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Abstract

Grasping is one of the key capabilities for a robot operating and interacting with humans
in a real environment. The conventional approaches require accurate information on both
object shape and robotic system modeling. The performance, therefore, can be easily
influenced by any noise sensor data or modeling errors. Moreover, identifying the shape of
an unknown object under some vision-denied conditions is still a challenging problem in
the robotics field. To address this issue, this thesis investigates the estimation of unknown
object shape using tactile exploration and the task-oriented grasp planning for a novel
object using enhanced learning techniques.

In order to rapidly estimate the shape of an unknown object, this thesis presents a
novel multi-fidelity-based optimal sampling method which attempts to improve the existing
shape estimation via tactile exploration. Gaussian process regression is used for implicit
surface modeling with sequential sampling strategy. The main objective is to make the
process of sample point selection more efficient and systematic such that the unknown
shape can be estimated fast and accurately with highly limited sample points (e.g., less
than 1% of number of data set for the true shape). Specifically, we propose to select the
next best sample point based on two optimization criteria: 1) the mutual information
(MI) for uncertainty reduction, and 2) the local curvature for fidelity enhancement. The
combination of these two objectives leads to an optimal sampling process that balances
between the exploration of the whole shape and the exploitation of the local area where
the higher fidelity (or more sampling) is required. Simulation and experimental results
successfully demonstrate the advantage of the proposed method in terms of estimation
speed and accuracy over the conventional one, which allows us to reconstruct recognizable
3D shapes using only around optimally selected 0.4% of the original data set.

With the available object shape, this thesis also introduces a knowledge-based approach
to quickly generate a task-oriented grasp for a novel object. A comprehensive training
dataset which consists of specific tasks and geometrical and physical knowledge of grasping
is built up from physical experiment. To analyze and efficiently utilize the training data, a
multi-step clustering algorithm is developed based on a self-organizing map. A number of
representative grasps are then selected from the entire training dataset and used to generate
a suitable grasp for a novel object. The number of representative grasps is automatically
determined using the proposed auto-growing method. In addition, to improve the accuracy
and efficiency of the proposed clustering algorithm, we also develop a novel method to
localize the initial centroids while capturing the outliers. The results of simulation illustrate
that the proposed initialization method and the auto-growing method outperform some
conventional approaches in terms of accuracy and efficiency. Furthermore, the proposed
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knowledge-based grasp planning is also validated on a real robot. The results demonstrate
the effectiveness of this approach to generate task-oriented grasps for novel objects.
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Chapter 1

Introduction

Due to the flexibility and high functionality of the robotic manipulators, they have been
widely used in traditional manufacturing sectors such as the assembly lines [13]. In recent
years, the robotic manipulators have been making their ways into other sectors where
they get to interact with humans. Examples include hospitals [14], work cells for flexible
manufacturing [15] and home automation [16, 17]. In order to carry out a large variety
of everyday tasks( instead of repetitive tasks on factory floors), different types of multi-
fingered robotic hands have also been developed. Controlling the robotic hand for every-day
objects and tasks is still a major challenge even for the best artificial robotic manipulators
available today.

One of fundamental issues in operating robots in such unstructured environments lies
in the fact that robots need to be able to handle ”novel” objects, i.e. objects that have
not been seen or preprogrammed before. This thesis attempts to address this issue so as
to advance the control of robotic hands for every-day objects and tasks. In particular, this
research tackles two specific problems; 1) identifying, fast and accurately, 3D shape of an
unknown object using tactile data, and 2) training robots to be able to grasp novel objects
based on prior experience on similar objects.

In the area of robotic manipulation, the basic information of the object as well as the
surroundings can be acquired from different types of sensors. The vision cameras and laser
sensors provide by far the most informative data on the object shape and pose, if available.
Both of them, however, are limited by occlusions, dim lighting, hazardous environment
under smoke or fire and do not often exhaustively describe the object in terms of the
shape or other specifications such as the mechanical property. Figure 1.1 illustrates an
example that the target object is partially (B) or completely (C) occluded by the obstacles
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or the environment. This limitation can be avoided through direct contact by utilizing
tactile (or haptic) sensors which can often provide more accurate local information on
the object properties. Manipulation tasks associated with heavy use of tactile sensors are
often referenced as the tactile exploration. In recent years, the tactile exploration has been
getting an increased attention for advanced hand control and widely used to manipulate
the objects and interact with environments [18, 19]. A number of research studies have
also shown that integrating the tactile data with other types of sensor data can improve
the efficiency to manipulate the objects and interact with environments [20, 21].

Figure 1.1: Visible and reachable objects. A and B are both visible and reachable, B is
partially occluded. C and D are non-visible and reachable. [1]

An important observation obtained through an experiment, involving seven healthy
human volunteers, is that the complexity of the manipulation process highly depends on
target features [22]. Moreover, the results presented in [23, 24] also imply that there
exist different types of relations between human grasping motion and object features. For
instance, the approaching direction of the hand is determined by the object position and
orientation, and the hand pose depends on the size of the object as well as the task that
needs to be achieved. The results further demonstrate that the total human grasps can be
categorized into a number of groups based on the target object shape and functionality.
These results indicate two points which have important implications for grasp planning for
robotic manipulators:

1. Grasp planning is highly relevant to the object features and the desired tasks. For
instance, the hand pose of grasping a pencil is not suitable to grasp a basketball,
but can be applied to grasp a small hammer. Similarly, to pour water from a mug,
grasping the body from the side is apparently a good strategy instead of grasping
from the top, since the hand will block the opening of the mug if grasp from the top.
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2. The objects that share similarities in shape and functionality can be grasped and
manipulated in a similar way. For instance, although two mugs have slightly different
shapes, they can still be grasped using the same hand pose. In spite of different sizes,
most of the screwdrivers can be grasped in the same way.

Given the information on the target object, the conventional approaches for finding an
appropriate grasp try to determine the contact locations of each fingertip while satisfying
some certain constraints, such as stability and equilibrium [25, 9]. In general, this type
of approaches rely heavily on the accurate information on the object model as well as
the robot kinematics and dynamics. However, it is not possible to acquire such accurate
information in practice, due to the inherent errors from sensors and robotic systems. More-
over, the desired task associated with the target object is normally not considered in such
approaches due to the difficulties of modeling a task. To address these technical issues,
another type of approaches using data-driven techniques are developed in recent years [11].
Applying this type of approaches, a large number of grasp candidates are generated for
some representative objects in simulation or on a real robot and recorded into a training
dataset. When trying to grasp a novel object, the most suitable grasp candidate from
the training dataset is selected based on the similarity between the target object and the
training objects. In order to analyze such big dataset, some machine learning techniques
have been applied to the grasp planning problem [26, 27].

1.1 Outline

The remainder of this thesis is organized as follows. Chapter 2 reviews the relevant research
studies regarding the representation and estimation of the object shape as well as an
overview of related research that apply machine learning techniques on the grasp planning
problem. A novel multi-fidelity-based optimal sampling strategy to rapidly estimate the
shape of an object via tactile exploration is proposed in Chapter 3. In Chapter 4, a task-
oriented grasp planning method using a multi-step classification algorithm is developed.
The concluding remarks of this thesis and several suggestions for the future work are
provided in Chapter 5.

1.2 Contributions

This research aims to improve existing learning strategies applied to the problem of tactile
exploration for shape estimation and that of task-oriented grasp planning. The contribu-

3



tions claimed in this thesis are as follows

1. Incorporating the mutual information and the geometric features of the target object
into Bayesian statistics, we propose a new optimal sample points selection method to
accurately estimate the shape of the target object with a limited number of sampling
trials. Formulating it as a multi-objective problem, we develop a trade-off function
that combines both criteria into a single objective function using a weighting param-
eter. By tuning the weighting factors, the objective function can adjust the priority
between estimating the whole shape of the object and emphasizing on geometric
features of the object. This idea has been validated through simulations as well as
experiments using a robotic testbed.

2. As an enhancement to the batch learning SOM, we propose a knowledge-based ap-
proach to rapidly establish a suitable grasp for a novel object. A training set consist-
ing of the geometric information on the training objects and a number of task-oriented
grasps is first built up. Such training set is run through a multi-step clustering al-
gorithm to generate a set of representative grasps. Applying Gaussian kernel to
measure the similarity between training data, we also develop a new initialization
method to locate the optimal initial neurons (centroids). In order to determine the
optimal number of neurons, a auto-growing method is also developed. By consider-
ing the geometric information on a novel object, a good grasp is generated from the
learned experience to accomplish a specific task for the novel object. As a result, the
knowledge can automatically improve and update from grasping every novel objects.
The proposed technique has been validated through experimental results using the
robotic testbed.
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Chapter 2

Literature Review

This chapter presents a summary of the literature and state-of-the-art methods in the area
of:

• Representation and estimation for unknown 3D shape;

• Grasp planning using machine learning techniques.

Section 2.1 introduces some typical models to represent a target object, and some
common algorithms to estimate unknown object shapes. In the following Section 2.2, one
popular method, also known as Gaussian process implicit surface (GPIS), which has been
widely used in recent years is reviewed. GPIS models the object shape as an implicit surface
and estimates it by Gaussian Process Regression. GPIS as a tool is used to reconstruct the
non-parametric probabilistic surfaces of the object from partial and noisy sensor data. It
forms the basis of the estimation algorithm proposed in this thesis. Despite its versatility,
computational complexity of GPIS makes it impractical when the training set is large. This
has motivated a number of approximation methods that aim to increase the efficiency while
maintaining the accuracy of GPR. Some representative approaches are discussed including
strategies to select optimal sample points.

The accurate geometric information on the target object is a critical factor in the process
of determining a good grasp using the conventional grasp analysis approaches. Even slight
errors in the object dimension or pose may lead to irreparable failures. In the meantime,
if the manipulation task is taken into account in the planning phase, then the challenge
of finding a suitable grasp among an infinite number of candidates will significantly in-
crease. A more efficient approach to address this problem is performed by applying some
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machine learning techniques. Section 2.3 reviews some relevant research studies from two
perspectives: learning affordance parts and classifying object categories. Then, some clas-
sic classification algorithms that are used for data analysis are reviewed in Section 2.4.
One typical hierarchical clustering algorithm, known as the self-organizing map (SOM), is
also reviewed. SOM is applied to develop the multi-step clustering algorithm proposed in
this thesis. The performance of SOM or that of any other clustering algorithms usually
suffer from two major issues: initialization and determination of the number of class. Some
existing attempts to resolve these two issues are also introduced within this section.

Finally, the literature review is summaried in Section 2.5.

2.1 Object Representation and Estimation

Grasp planning for an object and the corresponding manipulation task can be improved
from the geometric knowledge of the object. The estimation of such information highly de-
pends on the chosen representation method. The choice of a suitable object representation
is therefore critical for generating a successful grasping movement. This section introduces
some models that are commonly used to represent objects and some typical estimation
methods to the object shape.

2.1.1 Object Shape Representation

Given the first-hand sensory data, many approaches to represent the object of interest have
been proposed. Figure 2.1 illustrates four different types of representation method for one
object, the Stanford bunny.

Figure 2.1a shows a point cloud of the Stanford bunny obtained by a laser scan. In
general, a point cloud is made by stationary laser scanners to hold a set of data points
that are defined in a three-dimensional (3D) coordinate system and intended to represent
the surface of the object of interest [28]. For instance, it is used to demonstrate a 3D
reconstruction of an object surface that is obtained from tactile exploration with a multi-
fingered robotic hand and tactile sensors in [29, 18].

Another use of point clouds is to generate a consistent polygonal mesh model via an
unconstructed point cloud [30, 31]. Figure 2.1b illustrates the mesh model of the same
bunny. A polygonal mesh contains a collection of vertices, edges and non-overlapping
faces and consists of triangular contiguous (or quadrilateral, or some other simple convex)

6



polygons that are joined together along their edges. A mesh, therefore, is the easiest
method to represent an object surface and is widely used in 3D computer graphics and
visualization. An image-based modeling approach that renders an image on its faces at
high resolution is proposed in [32]. In order to enable robotic grasp planning via shape
completion, an architecture that accomplishes the shape completion from a single point
cloud of a target object into a mesh model is provided in [33]. Besides the fact that meshes
can provide the same accuracy as a point cloud does, they have some other advantages,
including: 1) one can expand the faces and discard extra points that lie inside faces (this
feature is especially useful for large flat surfaces) to show the details of the object; 2) one
can easily detect intersections of polygons with other objects.

One challenging issue in robotic grasping is that there is a huge number of possible hand
configurations to grasp an object for a robotic hand. A simplified method that models an
object as a set of shape primitives, such as spheres, cylinders, cones and boxes, so as to
choose an appropriate posture for the object is proposed in [34, 35]. Figure 2.1c shows
the same bunny represented by four different sizes of rectangles. The estimation method
associated with this approach will be introduced in Section 2.1.2. By implementing this
representation method, the number of possible grasp can be limited.

(a) Point cloud [36] (b) Mesh [36] (c) Composition [36] (d) Bounding Box [37]

Figure 2.1: Different representation of a Stanford bunny.

Modeling a 3D object by shape primitives is an efficient and valuable step for object rep-
resentation [38]. However, in order to generate a good approximation by shape primitives,
this approach has to suffer from the computational cost of processing a large number of
data points. A promising solution that considers the tradeoff between good approximation
and efficiency is proposed in [39, 37]. The basic idea of this approach, called the minimum
volume bounding box computation, is originally proposed in [40]. Using this algorithm,
the object shape can be simply described as a bounding box which can preserve the size
of the object. Although this approach compromises accuracy of the object shape for a
very compact representation, it can still largely reduce the cost of using shape primitives
to approximate the object and is easy to implement.
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Implicit Surface

In addition to the methods for the object representation introduced above, implicit sur-
faces have been extensively used in modeling environments [41], modeling objects [42] and
scientific data visualization [43]. An implicit surface is a special level set which is defined
as the zero level set of a real-valued function in 3D space. It can be used to determine
whether a point is on the surface or not by a scalar function value. More precisely, only
the points with zero function value exist on the surface. For those points which are not on
the surface, their function value can be either simply described as 1 (outside) / −1 (inside)
[44] or defined by the value of a signed distance function (SDF) [45]. Figure 2.2a presents
an example of the zero level set of a 2D object that lives on a plane and is delimited by
a contour. This contour is where the function crosses the zero-valued plane and indicated
as a thick solid line. As to the points that are not on the surface, Fig. 2.2b illustrates the
points with positive function values which are located outside the object (light color area)
and the rest with negative function values (inside the object, dark color area).

(a) (b)

Figure 2.2: (a) The zero level set for a 2D object where f(x) = 0 is represented as a closed
circle by an implicit function; (b) Example of different level sets for a 2D object.

The first method using implicit surfaces to represent shapes is proposed in [46], where
implicit surfaces are used to visualize 3D models of molecules in computer graphics research.
In the machine learning field, later, implicit surface shape representations have been in-
tensively investigated. A volumetric method for reconstructing surfaces by integrating
multiple range images is proposed in [47]. The multi-level partition of unity implicit sur-
face to construct surface models for local approximation is presented in [48]. An approach
which is based on Support Vector Machines (SVMs) for approximating implicit surfaces
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and computing deformation of 3D shapes is proposed in [49]. In this work, the author also
proposed that shape deformations can be analytically described on functions rather than
on the shape contours or on the shape primitives. The main reason is the difficulty or
inefficiency to represent many smooth and deformable objects with such primitives, even
using sphere. This idea inspired researchers to apply GP with implicit surfaces to model
2D curves or 3D surfaces and deal with shape uncertainty [4]. More specifically, given some
known points on an object, a probabilistic prediction result for modeling the object can
be obtained from GP posterior. The use of GP with implicit surfaces will be discussed in
Section 3.2.2.

2.1.2 Object Shape Estimation

After choosing a proper representation method for the object, the next problem is how
to estimate the shape of the object with available sensors for grasping the object. One
promising approach is to approximate objects with shape primitives. The basic idea of this
approach is to construct a shape database which contains a small number of parametric
regular shapes, so that the target object can be approximated as a combination of these
shape primitives. This method has been used for grasp planning in [34, 50, 51]. Assuming
symmetry of the object, this method has been also applied to estimate the shape of an
unknown target object from a single 3D snapshot for grasping in [52]. In this work, the raw
sensory data is first processed by fitting a curve to a cross section of the point cloud of an
object to exploit symmetry. Then, the back side of the object can be obtained according to
the detected symmetry and the object can be reconstructed by fitting boxes and cylinders.
As to the grasp planning, the grasp candidates are generated through randomization of
grasp parameters (i.e. approach direction). A related approach that reconstructed a full
shape of a man-made object by assuming planner reflection symmetry is presented in [2].
In this work, a complete point cloud that is merged from different view points is utilized.
Figure 2.3 illustrates an example that the full shape of the target object is approximated
using this approach.

Different from the techniques introduced above, an approach for grasping an object
with no prior assumption about the object shape is proposed in [3]. A video camera which
is mounted on the wrist of the robotic hand is used to capture the images of the object
from multiple view points. After modeling the object shape, a pair of reasonably flat and
parallel surfaces that are best suited for a parallel-jaw gripper is found by the proposed
grasp planner. Applying this method, a process through which the shape of an object is
reconstructed is illustrated in Fig. 2.4.
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(a) (b) (c) (d)

Figure 2.3: Estimated full object shape by assuming symmetry. (a) Ground truth mesh;
(b) Original point cloud from one side view; (c) Mirrored cloud with original points in blue
and predicted points in red; (d) Reconstructed mesh based on mirroring [2].

(a) (b)

Figure 2.4: Unknown object shape estimated by shape carving. (a) (Left) Image of the
target object, (Right) Point cloud of the object; (b) (Left) structured-light model, (Right)
Model combined with point cloud data [3].

Another method applied to the approximation of the shape of an unknown target object
for grasping is presented in [53]. In this work, the object is modeled by a quadric function,
and the parameters of the quadric that fit the image data are estimated using multi-view
measurements of the global object shape. The estimated object centroid determined the
approach direction, and the estimated object size helped to generate the posture of the
hand for grasping. Similar to this work, a related approach using a quadric approximation
method for grasping an unknown object with a multi-fingered robotic hand is proposed in
[54]. The experiment demonstrated in this work is also conducted with a camera which is
carried by the robotic hand to record a number of images from around the target object.
Instead of using shape primitives, an ellipsoid that bounded the object in each image is
constructed to overestimate the object visual hull and is then approximated by a quadric.
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A pre-grasping shape of the hand is defined in which the initial grasp points on the quadric
are in a plane parallel to the two minor axes of the ellipsoid. This grasp configuration is
then refined through iterative reconstruction of the elastic surface of the object and a local
optimal grasp planner.

2.2 Estimation Using Gaussian Process Regression

The research studies discussed above demonstrate that the basic information on the object
shape can be acquired from different types of sensors, such as vision camera, laser scanner
and tactile sensors. Such information is often corrupted by measurement noise which makes
the derived knowledge uncertain. This problem cannot be efficiently solved by applying the
estimation methods that have been introduced in the previous subsection, unless we can
collect a large number of measurement data or just simply assume perfect measurements.

Given some noisy observations of the object shape at certain positions, what is the best
estimate of the object shape anywhere else? One naturally may assume that the object
shape can be described as a linear function f(x). Then the function can be fitted by using
a least-squares method. Moreover, even if f(x) is quadratic or cubic other than linear,
one can still use the principles of model selection to choose among the various possibilities.
Most of the objects in the real world, however, cannot be simply described as a polynomial
function due to the complexity of the shape.

A GP is a general approach that can put all noisy observed data together with some
prior assumptions about f(x) and predict the function value either near or far from the
observed positions, rather than claiming f(x) related to some specific models. Due to this
unique feature of GP, it has been introduced to implicit surface modeling in [4]. This
work provided a physical interpretation that the zero level set implied by a real-valued
function f(x) : R3 → R represented the surface of the object with non-zero volume. This
type of method that estimates the function, f(x), by GPs is then called Gaussian Process
Implicit Surfaces (GPIS). The key idea of GPIS is to let f(x) be distributed according
to a GP, so that the estimation of GP can be conditioned on the corresponding function
value. Furthermore, the surface contour is also random and characterized by the underlying
process. This method, then, has been widely used for 3D shape reconstruction [55, 56],
modeling deformable property of object [1], unknown object shape estimation and the
corresponding grasp planning[44, 45], and tactile exploration [57]. Figure 2.5 demonstrates
two examples for modeling a 2D curve and a 3D object. The main estimation algorithm
proposed in this research proposal is based on GPIS model and will be introduced in the
later chapter.
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(a) (b)

Figure 2.5: Two estimation results using GPIS: estimation of a 2D contour in (a); estima-
tion of the Stanford bunny using 800 surface points, one interior point, and a sphere of 80
exterior points [4].

2.2.1 Approximation Methods for GP Regression

One technical issue in the implementation of the GPIS is that, during inference, GP re-
gression (GPR) gets often computationally demanding. Due to the inversion of covariance
matrices, even a straightforward implementation of GPR requires O(n2) space and O(n3)
time for a training dataset of n samples. Normally, there are three computational phases
to implement GPR [58]. Each phase consumes different computational load.

• Hyperparameter learning: The hyperparameters are a set of free parameters
whose values specify the covariance function (the details will be introduced in next
chapter). They can be learned by maximizing the log marginal likelihood of the GPR
model [59] and have a large influence on the posterior model.

• Training: Given a set of hyperparameters, all computations that do not involve the
predicted data, are performed.

• Prediction: Only the computations involving the predicted data are performed.
This phase may be significant if there is a very large test set.

Among these three phases, the most expensive operations are the hyperparameter learn-
ing and the inversion of the covariance matrix. Ideally, the training data for the hyperpa-
rameters is supposed to consist of all observations. However, due to the high computational
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load or the availability of these measurements, some efficient computational methods are
required. Notice that training the GP model on a given training set of data is the same
as finding the optimal set of hyperparameters that maximizes the log marginal likelihood.
Based on this idea, the Occam’s razor principle that guaranteed the optimization of the
hyperparameters and prevention of overfitting by the formulation of the learning mech-
anism is proposed in [60]. A method combining of stochastic search and gradient-based
quasi-Newton optimization is presented in [61]. This gradient based method can efficiently
achieve the convergence. In some cases, the log marginal likelihood may have multiple
local maxima. An approximation method of the global maximum that utilizes a stochastic
meta-heuristic optimizer to tune the values of hyperparameters is introduced in [62].

As to the inversion of the covariance matrix, several approximation methods have been
proposed to address this problem. The simplest way is to use mathematical tools, such as
Cholesky decomposition. The computational complexity is n3/6 for the Cholesky decom-
position in general. It is, however, not efficient when the training set is large. The most
straightforward approach to dealing with a large amount of data is to select a subset of
training data points and ignore the rest. This so called ‘Subset of Data (SoD) approxi-
mation’ simply applies GPR to the selected subset of size m < n. Therefore, the cost for
the covariance matrix inversion using SoD would be O(m3). The selection of the subset
can be performed either randomly or by an informed choice. Based on this idea, a fast
selection scheme using entropy reduction techniques that took only O(m2n) is proposed in
[63]. A matching pursuit approach which had similar complexity to the previous scheme
is presented in [64]. However, even though the computational costs can be efficiently re-
duced using SoD approximation method, there is a large difference between the predicted
variance (which reflects the uncertainty) and the exact one. For instance, the predicted
uncertainty may be high at certain locations because no training data points are close to
them. The real uncertainty, however, should be much lower since the sample points which
are close to those locations have been discarded.

An alternative approximation algorithm using self-defined covariance matrix based on
induing points is proposed in [65]. The inducing points are selected as a small set of
locations over the input training data. The complete dataset is then projected into the
inducing points. Moreover, the Fully Independent Training Conditional (FITC) method
is developed to approximate the new defined covariance matrix [66]. This idea has been
applied to a related method that linearly projected all the training data points onto a
lower-dimensional subspace in [67]. By combing the SoD and FITC methods, a novel
approach is introduced in [58]. In this work, the author claimed that it is possible to
approximate the marginal likelihood using the SoD and to apply the FITC algorithm to
make predictions using the same data subset. As a result, the computational complexity
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is expected to be reduced to O(m3) instead of O(m2n). Another method that divided the
whole training dataset into several clusters is proposed in [68]. The basic idea is to equally
divide the n training data points into k = [ n

m
] clusters, and perform GPR in each cluster

while discarding the training data points outside of the given cluster. The computational
complexity can be reduced to O(m2n). However, the continuity of the predictions cannot
be guaranteed, if the boundaries of the cluster are chosen improperly.

Alternatively, a fast nearest neighbor lookup with kd-trees has been used to efficiently
compute the multiplication of a covariance matrix with a vector in [69]. Using this ap-
proximation method, the training data points are organized in kd-trees, and only the data
which is closest to the query locations is processed by GPR. The size of the data storage
can be reduced to O(n) from O(n2).

In some particular applications, such as robot control, the training dataset normally
consists of the previous knowledge about the system. In order to efficiently utilize the
previous data and to combine the information from the new data, a sequential regression
method is proposed in [70]. An alternative approach, named as Recursive GPR, that
used the similar idea is presented in [71]. This method can guarantee the accuracy of the
prediction while reducing the computation time. The sequential update method proposed
in this thesis is also inspired by this idea.

2.2.2 Sample Points Selection

Based on all the approximation methods discussed above, it is obvious that the key idea of
reducing the computational load of GPR is to minimize the size of training set. In our case,
the training set represents the set of sample points on the object surface. Moreover, the
process of estimating a 3D shape using GPIS usually involves updating the shape model
every time we collect new measurement data. These technical issues suggest that we may
improve the performance of the GPR for 3D shape estimation if the sample points can be
selected in a more efficient (or optimal) way. One question addressed in this thesis is how
we can determine the location of the next sample data such that the number of tactile
data points to be sampled can be minimized without losing the accuracy in the estimated
shape.

Intuitively, a good candidate for the next sample point should be selected at the place
which has the highest variance, because it is normally either far away from any previous
measurements or near the areas of large surface variation. In other words, this location
has the lowest confidence in its prediction. This method has been applied in some recent
studies to the problem of tactile exploration of the surface of an object [72, 73]. Instead of
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using variance as criterion, an alternative approach to select the most informative location
with respect to the entire region of interest is proposed in [74]. In this method, the
amount of uncertainty, using Shannon’s entropy [75], is defined as the conditional entropy
of the unobserved locations after taking measurements from the observed locations. A
good placement, therefore, should minimize this conditional entropy. More specifically, the
selected sample points are most uncertain about each other. However, this optimization
problem is shown to be NP-hard in [76]. In order to deal with this type of problem,
the greedy algorithm that iteratively adds sample points has been commonly used [77].
Using this algorithm, a posterior entropy criterion that aimed at reducing the expected
uncertainty about the posterior generalized variance of the function is applied in [78].

The entropy criterion, however, suffers from a problem that the sample points tend to
be placed along the boundaries of the region. The cause of this phenomenon is that when
the prediction is made based on the measurement from the region around the observed
points, the estimated variance is clearly high along the boarders of the field of interest.
An alternative improved criterion based on mutual information is proposed in [5]. In this
work, the field of interest is considered as a discrete set of locations V = S ∪ U composed
of two parts: a set S of positions which can be observed, and another set U of positions
which no observations are possible. The goal is to find a set of positions for k sample points
that would provide good predictions at all unobserved locations at V \X. Specifically, this
problem can be solved by

X∗ = argmax
X⊆S

H(V \X)− H(V \X | X), (2.1)

where for the sake of simple notation, V \X and X refered to the surface points at the
locations V \X and X, respectively. Specifically, the set X∗ maximally reduced the entropy
over the rest of the field of interest V \X∗. This criterion is equivalent to find the set that
maximizes mutual information I(X;V \X) between the locationsX and the rest of the space
V \X. Figure 2.6 demonstrates the difference in using entropy and mutual information to
select the locations of sample point.

Based on this criterion, a smooth and well estimated surface in terms of the overall shape
of the target object can be desired using GPIS [79]. Some key surface details, however, are
lost in this process, due to the lack of information on some particular areas that contain
distinctive geometric features. The areas with distinctive geometric features refer to local
regions where high-fidelity samples are required to characterize their geometric shapes, e.g.,
sharp corners or high curvature areas. There are only a few attempts that take the local
information (e.g., distinctive geometric features) into account for estimating the 3D shape.
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Figure 2.6: An example of sample points selection using entropy and mutual informa-
tion criteria. The positions chosen using entropy are indicated as diamond sign, and the
positions chosen using mutual information are indicated as square sign [5].

One recent work introduced a local implicit surface estimation algorithm that focused on
the estimation of sharp corners and edges by considering the surface normals and local
convexities or concavities at the contact positions [80]. Later, the same author presented a
novel sensor which an Inertial Measurement Unit (IMU) and a pressure sensor to estimate
the surface normal in [6]. Figure 2.7 shows two estimation results that are generated from
the same sample points. The estimation of the object using only GPIS is shown in Fig.
2.7c. By considering the surface normal with GPIS, the estimation result can be improved
and is shown in Fig. 2.7d. These experiment results indicate that the accuracy of the
estimation of the object shape can be improved by considering the surface normal. This
work, however, only focused on the estimation rather than the sampling strategy. As a
result, a large number of sample points are required to render an accurate estimation for
an object with standard geometric shape.

2.2.3 Estimation via Tactile Exploration Path

In tactile exploration for 3D shape estimation, the target object is reconstructed from
sparse tactile data gained at the contact points where the robot finger touches down the
object surface. In such a process, only one (or a few) contact point can be sampled at a
time. In order to increase the efficiency of the estimation, some recent research work took
into account the travel cost which is consumed during the exploration actions [81, 7]. The
sample points are selected based on local information maximization and exploration cost
minimization. The exploration cost is considered as the combination of the overall path
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(a) (b) (c) (d)

Figure 2.7: Comparison of the estimation results of a coffee can with and without consid-
ering the surface normal information [6]. The target object (a), the ground true model
(b), the estimation result using only GPIS (c) and the estimation result using GPIS and
surface normal (d).

length of exploratory motions and the overall rotation of the finger during exploration.
Figure 2.8 shows a simple example of exploration of a flat surface.
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Figure 2.8: An example of exploration of a flat surface [7].

In recent years, another type of approach performed the tactile exploration in the
context of paths on the surface of the object instead of a collection of discrete points
[8, 19, 82]. Figure 2.9 shows an example of some paths and the estimated surface based on
such paths. The variance of the estimation is visualized as the color on the surface. High
variance is indicated as red, and low variance is indicated as blue. Intuitively, this type of
approach is supposed to be more effective as trajectories on the surface of the object are
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much more informative than a collection of points. This is because the number of points
that are collected from trajectories is much larger than that are selected from active point
sampling strategy. This can be seen from Fig. 2.9 that each trajectory is composed of a
large number of discrete sample points, indicated as black dots. As mentioned earlier, the
more sample points, the more computational load that GPR consumes. The improvement
in terms of efficiency may not be as remarkable as what it has been claimed. Another
issue of this type of approach is that each trajectory contains some redundant points.
More specifically, there are some sample points on each trajectory that make only a little
contribution to the estimation of the object shape. As discussed earlier, the good sample
points should be far away from each other so that they can provide more information on
the object. In other words, the closer two sample points get, the less information they can
provide. In such approach, the number of sample points is determined by the frequency
that is used to update GPIS model. With a high frequency, the sample points on the
same trajectory are too close to each other. As a consequence, most of sample points
on such trajectory do not only provide more information on the object, but increase the
computational load by a significant amount. On the other hand, with a low frequency,
the trajectories are nothing else but a series of discrete points. As a result, this type of
approach becomes similar to the active point sampling strategy.

Figure 2.9: An example of surface exploration with query paths in simulation [8].

2.3 Grasp Planning

Given the geometric information on object and a set of criteria for the grasping task,
how to generate a suitable grasp among an infinite number of candidates for the target
object to fulfill all the requirements for manipulation is always considered as one major
challenge in the development of fundamental functionalities of dexterous manipulation. In
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this section, the basic idea of the conventional analytical approach for grasp planning and
the limitations of such approach is first reviewed. Apart from the analytical approach,
using machine learning techniques to tackle task-oriented grasp planning becomes popular
in recent years. Some typical approaches are introduced within this section.

2.3.1 Grasp Analysis

Consider the case where a multi-fingered robotic hand grasps an object in 3D space, and
each of the fingertips and the object make a point contact, as shown in Fig. 2.10. The
contact between each finger and the object can be described as a mapping between forces
exerted by the finger at the point of contact and the resultant wrenches at some reference
points on the object [83]. In most of cases, the contacts are modeled based on some
additional assumptions, such as Coulomb friction and rigid body modeling [83, 84].

Figure 2.10: Grasp an object with a multi-fingered hand. [9]

Then, typical analytical approaches provide guarantees for the determination of the
locations of the contact points for a given object in terms of the performance in resisting
external wrench loads. One approach to solve this problem is to model the object as a
combination of boxes so that the surface of the object can be treated as a finite number
of flat faces [39]. Moreover, there is a constant normal for each face, and the position of a
point on a face can be linearly parameterized by two variables. Based on these properties,
assuming n − 1 fingers had fixed positions on the object surface, a method that searched
for the locations for the n-th finger to ensure force-closure (i.e. any external forces can
be resisted by the resultant force) grasps is presented in [85]. Similarly, an algorithm that
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computed the locations of the contact points to form a force-closure grasp from an initial
random grasp is proposed in [86]. In this work, a grasp is first arbitrarily chosen on the
face of a given object. Then, using the linear parametrization of a point on the object face,
the algorithm moved each fingertip position until the force-closure property is achieved.
These approaches are effective when the number of faces of the object is low. However,
some commonly used objects in everyday life, such as mugs and bottles, may not easily to
be modeled with a limited number of faces. Hence, these approaches suffer from a large
computation load coming from the combinations of the large number of faces.

In order to deal with such an issue, objects are modeled with a cloud of 3-dimensional
(3D) points or a triangular mesh. Based on geometrical analysis of the modeled object, an
algorithm for computing three finger force-closure grasp for 2D and 3D objects is presented
in [87]. Assuming the target object can be discretized as a large set of surface points, a
complete and efficient algorithm for searching force-closure grasps of n hard fingers is
proposed in [88]. In this work, every single point as well as their normal are available.
Then, the algorithm starts with an initial set of contacts randomly chosen among the set
of points and iteratively exchanges the contact points with other candidate locations until
a force-closure grasp is obtained. Another type of approach explored the contact regions
rather than the contact points without losing the force-closure property [89, 90].

Besides the force-closure property, the quality of grasp is another critical factor to
determine the locations of the contact points or those of the contact regions. In order to
measure the quality of each grasp, many optimization methods are proposed [91, 92]. Most
of these methods computed optimal force-closure grasps by optimizing a certain objective
function according to a pre-defined grasp quality criterion, such as minimum singular value
of the grasp map matrix [93], area of the grasp polygon [94], distance between the centroid
of the contact polygon and the object’s centre of mass [95] and limitations on the finger
forces [96].

In practice, most of the aforementioned approaches suffer from some problems during
the implementation. One common assumption made in analytical approaches is that the
precise information on structural properties (shape and weight) or surface properties (hard-
ness and texture) of the object is available. However, such information is always uncertain,
due to the noisy information coming from different types of sensors. In addition, system-
atic or unexpected errors that are inherited from the physical robotic system, or even the
modeling errors of the robot’s kinematics and dynamics can result in an inaccurate place-
ment of fingertips. Furthermore, most of the analytical approaches do not consider task as
a criterion to determine the choice of an optimal grasp. In order to address all these issues
associated with the analytical approaches, some machine learning techniques have been
employed. In the following subsections, some representative approaches are introduced
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and discussed.

2.3.2 Task-Oriented Grasp Planning

After examining a variety of human grasps, an important conclusion is made in [97] that,
besides the size and the shape of the object, the task to be performed is also a critical
factor to determine the choice of an optimal grasp. It indicated that finding a good stable
grasp is only a necessary but not a sufficient condition for an efficient manipulation. In
other words, when some manipulation is expected after grasping, a good grasp should be
made in accordance with the task at hand. For instance, although a grasp at the top of
a mug satisfies the force-closure property, it is not a valid grasp for the task of pouring
water from the mug since the cup opening would be blocked by the end-effector.

Analytical Approaches

If we carefully examine the geometric shapes of everyday objects, we can see that almost all
objects are constituted by a particular component which is designed specifically to fulfill
their functionalities and to make their grasps easier. For instance, the handle parts of
mugs and teapots, the elongated parts of pencils and bottles and the handles of frying
pans. These particular components can be extracted by the visual system of humans and
are utilized to identify the novel objects [98]. Thus, most primates are able to determine
a good grasp for an arbitrary object, even without the information on object shape or
the knowledge of object type. Those components that are preferable to be grasped for
certain tasks are normally referenced as the affordance parts. The grasps generated by
applying this idea are called the semantic grasps. Inspired by these observations, a number
of approaches are proposed to identify the affordance parts of the objects so that the
generation of a task-oriented grasp can be made. The basic idea of this type of approach
is illustrated as a flowchart in Fig. 2.12. In order to identify the affordance parts, a
method imitating the human behaviors to choose a good grasp is proposed in [99, 10]. In
this work, the contact points are computed to ensure the force-closure property. Figure
2.11 shows the basic procedure to detect the different types of natural graspable parts of
some objects. The idea of segmentation is also applied with depth information in [100].
In this work, a supervised classifier is developed to detect only the graspable components
of the object. The results of this work also demonstrated that the grasp planning can
be significantly simplified by employing the segmentation algorithm. Another approach
for estimating affordance parts only from 2D sources is developed in [101]. By modeling
the everyday objects as 3D point cloud data, the similar method to detect the affordance
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parts are applied in [102, 103]. In recent years, due to the efficient utilization of collected
data and the promising results from the learning-based approaches, machine learning has
attracted a lot of attention in robotics field. Some approaches that used convolutional
neural networks (CNN) for object affordance detection for particular tasks are proposed
recently in [104, 105].

Figure 2.11: The procedure to detect the natural graspable part. The true shape of the
objects (a), segmented into two parts (b), using shape primitives to approximate each
constituting part (c) and the natural graspable part (d) [10].

Scene

Object 
segmentation 
and features 
extraction

Task constraints

Grasp 
execution

Grasp points 
determination

Figure 2.12: A typical functional flowchart of a system that generates task-oriented grasps
by detecting the affordance parts for a particular task [11].
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Affordance Components Detection

One key result demonstrated in these approaches shows that two different objects can be
grasped in the same way as long as they shared similar affordance components. Based
on this idea, another type of approach utilizes the labeled dataset of simulated grasps
to simplify the grasp planning process. Figure 2.13 presents a functional flowchart that
summarizes this type of approach. In the offline phase, a number of categories are created,
and each category contains some training objects which share similarities in affordance
parts. Each category normally contains a number of features, such as tasks, object features,
actions and constraints. These features play a major role in the generation of a task-
oriented grasp, and they can either be encoded via simulations or learned from human
demonstrations. For each training object, a number of grasps that satisfy those features
are generated. In the online phase, the novel object is first segmented so that the affordance
part can be extracted. The detected affordance part is then approximated and categorized
to determine to which category the novel object belongs. Instead of searching for the
contact points and analyzing the corresponding grasp stability, a suitable grasp can be
acquired from the dataset. This framework is used with a Bayesian network in [106, 107].
In this work, grasps that are encoded into the dataset are first instantiated in simulation
and then labeled by human users. The trained network demonstrates the ability to detect
the grasp points for a given task and is capable of determining if the target object is suitable
for the given task. Later, this work is extended to include tactile information so that the
stability of the generated task-oriented grasps can be evaluated in [108]. A semantic map
that maps the local object geometry to a set of predefined constraints, such as graspable
parts, relative orientation of the hand to the graspable part, hand posture, approaching
direction and tactile data on the hand, is proposed in [109]. A set of semantic grasps is
first generated with respect to the related local geometry. While the hand approaches the
object, the hand is adjusted by maximizing the similarity between the planned grasp and
the recorded grasp which corresponds to the current approaching direction. The results
shown in this work demonstrate that the learned semantic grasps can also be applied to
other similar objects. In order to improve the transferability from the training objects to
the novel object within the same object category, a local optimization method is proposed
in [110].

Category-Based Approaches

In the aforementioned approaches, objects that share similarities in affordance components
are grouped in one category and one task-oriented grasp can be transferred within the
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Figure 2.13: A typical functional flowchart of a system that generates task-oriented grasps
by creating a semantic grasp dataset [11].

same category. Some research studies expand on this idea in a more general concept that
everyday objects can be grouped together into categories based on shape and functionality
[111]. More specifically, the objects within the same category can be used to fulfill the
same task. Figure 2.14 shows two typical examples of category which contain similar
objects in terms of shape and functionality. In addition, an observation from analyzing
human grasping behavior indicates that similar objects can be grasped by using similar
or even same grasp types [23]. Based on these ideas, a number of approaches have been
proposed recently. Figure 2.15 illustrates a typical flowchart of such approaches. This type
of approach is normally accomplished into two phases: offline phase and online phase. In
the offline phase, some training objects that share similarities in shape and functionality are
grouped together. Then, every training object is processed to generate grasp candidates for
a certain task. All of such grasp candidates are then ranked based on some specific criteria,
such as stability, probability for the desired task. Finally, the ranked grasp candidates and
the corresponding objects are stored together in the dataset. In the online phase, the
category to which the novel object belongs is first determined. Based on the shape of the
novel object and the intended task, the object which is the most similar to the novel object
is found in the dataset, and the grasp with the highest rank is retrieved. Normally, such
grasp is optimized with the novel object and then executed. This kind of framework is
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utilized in [26]. In this work, the shape, the size and the weight of the objects are assumed
to follow Gaussian distributions. Then, a set of representative objects are constructed
based on the mean of such features and used for each object type. The training data is
collected in a simulation environment provided by GraspIt! [112]. This framework is also
applied to physical experiments in [27]. In this work, the most similar object to the novel
one is retrieved from the database, and the associated grasp that is the most suitable for the
task is selected and applied to the novel object. Both of these two approaches, however, is
unable to handle large variation in shape within the category, if the novel object is distinct
from the training models. A more advanced approach that optimizes the grasp using all
training models in the category is then proposed in [12, 113].

(a) Mug category from Columbia Grasp Database [114].

(b) Hammer category from Columbia Grasp Database [114].

Figure 2.14: Two examples of category: mugs category (a) and hammers category (b) [12].
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Figure 2.15: A typical functional flowchart of a system that generates grasps for the similar
objects within the predefined categories [11].

2.4 Clustering for Grasp Candidates

All of the category-based approaches introduced previously can be categorized as data-
driven approaches [11]. In the implementation of this type of approaches, more grasp
data are generated, with more reliable grasp expected to be rendered for a target object,
especially when the target object is not contained in the training set. On the other hand,
the computational demand for analyzing the grasp data and that of planning a grasp would
be significantly increased.

The research presented in [115] demonstrates that a globally optimal grasp is not nec-
essarily required, as an average grasp (in the sense of force-closure) is acceptable for many
common tasks. More specifically, a representative hand pose can be applied to grasp a
group of objects that are very similar in shape. Based on this idea, the k -medoids algo-
rithm [116] is applied to group the similar grasps together in [26]. As a result, a large
number of grasp candidates generated for the training objects are condensed into a small
set of representative grasps. The k -medoids algorithm is an unsupervised learning tech-
nique and related to the k -means algorithm which is the most common algorithm for the
clustering problems. Both the k -medoids and k -means algorithm aim to group the data
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into a few cohesive clusters. The k -means attempts to minimize the value of the distortion
function which is defined as the sum of squared distances between each training data and
the cluster center/centroid to which it has been assigned. Such cluster center may not be-
long to the training data. In contrast to the k -means algorithm, the k -medoids algorithm
minimizes the sum of dissimilarities between each data and one of the training data which
has been designated as the center of that cluster. As a consequence, the k -medoids is more
robust to noise as compared to the k -means [117]. The k -medoids clustering algorithm is
as follows

Input: (1) n training data points
(2) Number of clusters, k

Output: k clusters and medoids (centers/centroids) of each cluster
1: Initialize: randomly select k of the n data points as the initial medoids.

2: Assignment: associate each data point to the closest medoid.

3: Update: For each medoid, xm, and each data point, x, associated with µ,

swap xm and x and compute the total cost of the configuration

(that is the average dissimilarity of x to all the data points

associated with xm). Select the medoid, x, with the lowest cost of

the configuration.

4: Repeat steps 2 and 3 until there is no change in the assignments.

Table 2.1: K -medoids algorithm

There are many possible choices of metrics to measure the dissimilarity, such as Euclidean
distance, Manhattan distance and Gaussian kernel. Euclidean distance is the most common
choice, since it is easy to implement in practice. Manhattan distance is also known as the
l1 norm of the different between two vectors and given by

dman(p, q) = ‖p− q‖1, (2.2)

where p and q are two vectors in the same dimension. In general, Manhattan distance
is a better option when the training data in different units. Gaussian kernel is a non-
linear function of Euclidean distance and induces a geometric space which is well suited for
clustering. Specifically, similar data can be pulled together closer and pushed away even
further apart. Due to this unique feature of Gaussian kernel, it has been implemented to
classify the grasp candidates in [118, 119].
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Besides k -means and k -medoids, another popular choice of unsupervised learning is
a Self-Organizing Map (SOM), also known as a Kohonen feature network [120]. It is
a competitive feed-forward neural network and an effective algorithm for dimensional-
ity reduction and feature extraction. It has been widely used for clustering problem in
text clustering [121], image processing [122, 123], neuropsychological studies [124] and
robotics [125]. A typical SOM normally consists of two layers: input layer and computa-
tional/competitive layer. Each neuron in the competitive layer is fully connected to all the
original data in the input layer. Then, any high-dimensional data can be transformed into
a one- or two-dimensional discrete map while preserving the topological structure of the
original data. Specifically, the neurons in the competitive layer are normally arranged in
a two-dimensional space, and each neuron contains a weighting vector that has the same
dimension as the input data. For each input data, the value of a discrimination function
(often defined by Euclidean distance) for each neuron is computed. The neuron which
has the minimum value of such function is declared as the winning neuron (i.e. the best
matching unit (BMU)). In other words, the winning neuron is the most similar to the input
data. Then, the similarity between the winning neuron and the input data gets enhanced
through the suitable adjustment of the weighting vector of the winning neuron and that
of its neighboring neurons. Eventually, the locations of the neurons in the competitive
layer are rearranged so that the SOM forms a topological map which preserves the same
distribution as the input data.

Competitive 
layer

Input layer

Figure 2.16: An example of the basic structure of SOM. The competitive layer is a two-
dimensional space in this example.

There are two different learning techniques for SOM: online/sequential learning and
batch learning [120]. As mentioned previously, using online learning, the weighting vectors
of the winning neuron and its neighboring neurons are updated immediately after the
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determination of the winning neuron. This process is repeatedly performed for each input
vector. This technique, however, suffers from large computational load as it constantly
updates the weights and a high dependence on the order of the input data. As to the
batch learning [126, 127], the weights remain the same while processing the input data and
updated after examining every input data in the entire training set. Hence, batch learning
technique is slightly more efficient in terms of computational cost and independent of the
input order.

2.4.1 Initialization and Class Number Determination

Despite being used in a wide range of applications, SOM still suffers from two technical
issues like other unsupervised learning algorithms: initialization of weight values for neu-
rons and the determination of the number of clusters. As an iterative algorithm, SOM is
sensitive to initial staring conditions of each neurons in the competitive layer. Figure. 2.17
illustrates an example of clustering using SOM. If the initial positions of the neurons are
properly chosen, the input data can be well classified in a few of iterations, as shown in
Fig. 2.17a. Otherwise, quality of the clustering is low, but the total of iteration is also
increased, as shown in Fig. 2.17b. Furthermore, as many other clustering algorithms, SOM
requires a fixed structure of the network in terms of the number of neurons and sequence
of processing such neurons. Obviously, due to the unknown input data characteristics, all
these conditions can not be satisfied in real-world applications.

There are a lot of initialization methods developed for clustering algorithms. Among
these different methods, the most popular choices are random initialization, Forgy approach
[128], Macqueen approach [129], the k -means++ method [130] and the Kaufman approach
[116]. Suppose the desired number of clusters is k, using random initialization, the total
input date is first randomly divided into k clusters. Then, the initial centroids of each
cluster are computed. Random initialization is usually the first choice, since it is easy to
implement and can also provide a good performance. Forgy approach works in a similar
way to random initialization, as the initial centroids are randomly selected from the input
data. Based on Forgy approach, Macqueen approach assigns each input data to the cluster
with the closest centroid and recalculates the centroids after each assignment. Although
these two approaches are easy to understand and implement, they can not provide reliable
initialization and are normally ineffective [131]. Using the k -means++ method, the first
centroid is selected at random from the input dataset. The i-th centroid is selected with
the probability which is proportional to the distance to the previously selected centroids.
As a result, the selected centroids are not close to each other. Unlike all these approaches,
Kaufman approach is a greedy algorithm. The initial centroids are obtained by iteratively
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(a) 3 clusters with 2 iterations.

(b) 3 clusters with 4 iterations.

Figure 2.17: An example of clustering with different initialization.

selecting k representative data from the input dataset. The details of this approach is as
follows

The performance of all these approaches has been evaluated and compared in [132, 131].
The results suggest that the random initialization and Kaufman approach are the two best
options in terms of performance. Moreover, Kaufman approach is normally more efficient
compared to random initialization. Specifically, Kaufman approach requires a less number
of iterations to converge to a local minima.

As mentioned at the beginning of this section, another drawback of SOM is that the
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Input: (1) n training data points
(2) Number of clusters, k

Output: k initial centroids
1: Select the most centrally located data as the first centroid

2: for every unselected data, xi, do

3: Calculate Cji = max(Dj − dji, 0), where Dj is the Euclidean

distance between xi and its closest centroid, dji is the Euclidean

distance between xi and xj

4: Calculate
∑

j Cji

5: end for

6: Select xi which maximizes
∑

j Cji

7: Stop, if k centroids are selected. Otherwise, back to Step 2.

Table 2.2: Kaufman approach

structure of the network (i.e. the number of clusters) has to be predetermined. In most of
the cases, there is no such information on details of the network in advance. Suppose the
input data needs to be grouped into k clusters, one possible way is to choose some different
values of k and apply the clustering algorithm to part of the data. Using cross-validation
method to evaluate each clustering result, the optimal value of k can then be determined
based on the predefined criteria [116, 133, 134]. Obviously, such approach consumes a
significant amount of computational time. In order to address this technical issue, a number
of networks which is capable of automatically adjusting the size of themselves to achieve
optimal clustering have been developed. One classic approach that use statistic information
on the input data to determine the size of the network is proposed in [135]. Specifically,
a new centroid is inserted at the location where the data density of that cluster is much
higher than others. On the other hand, a centroid is removed if the number of data around
it is much lower than others. This approach has been recently improved by applying cluster
operations (i.e. cluster creating and cluster merging) in [136]. Another type of approaches
build a hierarchical structure using the self-organizing concept to classify dynamic data and
preserve the topology property of such data [137, 138, 139]. Such hierarchical structures
are normally referenced as tree structures. The number of output trees and the number
of nodes contained in each tree can be estimated with no prior information on the input
data.
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2.5 Conclusion

Combing GP and implicit surface presents an opportunity to estimate the shape of any
unknown object. However, the implementation of GP consumes a large computational load,
when there is a large test set or when the object shape is complex. The approximation
methods discussed in the literature provide an idea that the most useful way to improve the
efficiency of GP is to reduce the size of the training set. In order to estimate the unknown
shape with minimum number of sample points, some specific criterion are required. The
review in Section 2.2 has highlighted an opportunity to employ different criterion in the
use of GPIS to determine the locations of the sample points. Combining the mutual
information and the geometric features of the objects, this approach has potential to lead
to an optimal sampling process that balances between the exploration of the whole shape
and the exploitation of the local area where the higher fidelity (or more sampling) is
required.

The recently proposed category-based grasp planning methods are based on the hypoth-
esis that the objects share similarities in the functional component or even in the whole
shape can be grasped using a similar type of hand pose. Apparently, this implies there
exists a certain type of hierarchical relation between the sampling grasp candidates. In
order to retain such relation of the collected data while clustering similar grasp candidates
together, SOM is clearly a better choice compared to k -means and k -medoids.

Learning and practicing are the most two essential characteristics of all human beings.
In particular, people normally attempt to accomplish some actions based on what they have
learned and refine the skills through practice. However, almost all approaches reviewed
in Section 2.3.2 construct a fixed size of training set and are not capable of updating
such training set after each grasp execution. In order to address this issue, a dynamic
framework that can automatically adjust the structure (i.e. inserting or removing a neuron
and updating the weighting vectors) after grasping every novel objects is needed.
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Chapter 3

Multi-Fidelity Sampling for Fast
Bayesian Shape Estimation with
Tactile Exploration

3.1 Introduction

As reviewed in Chapter 2, the object shape can be effectively modeled as an implicit surface
and estimated by GPR. With limited prior information about the object size and location,
the robot manipulator needs to iteratively choose a sequence of touch-down positions on
the object surface. The more the robot touches on the surface, the better knowledge with
respect to the object shape will be built up. Eventually, an accurate estimation of the
object shape needs to be constructed with a limited number of sample points. However,
due to the computational cost, sample points need to be selected in a rather smart way.

To address this issue, the optimal sample point selection problem is considered with a
view to its application to tactile exploration tasks operating under the condition that the
realistic 3D shape can be acquired with a smaller number of samples, thereby allowing us
to estimate the object shape more rapidly. For this, two criteria are employed in the use
of GPIS to determine the locations of the sample points: the maximal increase in mutual
information and the concentration on high curvature area. Based on mutual information,
the amount of information on the object can be maximized after selecting a sample point
at each iteration. Based on curvature, the geometric features of the object can be provided
from the locations of the sample points. Because the number of sample points is limited,
there is a need to compromise these two criteria to determine the locations of the sample
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points. One way to resolve such a multi-objective problem is to use a trade-off function
that incorporates both criteria into a single objective function by the application of a
weighting parameter. A trade-off function is then developed to induce a multi-fidelity
shape estimation scheme as the weighting parameter gets successively refined based on the
curvature estimation.

In this chapter, the proposed optimal sample point selection strategy and a sequential
GPR are introduced. The former is related to the optimal sample point selection problem,
and the latter is concerned with increasing the computational efficiency of GPR.

3.2 Surface Modeling and Estimation

This section reviews GPIS that forms the basis of the proposed optimal sample points
selection strategy and the estimation algorithm used in this paper.

3.2.1 Implicit Surface

Let Υ ⊂ R3 represent the region in which the object of interest locates, and let a subset
X ⊂ Υ contain all possible (finite number of) sample points in Υ except the boundary
points. A subset Xo ⊂ X denotes all the points on the surface of the object, a finite subset
Xsn = {xs1 , · · · , xsn} ⊂ Xo denotes the actual sample points on the surface and X\Xsn

indicates all the unobserved points within X.

Followed by the concept introduced in Section 2.1.1, the surface of the target object is
represented as the zero level set of an implicit surface, and the implicit function used in
this thesis is then defined as

f(x) 7→


< 0, if point x inside the surface
= 0, if point x on the surface
> 0, if point x outside the surface

(3.1)

where x ∈ R3 denotes a coordinate in Υ and f : R3 → R is defined as a real-valued function.
The advantage of using this method is that implicit surface can model any complex surface
without specifying the exact shape.
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3.2.2 Gaussian Process Implicit Surface

As mentioned previously, we employ GPR to estimate the shape of the target object
within the region of interest. The estimate improves progressively as more sample points
are collected.

In general, a GP (denoted by GP) is used to describe a distribution over functions with
a continuous domain (e.g., time or space). Formally

Definition 3.2.1. A Gaussian process is a collection of random variables, any finite number
of which have a joint Gaussian distribution. [59]

Thus, a GP can be completely specified by its mean function m(x) and covariance
function k(x, x′). We first consider a real GP f(x) written as

f(x) ∼ GP(m(x), k(xi, xj)), (3.2)

where xi, xj ∈ R3 are the input data. In our case, the random variables from the above GP
model represent the values of the implicit function f(x) at position x. More specifically,
for every point x ∈ Υ we have a corresponding noisy measurement y, described as

y = f(x) + ε, (3.3)

where ε is defined as independent and identically distributed white Gaussian noise with
variance σ2

ε .

The covariance function, also known as the kernel function, can be defined by different
models, such as squared exponential covariance function and thin plate covariance function
[4]. In this thesis, it is assumed to be isotropic, which means that the covariance function
is a function only of the distance between xi and xj. Furthermore, the classic squared
exponential covariance function is used to specify the covariance between pairs of inputs,
because it can produce very smooth functions and thus is suitable to represent the object
surface. The classic squared exponential covariance function is defined as

k(xi, xj) = σ2
0 exp

(
−‖xi − xj‖

2
2

2σ2
l

)
+ δijσ

2
ε , (3.4)

where σ0, σε and σl are hyperparameters of the covariance function. σ2
0 is the signal

variance and defines the overall vertical scale of variation of the function values. σ2
ε is the
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noise variance of the GP model and δij is the Kronecker delta where δij = 1 only when
i = j and δij = 0 otherwise. σl defines the characteristic length-scale which characterizes
the variation rate of the correlation between two input positions. More specifically, a
short length-scale mean the predictive variance can grow rapidly away from the observed
data points. On the contrary, a large length-scale can make the function values spatially
irrelevant.

In general, if we let θ = {σ2
0, σ

2
ε , σl} represent all the hyperparameters, then the values

of the hyperparameters can be learnt by maximizing the log marginal likelihood [59]:

log p(Y | X, θ) = −1

2
log |ΣXX | −

1

2
Y ᵀΣ−1

XXY
ᵀ − n

2
log 2π, (3.5)

where Y is the function value of X obtained by Eq. (3.3).

Due to the feature of GP, if we have a training set which consists of a set of input spatial
locations Xsn , and a set of corresponding measurements Ysn = {ys1 , · · · , ysn | ysi ∈ R},
we can predict the function value, f∗, at any point x∗ ∈ X\Xsn conditioned on these
measurements. The distribution of f∗ given these measurements is a Gaussian

p (f∗ | x∗, Xsn , Ysn) ∼ N (µ (x∗ | Xsn , Ysn) ,V (x∗ | Xsn)) , (3.6)

whose conditional mean µ (x∗ | Xsn , Ysn) and the conditional variance V (x∗ | Xsn) are given
by

µ (x∗ | Xsn , Ysn) = m(x∗) + Σx∗Xsn
Σ−1
XsnXsn

[Ysn −m (Xsn)], (3.7)

V (x∗ | Xsn) = Σx∗x∗ − Σx∗Xsn
Σ−1
XsnXsn

ΣXsnx∗ , (3.8)

where µ (x∗ | Xsn , Ysn) and V (x∗ | Xsn) denote the predicted (or estimated) mean and
variance at location x∗, respectively. Σ is the covariance matrix, also known as kernel
matrix, with entries generated by Eq. (3.4). Specifically, Σx∗x∗ is the auto-covariance for
the function value of the location x∗, i.e., Σx∗x∗ = k(x∗, x∗), and Σx∗Xsn

denotes the cross-
covariance between the function value of x∗ and that at a point in Xsn , i.e., (Σx∗Xsn

)i =
k(x∗, xsi). For the sake of simplifying the notation, x∗ and Xsn , when used as subscripts,
will represent f(x∗) and f(Xsn) and will do so in the rest of this thesis. We then take the
zero level set of the conditional mean as the estimated shape of the object. Denoting by
X̂o the set of all points on the estimated surface after collecting n samples (Xsn), we have
the estimated shape described by
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X̂o = {x̂o | µ(x̂o | Xsn) = 0, x̂o ∈ Υ} . (3.9)

with the i-th element of the set X̂o denoted by x̂oi .

3.3 Optimal Sample Points Selection

As mentioned in Chapter 2, the implementation of GPIS bears a large computational load
as the training set increases. One efficient way to reduce the computational load of such
process is to minimize the size of training set. In other words, sample points need to be
optimally selected so that an accurate estimation can be obtained with a minimum number
of sample points.

Such objective can be achieved by applying mutual information criterion. The details of
such criterion will be introduced in the first part of this section. Some key surface details,
however, are lost in this process, if mutual information is the only criterion to be consid-
ered. To address this issue, a novel multi-fidelity-based optimal sample points selection
method is presented in the second part of this section. The proposed objective function
can automatically balance the effect of two different criteria (i.e. mutual information and
curvature) through a weighting factor.

3.3.1 Mutual Information

In order to let the algorithm gather information on the whole object shape, a mutual
information criterion is applied. The mutual information, MI(Xsn), quantifies the amount
of information obtained about the rest of the space of interest X\Xsn , through a set of
sampled points, Xsn , and is given by

MI(Xsn) = I(Xsn ;X\Xsn) = H(X\Xsn)− H(X\Xsn | Xsn), (3.10)

where H(X\Xsn)1 and H(X\Xsn | Xsn) denote the marginal entropy that represents the
amount of information about the unobserved space X\Xsn and the conditional entropy of
X\Xsn after obtaining measurement set Xsn , respectively. By definition, the conditional
entropy can be calculated as

1H(X) = E[− log P(X)], where X is a discrete random variable with a probability mass function P(X).
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H(X\Xsn | Xsn) = H(X\Xsn , Xsn)− H(Xsn)

= H(X)− H(Xsn).
(3.11)

Furthermore, the entropy of a Gaussian random variable f(x∗) conditioned on the set
of variables f(Xsn) is a monotonic function of its variance, i.e.,

H(x∗ | Xsn) =
1

2
log (2πeV(x∗ | Xsn))

=
1

2
logV(x∗ | Xsn) +

1

2
(log(2π) + 1) ,

(3.12)

where e is the Euler’s number and the predicted value of V(x∗ | Xsn) can be computed via
Eq. (3.8), using GPR.

Optimizing the mutual information criterion via Eq. (3.10) is an NP-complete problem
[5]. In other words, the time required to find the optimal set Xsn increases very quickly as
the size of Xsn grows. Therefore, instead of searching for the entire set Xsn , we can greedily
and sequentially search for the next optimal sample point, x∗sn+1

. If each desired next sample

point is assumed to be selected from the estimated object surface, X̂o, then each optimal
sample point should minimize the total amount of uncertainty about the unmeasured space,
X̂o\Xsn , based on the previous measurements Xsn . This can be expressed as

x∗sn+1
= argmax

xsn+1∈X̂o\Xsn

φ(xsn+1), (3.13)

where the increased amount of information, φ(xsn+1), that the next sample point xsn+1 can
provide with respect to the unobserved area can be expressed using Eqs. (3.10), (3.11) and
(3.12) as
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φ(xsn+1) = MI(Xsn ∪ xsn+1)−MI(Xsn)

= {H(X)− H(X | Xsn ∪ xsn+1)} − {H(X\Xsn)− H(X\Xsn | Xsn)}
= {H(X)− H(X̂o) + H(Xsn ∪ xsn+1)} − {H(X ∪ xsn+1)− H(X̂o) + H(Xsn)}
= {H(Xsn ∪ xsn+1)− H(Xsn)} − {H(X ∪ xsn+1)− H(X)}
= H(xsn+1 | Xsn)− H(xsn+1 | X)

=
1

2
log

(
Σxsn+1xsn+1

− Σxsn+1Xsn
Σ−1
XsnXsn

ΣXsnxsn+1

Σxsn+1xsn+1
− Σxsn+1X

Σ−1

XX
ΣXxsn+1

)
,

(3.14)

where X denotes the set X̂o\(Xsn ∪ xsn+1). The details of this algorithm are shown in
Table 3.1.

Input: (1) Object field Υ ⊂ R3

(2) Number of sample points ns

Output: Selected sample points Xsn ⊂ Xo

1: Begin with Xsn = {xs1 , . . . , xsn}
2: for i = 1 to ns do

3: for all xsn+i
∈ X̂o\Xsn do

4: x∗sn+i
← argmaxxsn+i∈X̂o\Xsn

φ(xsn+i
)

5: end for

6: Update Xsn+i
= Xsn+i−1

∪ x∗sn+i

7: end for

Table 3.1: Optimal Sample Point Selection Algorithm for Maximizing Mutual Information

3.3.2 Local Curvature Estimation

Equation (3.14) allows us to choose the best next sample point in the sense of better
estimation of the whole object shape. The selected sample points, however, may not
provide enough information on some particular areas that contain distinctive geometric
features. The areas with distinctive geometric features are referred to the local regions
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with relatively high curvature, such as corners and edges. In order to choose some high-
fidelity samples to characterize such geometric shapes, the local curvature is considered as
the additional criterion to determine the location of the sample points.

Although many different methods for curvature estimation have been proposed, the
simplest method is based on the analysis of the eigenvalues and eigenvectors of the curva-
ture covariance matrix of a local neighborhood [140, 141]. For each surface point, xo ∈ Xo

(indicated as red dot in Fig. 3.1), we select k nearest neighboring points,
{
x′o1 , · · · , x

′
ok

}
(indicated as black dot in Fig. 3.1). Then, the curvature covariance matrix, C ∈ R3×3 for
each xo can be expressed as

C =
1

k

k∑
j=1

(x′oj − xo)(x
′
oj
− xo)ᵀ, (3.15)

where the eigenvalues and the eigenvectors of C can be calculated by

Cv` = λ`v`, ` ∈ {1, 2, 3} . (3.16)

!"
!"#$

(a)

!"#"
!$#$

!%#% &'
&'()

(b)

Figure 3.1: Selection of local neighborhood (a), and covariance analysis (b).

Since C is symmetric and positive semi-definite, its eigenvalues are all non-negative real
numbers. Moreover, the eigenvectors, v`, form an orthogonal basis, corresponding to the
principal components of the neighboring points. Assuming, λ1 < λ2 < λ3, the surface
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normal at point xo can be approximated as the eigenvector v1. In addition, as shown in
Fig. 3.1b, the tangent plan (indicated as a blue plan Fig. 3.1b) at xo is spanned by v2 and
v3.

The variation along each of the eigenvector, v`, can be approximately described as the
corresponding eigenvalue, λ`. Then, the total variation, i.e. the sum of the Euclidean
distance from the centroid xo to its neighbors, is given by

k∑
j=1

‖x′oj − xo‖
2
2 = λ1 + λ2 + λ3. (3.17)

In particular, the variation along the surface normal can be quantified as the minimum
eigenvalue. We then define

γ(xo) =
3λmin

λ1 + λ2 + λ3

,

(
λmin = min

i=1,2,3
λi

)
. (3.18)

as the surface variation at point xo and use it to approximate the curvature at surface point
xo. Because the value of γ(xo) varies between 0 and 1, the case of γ(xo) = 0 corresponds
to a perfectly planar surface, and γ(xo) = 1 is for an isotropic surface with 3 identical
eigenvalues.

3.3.3 Objective Function

As introduced earlier, Eq. (3.14) emphasizes the exploration of the whole shape of the
object, and Eq. (3.18) approximates the curvature of the object surface. In this subsection,
we propose a method that automatically and adaptively selects optimal sample points in
the sense of the estimation of the object shape while taking the geometric features into
account.

Given a candidate for the next sample point, x̂oi (x̂oi ∈ X̂o), the value of the increase of
the mutual information, φ(x̂oi), and the value of the curvature, γ(x̂oi), are first normalized
such that each value lies between 0 and 1. Specifically,
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Φ(x̂oi) =

φ(x̂oi)− min
x̂o∈X̂o

(φ (x̂o))

max
x̂o∈X̂o

(φ (x̂o))− min
x̂o∈X̂o

(φ (x̂o))
, (3.19)

Γ(x̂oi) =

γ(x̂oi)− min
x̂o∈X̂o

(γ (x̂o))

max
x̂o∈X̂o

(γ (x̂o))− min
x̂o∈X̂o

(γ (x̂o))
. (3.20)

The normalized quantities of Φ(x̂oi) and Γ(x̂oi) can be used to construct an objective
function

Ti (x̂oi) = αn+1Φ(x̂oi) + (1− αn+1)Γ(x̂oi), (3.21)

where the weighting factor αn+1 provides the flexibility and adaptability in balancing the
effect of two different criteria, and is formulated as

αn+1 =
log
(√

νn + 1
)

log 2
, (3.22)

where νn = 1
N

tr (V (X | Xsn)) denotes the mean of the predicted variance of set X and N
is the total number of points in X. The denominator, log 2, scales the numerator value to
make sure the value of αn+1 lies on the range [0, 1]. In effect, the weighting factor αn+1

controls the fidelity of the estimation of the local characteristic features of the 3D shape.
Apparently, the more sample points are selected, the smaller the value of αn+1 becomes and
the algorithm focuses more on selecting points from the areas with high curvature (which
require high fidelity representation), rather than the unexplored areas. Eventually, the
proposed algorithm can be written as greedily selecting a series of optimal sample points
which can maximize the value of Ti. Specifically, after collecting n samples,

x̂∗on+1
= argmax

x̂oi∈X̂o,Φ(x̂oi )≥0.5

Ti (x̂oi) . (3.23)

As the number of sample points increases, the proposed algorithm will focus more on the
high curvature regions and overlook some unexplored areas. In order to let the algorithm
retain the capability of the exploration while exploiting some high curvature regions, we
add an extra condition (Φ(x̂oi) ≥ 0.5) to make sure that the sample points do not focus
only on those particular areas.
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Since the (desired) next optimal sample point, x̂∗on+1
, may not be on the actual surface

of the object, there are three different scenarios that may happen during the sampling
process with tactile exploration: the expected sample point is inside, on, or outside the
object surface. When we use a robotic manipulator to sample the surface points, the
manipulator can be commanded to move along the direction of the surface normal at the
desired sample point, x̂∗on+1

, which can be estimated by Eqs. (3.15) and (3.16). If the
expected sample point is on the actual surface, then an accurate measurement can be
obtained. If the point is inside the actual surface, obviously the point cannot be reached.
A measurement is consequently obtained at the point where the manipulator makes a
touch while approaching the estimated object centre. If the point is outside of the actual
surface, then the manipulator keeps moving along the approach direction until it touches
the surface and that touch-down point is considered as an actual sample point. The details
of the implementation of the proposed method to select a total of ns sample points are
shown in Table 3.2.

3.4 Sequential Gaussian Process Regression

In this section, we propose an algorithm which contains a sequential update method to ef-
ficiently update the conditional variance of GP and some other ways to reduce the required
computational cost of implementing GP.

If we carefully examine Eq. (3.14), the numerator and the denominator inside the
logarithm are nothing else but the conditional variance, V(xsn+1 | Xsn) and V(xsn+1 | X).

In addition, both of them are calculated for every single points in X̂o/Xsn). This is shown
on step 6 in Table 3.2. Furthermore, each entry in Xsn has already been selected from
previous iteration, and all entries in ΣXX have been computed at the first iteration while
selecting the first sample point. Apparently, such process can be be made efficient in some
way.

Suppose the sample set is updated to the nth step, i.e. Xsn = {xs1 , xs2 , . . . , xsn}, and

the estimated shape X̂o consists of m possible sample points, i.e. X̂o = {x̂o1 , x̂o2 , . . . , x̂om}.
The conditional mean and the conditional variance of xsn+1 given Xsn can be obtained by
Eq. (3.7) and Eq. (3.8) and expressed as

µ(xsn+1 | Xsn) = Σxsn+1Xsn
Σ−1
XsnXsn

Ysn , (3.24)

V(xsn+1 | Xsn) = Σxsn+1xsn+1
− Σxsn+1Xsn

Σ−1
XsnXsn

ΣXsnxsn+1
, (3.25)
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Input: (1) Object field of interest Υ ⊂
R3

(2) Number of sample points ns

Output:Sample points Xsns

1: Begin with Xsn = {xs1 , . . . , xsn}
2: for i = 1 to ns do

3: Estimate the object shape, X̂o, by Eq. (3.7)

4: Calculate the weighting factor α by Eqs. (3.8) and (3.22)

5: for x̂oi ∈ X̂o\Xsn+i−1
do

6: Calculate the mutual information of each point

on the estimated surface, φ(x̂oi), by Eq. (3.14)

7: Calculate the curvature of each point on the

estimated surface, γ(x̂oi), by Eq. (3.18)

8: Normalize φ(x̂oi) and γ(x̂oi), by Eqs. (3.19) and (3.20)

9: Calculate Ti by Eq. (3.21)

10: end for

11: Determine the optimal sample point, x̂∗on+i
, by Eq. (3.23)

12: Move along the approach direction toward x̂∗on+i

until obtaining the actual touch down point, x∗sn+i

13: Update Xsn+i
= Xsn+i−1

∪ x∗sn+i

14: end for

Table 3.2: The multi-fidelity optimal sample points selection algorithm

For notational simplicity, the value of the mean function is assumed to be zero. The
computation complexity of both Eq. (3.24) and Eq. (3.25) is O(s3

n), because of the term
Σ−1
XsnXsn

. In other words, they grow at the order of s3
n.

Consider the set Xsn as a union of Xsn−1 and xsn . Because the values of the squared
exponential covariance function are always positive, k(•, •′) > 0, all the sample points in
X are correlated. Hence, Eq. (3.24) can be rewritten as
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µ(xsn+1 | Xsn) = E[xsn+1 | Xsn−1 , xsn ]

= E[xsn+1 | Xsn−1 ] + E[x̃sn+1|sn−1 | x̃sn|sn−1 ],

= Σxsn+1Xsn−1
Σ−1
Xsn−1Xsn−1

Ysn−1

+
Σxsn+1xsn

− Σxsn+1Xsn−1
Σ−1
Xsn−1Xsn−1

ΣXsn−1xsn

Σxsnxsn − ΣxsnXsn−1
Σ−1
Xsn−1Xsn−1

ΣXsn−1xsn

+
Ysn − ΣxsnXsn−1

Σ−1
Xsn−1Xsn−1

Ysn−1

Σxsnxsn − ΣxsnXsn−1
Σ−1
Xsn−1Xsn−1

ΣXsn−1xsn

.

(3.26)

where

x̃sn+1|sn−1 = xsn+1 − E[xsn+1 | Xsn−1 ], (3.27)

x̃sn|sn−1 = xsn − E[xsn | Xsn−1 ]. (3.28)

Applying the similar idea, Eq. (3.25) can be expressed as

V(xsn+1 | Xsn−1 , xsn) = Σx̃sn+1|sn−1
x̃sn+1|sn−1

− Σx̃sn+1|sn−1
x̃sn|sn−1

Σ−1
x̃sn|sn−1

x̃sn|sn−1
Σx̃sn|sn−1

x̃sn+1|sn−1

= Σxsn+1xsn+1
− Σxsn+1Xsn−1

Σ−1
Xsn−1Xsn−1

ΣXsn−1xsn+1

−
(Σxsn+1xsn

− Σxsn+1Xsn−1
Σ−1
Xsn−1Xsn−1

ΣXsn−1xsn
)2

Σxsnxsn − ΣxsnXsn−1
Σ−1
Xsn−1Xsn−1

ΣXsn−1xsn

.

(3.29)

The details of the procedure to derive Eqs. (3.26) and (3.29) are presented in Appendix
A.

Apparently, the computational complexity of the conditional variance has been reduced
to O((sn−1)3) by using Eq. (3.29). In addition, because each entry of ΣXsn−1Xsn−1

can be
retrieved from the previous iterations, ΣXsn−1Xsn−1

can be expressed as
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ΣXsn−1Xsn−1
=


Σxs1xs1

Σxs1xs2

Σxs2xs1
Σxs2xs2

∣∣∣∣ . . .

...
. . .

∣∣∣∣∣∣∣ ΣXsn−2xsn−1

Σxsn−1Xsn−2
Σxsn−1xsn−1

 , (3.30)

Similarly, ΣxsnXsn−1
and ΣXsn−1xsn

can also be expressed as follows:

ΣxsnXsn−1
= Σᵀ

Xsn−1xsn
=
[
Σxsnxs1

Σxsnxs2
. . . Σxsnxsn−1

]
. (3.31)

As to other metrics, Σxsn+1xsn+1
, Σxsn+1xsn

, Σxsn+1Xsn−1
and ΣXsn−1xsn+1

, they have to be
computed at each iteration since they are associated with the new measurement xsn+1 .
Note that the denominator in Eq. (3.29) is exactly the conditional variance, V(xsn | Xsn−1),
which has been computed on the last step.

Because the numerator of Eq. (3.14) is exactly the formula of the conditional variance,
the sequential update formulation presented above can improve its computation efficiency.
As to the denominator of Eq. (3.14), some computational techniques can also be applied
to reduce the computational time.

Every time when we are on step 3 and before we proceed to the second loop, X = X̂o

(due to the precision of the data points, we may assume Xsn /∈ X). Hence, ΣXX consists

of the correlation between each possible sample points on the estimated surface, X̂o, and
is given by

ΣXX =


k(x̂o1 , x̂o1) k(x̂o1 , x̂o2) . . . k(x̂o1 , x̂om)
k(x̂o2 , x̂o1) k(x̂o2 , x̂o2) . . . k(x̂o2 , x̂om)

...
...

. . .
...

k(x̂om , x̂o1) k(x̂om , x̂o2) . . . k(x̂om , x̂om)

 . (3.32)

Instead of calculating ΣXX for each individual x̂oi at each iteration, one can compute
ΣXX only once before the second loop starts and simply eliminate the row and column
which are associated with x̂oi in the following iterations. For instance, when calculating
the value of Eq. (3.14) for x̂oi on the step 6, ΣXX can be expressed as
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ΣXX =



k(x̂o1 , x̂o1) . . . k(x̂o1 , x̂oi−1
) k(x̂o1 , x̂oi+1

) . . . k(x̂o1 , x̂om)
...

. . .
...

...
. . .

...
k(x̂oi−1

, x̂o1) . . . k(x̂oi−1
, x̂oi−1

) k(x̂oi−1
, x̂oi+1

) . . . k(x̂oi−1
, x̂om)

k(x̂oi+1
, x̂o1) . . . k(x̂oi+1

, x̂oi−1
) k(x̂oi+1

, x̂oi+1
) . . . k(x̂oi+1

, x̂om)
...

. . .
...

...
. . .

...
k(x̂om , x̂o1) . . . k(x̂om , x̂oi−1

) k(x̂om , x̂oi+1
) . . . k(x̂om , x̂om)


. (3.33)

Moreover, Σx̂oiX
and ΣXx̂oi

can also be acquired from Eq. (3.32) and be given by:

Σx̂oiX
= Σᵀ

Xx̂oi
=
[
k(x̂oi , x̂o1) . . . k(x̂oi , x̂oi−1

) k(x̂oi , x̂oi+1
) . . . k(x̂oi , x̂om)

]
. (3.34)

3.5 Simulation and Experimental Results

To validate the performance of the proposed sampling method, we conducted a number of
simulations and experiments to estimate different 3D shapes. The performance of using
mutual information as a criterion to select sample points is first compared with that of
using variance. Then, the proposed algorithm that incorporates mutual information and
local curvature is simulated to estimate two objects with complex shape, a rubber duck and
the Stanford bunny. Finally, the algorithm is validated by executing a tactile exploration
operation to the shapes of a tea pot on a real robotic manipulator (Barrett WAM and
BarrettHand).

3.5.1 Comparison of Different Criteria

As mentioned in Chapter 2, in most of the existing studies on the tactile exploration, the
optimal sample points are selected at the locations with the highest uncertainty. Specifi-
cally, these studies searched for the places in which the shape is poorly estimated due to
the missing information or high noise. However, the performance of this type of strategy
is limited, because the locations with the highest uncertainty did not necessarily provide
the largest information with respect to the entire region of interest. Moreover, this type of
strategy suffered from a problem that the sample points are intended to be placed along
the boarders of the region, because the estimated variance is high near the boundaries. On
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the contrary, the mutual information criterion considers the increase amount of the total
information on the whole shape, rather than the prediction quality at the particular place.
As a result, the sample points that are selected using mutual information as criterion are
most uncertain about each other and cover the space of interest well.

-0.5

0

0.5

1

Figure 3.2: The estimation of the implicit surface of x2 + y2 = 1.

Figure 3.2 illustrates a simple example that the implicit surface (zero level set) of a
real-valued function x2 + y2 = 1 is estimated using two different types of criteria: variance
and mutual information. The values of the hyperparameters are fixed as [1, 1, 1] in this
example. The implicit surface of such function is a circle which is represented as the
boundary between red and orange regions. Five sample points which are represented as
the green asterisk (‘∗’) marks are randomly selected at the beginning. Then, based on the
two criteria, only five more sample points are iteratively selected from the region of interest
(−1.1 ≤ x ≤ 1.1, −1.1 ≤ y ≤ 1.1). The blue circle (‘◦’) marks indicate the locations of the
sample points with highest variance at each iteration. The black cross (‘×’) marks indicate
locations of the sample points that provide the most increase of information in regard to
the entire region of interest at each iteration. Using variance as selection criterion, it
can been seen that all of the sample points are selected from the boundary of the space.
Such selections from the boundary are likely to waste information and result in a poor
estimation, as shown as a blue contour in Fig. 3.2. On the same simple example, the
mutual information criterion leads to search for the sample points at the locations where
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lack the information with respect to the whole space. As a result, the selected sample
points are spread out over the entire region and a good estimation can be obtained, as
shown as a black contour in Fig. 3.2.

3.5.2 Validation of Proposed Sequential GP Regression

To demonstrate the performance of the proposed sequential GPR method, we conducted
a Monte Carlo simulation to select different numbers of points from a series of random
reference points. The reference points are generated as a series of random number which
is uniformly distributed in the interval (−2, 2). The first two sample points are randomly
drawn from the set of reference points. Then, the proposed sequential GPR method is
applied to sequentially select a number of points from the set of reference points. In the
meanwhile, the conventional GPR is also applied to compare the performance with the
proposed method. The values of the hyperparameters are fixed as [1, 1, 1] in this example.
Table 3.3 compares the mean values of the computation time from 100 runs of the Monte
Carlo simulation. The computation time is recorded on a 2.7 GHz Intel Core i5 processor
running MATLAB. All of the simulation results are illustrated as box plots in Fig. 3.3.
The red line indicates the median values of 100 results. The top and bottom edges of the
box indicate the 75th and 25th percentiles, respectively. The outliers which are represented
as plus ‘+’ marks are out of the main region of the coverage which is approximately 99.3
percent.

Regression
methods

Computation time (s)
Select 10
out of 100

Select 20
out of 100

Select 10
out of 200

Select 20
out of 200

Conventional
GPR

0.32 0.63 2.05 3.17

Sequential
GPR

0.27 0.52 1.69 2.76

Table 3.3: Mean of computation time of 100 runs of Monte Carlo simulation.

3.5.3 Simulation Results

To evaluate the proposed optimal sample points selection method, it has been applied
to estimated a variety of objects, such as human organs (kidney, liver), bottles and etc..
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(c) Select 10 out of 200.
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(d) Select 20 out of 200.

Figure 3.3: Comparison of the computation time using the conventional GPR and the
proposed sequential GPR (SGPR). The unit of y axis is in second.

In this subsection, two objects with complicated shape, a rubber duck and the classic
“Stanford bunny”, are used to demonstrate the performance of the proposed method.
We also compared the performance of the proposed method with the method which only
considered the mutual information as a criterion to select sample points.

In both these two simulations, we first generate a scalar field, Υ, from a GP with a
covariance function in Eq. (3.4), and let Eq. (3.1) to define the function value of such
scalar field. Specifically, only the points with zero function value exist on the object surface.
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At the beginning of both of these two simulations, we select the minimum and maximum
values of the object surfaces on x−, y− and z− axis as six initial sample points. Based
on these initial sample points, assuming the mean function value to be 0 (m(•) = 0),

an estimated object surface, X̂o, can then be constructed by Eq. (3.7). Only one point

is supposed to be sampled on X̂o at each iteration. Since this sample point, x̂∗on , is not
necessary on the object surface, the corresponding actual sample point, x∗sn , is determined
as the intersection point between the actual object surface and the normal vector at x̄∗on .
Then, such sampling process is iteratively executed until completing sampling process.

Figure 3.4: The rendering of the true shape of a rubber duck with 7, 994 reference data
points.

For the rubber duck, the scalar field, Υ, is defined as Υ = {(x, y, z)| − 0.6 ≤ x ≤
1, −0.7 ≤ y ≤ 0.7, −0.1 ≤ z ≤ 1.2}. The resolution of this field is set to be 41× 41× 41.
The point cloud of the true shape of the object that is contained within this scalar field
is indicated as large dot marker ‘•’ in Fig. 3.4. Given the values of the hyperparameters
by σ0 = 1, σl = 0.2 and σ2

ε = 0.05, the estimated shape of the object with ns = 50 (0.63%
of total reference data points) optimal sample points which are selected by applying the
proposed method is illustrated in Fig. 3.5a. Figure 3.5b shows the left side of the estimated
shape. The locations of the optimal sample points are indicated as circle marker ‘◦’ in Fig.
3.6a and Fig. 3.6b. Because we consider the curvature as a criteria to determine the
location of the next sample point, the resulting sample points are intended to be selected
from the high curvature regions, such as neck and mouth of the rubber duck. Consequently,
the estimated shape around those areas are close to the true shape. To demonstrate
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the advantages of the proposed method, we have also conducted simulations to compare
the performance of the proposed method with the method which only uses the mutual
information as a criterion to select the sample points. Applying the same values of the
hyperparameters and selecting the same number of sample points, the resulting estimated
shape of the object and the locations of the sample points are illustrated in Fig. 3.5c,
Fig. 3.5d, Fig. 3.6c and Fig. 3.6d, respectively. In this case, the sample points should
be selected at the locations in which can provide the maximum increase in the mutual
information. In other words, the optimal sample points are most likely in the unobserved
region. Hence, all the sample points are more evenly dispersed over the object. However,
as shown in Fig. 3.5c and Fig. 3.5d, some geometric details of the object are lost, due to
the lack of information on the high curvature areas.

In order to quantify the performance of the proposed algorithm, the Hausdorff distance
[142] is used:

dH(Xo, X̂o) = max{d̃H(Xo, X̂o), d̃H(X̂o, Xo)}, (3.35)

where

d̃H(Xo, X̂o) = sup
xo∈Xo

inf
q∈X̂o

‖xo − x̂o‖2. (3.36)

To see the effect of the hyperparamters, {σ0, σl, σε}, we conducted a number of Monte Carlo
simulations with different sets of hyperparameter values. Table 3.4 shows the Hausdorff
distance in terms of the whole shape and that in terms of the featured areas (high curvature
areas) with different sets of values of the hyperparameters.

Hyperparameters
{σ0, σl, σ

2
ε}

Hausdorff Distance (dH)
Whole shape Featured areas

Proposed
method

Using
MI only

Proposed
method

Using
MI only

{1, 0.3, 0.05} 0.2076 0.1973 0.1506 0.1973
{1, 0.3, 0.01} 0.2118 0.1990 0.1693 0.1990
{1, 0.25, 0.05} 0.1754 0.1714 0.1383 0.1709
{1, 0.25, 0.01} 0.1846 0.1898 0.1549 0.1886
{1, 0.2, 0.05} 0.1543 0.1611 0.1054 0.1611
{1, 0.2, 0.01} 0.1732 0.1705 0.1469 0.1705

Table 3.4: Simulation results using rubber duck with different set of hyperparameters.
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(a) Proposed method (b) Proposed method

(c) Using MI only (d) Using MI only

Figure 3.5: The estimated shapes of the rubber duck with only 0.63% of reference data
points. Estimated shape using proposed method: (a) and (b). Estimated shape using MI
only: (c) and (d).

53



(a) Proposed method (b) Proposed method

(c) Using MI only (d) Using MI only

Figure 3.6: The locations of the optimal sample points selected by the proposed sam-
ple method: (a) and (b). The locations of the sample points selected based on mutual
information only: (c) and (d).
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The second simulation has been conducted using the Stanford bunny the true shape
of which is shown in Fig. 3.7. For this case, the scalar field, Υ, is defined as Υ =
{(x, y, z)| − 1.05 ≤ x ≤ 0.7, −0.65 ≤ y ≤ 0.7, 0.25 ≤ z ≤ 2}. The resolution of this field
is set to be 51 × 51× 51. Given the values of the hyperparameters σ0 = 1, σl = 0.25 and
σ2
ε = 0.05, and the variance of the measurement noise σ2

ε = 0.01, only ns = 50 (0.36% of
total reference data points) optimal sample points are selected by applying the proposed
method and the MI only method to estimate the shape of the bunny. The locations of
these optimal sample points are shown by the circle (◦) markers in Fig. 3.8, and the
rendering of the estimated shape of the object is also shown in Fig. 3.9, respectively.
Using the mutual information as the only criterion, the main body of the bunny can be
well estimated. However, the estimation of the ears is not quite accurate. Apparently, the
ears of the bunny have relatively more complex geometric shapes compared to other parts
of the shape. Taking the curvature into account for determination of the locations of the
sample points, more sample points are selected from the ear region. As a consequence, the
accuracy of the estimation of the ear region is significantly improved. If the number of
the sample points is not limited, a better estimation in terms of the whole shape can be
obtained by sampling more points.

Figure 3.7: The true mesh realization of the Stanford Bunny generated from 13, 775 refer-
ence data points.

In this simulation, to demonstrate the advantage of the proposed objective function in
terms of the multi-fidelity, the changes of the mean of the predicted variance νn and that
of the weighting factor α as we select each sample point are shown in Fig. 3.10. As more
sample points are selected, higher confidence (i.e., lower variance) of the estimation of the
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target shape is expected, and the values of νn and α will be reduced. Consequently, the
algorithm will focus more on exploiting the local areas with high curvature rather than
exploring the whole 3D shape.

(a) Proposed method (b) Proposed method

(c) Using MI only (d) Using MI only

Figure 3.8: The locations of the optimal sample points selected by the proposed sam-
ple method: (a) and (b). The locations of the sample points selected based on mutual
information only: (c) and (d).
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(a) Proposed method (b) Proposed method

(c) Using MI only (d) Using MI only

Figure 3.9: The estimated shapes of the Stanford bunny with only 0.41% (including 6
initial sample points) of reference data points. Estimated shape using proposed method:
(a) and (b). Estimated shape using MI only: (c) and (d).
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(a) Mean of predicted variance ν (b) Weighting factor α

Figure 3.10: (a): The changes of the mean of the predicted variance, νn, with respect to
the number of sample points. (b): The changes of the weighting factor, α, with respect to
the number of sample points.
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(a) Perspective view (b) Front view

(c) Left side view (d) Right side view

Figure 3.11: Uncertainty quantification for the Stanford bunny. Brighter spatial regions
mean higher probability.
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To see the effect of the hyperparamters, {σl, σε} (we let σ0 = 1 in all the Monte Carlo
simulations), we also conducted a number of Monte Carlo simulations with different sets
of hyperparameter values. Figure 3.12 shows the range of Hausdorff distance in terms of
the whole shape and that in terms of the featured areas (high curvature areas) of 20 Monte
Carlo runs using the proposed method and the conventional method. The average values
of each set of runs are shown in Table 3.5.

Hyperparameters
{σ0, σl, σ

2
ε}

Average Hausdorff Distance (dH)
Whole shape Featured areas

Proposed
method

Using
MI only

Proposed
method

Using
MI only

{1, 0.25, 0.05} 0.2732 0.3206 0.1866 0.2653
{1, 0.25, 0.01} 0.2798 0.3448 0.2105 0.2990
{1, 0.2, 0.05} 0.2726 0.3475 0.2095 0.3208
{1, 0.2, 0.01} 0.2887 0.3615 0.2231 0.3389

Table 3.5: Simulation results for the Stanford bunny: 20 Monte Carlo runs with different
sets of hyperparameters.
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(b) Using MI only
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(c) Proposed method
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(d) Using MI only

Figure 3.12: Simulation results of 20 Monte Carlo runs with different set of hyperparame-
ters (from left to right: {0.25, 0.05}, {0.25, 0.01}, {0.2, 0.05}, {0.2, 0.01}) for the Stanford
bunny. Hausdorff distance with respect to the whole shape is represented in (a) and (b),
and that with respect to the featured ares is represented in (c) and (d).
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3.5.4 Experimental Results

In this subsection, the proposed optimal sample points selection strategy is applied to
tactile exploration using a real robot for estimating the shape of a teapot, as shown in
Fig. 3.13. The hardware setup used in the experiment consists of a Barrett Whole Arm
Manipulator (WAM) with 7 degree-of-freedom and a BarrettHand (BHand) equipped with
tactile sensors on the fingertips and in the palm, as shown in Fig. 3.13.

Figure 3.13: Experimental setup.

In this experiment, The teapot is placed within the workspace of the Barrett WAM.
The scalar field that contains the teapot is defined as Υ = {(x, y, z)| − 0.4 m ≤ x ≤ 0.16
m, −0.7 m ≤ y ≤ 0.5 m, −0.3 m ≤ z ≤ −0.15 m }. We first select an initial sample point
from the top of the teapot and determine the approximate height of the object. Then the
WAM approaches to the teapot from positive and negative direction along x and y axis
around median height and select four initial sample points. In addition, we also consider
a point at the bottom of the teapot that has same x and y coordinates as the top point
as one more initial sample point. Given the values of the hyperparameters σl = 0.03 and
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σ2
ε = 0.05, and the variance of the measurement noise σ2

ε = 0.005 for both proposed method
and the conventional method, the locations of ns = 20 sample points and the estimated
shapes are illustrated in Figs. 3.15 and 3.16, respectively. Due to the complex structure
of the handle part, more sample points are intended to be selected from that region using
the proposed method than that using the conventional method. Note that, as introduced
in Section 3.3.3, the (desired) next sample point, x̂∗on+1

, may not be on the actual object
surface. Figure 3.14 illustrates a scenario that x̂∗on+1

is outside the object surface. In this
case, the fingertip approaches the object along the surface normal at x̂∗on+1

and takes a
measurement until it touches on the object surface.

To evaluate the effect of the measurement noise, we also conducted 20 Monte Carlo
runs. Figure 3.17 represents the mean of the predicted variance after selecting each sample
point using the proposed method and the conventional one.

Since the target object is unknown, the model of the true shape is unavailable. As a
consequence, the estimation error can not be quantified by using Hausdorff distance. In
order to determine the sufficient number of sample points in terms of shape estimation, one
can use Hausdorff distance to measure the difference between the estimated shape obtained
from the previous step and that obtained from the current step. When the rate of change
of the difference converges to a small value, the sampling process can then be terminated.
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Figure 3.14: Using BarrettHand to select a sample point from the surface of the teapot.
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(a) Proposed method

(b) Using MI only

Figure 3.15: The locations of the optimal sample points.
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(a) Proposed method (b) Using MI only

Figure 3.16: The estimated shape of the teapot.
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Figure 3.17: The changes of the mean of the predicted variance with respect to the number
of sample points for 20 Monte Carlo runs.
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3.6 Conclusion

In this section, a novel approach to the problem of shape estimation using tactile explo-
ration without any aid from visual or laser sensor has been presented where GPIS is used to
provide an effective way to estimate the shape of an unknown object. An optimal sample
point selection method is proposed to make the process of sample point selection more effi-
cient and systematic such that the unknown shape can be estimated more accurately with
minimum number of sample points. Two different criteria, mutual information and local
curvature, are utilized to determine the locations of the sample points. Simulation results
show that mutual information is a better criterion than variance in terms of providing
information on the object shape.

By tuning the value of the weighting factor α the proposed objective function can
adjust the priority between estimating the whole shape of the object and emphasizing
on geometric features of the object. The proposed strategy realizes a novel multi-fidelity
optimal sample points selection strategy which can provide more accurate shape estimation
given the limited number of sample points available (using only less than 1% of reference
data points in simulation). Simulation and experimental results demonstrate the benefit of
proposed method for estimating complex geometric features more accurately than existing
method (using MI as the only criterion) with the same number of sample points. Moreover,
simulation results show that the proposed SGPR method can improve the computational
efficiency of GPR.
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Chapter 4

Knowledge-Based Grasp Planning
Using Multi-Step Clustering

4.1 Introduction

In this chapter, a knowledge-based grasp planning method that takes the tasks into account
is proposed to generate an appropriate grasp for a novel object which is similar to the train-
ing objects. Some training objects that have different dimensions but share similarities in
both functional components and the whole shape are selected to form one object category.
In addition, to improve the efficiency of grasp generation, four different hand poses are
defined to accomplish specific tasks. The geometric information on the training objects
and hand kinematic data are recorded via human demonstration and used to build up a
training dataset. Then, a set of representative grasps are generated and form a codebook
by using the proposed multi-step clustering algorithm from such training dataset. Every
step of the clustering algorithm is developed based on batch learning SOM. To improve
the accuracy and convergence rate of the proposed algorithm, a new initialization method
is also proposed by using Gaussian kernel to measure the similarity between the training
data. Moreover, the proposed clustering algorithm can automatically determine a suitable
number of the clusters. Eventually, a good grasp is selected from the codebook for a novel
object which is similar to the training objects to achieve a specific task, and the codebook
is updated and improved with the information associated to this grasp execution.
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4.2 General Framework

In this section, we briefly introduce the the basic idea of proposed approach. To focus
on the grasp planning and the training data analyzing, we assume that the category to
which the novel object belongs is known. In addition, the comparison between the novel
object and the training objects from the same category is simplified as comparing their
dimensions.

Offline Grasp Learning

Online Grasp Execution

Choosing similar 
objects as a training set

Task labeling
Grasp

candidates 
generation

Novel object (similar to 
the training objects)

Task 
specification

Optimal grasp 
determination

Grasp 
execution

Multi-step 
classification and

Task-oriented grasp 
templates generation

Grasp
Training 
dataset 
creation 

and update

Figure 4.1: General workflow of the proposed approach.

As shown in Fig. 4.1, the approach is consisted of two parts: offline and online. In the
offline, the first step is to select the training objects. The training objects should be similar
in shape and can be used to accomplish the same tasks. Then, a number of task-oriented
grasps are generated from each training object and recorded into a training dataset along
with the geometric information on the training objects. Such training data is ran through
a multi-step clustering algorithm. In the end of offline phase, the combination of the
centroids that are generated in each step form a codebook which consists of a small set of
representative grasps. During the online operation, comparing the shape similarity of the
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target object to the training objects from the corresponding category, a representative grasp
is selected from the codebook. The robot kinematic data associated to that particular grasp
is utilized to the grasp execution for the target object. In the meanwhile, the codebook
incorporates the geometric information on the novel object and automatically improved
from such information.

4.3 Batch Learning Self-Organizing Map

This section reviews batch learning SOM that forms the basic structure of the proposed
multi-step clustering algorithm in this thesis.

Let Ψ = {ψi|ψi ∈ Rd} represent the training dataset and each training data contained
in this set is a d-dimensional vector. A finite set Ω = {ωj|ωj ∈ Rd} denotes all the
neurons in the competitive layer. Each neuron contains a weighting vector and has the
same dimension as ψi. In general, there are four steps to perform batch learning algorithm:
initialization, competition, cooperation and adaptation.

1. Initialization: In this step, all the weighting vectors contained in Ω are initialized
with certain values (the details of the initialization algorithm will be introduced in
Section 4.5.1).

2. Competition: Input the entire dataset, Ψ, to all the neurons at the same time. For
each training vector, determine the closest neuron based on the Euclidean distance,
i.e.,

βi = argmin
j
‖ψi − ωj‖2, (4.1)

where βi denotes the index of the winning neuron corresponding to the training
vector, ψi. This winning neuron will represent the corresponding training vector in
the determination of the topological relation in the next step.

3. Cooperation: The most essential feature of SOM is that it utilizes the idea of
topological neighborhood to define the relation between each neuron. There are
some important properties of a topological neighborhood. The maximum of such
neighborhood is at the the central neuron. It is symmetric about the associated
central neuron and monotonically decreases as it gets far away from the central
neuron. Specifically, the topological function of two neurons is defined as

70



hβi,j = exp

(
−‖ωj − ωβi‖

2
2

2σh(t)2

)
, (4.2)

where σh (referred to the learning rate in some references) controls the variation rate
of the correlation between two neurons. In general, σh decreases exponentially with
time as

σh(t) = σh(0) exp

(
−t− 1

tmax

)
, t = 1, ..., tmax (4.3)

where t indicates the current iteration number, σh(0) is the initial value of σh and
tmax denotes the maximum number of iterations.

4. Adaptation: In this step, each neuron is updated through suitable adjustment based
on its relation with every training vectors. Such relation is described by Eq. (4.2) in
the previous step. The weight update is then expressed as

ωnewj =

∑N
i=1 hβi,jψi∑N
i=1 hβi,j

. (4.4)

4.4 Grasp Candidates Collection

A set of objects which are in the same category but different in shape and size are selected
to form the initial training objects for grasping. Using human demonstration, a number of
grasp candidates are then generated for each training object to accomplish some certain
tasks in experiment. Eventually, these grasp candidates are stored in a grasp training set
with all training objects and specific tasks.

4.4.1 Task-Oriented Hand Poses

There are a large number of possible grasps that satisfy the force-closure and task con-
ditions for a single object. However, only a few of them are used by human-beings, and
those grasp can also be categorized into a small set of types [144]. Based on this idea, to
improve the efficiency of the training process, we define four different hand poses to grasp
different types of the objects for the BarrettHand. These hand poses, as shown in Fig. 4.2,
and the corresponding target object shapes are defined as follow
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• Wrap grasp: Two fingers are spread out, and the whole hand is fully open. This
hand configuration is used to grasp the objects in the shape of box and cylinder
objects from side. For instance, this hand pose can be used to grasp the main body
of a mug and deliver it to another person while leaving the handle available to the
person.

• Two-finger thumb grasp: This hand pose is generated by adjusting the wrap
grasp. Two fingers are fully spread out, and the whole hand is half close. This pose
is mainly used to grasp the elongated part of the object, such as the handle part of
screwdrivers and that of hammers.

• Ball grasp: Two fingers are spread out with a certain angle, and the whole hand
is fully open. This hand configuration is used to grasp the objects in the shape of
ball and cylinder objects from top. For instance, this hand pose can be used to
accomplish the pick-and-place task for a mug.

• Disk grasp: Two fingers are spread out with a certain angle, and the whole hand
is half close. This hand pose is used to precisely grasp small objects in the shape of
disk, such as the cap of a bottle. Moreover, it can also be used to accomplish the
pick-and-place task for a bottle by grasping the bottleneck part.

Figure 4.2: Four types of hand Poses. From left to right: wrap grasp, two-finger thumb
grasp, ball grasp and disk grasp.

4.4.2 Grasp Training Set

A grasp training set, Ψ, is built to contain all the related information on the object dimen-
sion, specific tasks and the hand kinematics. Each training data vector in the set is then
defined as
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ψi =
(
ψTi , ψ

D
i , ψ

O
i , ψ

R
i

)
, ψi ∈ Ψ. (4.5)

ψTi ∈ T ∈ Rt denotes the desired task which belongs to a set of specific tasks learned in
the experiments, such as pouring water, delivery and transportation. To encode different
tasks into dataset, a series of binary numbers are used to represent each task. The value
of t is determined based on the number of tasks. In addition, although some objects can
be used to fulfill the same task (both bottles and mugs can be used to pour water from
them), such task has to be encoded individually for each object category. ψDi ∈ D ∈ R3

denotes the approaching direction of the manipulator when grasping the object. The
approaching directions are used to represent the orientations of the objects. A finite set
D contains a number of approaching directions that are performed in the experiments.
ψOi ∈ O ∈ R3 denotes the geometric information on the object. A set O contains the
geometric information on all objects used for training. In this thesis, only length, width
and height of the intended grasp part of the object are recorded. For instance, to complete
a transportation task (i.e. pick-and-place) with a mug, only the dimensions of the main
body are recorded. Such information is used to cluster the similar training objects and
compare the similarity between the training objects and the target object. ψRi ∈ R17

denotes a hand kinematic data vector which consists of initial joint position and joint
velocity of each finger, position and orientation (in quaternion) of the hand with respect
to the center of the object and the strain-gauge data for each finger. Such information will
be utilized to accomplish a certain grasping task.

4.5 Grasp Candidates Analysis

In this section, a multi-step classification algorithm is developed to analyze the grasp
candidates and cluster similar candidates into one group. The classifier in each step is
based on batch learning SOM. In addition, we also propose a novel initialization method
to determine the initial neurons for each classifier. Furthermore, the proposed algorithm
can automatically adjust the size of each classifier (the number of neurons) based on the
information from grasping every novel objects. As a result, the entire grasp training set can
be condensed into a small set of output centroids. Each centroid consists of one particular
neuron from each step. The data contained in each centroid can be applied to the solution
to grasping novel objects which is similar to the corresponding training objects.

73



4.5.1 Initialization for Clustering

As reviewed in Chapter 2, most of the existing initialization methods aim to search for
such locations that they are close to the majority of data vectors and also as far as possible
away from each other as initial centroids. Moreover, selecting outliers as initial centroids
is not acceptable using those methods, since such outliers are normally the data corrupted
by noise and far away from most of the training data vectors. In our case, however, each
individual training data (i.e. grasp candidate), even the outliers, need to be considered as
candidates of initial centroids, because each of them is associated with a particular object
and the corresponding task. Therefore, the desired initial centroids should not only capture
the density of the training data, but also take the outliers into account.

Based on the idea of the proposed optimal sample points selection method introduced in
Chapter 3, we propose a novel initialization method that selects some representative train-
ing data vectors as the initial neurons. The selected neurons are determined by measuring
the similarities between the training data vectors. Specifically, we use Gaussian kernel to
measure the similarity, because it can produce a large response when two data vectors are
close to each other and exponentially fall off when two data vectors are apart. In addition,
as a nonlinear function of Euclidean distance, Gaussian kernel can also provide some useful
properties such as smoothness (i.e. the Gaussian function is infinitely differentiable). Due
to these features of Gaussian kernel, it is well suited for clustering problems. Gaussian
kernel used in this thesis is defined as the classical squared exponential function with only
one hyperparameter, σk. It is given by

k(ψi, ψj) = exp

(
−‖ψi − ψj‖

2
2

2σ2
k

)
. (4.6)

This equation is very similar to Eq. (4.2). The only difference is that σk is a constant
value and does not change with time. The desired neurons should be most dissimilar to
each other and most similar to unselected data. Specifically,

ψ∗i = argmin
ψi∈Ψ\Ψ∗

Ξi (4.7)

where

Ξi =
1
J

∑J
j=1 k(ψi, ψ

∗
j )

1
N−J−1

∑N−J−1
l=1 k(ψi, ψl)

, (4.8)
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where ψ∗i denotes the i-th optimal neuron, Ψ = {ψ1, ..., ψN} represents the original training
dataset, Ψ∗ = {ψ∗1, ..., ψ∗J} represents all selected neurons, and Ψ\Ψ∗ denotes the set of
all unselected training data vectors. The details of the implementation of the proposed
initialization method to select a total of K neurons are shown in Table 4.1.

training: (1) Original dataset, Ψ = {ψ1, ..., ψN}
(2) Number of initial neurons, K

Output: K optimal initial neurons, Ψ∗ = {ψ∗1, ..., ψ∗K}
1: if j = 1 (i.e. the first neuron) do

2: for every unselected data training, ψi, do

3: Calculate 1
N−1

∑N−1
l=1 k(ψi, ψl)

4: end for

5: Determine the optimal neuron, ψ∗i , as

6: ψ∗i = argminψi∈Ψ\Ψ∗
1

1
N−J−1

∑N−J−1
l=1 k(ψi,ψl)

7: else

8: for every unselected training data vector, ψi, do

9: Calculate Ξi by Eq. (4.14)

10: end for

11: Determine the optimal neuron, ψ∗i , by Eq. (4.7)

12: end if

13: Update Ψ∗ = Ψ∗ ∪ ψ∗i
14: Stop, if K neurons are selected. Otherwise, back to Step 1.

Table 4.1: Proposed initialization method

4.5.2 Multi-Step Classification

Grasping is the most fundamental skill that allows human to interact environment and
manipulate tools to achieve desired tasks. However, there are still some factors influencing
the human grasp choice and the corresponding action. Among these factors, there are four
major ones which characterize human grasping the most [24]:

• Desired Tasks: The tasks need to be accomplished, such as pour water from some
objects.
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• Object types: The geometric information on the target object.

• Object poses: The position and orientation of the target object.

• Grasp types: An appropriate task-oriented hand pose and the corresponding motion
of the hand.

Based on these criteria, we develop a multi-step clustering algorithm which consists of
three connected steps to cluster the grasp candidates into a small set of groups. Assuming
the shape of the target object and its corresponding category are known, each individual
step corresponds to one of the factors listed above. The training data vectors represent
the grasp candidates collected from the experiments and are defined by Eq. (4.5). Because
these vectors are clustered based on different criteria in each step, the number of the
clusters (i.e. the number of neurons) in each step are different.

In the first step, the training data vectors, Ψ (indicated in grey in Fig. 4.3), are clustered
into Kt groups (indicated in orange in Fig. 4.3) based on the specific tasks. Specifically,
only ψTi is considered as the training data in this layer. The value of Kt is defined as
the number of tasks learned in the experiments. At the beginning of this step, Kt initial
neurons, ωTkt (kt = 1, ..., Kt), are selected using the proposed initialization method. The
value of ωTkt is then updated using batch learning SOM which is introduced in Section 4.3.

In the second step, each group from the previous step is further clustered into Kkt
d

groups (indicated in yellow in Fig. 4.3) based on the approaching direction, ψDi . The value
of Kkt

d depends on the number of data vectors which are centered around ωTkt . One popular
method to determine the number of clusters based on the number of data in statistics is
the 2K rule which is given by

2K
kt
d ≥ Nkt , (4.9)

where Nkt denotes the total number of training vectors surround ωTkt . Then, the value of

Kkt
d can be determined by

Kkt
d = dlogNkte. (4.10)

According to the 2k rule, we then use the proposed method to select Kkt
d initial neurons

ωD
kt,k

kt
d

in each group. The value of Kkt
d will be further adjusted based on results from batch

learning SOM.
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Following the same procedure stated in the second step, each group from the second
step is again clustered into Kkt,kd

o r groups (indicated in blue in Fig. 4.3) based on the
geometric information on objects, ψOi , and the hand kinematic data, ψRi . Eventually, the
output of clustering is a set of centroids and each centroid consists of a series of connected
neurons

Ω = (ωTkt , ω
D
kt,kd

, ωORkt,kd,kor), (4.11)

where

kt = 1, ..., Kt,

kd = 1, ..., Kkt
d ,

kor = 1, ..., Kkt,kd
or .

ωORkt,kd,kor is the combination of ωOkt,kd,kor and ωRkt,kd,kor . ω
O
kt,kd,kor

will be used as a decision to
determine a suitable grasp, ωRkt,kd,kor , for a novel object. Ω is then written into a codebook
for the online grasp generation and execution. The workflow of the proposed multi-step
classification is illustrated in Fig. 4.3.
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data 
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0*,0-
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Ψ' Ψ3

&+*,'4 &+*,)-0*
4&+*,+-4

&+*,+-,+./1ℛ

Figure 4.3: The workflow of the proposed multi-step clustering algorithm. The training
data vectors represent the grasp candidates collected from the experiments. Each step is a
SOM, and the neurons in different step are associated with a different piece of the training
vectors. Eventually, each output centroid consists of one particular neuron from each step.
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4.5.3 Determination of Cluster Number

As mentioned in the precious section, the numbers of the initial neurons in the second and
third steps are determined based on the 2K rule. Although it is an efficient method to
be implemented, the number of the clusters may not be optimal for analyzing the data.
Moreover, the manipulators should keep improving the grasping skill as it interacts with
more and more objects. In other words, the training set should constantly adapt and
update with the related information from each grasp execution.

In this thesis, we propose an auto-growing algorithm to address the issue of identifying
the an appropriate number of clusters. A number of initial neurons are first selected based
on the 2K rule. Once these neurons are updated using batch learning SOM, the quality
of classification is measured by the distortion function for each cluster. The distortion
function is given by

Jj =
N∑
i

1{βi = j}‖ψi − ωj‖2
2, j = 1, ..., K, (4.12)

where 1{•} is defined as an indicator function. Specifically, 1{•} = 1 if the argument inside
is true, and 0 otherwise, i.e. 1{True} = 1 and 1{False} = 0. For instance, 1{2 = 2} = 1
and 1{5 = 3} = 0. Then, let ι denote the mean threshold value, and let ῑ denote the
max threshold values. The procedure to insert a neuron into or remove a neuron from the
clustering algorithm is shown in Table 4.2.

1: for every cluster, j = 1 to K, do

2: if any(1{βi = j}‖ψi − ωj‖2
2 > ῑ) do

3: Determine βinsert = argmaxi∈N 1{βi = j}‖ψi − ωj‖2
2

4: Insert ψβinsert
as an addition neuron to the clustering algorithm

5: elseif all(1{βi = j}‖ψi − ωj‖2
2 < ῑ) & Jj > ι do

6: Remove ψj

7: end if

8: end for

Table 4.2: Proposed auto-growing clustering algorithm.
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4.6 Grasp Selection and Dataset Update

Using the codebook generated from the proposed clustering algorithm, the process of gen-
erating a task-oriented grasp for a novel object is presented in this section.

4.6.1 Task-Oriented Grasp Selection

We assume the shape of the novel object is known and can be simply represented by
length, width and height. The required input data vector consists of a specific task,
desired approaching direction of the hand and the geometric information of the object
(length, width and height) and is defined as

Ψnovel = {ψTnovel, ψDnovel, ψOnovel}. (4.13)

The process of selecting a suitable grasp from the codebook involves three steps of decision
making, as shown in Fig. 4.4. Each decision is made by comparing a particular data
in Ψnovel with the neurons in the corresponding step. Eventually, the group that Ψnovel

belongs to can be determined. Moreover, the robotic kinematic data contained in the
neuron of that group is retrieved and applied to grasp the target object.

4.6.2 Training Dataset Update

The codebook can be updated from each time grasping a novel object. If a novel object
can be successfully grasped by the selected grasp from the codebook, the data contained in
Ψnovel will be stored into the training dataset. In addition, the updated training dataset is
ran through the proposed multi-step clustering algorithm. As a result, the values contained
in each neuron are refined. In other words, the relation between each representative grasp
and the geometrics of its corresponding object is enhanced. In the case that the selected
grasp is failed to grasp the novel object, human assistance is required. The grasp is then
inputted to the training dataset so that the codebook can be improved from the experience
of failure.
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Figure 4.4: The process of selecting a suitable grasp for a novel object.

4.7 Simulation and Experimental Results

In this section, the performance of the proposed initialization method is first validated by
comparing with the Kaufman approach in Section 4.7.1. The advantages of using Gaus-
sian kernel rather than Euclidean distance to measure the similarity between data is also
demonstrated within this section. The proposed auto-growing method is then simulated
and compared with the density-based approach in Section 4.7.2. In order to demonstrate
the performance of the proposed knowledge-based grasp planning framework, we train
our manipulator (Barrett WAM equipped with BHand) to learn how to grasp a mug to
achieve some desired tasks from experience. The robotic kinematic data is gathered from
human manipulation assistance while performing two specific tasks (transportation and
delivery/pouring water) with a set of different mugs. Such data is then recorded with the
dimensions of the training mugs and the tasks to build up a training dataset. The details of
how the training data is collected and prepared are presented in Section 4.7.3. Finally, the
experiment results of running the proposed multi-step clustering algorithm on the training
dataset for generating a suitable grasp for three new mugs are presented in Section 4.7.4.
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4.7.1 Comparing of Different Initialization Methods

To demonstrate the advantages of the proposed initialization method, we have conducted
two simulations with different 2D datasets to compare the performance of the proposed
method with the Kaufman approach (KA) method and a Euclidean distance based ap-
proach (EA). Both datasets consist of one or more regions with high data density and
some sparse outliers. The Euclidean distance based approach just simply replaces Gaus-
sian kernel with l2 norm in Eq (4.14) as

Ξi,Euclidean =
1
J

∑J
j=1 ‖ψi − ψ∗j‖2

1
N−J−1

∑N−J−1
l=1 ‖ψi − ψl‖2

, (4.14)

and selects the initial centroids by Eq (4.7).

(a) Initial centroids (b) Updated centroids from 2 iterations

Figure 4.5: Comparison of different initialization methods using test dataset 1.

In the first dataset, 100 data points are uniformly distributed within a 2D space (0.3 ≤
x ≤ 0.7, 0.3 ≤ y ≤ 0.7) and additional seven data points are located in two different
clusters far away from the majority of the data points. All these input data points are
indicated as the cross (‘×’) markers in Fig. 4.5. Following the procedure of KA introduced
in Chapter 2, the selected starting centroids using KA are indicated as the asterisk ‘∗’
markers in Fig. 4.5. This result shows that KA can provide a good performance in terms
of accurate determination of the region with high data density. The outliers, however,
are completely ignored. The initial centroids selected using EA are indicated as the plus
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(‘+’) markers. One of the clusters contained sparse outliers is captured and yet the other
one is omitted. On the contrary, when σk = 1, both clusters contained sparse outliers are
well captured using the proposed approach (selected centroids are indicated as the circle
‘◦’ markers). Figure 4.5b shows the updated centroids from 2 iterations of running batch
learning method.

In the second dataset, 3 clusters are created and each of them contains 100 uniformly
distributed data points. In addition, seven sparse outliers are randomly selected from two
regions which are away from the clusters. Given σk = 1, the simulation result further
demonstrates that the proposed approach is capable of capturing the regions with the
outliers, as shown in Fig. 4.7.

(a) Initial centroids (b) Updated centroids from 2 iterations

Figure 4.6: Comparison of different initialization methods using test dataset 2.

Moreover, to identify the sensitivity of the proposed approach to the value of σk, we
create another dataset which consists of 100 data points uniformly distributed in the center
region of a 2D space and 10 sparse outliers located in four different regions. By setting
σk = 0.3, all the regions with outliers can be well captured. However, when let σk = 0.5,
only two out of four regions can be captured. This result implies that in order to identify
all the regions with outliers, we have to carefully tune the value of σk.
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(a) σk = 0.3 (b) σk = 0.5

Figure 4.7: Simulation results by setting different values of σk.

4.7.2 Comparing of Different Growing Methods

To evaluate the performance of the proposed auto-growing algorithm, the proposed algo-
rithm is applied to cluster two synthetic datasets, a multiply concentric circles dataset and
a flower shape dataset, while satisfying two different conditions. In the simulations with
both dataset, the selected centroids are refined by running through batch learning 3 times
in each iteration.

In the first dataset, 700 data points are uniformly distributed in seven concentered
circles, and each circle contains 100 data points. The data points are indicated as the cross
(‘×’) markers in Fig. 4.8 and Fig. 4.9. The growing process starts with one initial centroid
which is selected using the proposed initialization method. Given ι = 0.2 and ῑ = 0.3,
126 centroids are selected in 128 iterations using the proposed auto-growing algorithm, as
shown in Fig. 4.8a. The distribution of the selected centroids at different stage in the
growing process are illustrated in Fig. 4.9.To demonstrate the advantages of the proposed
method, a density-based approach introduced in Chapter 2 (i.e., insert a centroid in the
region with relative high data density and remove a centroid from the region with relative
low data density) is also applied to cluster the same dataset. By running the density-based
approach with the same number of iteration as the proposed method, only 78 centroids
are selected and neither of two conditions are satisfied. As illustrated in Fig. 4.8b, most of
the centroids are selected from the center of the space in which the majority of data points
locate as expected.
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(a) Proposed approach (b) Density-based approach

Figure 4.8: Comparison of different auto-growing methods with multiply concentric circles
dataset.

Since the dataset is randomly generated, we conduct a number of Monte Carlo simula-
tions for the input data points. In the Monte Carlo simulation, we run both the density-
based method and the proposed method 50 iterations. In the meanwhile, the mean of
distortion function value of each cluster and the mean of the maximum Euclidean dis-
tance between an input data point and its corresponding centroid are recorded. Table
4.3 compares the performance of these two approaches from 100 runs of the Monte Carlo
simulation. All of the simulation results are illustrated as box plots in Fig. 4.10.

Mean of Distortion
Function values

Maximum of
Euclidean Distance

Density-based approach 0.4627 0.8513
Proposed approach 0.2851 0.3919

Table 4.3: Mean of computation time of 100 runs of Monte Carlo simulation.
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(a) 20 centroids (b) 40 centroids

(c) 60 centroids (d) 80 centroids

Figure 4.9: Different stage in the growing process.
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Figure 4.10: Simulation results of 100 Monte Carlo runs with different input data points.

In the second dataset, 600 data points are randomly distributed to form a flower shape.
Given ι = 0.1 and ῑ = 0.2, 51 centroids are selected in 57 iterations using the proposed
auto-growing algorithm, as shown in Fig. 4.11a. The distribution of the selected centroids
at different stage in the growing process are illustrated in Fig. 4.13. As shown in Fig.
4.11b, by running the density-based approach with same number of iteration, 47 centroids
are selected. We also conduct a number of Monte Carlo simulations for the input data
points and run both method 50 iterations. Table 4.4 compares the performance of these
two approaches from 100 runs of the Monte Carlo simulation. All of the simulation results
are illustrated as box plots in Fig. 4.12.

Mean of Distortion
Function values

Maximum of
Euclidean Distance

Density-based approach 0.1982 0.4065
Proposed approach 0.1218 0.1866

Table 4.4: Mean of computation time of 100 runs of Monte Carlo simulation.
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(a) Proposed approach (b) Density-based approach

Figure 4.11: Comparison of different auto-growing methods with a flower shape dataset.

Density-based method Proposed method
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Figure 4.12: Simulation results of 100 Monte Carlo runs with different input data points.
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(a) 10 centroids (b) 20 centroids

(c) 30 centroids (d) 40 centroids

Figure 4.13: Different stage in the growing process.
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4.7.3 Experimental Setup

The proposed approach is tested on a Barrett WAM with a three-fingered Barrett Hand,
the same manipulator and robotic hand we used in the tactile exploration. We consider
the case where the target object is located on a flat surface and within the operation range
of WAM. We consider a mug category which consists of eight different mugs varying in
shape and size.The mugs used for the training in the experiment are illustrated in Fig.
4.14. The dimensions of the main body of each mug is listed in Table 4.5.

Figure 4.14: Training objects used in physical experiments.
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Object description
Dimension of main body (cm)
Length Width Height

Thermos 8.0 7.9 11.6
Blue (Corelleo) 8.6 8.7 10.1
Black 8.2 8.2 9.6
Maxwell 9.0 8.9 9.4
Stitch 9.8 9.0 11.9
Doraemon 8.9 8.9 15.3
Donald duck 9.1 9.1 12.2
Pluto 11.4 11.3 9.4

Table 4.5: Dimensions of the training objects.

Two tasks (delivery and transportation) are performed with human assistance for each
training mug, as shown in Fig 4.15. To accomplish the delivery task, the body of the mug
should be grasped from the side while leaving the handle open and available to be received
by another person, as shown in Fig. 4.16b. In addition, when the height of the mug is
higher than the size of BHand, we will teach the robot to grasp the upper part of the mug,
as shown in Fig. 4.16a. To accomplish the transportation task, the body of the mug should
be grasped from the top while avoiding to touch the lip of the mug, as shown in Fig. 4.17a.
Moreover, none of the finger should hit or block the handle of the mug, as shown in Fig.
4.17b. Specifically, the thumb finger should point to the opposite direction of the handle.

The training data, ψ, collected in the experiment and the dimension of each data are
shown in Table 4.6. Since there are two tasks performed in the training phase, we define
the delivery task as [0, 1] and the transportation task as [1, 0]. As mentioned in Section
4.4.2, the approaching direction of BHand is used to describe the orientation of the object.
More specifically, when approaching from the side, the approaching direction is defined as
the pointing direction of BHand (as indicated in Fig. 4.15a) with respect to the base of
WAM. When approaching from top, the pointing direction of the base of the thumb (as
indicated in Fig. 4.15b) with respect to the base of WAM is defined as the approaching
direction. The initial joint position of each finger are predefined by the human trainer,
since different task associates to different hand pose as introduced in Section 4.4.1. One
thing needs to be noted is that the joint velocity of each finger should be carefully tuned,
as the three fingers of BHand can not form an equilateral triangle if they move in the same
velocity. Therefore, the velocity of the thumb has to be a little lower than that of the
other two fingers. Both position and orientation of BHand are defined with respect to the
base of WAM, and the orientation is expressed as quaternion. The stain-gauge data can be
acquired from the corresponding sensors equipped with BHand. Eventually, we collect 36
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grasps for each training mug per task (576 grasps in total) and generate 200 representative
grasps using the proposed multi-step clustering algorithm (σk = 1).

Approaching 
direction

(a) Perform delivery task

Approaching 
direction

(b) Perform transportation task

Figure 4.15: Perform delivery and transportation task with human assistance.

Description of training data, ψ Dimension of training data
Task R2

Object dimension R3

Approaching direction R3

Initial joint positions of BHand R4

Joint velocity of each finger R3

Position of BHand R3

Orientation of BHand R4

Strain-gauge R3

Table 4.6: Data collected in training experiment.
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(a) Side view (b) Top view

Figure 4.16: A demonstration of grasping from side to accomplish a delivery task.

(a) Side view

Thumb 
finger

(b) Top view

Figure 4.17: A demonstration of grasping from top to accomplish a transportation task.
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4.7.4 Experimental Results

Once the training dataset is successfully built up, we evaluate the proposed approach by
performing task-oriented grasp planning on three novel mugs which are shown in Fig. 4.18.
The dimensions of these mugs are listed in Table 4.7. These dimensions and the orientation
of the target mug are assumed to be known. All these mugs are placed on a flat surface
with different orientations. Some example grasps for the text objects are shown in Fig.
4.19, Fig. 4.20 and Fig. 4.21. In the experiment, all three test mugs can be successfully
grasped using the task-oriented grasp which is selected from the codebook. One important
observation as demonstrated in Fig. 4.21b is that even though the target mug is not in a
standard geometric shape, it can still be grasped using the proposed approach.

Figure 4.18: Three novel objects used to test the proposed approach.
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Object description
Dimension of main body (cm)
Length Width Height

Sushi 8.0 8.0 8.9
Piglet 9.1 9.1 15.1
Stormtrooper 10.1 9.2 9.4

Table 4.7: Dimensions of the test objects.

(a) Accomplish the delivery task (b) Accomplish the transportation task

Figure 4.19: Task-oriented grasps for the Sushi mug.

94



(a) Accomplish the delivery task (b) Accomplish the transportation task

Figure 4.20: Task-oriented grasps for the Piglet mug.

(a) Accomplish the delivery task (b) Accomplish the transportation task

Figure 4.21: Task-oriented grasps for the Stormtrooper mug.
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4.8 Conclusion

In this section, a knowledge-based approach to the problem of task-oriented grasp planning
has been presented. A multi-step clustering algorithm is proposed to analyze the training
data and generate a small set of representative grasp based on some specific criteria. By
using Gaussian kernel to measure the similarity between the training data, a novel method
to determine the initial centroids is also proposed. Simulation results show the benefit
of the proposed method for capturing the outlier more accurately then a classic approach
(Kaufman approach). Moreover, an auto-growing algorithm for automatic determining the
number of clusters is developed. Simulation results validate the advantages of the propose
algorithm in terms of accuracy and efficiency. Moreover, the proposed knowledge-based
approach is evaluated in a realistic experiment in which a suitable grasp is generated for a
novel object to successfully complete a specific task.
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Chapter 5

Contributions and further work

5.1 Summary of contributions

In this thesis, a novel sampling approach for GPIS to estimate unknown shapes using tactile
exploration under limited sampling points without visual or laser sensors. By tuning the
weighting factors, the objective function can adjust the priority between estimating the
whole shape of the object and emphasizing on geometric features of the object. The
proposed strategy realizes a novel multi-fidelity optimal sample points selection strategy
which can provide more accurate shape estimation given the limited number of sample
points available (using only 0.41% of reference data points in simulation). Simulation
and experimental results are provided to demonstrate the benefit of proposed method for
estimating complex geometric features more accurately than existing methods with the
same number of sample points.

This thesis also presents an effective grasp planning that uses learned grasping knowl-
edge on a set of training objects to improve the efficiency of the process of generating
successful grasps for novel objects. The proposed multi-step clustering algorithm can au-
tomatically produce a set of representative grasps while taking manipulation tasks into
account. The proposed clustering algorithm is also improved by applying the proposed ini-
tialization method. Moreover, the proposed approach is capable of continuously enhancing
the grasping skills as more and more objects are manipulated in a real environment. Ex-
perimental results demonstrate the advantages of proposed methods in terms of accuracy,
efficiency and robustness for grasping a novel object to accomplish specific tasks.
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5.2 Publications

The research carried out for this thesis has been, or is intended to be, published in the
following.

1. Yang, Shiyi, Soo Jeon, and Jongeun Choi. “Multi-Fidelity Sampling for Rapid Shape
Estimation with Tactile Exploration.” Under review for IEEE Transactions on In-
dustrial Informatics.

2. Yang, Shiyi, and Soo Jeon. “Recursive Path Planning and Wind Field Estimation for
Precision Airdrop.” Journal of Guidance, Control, and Dynamics 42, no. 6 (2019):
1429-1437.

3. Yang, Shiyi, Nan Wei, Soo Jeon, Ricardo Bencatel, and Anouck Girard. “Real-time
optimal path planning and wind estimation using gaussian process regression for
precision airdrop.” In 2017 American Control Conference (ACC), pp. 2582-2587.
IEEE, 2017.

4. Yang, Shiyi, Soo Jeon, and Jongeun Choi. “Level-set based greedy algorithm with
sequential gaussian process regression for implicit surface estimation.” In ASME 2016
Dynamic Systems and Control Conference, pp. V002T25A001-V002T25A001. Amer-
ican Society of Mechanical Engineers, 2016.

5.3 Further work

Opportunities for further research extending from the contributions of this thesis have been
identified, and are discussed in the following.

5.3.1 Shape Estimation Improvement

Robustness is one of the most important criterion needs to be concerned in the the imple-
mentation of the proposed sampling method. To further evaluate the performance of the
proposed method, more objects with various shape should be considered.

The tactile exploration strategy used in Chapter 3 is completely dependent on the
tactile sensor feedback data. However, the tactile sensor only is not sufficient to provide
enough information when dealing with the estimation of other properties of the object and
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that of the environment. Hence, more sensors should be utilized, such as vision, strain
gage and etc.. As a part of potential future work, the integration of sensing information
from different types of sensors can be further studied.

5.3.2 Object Deformability Estimation

The research presented in this thesis is designed with an assumption that the objects being
handled are rigid and do not deform when grasped. In reality, however, many objects are
non-rigid, such as plastic bottles, aluminum cans, paper tea cups and etc.. Therefore, in
addition to the information about the object shape, the knowledge of deformable property
of the object or even part of an environment is also crucial to the problem of object grasping
and manipulation.

In most of the existing approaches, the interaction between the object surface and
the robotic arm is observed only by a vision camera. People, however, often acquire
more knowledge of the object properties through the direct contact with the object rather
than through the vision perception. It reveals that instead of using vision sensors to
detect the deformation of the object, the displacement of the fingertip can also be used
to determine the deformation according to the tactile sensor (or strain gage joint-torque
sensor) feedback. More specifically, the sensor feedback from the tactile sensors (or strain
gage joint-torque sensors) can more precisely describe the interaction with the object than
that from the vision sensors. The BHand is equipped with tactile sensors and strain gage
joint-torque sensors that can provide such information. Hence, such sensor feedback needs
to be efficiently utilized.

One typical research study [1] introduced in Section 2.2 proposes an idea to represent
the deformability of the object as a probabilistic model so as to be estimated by using
GPR. This work, however, only concerns the deformability in 1D space where a constant
normal force is applied to a 2D flat surface. One possible research is that we can extend
this idea to 3D space with 3D objects. Moreover, the proposed estimation method which
is presented in Section 3 defines the measurement y as the value of an implicit function
to represent if the point is on the surface of the object. In the case of estimating the
deformability of the object, the measurement y should be properly defined so that the
GPR can be applied to model the deformability.

99



5.3.3 Grasping Skills Enhancement

Grasping the handle part of a mug is much harder than grasping the main body of a mug.
All the hand poses presented in Section 4.4 can not produce a force-closure grasp and
guarantee the stability of the grasp. In order to address this technical issue, we develop a
special hand pose as shown in Fig. 5.1a. One of the two fingers inserts into the handle and
the thumb touches on the main body to provide extra support to the grasp. This particular
hand pose can be successfully implemented when the handle of the mug is small. However,
when the gap space between the handle and the main body is large, the proposed hand
pose is failed to completing the desired task even with the human assistance, as shown
in Fig. 5.1b. The mechanical design of BHand is one of reasons to cause the failure.
Furthermore, this result indicates that we need a more specific and careful grasp planning
for any complicated tasks.

The objects used for training are only mugs. Different tasks using objects with more
complicated shapes should be used to further evaluate the performance of the proposed
method. In the meantime, since the proposed neural network is capable of auto-improving
and evolving, it can be enhanced as more and more objects are grasped.

The experiments conducted in this thesis are all on a Barrett WAM with a three-
fingered BHand. One possible future work is to generalize the proposed knowledge-based
grasp planning for other dextrous robotic hands, such as Kinova gripper KG-3 or hands
equipped with more fingers.
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(a) Grasp the handle of the Stormtrooper
mug.

(b) Grasp the handle of the piglet mug.

Figure 5.1: Examples of grasping handle of mugs.
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Appendix A

Sequential Gaussian Process
Regression

The aim of this appendix is to demonstrate the details of process to derive Eq. (3.29) in
Section 3.4. For the sake of simplifying the notation, x and X, when used in the equations,
will represent f(x) and f(X) in this appendix.

Suppose we sequentially select three sample points (x2, x3 and x4), and let X1 = {x1}
(the subscript indicates the number of sample point contained in the set) denote the initial
sample set. Then, the conditional variance of x2 given X1 can be obtained by Eq. (3.8)

V (x2 | X1) = Σx2x2 − Σx2X1Σ
−1
X1X1

ΣX1x2 , (A.1)

where the covariance matrices Σx2x2 , Σx2X1 and ΣX1X1 can be obtained by Eq. (3.4).
Adding x2 into set X1, the conditional variance of x3 given X2 (X2 = {x1, x2}) can be
expressed as

V (x3 | x1, x2) = Σx̃3|1x̃3|1 − Σx̃3|1x̃2|1Σ
−1
x̃2|1x̃2|1

Σx̃2|1x̃3|1 , (A.2)

where x̃3|1 and x̃2|1 can be obtained by Eqs. (3.27) and (3.28)

x̃3|1 = x3 − E[x3 | X1]

= x3 −
(
m(x3) + Σx3X1Σ

−1
X1X1

(X1 −m(X1))
)
,

(A.3)
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x̃2|1 = x2 − E[x2 | X1]

= x2 −
(
m(x2) + Σx2X1Σ

−1
X1X1

(X1 −m(X1))
) (A.4)

Also from Eq. (3.7), we can derive the expected value of x̃3|1 and x̃2|1 as

E
[
x̃3|1
]

= E [x3 − E[x3 | X1]]

= m(x3)− E
[
m(x3) + Σx3X1Σ

−1
X1X1

(x1 −m(x1))
]

= m(x3)−
(
m(x3) + Σx3X1Σ

−1
X1X1

(m(X1)−m(X1))
)

= 0,

(A.5)

E
[
x̃2|1
]

= E [x2 − E[x2 | X1]]

= m(x2)− E
[
m(x2) + Σx2X1Σ

−1
X1X1

(X1 −m(X1))
]

= m(x2)−
(
m(x2) + Σx2X1Σ

−1
X1X1

(m(X1)−m(X1))
)

= 0.

(A.6)

Taking x̃3|1 and x̃2|1 with their expected values, we can derive Σx̃3|1x̃3|1 as

Σx̃3|1x̃3|1 = E
[(
x̃3|1 − E[x̃3|1]

) (
x̃3|1 − E[x̃3|1]

)ᵀ]
= E[

(
(x3 −m(x3))− Σx3X1Σ

−1
X1X1

(X1 −m(X1))
)(

(x3 −m(x3))− Σx3X1Σ
−1
X1X1

(X1 −m(X1))
)ᵀ

]

= E [(x3 −m(x3)) (X1 −m(X1))ᵀ]

− E
[
Σx3X1Σ

−1
X1X1

(X1 −m(X1)) (x3 −m(x3))ᵀ
]

− E
[
(x3 −m(x3)) (X1 −m(X1))ᵀ Σ−1

X1X1
ΣX1x3

]
+ E

[
Σx3X1Σ

−1
X1X1

(X1 −m(X1)) (X1 −m(X1))ᵀ Σ−1
X1X1

ΣX1x3

]
= Σx3x3 − Σx3X1Σ

−1
X1X1

ΣX1x3 − Σx3X1Σ
−1
X1X1

ΣX1x3 + Σx3X1Σ
−1
X1X1

ΣX1x3

= Σx3x3 − Σx3X1Σ
−1
X1X1

ΣX1x3 .

(A.7)

Applying the same method, we can also derive Σx̃3|1x̃2|1 and Σx̃2|1x̃2|1 as
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Σx̃3|1x̃2|1 = E
[(
x̃3|1 − E[x̃2|1]

) (
x̃3|1 − E[x̃2|1]

)ᵀ]
= Σx3x2 − Σx3X1Σ

−1
X1X1

ΣX1x2 ,
(A.8)

Σx̃2|1x̃2|1 = E
[(
x̃2|1 − E[x̃2|1]

) (
x̃2|1 − E[x̃2|1]

)ᵀ]
= Σx2x2 − Σx2X1Σ

−1
X1X1

ΣX1x2 .
(A.9)

Now, plugging Eqs. (A.7), (A.8) and (A.9) into Eq. (A.2), we obtain

V(x3 | x1, x2) = Σx3x3 − Σx3X1Σ
−1
X1X1

ΣX1x3

−
(
Σx3x2 − Σx3X1Σ

−1
X1X1

ΣX1x2

)2

Σx2x2 − Σx2X1Σ
−1
X1X1

ΣX1x2

.
(A.10)

Notice that ΣX1x2 and ΣX1X1 have been calculated by Eq. (A.1). Furthermore, the denom-
inator in Eq. (A.10) is nothing else but the conditional variance of x2 given X1, which has
also been calculated by Eq. (A.1).

Adding x3 into the X2, the conditional variance of x4 given X3 (X3 = X2 ∪ x3) can be
derived with the same procedure as

V (x4 | X2, x3) = Σx̃4|2x̃4|2 − Σx̃4|2x̃3|2Σ
−1
x̃3|2x̃3|2

Σx̃3|2x̃4|2

= Σx4x4 − Σx4X2Σ
−1
X2X2

ΣX2x4

−
(
Σx4x3 − Σx4X2Σ

−1
X2X2

ΣX2x3

)2

Σx3x3 − Σx3X2Σ
−1
X2X2

ΣX2x3

.

(A.11)

where the denominator in Eq. (A.11) can be directly obtained from Eq. (A.2). Further-
more, Σx3X2 , ΣX2x3 and ΣX2X2 can also be expressed as

Σx3X2 = Σᵀ
X2x3

=
[
Σx3x1 Σx3x2

]
, (A.12)
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ΣX2X2 =

[
ΣX1X1 ΣX1x2

Σx2X1 Σx2x2

]
. (A.13)

Notice that all of entries in Σx3X2 , ΣX2x3 and ΣX2X2 are from previous calculation. In
addition, Equation (3.26) can also be derived using the same procedure.

In summary, this appendix presents the procedure to derive the proposed sequential
GPR. By applying the proposed method, the computation complexity can be reduced to
O((n− 1)3)
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