρuu+ p0
ρuV
ρuht

 (3.46)
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Figure 3.2: Schematic diagram of the flux reconstruction approach in the context of the
code.

R =


0

−ρuVkYk
4
3
µ
(
∂V
∂x
− V

)
µ∂V
∂x

λ∂T
∂x
−∑k ρYkVkhk + 4

3
µ
(
∂u
∂x
− V

)
u

 (3.47)

S =


−2ρV

−2ρYkV + ω̇k
−2ρuV + 2µ∂V

∂x

−3ρV 2 − 2p2
−2ρhtV + 2µ∂V

∂x
u− 4

3
µ
(
∂u
∂x
− V

)
V

 (3.48)

In the solution of the equations, the vectors F and R are first calculated with a left and
right bias for either cell face, then the derivatives are approximated by differencing across
the cell, consistent with the finite volume method. Then, the source terms are calculated
and added to the solution.
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Since the variables are solved in conservative form, we require special treatment to
extract the primitive variables from the conservative variables. This is trivial for most
variables, for example, to obtain u we can simply calculate u = ρu/ρ. The difficult variable
is obtaining the temperature and pressure from the energy equation. The equations are
solved for ρht − p0, and thus, a Newton solver is required to back out the appropriate
temperature and pressure. If we assign a new variable A = ρht − p0 to be the calculated
conservative flux, then we have to approximate the temperature and pressure such that
the right hand side satisfies the calculated A. In the case of an ideal gas, the variables are
first manipulated as:

A = ρht − p0 (3.49)

A = ρ(h+ 0.5u2)− p0 (3.50)

A/ρ = h+ 0.5u2 − p0/ρ (3.51)

A/ρ− 0.5u2 = h−RT (3.52)

Since all the terms on the left hand side are fully known through the solution of the
governing equations, we set Fexact = A/ρ−0.5u2 and define a new function for the Newton
solver:

G = Fexact − h+RT (3.53)

We can then take the derivative with respect to T :

G′ = −cp +R (3.54)

and the new temperature is approximated as:

Tnew = Told −G/G′ (3.55)

The new estimated Fest is calculated as Fest = h − RT and the pressure is calculated via
the equation of state p = ρRT . The process is iterated until Fexact and Fest are converged,
providing the final values of T and p0. Note that a solver can also be implemented by
exploiting the relationship between enthalpy (h) and internal energy (e):

e = h− p

ρ
(3.56)

in which case Fest = e, G = Fexact − e, and G′ = cv.
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Time Discretization

The time stepping is conducted based on a fourth order Runge-Kutta method. Although
the code can calculate the time stepping using a higher order Runge-Kutta method, the
fourth order is sufficient for resolution of the acoustic pressure fluctuations. The prescribed
CFL number is used to determine the maximum time step. The time step is calculated
from the minimum grid spacing and the maximum velocity. The time step must also be
sufficiently small such that the acoustic waves can be fully captured, with smaller time
steps required for higher frequency fluctuations. Additionally, the implementation of the
NSCBC also provides some limitations on the maximum CFL number due to numerical
stability considerations.

3.2.2 Integration with Cantera

Although the in-house code is used to solve the governing equations, we also rely on
Cantera [25] to calculate the thermophysical and transport properties, and the chemical
source terms. Specifically, Cantera is used to calculate the mixture-averaged diffusion
coefficients, chemical production rate (ω̇k), enthalpy, viscosity, and thermal conductivity.
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Chapter 4

Results

In this chapter, we present the results of various unsteady simulations of the counterflow
diffusion flame. The results are obtained for a counterflow diffusion flame consisting hydro-
gen as the fuel and a mixture of oxygen and nitrogen as the oxidizer. Besides the varying
strain rate, different boundary conditions are also tested to study the thermoacoustic be-
haviour of the counterflow diffusion flame.

4.1 Low Strain Rate

The first simulation is that of a low strain rate counterflow diffusion flame. The fuel is
hydrogen, H2 and the oxidizer is a mixture of nitrogen and oxygen, 0.7N2/0.3O2 by mole
fraction. The global strain rate is set to a = 300 s−1 and the inlet separation distance is
L = 0.02 m. These values correspond to fuel and oxidizer inlet velocities of uf = 4.75 m/s
and uo = −1.25 m/s respectively. The fuel and oxidizer temperatures are Tf = 295 K and
To = 295 K, and the overall pressure is 1 bar, or 1× 105 Pa.

4.1.1 Steady Solution

The results are first obtained for the steady state solution with Cantera. The solution
is then used as the initial conditions for the unsteady solver. The velocity profile of the
flame in physical space is shown in Figure 4.1. The temperature and density profiles of the
same flame are shown in Figure 4.2. The main reactant and product species profiles are
presented in Figure 4.3 based on the mass fraction Y .
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Figure 4.1: Velocity profile of the counterflow diffusion flame at a strain rate of a = 300
s−1.
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Figure 4.2: Temperature and density profiles of the counterflow diffusion flame at a strain
rate of a = 300 s−1.
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Figure 4.3: Major species profiles of the counterflow diffusion flame at a strain rate of
a = 300 s−1.

Besides the various profiles, the flame can also be characterised by its characteristic
flame width, δf . Following the method applied by Ribert et al. [55] in their study of the
structure of counterflow diffusion flames, the flame width can be calculated by considering
the full width of the flame at half of the maximum temperature. For the low strain rate
flame at a = 300 s−1, the flame width is calculated as δf = 0.0028 m.

4.1.2 Validation

To validate our results, the steady state solution obtained from the new unsteady code
is compared to the steady solution obtained from Cantera. The velocity, temperature,
density, and radial velocity profiles are shown in Figure 4.4, and have very good agreement.
In both cases, the solution is calculated on a uniform grid containing 1000 points, which
results in a grid spacing of ∆x = 2×10−5 m. Compared to the flame width δf = 0.0028 m,
our solution contains 140 points across the flame. For reference, Beardsell and Blanquart [5]
had 20 points per flame thickness in their study of pressure fluctuations in premixed flames.
Although the solver has requirements on the grid spacing overall, it is also important to
ensure we have sufficient resolution in regions of high gradient, for example, the large
density gradient near the center of the domain.
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Figure 4.4: Comparison of the steady state solution obtained from our new code (line)
with the steady solution obtained from Cantera (symbols).

4.1.3 Unsteady Solution

Because the steady solver and the unsteady solver have differing discretization and solu-
tion techniques, some acoustic pressure fluctuations are introduced into the solution as it
adjusts to the fully compressible equations. The initial pressure perturbations are of fairly
small amplitude, about 5-10 Pa, as shown in Figure 4.5. These initial perturbations are
comparable to the initial perturbations of about 2-5 Pa reported by Zambon and Chelliah
in their study [78].

The propagation of the initial acoustic perturbations is dependent on the boundary
conditions of the problem, as described in Section 3.1.5. The effectiveness of the imple-
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Figure 4.5: Initial acoustic pressure perturbations for the counterflow diffusion flame at a
strain rate of a = 300 s−1.

mented NSCBC is illustrated here. If the NSCBC are set to perfectly nonreflecting, the
resultant damping of the acoustic waves can be seen in Figure 4.6, which shows the first
reflection of the wave on either end of the domain. The reflections are significantly damp-
ened after the first interaction of the waves with the boundaries. The remaining small
perturbations exit the system after a number of additional interactions, finally resulting in
the steady state pressure distribution shown in Figure 4.7. Note that the retention of the
axial momentum equation in the solution of the governing equations produces a solution
for the steady state pressure gradient, which is expected since the configuration is that of a
stagnation flow. The underlying pressure gradient is small relative to the base pressure and
the acoustic perturbations, and as such, a typical simplifying assumption is that of zero
pressure gradient. In the lower strain rates with small axial velocities and under the low
Mach number assumption, this approximation is justifiable [78]; however, the presence of
the base pressure gradient may become more important at higher strain rates. In any case,
the acoustic pressure perturbations can be extracted by subtracting the base underlying
pressure field from the instantaneous pressure field.

The nonreflecting results can be compared to the fully reflecting case, presented in
Figure 4.8. With these boundary conditions, the waves are not damped at all before
reflection. The fully reflecting boundary conditions are the most favorable conditions for
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Figure 4.6: Damping of the initial acoustic pressure perturbations with nonreflecting
boundary conditions for the counterflow diffusion flame at a strain rate of a = 300 s−1.

thermoacoustic growth, as the amplitude of the wave is fully retained upon each reflection,
and thus, any contribution from the flame to the pressure perturbations will be additive
and fully retained as well.

What is particularly interesting about this study is the large disparity in the density
of the propellants, and as such, the large gradient between the fuel and oxidizer densities.
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Figure 4.7: Steady state pressure field nonreflecting boundary conditions for the counter-
flow diffusion flame at a strain rate of a = 300 s−1.

The density in the fuel (hydrogen stream) is very low at ρf = 0.082 kg/m3, and the density
in the oxidizer (oxygen and nitrogen mixture) is much higher at ρo = 1.19 kg/m3, which
is about 14.5 times the fuel density. The difference in the density will necessarily impact
the behaviour of the acoustic waves which travel through the system. As the waves hit
the high density region from the low density region, part of the wave will be transmitted
and part of the wave will be reflected. Additionally, the difference in the speed of sound
between hydrogen and air is fairly large (around three times as fast), and as such, the
waves coming from the low density side will have more interactions with the flame than
those from the high density side. The previous study by Zambon and Chelliah [78] used
methane and air as the reactants, which have much more similar densities and speeds of
sound. The larger disparity between the acoustic properties of the fuel and oxidizer in our
current study may yield some interesting phenomena in the thermoacoustics.

The growth of the acoustic perturbations was investigated by implementing the per-
fectly non-reflecting NSCBC. The pressure perturbations are extracted from two positions
in the solution, one from the fuel stream (low density) and one from the oxidizer stream
(high density). The axial locations are selected halfway between the inlets and the flame,
and correspond to x = 0.005 m for the fuel stream and x = 0.0015 m for the oxidizer
stream (see Figure 4.2). The results are shown in Figure 4.9. As can be seen, the initial
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Figure 4.8: Reflection of the initial acoustic pressure perturbations with fully reflecting
boundary conditions for the counterflow diffusion flame at a strain rate of a = 300 s−1.

perturbations are around 5 Pa on the low density side and 10 Pa on the high density
side. The results are captured for 10 ms. Considering that the speed of sound on the fuel
stream is approximately cf = 1270 m/s and the speed of sound on the oxidizer stream is
approximately co = 330 m/s, this represents about 635 acoustic-flame interactions coming
from the low density side and about 165 acoustic-flame interactions coming from the high
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density side. Initially, the waves appear to be either consistent or slightly dampened until
approximate t = 0.004 s, after which the acoustic perturbations are then amplified. The
growth of the acoustic fluctuations in the low strain rate case is limited, growing from about
5 Pa to 15 Pa on the hydrogen side and 10 Pa to 20 Pa on the oxidizer side. This modest
acoustic growth, with an amplification magnitude of 2-3 times the initial perturbations, is
consistent with the results by Zambon and Chelliah [78] for counterflow diffusion flames
and Magri et al. [41] for ducted diffusion flames. Note that Zambon and Chelliah [78]
found that the growth of acoustic perturbations was present for non-premixed flames un-
der the assumption of a one-step kinetic model; however, using a detailed model seemed
to dampen the majority of the fluctuations. Their results also showed that the growth
was much more significant at higher strain rates. Our current results show that with a
different fuel (hydrogen instead of methane), even at a relatively low strain rate with a
detailed kinetic model, we can also identify growth of the acoustic fluctuations with similar
amplification magnitudes.

The dominant frequencies of these pressure fluctuations can be obtained through a
spectral density analysis. This can be done through a number of ways, for example, through
a Fourier periodogram. Since the timestep is not necessarily uniform for each step, we have
unevenly spaced data. To extract the underlying periodicity of the signal, we apply the
Lomb-Scargle periodogram. The Lomb-Scargle periodogram is a method of least-squares
spectral analysis for unevenly spaced data first studied in detail by Lomb in 1975 [39]
and further expanded by Scargle in 1982 [57]. The general procedure is that a spectrum
of sinusoids are least-squared fit to the sampled data points. Consider a timeseries Xj

sampled at tj times for Nt timesteps for j = {1, 2, . . . , Nt}. If Xj is scaled such that the
mean is 0 and the variance is 1, the Lomb-Scargle periodogram is expressed as [57, 72]:

P (ω) =
1

2


[∑

j Xj cosω (tj − τ)
]2∑

j cos2 ω (tj − τ)
+

[∑
j Xj sinω (tj − τ)

]2
∑

j sin2 ω (tj − τ)

 (4.1)

where τ is the frequency dependent time delay:

tan 2ωτ =

∑
j sin 2ωtj∑
j cos 2ωtj

(4.2)

The periodogram is calculated for a range of trial frequencies to identify the peak frequen-
cies.

The normalized Lomb-Scargle periodograms for the a = 300 s−1 are shown in Fig-
ure 4.10. On the low density side, there are two distinct peaks at around 29 kHz and
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Figure 4.9: Growth of the acoustic perturbation of the low strain rate flame at x = 0.005
m (top) and x = 0.015 m (bottom).

77.5 kHz, with a smaller peak around 19 kHz. On the high density side, there is a dis-
tinct peak at 19 kHz, with secondary peaks at around 29 kHz and 77.5 kHz. The three
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dominant peaks overlap between the low density and the high density side. The results
are similar as those reported by Zambon and Chelliah [78], who found that the dominant
half-wave mode frequency for a methane and air counterflow diffusion flame was around
19.5 kHz. However, it is important to note that the comparison of strain rate effects is not
straightforward as the different fuels may respond differently to the same strain rates.

4.2 High Strain Rate

A high strain rate case is also computed, with the same operating conditions as the low
strain rate with the exception of the inlet velocities. The higher strain rate is a = 5000
s−1, corresponding to fuel and oxidizer inlet velocities of uf = 79.2 m/s and uo = −20.8
m/s respectively.

4.2.1 Steady Solution

The temperature and density profiles of the higher strain rate flame compared to the lower
strain rate flame are shown in Figure 4.11. As expected, the higher strain rate flame is
much thinner, having a flame thickness of about δf = 0.00074 m, which is about 27% of
the thickness of the lower strain rate flame. This simulation was conducted on a grid of
1074 points, which represents approximately 40 points per the flame thickness, which is
still sufficient for resolution. Additionally, the maximum flame temperature is lower and
the flame is shifted slightly to the left.

The counterflow diffusion flame is often represented in terms of the mixture fraction
space as opposed to physical space, especially when discussing the flame structure. The
flames in mixture fraction space are presented in Figure 4.12. Although the flame position
is shifted in physical space, the flame is located at the same mixture fraction with a lower
flame temperature. Additionally, the density profiles have some minor variations between
the two, but this could be attributed to a slightly different different distribution of species
(products and reactants) due to the different strain rates and the species diffusion.

4.2.2 Unsteady Solution

Perfectly Reflecting Boundary Conditions

For the unsteady results, the nonreflecting NSCBC have a similar behaviour as the lower
strain rate, with the acoustic waves being heavily damped out to reveal an underlying base
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Figure 4.10: Normalised Lomb-Scargle periodograms for the low strain rate case of a = 300
s−1.

pressure gradient. The initial perturbations for the high strain rate case are larger and
approximately 60-80 Pa in amplitude.
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Figure 4.11: Temperature and density profiles of the counterflow diffusion flames in physical
space.
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Figure 4.12: Temperature and density profiles of the counterflow diffusion flames in mixture
fraction space.

The transient acoustic growth is presented in Figure 4.13. Compared to the low strain
rate case, the acoustic growth is much more significant, reaching around 6000-8000 Pa for
the peak amplitude for the tested time period. The growth also occurs across a much
shorter timespan and has an amplification magnitude of about 100 times the size of the
initial perturbations. Previous results have shown that counterflow diffusion flames near the
extinction strain rate (highest strain rate before extinction) experience the most appreciable
amplification of acoustic perturbations [64, 65]. The larger magnification of the acoustic
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pressure perturbations for a higher strain rate is also reported by Zambon and Chelliah [78],
although the difference is not as drastic. This can be attributed to the different reactants
used, and also the larger difference between the strain rates in our case.
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Figure 4.13: Growth of the acoustic perturbations of the high strain rate flame at x = 0.005
m (top) and x = 0.015 m (bottom).
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Notably, the acoustic pressure perturbations in the high strain rate case have a much
more distinct periodicity compared to the low strain rate case, especially in the low density
(hydrogen) stream. The results of the spectral analysis are shown in Figure 4.14 for both
propellant streams. In the hydrogen stream, the periodogram shows a distinct peak at
around 14.5 kHz. In the oxidizer stream, the periodogram shows distinct peaks around 8
kHz, 14.5 kHz, and 19.7 kHz. The most dominant peaks overlap between both streams.
Very small peaks at 8 kHz and 19.7 kHz can also be seen in the low density stream;
however, they are very small compared to the dominant frequency peak. Although the
dominant peak frequencies are different, the peak around 19 kHz exists in the high density
stream for both the low and high strain rate cases. The periodogram was also calculated
via the Fourier transform and showed the same dominant frequencies as the Lomb-Scargle
periodograms.

Under the fully reflecting boundary conditions, the boundaries are set as pressure nodes
for the system. Underlying the growth of the acoustic perturbations is the existence of
standing wave behaviour, which is shown for both the pressure and velocity fluctuation
fields shown in Figures 4.15 and 4.16. Although there are also smaller waves travelling
across the flame, this underlying standing wave represents the fundamental mode. Similar
results were reported for the methane and air counterflow diffusion flame by Zambon and
Chelliah [78]; however, they had found the presence of one pressure antinode in the center
of the computational domain. In our case, we find the existence of two antinodes. The
first one is at approximately x = 0.01 m, which is where the very large density gradient
is (see Figure 4.11). The second one is at approximately x = 0.0175 m within the higher
density nitrogen-oxygen mixture. The corresponding velocity antinodes for the pressure
nodes can be seen in Figure 4.16.

The acoustic perturbation growth for the pressure antinodes identified in Figure 4.15
are shown in Figure 4.17. The results are consistent with the underlying standing wave
behaviour, as they both exhibit the same frequency and peak amplitudes. The profile
selected at x = 0.015 m shown in Figure 4.13 is close to the pressure node identified
in Figure 4.15, and as such, the fluctuations are dampened compared to the profile at
x = 0.0175 m.

The corresponding Lomb-Scargle periodograms are shown in Figure 4.18. At x = 0.01
m, the peak frequency is at approximately 8.3 kHz, and at x = 0.0175 m, the peak frequency
is at approximately 14.5 kHz. The periodogram of the left pressure antinode shows stronger
peaks representing the harmonics of system, whereas the right pressure antinode has a much
larger peak for the dominant frequency. Compared to the periodoggrams in Figure 4.14, the
dominant frequencies are the same, although the appearance of the harmonics appears more
clearly on the opposite side. As can be seen, the high strain rate case can be highly resonant
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Figure 4.14: Normalized Lomb-Scargle periodograms for the high strain rate case of a =
5000 s−1.

under the correct boundary conditions, and the natural frequencies can be extracted via a
spectral analysis.
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Figure 4.15: Two instantaneous snaphots of the pressure fluctuation field showing the
underlying standing wave behaviour for a = 5000 s−1.
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Figure 4.16: Two instantaneous snaphots of the velocity fluctuation field showing the
underlying standing wave behaviour for a = 5000 s−1.
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Figure 4.17: Growth of acoustic pressure perturbations at x = 0.01 m and x = 0.0175 m,
corresponding to the locations of the antinodes of the underlying standing wave behaviour
for the a = 5000 s−1 case.
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Figure 4.18: Normalized Lomb-Scargle periodograms at the pressure antinodes for the high
strain rate case of a = 5000 s−1.

A similar overall standing wave type behaviour can also be observed in the low strain
rate case; however, the effects of smaller travelling waves are much more prominent, and
the representation of the acoustic perturbation field is not as clear as it is for the high
strain rate case.
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Partially Reflecting Boundary Conditions

In Section 3.1.5, we had also introduced the notion of partially reflecting boundary condi-
tions. Because the perfectly or fully reflecting boundary conditions are the most optimal
for the growth of the thermoacoustic fluctuations, it is also of interest to study whether the
growth of these waves is sustainable even under the assumption of non-perfectly reflecting
boundary conditions. As noted in Section 3.1.5, in the calculation of the characteristic
wave amplitudes, the damped wave is introduced into the domain through the NSCBC
(either L1 or L5 depending on which end of domain is being studied) as:

L = K(p0 − pa) (4.3)

where K is a damping factor. The results calculated under a damping factor of K = 1×106

are presented in Figure 4.19. As can be seen, despite these boundary conditions permitting
only partial reflection of the acoustic waves, the acoustic waves are in fact sustained and
even undergo some very minor growth. The peak amplitudes in both the low and high
density streams have an amplification magnitude of approximately 2.
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Figure 4.19: Growth of the acoustic perturbations of the high strain rate flame at x = 0.005
m (top) and x = 0.015 m (bottom) under partially reflecting boundary conditions with
K = 1× 106.

To extract the frequencies of the fluctuations, the corresponding Lomb-Scargle peri-
odograms are presented in Figure 4.20. In the low density stream the peak frequency is
approximately 13.5 kHz, and in the high density stream the peak frequency is approxi-
mately 7.8 kHz. The frequencies are quite similar compared to the dominant frequencies
presented in Figure 4.14.
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Figure 4.20: Normalized Lomb-Scargle periodograms for the high strain rate case of a =
5000 s−1 under partially reflecting boundary conditions with K = 1× 106.

4.3 Thermoacoustic Response Under External Forc-

ing

As discussed in the introduction, typically the thermoacoustic response of a flame is de-
termined based on the Rayleigh criterion, such that the acoustic fluctuations are amplified
or dampened based on the phase difference between the pressure and heat release fluctua-
tions. For a counterflow diffusion flame, the amplification factor H related to the Rayleigh
criterion can be calculated as [65]:

H =
1

τ

∫ τ

0

Q−Qm

Qm

sin (2πft)dt (4.4)

where τ = 1/f is the period of oscillation. Typically, the integral is calculated over the
whole period of an oscillation [45]. The heat release is integrated across the computational
domain as [5]:

Q =

∫ x=L

x=0

ρcpω̇Tdx (4.5)

where ω̇T represents the temperature production term, which can be calculated based on
the species production rate as:
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ω̇T = − 1

cp

n∑
k=1

hkω̇k (4.6)

which is similar to the energy equation source term for the steady state governing equations.

To study the effects of acoustic amplification, we introduce a sinusoidal pressure wave
from the fuel inlet:

p(t) = pm + pa sin (2πft) (4.7)

where pa = 5000 Pa, similar to the simulations conducted by Beardsell and Blanquart [5].
A number of different frequency oscillations (between 10-77.5 kHz) are introduced to eval-
uate the amplification factor. The results are presented in Table 4.1. For the majority of
the frequencies in the low strain rate case the amplification factor is negative, which indi-
cates that the acoustic oscillations are dampened. However, at f = 10 kHz, the acoustic
amplification factor is positive, which indicates that the acoustic oscillations are excited.
On the other hand, for the high strain rate case, the amplification factor is positive at the
frequency f = 77.5 kHz, and larger than the low strain rate for the frequency f = 10 kHz.

Table 4.1: Acoustic amplification factor H for various frequencies of forced pressure oscil-
lations.

Strain Rate a [s−1] Frequency f [kHz] Amplification Factor H

300 10.0 0.0259
300 15.0 -0.0306
300 19.5 -0.0486
300 29.0 -0.0301
300 77.5 -0.0430

5000 10.0 0.0657
5000 77.5 0.0128

The results are consistent with the analysis of the acoustic growth presented earlier,
which showed that the acoustic oscillations grow at a much higher rate for the high strain
rate case compared to the low strain rate case. In the evaluation of the acoustic amplifi-
cation factor, we find that a wider range of frequencies can yield a negative amplification
factor for the low strain rate case compared to the high strain rate case, indicating that a
wider range of fluctuations should be dampened in the low strain rate case. With regards
to our current results, for the low strain rate case (see Figure 4.9), it can be seen that up
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until t ≈ 0.004 s, the acoustic perturbations do not grow in size, and may even be slightly
dampened. Using a detailed kinetic model at a low strain rate for a methane and air flame,
Zambon and Chelliah [78] showed that the initial acoustic perturbations would decay (see
Figure 6 in their work). However, for our high strain rate case, the growth is immediate
and the fluctuations become large within within 0.0025 s (see Figure 4.13). Additionally,
because the higher strain rate flame amplifies a wider range of frequencies, the pressure
oscillations may not completely decay even in the presence of partially reflecting boundary
condition (see Figure 4.19). The evaluation of Rayleigh’s criterion helps to explain some
of the differences in the behaviour of our two strain rates.
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Chapter 5

Conclusions and Future Work

5.1 Extension to Transcritical Combustion

In the current work, the behaviour of thermoacoustic fluctuations in the ideal gas coun-
terflow diffusion flame were studied. Recent studies have shown the existence of high
frequency thermoacoustic instabilities in high pressure liquid rocket engines [1], in which
case the propellants may be transcritical. As such, it will be of interest to extend this
work to consider transcritical fluids and supercritical fluids as well. When a fluid is tran-
scritical, it is at a pressure above the critical pressure, but at a temperature below the
critical temperature. Although there is no discrete phase change at supercritical pressures
as there is for subcritical pressures, as the fluid increases in temperature and crosses the
Widom line (the extension of the coexistence line), the fluid can undergo a rapid change
from a high density liquid-like state to a low density gas-like state in a process referred
to as pseudoboiling. The pseudoboiling process has two important and interesting char-
acteristics. First of all, the density undergoes a drastic decrease, which can affect the
dynamics of the system. Secondly, the specific heat capacity is characterized by a sharp
peak at the pseudoboiling point. For example, in a LOX-GH2 combustor, the oxygen will
be injected at transcritial conditions and thus undergo pseudoboiling. Figure 5.1 shows
the drastic changes in density and specific heat capacity of oxygen at p = 70 bar as the
fluid experiences a finite temperature difference. The interesting aspect of the transcritical
combustion is the presence of the large density gradient across the pseudoboiling point.
The interaction with the density gradient at the pseudoboiling point may have an effect
on the behaviour of the thermoacoustic fluctuations.

To account for these real-fluid effects, we can close the governing equations with a cubic
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Figure 5.1: Density (blue) and specific heat capacity (red) of oxygen as it crosses the
Widom line undergoing pseudoboiling at p = 70 bar. Values obtained from CoolProp [6].

EoS relating pressure, density, and temperature. One of the most commonly used is the
Peng-Robinson EoS [48], which is given as:

P =
RT

V − b −
aα

V 2 + 2bV − b2 (5.1)

where:

a = 0.45724
R2T 2

c

Pc

b = 0.07780
RTc
Pc

α =
(

1 + κ
(

1−
√
Tr

))2
κ = 0.37464 + 1.54226ω − 0.2699ω2

and V is the molar volume. The subscripts c and r refer to the critical and reduced
thermodynamic quantities respectively. For mixtures, mixing rules must be applied to
calculate the critical properties and the subsequent EoS parameters. These parameters
can be calculated via the classical mixing rules [54, 42]:
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aα =
n∑
i

n∑
j

zizjaijαij b =
n∑
i

zibi (5.2)

The required mixture critical properties are calculated by:

Tc,ij = (Tc,iTc,j)
0.5 (1− kij) Vc,ij =

(
V

1/3
c,i + V

1/3
c,j

2

)3

Pc,ij =
Zc,ijRTc,ij
Vc,ij

(5.3)

Zc,ij = 0.5 (Zc,i + Zc,j) ωij = 0.5 (ωi + ωj)

where kij are the binary interaction parameters typically determined experimentally. In
many cases where there is insufficient experimental data, they are assumed to be zero. The
departure from ideal gas thermodynamic properties, for example the specific heat capacity,
must also be calculated.

5.2 Conclusions

In this work a code was developed to study the behaviour of self-sustaining thermoascoutic
oscillations in the ideal gas hydrogen and oxygen/nitrogen counterflow diffusion flame. Two
strain rates were studied, a low strain rate of a = 300 s−1 and a high strain of a = 5000
s−1. Under the assumption of perfectly reflecting boundary conditions, both cases were
shown to self-sustain acoustic perturbations. However, the growth in the low strain rate
case was minimal (on the order of 1-2 times as large across 0.01 s), whereas the growth
of the high strain rate case was more significant in a much shorter period of time (on the
order of 100 times as large across 0.0025 s). Since the growth was much more significant in
the high strain rate case, the thermoacoustics were also studied under the assumption of
partially reflecting boundary conditions. Although the boundaries are acoustically lossy,
we find that the acoustic pressure perturbations can still be self-sustained. For all cases,
the oscillations are decomposed using the Lomb-Scargle periodogram to identify the dom-
inant frequencies. Additionally, a standing wave behaviour was identified from looking
at instantaneous pressure profiles. To understand the behaviour better, various different
frequency oscillations were introduced into the domain from the fuel inlet and the response
was measured according to Rayleigh’s criterion. For the low strain rate case, a variety of
higher frequency oscillations were shown to be decaying but the lower frequency was shown
to amplify, whereas for the high strain rate case, the higher and lower frequencies were both
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amplified. The result is consistent with the findings of larger acoustic growth in the high
strain rate case. The goal is to extend this work and conduct studies in the transcritical
regime, where the unique thermodynamics near the critical point may play a larger role
in the behaviour of the acoustic waves. The transcritical combustion is highly relevant to
high pressure applications such as liquid rocket engines, and as such, such a study may
help to shed some light on recent discoveries of intrinsic thermoacoustic instabilities in
liquid rocket engines.
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