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Abstract
The construction of large scale quantum computing devices might be one of the most ex-

citing and promising endeavors of the 21st century, but it also comes with many challenges.
As quantum computers are supplemented with more registers, their error profile generally
grows in complexity, rendering the enterprise of quantifying the reliability of quantum com-
putations increasingly difficult through naive characterization techniques. In the last decade,
a lot of efforts has been directed toward developing highly scalable benchmarking schemes.
A leading family of characterization methods built upon scalable principles is known as ran-
domized benchmarking (RB).

In this thesis, many tools are presented with the objective of improving the scalability,
and versatility of RB techniques, as well as demonstrating their reliability under various
error models.

The first part of this work investigates the connection between the error of individual
circuit components and the error of their composition. Before reasoning about intricate cir-
cuit constructions, it is shown that there exists a well-motivated way to define decoherent
quantum channels, and that every channel can be factorized into a unitary-decoherent com-
position. This dichotomy carries to the circuit evolution of important error parameters by
assuming realistic error scenarios. Those results are used to improve the confidence interval
of RB diagnoses and to reconcile experimentally estimated parameters with physically and
operationally meaningful quantities.

In the second part of this thesis, various RB schemes are either developed or more rig-
orously analyzed. A first result consists of the introduction of “dihedral benchmarking”, a
technique which, if performed in conjunction with standard RB protocols, enables the char-
acterization of operations that form a universal gate-set. Finally, rigorous analysis tools are
provided to demonstrate the reliability of a highly scalable family of generator-based RB
protocols known as direct RB.
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Chapter 1

Introduction

As quantum computing devices gain in size and precision, the task of characterizing their
quality indubitably grows in complexity as well. A first challenge is to identify a few com-
mendable parameters that both capture the caliber of elementary operational components
and that can be used to infer the reliability of computations based on those building blocks.
A second challenge is to invent experimental procedures that provide robust estimates of
those figures of merit in a reasonable amount of time. Those two challenges are coupled:
a commendable parameter that is not extractable by any know experimental means is no
more valuable than an efficiently estimated quantity that has no important role in asserting
computational reliability.

To remain tractable through the means of classical computation, characterization meth-
ods are often based around the construction of quantum circuits for which the ideal outcome
can be efficiently predicted classically. The elementary constituents used to build simple cir-
cuits are the same as the ones used for more involved computations. Hence, even if a given
quantum circuit remains tractable by classical means, the deviation between its results and
the predicted outcomes provide information regarding the operational components used in
more complex circuits.

This idea of connecting circuit outcomes and circuit component characterization is con-
cretized in randomized benchmarking (RB), a leading experimental method conceived to
characterize large-scale quantum computers [EAZ05; Dan+06; Gae+12; Cór+13; Kel+14;
Bar+14; Xia+15; Muh+15; Tar; Cas+16; McK+16; She+16; Tak+16b; McK+17b]. In terms of
raw data, RB protocols yield a collection of “success” and “failure” events related to many
implemented computations sampled from a given family of circuit constructions. Once col-
lected, the raw data is processed into valuable information regarding sets of quantum oper-
ations.

The active research involving RB-type protocols revolves around three main axes:

i. The design of new circuit families and sampling distributions, for which the resulting
raw data could carry novel information.

ii. The development of more advanced analytical and statistical tools to translate the raw
data into valuable error parameters.

iii. The study of inference techniques that can be used to leverage the knowledge of a few
figures of merit to quantify the outcome reliability of simple or complex computations.

Those three directions are interdependent: the relevance of designing new data collection
routines rests on data interpretation tools; the notion of “commendable parameter” implic-
itly relies on its aptitude to be leveraged and experimentally estimated; understanding how
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figures of merit evolve through specific circuit constructions provides insight for designing
novel data collection procedures.

In this thesis, various advancements in the three above directions are presented. Each
chapter includes a research paper for which my contribution was important. Since each
chapter is self-introductory, the rest of this introduction will limit itself to a brief blueprint.

The thesis is split in two parts. The first one, titled “Error signatures in quantum circuits”,
mostly treats of the two-way relation between the caliber of individual circuit components
and the quality of compositions thereof.

Chapter 3 starts with the derivation of the worst-case error accumulation scenario (in
terms of operational fidelity) in quantum circuits. This worst-case scenario is achieved by
(infinitely) many different processes, but is modulated by a figure of merit labeled as the
“coherence angle”, which combines the process fidelity and the unitarity, two quantities that
both appear from the data processing of RB experiments [CWE16]. For two-fold composi-
tions, a saturated best-case scenario is also derived in terms of the coherence angle, which can
be used to tightly bound the fidelity of two-fold composite operations (in even dimensions).
The composition bounds find a direct application in RB, as they can be used to connect the re-
sults of three distinct experiments – standard, interleaved, and unitarity RB [EAZ05; Dan+06;
MGE12; Mag+12; Wal+15]– to improve the confidence interval on the fidelity of isolated op-
erations.

Chapter 4, which ends the first part of the thesis, generalizes the ideas presented in chap-
ter 3. Through the introduction of a channel approximation referred to as the leading Kraus
(LK) approximation, it is first shown that there exists a natural way to decompose any non-
catastrophic quantum channel into a product of a uniquely defined physical unitary and a
decoherent error [CAE19]. This structural dichotomy is then shown to translate into a dy-
namical dichotomy: the process fidelity of a given circuit can be factored in two inherently
different behaviors. The first factor corresponds to a multiplicative decay dictated by the
decoherent component of individual circuit elements. The second factor, which can exhibit
non-linear features, depends solely on the coherent (i.e. unitary) component of circuit ele-
ments. The close connection between the structural channel factorization and the factoriza-
tion in the fidelity evolution is only ensured when well-identified unrealistic error scenarios,
referred to as extremal channels, are ruled out through the “equability condition”. The no-
tion of equability is also used to relate experimentally estimated parameters obtained via
RB to other commendable quantities such as the diamond distance and the superoperator
spectral norm.

The second part of this thesis, titled “Quantum characterization through randomized bench-
marking” treats more directly of the analysis and protocol advancements related to RB exper-
iments. Chapter 5 establishes a strong relationship between the raw data obtained from RB
experiments and a commendable physical parameter that can be used to characterize sets
of operations known as gate-sets. Previously to the work developed in chapter 5, which
mostly corresponds to the work found in [Car+18], it was shown that standard RB proto-
cols yield data than can be fit to an exponential decay, even in the advent of gate-dependent
Markovian errors [MGE11; MGE12; Wal17]. The decay parameter was shown to correspond
to a fidelity-like quantity of generally unclear nature [Pro+17a; Wal17]. Chapter 5 precisely
addresses this issue. In particular, it is first shown that, in the single qubit case, the decay
parameter obtained through experiment can be reconciled with a physically meaningful fi-
delity. Then, based on the results derived in chapter 4, the same type of reconciliation is
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extended to arbitrary system size.
Chapter 6 describes a variant of the original randomized benchmarking scheme, la-

beled as dihedral benchmarking, which allows the reliable characterization of new gate-sets
[CWE15]. The proposed protocol escapes the original 2-design restriction originally consid-
ered in [EAZ05; Dan+06; Dan+09; MGE11; MGE12]. In dihedral benchmarking, the main
advantage of loosening the restrictions on the randomizing gate-set is that it allows the pre-
cise characterization of the celebrated π/8 gate, an operation often proposed to supplement
Clifford circuits in order to gain universality. The characterization of the π/8 gate is of spe-
cial interest because leading fault-tolerant schemes propose its physical implementation via
magic state distillation and gate injection [BK05], which involves drastically different mech-
anisms than the implementation of Clifford gates.

In chapter 7, a mathematical machinery is developed with the goal of generalizing the
analysis of group-based RB to generator-based RB protocols. The first section, which is de-
rived from the work in [Boo+19], covers a simple gate-independent analysis of the protocol
proposed in [Kni+08]. The protocol in question, referred to as “NIST RB” makes use of a
randomizing gate-set that neither constitutes a 2-design, nor a group, but does generate the
Clifford group under composition. In this sense, the experimentally implemented scheme
provides a historical antecedent to generator-based RB. In the second section of chapter 7, a
generalization of the NIST RB protocol, referred to as direct RB [Pro+18], is presented and an-
alyzed. In a nutshell, direct RB invokes the native circuit elements used to generate 2-designs
as the randomizing gate-set. This simplification improves even further the scalability of stan-
dard RB techniques. Moreover, the resulting figures of merit are expected to connect more
closely with the characterization of primitive circuit components. The next chapter (chap-
ter 2) covers most notions and notation required to make sense of the subsequent chapters.
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Chapter 2

Introductory Material

2.1 Inner product and norms

Throughout this thesis, matrix norms and matrix inner products will be frequently used.
Given two matrices A, B ∈ Md(C), the Hilbert-Schmidt inner product between A and B is
defined as

〈A, B〉 := Tr A†B . (2.1)

From there, the Schatten 2-norm (which is also known as the Frobenius norm, and as the
Hilbert-Schmidt norm) is naturally defined as

‖A‖2
2 := 〈A, A〉 = Tr A† A . (2.2)

In this thesis, A† A is also noted as |A|2. The absolute value symbol is used on elements of
Md(C) as a shorthand to denote

|A| :=
√

A† A . (2.3)

|A| is positive semi-definite and its eigenvalues are the singular values of A. From this
convention and from the singular value decomposition theorem, is follows that any matrix
A ∈ Md(C) can be expressed as

A = U|A| , (2.4)

where U ∈ U(d) is a unitary matrix. Equation (2.4) is commonly referred to as a polar
decomposition of A. If A is full rank, then the unitary U is unique.

The Schatten 2-norm of A is the familiar Euclidean norm of the singular values of A.
Equipped with such inner product and norm, Md(C) becomes a Hilbert space (i.e Md(C) is
complete w.r.t. ‖ · ‖2). Given an operator A ∈ Md(C), its normalized version is denoted as

A :=
A
‖A‖2

. (2.5)

Given an orthogonal operational basis {Bi} for Md(C), any matrix A ∈ Md(C) can be ex-
pressed as

A = ∑
i

αiBi , (2.6)
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where αi = 〈Bi, A〉. The Schatten 2-norm can also be seen as the Euclidean norm (on Cd2
) of

the coefficients αi. Equation (2.6) naturally suggests a way to vectorize matrices, thats is to
map elements of Md(C) to Cd2

:

|A〉{Bi} =
d2−1

∑
i=0

αi|i〉 , (2.7)

where |i〉 are canonical unit vectors in Cd2
. Let 〈i| = |i〉† and 〈A| = |A〉†. For any choice

of orthonormal basis {Bi}, and for any A, B ∈ Md(C), the Hilbert-Schmidt inner product
Md(C)×Md(C)→ C corresponds to the usual inner product Cd2 ×Cd2 → C:

〈A, B〉 = 〈A|B〉 . (2.8)

A common matrix vectorization results from choosing the orthonormal operational basis
{Eij}, where Eij = |i〉〈j|, |i〉 are canonical unit vectors in Cd. The projection on Eij is assigned
to the vector |j〉 ⊗ |i〉 ∈ Cd2

, where ⊗ denotes the Kronecker product:

col(A) :=
d

∑
i,j=1

〈
Eij, A

〉
|j〉 ⊗ |i〉 . (2.9)

col : Md(C) → Cd2
is referred to as column vectorization or column stacking, as it can be

seen as stacking the columns of A ∈ Md(C) on top of each other. Given three matrices
A, B, C ∈ Md(C), a little index-tracking exercise suffices to show that

col(ABC) = C† ⊗ A col(B) . (2.10)

The Schatten p-norm is defined (and denoted) as

‖A‖p := [Tr |A|p]
1
p . (2.11)

It corresponds to the `p-norm of the singular values of A. ‖A‖∞ is used to denote the maxi-
mal singular value of A:

‖A‖∞ := max
i

σi(A) = σmax(A). (2.12)

Schatten p-norms frequently appear in the so-called Hölder’s inequality. Let 1/p + 1/q = 1
with p, q ≥ 1 (1/∞ denotes 0, so that p = ∞, q = 1 is a valid choice). Then ,

|〈A, B〉| ≤ ‖A‖p‖B‖q (Hölder’s ineq.)

The case p = q = 2 falls back to the so-called Cauchy-Schwarz inequality.

2.1.1 Common operator bases

Through eq. (2.6), operators in Md(C) can be expressed as linear combinations of d2 orthogo-
nal operators. A common choice of basis consists in the so-called Heisenberg-Weyl (unitary)
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operators Wij = XiZj ∈ Md(C), defined implicitly through

Xk|j〉 := |j + k mod d〉 (2.13a)

Zk|j〉 := ω jk|j〉 (2.13b)

ω := ei 2π
d . (2.13c)

The four Pauli matrices {I2, X, Y, Z} can be obtained from the Heisenberg-Weyl operators
for d = 2, with X = X1, Z = Z1 and Y = iX1Z1. For d = 2n, a common choice of unitary
operational basis is the set of n-fold Paulis {I2, X, Y, Z}⊗n, where ⊗ refers to the Kronecker
product.

2.2 Quantum states and measurements

In this thesis, only quantum systems with finite dimension are considered. Quantum states
of a d-dimensional system are represented by density matrices $d(C) ⊂ Md(C), which are
positive semi-definite matrices with unit trace. A pure state corresponds to a density matrix
with rank 1, and the maximally mixed state corresponds to Id/d. Pure states are sometime
denoted by unit vectors in Cd. The unit vector |ψ〉 ∈ Cd corresponds to the eigenvector with
eigenvalue 1 of the associated density matrix ρ = |ψ〉〈ψ| ∈ $d(C). When a state is defined on
two systems S1 and S2 of dimensions d1 and d2 respectively,it is denoted as ρS1S2 ∈ $d1d2(C).
From the perspective of the system S1, the quantum state becomes

ρS1 := TrS2 ρS1S2 :=
d1

∑
i,j=1

d2

∑
k=1

〈
E(S1)

ij ⊗ E(S2)
kk , ρS1S2

〉
E(S1)

ij , (2.14)

where E(S1)
ij ∈ Md1(C) and E(S1)

kk ∈ Md2(C). This operation is referred to as the partial trace
over S2.

A quantum measurement is defined by a set of positive operators M = {µ0, µ1, · · · }
(sometimes referred to as a POVM, for “positive-valued operators measure”) for which the
elements µi ∈ Md(C) sum to the identity Id. The subscript i attached to the POVM element
µi corresponds to an observed event. For instance, a photon count could correspond to i = 0,
and a dark count could correspond to i = 1 (I picked the subscript’s alphabet to be the non-
negative integers for concreteness, but any alphabet can be used). Let E be the “observed
event” random variable with possible realizations i ∈ {0, 1, · · · }. Such variable is defined by
the measurement set M. The probability of observing the event i given a state ρ ∈ $d(C) is
provided by Born’s rule:

Pr(E = i|ρ) = 〈µi, ρ〉 . (2.15)

A projective measurement refers to a set of positive operators M for which the elements µi
are projectors.
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2.3 Quantum operations

2.3.1 Definition

A quantum operation (or quantum channel) is a completely-positive (CP), trace-preserving
(TP) linear map acting on Md(C) 1. That is, a linear mapA acting on a system S1 of dimension
d1 is a quantum channel if, for any quantum state defined on systems S1 and S2 (here the
ancillary system S2 can be of arbitrary size d2),

TrA(ρS1) = Tr ρS1 , (Trace-preserving)
A⊗ IS2(ρS1S2) ≥ 0 , (Completely-positive)

where IS2 acts as the identity on the system S2. The set of quantum channels acting on a
d-dimensional system is denoted CPTPd.

In this thesis, quantum operations with be often denoted by the calligraphic font. The
dual A† of a channel A is defined via Born’s rule as the linear operation that obeys

〈µi,A(ρ)〉 =
〈
A†(µi), ρ

〉
, (2.16)

for any state ρ and POVM element µi.
An operation A : Md(C) → Md(C) is said to be unital if it has Id as a fixed point, that is

A(Id) = Id. Quantum channels are not generally unital maps, but their duals are.
Notice that the positivity constraint implies that CPTP maps are hermicity preserving.

Indeed, consider an Hermitian operator H ∈ Hd(C). Every Hermitian operator has real
eigenvalues, and can be re-expressed as a sum H = P + Q where P ≥ 0 and −Q ≥ 0. From
there,

A(H) = A(P + Q)

= A(P) +A(Q) (Linearity)
= P′ + Q′ , (2.17)

where P′ ≥ 0 and −Q′ ≥ 0. Since P′ + Q′ is Hermitian, Amust preserve hermicity.

2.4 Mapping abstract quantum operations to more familiar sets

There are various ways to map abstract quantum operations to more familiar sets (e.g. ma-
trices, or sets of matrices). Each mapping has its own advantages and disadvantages. A
little bit like Laplace and Fourier transforms help in solving problems by recasting the way
in which one can express a function, being able to exchange between different expressions of
the same quantum operation makes the life of a quantum physicist much easier.

2.4.1 Process matrix (Liouville representation)

One of the most common way to express quantum operations is through their process ma-
trix, also referred to as Liouville (semigroup) representation. A channel A ∈ CPTPd and

1In this thesis, the output state is assumed to be in Md(C) as well.
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its Liouville representation A ∈ Md2(C) will be often denoted by the same letter, since the
context in which they are employed suffices to distinguish them. If two different matrix
representations of A ∈ CPTPd are used, appropriate indices will be appended.

Consider an operational orthogonal basis {Bi} for Md(C). The process matrix A ∈
Md(C) of the abstract channel A ∈ CPTPd is defined explicitly as

[A]ij :=
〈

Bi,A(Bj)
〉

, (2.18)

or implicitly through

A|ρ〉{Bi} = |A(ρ)〉{Bi} ∀ρ ∈ $d(C) (2.19)

This definition ensures that the composition of operations A ◦ B ∈ CPTPd translates into
the usual matrix multiplication AB ∈ Md2(C). Given the definition of the dual, eq. (2.16),
it is easy to show that the dual of the matrix representation corresponds to its conjugate
transpose.

The next lemma provides some constraint on the spectrum of Liouville representations.

Lemma 1: Complex eigenvalues of process matrices come in conjugate pairs

Let A ∈ Md2(C) be a Liouville representation of a quantum channel, with eigenval-
ues {λi}. If A has an eigenvalue λi with a non-zero imaginary component, and a
multiplicity m, then A also has an eigenvalue λ∗i with multiplicativity m.

Proof. The property stated above applies to all real matrices. Indeed, if A ∈ Md(R) and
Av = λv, then (Av)∗ = (λv)∗ which reduces toAv∗ = λ∗v∗. To finish the proof, it suffices to
show the existence of a real representation for any given quantum channelA, since a change
of operator basis {Bi} → {B′i} is equivalent to a similarity transform, which doesn’t affect
the spectrum. First, as a consequence of CPness, quantum operations are hermicity preserv-
ing. Hermitian operators span Md(C). By choosing any Hermitian operator basis {Bi}, the
corresponding Liouville representation must be real, since any complex entry would map an
Hermitian operator to an operator with an anti-Hermitian component.

When the basis {Bi} is the set of n-fold Pauli matrices, A ∈ Md2(C) is referred to as
the Pauli-Liouville representation (which is real due the hermicity of Pauli operators). More
generally, since quantum operations are trace-preserving, it is often convenient to choose
B0 ∝ Id. With such choice the first row take the simple form [A]0i = δ0i, which entirely
captures trace-preservation. The choice B0 ∝ Id provideAwith a 2× 2 lower triangular block
form. To address each of the four blocks, let me introduce two projectors. Let A ∈ Md(C),

Πid(A) := 〈Id, A〉 Id , (2.20a)
Πtrls(A) := A−Πid(A) . (2.20b)

Πid projects the matrix A on its identity component, and Πtrls projects A on the traceless
hyperplane (or Bloch space) in Md(C) (i.e. the hyperplane of operations with null trace). For
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the Liouville representation A ∈ Md2(C) of a quantum channel,

ΠidAΠid =: [A]id,id = Πid , (2.21a)
ΠidAΠtrls =:[A]id,trls = 0 , (2.21b)

ΠtrlsAΠid =: [A]trls,id , (2.21c)
ΠtrlsAΠtrls =:[A]trls,trls . (2.21d)

[A]trls,id is known as the non-unital vector, since it corresponds to the mapping of Id to the
traceless hyperplace. A channel is unital iff [A]trls,id = 0. From there it is easy to see how
trace-preservation translates into the unital condition after taking the dual of A. [A]trls,trls is
a (d2 − 1)× (d2 − 1) matrix sometimes referred to as the unital block of A. Given a vector-
ization |ρ〉 of a density matrix ρ, Πtrls|ρ〉 = |Πtrls(ρ)〉 is commonly referred to as the Bloch
vector of ρ [Blo46]; for d = 2 the set of Bloch vectors corresponding to quantum states forms
a 3-dimensional unit ball. From eqs. (2.21a) to (2.21d), it follows that the action of A on |ρ〉
can be decomposed as the unital block acting on the Bloch vector added to the non-unital
vector:

A|ρ〉 = [A]trls,trls|Πtrls(ρ)〉+ [A]trls,id . (2.22)

The non-unital vector induces a translational action, while the unital block induces linear
transformations on the Bloch space.

Another common choice of operational basis is {Eij} (notice here that this choice won’t
generally yield a lower triangular block structure). Given the double index ij (instead of a
single index going from 0 to d2 − 1), it is convenient to translate the action of A on Eij as the
action of the matrix A on the canonical unit vector |j〉 ⊗ |i〉:

A =
d−1

∑
i,j,k,`=0

〈
Ek`,A(Eij)

〉
|`〉 ⊗ |k〉〈j| ⊗ 〈i| . (2.23)

By design, this matrix is meant to act on column-stacked density matrices |ρ〉 = col(ρ).
The Liouville representation has the advantage of providing a geometrical visualization

of the action quantum operations on quantum states. For instance, in d = 2 the traceless
hyperplane has dimension 3 and quantum states are in one-to-one correspondence with the
unit ball (Bloch sphere); by construction, the action on the Bloch sphere induced by an oper-
ation A is immediately seen from its 4× 4 process matrix A.

While the Liouville representation is certainly useful in understanding quantum opera-
tions, it also conceals certain aspects of their structure. For instance, the Liouville representa-
tion doesn’t capture CPness concisely. Due to the intricate geometry of quantum states (and
that process matrices are defined through the operational action on states), the set of matri-
ces in Md2(C) that are tied to physical operations is also subject to convoluted geometrical
restrictions.
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2.4.2 Chi matrix

Every linear map A : $d(C)→ $d(C) can be expressed as follows:

A(ρ) =
d2−1

∑
i,j=0

χijBiρB†
j , (2.24)

where ρ ∈ $d(C), {Bi} is an orthonormal basis for Md(C) and χij ∈ C. This is easily seen by
taking the column vectorization of operators in Md(C), in which case eq. (2.24) becomes

A col(ρ) =
d2−1

∑
i,j=0

χijB∗j ⊗ Bi col(ρ) . (2.25)

Here ∗ denote the complex conjugate operation. Notice that since {Bi} forms an orthonormal
basis for Md(C), {B∗j ⊗ Bi} forms an orthonormal basis for Md2(C); any matrix in Md2 can be

expressed as ∑d2

i,j=1 χijB∗j ⊗ Bi.
The χij coefficients define a d2 × d2 matrix, referred to as the Chi matrix of A (which, of

course, depends on the basis {Bi}). The Chi matrix is positive semi-definite iff A is CP, and
has trace d if A is TP or unital. Notice here that CP-ness is easily captured.

2.4.3 Choi matrix

Given a quantum channel A : Md(C)→ Md(C), the Choi matrix of A is defined as [Cho75]

Choi(A) :=
d−1

∑
i,j=0

Eij ⊗A(Eij) . (Choi matrix)

Just like the Chi matrix, the Choi matrix is positive semi-definite iffA is CP, and has trace d if
A is TP or unital. Since Choi(A) ≥ 0, it has a (possibly non-unique) spectral decomposition
of the form

Choi(A) :=
d2−1

∑
i=0

col(Ai)col†(Ai) , (2.26)

=
d2−1

∑
i=0
‖Ai‖2

2col(Ai)col†(Ai) , (2.27)

WOLOG, the eigenvectors col(Ai) are chosen to be orthonormal, and the eigenvalues are
ordered with respect to the Schatten 2-norm (Frobenius norm):

‖A0‖2
2 ≥ ‖A1‖2

2 ≥ · · · ≥ ‖Ad2−1‖2
2 ≥ 0 . (2.28)

The focus of this thesis remains on non-catastrophic channels (definition 4), for which
‖A0‖2

2 > ‖A1‖2
2. This ensures that the highest eigenvalue of the Choi matrix is non-

degenerate, and is attached to a well-defined eigenvector col(A0).
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2.4.4 Canonical Kraus decomposition

Conjugating the Choi matrix by 〈i| ⊗ Id and |j〉 ⊗ Id yields the image of Eij under A:

A(Eij) = 〈i| ⊗ Id Choi(A) |j〉 ⊗ Id . (2.29)

By applying the conjugation on eq. (4.2) and after some algebraic gymnastic, one obtains a
Kraus decomposition [Kra+83]:

A(Eij) =
d2−1

∑
k=0

AkEij A†
k , (2.30)

with

〈Ai, Aj〉 = ‖Ai‖2
2δij . (2.31)

The TP condition is equivalent to ensuring

d2−1

∑
i=0

A†
i Ai = Id , (2.32)

which implies that ∑i(‖Ai‖2
2/d) = 1. CP-ness is guaranteed from the form of eq. (2.30). The

matrices Ai ∈ Md(C) are referred to as ordered canonical Kraus operators. Given a channel
addressed in calligraphic font, the non-calligraphic font is used to denote a corresponding
choice of ordered canonical Kraus operators. The operators {Ai} are ordered as in eq. (2.28).
The adjective “canonical” refers to the orthogonality constraint eq. (2.31), which can be im-
posed WOLOG (although there might be multiple canonical forms). In this thesis, A0 (which
is associated with the highest Choi matrix eigenvalue ‖A0‖2

2) will deserve special attention,
and is attributed the title of “leading Kraus (LK) operator”. In general, A0 might be non-
unique when the spectrum of the Choi matrix is degenerate. However, as mentioned earlier,
the focus of this thesis remains on non-catastrophic channels (definition 4), for which A0 is
unique.

2.5 Elementary types of quantum channels

Within the vast family of quantum operations, certain mechanisms (or families of mecha-
nisms) have obtained special appellations.

First of all, an error simply denotes a channel for which the target is the identity.

2.5.1 Unitary errors

An errorW is said to be unitary or purely coherent if it corresponds to a unitary channel

W(ρ) = WρW† , (2.33)

where W ∈ U(d) is close to Id. Such error can realistically be modeled as the result of a
perturbation from a targeted “Hamiltonian drive”.
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It is well-known that U(d) can be obtained by exponentiating the algebra of Hermitian
matrices Hd(C). That is, the surjective map exp(i · H) takes any H ∈ Hd(C) to U(d) 2. For
any U ∈ U(d) there exists at least one H ∈ Hd(C) s.t. U = exp (iH). Physically, it is useful
to see discrete unitaries U ∈ U(d) as a the result of a continuous process performed over
a time T, described by a time-dependent Hamiltonian H(t) ∈ Hd(C) (also referred to as a
pulse function):

U = lim
dt→0

exp(iH(T − dt)dt) · exp(iH(T − 2dt)dt) · · · exp{iH(dt)dt} · exp{iH(0)dt} . (2.35)

A general unitary error occurs when the implemented Hamiltonian is not exactly H(t), but
some other function H′(t) (which is a perturbation away from H(t)). By driving H′(t) rather
than H(t), one would end up with the unitary

V = lim
dt→0

exp(iH′(T − dt)dt) · exp(iH′(T − 2dt)dt) · · · exp{iH′(dt)dt} · exp{iH′(0)dt} .

(2.36)

Let W = VU†; W is an example of unitary error channel. Implementing V can be seen as
implementing the perfect targeted operation U followed by a unitary errorW .

Simple examples of unitary errors includes the so-called over-rotations and under-
rotations. Consider the simple case where the time-dependent Hamiltonian is of the form:

H(t) = f (t)H , (2.37)

where H ∈ Hd(C) is fixed and f (t) ∈ R. In such a case, U = exp(iH
T∫
0

f (t)dt). If instead of

performing H(t) = f (t)H, one were to perform H′(t) = f ′(t)H, the resulting unitary would

be V = exp(iH
T∫
0

f ′(t)dt). In the case where
T∫
0

f (t)dt =
T∫
0

f ′(t)dt, then U = V. However,

if
T∫
0

f (t)dt <
T∫
0

f ′(t)dt, V corresponds to an over-rotation. Indeed, when the Hamiltonian H

is driven for too long (or too strongly), the resulting eigenvalues of V correspond to over-
rotated phases. A similar argument goes if the Hamiltonian is not driven for long enough,

or too weakly, in which case
T∫
0

f (t)dt >
T∫
0

f ′(t)dt and V is said to be an under-rotation.

2The domain (and codomain) of a function f : C → C is naturally extended to normal matrices Nd(C) =
{M ∈ Md(C)|MM† = M† M} by applying f : C → C to their eigenvalues. Let N ∈ Nd(C) have a spectral
decomposition of the form N = ∑i λiviv†

i , then

f (N) := ∑
i

f (λi)viv†
i . (2.34)
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2.5.2 Convexity of the set of CPTP maps

Quantum channels (CPTP maps) form a convex set. That is, given a probability measure µ
and a set of channels {Ax}, the convex combination B of the Axs is also a quantum channel:

B(ρ) =
∫
Ax(ρ)dµ(x) . (2.38)

The convexity of CPTP maps is quickly verified: the TP property is preserved by linearity
(take the trace on each side of eq. (2.38)); the CPness of B can be verified by looking at
its Choi matrix (and by using the fact that a sum of positive semidefinite matrices is itself
positive semidefinite).

2.5.3 Incoherent channels

Since quantum channels form a convex set (see section 2.5.2), any convex combination of
unitary channels forms a valid quantum channel. This motivates the following construction.

Definition 1: incoherent channels

A channel A is said to be incoherent is it’s of the form

A(ρ) =
∫

UxρU†
x dµ(x) , (2.39)

where µ is a probability measure and Ux ∈ U(d).

An incoherent process can be interpreted as the result of Hamiltonian fluctuations (not
necessarily the driving Hamiltonian, but also the idling Hamiltonian). By seeing the pulse
H(t) as a stochastic process, it follows that the implemented unitary is a random variable.

Incoherence is to be distinguished from decoherence, a wider notion that is covered in
chapter 4. Incoherent channels, which are unital, form a strict subset of decoherent channels.

2.5.4 Stochastic errors

Stochastic error channels constitute a subset of incoherent channels for which there is an
incoherent canonical Kraus form with a LK operator proportional to the identity.

Definition 2: stochastic errors

An error channel A is said to be stochastic if it can expressed as

A :=
d2

∑
i=1

Pr(i)Ui , (2.40)

where {Ui} (with U1 = Id) forms an orthogonal unitary basis for Md(C), and where
Pr : {1, 2, · · · , d2} → R is a probability distribution.

A stochastic channel for which the unitary basis consists of the n-fold Paulis
{I2, X, Y, Z}⊗n is simply referred to as a Pauli channel.

14



2.5.5 Depolarizing errors

Depolarizing channels Dp are a special family of stochastic error channels parameterized by
p ∈ [0, 1]:

Dp(ρ) = pρ + (1− p)(Tr ρ)Id/d ; (2.41)

essentially, with probability p, the state ρ remains unscathed, and with probability 1− p it
is replaced with the completely mixed state Id/d. D0 is referred to as the completely depo-
larizing channel (for obvious reasons) and corresponds to Πid defined in eq. (2.20a). The
appearance of Tr ρ in eq. (2.41) is meant to allow the domain extension to Md(C). For in-
stance, in d = 2n non-identity n-fold Pauli matrices Pi are mapped to pPi, while Id is mapped
to itself.

Consider a finite group with an irreducible representation of d× d unitaries, G = {Ui},
where Ui ∈ U(d) (e.g. the Heinsenberg-Weyl operators, or the n-fold Paulis). Then, from
Schur’s lemma [Art], it directly follows that

1
|G|∑i

UiρU†
i = (Tr ρ)Id/d , (2.42)

which can be used to reexpress depolarizing channels as convex sum of unitary conjugations

Dp(ρ) = pρ + (1− p)
1
|G|∑Ui

UiρU†
i (2.43)

=

(
p +

(1− p)
|G|

)
ρ + (1− p)

1
|G| ∑

Ui 6=Id

UiρU†
i . (2.44)

This last form explicitly shows that depolarizing channels are special instances of stochastic
error channels.

2.5.6 Dephasing/phase damping errors

A channel A is said to induce a strictly dephasing (or phase damping) action between two
orthogonal pure states |ψi〉〈ψi| and |ψj〉〈ψj| if

A(|ψi〉〈ψi|) = |ψi〉〈ψi| , (2.45a)
A(|ψj〉〈ψj|) = |ψj〉〈ψj| , (2.45b)

A(|ψi〉〈ψj|) = γ|ψi〉〈ψj| , (2.45c)

A(|ψj〉〈ψi|) = γ|ψj〉〈ψi| , (2.45d)

where γ ∈ [0, 1) is a contraction factor. Notice that the invariant subspace of such a de-
phasing action is Span(|ψi〉〈ψi|, |ψj〉〈ψj|), which includes pure states. The dephasing action
progressively transforms a quantum superposition of the form α|ψi〉+ β|ψj〉 into a (classical)
probabilistic mixture |α|2|ψi〉〈ψi|+ |β|2 |ψj〉〈ψj|.

A common family of stochastic error channels consists of convex combinations of mutu-
ally orthogonal unitaries that all commute with each other.
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Definition 3: stochastic dephasing errors

A stochastic error channel A is said to be dephasing (or phase damping) if it can
expressed as

A :=
d

∑
i=1

Pr(i)Ui , (2.46)

where Pr : {1, 2, · · · , d} → R is a probability distribution and where the unitaries Ui ∈
U(d) (U1 = Id) associated with a non-zero probability are orthogonal and all commute
(only d orthogonal unitaries can mutually commute).

A simple example of stochastic dephasing channel is

A(ρ) =
d

∑
i

Pr(i)ZiρZ†
i (2.47)

where {Zi} are the Heinsenberg-Weyl operators defined in eq. (2.13b).
The terminology “dephasing” is judicious. Since the unitaries {Ui} all commute, they can

all be simultaneously diagonalized. In the above example, the Zis are already diagonal in
the {|i〉} canonical basis. In particular, this means that the states Eii = |i〉〈i| are left invariant
under A. However, the off-diagonal elements Eij = |i〉〈j| are mapped to

A(Eij) = γijEij , (2.48)

where γij := ∑k Pr(k)ω(i−j)k. By construction, |γij| ≤ 1, meaning that the phase between |i〉
and |j〉 is generally dampened.

A stochastic dephasing channel with uniform probability distribution Pr(i) = 1/d is re-
ferred to as completely dephasing. By Schur’s lemma (the above definition implicitly enforces
the set {Ui} to form a group), it follows that a completely dephasing error channel cancels
the off-diagonal elements of any density matrix ρ expressed in the basis in which the Uis are
simultaneously diagonal. A completely dephasing channel can be seen as a projective mea-
surement with d events for which the classical information gained from the measurement is
lost.

2.5.7 Amplitude damping channels (population transfer)

Incoherent channels, as well as phase damping errors are all unital channels (i.e. for which
Id is a fixed point). However, in more general error scenarios, probabilistic state transitions
could prevent Id to be a fixed point. Consider the canonical example of amplitude damping
acting on a two-level system, parameterized by the following Kraus operators

A0 =

( √
p00 0
0

√
p11

)
=

(
1 0
0 1

)( √
p00 0
0

√
p11

)
, (2.49a)

A1 =

(
0

√
p01√

p10 0

)
=

(
0 1
1 0

)( √
p10 0
0

√
p01

)
, (2.49b)
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where pij ≥ 0 can be seen in the classical case as transition probabilities from |j〉 to |i〉,
with ∑i pij = 1. Indeed, it is easy verified that A(E00) = p00E00 + p10E11 and A(E11) =
p11E11 + p01E00. In particular, the identity I2 is generally not a fixed point. Of course, the
channels with unitarily conjugated Kraus operators UAiU† are still considered as amplitude
damping, but with respect to other orthogonal states |ψi〉〈ψi| = UEiiU†.

A famous example of amplitude damping channel is the so-called state preparation. In-
deed, for instance, let the “transition probabilities” of a two-level amplitude damping chan-
nel obey p0i = 1 ∀i ∈ {0, 1}. Then, it follows that the resulting amplitude channel acting on
any density matrix ρ ∈ $2(C) yields

A(ρ) = E00 . (2.50)

Here E00 is the only fixed point in $2(C).
There are many different ways to extend the notion of amplitude damping to higher

dimensions. A natural one, which arises from looking at the RHS of eqs. (2.49a) and (2.49b),
is to consider processes for which the Kraus operators are of the form

Aπ = Pπ ·∑
i

√
pπ(i)i(π)Eii , (2.51)

where π : {0, · · · , d − 1} → {0, · · · , d − 1} is a permutation, and Pπ its associated d × d
matrix (i.e. [Pπ]ji := δjπ(i)). To be trace-preserving, the pπ(i)i(π) ≥ 0 must simply obey
∑π pπ(i)i(π) = 1. Again, simultaneously conjugating the Kraus operators with a unitary,
UAπU†, would yield the same process in essence, but with respect to different orthogonal
states.

2.6 Quantum circuits and the Markovian assumption

A particular object of study in this thesis is the construction of noisy quantum circuits. Just
as classical computing relies on elementary logical gates (e.g. NAND) to implement Boolean
functions, quantum computing involves circuit constructions based on limited elementary
gates to generate general elements of U(d).

A gate-set G = {g}, denoted by the bold font, is any collection of elements g ∈ U(d),
referred to as gates. Notice that subgroups of U(d) are examples of gate-sets. The canonical
mapping from U(d) to CPTPd is implicitly defined by

L(g)[ρ] := gρg† , (2.52)

where g ∈ U(d), ρ ∈ $d(C). L(g) ∈ CPTPd is referred to as a target realization of the gate
g, or simply as a target. In a similar fashion, the quantum channel corresponding to the
physical implementation of a gate g is noted as Λ(g), and can be factored as

Λ(g) = E(g|L) ◦ L(g) , (2.53)

where E is labeled as the (left) error map. Notice that the error E explicitly depends on the
target as a different target yields a different error; sometimes the dependence will be left
implicit.
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The physical realization mapping Λ can include additional variables to account for the
context under which the gates are being applied. For instance, the mapping could depend
on the initial state of the system, on time, and on previous operations that have been applied.

Consider a target quantum circuit C ∈ CPTPd consisting of the composition of m ideal
(unitary) gates gi:

L(gm:1) = L(gm) ◦ L(gm−1) ◦ · · · ◦ L(g2) ◦ L(g1) . (2.54)

The notation ga:b for a ≥ b is a shorthand for ga · ga−1 · · · gb.
The average3 implemented circuit is typically modeled as a process of the form

Λcircuit(gm, · · · , g1) = Λm(gm) ◦Λm−1(gm−1) ◦ · · · ◦Λ2(g2) ◦Λ1(g1) , (2.55)

where Λi are all different maps. Generally, those processes could depend on all previous
operations, on the time ti at which they occurs, as well as on the initial state ρ on which the
circuit acts:

Λi(gi) = Λ(gi|gi−1, · · · , g1, ρ, ti) . (2.56)

Notice that such a model is quite general: Λi could simply consist of an amplitude damping
channel that maps any state to ρ, followed by the ideal circuit L(gi:1), and by an arbitrary
(time-dependent) error channel. However, it is often realistic to assume that the coupling
with the environment doesn’t allow for long-term memory effects. In particular, if memory
effects (i.e. coherent interactions with the environment) occur on a shorter timescale than
the timescale between operations, it is usually reasonable to assume a Markovian model, for
which errors only depend on the previous operation (and on time):

Λi(gi) = Λ(gi|ti) . (2.57)

This last assumption still allows for non-stationary (time-dependent) effects such as drift.
In this thesis, the focus will remain on stationary processes (or approximately stationary
processes), for which it is reasonable to express Λi as a function of gi alone. Essentially,
elementary gates are implemented as Λi(gi) = Λ(gi) = E(gi|L) ◦ L(gi), and the noisy circuit
is expressed as

Λcircuit(gm, · · · , g1) = Λ(g)m:1 := Λ(gm) ◦Λ(gm−1) ◦ · · · ◦Λ(g1) . (2.58)

Keep in mind that Λ(gm:1) 6= Λ(g)m:1. For instance, consider a simple error model in which
I2 is ideally implemented, Λ(I2) = L(I2), but the Pauli Z is attached to a depolarizing error,
Λ(Z) = Pp ◦ L(Z). Let g1, g2 = Z, in which case

Λ(g2:1) = Λ(Z · Z) = Λ(I2) = L(I2) ,
Λ(g)2:1 = Λ(Z) ◦Λ(Z) = Pp ◦ L(Z) ◦ Pp ◦ L(Z) = Pp2 ◦ L(I2) . (2.59)

Due to the gate argument “g”, the usage of the notation “Λ(g)” and “L(g)” is mostly use-
ful when the notion of gate-set plays a central role. This only occurs in part II which focuses
primarily characterization schemes based on specific circuit constructions. The introduction

3Here, the average is performed over infinitely many realizations of the same noisy circuit.
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of the gate as an argument can be used to easily differentiate compiled implemented gates
Λ(gm:1) from physical compositions Λ(g)m:1. Moreover, the appearance of L(g), as discussed
in section 2.8, will be used to label reference bases more explicitly, a subject that only becomes
relevant in part II.

In part I, it is more useful to denote channels by the calligraphic font, such asA ∈ CPTPd.
Indeed, many results revolve around the Kraus decomposition of A, for which the Kraus
operators {Ai} can be easily labeled by the corresponding non-calligraphic font.

2.7 Characterizing quantum operations

Given a quantum channel A and a target unitary channel U , we can compare the overlap of
their outputs given specific inputs M ∈ Md(C) through the M-fidelity:

fM(A,U ) :=
〈A(M),U (M)〉
‖M‖2

2
. (2.60)

When the target is the identity, the second argument can be dropped:

fM(A) :=
〈A(M), M〉
‖M‖2

2
. (2.61)

Such abbreviation carries to all subsequent fidelity-like quantities.
The so-called average gate fidelity is obtained by averaging the M-fidelities uniformly4

over all physical pure states |ψ〉〈ψ|:

F(A,U ) := EHaar f|ψ〉〈ψ|(A,U ) . (2.62)

Instead of averaging over quantum states, we could also average uniformly over all opera-
tors M ∈ Md(C). More precisely, given any orthogonal operator basis {Bi} for Md(C), we
can uniformly average over the M-fidelities fBi , which yields the average process fidelity 5

Φ(A,U ) := E{Bi} fBi(A,U ) . (2.63)

Compared to Φ, F puts a slightly higher weight over the identity component Id. The TP
condition enforces this special component to take a fixed value, fId = 1. Hence the two
quantities are closely related via [Nie02]:

F(A,U ) = dΦ(A,U ) + 1
d + 1

. (2.64)

F(A,U ) is the overlap between the output state A(ρ) of an implemented channel A and
its ideal output U (ρ), averaged over all physical pure input states |ψ〉〈ψ|. While F(A,U )
conveys a more graspable interpretation, it will often remain easier to work with Φ(A,U )

4“Uniformly” is to be read here as “with respect to the Haar measure”.
5For the readers familiar with the Chi matrix, Φ(A,U ) is a way to express the so-called χ00 element. Of course,

the χ-matrix has to be defined with respect to an orthonormal operator basis {Bi}with B0 = U. Some might also
be more familiar with the notion of entanglement fidelity, which is again Φ.
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since it ties with the Kraus operators through

Φ(A,U ) =
d2

∑
i=1

∣∣∣∣〈 Ai√
d

, U
〉∣∣∣∣2 =

d2

∑
i=1

(‖Ai‖2
2/d) |〈Ai, U〉|2 . (2.65)

Since {Ai} forms an orthonormal basis and ‖U/
√

d‖2 = 1, it follows that

d2

∑
i=1
|〈Ai, U〉|2 = 1 . (2.66)

If ‖Ai‖2
2/d can be thought as the “weights” of the Kraus operators, |〈Ai, U〉|2 can be thought

as normalized overlaps with the target U.
Another common fidelity quantity is obtained by averaging the M-fidelity uniformly

over the traceless hyperplane (Bloch space). More precisely, let {Bi} be an orthogonal op-
erator basis with B0 ∝ Id. Then,

ftrls(A,U ) := (d2 − 1)−1 ∑
i 6=0

fBi(A,U ) . (2.67)

It relates to the process fidelity Φ and the average fidelity F via

ftrls(A,U ) = dF(A,U )− 1
d− 1

=
d2Φ(A,U )− 1

d2 − 1
. (2.68)

Given a depolarizing channel Pp, ftrls(Pp, I) = p. In other words, ftrls(A, I) can be inter-
preted as the effective depolarizing constant of an error channel A. For this reason, ftrls of A
to the identity is also referred to as

p(A) ≡ ftrls(A) . (2.69)

Recall that when the target argument is left implicit, it corresponds to the identity.
To quantify the coherence of a quantum channel, one could wonder how much the Bloch

vectors (the traceless component of quantum states [Blo46]) are contracted. For instance,
consider the unitarity, which is the squared length ratio of the Bloch vectors before and after
the action of the channel A, averaged over all physical Bloch vector inputs corresponding to
pure states |ψ〉〈ψ| − Id/d [Wal+15]:

u(A) := EHaar
‖A(|ψ〉〈ψ| − Id/d)‖2

2

‖|ψ〉〈ψ| − Id/d‖2
2

. (2.70)

Let’s extend the domain of the process fidelity Φ to include a new function of A:

Υ(A) :=
√

Φ(A,A) =

√√√√ d2

∑
i,j=1

∣∣∣∣〈 Ai√
d

,
Aj√

d

〉∣∣∣∣2 =

√√√√ d2

∑
i=1

(‖Ai‖2
2

d

)2

. (2.71)
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Straightforward calculations closely relate the unitarity to Υ via

u(A) = d2Υ2(A)− 1
d2 − 1

. (2.72)

Notice that the notation alludes to the connection between Greek and Latin alphabets; it
relates “Phi” to “F” and “Upsilon” to “u”.

Fidelity-like quantities ( fM, ftrls, F, Φ) are 1 in the targeted case. Sometimes, it is useful
to refer to infidelity-like quantities, which are 0 in the targeted case. More formally, consider
an implemented gate Λ(g) ∈ CPTPd, an targeted realization L(g) ∈ CPTPd, and a functional
f (Λ(g), L(g)) ∈ R. Then the variation δ f is defined as

δ f (Λ(g), L(g)) := f (L(g), L(g))− f (Λ(g), L(g)) . (2.73)

For instance δF(Λ(g), L(g)) = 1− F(Λ(g), L(g)) is typically referred to as the average infi-
delity, sometimes denoted as r(Λ(g), L(g)).

The notion of fidelity naturally extends to circuits and families of circuits. Let G be a gate-
set and consider all circuits resulting from an m-fold composition of the physical realizations
of its elements:

Λ(G, m) := {Λ(g)m:1|gi ∈ G} , (2.74)

with the abbreviation Λ(G, 1) = Λ(G), which refers to the “gate-set physical implementa-
tion”. Similarly, L(G, m) denotes the set of all targeted circuit realizations resulting from an
m-fold composition of the type L(gm:1) where gi ∈ G. L(G) := L(G, 1) refers to the gate-set
target realization. In [Car+18] (see chapter 5), the gate-set circuit fidelity is defined as the
average fidelity over all possible circuits of lengths m for which the individual components
are gate-set realizations Λ(gi):

F(Λ(G), L(G), m) :=
1
|G|m ∑

gi∈G
F(Λ(g)m:1, L(gm:1)) (2.75)

The gate-set circuit fidelity could be generalized by introducing weights on the gate-set el-
ements. Let Ω(gm, · · · , g1) by a probability distribution over circuits realizations Λ(g)m:1,
then the weighted gate-set circuit fidelity is defined as

F(Λ(G), L(G), m, Ω) := ∑
gi∈G

Ω(gm, · · · , g1)F(Λ(g)m:1, L(gm:1)) . (2.76)

Equations (2.75) and (2.76) are based on the average fidelity F, but can be trivially extended
to fidelity-like, infidelity-like or unitarity-like quantities.

2.8 Reference bases and gauge transformations

The statistical observations of quantum mechanical phenomena are fully described by Born’s
rule. Let ρ ∈ $d(C) be a quantum state, {µi} be a set of POVM elements and L(g) be a CPTP
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map defined by

L(g)[ρ] := gρg† , (2.77)

where g ∈ U(d). Then, Born’s rule dictates the probability of observing the event E = i given
an initial state ρ and quantum process Λ(g):

Pr(E = i|Λ(g)[ρ]) = 〈µi|Λ(g)|ρ〉 . (2.78)

Notice that the same statistics would arise if one were to redefine

|ρ〉 → B|ρ〉 , (2.79a)

〈µ| → 〈µ|B−1 , (2.79b)

Λ(g)→ BΛ(g)B−1 , (2.79c)

where B : Md(C) → Md(C) is any invertible linear map. The transformation described
by eq. (2.79), referred to as a gauge transformation, bears no significant meaning in the ab-
stract picture, but does have an effect when considering matrix representations of quantum
processes.

A gauge transformation will said to be physical if B corresponds to a physical unitary. In
this case, it maps density matrices to density matrices and POVMs to POVMs. When acting
on a target gate realization L(g), a physical gauge transformation can be seen as an inner
automorphism of U(d):

UL(g)U † = L(UgU†) , (2.80)

which can be interpreted as a change of reference basis to express U(d) elements. The re-
labeling of the Pauli matrices X → Y → Z → X is a simple example of physical gauge
transformation.
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Part I

Error signatures in quantum circuits
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Chapter 3

Bounding the average gate fidelity of
composite channels using the unitarity

3.1 Foreword

The present chapter mainly consists in a literal transcription of [CWE16], for which my con-
tribution was major. I altered the notation of the original article to ensure a consistent nota-
tion throughout the thesis.

The following work focuses on relating the average fidelity of circuit constructions with
the average fidelity of elementary circuit components. The relation is generally quite loose.
The physical intuition behind this is that unitary errors can either coherently build up or can-
cel each other. The intuition is partially confirmed by obtaining a generally tighter relation
when introducing the unitarity as a parameter. However, this work doesn’t pinpoint uni-
tary processes as the unique mechanism responsible for the leeway in the average fidelity
of composite channels (this comes in the next chapter). While this work is mostly cast as
an improvement of inference techniques for circuit constructions, it should also be seen as
the seed of a more ambitious enterprise: factoring the effect of coherent errors in quantum
systems.

3.2 Compendium

There is currently a significant need for robust and efficient methods for characterizing quan-
tum devices. While there has been significant progress in this direction, there remains a cru-
cial need to precisely determine the strength and type of errors on individual gate operations,
in order to assess and improve control as well as reliably bound the total error in a quantum
circuit given some partial information about the errors on the components. In this work, we
first provide an optimal bound on the total fidelity of a circuit in terms of component fideli-
ties, which can be efficiently experimentally estimated via randomized benchmarking. We
then derive a tighter bound that applies under additional information about the coherence
of the error, namely, the unitarity, which can also be estimated via a related experimental
protocol. This improved bound smoothly interpolates between the worst-case quadratic and
best-case linear scaling for composite error channels. As an application we show how our
analysis substantially improves the achievable precision on estimates of the infidelities of in-
dividual gates under interleaved randomized benchmarking, enabling greater precision for
current experimental methods to assess and tune-up control over quantum gate operations.
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3.3 Introduction

The output of a quantum computer will only be reliable if the total error in the whole com-
putation is sufficiently small. This can be rigorously guaranteed if the error on the indi-
vidual components (i.e., preparations, measurements and gate operations) is sufficiently
small compared to the length of the computation. A very common experimental practice
[Gae+12; Cór+13; Kel+14; Bar+14; Xia+15; Muh+15; Tar; Cas+16; McK+16; She+16; Tak+16b;
McK+17b] for estimating errors on gate operations is randomized benchmarking (RB) of
Clifford operations [EAZ05; Dan+06]. The experimentally measured infidelities under RB
experiments have very recently been shown to give a very precise estimate of the average
gate fidelity (hereafter simply the fidelity) of an error channel to the identity,

F(E) :=
∫

dψ〈ψ|E(|ψ〉〈ψ|)|ψ〉 (3.1)

under very robust and experimentally realistic conditions [MGE11; Mag+12; Wal+15;
WBE15; WE16; Pro+17a; Wal17; Car+18; Har+19; DHW19], when expressed in a physical
operational gauge [Pro+17a; Wal17; MPF18; Car+18]1, resolving the concern (that RB did not
reliably measure a physically meaningful fidelity) raised in [Pro+17b; QK18].

An important practical application of RB is interleaved RB (IRB) [Mag+12], a now-
standard approach for estimating infidelities on individual gates [Gae+12; Cór+13; Kel+14;
Bar+14; Vel+14; Muh+15; Vel+15; Bar+15; Cas+16; McK+16; She+16; Tak+16b; Tak+16a;
McK+17b; McK+17a; Nic+17; Cha+18; Cal+18; Wan+18b; Wan+18a; Yon+18; Zha+18], in-
cluding gates that collectively generate universality [CWE15; Cro+16; HF17; Pro+18]. How-
ever this approach is subject to a systematic error that can significantly limit the precision
of the estimate and often goes unreported - a problem which we address below. As noted
above, the average gate fidelity gives only very limited information about the error and error
channels with the same fidelity on the component gate operations can lead to dramatically
different total error for a circuit composed from these gate operations. For example, the infi-
delity δF(E) = 1− F(E) grows linearly in the number of gates under purely stochastic errors
(that is, errors that can be modeled by classical probabilities over different Pauli operators)
and grows quadratically under purely unitary errors (that is, coherent errors due to small
calibrations that are common in quantum control) in the limit of small infidelities [She+16].
However, realistic experimental errors are neither purely stochastic nor purely unitary, but
rather some combination of the two. To adequately characterize quantum circuits, which are
the result of multiple noisy operations, it is crucial to understand (and bound) how errors
can accumulate given an intermediate level of coherence. In this paper, we study the impact
of coherence on the fidelity of circuit constructions. An important application from our work
is to provide a dramatic improvement to the achievable precision of IRB, enabling signifi-
cantly more reliable experimental methods for assessing and tuning-up the individual gate
operations required for quantum computing and other applications.

This paper is organized as follows. We first obtain strictly optimal upper- and lower-
bounds on the total infidelity of the circuit for all parameter regimes when only the infideli-
ties of the components are known. These bounds are saturated by unitary channels and so
grow quadratically with the number of gates. Moreover, because our bounds are saturated,

1In Dugas et al, the physicality of the gauge is proven for d = 2, and conjectured otherwise.
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they cannot be improved without further knowledge about the errors. Because the worst-
case growth of the infidelity is achieved by purely unitary channels, intuitively, quantifying
how far an error channel is from purely unitary error should enable an improved bound.
One such quantity is the unitarity. Thus our second contribution in this work is a proof that
the unitarity

u(E) :=
d

d− 1

∫
dψ Tr E(ψ− 1

dI)
2, (3.2)

of the components, which can be estimated using a variant of RB [Wal+15; Car+18; DHW19]
(URB), can be used to obtain a tighter bound on the total infidelity. This information enables
a smooth interpolation between the quadratic growth of purely unitary errors and the linear
scaling of purely stochastic errors. Including the unitarity to characterize circuits can be used
to quantitatively reason about an often omitted statement: elementary operations with low
infidelity and highly coherent errors can rapidly compose to a worse circuit than a sequence
of elementary operations with moderate infidelity but highly stochastic errors. Our bounds
implicitly quantify how fast this can happen given the infidelity and unitarity of individual
components. Our third contribution, noted above, goes the other way: from a composite
error Eh ◦ E , we bound the fidelity of one of its component Eh. We demonstrate an immedi-
ate practical application of this result by providing a dramatically improved bound on the
accuracy of the estimates of gate infidelities under interleaved RB [Mag+12]. This is done by
substituting the estimate of the effective depolarizing constant of the individual interleaved
gate p̂ = pIRB/pRB by p̂ = pIRB pRB/pURB, which requires a unitarity RB (URB) experiment.
In the experiments reported in [Xue+18; Yan+18], our estimator is used to rigorously bound
the infidelity of individual quantum gates via eq. (3.42).

3.4 Noisy quantum processes

Markovian quantum processes can be described by completely-positive and trace-preserving
(CPTP) linear maps A : $d(C) → $d(C) where $d(C) is the set of density operators acting
on Cd, that is, the set of positive-semidefinite operators with unit trace. We denote quantum
channels using single calligraphic capital Roman letters and the composition of channels by
multiplication for brevity, so that AB(ρ) = A ◦ B(ρ). We also denote the composition of m
channels Am, . . . ,A1 by Am:1 = Am . . .A1.

Abstract quantum channels can be represented in many ways. In this paper, we will
use the Kraus operator, χ-matrix and the Liouville (or transfer matrix) representations. The
Kraus operator and χ-matrix representations of a quantum channel A are

A(ρ) = ∑
j

AjρA†
j = d ∑

k,l∈Zd2

χAkl BkρB†
l (3.3)

respectively, where the Aj are the Kraus operators, Zd2 = {0, . . . , d2 − 1} and {Bi} is a trace-
orthonormal basis of Cd×d satisfying 〈Bj, Bk〉 := Tr B†

j Bk = δj,k, and B0 = Id. Note that
we include the dimensional factor in the definition of the χ-matrix to be consistent with the
standard construction in terms of unnormalized Pauli operators.

The Kraus operators can be expanded as Aj = ∑k∈Zd2
〈Bk, Aj〉Bk relative to {Bi}. Making

use of the phase freedom in the Kraus operators (that is, Aj → eiθj Aj gives the same quantum
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channel), we can set 〈B0, Aj〉 ≥ 0 for all j. We can then expand the Kraus operators as

Aj =
√

ajd
(

cos(αj)B0 + sin(αj)~vj · ~B
)

(3.4)

where ajd = 〈Aj, Aj〉, ~B = (B1, . . . , Bd2−1), ~vj ∈ Cd2−1 with ‖~vj‖2 = 1, and αj can be chosen
to be in [0, π

2 ] by incorporating any phase into ~vj. Substituting this expansion into the Kraus
operator decomposition and equating coefficients with the χ-matrix representation gives

χAkl =
1
d ∑

j
〈Bk, Aj〉〈Aj, Bl〉, (3.5)

and, in particular,

Φ(A) ≡ χA00 =
1
d2 ∑

j
|Tr Aj|2 = ∑

j
aj cos2(αj), (3.6)

where Φ(A) is the process fidelity of A to the identity. Applying the trace-preserving con-
straint with 〈Bj, Bk〉 = δj,k gives

1 =
1
d

Tr ∑
j

A†
j Aj = ∑

j
aj, (3.7)

which then implies

1−Φ(A) = ∑
j

aj sin2(αj). (3.8)

Alternatively, density matrices ρ and measurements µ (elements of positive-operator-
valued measures) can be expanded with respect to {Bi} as ρ = ∑j〈Bj, ρ〉Bj and µ =

∑j〈Bj, µ〉Bj. The Liouville representations of ρ and µ are the column vector |ρ〉 and row vector
〈µ| = |µ〉† of the corresponding expansion coefficients. The Born rule is then 〈µ, ρ〉 = 〈µ|ρ〉.
The Liouville representation of a channelA is the unique matrixA ∈ Md2(C) (noted with the
same symbol asA ∈ CPTPd, for the context will differentiate them) such thatA|ρ〉 = |A(ρ)〉,
which can be written as A = ∑j |A(Bj)〉 〈Bj|. With B0 = Id/

√
d, the Liouville representation

of any CPTP map can be expressed in block form as

A =

(
1 0
An Au

)
(3.9)

where An ∈ Cd2−1 is the non-unital vector and Au ∈ Cd2−1×d2−1 is the unital block. The
unitarity and effective depolarizing constant can be written as

u(A) = TrA†
uAu

d2 − 1
=
‖Au‖2

2
d2 − 1

p(A) = TrAu

d2 − 1
(3.10)

with respect to the Liouville representation [Wal+15; Kim+14].
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F r ≡ δF p Φ ≡ χ00

F F 1− δF
(d− 1)p + 1

d
dΦ + 1
d + 1

r ≡ δF 1− F δF
d− 1

d
(1− p)

d
d + 1

(1−Φ)

p
dF− 1
d− 1

1− d
d− 1

δF p
d2Φ− 1
d2 − 1

Φ ≡ χ00
(d + 1)F− 1

d
1− d + 1

d
δF

(d2 − 1)p + 1
d2 Φ

TABLE 3.1: Linear relations between the fidelity (F), the infidelity (r ≡ δF),
the effective depolarizing constant (p), and Φ ≡ χ00.

The effective depolarizing constant p(A) and Φ(A) ≡ χA00 are linear functions of the
average fidelity that can be more convenient to work with. The relations between the various
linear functions of the fidelity used in this paper are tabulated in table 3.1.

3.5 Composite infidelities in terms of component infidelities

We now prove that unitary error processes lead to the fastest growth in the total infidelity of
a circuit. In particular, we obtain strict bounds on the infidelity of a composite error process
in terms of the infidelities of the components and show that the bounds are saturated by
unitary processes for all even-dimensional systems.

We first obtain a bound on the infidelity of the composition of two channels that strictly
improves on the corresponding bound of Ref. [Kim+14]. We also show that the improved
bound is saturated for all values of the relevant variables. Therefore theorem 1 gives the
optimal bounds on the infidelity of the composite in terms of only the infidelities of the
components, and so obtaining a more precise estimate of the composite infidelity requires
further information about the errors. We then obtain an upper bound on the infidelity of the
composition of m channels that inherits the tightness of the bound for the composition of
two channels.

We present the following bounds in terms of the χ matrix, though the results can be
rewritten in terms of other linear functions of the infidelity using table 3.1. For example,
consider the composition of m noisy operationsAi with equal infidelity, that is, δF(Ai) = δF.
Then by corollary 1 and table 3.1, the total infidelity of the composite process is at most

δF(Am:1) ≤ m2δF + O(m4δ2F), (3.11)

which exhibits the expected quadratic scaling with m. Moreover, this upper bound is satu-
rated and so cannot be improved without additional information about the errors.
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Theorem 1

For any two quantum channels X and Y ,∣∣∣Φ(XY)−Φ(X )Φ(Y)− (1−Φ(X ))(1−Φ(Y))
∣∣∣

≤ 2
√

Φ(X )Φ(Y)(1−Φ(X ))(1−Φ(Y)). (3.12)

Furthermore, for all even dimensions and all values of Φ(X ), Φ(Y), there exists a pair
of channels X and Y saturating both signs of the above inequality.

Proof. Let X (ρ) = ∑j XjρX†
j and Y(ρ) = ∑j YjρY†

j be Kraus operator decompositions of X
and Y respectively. From eq. (3.4), we can expand the Kraus operators as

Xj =
√

xjd
(

cos(ξ j)B1 + sin(ξ j)~uj · ~B
)

Yj =
√

yjd
(

cos(θj)B1 + sin(θj)~vj · ~B
)

(3.13)

where ~uj,~vj ∈ Cd2−1 are unit vectors and ξ j, θj ∈ [0, π
2 ]. Then a Kraus operator decomposition

of XY is

XY(ρ) = ∑
j,k

XjYkρY†
k X†

j (3.14)

and so, by eq. (3.6),

Φ(XY) = ∑
j,k

xjyk|cos ξ j cos θk + β j,k sin ξ j sin θk|2, (3.15)

where β j,k = ~uj · ~vk and we have chosen the basis B to be Hermitian so that Tr B†
j Bk =

Tr BjBk = δj,k. By the triangle and reverse-triangle inequalities,

|α| − |γ| ≤ |α + βγ| ≤ |α|+ |γ| (3.16)

for any α, β, γ ∈ C such that |β| ≤ 1, which then implies∣∣∣|α + βγ|2 − |α|2 − |γ|2
∣∣∣ ≤ 2|αγ|. (3.17)

From eq. (3.6) and (3.8),

∑
j,k

xjyk| cos(ξ j) cos(θk)|2 = Φ(X )Φ(Y)

∑
j,k

xjyk| sin(ξ j) sin(θk)|2 = (1−Φ(X ))(1−Φ(Y)), (3.18)
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so by eq. (3.17), ∣∣∣Φ(XY)−Φ(X )Φ(Y)− (1−Φ(X ))(1−Φ(Y))
∣∣∣

≤∑
j,k

2xjyk cos(ξ j) cos(θk) sin(ξ j) sin(θk), (3.19)

using |β j,k| ≤ 1 and the non-negativity of the trigonometric functions over [0, π
2 ]. Note that

the above inequalities are saturated if and only if β j,k = ±1.
By the Cauchy-Schwarz inequality with the fact that all the quantities are non-negative,

∑
j

xj sin(ξ j) cos(ξ j) ≤
√

∑
j

xj sin2(ξ j)

√
∑

j
xj cos2(ξ j)

≤
√
(1−Φ(X ))Φ(X ),

where the second line follows from eq. (3.6) and eq. (3.8). Applying this upper bound for X
and the corresponding one for Y to eq. (3.19) gives the inequality in the theorem.

To see that both signs of the inequality are saturated for all values of Φ(X ), Φ(Y) in even
dimensions, let X = U (φ)⊗ Id/2 and Y = U (θ)⊗ Id/2 where

U(φ) = eiφ|0〉〈0|+ e−iφ|1〉〈1|. (3.20)

By eq. (3.6), Φ(U (φ)⊗ Id/2) = Φ(U(φ)) = cos2 φ. As XY = U (φ + θ)⊗ Id/2, some trivial
trigonometric manipulations give

Φ(XY)−Φ(X )Φ(Y)− (1−Φ(X )(1−Φ(Y))
= −2 cos φ sin φ cos θ sin θ

= −2
√

Φ(X )Φ(Y)(1−Φ(X ))(1−Φ(Y))sign(sin 2φ sin 2θ), (3.21)

which saturates the lower bound if the sign function is positive and the upper bound if it is
negative.

Corollary 1

For any m quantum channels Xi such that

m

∑
i=1

arccos
√

Φ(Xi) ≤
π

2
, (3.22)

the process fidelity Φ of the composite channel satisfies

Φ(Xm:1) ≥ cos2

(
m

∑
i=1

arccos
√

Φ(Xi)

)
. (3.23)

Furthermore, this bound is saturated for all even dimensions and all values of the
Φ(Xi) satisfying eq. (3.22).
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Proof. We can rewrite the lower bound in eq. (3.12) as√
Φ(XY) ≥

√
Φ(X )

√
Φ(Y)−

√
1−Φ(X )

√
1−Φ(Y). (3.24)

Writing
√

Φ = cos(arccos
√

Φ) and
√

1−Φ = sin(arccos
√

Φ) and using standard trigono-
metric identities, the above becomes

arccos
√

Φ(XY) ≤ arccos
√

Φ(X ) + arccos
√

Φ(Y), (3.25)

taking note to change the direction of the inequality when taking the arccos, which follows
from eq. (3.22). By induction, we have

arccos
(√

Φ(Xm:1)

)
≤∑

i
arccos

(√
Φ(Xi)

)
(3.26)

for any set of m channels Xi. Taking the cosine and squaring gives the bound in eq. (3.23).
The saturation follows directly from the saturation of eq. (3.12).

A way to intuitively think about eq. (3.23) goes as follows: “the worst possible fidelity of
a composition is obtained through a coherent (unitary) buildup”. Indeed, the trigonometric
form of the inequality reflects this coherent nature.

3.6 Improved bounds on the infidelity using the unitarity

The bounds in theorem 1 and corollary 1 are tight for general channels if only the infidelity
(or, equivalently, Φ) is known. In particular, from eq. (3.11), the infidelity increases at most
quadratically in m (to lowest order in r). However, the examples that saturate the bounds are
all unitary channels. If, on the other hand, the error model is a depolarizing channel

Pp(ρ) = pρ +
(1− p)

d
Id, (3.27)

or a Pauli channel (that is, a channel with a diagonal χ-matrix with respect to the Pauli basis),
then the infidelity increases at most linearly in m to lowest order, that is

δF(Xm:1) ≤ mδF + O(m2δ2F). (3.28)

The intermediate regime between Pauli errors and unitary errors can be quantified via the
unitarity [Wal+15]. In particular, we define the (positive) coherence angle to be

θ(E) = arccos
(

p(E)/
√

u(E)
)

. (3.29)
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As u(E) ≤ 1 with equality if and only if E is unitary, θ(E) ∈ [0, arccos p(E)] and

θ(E) =


0 iff E is depolarizing,
O(δF) if E is Pauli,
arccos p(E) = O(

√
δF) iff E is unitary.

(3.30)

That is, θ(E) quantifies the intermediate regime between Pauli and unitary errors for an
isolated error process.

We now show that combining the coherence angle and the infidelity enables improved
bounds on the growth of the infidelity. For example, for any m unital channels, or for any m
single qubit operationsXi, with equal infidelity δF(Xi) = δF and coherence angles θ(Xi) = θ,
the total infidelity is at most

δF(Xm:1) ≤ m
(

δF− (d− 1)θ2

2d

)
+ m2 (d− 1)θ2

2d
(3.31)

plus higher-order terms in δF and θ2 by eq. (3.35). For Pauli errors, θ2 = O(δ2F), so we
recover eq. (3.28). Conversely, for unitary errors (d− 1)θ2 = 2dδF + O(δ2F), so we recover
eq. (3.11) in such regime. Moreover, the above bound is saturated (to the appropriate order)
in even dimensions by channels of the form

Xi =


1 0 0 0
0 γ cos θ(Xi) −γ sin θ(Xi) 0
0 γ sin θ(Xi) γ cos θ(Xi) 0
0 0 0 λ

⊗ Id2/2 . (3.32)

These include the unital action of single qubit amplitude damping and dephasing channels
combined with a unitary evolution around the dampening/dephasing axis. The unitary fac-
tor is parameterized by the coherence angle: Zθ = exp i2θZ (hence the “coherence” qualifier).
In this sense, the coherence angle portays the allowed amount of rotation in Bloch space, as
opposed to contractions (quantified by γ, λ in our saturation example) due to decoherent
effects.

Theorems 2 and 3 result from more general matrix inequalities that we prove in sec-
tion 3.9.1. We apply the inequalities to the unital block of the Liouville representation from
eq. (3.9), and substitute the expressions for the effective depolarizing constant and the uni-
tarity from eq. (3.10). For theorem 3, we also use results from [PG+06], which state that the

maximal singular value of the unital block is upper-bounded by
√

d
2 for general channels

and 1 for unital channels.
Theorem 2

For any two quantum channels X and Y ,

cos[θ(X ) + θ(Y)] ≤ p(XY)√
u(X )u(Y)

≤ cos[θ(X )− θ(Y)]. (3.33)

In other words, the leeway in the effective depolarizing constant of a composition XY is
limited by constructive and destructive coherent effects. For longer compositions, we have:
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Theorem 3

For any m channels Xi with p(Xi) = p, u(Xi) = u, the effective depolarizing constant
of the composite channel satisfies

|p(Xm:1)− pm| ≤
√

d
2

(
m
2

)
u sin2(θ) . (3.34)

Furthermore, if the Xi are unital channels, the bound can be improved to

|p(Xm:1)− pm| ≤
(

m
2

)
u sin2(θ) . (3.35)

Notice that the binomial factor – which indicates a quadratic behavior in m – demon-
strates that the effective depolarizing constant of a large composition, p(Xm:1), can quickly
differ from pm. This difference grows quicker with the coherence angle, which can be tied to
coherent effects through eq. (3.32).

The bounds in theorem 2 can be made even tighter if one of the channels is guaranteed
to be Pauli.

Theorem 4

Consider a Pauli channel X and any quantum channel Y . Then, the composite infi-
delity is essentially linear in the individual infidelities δF(X ) and δF(Y):

δF(XY) = δF(X ) + δF(Y) + O(δF(X )δF(Y)) . (3.36)

This bound is to be contrasted with the naive usage of theorem 2:

δF(XY) = δF(X ) + δF(Y) + O(θ(X )θ(Y)) (theorem 2)

= δF(X ) + δF(Y) + O(δF(X )
√

δF(Y)) . (eq. (3.30))

The improvement can be easily shown as follow. The infidelity is invariant under unitary
conjugation δF(XY) = δF(UXYU †) or convex combination of thereof. In particular, it is
invariant under a Pauli twirl. Since X is a Pauli channel, it commutes with Pauli unitaries,
and the twirl gets effectively performed on Y , which becomes a Pauli channel YPauli with low
coherence angle θ(YPauli) = O(δF(Y)) (see eq. (3.30)). From there we can apply theorem 2.

Theorems 2 and 3 implicitly suggest that using the coherence angle (rather than the infi-
delity) as the objective function2 for optimizing operations would strongly tighten eventual
assertions about the fidelity of circuit constructions.

2A more stable choice would be sin2(θ).
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3.7 Application: Interleaved RB

The fidelity extracted from standard RB experiments typically characterizes the average error
over a gate-set G, defined as

E := |G|−1 ∑
g∈G
Eg. (3.37)

However, one might only care about the fidelity F(Eh) attached to a specific gate of inter-
est h ∈ G, such as one of the generators required for universal quantum computing. The
interleaved RB protocol (IRB) [Mag+12] yields a fidelity estimate of EhE3, the composition
between the single gate error and the gate-set error, which provides bounds on the desired
value F(Eh). An issue with this approach is that these bounds generally have a wide range,
since possible coherent effects cannot be ignored. This issue is illustrated by the results of two
simulations of interleaved RB experiments, plotted in fig. 3.1. In both scenarios, the fidelity
of the gate error and of the composed gate were fixed at F(E) = 0.9975 and F(EhE) = 0.9960
respectively, hence leading to the same single gate fidelity estimate. In the first case, the in-
terleaved gate h is unitary with high fidelity (F(Eh) = 0.9991), whereas in the second case
the error is depolarizing, with a lower fidelity (F(Eh) = 0.9975). This example illustrates
how interleaved RB, without a measure of unitarity, can only provide a loose estimate of the
infidelity of an individual gate.

More generally, rearranging the bound in theorem 1 to isolate Φ(Y) gives∣∣∣Φ(Y)−Φ(XY)Φ(X )− (1−Φ(XY))(1−Φ(X ))
∣∣∣

≤ 2
√

Φ(XY)Φ(X )(1−Φ(XY))(1−Φ(X )). (3.38)

Moreover, this bound cannot be improved without further information. Now suppose that
δF(EhE) ≈ 2δF(E), so that the uncertainty of δF(Eh), obtained via eq. (3.38) and table 3.1 is

∆δF(Eh) ≈ 4
√

2δF(E). (3.39)

While this bound does give an estimate of the infidelity, this estimate is comparable to the
following naive estimate that requires no additional experiment. As the fidelity, and hence
the infidelity, is a linear function of E we have

δF(E) = |G|−1 ∑
g∈G

δF(Eg) (3.40)

which, since δF(E) is non-negative for any channel E , implies

δF(Eh) ≤ |G|δF(E) (3.41)

for any h ∈ G. (Note also that this bound can be heuristically improved by identifying sets
of gates that are expected to have comparable error.) When G is chosen to be the 12-element
subgroup of the Clifford group that forms a unitary 2-design, the naive bound is, at the very

3For the sake of simplicity, we assume that the protocols all provide fidelity estimates defined with respect to
the same (or very close) ideal representation of gates.
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worst, a factor of 3/
√

2 worse than the bound from interleaved benchmarking and requires
no additional statistical analysis or data collection.

However, if the error channels were guaranteed to be depolarizing, F(Eh) could be ex-
actly estimated from an interleaved RB experiment. In general, we can use our knowledge
of the unitarity of E – which can be obtained from a URB experiment4 – to quantify how
close the error model is to depolarizing noise. From theorem 2, we then have the following
bounds, which can be orders of magnitude tighter as illustrated in fig. 3.2.

Corollary 2

For any two quantum channels Eh and E ,∣∣∣∣p(Eh)−
p(EhE)p(E)

u(E)

∣∣∣∣ ≤
√

1− p(E)2

u(E)

√
1− p(EhE)2

u(E) . (3.42)

Notice that this new estimate of p(Eh) is an amalgam of three experiments: standard
RB, IRB and unitarity RB. A recommended experimental practice would be, for instance
[Yan+18]:

i. Perform standard RB over the Clifford group. Estimate the resulting decay parameter
p(E), where E is tied to the average error over the Clifford group.

ii. Perform unitarity RB over the Clifford group. Estimate the resulting decay parameter,
which corresponds to the unitarity u(E).

iii. Perform IRB with the Clifford group as randomizing set and h as ideal gate of interest.
Estimate the resulting decay constant p(EhE), where Eh is the error map attached to h.

iv. Use eq. (3.42) to bound p(Eh), and use table 3.1 to convert it to the fidelity (or infidelity).

Recall that in the depolarizing case u(E) = p(E)2, for which eq. (3.42) reduces to the fa-
miliar equality p(Eh) = p(EhE)/p(E)5. In fact, the equality remains true up to order δF(E)2

in the more general case of stochastic Pauli errors, as demonstrated in theorem 4. Treating
the infidelity as a linear quantity under composition is a very common assumption stemming
from a classical probabilistic view of error accumulation. To take another example of a linear
manipulation, the infidelity per pulse (or infidelity per primitive gate) is often obtained by
implicitly dividing the infidelity of a set of composite gates by the average number of pulses
used to generate them. These are only good estimates if the error is mostly stochastic. This
might be a valid presumption since many error mechanisms are naturally stochastic, but is
certainly not a trivial one, since coherent effects also commonly arise from faulty control. The
present paper offers a means to avoid the often unrealistic stochasticity assumption by ex-
plicitly providing a confidence interval based on experimental estimates of the unitarity. To
illustrate the idea, in fig. 3.3 we applied our bounds on various experimental results [Gae+12;
Cór+13; Kel+14; Bar+14; Cas+16; McK+16; She+16; Tak+16b; McK+17b] and varied the value
of the unitarity.

4The current analysis of URB is done under a gate-independent noise approximation.
5In the interleaved RB lingo, this relation is often expressed as p(Eh) = pIRB/pRB, where Eh is the error

attached to the interleaved gate.
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FIGURE 3.1: (Color online) The average survival probability, psurv.(m) =

|G|−m ∑i〈0|S
(i)
m (|0〉〈0|)|0〉 over all sequences S (i)m of length m, as a function

of the sequence length for two simulated interleaved RB experiments (see
Ref. [Mag+12] for more details) with two different individual gate errors Eh,
but a common average error E with fidelity 0.9975. Orange squares repre-
sent an error model with high fidelity (F(Eh) = 0.9991) that interacts co-
herently with E . Blue triangles represent an error model with lower fidelity
(F(Eh) = 0.9975), but that is purely stochastic. See section 3.7 for more details.

FIGURE 3.2: (Color online) Bounds on the fidelity F(Eh) of an individual gate
h as a function of the composite F(EhE) with F(E) fixed and varying u(E): a)
u(E) = 1.00000, b) u(E) = 0.99300, c) u(E) = 0.99030, d) u(E) = 0.99003 ≈
p(E)2. The numerical data points correspond to the values F(Eh) and F(EhE)
for randomly-generated channels {Eh, E} satisfying F(E) = 0.9975 and with
the appropriate value of u(E). As illustrated by the color, the unitarity u(Eh) is
minimal in the center of the shaded region and maximal when the data points

approach our bound.
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FIGURE 3.3: (Color online) Bounds on various 2-qubit gate infidelities δF(Eh)
based on various experimental data [Gae+12; Cór+13; Kel+14; Bar+14; Cas+16;
McK+16; She+16; Tak+16b; McK+17b]. The time refers to the dates of submis-
sion. The top plot uses eq. (3.42) with a maximal coherence angle θ(E), which
yields in bounds spanning up to two orders of magnitude. The bottom plot as-
sumes a purely stochastic error model, by which we mean that u(E) ≈ p(E)2.
For every data point, some statistical error is taken into account, hence the

non-zero error bars in the bottom plot.

3.8 Summary and outlook

In this paper, we have studied the impact of coherent errors on the fidelity of quantum cir-
cuits. We first demonstrate why coherent errors are a serious concern: a coherent compo-
sition of unitary quantum channels results in the fastest decay of the fidelity. In this case,
the infidelity grows quadratically in the number of gates, in contrast with the linear growth
for stochastic Pauli channels. The disparity between these two regimes means that the char-
acterization of the gate fidelities alone only allows to formulate weak statements about the
fidelity of more elaborate circuit constructions.

Hence, in order to characterize circuits more precisely, we introduced a coherence angle—
which corresponds to a rotation angle on the Bloch space, as opposed to a contraction (see
eq. (3.29))—which enables a tighter bound on the total error in a quantum circuit in terms
of robustly estimable quantities that smoothly interpolates between the linear and quadratic
regimes.

Our new bound can be used upside-down: from the fidelity of a small circuit construc-
tion, we can bound the fidelity of one of its elements. As an immediate application, we
demonstrated that this bound substantially improves the estimates of individual gate fi-
delities from interleaved randomized benchmarking, which, in the absence of the improved
bound, are comparable to the naive bound obtained by noting that the infidelity from stan-
dard RB is the average of the infidelities of the individual gates. The practicality of corollary 2
relies on the implicit assumption that the unitarity obtained from RB as well as the average
gate fidelities are resulting from closely related gauges[Pro+17a; Wal17; Car+18]. An open
problem would be to relax this assumption by connecting more rigorously the interpretations
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of different RB experiments.
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3.9 Proofs

3.9.1 Matrix inequalities on the real field

We define the coherence angle of a matrix M ∈ Rd×d to be

θ(M) := arccos

(
Tr M√
d‖M‖2

)
∈ [0, π] . (3.43)

Theorem 5

For any nonzero M1, M2 ∈ Rd×d ,

cos[θ(M1) + θ(M2)] ≤
Tr M1M2

‖M1‖2‖M2‖2
≤ cos[θ(M1)− θ(M2)]. (3.44)

Moreover, both bounds are saturated for all values of ‖M1‖2, ‖M2‖2, θ(M1), and
θ(M2) in even dimensions.

Proof. By the Cauchy-Schwarz inequality,

|Tr AB|2 =
(
∑
i,j

AijBji

)2
≤
(
∑
i,j

A2
ij

)(
∑
i,j

B2
ij

)
= (Tr A† A)(Tr B†B) = ‖A‖2

2‖B‖2
2. (3.45)

Setting Di := Tr Mi
d Id for i = 1, 2,

‖Mi − Di‖2 =
√

Tr(M†
i Mi −M†

i Di − D†
i Mi + D†

i Di)

=
√
‖Mi‖2

2 − d−1(Tr Mi)2

= ‖Mi‖2

√
1− cos2 θ(M)

= ‖Mi‖2 sin θ(M) (3.46)

using Tr M† = Tr M, which holds for M ∈ Rd×d. Setting A = M1 − D1 and B = M2 − D2 in
eq. (3.45) and using eq. (3.46) gives

|Tr(M1 − D1)(M2 − D2)| ≤ ‖M1‖2‖M2‖2 sin θ(M1) sin θ(M2). (3.47)
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Using eq. (3.43) on the left-hand side gives

|Tr(M1 − D1)(M2 − D2)| = |Tr M1M2 − d−1 Tr M1 Tr M2|
= |Tr M1M2 − ‖M1‖2‖M2‖2 cos[θ(M1)] cos[θ(M2)]| . (3.48)

Combining eqs. (3.47) and (3.48) with the identity cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)
gives both desired inequalities. For even d, the bounds of eq. (3.44) are saturated by

‖Mi‖2√
d

(
cos θ(Mi) − sin θ(Mi)
sin θ(Mi) cos θ(Mi)

)
⊗ I d

2
. (3.49)

We can generalize the lower bound of eq. (3.44) to matrix products Mm:1 :=
M1M2 · · ·Mm.

Theorem 6

Let M1, . . . , Mm ∈ Rd×d be such that for all j, θ(Mj) = θ, Tr(Mj)
d = p ≤ 1, ‖Mj‖2

2
d = u ≤

1, and ‖Mj:1‖2 ≤ σmax. Then,∣∣∣∣Tr Mm:1

d
− pm

∣∣∣∣ ≤ σmax

(
1−mpm−1 − (m− 1)pm

(1− p)2

)
u sin2(θ) ≤ σmax

(
m
2

)
u sin2(θ).

(3.50)

Proof. Let D := pId, and Mj = D + ∆j. Using a telescoping expansion twice gives

Mm:1 − Dm =
m

∑
i=1

Mi−1:1(Mi − D)Dm−i

=
m

∑
i=1

[Di−1 +
i−1

∑
j=1

Mj−1:1∆jDi−1−j]∆iDm−i . (3.51)

Taking the trace of each side and using Tr ∆j = 0 gives

Tr Mm:1 − dpm =
m

∑
i=1

i−1

∑
j=1

pm−j−1 Tr Mj−1:1∆j∆i . (3.52)
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Therefore

|Tr Mm:1 − dpm| =
∣∣∣∣∣ m

∑
i=1

i−1

∑
j=1

pm−j−1 Tr Mj−1:1∆j∆i

∣∣∣∣∣
≤

m

∑
i=1

i−1

∑
j=1

pm−j−1|Tr Mj−1:1∆j∆i| (4 inequality)

≤
m

∑
i=1

i−1

∑
j=1

pm−j−1‖Mj−1:1∆j‖2‖∆i‖2 (Cauchy-Schwarz inequality)

≤
m

∑
i=1

i−1

∑
j=1

pm−j−1σmax‖∆j‖2‖∆i‖2 ([Bha97, Prop. 9.3.6])

= σmaxdu sin2(θ)
m

∑
i=1

i−1

∑
j=1

pm−j−1 , (3.53)

where we used ‖∆j‖2 =
√

du sin(θ) on the last line. Let S := ∑m
i=1 ∑i−1

j=1 pm−j−1 = ∑m−1
i=1 ipi−1.

Using a telescoping expansion leads to

S− pS = −(m− 1)pm−1 +
m−2

∑
i=0

pi

=
1− pm−1

1− p
− (m− 1)pm−1

⇒ S =
1−mpm−1 − (m− 1)pm

(1− p)2 . (3.54)

S is maximized when p = 1, in which case it equals (m
2 ).

3.10 Afterword

The results derived in the above work, in particular theorems 2 and 3, raised additional
questions.

1. The bounds provided in theorem 2 are easily shown to be saturated for even dimen-
sions. As far as I tried to design different saturating (or approximately saturating)
cases, the constructions seemed to always involve some physical unitary channels,
which are almost entirely accountable for the leeway in the value of p(XY). This is
not so surprising given the trigonometric nature of the upper and lower bounds in
eq. (3.33). However, it is not clear in the light of this chapter alone that physical unitary
motion is indisputably the only mechanism responsible for any substantial looseness
in the value of p(XY).

2. While the simple 2-fold composition bound provided in theorem 2, and the m-fold
unital composition bound provided in eq. (3.35) are saturated for even dimensions,
the more general m-fold composition bound provided by eq. (3.34) (theorem 3) is not
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shown to be saturated. Does there exists a saturating case or, case failing, what is the
tight bound on the fidelity of m-composite channels?

In the next chapter, the two questions above will find complete answers as the payoff of
a heavier mathematical machinery. I should emphasize that these are not mere curiosities:
for instance, tying unitaries to an unambiguous signature could allow a robust and scalable
characterization of coherent errors.
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Chapter 4

A polar decomposition for quantum
channels

(with applications to bounding error propaga-
tion in quantum circuits)

4.1 Foreword

The present chapter mainly consists in a literal transcription of [CAE19], for which my con-
tribution was major. It completes and vastly extends the work introduced in [CWE16] (see
previous chapter).

4.2 Compendium

Inevitably, assessing the overall performance of a quantum computer must rely on charac-
terizing some of its elementary constituents and, from this information, formulate a broader
statement concerning more complex constructions thereof. However, given the vastitude of
possible quantum errors as well as their coherent nature, accurately inferring the quality of
composite operations is generally difficult. To navigate through this jumble, we introduce
a non-physical simplification of quantum maps that we refer to as the leading Kraus (LK)
approximation. The uncluttered parameterization of LK approximated maps naturally sug-
gests the introduction of a unitary-decoherent polar factorization for quantum channels in
any dimension. We then leverage this structural dichotomy to bound the evolution – as cir-
cuits grow in depth – of two of the most experimentally relevant figures of merit, namely the
average process fidelity and the unitarity. We demonstrate that the leeway in the behavior of
the process fidelity is essentially taken into account by physical unitary operations.

4.3 Introduction

Just like evaluating a piano doesn’t involve playing all possible pieces of music, character-
izing a computer (classical or quantum) doesn’t involve running all infinitely many circuits.
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The natural procedure to characterize both these devices is to gather information on a re-
stricted number of components, and based on that information make conclusions on the
quality of more involved constructions (melodies, chords, circuits, magic state injections,
etc). When considering the tuning of a piano, the extrapolation is not much of a problem;
imperfections are typically tied to specific keys, and they don’t tend to propagate over the
keyboard as the music goes on, and unless there is some resonant effect, the errors don’t
coherently interfere. Hence, the quality of individual keys generally guarantees playability.
In this sense, the characterization of a piano is similar to that of a classical computer: the
well-behaved stochasticity of the noise eases the passage between an assertion of compo-
nents quality to a broader assertion on the performance of more complex operations. This
statement can be phrased the other way around: a limited range of behaviors simplifies the
search for imperfections.

In contrast, when characterizing a quantum computer, the jump from a characteriza-
tion of elementary operations to a quantified assertion on the overall device performance
is more knotty; errors can coherently interfere and propagate through the entire device via
multi-qubit operations. This thorny situation can be quantified, for instance, by bounding
the behavior of the average process fidelity (hereafter the fidelity and its counterpart, the
infidelity), an experimentally important figure of merit which captures the overlap between
an implemented operation and its target. More precisely, one may ask: “What are the best
and worst fidelities of a circuit given a knowledge of the fidelity of its components?” When
dealing with a classical scenario, we would expect the difference between the best and worst
cases to remain insignificant (remember the piano analogy). In a quantum scenario, however,
it is known that the largest discrepancy, which is achieved by unitary errors, grows quickly
(quadratically) in the circuit depth (see, for instance, Carignan-Dugas et al [CWE16]). Not
so surprisingly, the best case corresponds to a unitary cancellation, and the worst case cor-
responds to a coherent buildup. This lead to another question: “What if we are guaranteed
that the individual errors are not unitary?” In particular, what if we measure the degree
to which the error operations are unitary, known as the unitarity[Wal+15], an experimental
figure of merit which captures the coherence in the noise? Previous work has given partial
answers to this question: Carignan-Dugas et al [CWE16] derive bounds that fall back to the
“piano analogy” when the unitarity is minimal; additionally, they provide examples of quan-
tum channels that saturate their bound in the intermediate regime where errors are neither
purely unitary nor purely stochastic, but still unital and acting on a single qubit coupled
with a system of arbitrary (but finite) size.1. In this paper, we generalize that bound to all
dimensions and show its near saturation (i.e. to second order in the infidelity or better) and
also account for non-unital processes. That is, we provide a closely saturated bound for all
finite-dimensional quantum channels. While this is already an interesting result, the tools
that we develop to generalize the bound help us answering a far more fundamental ques-
tion. In previous work, the saturation was shown through a handful of examples. Now, we
provide a complete descriptive answer to:

What is the set of mechanisms responsible for the discrepancy between the best and the worst fidelity
of a circuit?

1They attribute all the error dynamics on the qubit; the intuitive geometric picture offered by parameterization
of processes acting on the Bloch sphere allows showing the saturation of the bound for unital channels. The
bound in the non-unital case included a dimensional factor which prevented its saturation.
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This would not be much of a fundamental question if the answer didn’t also unravel an im-
portant dichotomy in classifying quantum errors. Given the intricate geometry of quantum
states [BZ06], the answer could have included some obscure blend of non-intuitive mech-
anisms, leaving us with yet another resignation in the attempt to intuitively reason about
quantum dynamics. Although, for once, this is not the case: the discrepancy between the
best and worst fidelity is, to high precision, entirely taken into account by unitary dynamics2.
Even more surprisingly, the unitary dynamics itself is precisely the product of the “unitary
factors” of individual circuit components. As we demonstrate through theorem 9, every non-
catastrophic channel (see definition 4) can be decomposed as a physical unitary followed or
preceded by a decoherent channel. For realistic errors, the unitary is unique and is referred
to as the coherent factor. This factorization is analogous to the well-known matrix polar de-
composition and, as we will show, directly stems from it. The uniqueness of the coherent
factor might puzzle the skeptical reader. For example, how should we unambiguously de-
fine such factor in the case of an error which consists of a mixture of near-identity unitaries
(i.e. A(ρ) = ∑i piUiρU†

i , where Ui ≈ Id)? Should it be the unitary operation with the highest
weight? Should it relate with some kind of ensemble average over the associated Hamil-
tonians? To systematically answer this type of question, we introduce the leading Kraus
(LK) approximation (see definition 5), a sub-parameterization of quantum channels which,
among other things, exposes a natural definition for the coherent and decoherent factors of
a channel.

What allows us to really profit from the channel polar decomposition is the surprising
property that the LK approximation, despite its seemingly bare structure, closely captures
the evolution of the fidelity and unitarity in circuits. That is, we can mathematically replace
all the channels in a circuit by their respective LK approximation and still expect to accu-
rately bound its fidelity and unitarity (see theorems 7 and 8). Working with the uncluttered
structure offered by the LK approximation helped us identify and rule out pathological error
scenarios, which we refer to as “extremal” (see section 4.7.1 for more details). For all realistic
noisy channels, we derive the following observations (they hold to high precision):

i. The infidelity (the counterpart to the fidelity) of a channel can be split into two terms
(see theorem 14 and the discussion that immediately follows):

(a) a coherent infidelity, which corresponds to the infidelity of the coherent factor to
the target channel;

(b) a decoherent infidelity, which corresponds to the infidelity of the decoherent fac-
tor to the identity.

ii. The decoherent infidelity of a channel is in one-to-one correspondence with its unitar-
ity. Moreover, the decoherent infidelity corresponds to the minimum infidelity of the
channel after the application of a unitary (the coherent infidelity is correctable through
a composition with a unitary). (See theorem 13.)

iii. The unitarity of a composite channel is a decay function expressed in terms of individ-
ual channels’ unitarity. (See theorem 11.)

2Given realistic errors, which are properly defined in section 4.7.1, and are more formally referred to as
“equable”. The equability assumption corresponds to ruling out two types of errors. 1) Extreme dephasing
effects between a small set of states and the rest of the systems. 2) Extreme Hamiltonian alterations.
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iv. The fidelity of the composition of decoherent channels is a decay function expressed in
terms of individual channels’ fidelity. (See theorem 12.)

v. The fidelity of a general composition is upper bounded by a decay dictated by the
decoherent factors (hence by the unitarity of individual components). (See theorem 15.)

vi. The discrepancy between the upper and the lower bound of the fidelity is captured
by the fidelity of the composition of the coherent factors (to the target circuit). (See
theorem 14.)

These realizations are directly applicable to the analysis and development of process char-
acterization methods. The fidelity of various error processes can be robustly and efficiently
estimated through a scalable experimental protocol known as randomized benchmarking
(RB) [EAZ05; Dan+09; MGE11; MGE12] and a family of generalizations thereof [Kni+08;
Mag+12; Gam+12; Gae+12; GFC14; Bar+14; WF14; CWE15; Wal+15; WBE15; She+16; Cro+16;
Com+17; Has+18; BE18; SH18; Hel+18; Pro+18]. To remain efficient as quantum devices
grow larger, RB experiments only extract partial information about specific sets of compo-
nents. A known challenge is to leverage this limited view to formulate a more rounded
understanding of the device. By looking at the fidelity of well-designed compositions, it
should be possible to extract other figures of merit attached to quantum processes. The idea
is that since process matrices dictate the evolution of the fidelity, conversely, the evolution
of the fidelity can tell us information about process matrices. However, given the generally
large amount of parameters involved in process matrices, it is not always immediately clear
how the signal obtained from extracting the fidelity of various circuit compositions connects
with quantities of interest. The above six enumerated observations allow to make more sense
out of such signals.

We structure the paper as follows. In section 4.4, we introduce important characterization
figures of merit – the average process fidelity and the unitarity – and relate them with the
Kraus operator formalism. In section 4.5, we define the LK approximation and present its
aptitude in capturing important characteristics of evolving quantum circuits. In section 4.6,
based on the emergent mathematical structure of LK approximated channels, we show the
existence of a channel polar unitary-decoherent decomposition. In section 4.7, we make use
of the approximation to demonstrate key behavioral aspects of quantum circuits based on
partial knowledge of their components.

For the sake of conciseness, most demonstrations are pushed to the appendix. Moreover,
in the main text, certain results have been abridged by gathering higher order terms under
the acronym “H.O.T.”. The complete expressions – which are not any more insightful than
their abbreviated analog – are provided in the appendix.

4.4 Channel properties captured by the leading Kraus operator

A quantum channel is a completely-positive (CP), trace-preserving (TP) map acting on
Md(C). Given a quantum channel A : Md(C) → Md(C), the Choi matrix of A is defined
as [Cho75]

Choi(A) := ∑
ij

Eij ⊗A(Eij) , (Choi matrix)
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where

Eij := eie†
j , (4.1)

and ei are canonical orthonormal vectors. The Choi matrix is positive semi-definite iff A is
CP, and has trace d if A is TP or unital3. Since Choi(A) ≥ 0, it has a spectral decomposition
of the form

Choi(A) :=
d2

∑
i=1

col(Ai)col†(Ai) , (4.2)

=
d2

∑
i=1
‖Ai‖2

2col(Ai)col†(Ai) , (4.3)

where col(A) ∈ Cd2
denotes the column vectorization of a matrix A ∈ Md(C)4, ‖ · ‖p denotes

the Schatten p-norm, and A = A/‖A‖2 denotes normalized matrices with respect to the
Schatten 2-norm. The eigenvectors col(Ai) are orthonormal, an without loss of generality
the eigenvalues are ordered with respect to the Frobenius norm (Schatten 2-norm):

‖A1‖2
2 ≥ ‖A2‖2

2 ≥ · · · ≥ ‖Ad2‖2
2 ≥ 0 . (4.4)

Given a spectral decomposition like eq. (4.2), we can express the channel’s action on states
ρ ∈ Md(C) as [Kra+83]:

A(ρ) =
d2

∑
i=1

AiρA†
i , (Kraus decomposition)

with

〈Ai, Aj〉 = ‖Ai‖2
2δij , (4.5)

where the usual Hilbert-Schmidt inner product is used. Notice that the TP condition im-
plies that ∑i(‖Ai‖2

2/d) = 1. The matrices Ai ∈ Md(C) are referred to as (ordered) canonical
Kraus operators. In this work, A1 (which is associated with the highest Choi matrix eigen-
value ‖A1‖2

2) will deserve special attention, and is attributed the title of “leading Kraus (LK)
operator”. In general, A1 might be non-unique when the spectrum of the Choi matrix is
degenerate. However, in this work we focus on non-catastrophic channels (definition 4), for
which A1 is unique.

Given an operation A and a target unitary channel U (ρ) = UρU† 5, we can compare the
overlap of their outputs given specific inputs M ∈ Md(C) through the M-fidelity:

fM(A,U ) :=
〈A(M),U (M)〉
‖M‖2

2
. (4.6)

3A channel A is unital iff A(Id) = Id.
4col(A) := ∑ij Aijej ⊗ ei
5For unitaries, we used the calligraphic font to denote the channel and the non-calligraphic one to denote its

associated d× d unitary matrix.
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The well-known average gate fidelity is obtained by averaging the M-fidelities uniformly
(i.e. with respect to the Haar measure) over all physical pure states |ψ〉〈ψ|:

F(A,U ) := EHaar f|ψ〉〈ψ|(A,U ) . (4.7)

The average infidelity r is simply a shorthand for 1− F. Instead of averaging over quantum
states, we could also average uniformly over all operators M ∈ Md(C). More precisely,
given any orthogonal operator basis {Bi} for Md(C), we can uniformly average over the
M-fidelities fBi , which yields the average process fidelity 6

Φ(A,U ) := E{Bi} fBi(A,U ) . (4.8)

Compared to Φ, F puts a slightly higher weight over the identity component Id. The TP
condition enforces this special component to take a fixed value, fId = 1. Hence the two
quantities are closely related via [Nie02]:

F(A,U ) = dΦ(A,U ) + 1
d + 1

. (4.9)

F(A,U ) is the overlap between the output state A(ρ) of an implemented channel A and
its ideal output U (ρ), averaged over all physical pure input states |ψ〉〈ψ|. While F(A,U )
conveys a more graspable interpretation, it will remain easier here to work with Φ(A,U )
since it ties with the Kraus operators through

Φ(A,U ) =
d2

∑
i=1

∣∣∣∣〈 Ai√
d

,
U√

d

〉∣∣∣∣2 =
d2

∑
i=1

(‖Ai‖2
2/d)

∣∣∣〈Ai, U/
√

d
〉∣∣∣2 . (4.10)

Since {Ai} forms an orthonormal basis and ‖U/
√

d‖2 = 1, it follows that

d2

∑
i=1

∣∣∣〈Ai, U/
√

d
〉∣∣∣2 = 1 . (4.11)

If ‖Ai‖2
2/d can be thought as the “weights” of the Kraus operators,

∣∣∣〈Ai, U/
√

d
〉∣∣∣2 can be

thought as normalized overlaps with the target U.
To quantify the coherence of a quantum channel, one could wonder how much the Bloch

vectors (the traceless component of quantum states [Blo46]) are contracted. For instance,
consider the unitarity, which is the squared length ratio of the Bloch vectors before and after
the action of the channel A, averaged over all physical Bloch vector inputs corresponding to
pure states |ψ〉〈ψ| − Id/d [Wal+15]:

u(A) := EHaar
‖A(|ψ〉〈ψ| − Id/d)‖2

2

‖|ψ〉〈ψ| − Id/d‖2
2

. (4.12)

6For the readers familiar with the χ-matrix, Φ(A,U ) is a way to express the well-known χ00 element. Of
course, the χ-matrix has to be defined with respect to an orthonormal operator basis {Bi} with B0 = U. Some
might also be more familiar with the notion of entanglement fidelity, which is again Φ.
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Let’s extend the domain of Φ to include a new function of A:

Υ(A) :=
√

Φ(A†A, I) =

√√√√ d2

∑
i,j=1

∣∣∣∣∣
〈

A†
j Ai
√

d
,

I√
d

〉∣∣∣∣∣
2

=

√√√√ d2

∑
i=1

(‖Ai‖2
2

d

)2

. (4.13)

Straightforward calculations closely relate the unitarity to Υ via

u(A) = d2Υ2(A)− 1
d2 − 1

. (4.14)

(Notice that the notation alludes to the connection between greek and latin alphabets; it
relates “phi” to “F” and “upsilon” to “u”.)

We are ready to express a first result:

Lemma 2

Consider a CPTP map A with ordered canonical Kraus decomposition

A(ρ) =
d2

∑
i=1

AiρA†
i .

Then,

0 ≤ Υ2(A)−
(
‖A1‖2

2
d

)2

≤
(
1− Υ2(A)

)2
. (4.15)

Proof. Υ2(A) can be expanded as a sum over d2 terms:

Υ2(A) =∑
i

(
‖Ai‖2

2
d

)2

. (4.16)

Using Hölder’s inequality on the RHS yields

Υ2(A) ≤ max
i

‖Ai‖2
2

d ∑
j

‖Aj‖2
2

d
= ‖A1‖2

2/d . (4.17)
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Using this lower bound on ‖A1‖2, we get

Υ2(A) =
(
‖A1‖2

2
d

)2

+ ∑
i 6=1

(
‖Ai‖2

2
d

)2

(4.18)

≤
(
‖A1‖2

2
d

)2

+

(
∑
i 6=1

‖Ai‖2
2

d

)2

=

(
‖A1‖2

2
d

)2

+

(
1− ‖A1‖2

2
d

)2

(∑
i

‖Ai‖2
2

d = 1)

≤
(
‖A1‖2

2
d

)2

+
(
1− Υ2(A)

)2
(eq. (4.17))

From eq. (4.16), it follows that
(
‖A1‖2

2
d

)2
≤ Υ2(A), which completes the proof.

It follows from eq. (4.15) that Υ2(A) > 1/2 is a sufficient condition to guarantee the
uniqueness of A1

7. This partially motivates the following definition:

Definition 4: non-catastrophic channels

A channel A is said to be non-catastrophic if it overlaps enough with its targeted
unitary channel U :

Φ(A,U ) > 1/2 , (4.19)

and if it doesn’t greatly contract the Bloch vectors:

Υ2(A) > 1/2 . (4.20)

The condition described by eq. (4.19) allows us to express our second result:

Lemma 3

Consider a non-catastrophic channel A with unitary target U and ordered canonical
Kraus decomposition

A(ρ) =
d2

∑
i=1

AiρA†
i .

Then,

0 ≤ Φ(A,U )−
∣∣∣∣〈 A1√

d
,

U√
d

〉∣∣∣∣2 ≤ (1− Υ2(A))(1−Φ(A,U )) . (4.21)

7Indeed, it implies that ‖A1‖2
2/d > 1/

√
2 > 1/2.
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Proof. Using Hölder’s inequality on the RHS of eq. (4.10), we have

Φ(A,U ) ≤ max
i
|〈Ai, U〉|2

d2

∑
j=1

(‖Aj‖2
2/d) = max

i
|〈Ai, U〉|2 . (4.22)

For non-catastrophic channels, it must be that max
i
|〈Ai, U〉|2 = |〈A1, U〉|2. To see this more

clearly, let |〈A1, U〉|2 = 1/2 − ε1 and ‖A1‖2
2/d = 1/2 + ε2, where ε2 > 0 from the non-

catastrophic condition. Then, consider the following inequalities:

Φ(A,U ) = |〈A1, U〉|2 (‖A1‖2
2/d) + ∑

i 6=1
|〈Ai, U〉|2 (‖Ai‖2

2/d) (Equation (4.10))

≤ |〈A1, U〉|2 (‖A1‖2
2/d) +

(
∑
i 6=1

(‖Ai‖2
2/d)

)(
∑
j 6=1

∣∣∣〈Aj, U
〉∣∣∣2)

= |〈A1, U〉|2 (‖A1‖2
2/d) + (1− |〈A1, U〉|2)(1− ‖A1‖2

2/d) (4.23)
= 1/2− 2ε1ε2 . (4.24)

From the non-catastrophic condition, ε1 < 0, which implies that |〈A1, U〉|2 > 1/2.
Hence, eq. (4.22) can be reexpressed into 1− |〈A1, U〉|2 ≤ 1−Φ(A,U ), which yields the

following:

Φ(A,U ) ≤ |〈A1, U〉|2 (‖A1‖2
2/d) + (1− |〈A1, U〉|2)(1− ‖A1‖2

2/d) (Equation (4.23))

≤ (‖A1‖2
2/d) |〈A1, U〉|2 + (1− Υ2(A))(1−Φ(A,U )) . (eq. (4.17))

From eq. (4.10) we also have (‖A1‖2
2/d) |〈A1, U〉|2 ≤ Φ(A,U ), which completes the proof.

The LK operator alone provides a very accurate approximation of 1−Φ and 1− Υ. This
only begins a list of realizations regarding the role of LK operators in quantum dynamics.
As we will see, they also contain most of the information necessary to describe the evolution
of Φ and Υ.

4.5 The LK approximation and two evolution theorems

The last section naturally suggests the following channel approximation as a means to par-
tially characterize non-catastrophic quantum dynamics:

Definition 5: the Leading Kraus (LK) approximation

Consider a channel A : Md(C) → Md(C) with leading Kraus operator A1. We define
its leading Kraus (LK) approximation as:

A?(ρ) = A1ρA†
1 . (4.25)

Notice that A? is always CP (Choi(A?) ≥ 0), but is TP iff A is unitary. Hence, A? gener-
ally fails to be physical. However, as we will see, it closely describes the dynamics of certain

51



physical quantities, so one may qualify this map as “quasi-dynamical”. The general specifi-
cation of a map acting on a d-dimensional quantum system requires roughly d4 parameters,
and due to the intricate geometry of quantum states, the parameterization of its range of ac-
tion is quite convoluted. In contrast, the LK approximation is remarkably transparent: it is
fully parameterized by d× d matrices with spectral radius smaller than 1 (contractions) and
Frobenius norm greater than d/

√
2 8. If the noise is non-catastrophic, every quantum map

has a corresponding LK approximation, and every d× d linear contraction corresponds to at
least one quantum operator.

Given m channels Ai, we denote the composition Am ◦ Am−1 ◦ · · · ◦ A2 ◦ A1 as Am:1. Re-
placing every element of the composition by its LK approximation, A?

m ◦ A?
m−1 ◦ · · · ◦ A?

2 ◦
A?

1 , is noted as A?
m:1. In general, the composition operation doesn’t commute with the LK

approximation, that is A?
m:1 6= (Am:1)

?. To put it in other words, the LK operator of a
circuit is generally not the multiplication of the LK operators of its elements. However,
while A?

m:1 provides an incomplete description of Am:1, they still might share some com-
parable characteristics. That is, there might exist some function f : CP maps→ R for which
f (A?

m:1) ≈ f (Am:1). As we show, not only there exist such functions, but some of them corre-
spond to important experimental figures of merit. From the previous section, we know that
Φ(A,U ) ≈ Φ(A?,U ) and Υ(A) ≈ Υ(A?). What may be more surprising are the following
two theorems:

Theorem 7: the unitarity of a circuit after approximating its elements

Consider m non-catastrophic channels Ai with respective unitary targets Ui and sup-
pose that the composition Am:1 is also non-catastrophic. Then,

0 ≤ Υ2(Am:1)− Υ2(A?
m:1) ≤ (1− Υ(A?

m:1))
2 ≤ (1− Υ2(Am:1))

2 . (4.26)

Theorem 8: the fidelity of a circuit after approximating its elements

Consider m non-catastrophic channels Ai with respective unitary targets Ui and sup-
pose that the composition Am:1 is also non-catastrophic. Then,

0 ≤ Φ(Am:1,Um:1)−Φ(A?
m:1,Um:1) <

(1−Φ(A?
m:1,Um:1))

m

∑
i=1

(1− Υ(A?
i )) +

1
2

(
m

∑
i=1

(1− Υ?(Ai))

)2

≤

(1−Φ(Am:1,Um:1))
m

∑
i=1

(
1− Υ2(Ai)

)
+

1
2

(
m

∑
i=1

(1− Υ2(Ai))

)2

+ H.O.T. (4.27)

A? differs from the veritable channel A in many ways as shown by comparing
various M-fidelities fM(Am:1,Um:1) with fM(A?

m:1,Um:1) (see two animated examples at
https://youtu.be/lTrBTIJHJJM and https://youtu.be/A6i-k6eHsGM). Of course, some kind
of discrepancy is expected since the LK approximation contains only d2 parameters instead

8This last constraint only prevents catastrophic noise scenarios.
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of ∼ d4. Essentially, the LK operators closely dictate the evolution of the average of M-
fidelities Φ = E fM (see eq. (4.8)), while the other Kraus operators add or subtract to specific
M-fidelities fM in such a way that the sum of those variations almost exactly cancels.

The evolution theorems presented in this section will greatly help classify different types
of errors9. Indeed, they allow tying behavioral signatures in the evolution of Υ and Φ to
more digestible error profiles. In particular, the two theorems further motivate, as shown in
section 4.7, the definition of a natural dichotomy in quantum channels (itself introduced in
section 4.6).

4.6 A polar decomposition for quantum channels

4.6.1 Defining decoherence

Due to the intricate geometry of d-dimensional quantum states [BZ06], quantum processes
can be delicate to dissect. One of the main reasons the single qubit Bloch sphere is frequently
invoked stems from the simple picture it offers:

i. There is a clear bijection between quantum states and the Bloch ball [Blo46].

ii. The action on the Bloch vectors can be decomposed into a positive semi-definite con-
traction |M| ≤ I3, followed by orthogonal matrix R ∈ O(3), which corresponds to a
physical unitary U ∈ SU(2), added to a translational vector~t (the non-unital vector)
[FA99; RSW02; BW04]:

~v→ R|M|︸ ︷︷ ︸
M

~v + ~t , (4.28)

where |M| denotes (M† M)
1
2 . M = R|M| is referred to the unital matrix.

Not every contraction |M| is physical; for instance, transforming the Bloch sphere into a
disk violates CP-ness (the folkloric “no pancake” theorem [Blu+10]). A thorough analysis
of CPTP maps acting on M2(C) is provided in [RSW02]. For higher dimensions, the Bloch
sphere imagery falls apart in many ways:

i. The generalized Bloch space is not a (d2− 1)-ball (with respect to the 2-norm on Rd2−1)
[BZ06].

ii. If we express the action on the Bloch vector as in eq. (4.28) where R ∈ O(d2 − 1) and
|M| ≥ 0, we realize that

(a) R generally doesn’t correspond to a physical unitary operation in SU(d) (the uni-
tary map defined by ~v→ R~v is not necessarily CP).

(b) |M| is not necessarily a contraction. Its spectrum is optimally upper-bounded by√
d
2 for even dimensions and

( 1
d−1 +

1
d+1

)− 1
2 for odd dimensions [PG+06].

The polar decomposition of the unital matrix M generally splits it into two nonphysical con-
stituents. Essentially, the unitary factor of M (R ∈ O(d2 − 1) s.t. R−1M ≥ 0) can’t generally

9An error channel simply refers to a channel with identity target I .
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be interpreted as a physically meaningful unitary operation. To see this, consider the follow-
ing canonical Kraus decomposition:

A1 =

 cos(α) 0 0
0 cos(α/2)eiα3/2 0
0 0 cos(α/2)e−iα3/2

 ;

A2 =

 sin(α) 0 0
0 − sin(α/2)ei(α+α3/2) 0
0 0 − sin(α/2)e−i(α+α3/2)

 . (4.29)

The spectrum of the associated unital part M is a subset of the spectrum of A∗1 ⊗ A1 + A∗2 ⊗
A2 ∈ Md2(C) 10. By expanding up to order α4, it is straightforward to show that the phase
factors of M are all ≈ 1 except for a single conjugate pair φ± ≈ exp(±i3α3/2). This single
pair can’t be factored into any unitary process since any non-trivial V∗ ⊗V contains at least
two conjugate pairs. Hence, trying to cancel the rotating component of the spiraling action
(see fig. 4.1) induced on ~v± by φ± would merely relocate the spiraling motion on an other
pair of eigenvectors ~v′± (or on multiple other pairs). To put it simply, spiraling is inherent
to some decoherent processes. To explicitly show this, we constructed an example in which
the rotation factors in the spirals couldn’t be accounted for by any physical unitary (without
creating more spirals).

Separating a quantum channel A into a composition of a physical unitary V and a deco-
herent operation D (i.e. A = V ◦ D or A = D ◦ V) demands a more careful surgery. If one
were to allocate too many rotating components to the unitary factor, V may fail to remain
physical; on the other hand, allocating too little unitary action to V may leave the allegedly
decoherent factor D with some physically reversible motion. In fact, depending on the defi-
nition of decoherence, it is not even clear if such surgery is even possible. Here, we propose
a definition of decoherence which can be used to easily decompose any non-catastrophic
quantum channel into a composition of a unitary channel with a decoherent one.

10 A∗1 ⊗ A1 + A∗2 ⊗ A2 is the matrix acting on the column-vectorized density matrices, and has an extra eigen-
value of 1 due the TP condition. Here the star ∗ denotes the complex conjugation, which is not to be confused
with the star ? used for the LK approximation.

FIGURE 4.1: Representation of the spiraling ac-
tion of a normal matrix acting on a 2 × 2 sub-
space. The polar decomposition, in this case,
separates the azimuthal and radial components
of the action. Quantum dynamics on d > 2 can
generate spiraling actions on the Bloch space for
which the rotation factor can’t be interpreted as
a physical unitary operation. In this sense, spi-
raling, despite generating some rotating action,

is inherent to some decoherent dynamics.

54



Consider a channel A. Its LK operator A1 ∈ Md(C) can be factored into a d× d unitary
component U multiplied with a positive semi-definite contraction 0 < |A1| ≤ Id, i.e. A1 =
V|A1|. This polar decomposition provides a geometric understanding of the range of action
of LK approximated channels on the space of quantum states. The absence of phase factors
in the spectrum of |A1|motivates the following definition:

Definition 6: decoherent channel

A non-catastrophic channel A is said to be decoherent if its LK operator is positive
semi-definite:

A1 ≥ 0 . (4.30)

From this definition immediately follows a unitary-decoherent decomposition for quan-
tum channels:

Theorem 9: a polar decomposition for quantum channels

Any non-catastrophic quantum channel A can be expressed as a composition of a
unitary channel V with an decoherent channel D = V† ◦ A (or D′ = A ◦ V†):

A = V ◦ D , (4.31a)
A = D′ ◦ V . (4.31b)

In terms of LK approximation, we have:

A?(ρ) = A1ρA†
1 = V|A1|ρ|A1|†V† , (4.32a)

D?(ρ) = |A1|ρ|A1|† , (4.32b)

D′?(ρ) = V|A1|V† ρ V|A1|†V† . (4.32c)

Proof. Under the composition V† ◦A, the canonical Kraus operators {Ai} ofA are mapped to
{V† Ai}, since it preserves their orthonormality. Given the polar decomposition A1 = V|A1|,
it follows that the LK operator of V† ◦ A is positive semi-definite.

4.6.2 The dynamics induced from decoherent channels as infinitesimal genera-
tors

While the proof of theorem 9 nearly trivially follows from definition 6, it remains to show
that decoherent channels as we defined them deserve such an appellation. An interesting
angle to initially justify our definition of decoherence is to observe its contribution in the
Gorini—Kossakowski-–Sudarshan—Lindblad (GKSL) equation [Lin76; GKS76]. Consider a
time evolution dictated by instantaneous CPTP channels11 with (possibly time-dependent)
canonical Kraus operators {Ak(t, dt)}:

ρ(t + dt) = ∑
k

Ak(t, dt)ρ(t)A†
k(t, dt) . (4.33)

11This corresponds to the well-known Markovian regime.
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Since dt is infinitesimal, the instantaneous LK operator A1(t, dt) must be close to I, and can
be expressed as

A1(t, dt) = exp (−iH(t)dt− P(t)dt)

= I− iH(t)dt− P(t)dt + O(dt2) , (4.34)

where H(t) is Hermitian and P(t) is positive semi-definite. The TP condition can be ex-
pressed as

∑
k

A†
k(t, dt)Ak(t, dt) = I, (4.35)

which combined with eq. (4.34) yields

P(t)dt =
1
2 ∑

k 6=1
A†

k(t, dt)Ak(t, dt) + O(dt2). (4.36)

This enforces the remaining instantaneous Kraus operators Ak 6=1(t, dt) to scale as
√

dt, and
leaves us with

d
dt

ρ(t) = −i [H(t), ρ(t)] + ∑
k 6=1

Lk(t)ρ(t)L†
k(t)−

1
2

{
∑
k 6=1

L†
k(t)Lk(t), ρ(t)

}
, (4.37)

where

Lk(t) := lim
dt→0

Ak(t, dt)√
dt

, (4.38)

and [A, B] := AB − BA, {A, B} := AB + BA are respectively the well-known commuta-
tor and anticommutator. The fact that {Ak(t, dt)} are canonical (hence orthogonal) at every
moment in time implies that

〈
A1(t, dt), Ak 6=1(t, dt)

〉
= 0, which by using eq. (4.34) results in

Tr Ak 6=1(t, dt) = −idt Tr H(t)Ak 6=1(t, dt) + dt Tr P(t)Ak 6=1(t, dt) + O(dt2
√

dt) . (4.39)

This together with eq. (4.38) implies that

Tr Lk(t) = 0 . (4.40)

Notice that the Lindblad operators featuring in a master equation generally do not have
a zero trace, but since the master eq. (4.37) is derived from instantaneous canonical Kraus
operators, they do. That is, for every GKSL master equation, there exists an alternate one,
giving rise to the same dynamics, for which the Lindblad operators have a zero trace. This
is an important feature for what follows. Let’s re-express eq. (4.37) as a differential equation
acting on the column-vectorized states, col(ρ).
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Using the property col(ABC) = CT ⊗ A col(B), we have

d
dt

col(ρ(t)) =

[
−i
(

I⊗ H(t)− HT(t)⊗ I
)

︸ ︷︷ ︸
i

−1
2 ∑

k 6=1

(
I⊗ L†

k(t)Lk(t) + (L†
k(t)Lk(t))T ⊗ I

)
︸ ︷︷ ︸

ii

+ ∑
k 6=1

L∗k (t)⊗ Lk(t)︸ ︷︷ ︸
iii

]
col(ρ(t)) . (4.41)

A quick calculation suffices to show that the three indicated terms are mutually orthogonal.
This means that their respective actions have no overlap. The first term should be familiar
as it corresponds to the generator of unitary evolution. The remaining two terms are often
referred to as the relaxation or decoherent part of the Lindbladian [EBW87; Hav03]. This in-
tegrates well with our notion of decoherence since the instantaneous channels are decoherent
if and only if the Hamiltonian is null at every moment in time:

exp (−iH(t)dt− P(t)dt) ≥ 0⇔ H(t) = 0 . (4.42)

To formulate it otherwise, the Lindbladian consists solely of a decoherent part orthogonal
to any commutator if and only if the instantaneous channels are decoherent. An additional
interesting remark is that the LK approximation applied to the instantaneous channels essen-
tially eliminates the term iii, leaving only the commutator (term i) and the anticommutator
(term ii). In particular, the master equation with LK approximated instantaneous decoherent
channels consists of an anticommutator only:

d
dt

ρ(t) = −{P(t), ρ(t)} . (4.43)

When considered as infinitesimal perturbations from the identity, the channels that we re-
fer to as “decoherent” correspond to the generators of the familiar class of decoherent master
equations. While our notion of decoherence connects with previous physics literature in the
infinitesimal case, it remains to show that our definition is also appropriate without taking
such limit.

4.6.3 Further justifying our notion of decoherence

Typically, quantum error channels are said to act decoherently if they exhibit a non-reversible
deterioration. In turn, coherent error channels correspond to a mishandling of information -
which can in principle be reverted - rather than a loss of information. An additional expected
property of decoherent operations is that they shouldn’t allow for coherent buildups such as
in the case accumulating over-rotations. Given m non-catastrophic unitary channels Vi ≈ I
with

Vi =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, (4.44)
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the infidelity grows faster than linearly (let the composition Vm:1 be non-catastrophic so that
mθ ≤ π/4) [CWE16]:

1−
√

Φ(Vm:1, I) = 1− cos (mθi) ≥ m (1− cos(θ)) = ∑
i

(
1−

√
Φ(Vi, I)

)
. (4.45)

As an intuitive pair of properties of our decoherent channels, we show that

i. The average process fidelity of decoherent error channels cannot be substantially re-
covered by any unitary (quasi-monotonicity).

ii. The evolution of the infidelity of a circuit composed of decoherent operations is (ap-
proximately) at most additive in the individual infidelities. There is no substantial
coherent buildup.

Theorem 10: two features of decoherence

Consider m non-catastrophic decoherent channels Di and any non-catastrophic uni-
tary channel V . Then,

Φ(V ◦ Dm:1, I) ≤ min
i

Φ(Di, I)

+
1
2

(
m

∑
i=1

(1− Υ(D?
i ))

)2

+ (1−Φ(V ◦ D?
m:1, I))

m

∑
i=1

(1− Υ(D?
i ))

(Quasi-monotonicity)

1−Φ(V ◦ Dm:1, I) ≤ (1−Φ(V , I)) +
m

∑
i=1

(1−Φ(Di, I))

+ (1−Φ(V , I))2 +
m

∑
i=1

(1−Φ(D?
i , I))2

+
m

∑
i=1

(1−Φ(Di, I))(1− Υ2(Di))

(Quasi-subadditivity property)

4.7 Behavioral signatures of coherence and decoherence

The introduction in the previous section of the dichotomy between coherence and deco-
herence, together with the demonstration of a polar decomposition for quantum channels
wasn’t void of ulterior motives. In this section, we leverage the intrinsic differences between
coherent and decoherent channels to explore the behavior of the average process fidelity and
the unitarity as circuits grow in depth. Before we begin such investigation, however, let’s
first make a side step to define various classes of operations which will harmonize with our
notion of decoherence.
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4.7.1 Extremal dephasers, extremal unitaries, and equable error channels

The non-catastrophic condition still leaves room for pathological noise scenarios. We high-
light two extreme (unrealistic) types of channel; the first is of decoherent nature, and the
second is purely unitary.

Extremal dephasers

For a channel A to be non-catastrophic, the singular values of its LK operator σi(A1) must
nearly average to 1, but nothing else constrains their distribution. Consider a 10-qubit error
A that essentially acts as identity on all operators in Md(C), but cancels any phase between
|0〉 and |i〉 for i 6= 0 (that is, |0〉〈i|, |i〉〈0| → 0 for i 6= 0). It is easily shown that the LK operator
is A1 = ∑i 6=0 |i〉〈i|; this is an instance of what we call an “extremal dephaser”. An extremal
dephaser is defined as a channel for which there exists a singular value σj ∈ {σi(A1)} (in our
example, it is σ0 = 0) that deviates from 1 by much more than the average perturbation:

1− σj � 1−Ei[σi] . (4.47)

To obey eq. (4.47), channels must involve excessively strong12 dephasing mechanisms be-
tween a small number of states and the rest of the system13. Let’s come back to our example:
a quick calculation shows that A has an infidelity of around O(2−10) = O(10−3): extremal
dephasers can have a high average fidelity; they are not ruled out by the non-catastrophic
assumption. However, based on realistic grounds, one might discard such scenarios by as-
suming that the perturbations of the singular values |1− σj| remain comparable to the aver-
age perturbation E[1− σi(A1)]. Indeed, most physically motivated noise mechanisms – such
as unitary, amplitude damping and stochastic channels14 – perturb the singular values of A1
in a rather homogeneous way (see table 4.1).

Extremal unitaries

The same argument that was made about the singular values of A1 = V|A1| , which are the
eigenvalues of its positive semidefinite factor |A1|, can be made for the eigenvalues of the
unitary factor V. To mimic our previous example, consider a 10-qubit unitary error V that
essentially acts as identity on operators in Md(C), but maps |0〉〈i| → −|0〉〈i| |i〉〈0| → −|i〉〈0|
for i 6= 0. It is easily shown that the LK operator is V = −|0〉〈0| + ∑i 6=0 |i〉〈i|; this is an
instance of what we call an “extremal unitary”. An extremal unitary is defined as a unitary
error V for which there exists an eigenvalue λj ∈ {λi(V)} (in our example, it is λ0 = −1)
that deviates from 1 by much more than the average perturbation. An easy way to make this
precise is to fix the phase of V such that Tr V ∈ R+, and project the eigenvalues on the real

12Relative to other decoherent mechanisms.
13This is entirely different than: “excessively strong dephasing mechanisms between a small subsystem and the

rest of the system”, which we already discarded through the non-catastrophic assumption.
14A stochastic channel has (up to constant factors) unitary operations as canonical Kraus operators and has

a LK operator proportional to the identity. Examples of orthogonal unitary bases include the Heisenberg-Weyl
operators, and the n-fold tensor product of Paulis. Standard dephasing channels are a special case of stochastic
channels were the unitaries are simultaneously diagonalizable (i.e. they all commute).
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axis (this is easy to picture on an Argand diagram):

1− Re{λj} � 1−Ei[Re{λi}] = 1− Tr V/d. (4.48)

To obey eq. (4.48), the unitary error must result from a strong alteration made to the targeted
Hamiltonian. Indeed, as a simple Taylor expansion can confirm, small perturbations from the
intended Hamiltonian cannot yield an extremal unitary error. Just as for extremal dephasers,
extremal unitaries can have a high average fidelity, yet can be reasonably discarded. The
perturbations 1 − Re{λi} are expected to be comparable to the average perturbation 1 −
Ei[Re{λi}] (here, Tr V ∈ R+).

0.996

0.998

1.000

0 200 400 600 800 1000
0.950

0.955

0.960
Extreme
deviations

0.0 0.2 0.4 0.6 0.8 1.0

Index labels, i

0.0

0.2

0.4

0.6

0.8

1.0

S
in

gu
la

r
va

lu
es
σ
i(
A

1
)

FIGURE 4.2: Singular values σi – plotted as purple circles – of the 103 × 103

LK operator A1 of an extremal dephaser A. The dashed line corresponds to
the average Ei[σi] = 0.9989(1). The green shaded region covers a standard
deviation SD[σi] = 0.0032(1) below the average. In this example, the standard
deviation is roughly three times greater that the average deviation 1−Ei[σi] =
0.0011(1); that is, the WSE decoherence constant (see definition 7) is γdecoh =

3.0(1), which is an order of magnitude smaller than 1/
√

E[1− σi] = 30.7(1).
From eq. (4.53), A is equable in the wide-sense. There are five singular values
situated around 0.955, meaning that 1− σj can be more than forty times larger
that the average deviation (i.e. Γdecoh = 41(1)). While these extreme deviations
are excluded by the equability condition, their small impact on the standard

deviation allows A to be WSE.
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Equable error channels

In this paper, we qualify as “equable” the non-catastrophic error channels A = V ◦ D for
which the factors D and V are not extremal. Notice that the equability assumption ensures a
unique polar decomposition since the LK operator is guaranteed to be full rank.

While ruling out extremal error channels seems reasonable, we also define a weaker con-
dition based on the variance of the perturbations.

Definition 7: Equable error channels

Consider a non-catastrophic error channel A = V ◦ D with LK operator A1 = V|A1|.
Let {σi} be the singular values of A1 and {λi} be the eigenvalues of V for which
the phase is fixed such that Tr V ∈ R+. We define the strict-sense equability (SSE)
decoherence and coherence constants Γdecoh, Γcoh as:

1−min
j

σj = ΓdecohE[1− σi] , (4.49a)

1−min
j

Re{λj} = ΓcohE[1− Re{λi}] . (4.49b)

A non-catastrophic error channel is said to be equable (in the strict sense) if

Γdecoh � 1/
√

E[1− σi] , (4.50)

Γcoh � 1/
√

E[1− Re{λi}] . (4.51)

Analogously, we define the wide-sense equability (WSE) decoherence and coherence
constants γdecoh, γcoh as:

SD[σi] = γdecohE[1− σi] , (4.52a)
SD[Re{λi}] = γcohE[1− Re{λi}] , (4.52b)

where SD denotes the standard deviation. A non-catastrophic error channel is said to
be equable in the wide sense if

γdecoh � 1/
√

E[1− σi] , (4.53)

γcoh � 1/
√

E[1− Re{λi}] . (4.54)

First notice that ruling out extremal errors is directly imposed by the equability condition
(in the strict sense). Obviously, equability implies wide-sense equability, since by construc-
tion

γcoh ≤ Γcoh , (4.55a)
γdecoh ≤ Γdecoh . (4.55b)

Of course, the converse doesn’t hold (see fig. 4.2 for an example), although such pathological
cases must involve extremal channels. The motivation behind the weaker definition is not
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physical, but mathematical. The results exhibited in theorems 11 to 15 solely rely on the WSE
constants rather than on the realistically slightly larger SSE constants.

Error channel Type of error LK operator
Coherence level,

rcoh/r
Depolarizing Decoherent, SSE A1 ∝ I O(r)
Standard dephasing Decoherent, SSE A1 ∝ I O(r)
Stochastic Decoherent, SSE A1 ∝ I O(r)

Amplitude damping
Decoherent,

realistically SSE
A1 ≥ 0 O(r)

Unitary
Coherent, realistically

SSE
A1 = V 1

General SSE
Contains a coherent

and decoherent factor
A1 = V|A1| d2−|Tr V|2

d2−|Tr A1|2
+ O(r)

TABLE 4.1: Categorization of different well-known error channels. Many
canonical error mechanisms fall under the “decoherent” appellation, except
for unitary errors, of course. The coherence level is negligible for decoherent
channels, and 1 for coherent errors. In the intermediate regime, the coherence
level can vary between 0 and 1. It only makes sense to discuss about the co-

herence level when errors are equable (at least in the wide sense).

4.7.2 Reasoning about Υ

Now that we have defined (wide-sense) equable errors, we are ready to express a first decay
law:
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Theorem 11: unitarity decay law

Consider m non-catastrophic channelsAi. Then Υ(Am:1) has the following properties:

Υ(Am:1) ≤ min
i

Υ(Ai) + (1− Υ2(Am:1))
2/
√

2 (Quasi-monotonicity)

1− Υ(Am:1) ≤
m

∑
i=1

(1− Υ(Ai)) + (1− Υ2(Ai))
2 (Quasi-subadditivity property)

The quasi-monotonicity is almost saturated by extremal channels. If we introduce the
WSE decoherence constants γdecoh(Ai) ≤ γdecoh, we obtain:∣∣∣∣∣Υ(Am:1)−∏

i
Υ(Ai)

∣∣∣∣∣ ≤ (1− Υ(A?
m:1))

2 +
m

∑
j=1

(1− Υ(A?
j ))

2

+ γ2
decoh

m

∑
i=1

(
1−

√
Υ(A?

i )

)2

+ 2γ2
decoh

(
m

∑
i=1

(
1−

√
Υ(A?

i )

))2

+ H.O.T. (4.56)

If the channels are equable, Υ(Am:1) is essentially a multiplicative decay.

Of course, those results can be immediately translated in terms of unitarity by using
eq. (4.14). Without using the LK approximation, showing the monotonicity of the unitarity
can be difficult, since quantum channels aren’t contractive maps; going to the LK picture
fixes this issue since Kraus operators are contractions. Quasi-multiplicativity is another way
of stating that the unitarity of a composition essentially behaves as a multiplicative decay
involving the unitarity of individual components:

u(Am:1) ≈
d2 ∏m

i=1 Υ2(Ai)− 1
d2 − 1

. (4.57)

Equation (4.57) should be seen as a staple of wide-sense equability; deviations from this
behavior indicates the presence of extremal dephasers.

The quasi-multiplicativity of Υ is not the only decay law that occurs in the equable sce-
nario. Recall that to motivate our definition of decoherence, we initially showed the quasi-
monotonicity and quasi-subadditivity property of the process fidelity of decoherent compo-
sitions (theorem 10). By introducing the equability condition we get a stronger assertion:
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Theorem 12: fidelity decay law (for decoherent compositions)

Consider m non-catastrophic, decoherent channels Di (with target I) with WSE deco-
herence constants γdecoh(Di) ≤ γdecoh. Then, Φ(Dm:1, I) is bounded as follows:∣∣∣∣∣Φ(Dm:1, I)−

m

∏
i=1

Φ(Di, I)
∣∣∣∣∣ ≤

[
1
2

(
m

∑
i=1

(1− Υ(D?
i ))

)2

+ (1−Φ(D?
m:1, I))

m

∑
i=1

(1− Υ(D?
i )) +

m

∑
i=1

(1− Υ(D?
i )) (1−Φ(Di, I))

+ γ2
decoh

m

∏
i=1

√
Φ(D?

i , I)
(

m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2 ]

+ H.O.T. (4.58)

If the channels are WSE, Φ(Dm:1, I) is essentially a multiplicative decay.

Using the simple relation between F and Φ (eq. (4.9)) we come to this observation: the
average gate fidelity of a composition of non-catastrophic decoherent equable channels be-
haves almost exactly as a multiplicative decay in the average process fidelity of individual
components, that is

F(Dm:1, I) ≈ d ∏m
i=1 Φ(Di, I) + 1

d + 1
. (4.59)

The decay becomes exact with the depolarizing channel Pp(ρ) = pρ + (1 − p)(Tr ρ)Id/d,
which is a celebrated example of a decoherent operation.

The two decay laws expressed in theorems 11 and 12 are in fact describing the same
observation. Let A have an equable error and a polar decomposition V ◦ D. As shown in
the following theorem, Υ(A) can be interpreted as the maximal process fidelity of A to the
target U under unitary corrections, or equivalently as the process fidelity of the decoherent
factor D to the identity:

Υ(A) ≈ Φ(D, I) ≈ max
W∈SU(d)

Φ(W ◦A,U ) . (4.60)
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Theorem 13: Υ as the process fidelity of the decoherent factor

Consider a non-catastrophic channel A = V ◦ D with unitary target U . Then, the
maximal unitary correction of A (in terms of Φ) is approximately bounded by the
interval

[
Υ2(A), Υ(A)

]
:

max
W∈SU(d)

Φ(W ◦A,U ) ≤ Υ(A) + 3
2
(1− Υ2(A))2 , (4.61a)

max
W∈SU(d)

Φ(W ◦A,U ) ≥ Υ2(A)− (1− Υ2(A))2 . (4.61b)

Moreover, if we introduce the WSE decoherence constant γdecoh, we obtain:

max
W∈SU(d)

Φ(W ◦A,U ) ≥ Υ(A)− (1 + γ2
decoh)

(
1− Υ2(A)

)2
. (4.62)

A quasi-maximal choice of unitary correction consists inW = U ◦ V†.

In terms of other figures of merit, wide-sense equability ensures a quasi-one-to-one cor-
respondence between the maximal average gate fidelity (through a unitary correction) and
the unitarity through:

max
W∈SU(d)

F(W ◦A,U ) ≈ F(D, I) ≈
√
(d2 − 1)u(A) + 1 + 1

d + 1
. (4.63)

4.7.3 The coherence level

Let’s extend theorem 12 by appending a coherent operation to the decoherent composition:

Theorem 14: the average process fidelity of equable compositions

Consider m non-catastrophic, decoherent error channels Di (with target I) with WSE
decoherence constants γdecoh(Di) ≤ γdecoh. Moreover, consider a non-catastrophic
unitary error channel V with WSE coherence constant γcoh. Then, Φ(V ◦ Dm:1, I) is
bounded as follows:∣∣∣∣∣Φ(V ◦ Dm:1, I)−Φ(V , I)

m

∏
i=1

Φ(Di, I)
∣∣∣∣∣ ≤

[
1
2

(
m

∑
i=1

(1− Υ(D?
i ))

)2

+ (1−Φ(V ◦ D?
m:1, I))

m

∑
i=1

(1− Υ(D?
i )) +

m

∑
i=1

(1− Υ(D?
i )) (1−Φ(Di, I))

+ 2γdecohγcoh

(
1−

√
Φ(V , I)

) m

∑
i=1

(
1−

√
Φ(D?

i , I)
)

+ γ2
decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2 ]

+ H.O.T. (4.64)

If the errors are WSE, then Φ(V ◦ Dm:1, I) is essentially multiplicative.
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Let’s unfold this result one step at a time. First, consider eq. (4.64) for m = 1. Let A be
a channel with target U and polar decomposition V ◦ D. W := U−1 ◦ V is a unitary error.
Hence, it follows from theorems 13 and 14 that

Φ(A,U ) = Φ(W ◦D, I) thm.8≈ Φ(W , I)Φ(D, I) = Φ(V ,U )Φ(D, I) thm.7≈ Φ(V ,U )Υ(A) .
(4.65)

There are two factors that compound to the average process fidelity: Φ(V ,U ) relates to a
coherent contribution to the total infidelity, while Φ(D, I) ≈ Υ(A) depicts a decoherent one.
For those who are more familiar with the infidelity r(A,U ), eq. (4.65) can be reformulated
as15 (up to O(r2)):

r(A,U ) ≈ r(V ,U )︸ ︷︷ ︸
Coherent infidelity

+ r(D, I)︸ ︷︷ ︸
Decoherent infidelity

= rcoh + rdecoh . (4.66)

The channel average infidelity of a channel can be split into a sum of a coherent and de-
coherent terms (given equable errors). rdecoh is not substantially correctable through any
composition, and can be obtained from the unitarity alone:

rdecoh =
d−

√
(d2 − 1)u(A) + 1

d + 1
+ O(r2) =

d
d + 1

(1− Υ(A)) + O(r2) . (4.67)

rcoh can be corrected through a composition with a unitary (see theorem 13). Equation (4.66)
motivates the definition of coherence level as the fraction of the infidelity that is associated to
coherence. It can be obtained by combining the infidelity and the unitarity through:

rcoh

r
= 1− d−

√
(d2 − 1)u(A) + 1

(d + 1)r(A,U ) + O(r) =
1− Υ(A)

1−Φ(A,U ) + O(r) (4.68)

Similarly, the decoherence level is defined as rdecoh/r. Equation (4.66) strengthens the insight
behind the notion of coherence level introduced (under different appellations) in [Yang2019;
Fen+16]. In those previous works, the RHS of eq. (4.66) is generally depicted as a lower
bound on the infidelity, which can be reduced to rdecoh through a unitary correction. The
(approximate) equality – which is much more valuable since it provides an upper bound on
r – is shown for single qubit case in [Fen+16] using the polar decomposition of the action on
Bloch sphere. Here, we have shown the (approximate) equality (in the equable scenario) for
all dimensions using the polar decomposition of LK operators.

4.7.4 Bounding the worst and best case fidelity of a circuit

Now, let’s revisit theorem 14 for general circuit depth m. This will allow us to identify the
worst and best case fidelity of a circuit. Consider m channels Ai with target Ui and polar
decomposition Di ◦ Vi. The circuit Am:1 can be re-expressed as

Am:1 = Vm:1 ◦ (Vm:1)
† ◦ Dm ◦ Vm:1 ◦ · · · ◦ (V2:1) ◦ V†

1 ◦ D1 ◦ V1 = Vm:1 ◦ D′m:1 , (4.69)

15The transition from eq. (4.65) to eq. (4.66) simply involves using the approximation (1− δ1)(1− δ2) ≈ 1−
δ1 − δ2 for small δi.
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where D′k := (Vk:1)
† ◦ Dk ◦ Vk:1 are decoherent channels with the same fidelity as Dk. This

means that:

Φ(Am:1,Um:1)
thm.8≈ Φ(Vm:1,Um:1)

m

∏
i=1

Φ(Di, I)
thm.7≈ Φ(Vm:1,Um:1)

m

∏
i=1

Υ(Ai) . (4.70)

In this last expression, we clearly see that the evolution of Φ is factored into a decoherent
decay multiplied by a function Φ(Vm:1,Um:1) which captures the fidelity of a purely coherent
process. This is already an interesting realization: since the decoherent decay is fixed, all the
freedom in the evolution of the fidelity is contained in the coherent factors. An assessment
concerning the circuit’s average process fidelity must rely on a characterization of coherent
effects. Since we know that such effects are correctable through composition, we first get:

Theorem 15: maximal average process fidelity of channel compositions

Consider m non-catastrophic channels Ai with respective unitary targets Ui and polar
decompositions Ai = Vi ◦ Di. Let the WSE decoherence constants be γdecoh(Di) ≤
γdecoh. Then, the maximal unitary correction of the composition Am:1 is bounded as
follows:

max
W∈SU(d)

Φ(W ◦Am:1,Um:1)−
m

∏
i=1

Υ(Ai) ≤
[

1
2

(
m

∑
i=1

(1− Υ(A?
i ))

)2

+
m

∑
i=1

(1− Υ(A?
i ))

2

+

(
m

∑
i=1

(1− Υ(A?
i ))

)(
1−

m

∏
i=1

Υ(Ai)

)
+ 2γ2

decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2 ]

+ H.O.T.

(4.71a)

max
W∈SU(d)

Φ(W ◦Am:1,Um:1)−
m

∏
i=1

Υ(Ai) ≥
[
− γ2

decoh

m

∑
i=1

(
1−

√
Φ(D?

i , I)
)2

−
m

∑
i=1

(1− Υ(A?
i ))

2

−γ2
decoh

m

∏
i=1

√
Φ(D?

i , I)
(

m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2 ]

+ H.O.T. (4.71b)

For equable errors, the maximal unitary correction of the composition Am:1 is essen-
tially ∏m

i=1 Υ(Ai). A quasi-optimal choice of unitary correction isW = Um:1 ◦ (Vm:1)
†.

In short, the average gate fidelity of a composite circuit is upper bounded by a decaying
envelope which is closely prescribed by the decoherent factors of its individual components:

max
W∈SU(d)

F(W ◦Am:1,Um:1) ≈
d ∏m

i=1 Φ(Di, I) + 1
d + 1

≈ d ∏m
i=1 Υ(Ai) + 1

d + 1
. (4.72)

This unforgiving behavior harmonizes well with the more typical comprehension of deco-
herence as a limiting process.

To find the worst possible Φ(Am:1,Um:1), it suffices to use a lower bound for the coherent
factor Φ(Vm:1,Um:1). This is partially done in [CWE16], where the inequality

Φ(Vm:1,Um:1) ≥ cos2

(
m

∑
i=1

arccos
(√

Φ(Vi,Ui)

))
(4.73)
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is shown to be saturated in even dimensions. For odd dimensions, we find the following
saturated bound:

Φ(Vm:1,Um:1) ≥

 (d− 1) cos
(

∑m
i=1 arccos

(
d
√

Φ(Vi ,Ui)−1
d−1

))
+ 1

d


2

. (4.74)

Proof. The generalization to odd dimensions almost immediately follows by looking at the
saturation case in even dimensions, which consists of commuting unitary errors of the form(

cos(θi) − sin(θi)
sin(θi) cos(θi)

)
⊗ Id/2 . (4.75)

In the odd dimension case, it suffices to always pick the global phase to fix the first eigen-
value of Vm:1(Um:1)

−1 to 1. The minimization over |Tr Vm:1(Um:1)
−1| then falls back to the

even dimensional case, since the saturation case has a real trace.

By using Φ(Vi,Ui) ≈ Φ(Ai,Ui)/Υ(Ai) we can formulate a quasi-saturated assessment
about the average process fidelity of the circuit Am:1 given a partial information about its
components Ai (in the equable scenario).

For even dimensions:

cos2

(
m

∑
i=1

arccos

(√
Φ(Ai,Ui)

Υ(Ai)

))
m

∏
i=1

Υ(Ai) / Φ(Am:1,Um:1) /
m

∏
i=1

Υ(Ai) ; (4.76a)

for odd dimensions:
(d− 1) cos

∑m
i=1 arccos

 d
√

Φ(Ai ,Ui)
Υ(Ai)

−1

d−1

+ 1

d



2

m

∏
i=1

Υ(Ai) / Φ(Am:1,Um:1) /
m

∏
i=1

Υ(Ai) . (4.76b)

The terms in the cosine function are very close to what was defined as “coherence angles” in
[CWE16]. Their sum can be interpreted as a coherent buildup. In some sense, the coherence
angle is just another way to go about the notion of coherence level: it ties rcoh to an optimal
rotation angle.

4.7.5 Decoherence-limited operations

When individual circuit elements Ai have purely decoherent equable errors, the bounds
given by eqs. (4.76a) and (4.76b) reduce to the approximate equality Φ(Am:1,Um:1) ≈
∏i Υ(Ai). In fact, as long as the errors attached to the circuit elements Ai have a negligi-
ble level of coherence, Φ(Am:1,Um:1) is still expected to closely behave like a multiplicative
decay. More rigorously, by looking more attentively at eqs. (4.76a) and (4.76b), one should
quickly realize that requiring

Φ(Ai,Ui) = Υ(Ai) + O(r2(Ai,Ui)) (4.77)
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is sufficient to ensure

cos2

(
m

∑
i=1

arccos

(√
Φ(Ai,Ui)

Υ(Ai)

))
= 1 + O(r2(Am:1,Um:1)) , (4.78a)

and
(d− 1) cos

∑m
i=1 arccos

 d
√

Φ(Ai ,Ui)
Υ(Ai)

−1

d−1

+ 1

d



2

= 1 + O(r2(Am:1,Um:1)) . (4.78b)

A channel obeying the condition described by eq. (4.77) is said to be decoherence-limited. The
terminology is self-explanatory: a channel is decoherence-limited if the infidelity to its target
is mostly limited by its decoherent infidelity rdecoh, which cannot be (substantially) reduced
further through unitary corrections (see theorem 13). Decoherence-limited channels count
decoherent channels, but also include channels for which the infidelity of the coherent factor
plays a negligible role in the total infidelity, that is rcoh = O(r2) or, equivalently, rcoh/r =
O(r).

Decoherent channels do not form a closed set under composition; the product of two
positive semidefinite matrices is not necessarily positive semidefinite. The geometric pic-
ture is that if two positive semidefinite contractions have different axes of contraction, they
may induce (after composition) a small effective rotation. However, the small rotation fac-
tor resulting from such composition is ensured to be very close to the identity, otherwise
theorem 12 wouldn’t hold. More precisely, given two decoherent channels D1 and D2, the
composite channel D2:1 = V ◦ D′ is such that r(V , I) = O(r2(D′, I)). In other words, the
resulting channel is decoherence-limited. It is easy to see from eqs. (4.76a) and (4.76b) that
equable decoherence-limited channels form a closed set under composition; if the coherence
level of every channelAi in a circuit is of order r(Ai,Ui), then the coherence level of the total
circuit is of order r(Am:1,Um:1).

4.7.6 Limitations

In this section, we take a closer look at the bounds appearing in theorems 7, 8 and 11 to 15
and discuss their limitations. To parse through the expressions with more ease, consider
m channels Ai = Vi ◦ Di with identical decoherent infidelity r(Di, I) = rdecoh. From this
simplification, and by using Υ(Ai) ≈ Υ(A?

i ) ≈ Φ(D?
i , I) ≈ Φ(Di, I), which holds up to

order r2
decoh, the margin of freedom in the bounds presented in this work reduces to the

form16

C0 mr2
decoh + C1m2r2

decoh + C2 mrdecoh r(Vm:1, I) + H.O.T. , (4.79)

16Theorem 10 also contains a term of the form r2(Vm:1), but this term disappears in the equable regime.
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where Cis are non-negative constants at most of order 1 in the equable scenario. From theo-
rem 15, the total infidelity scales at most as:

r(Am:1, I) / 1−
d
(

1− d+1
d rdecoh

)m
+ 1

d + 1
= mrdecoh −

d + 1
2d

m2r2
decoh + H.O.T. , (4.80)

meaning that eq. (4.79) is always at most of order r2(Am:1, I). Hence, the bounds presented
in this work apply very well in the high-fidelity regime.

As the fidelity decreases, the leeway portrayed by eq. (4.79) starts being noticeable. The
appearance of quadratic terms of the form m2r2

decoh is not surprising since most bound-
ing techniques are based on the LK approximation, which ignores some m2r2

decoh contribu-
tions. To see this, consider m identical channels Ai with canonical Kraus decomposition
{
√

1− δI,
√

δP} where δ is small and P is a unitary such that P2 = I and Tr P = 0. Simple
calculations yield

Φ(A?
m:1, I) = (1− δ)m = 1−mδ +

1
2

m2δ2 + H.O.T. (4.81)

Φ(Am:1, I) =
bm/2c

∑
n=0

(
m
2n

)
(1− δ)m−2nδ2n = 1−mδ +

1
2

m2δ2 +

(
m
2

)
δ2 + H.O.T. (4.82)

The term 1
2 (∑i(1− Υ(A?

i )))
2 featured in the bound of theorem 8 is essentially achieved by

the above example. However, not all the m2r2
decoh terms appearing in the previous theorems

are expected to be achieved by a composition of quantum channels.
Figure 4.3 provides a good sense of the scaling of the bounds provided in theorem 14. In

the figure, the decoherent infidelity of individual operations is of order 10−4. The top figure
shows the bounds for circuit lengths around 102, in which case m2r2

decoh is of order 10−4. The
bottom figure shows the bounds for circuit lengths around 103, in which case m2r2

decoh is of
order 10−2. Once the circuit length m is comparable to r−1

decoh (in the example given by fig. 4.3,
it would be as m gets close to 104), the fidelity is no longer “small”, and O(m2r2

decoh) becomes
of order 1, which renders the bounds trivial. In other words, to gain anything valuable from
the bounds in this work, the regime of consideration should be roughly m2r2

decoh / 10−1

and mrdecohr(Vm:1, I) / 10−1. Notice that in such regime, as depicted by fig. 4.3, the only
non-linear behavior in the composite fidelity must stem from unitary errors alone.

4.8 Conclusion

In this work, we investigated a quasi-dynamical sub-parameterization of quantum channels
that we referred to as the LK approximation. A remarkable realization is that this reduced
picture still can be used to closely follow the evolution of two important figures of merit,
namely the average process fidelity and the unitarity (see theorems 7 and 8).

Working with a simplified portrait sets aside superfluous subtleties and typically grants
new mathematical properties to the object of consideration. In our case, LK approximated
mappings can be parameterized as contractions in Md(C); this set of matrices offers a much
more intelligible categorization of error scenarios than the more abstruse full process matrix
parameterization. Any matrix A ∈ Md(C) has a polar decomposition V|A| where |A| ≥ 0
and V is unitary. V corresponds to a purely coherent physical operation V(ρ) = VρV†,
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whereas the positive contraction |A| is the LK operator belonging to what we classify as a
decoherent channel (see definition 6). In a nutshell, the polar decomposition in Md(C) trans-
lates into a coherent-decoherent factorization for quantum channels (see theorem 9). We
leveraged this dichotomy between types of noise to derive fundamental principles of behav-
ior concerning our two considered figures of merit. Among other properties, we demon-
strated, up to high precision, the general monotonicity of the unitarity as well as the mono-
tonicity of the average process fidelity of circuits with decoherent components (see theo-
rems 10 and 11).

To pursue our analysis further, we introduced the wide-sense equable parameters
γdecoh, γcoh, which are defined through the LK parameterization (see definition 7). Equable
error channels, for which γdecoh, γcoh are not too high, include all realistic noise models (and
potentially more). Under the equability condition, we make multiple interesting connections
between individual channels and compositions thereof:

i. The infidelity of any channel can be decomposed into a sum of two terms: a decoherent
infidelity and a coherent one (respectively tied to the decoherent/coherent components
of the channel). (See theorem 14 and the discussion that immediately follows.)

ii. The unitarity, as well as the fidelity of circuits with decoherent elements, obey decay
laws. Both these decays are closely dictated by the unitarity of individual components
alone. (See theorems 11 to 13.)

iii. The decoherent decay (that is, the decay prescribed by the decoherent factors of the
circuit components) forms an upper bound to the total average process fidelity. Any
substantial deviation from this upper bound is due to coherent effects alone (which
gives us a lower bound). (See theorems 14 and 15.)

This work was primarily cast as a stepping-stone to formulate assessments about the per-
formance of circuits based on partial knowledge of their constituents. While we do provide
some assertion formulas, we want to emphasize that the more fundamental introduction
of the LK approximation should also benefit the development of further characterization
schemes. Indeed, the simple parameterization offered by the LK approximation facilitates
the identification of specific noise signatures.
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ful discussions. This research was supported by the U.S. Army Research Office through
grant W911NF-14-1-0103, TQT, CIFAR, the Government of Ontario, and the Government of
Canada through CFREF, NSERC and Industry Canada.
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FIGURE 4.3: Process fidelity of three different error channel compositions as
a function of the circuit length. The hard lines correspond to the three pro-
cess fidelities Φ(Am:1, I), and the dotted lines correspond to the bounds given
by theorem 14. The color map illustrates the margin of freedom given by the
RHS of eq. (4.64), and the gray shaded area in the bottom plot corresponds
to the limits of the top plot. In the top figure, shade variations indicate incre-
ments of 10−4, and in the bottom figure, increments of 10−2. The individual
channels are of the form Ai = V ◦ D, where D is a dephasing channel with
Φ(D, I) = 10−4, and V is a small unitary error. The dashed line is the decaying
envelope Φm(D, I). The three compositions differ by the level of coherence of
their elementsAi, which are 10%, 1% and 0.01%. The lowest level of coherence
corresponds to a decoherence-limited scenario, in which case the decoherent

envelope stays within the bounds.
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Concept Definition Notes

Non-catastrophic channel Φ(A,U ), Υ2(A) > 1/2
- Guarantees a unique LK operator.

- Achieved given an acceptable level of control.

LK operator, A1
Highest weight canonical

Kraus operator, A1

- Contains remarkable information about Φ,
Υ.

LK approximation, A? A?(ρ) = A1ρA†
1

- Replacing channels by their LK
approximation in a circuit barely affects its

fidelity and unitarity.

Decoherent channel A1 ≥ 0

- Every non-catastrophic channel has a
coherent-decoherent decomposition

A = UA ◦ DA = D′A ◦ UA.
- This definition of decoherence generalizes
the notion of decoherence in the Lindblad

picture.

Extremal dephaser
(channel)

∃ σj ∈ {σi(A1)} s.t.
1− σj � 1−E[σi]

- Strongly dephases a small set of states from
the rest of the system. Since the set of states
is small, extremal dephasers can still have

high fidelity.

Extremal unitary
(channel)

Let Tr U ∈ R+.
∃ λj ∈ {λi(U)} s.t.

1− Re{λj} �
1−E[Re{λi}]

- Strongly dephases a small set of states from
the rest of the system. Since the set of states
is small, extremal dephasers can still have

high fidelity.
WSE decoherence
constant, γdecoh

SD[σi] = γdecohE[1− σi] - For WSE channels, γdecoh � 1/
√

E[1− σi].

WSE coherence constant
γcoh of unitary error U

Let Tr U ∈ R+.
SD[Re{λi}] =

γcohE[1− Re{λi}]

- For WSE channels,
γcoh � 1/

√
E[1− Re{λi}].

Equable channel

Non-catastrophic, no
extremal errors
(dephasers and

unitaries).

- Excludes pathological behaviors
induced by extremal errors.

- Should apply to all realistic scenarios.
- Equable implies WSE.

Wide-sense equable
(WSE) channel

γdecoh � 1/
√

E[1− σi] ,
γcoh � 1/

√
E[1− Re{λi}].

- Ensures the quasi-correspondence:
Φ(DA, I) ≈ Υ(A) ≈ max

W∈SU(d)
Φ(W ◦A,U )

- Ensures the simple decay of the unitarity:
Υ(Am:1) ≈ ∏i Υ(Ai)

Average gate fidelity,
F(A,U ) EHaar f|ψ〉〈ψ|(A,U ) - Is the overlap between noisy and ideal

outputs averaged over all physical inputs.

Unitarity, u(A) EHaar
‖A(|ψ〉〈ψ|−I/d)‖2

2
‖|ψ〉〈ψ|−I/d‖2

2

- Is the average contraction factor of the
squared norm of the physical Bloch vectors.

Φ(A,U ) (d+1)F(A,U )−1
d

- For non-catastrophic channels,
Φ(Am:1,Um:1) ≈ Φ(A?

m:1,Um:1).
- For channels Ai = Vi ◦ Di with WSE errors,
Φ(Am:1,Um:1) ≈ Φ(Vm:1,Um:1)∏i Φ(Di, I) .

Υ2(A) (d2−1)u(A)+1
d2

- For non-catastrophic channels,
Υ(Am:1) ≈ Υ(A?

m:1).
- In the WSE scenario,
Υ(Am:1) ≈ ∏i Υ(Ai) .

Infidelity, r(A,U ) 1− F(A,U )
- For a channel A = V ◦ D, (with WSE error)

r = rcoh + rdecoh + O(r2) ,
where rcoh = r(V ,U ) and rdecoh = r(D, I).

Coherence level rcoh/r - Quantifies the proportion to which the
error is coherent.

Decoherence-limited
channel rcoh/r = O(r) - WSE decoherence-limited channels form a

closed set under composition.

TABLE 4.2: Summary of the main concepts addressed in this paper.
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4.9 Proofs

4.9.1 A noteworthy trace inequality

This subsection is dedicated to demonstrating a useful trace inequality.

Lemma 4: Noteworthy trace inequality

Let A, B ∈ Md(C) be Hermitian matrices with eigenvalues of at most ρA, ρB respec-
tively. Then,

Tr AB
d
≥ ρB

Tr A
d

+ ρA
Tr B

d
− ρAρB . (4.83)

Proof. We first show this inequality for positive semi-definite matrices with eigenvalues of at
most 1, under the condition that

d < bTr Ac+ bTr Bc+ 2 . (4.84)

In such case, the inner product is minimized by the sum of eigenvalues paired in opposite
order [WG93] (it’s a matrix equivalent to the Hardy-Littlewood rearrangement inequality):

Tr AB
d
≥ 1

d ∑
i

λ↑i (A)λ↓i (B) . (4.85)

This is in turn minimized when both {λi(A)} and {λi(B)} are maximized in terms of strong
majorization. Since the eigenvalues are between zero and 1, both majorizations have a simple
form:

λi(A) =


1 for i ≤ bTr Ac
Tr A− bTr Ac for i = bTr Ac+ 1
0 otherwise .

(4.86)

λi(B) =


1 for i ≤ bTr Bc
Tr B− bTr Bc for i = bTr Bc+ 1
0 otherwise .

(4.87)

With such spectrum and the condition d < bTr Ac+ bTr Bc+ 2, we are ensured that

1
d ∑

i
λ↑i (A)λ↓i (B) =

Tr A
d

+
Tr B

d
− 1 , (4.88)

which, together with eq. (4.85), yields eq. (4.83) in this simpler case.
Now, consider the general case of Hermitian matrices A, B with eigenvalues of at most

ρA, ρB respectively. Let A = (A + nAI)− nAI, B = (B + nBI)− nBI, for nA, nB ∈ R+, and
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consider the following expansion:

Tr AB
d

=
Tr(A + nAI)(B + nBI)

d
− nA

Tr(B + nBI)

d
− nB

Tr(A + nAI)

d
+ nAnB

= (ρA + nA)(ρB + nB)
Tr
(

A+nAI
ρA+nA

) (
B+nBI
ρB+nB

)
d

− nA
Tr B

d
− nB

Tr A
d
− nAnB (4.89)

Now, let’s pick nA, nB large enough so that

i. A + nAI, B + nBI ≥ 0 ,

ii. d < bTr
(

A+nAI
ρA+nA

)
c+ bTr

(
B+nBI
ρB+nB

)
c+ 2 .

For i we can simply pick nA ≥ min λ(A), nB ≥ min λ(B). To see why ii is also possible,
realize that

lim
nA→∞

⌊
Tr
(

A + nAI

ρA + nA

)⌋
= d , (4.90)

meaning that there exists a finite nA such that ii is fulfilled. Moreover, realize that the maxi-
mum eigenvalue of both A+nAI

ρA+nA
and B+nBI

ρB+nB
is upper-bounded by 1 by construction. Combin-

ing all this, we get

Tr
(

A+nAI
ρA+nA

) (
B+nBI
ρB+nB

)
d

≥
Tr
(

A+nAI
ρA+nA

)
d

+
Tr
(

B+nBI
ρB+nB

)
d

− 1 , (4.91)

since this corresponds to our initial simpler case. Substituting eq. (4.91) into eq. (4.89) and
simplifying, we get eq. (4.83) which completes the proof.

This inequality pairs well with the well-known Von-Neuman’s trace inequality, as when
Tr AB ≥ 0, lemma 4 provides a much better lower bound. To see this, consider the following
inequality which is trivially derived from Von’s Neumann’s trace inequality:

Lemma 5: Flavored Von Neumann’s trace inequality

Let A, B ∈ Md(C) be matrices with spectral radius of at most ρA, ρB respectively.
Then, ∣∣∣∣Tr AB

d

∣∣∣∣ ≤ min
(

ρB
Tr |A|

d
, ρA

Tr |B|
d

)
. (4.92)

Recalling that ‖A‖2
2 = Tr A† A and using those two last inequalities, we get the following

norm inequality:

Lemma 6: Norm inequality

Consider two matrices A, B with spectral radius of at most 1. Then,

‖A‖2
2

d
+
‖B‖2

2
d
− 1 ≤ ‖AB‖2

2
d

≤ min
(
‖A‖2

2
d

,
‖B‖2

2
d

)
. (4.93)
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4.9.2 Proofs of the main results

Notation and remarks

Before we start proving theorems 7 and 8, let’s introduce some handy notation. The ith canon-
ical Kraus operator of a channel Aj is denoted Aj

i . Let a ≥ b; we denote

Aa:b
~i

= Aa
ia−b+1

Aa−1
ia−b
· · · Ab+1

i2 Ab
i1 , (4.94)

where~i ∈Na−b+1 simply contains indices ik ∈ {1, · · · , d2}. Finally we denote~1 = (1, · · · , 1)
for which the dimension is left implicit.

Remark that the set {Am:1
~i
} consist of a valid Kraus decomposition for the composite

channel Am:1, and can be used to calculate Φ(Am:1,Um:1) and Υ(Am:1) through eqs. (4.10)
and (4.13) respectively. However, these Kraus operators are generally not orthogonal to one
another (this is not the canonical decomposition), which prevents the same proof technique
as in lemmas 2 and 3.

Proof of the evolution theorem 7

Proof. Using Hölder’s inequality, we get

Υ2(Am:1) = ∑
~i

(
‖Am:1

~i
‖2

2

d

)2

(4.95)

≤ max
~i

‖Am:1
~i
‖2

2

d ∑
~j

‖Am:1
~j
‖2

2

d
(Hölder ineq.)

= max
~i

‖Am:1
~i
‖2

2

d
. (TP condition)

One might have a (justified) hunch that argmax
~i

‖Am:1
~i
‖2

2
d =~1 in non-catastrophic noise scenar-

ios. To show this, consider~i with ik 6= 1 for some k ∈ {1, · · · , m}. Using the properties of
contractions, we have

‖Am:1
~i
‖2

2

d
≤
‖Ak

ik
‖2

2

d
(Contractions)

≤ 1− ‖Ak
1‖2

2
d

(TP condition)

< 1/2 . (Non-catastrophic)

Hence, if we suppose argmax
~i

‖Am:1
~i
‖2

2
d 6=~1, we have

Υ2(Am:1) < 1/2 , (4.96)
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which cannot be respected if the channel Am:1 is non-catastrophic. Hence, by contradiction
we have

Υ2(Am:1) ≤
‖Am:1

~1
‖2

2

d
= Υ(A?

m:1) . (4.97)

From there we get

Υ2(Am:1) =

(
‖Am:1

~1
‖2

2

d

)2

+ ∑
~i 6=~1

(
‖Am:1

~i
‖2

2

d

)2

≤ Υ2(A?
m:1) +

∑
~i 6=~1

‖Am:1
~i
‖2

2

d

2

= Υ2(A?
m:1) +

(
1−
‖Am:1

~1
‖2

2

d

)2

(TP condition)

= Υ2(A?
m:1) + (1− Υ(A?

m:1))
2 (4.98)

≤ Υ2(A?
m:1) +

(
1− Υ2(Am:1)

)2
. (Equation (4.97))

Proof of the evolution theorem 8

Proof. We will show that the inequality eq. (4.27) holds for m = 2n, ∀n ∈ N. This suffices
since if N < 2n, then we can append I2n−N:1 to the composition AN:1 so that AN:1 ◦ I2n−N:1
is a composition of length 2n. Appending I2n−N:1 has no effect on eq. (4.27).

From the definition of Φ, we have that Φ(Am:1,Um:1) − Φ(A?
m:1,Um:1) ≥ 0, so it only

remains to derive an upper bound on Φ(Am:1,Um:1)−Φ(A?
m:1,Um:1). Our approach will be

to split the sum as follows:

1
d2 ∑

~i 6=~1

∣∣∣〈Am:1
~i

, Um:1
〉∣∣∣2 =

1
d2 ∑

~i 6=~1

∣∣∣〈Am: m
2 +1

~i
A

m
2 :1
~1

, Um:1
〉∣∣∣2 + 1

d2 ∑
~j 6=~1

∣∣∣〈Am: m
2 +1

~1
A

m
2 :1
~j

, Um:1
〉∣∣∣2

+
1
d2 ∑

~i 6=~1
~j 6=~1

∣∣∣〈Am: m
2 +1

~i
A

m
2 :1
~j

, Um:1
〉∣∣∣2 . (4.99)
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The double sum (last term) can be bounded via Cauchy-Schwarz inequality followed by the
usage of lemma 6:

1
d2 ∑

~i 6=~1
~j 6=~1

∣∣∣〈Am: m
2 +1

~i
A

m
2 :1
~j

, Um:1
〉∣∣∣2 ≤ ∑

~i 6=~1
~j 6=~1

‖Am: m
2 +1

~i
‖2

2

d

‖A
m
2 :1
~j
‖2

2

d
(Cauchy-Schwarz ineq.)

≤

1−
‖Am: m

2 +1
~1

‖2
2

d

1−
‖A

m
2 :1
~1
‖2

2

d

 (TP condition)

≤

 m

∑
i=m

2 +1

(
1− ‖Ai

1‖2
2

d

)(m/2

∑
j=1

(
1−
‖Aj

1‖2
2

d

))
(Lemma 6)

≤

 m

∑
i=m

2 +1
(1− Υ(A?

i ))

(m/2

∑
j=1

(1− Υ(A?
j ))

)
. (4.100)

With regards to the first two terms on the RHS of eq. (4.99), let’s split them both into three
terms once again:

1
d2 ∑

~i 6=~1

∣∣∣〈Am: m
2 +1

~i
A

m
2 :1
~1

, Um:1
〉∣∣∣2 =

1
d2 ∑

~i 6=~1

∣∣∣∣〈Am: 3m
4 +1

~i
A

3m
4 :1

~1
, Um:1

〉∣∣∣∣2

+
1
d2 ∑

~i 6=~1

∣∣∣∣〈Am: 3m
4 +1

~1
A

3m
4 : m

2 +1
~j

A
m
2 :1
~1

, Um:1
〉∣∣∣∣2

+
1
d2 ∑

~i 6=~1
~j 6=~1

∣∣∣∣〈Am: 3m
4 +1

~i
A

3m
4 : m

2 +1
~j

A
m
2 :1
~1

, Um:1
〉∣∣∣∣2 . (4.101a)

1
d2 ∑

~i 6=~1

∣∣∣〈Am: m
2 +1

~1
A

m
2 :1
~i

, Um:1
〉∣∣∣2 =

1
d2 ∑

~i 6=~1

∣∣∣〈Am: m
2 +1

~1
A

m
2 : m

4 +1
~i

A
m
4 :1
~1

, Um:1
〉∣∣∣2

+
1
d2 ∑

~j 6=~1

∣∣∣〈Am: m
4 +1

~1
A

m
4 :1
~j

, Um:1
〉∣∣∣2

+
1
d2 ∑

~i 6=~1
~j 6=~1

∣∣∣〈Am: m
2 +1

~1
A

m
2 : m

4 +1
~i

A
m
4 :1
~j

, Um:1
〉∣∣∣2 . (4.101b)
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The double sums on the RHS of eqs. (4.101a) and (4.101b) can be upper bounded using the
same technique as earlier, which yields

1
d2 ∑

~i 6=~1
~j 6=~1

∣∣∣∣〈Am: 3m
4 +1

~i
A

3m
4 : m

2 +1
~j

A
m
2 :1
~1

, Um:1
〉∣∣∣∣2 + 1

d2 ∑
~i 6=~1
~j 6=~1

∣∣∣〈Am: m
2 +1

~1
A

m
2 : m

4 +1
~i

A
m
4 :1
~j

, Um:1
〉∣∣∣2

≤

 m

∑
i= 3m

4 +1

(1− Υ(A?
i ))

 3m/4

∑
j=m

2 +1
(1− Υ(A?

j ))

+

 m/2

∑
i=m

4 +1
(1− Υ(A?

i ))

(m/4

∑
j=1

(1− Υ(A?
j ))

)
.

(4.102)

By iterating the same subdivision technique, we end up with

1
d2 ∑

~i 6=~1

∣∣∣〈Am:1
~i

, Um:1
〉∣∣∣2 ≤ n

∑
i=1

2i−1

∑
j=1

 2n

2i (2
i−2j+2)

∑
k= 2n

2i (2
i−2j+1)+1

(1− Υ(A?
k ))


 2n

2i (2
i−2j+1)

∑
k= 2n

2i (2
i−2j)+1

(1− Υ(A?
k ))


+

1
d2

j=m

∑
j=1
i 6=1

∣∣∣〈Am:j+1
~1

Aj
i A

j−1:1
~1

, Um:1
〉∣∣∣2 (4.103)

Bounding the first term on the RHS can be done by alternating between the AM-GM inequal-
ity and square completions. First let’s perform the AM-GM inequality on the terms of the
summation restricted to i = n:

2n−1

∑
j=1

(1− Υ(A?
2n−2j+2))(1− Υ(A?

2n−2j+1)) ≤
1
4

2n−1

∑
j=1

(
2n−2j+2

∑
k=2n−2j+1

(1− Υ(A?
k ))

)2

. (4.104)

79



Then, let’s add in the terms with index i = n− 1 and complete the squares (taking n = 3 as
an example is recommended):

n

∑
i=n−1

2i−1

∑
j=1

 2n

2i (2
i−2j+2)

∑
k= 2n

2i (2
i−2j+1)+1

(1− Υ(A?
k ))


 2n

2i (2
i−2j+1)

∑
k= 2n

2i (2
i−2j)+1

(1− Υ(A?
k ))


≤ 1

4

2n−1

∑
j=1

(
2n−2j+2

∑
k=2n−2j+1

(1− Υ(A?
k ))

)2

+
2n−2

∑
j=1

 2(2n−1−2j+2)

∑
k=2(2n−1−2j+1)+1

(1− Υ(A?
k ))

 2(2n−1−2j+1)

∑
k=2(2n−1−2j)+1

(1− Υ(A?
k ))

 , (eq. (4.104))

≤ 1
4

2n−2

∑
j=1

 2(2n−1−2j+2)

∑
k=2(2n−1−2j)+1

(1− Υ(A?
k ))

2

+
1
2

2n−2

∑
j=1

 2(2n−1−2j+2)

∑
k=2(2n−1−2j+1)+1

(1− Υ(A?
k ))

 2(2n−1−2j+1)

∑
k=2(2n−1−2j)+1

(1− Υ(A?
k ))


(Square completions)

≤ 3
8

2n−2

∑
j=1

 2(2n−1−2j+2)

∑
k=2(2n−1−2j)+1

(1− Υ(A?
k ))

2

. (AM-GM ineq.)

Similarly, we can then add in the terms with index i = n− 2, complete the squares and use
the AM-GM inequality on the leftover summation:

n

∑
i=n−2

2i−1

∑
j=1

 2n

2i (2
i−2j+2)

∑
k= 2n

2i (2
i−2j+1)+1

(1− Υ(A?
k ))


 2n

2i (2
i−2j+1)

∑
k= 2n

2i (2
i−2j)+1

(1− Υ(A?
k ))


≤ 7

16

2n−3

∑
j=1

 4(2n−2−2j+2)

∑
k=4(2n−2−2j)+1

(1− Υ(A?
k ))

2

. (4.105)

Repeating this procedure until i = 1, we get

n

∑
i=1

2i−1

∑
j=1

 2n

2i (2
i−2j+2)

∑
k= 2n

2i (2
i−2j+1)+1

(1− Υ(A?
k ))


 2n

2i (2
i−2j+1)

∑
k= 2n

2i (2
i−2j)+1

(1− Υ(A?
k ))


≤
(

1
2
− 1

2n+1

)( m

∑
i=1

(1− Υ(A?
i ))

)2

. (4.106)
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The last term on the RHS of eq. (4.103) is upper-bounded using an alternate technique. First,
we get

j=m

∑
j=1
i 6=1

∣∣∣〈Am:j+1
~1

Aj
i A

j−1:1
~1

, Um:1
〉∣∣∣2

d2 =
j=m

∑
j=1
i 6=1

∣∣∣〈Am:j+1
~1

Aj
i A

j−1:1
~1

, Um:1
〉∣∣∣2 · ‖Aj

i‖2
2

d

≤ max
j

i 6=1

∣∣∣〈Am:j+1
~1

Aj
i A

j−1:1
~1

, Um:1
〉∣∣∣2
k=m

∑
k=1
` 6=1

‖Ak
`‖2

2
d


(Hölder’s ineq.)

= max
j

i 6=1

∣∣∣〈Aj
i , (Am:j+1

~1
)†Um:1(Aj−1:1

~1
)†
〉∣∣∣2 m

∑
k=1

(
1− ‖Ak

1‖2
2

d

)
(TP condition)

= max
j

i 6=1

∣∣∣〈Aj
i , (Am:j+1

~1
)†Um:1(Aj−1:1

~1
)†
〉∣∣∣2 m

∑
k=1

(1− Υ(A?
k )) .

(4.107)

For fixed j, {Aj
i} forms an orthonormal basis. Since ‖(Am:j+1

~1
)†Um:1(Aj−1:1

~1
)†‖2

2 ≤ 1 (contrac-
tions), we have that, for any j:

max
i 6=1

∣∣∣〈Aj
i , (Am:j+1

~1
)†Um:1(Aj−1:1

~1
)†
〉∣∣∣2 ≤ 1−

∣∣∣〈Am:j+1
~1

Aj
1Aj−1:1

~1
, Um:1

〉∣∣∣2
= 1−

∣∣∣〈Am:j+1
~1

Aj
1Aj−1:1

~1
, Um:1

〉∣∣∣2
d‖Aj

1‖2
2

= 1− Φ(A?
m:1,Um:1)

Υ(A?
j )

≤ 1−Φ(A?
m:1,Um:1) . (4.108)

Combining eqs. (4.103) and (4.106) to (4.108) yields

Φ(Am:1,Um:1)−Φ(A?
m:1,Um:1) ≤

(
1
2
− 1

2n+1

)( m

∑
i=1

(1− Υ(A?
i ))

)2

+ (1−Φ(A?
m:1,Um:1))

m

∑
i=1

(1− Υ(A?
i )) . (4.109)
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To obtain obtain a lower bound that doesn’t involve the LK approximation, we substitute
Φ(A?

m:1,Um:1) by its lower bound, and Υ(A?
i ) ≥ Υ2(Ai) (see eq. (4.97)):

Φ(Am:1,Um:1)−Φ(A?
m:1,Um:1)

≤ 1
2

(
m

∑
i=1

(1− Υ2(Ai))

)2

+ (1−Φ(Am:1,Um:1))
m

∑
i=1

(
1− Υ2(Ai)

)
+

1
2

(
m

∑
i=1

(1− Υ2(Ai))

)3

+ (1−Φ(A?
m:1,Um:1))

(
m

∑
i=1

(
1− Υ2(Ai)

))2

. (4.110)

Proof of theorem 12

The simplest route to prove theorems 11 to 14 is probably to start with the demonstration of
theorem 12.

Proof. Given m decoherent channels Di with respective LK operators Di
1, we first want to

bound the behavior of √
Φ(D?

m:1, I) =
Tr
(
|Dm

1 | · · · |D1
1|
)

d
(4.111)

as a function of the
√

Φ(D?
i , I)s. Let’s express the LK operators as |Di

1| =
√

Φ(D?
i , I)Id + ∆i,

and apply a telescopic expansion:

Tr
(
|Dm

1 | · · · |D1
1|
)

d
=

m

∏
i=1

√
Φ(D?

i , I) +
m

∑
j=1

Tr
(
|Dm

1 | · · · |D
j+1
1 |∆j

)
d

j−1

∏
i=1

√
Φ(D?

i , I)

(Telescopic sum)

=
m

∏
i=1

√
Φ(D?

i , I) +
(

m

∏
i=1

√
Φ(D?

i , I)
)

m

∑
j=1

Tr ∆j

d
/
√

Φ(D?
j , I)

+
m

∑
j=1

m

∑
k=j+1

Tr
(
|Dm

1 | · · · |D
k+1
1 |∆k∆j

)
d

k−1

∏
i=1
i 6=j

√
Φ(D?

i , I) .

(Telescopic sum, again)
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By construction, Tr ∆i = 0, which leaves us with

∣∣∣∣∣√Φ(D?
m:1, I)−

m

∏
i=1

√
Φ(D?

i , I)
∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
m

∑
j=1

m

∑
k=j+1

Tr
(
|Dm

1 | · · · |D
k+1
1 |∆k∆j

)
d

k−1

∏
i=1
i 6=j

√
Φ(D?

i , I)

∣∣∣∣∣∣∣
≤

m

∑
j=1

m

∑
k=j+1

∣∣∣∣∣∣
Tr
(
|Dm

1 | · · · |D
k+1
1 |∆k∆j

)
d

∣∣∣∣∣∣
k−1

∏
i=1
i 6=j

√
Φ(D?

i , I)

(Triangle ineq.)

≤
m

∑
j=1

m

∑
k=j+1

∣∣∣∣∣∣
Tr
(
|Dm

1 | · · · |D
k+1
1 |∆k∆j

)
d

∣∣∣∣∣∣ (Φ(D?
i , I) ≤ 1)

≤
m

∑
j=1

m

∑
k=j+1

‖|Dm
1 | · · · |D

k+1
1 |∆k‖2√

d

‖∆j‖2√
d

(Cauchy-Schwarz ineq.)

≤
m

∑
j=1

m

∑
k=j+1

‖∆k‖2√
d

‖∆j‖2√
d

(Contractions)

This is where definition 7 (equability) comes in handy, since it essentially states that ‖∆i‖2√
d

=

γdecoh(Di)
(

1−
√

Φ(D?
i , I)

)
. From there, we have∣∣∣∣∣√Φ(D?

m:1, I)−
m

∏
i=1

√
Φ(D?

i , I)
∣∣∣∣∣ ≤ γ2

decoh

m

∑
i=1

m

∑
j=i+1

(
1−

√
Φ(D?

j , I)
)(

1−
√

Φ(D?
i , I)

)
(4.112)

≤ γ2
decoh

m

∑
i=1

m

∑
j=i+1

(
1−

√
Φ(D?

j , I)
)(

1−
√

Φ(D?
i , I)

)

+
γ2

decoh
2

m

∑
i=1

(
1−

√
Φ(D?

j , I)
)2

(Adding a positive term)

=
γ2

decoh
2

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

(4.113)

A few straightforward algebraic manipulations on eq. (4.113) yield∣∣∣∣∣Φ(D?
m:1, I)−

m

∏
i=1

Φ(D?
i , I)

∣∣∣∣∣ ≤ γ2
decoh

m

∏
i=1

√
Φ(D?

i , I)
(

m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

+
γ4

decoh
4

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))4

. (4.114)
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Using a simple telescopic expansion and lemma 2 and theorem 8, we have

m

∏
i=1

Φ(Di, I)−
m

∏
i=1

Φ(D?
i , I) =

m

∑
j=1

(
m

∏
i=j+1

Φ(Di, I)
)(

Φ(Dj, I)−Φ(D?
j , I)

)( j−1

∏
i=1

Φ(D?
i , I)

)

≤
m

∑
i=1

(1− Υ(D?
i )) (1−Φ(Di, I)) . (4.115)

From the triangle inequality we have∣∣∣∣∣Φ(Dm:1, I)−
m

∏
i=1

Φ(Di, I)
∣∣∣∣∣ ≤ |Φ(Dm:1, I)−Φ(D?

m:1, I)|+
∣∣∣∣∣Φ(D?

m:1, I)−
m

∏
i=1

Φ(D?
i , I)

∣∣∣∣∣
+

∣∣∣∣∣ m

∏
i=1

Φ(D?
i , I)−

m

∏
i=1

Φ(Di, I)
∣∣∣∣∣ . (4.116)

Applying theorem 8 and eqs. (4.114) and (4.115) on the RHS yields eq. (4.58).

Proof of theorem 11

Proof. First, we derive an upper bound for Υ2(Am:1):

Υ2(Am:1) ≤ Υ2(A?
m:1) + (1− Υ(Astarm:1))

2 =

(‖Am:1
1 ‖2

2
d

)2

+ (1− Υ(A?
m:1))

2

(Theorem 7)

≤ min
i

(
‖Ai

1‖2
2

d

)2

+ (1− Υ(A?
m:1))

2 (Lemma 6)

≤ min
i

Υ2(Ai) + (1− Υ(A?
m:1))

2 . (Lemma 2)

Before taking the square root on each side, notice that for any ε ≤ 0, the non-catastrophic
condition enforces that

√
Υ2(Ai) + ε ≤ Υ(Ai) + ε/

√
2. Indeed, since Υ(Ai) > 1/

√
2,

1−
√

2Υ(Ai) < 0

⇒ε(1−
√

2Υ(Ai)− ε/2) < 0

⇒Υ2(Ai) + ε < Υ2(Ai) +
√

2εΥ(Ai) + ε2/2

⇒
√

Υ2(Ai) + ε < Υ(Ai) + ε/
√

2 . (4.117)

Hence,

Υ(Am:1) ≤ min
i

Υ(Ai) + (1− Υ(A?
m:1))

2/
√

2 , (4.118)

min
i

Υ(Ai) + (1− Υ2(Am:1))
2/
√

2 (4.119)
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which corresponds to the quasi-monotonicity statement. We then derive a lower bound on
Υ(Am:1):

1− Υ(Am:1) ≤ 1− Υ(A?
m:1) (Theorem 7)

= 1− ‖Am:1
1 ‖2

2
d

≤
m

∑
i=1

(
1− ‖Ai

1‖2
2

d

)
(Lemma 6)

≤
m

∑
i=1

(
1−

√
Υ2(Ai)− (1− Υ2(Ai))2

)
. (Lemma 2)

Direct computation suffices to show that for Υ(Ai) ∈ [2−1/2, 1],
√

Υ2(Ai)− (1− Υ2(Ai))2 ≤
Υ(Ai)− (1− Υ2(Ai))

2, hence

1− Υ(Am:1) ≤
m

∑
i=1

(1− Υ(Ai)) + (1− Υ2(Ai))
2 , (4.120)

which corresponds to the quasi-subadditivity property. To derive the approximate multi-
plicativity statement, let’s factor the decoherent channels into their (left) polar decomposition
Ai = Di ◦ Vi. By relabeling (Vi:1)

−1 ◦ Di ◦ Vi:1 = D′i , we have

Υ(A?
m:1) =

√
Φ(D′?1 · · · D′?mD′?m:1, I) . (4.121)

From definition 7, we have that Υ(A?
i )−Φ(D′?i , I) ≤ γ2

decoh

(
1−

√
Φ(D′?i , I)

)2
. We can use

a telescopic expansion to get

∏
i

Υ(A?
i )−∏

i
Φ(D′?i , I) =

m

∑
j=1

(
m

∏
i=j+1

Υ(A?
i )

)
(Υ(A?

i )−Φ(D′?i , I))
(

j−1

∏
i=1

Φ(D′?i , I)
)

(Telescopic sum)

≤ γ2
decoh

m

∑
j=1

(
m

∏
i=j+1

Υ(A?
i )

)(
1−

√
Φ(D′?i , I)

)2
(

j−1

∏
i=1

Φ(D′?i , I)
)

(4.122)

≤ γ2
decoh

m

∑
i=1

(
1−

√
Φ(D′?i , I)

)2

= γ2
decoh

m

∑
i=1

(
1−

√
Φ(D?

i , I)
)2

. (4.123)
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Using this, triangle inequality and eq. (4.112), we get∣∣∣∣∣Υ(A?
m:1)−∏

i
Υ(A?

i )

∣∣∣∣∣ ≤
∣∣∣∣∣√Φ(D′?1 · · · D′?mD′?m:1, I)−∏

i
Φ(D′?i , I)

∣∣∣∣∣
+

∣∣∣∣∣∏i
Φ(D′?i , I)−∏

i
Υ(A?

i )

∣∣∣∣∣ (Triangle ineq.)

≤ 4γ2
decoh

m

∑
i=1

m

∑
j=i+1

(1−
√

Φ(D′?j , I))(1−
√

Φ(D′?i , I))

+ 2γ2
decoh ∑

i

(
1−

√
Φ(D′?i , I)

)2

(Equations (4.112) and (4.123))

= 2γ2
decoh

(
m

∑
i=1

(
1−

√
Φ(D′?i , I)

))2

(Complete the square)

= 2γ2
decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

. (4.124)

Notice that a usage of theorem 7 allows to translate Υ(A?
m:1) into Υ(Am:1):

(1− Υ(A?
m:1))

2 ≥ Υ2(Am:1)− Υ2(A?
m:1) (Theorem 7)

= (Υ(Am:1)− Υ(A?
m:1)) (Υ(Am:1) + Υ(A?

m:1))

> Υ(Am:1)− Υ(A?
m:1) . (Non-catastrophic condition)

To remove the LK approximations from ∏i Υ(A?
i ), we use

∏
i

Υ(Ai)−∏
i

Υ(A?
i ) =

m

∑
j=1

m

∏
i=j+1

Υ(Ai)(Υ(Aj)− Υ(A?
j ))

j−1

∏
i=1

Υ(A?
i ) (4.125)

≤
m

∑
j=1

(Υ(Aj)− Υ(A?
j )) (4.126)

≤
m

∑
j=1

(1− Υ(A?
j ))

2 . (4.127)

Using the triangle inequality and eqs. (4.123), (4.124) and (4.127) and theorem 7 yields∣∣∣∣∣Υ(Am:1)−∏
i

Υ(Ai)

∣∣∣∣∣ ≤ (1− Υ(A?
m:1))

2 +
m

∑
j=1

(1− Υ(A?
j ))

2

+ γ2
decoh

m

∑
i=1

(
1−

√
Φ(D?

i , I)
)2

+ 2γ2
decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

(4.128)
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Invoking theorem 13 allows to naturally translates between Φ(D?
i , I) and Υ(Ai), which com-

pletes the proof.

Proof of theorem 13

Proof. Let σi be the singular values of the LK operator of A. The first part of the proof re-
volves around

E(σ2
i ) ≤ E(σi) ≤

√
E(σ2

i ) , (4.129)

which implies that

Υ2(A?) ≤ (E(σi))
2 ≤ Υ(A?) . (4.130)

First, let’s demonstrate the lower bound eq. (4.61b):

max
V∈SU(d)

Φ(V ◦ A,U ) ≥ max
V∈SU(d)

Φ(V ◦ A?,U ) (Theorem 8)

= (E(σi))
2 (4.131)

≥ Υ2(A?) (Equation (4.130))

≥ Υ2(A)− (1− Υ2(A))2 . (Lemma 2)

Demonstrating the upper bound eq. (4.61a) follows the same reasoning:

max
V∈SU(d)

Φ(V ◦ A,U ) ≤ Υ(A?) max
V∈SU(d)

Φ(V ◦ A?,U ) + (1− Υ(A?)) +
1
2
(1− Υ(A?))2

(Equation (4.109))

= Υ(A?) (E(σi))
2 + (1− Υ(A?)) +

1
2
(1− Υ(A?))2

≤ Υ2(A?) + (1− Υ(A?)) +
1
2
(1− Υ(A?))2 (Equation (4.130))

= Υ(A?) +
3
2
(1− Υ(A?))2

≤ Υ(A) + 3
2
(1− Υ2(A))2 . (Lemma 2 and eq. (4.97))

To tighten the lower bound at line 4.131, we may use the WSE decoherence constant:

(E(σi))
2 = Υ(A?)− γ2

decoh(1−E(σi))
2 (Equability)

≥ Υ(A?)− γ2
decoh(1− Υ(A?))2 (Equation (4.130))

≥ Υ(A)− (1− Υ(A?))2 − γ2
decoh(1− Υ(A?))2 (Lemma 2)

≥ Υ(A)− (1 + γ2
decoh)(1− Υ2(A))2 , ((Υ2(A) ≤ Υ(A?)))

which completes the proof.
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Proof of theorem 10

Proof. First, we derive an upper bound for Φ(V ◦ Dm:1, I):

Φ(V ◦ Dm:1, I) ≤ Φ(V ◦ D?
m:1, I)

+
1
2

(
m

∑
i=1

(1− Υ(D?
i ))

)2

+ (1−Φ(V ◦ D?
m:1, I))

m

∑
i=1

(1− Υ(D?
i )) .

(Theorem 8)

Using lemmas 3 and 5, we get (let Dj
i be the ith canonical Kraus operator of Dj)

Φ(V ◦ D?
m:1, I) ≤

∣∣∣∣∣Tr
(
V|Dm

1 | · · · |D1
1|
)

d

∣∣∣∣∣
2

≤ min
i

∣∣∣∣∣Tr |Di
1|

d

∣∣∣∣∣
2

(Lemma 5)

≤ min
i

Φ(Di, I) , (Lemma 3)

which yields the quasi-monotonicity statement. Now, we derive a lower bound for
Φ(V ◦ Dm:1, I):

1−
√

Φ(V ◦ Dm:1, I) ≤ 1−
√

Φ(V ◦ D?
m:1, I) (Theorem 8)

= 1−
∣∣∣∣∣Tr
(
V|Dm

1 | · · · |D1
1|
)

d

∣∣∣∣∣ (4.132)

At this point, it seems tempting to use lemma 4, but recall that V is generally not Hermitian.
However, we can get by as follows

1−
√

Φ(V ◦ Dm:1, I) ≤ 1−
∣∣∣∣∣Re

{
Tr
(
V|Dm

1 | · · · |D1
1|
)

d

}∣∣∣∣∣
= 1−

∣∣∣∣∣Tr
(
Re(V)|Dm

1 | · · · |D1
1|
)

d

∣∣∣∣∣ , (4.133)

where Re(V) := (V + V†)/2 is Hermitian, which allows us to use lemma 4:

1−
√

Φ(V ◦ Dm:1, I) ≤
(

1−
∣∣∣∣Tr Re(V)

d

∣∣∣∣)+
m

∑
i=1

(
1−

∣∣∣∣∣Tr |Di
1|

d

∣∣∣∣∣
)

(Lemma 4)

WOLOG, we pick the global phase of V such that
√

Φ(V , I) = Tr V/d ∈ R+. From there we
get

1−
√

Φ(V ◦ Dm:1, I) ≤
(

1−
√

Φ(V , I)
)
+

m

∑
i=1

(
1−

√
Φ(D?

i , I)
)

. (4.134)
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To remove the square roots and the star, let’s use 1− x/2− x2/2 ≤
√

1− x ≤ 1− x/2 for
x ∈ [0, 1] and lemma 3:

1−Φ(V ◦ Dm:1, I) ≤ (1−Φ(V , I)) +
m

∑
i=1

(1−Φ(Di, I))

+ (1−Φ(V , I))2 +
m

∑
i=1

(1−Φ(D?
i , I))2 +

m

∑
i=1

(1−Φ(Di, I))(1− Υ2(Di))

(4.135)

which corresponds to the quasi-subadditivity property.

Proof of theorem 14

Proof. Our goal is to bound∣∣∣∣∣Tr
(
V|Dm

1 | · · · |D1
1|
)

d

∣∣∣∣∣
2

=

∣∣∣∣∣Re

{
Tr
(
V|Dm

1 | · · · |D1
1|
)

d

}∣∣∣∣∣
2

+

∣∣∣∣∣Im
{

Tr
(
V|Dm

1 | · · · |D1
1|
)

d

}∣∣∣∣∣
2

.

(4.136)

Proving theorem 14 is very similar to proving theorem 12, but the appended unitary V re-
quires some extra care. Let’s first bound the amplitude of the imaginary term. WOLOG, we
pick the global phase of V such that

√
Φ(V , I) = Tr V/d ∈ R+.∣∣∣∣∣Im

{
Tr
(
V|Dm

1 | · · · |D1
1|
)

d

}∣∣∣∣∣ =
∣∣∣∣Im{

Tr
[
(V − Tr(V)/d I)(|Dm

1 | · · · |D1
1| − Tr(|Dm

1 | · · · |D1
1|)/d I)

d

]}∣∣∣∣
(Adding real terms.)

≤
∣∣∣∣Tr
[
(V − Tr(V)/d I)(|Dm

1 | · · · |D1
1| − Tr(|Dm

1 | · · · |D1
1|)/d I)

d

]∣∣∣∣
≤ ‖V − Tr(V)/dI‖2√

d

‖|Dm
1 | · · · |D1

1| − Tr(|Dm
1 | · · · |D1

1|)/dI‖2√
d

(Cauchy-Schwarz ineq.)

=
√

1−Φ(V , I)
√

Υ(D?
m:1)−Φ(D?

m:1, I) . (4.137)

We know from theorem 11 that Υ(D?
m:1) ≈ ∏i Υ(D?

i ). We also know from theorem 13 that
Υ(D?

i ) ≈ Φ(D?
i , I). From theorem 12 we know that ∏i Φ(D?

i , I) ≈ Φ(D?
m:1, I). By com-

bining this information, we have that Υ(D?
m:1) ≈ Φ(D?

m:1, I). More precisely, by using
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eqs. (4.114), (4.123) and (4.124), we get∣∣∣∣∣Im
{

Tr
(
V|Dm

1 | · · · |D1
1|
)

d

}∣∣∣∣∣
2

≤ (1−Φ(V , I))
[

γ2
decoh

m

∏
i=1

√
Φ(D?

i , I)
(

m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

+
γ4

decoh
4

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))4

+ γ2
decoh

m

∑
i=1

(
1−

√
Φ(D?

i , I)
)2

+ 2γ2
decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2 ]

, (4.138)

meaning that the imaginary term is absolutely insignificant. To bound the real part of the
trace, we mimic most of the proof technique used to prove theorem 12. Let’s express the

LK operators as |Di
1| =

√
Φ(D?

i , I)Id + ∆i and V =
√

Φ(V , I)Id + ∆m+1, and apply a first
telescopic expansion:

Re
{

Tr
[

V|Dm
1 | · · · |D1

1|
d

]}
=
√

Φ(V , I)
m

∏
i=1

√
Φ(D?

i , I)

+
m

∑
j=1

Re

{
Tr

[
V|Dm

1 | · · · |D
j+1
1 |∆j

d

]}
j−1

∏
i=1

√
Φ(D?

i , I)

(Telescopic sum)

By applying the expansion again, and use Tr ∆i = 0, we get:

Re
{

Tr
[

V|Dm
1 | · · · |D1

1|
d

]}
=
√

Φ(V , I)
m

∏
i=1

√
Φ(D?

i , I)

+
m

∑
j=1

m

∑
k=j+1

Re

Tr
(

V|Dm
1 | · · · |D

k+1
1 |∆k∆j

)
d

 k−1

∏
i=1
i 6=j

√
Φ(D?

i , I)

+
m

∑
j=1

Re

{
Tr
(
∆m+1∆j

)
d

}
m

∏
i=1
i 6=j

√
Φ(D?

i , I) .

(Telescopic sum, again)

After a simple application of the triangle inequality, we get

∣∣∣∣∣Re
{

Tr
[

V|Dm
1 | · · · |D1

1|
d

]}
−
√

Φ(V , I)
m

∏
i=1

√
Φ(D?

i , I)
∣∣∣∣∣ ≤

∣∣∣∣∣∣∣
m

∑
j=1

Re

{
Tr
(
∆m+1∆j

)
d

}
m

∏
i=1
i 6=j

√
Φ(D?

i , I)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
m

∑
j=1

m

∑
k=j+1

Re

Tr
(

V|Dm
1 | · · · |D

k+1
1 |∆k∆j

)
d

 k−1

∏
i=1
i 6=j

√
Φ(D?

i , I)

∣∣∣∣∣∣∣
(4.139)
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The second term on the RHS is upper-bounded by the exact same technique as in theorem 12
(see the derivation of eq. (4.113)):∣∣∣∣∣∣∣

m

∑
j=1

m

∑
k=j+1

Re

Tr
(

V|Dm
1 | · · · |D

k+1
1 |∆k∆j

)
d

 k−1

∏
i=1
i 6=j

√
Φ(D?

i , I)

∣∣∣∣∣∣∣ ≤
γ2

decoh
2

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

.

(4.140)

The first term on the RHS of eq. (4.139) is bounded as follows:∣∣∣∣∣∣∣
m

∑
j=1

Re

{
Tr
(
∆m+1∆j

)
d

}
m

∏
i=1
i 6=j

√
Φ(D?

i , I)

∣∣∣∣∣∣∣ ≤
m

∑
j=1

∣∣∣∣∣∣∣Re

{
Tr
(
∆m+1∆j

)
d

}
m

∏
i=1
i 6=j

√
Φ(D?

i , I)

∣∣∣∣∣∣∣
(Triangle ineq.)

≤
m

∑
i=1

∣∣∣∣Re
{

Tr (∆m+1∆i)

d

}∣∣∣∣ (
√

Φ(A?
i , I) ≤ 1)

≤
m

∑
i=1

∣∣∣∣∣Tr

[
∆i(∆m+1 + ∆†

m+1)/2
d

]∣∣∣∣∣
(∆i = ∆†

i for i 6= m + 1.)

≤
m

∑
i=1

‖∆i‖2√
d
‖Re(V)− Tr(V)I‖2√

d
(Cauchy-Schwarz ineq.)

(4.141)

This is where definition 7 (equability) is put to use. Recall that for i 6= m + 1 we have ‖∆i‖2√
d

=

γdecoh(Di)
(

1−
√

Φ(D?
i , I)

)
and that the WSE coherence constant is implicitly defined by

‖Re(V)−Tr(V)I‖2√
d

= γcoh(1−
√

Φ(V , I)), which means that∣∣∣∣∣∣∣
m

∑
j=1

Re

{
Tr
(
∆m+1∆j

)
d

}
m

∏
i=1
i 6=j

√
Φ(D?

i , I)

∣∣∣∣∣∣∣ ≤ γdecohγcoh

(
1−

√
Φ(V , I)

) m

∑
i=1

(
1−

√
Φ(D?

i , I)
)

(Definition 7)

Using |a2 − b2| ≤ |a− b||a + b|, and reuniting the pieces, we get∣∣∣∣∣Φ(V ◦ D?
m:1, I)−Φ(V , I)

m

∏
i=1

Φ(D?
i , I)

∣∣∣∣∣≤ 2γdecohγcoh

(
1−

√
Φ(V , I)

) m

∑
i=1

(
1−

√
Φ(D?

i , I)
)

+γ2
decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

+

∣∣∣∣∣Im
{

Tr
(
V|Dm

1 | · · · |D1
1|
)

d

}∣∣∣∣∣
2

. (4.142)
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A straightforward application of eq. (4.115) and theorem 8 on the LHS (to get rid of the ?)
yields eq. (4.64).

Proof of theorem 15

Proof. Let’s factor the decoherent channels into their (left) polar decompositionAi = Di ◦ Vi.
By relabeling (Vi:1)

−1 ◦ Di ◦ Vi:1 = D′i (notice that D′i are decoherent), we have

Am:1 = Vm:1 ◦ D′m:1 . (4.143)

First, let’s find a lower bound on max
W∈SU(d)

Φ(W ◦ Am:1,Um:1). A way to do this is to pick a

wisely chosen argument forW . Let’s pickW = Um:1 ◦ (Vm:1)
† :

max
W∈SU(d)

Φ(W ◦Am:1,Um:1) ≥ Φ(Um:1 ◦ (Vm:1)
† ◦ Am:1,Um:1) (4.144)

≥ Φ(Um:1 ◦ (Vm:1)
† ◦ A?

m:1,Um:1) (Theorem 7)

= Φ(D′?m:1, I) (4.145)

≥
m

∏
i=1

Φ(D′?i , I) + γ2
decoh

m

∏
i=1

√
Φ(D?

i , I)
(

m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

+
γ4

decoh
4

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))4

(Equation (4.114))

To bound ∏m
i=1 Φ(D′?i , I), we express it as a sum of three terms:

m

∏
i=1

Υ(Ai) +

(
m

∏
i=1

Υ(A?
i )−

m

∏
i=1

Υ(Ai)

)
+

(
m

∏
i=1

Φ(D′?i , I)−
m

∏
i=1

Υ(A?
i )

)
. (4.146)

To bound the second term, we used eq. (4.127). The third term of eq. (4.146) is bounded
through eq. (4.123). Reuniting the pieces together, we get

max
W∈SU(d)

Φ(W ◦Am:1,Um:1) ≥
m

∏
i=1

Υ(Ai)− γ2
decoh

m

∑
i=1

(
1−

√
Φ(D?

i , I)
)2

−
m

∑
i=1

(1− Υ(A?
i ))

2

− γ2
decoh

m

∏
i=1

√
Φ(D?

i , I)
(

m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

−
γ4

decoh
4

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))4

. (4.147)
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With regards to the upper bound, we can first use theorem 8 to get

max
W∈SU(d)

Φ(W ◦Am:1,Um:1) ≤ max
W∈SU(d)

[
Φ(W ◦A?

m:1,Um:1) +
1
2

(
m

∑
i=1

(1− Υ(A?
i ))

)2

+ (1−Φ(W ◦A?
m:1,Um:1))

m

∑
i=1

(1− Υ(A?
i ))

]
. (4.148)

By using the flavored Von-Neumann inequality (lemma 5), followed by eq. (4.130), we get

max
W∈SU(d)

Φ(W ◦A?
m:1,Um:1) ≤

∣∣∣∣Tr |D′m:1|
d

∣∣∣∣2 (Lemma 5)

≤ Υ(D′?m:1) (Equation (4.130))

≤∏
i

Υ(A?
i ) + 2γ2

decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

,

(Equation (4.124))

≤∏
i

Υ(Ai) +
m

∑
i=1

(1− Υ(A?
i ))

2

+ 2γ2
decoh

(
m

∑
i=1

(
1−

√
Φ(D?

i , I)
))2

. (Equation (4.127))

Substituting this on the RHS of eq. (4.148) completes the proof.

4.10 Afterword

Based on the notion of equability, it is possible to reason more intuitively about the dimen-
sional factors that appear when upper-bounding the diamond and spectral norm of a differ-
ence of channels.

4.10.1 A bound on the spectral radius of channel deviations

Without invoking any physical intuition, upper-bounding the spectral norm generally in-
volves unruly dimensional factors. It turns out that these factors are essentially caused by
pathological, usually unrealistic channels. In this section, I present refined general bounds
that take into account pathological scenarios, but yield a simple expression in the typical
case. To make sense of the results, an additional error parameter needs to be introduced.
Indeed, not so surprisingly, ruling out extremal dephasers, which is equivalent to imposing
the equability condition, still leaves some pathological scenarios which show up in bounding
the spectral norm of channel deviations. Let Aj be canonical Kraus operators of a channel A
(A1 being the LK operator). In general,

σmax

(
∑
j 6=1

Aj A†
j

)
≤ Tr ∑

j 6=1
Aj A†

j = d(1− Tr A1A†
1/d) , (4.149)
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which is of order drdecoh (notice the annoying dimensional factor). This inequality is satu-
rated by channels with a Kraus decomposition of the form

A1 = |0〉〈0|+
d−1

∑
i=1

√
1− εi|i〉〈i| ,

Ai+2 =
√

εi|0〉〈i| for i ∈ {1, 2, · · · , d− 1} , (4.150)

where εi are all on the same order. Physically speaking, all the state transitions – with com-
parable probabilities – point towards the same state. Of course, such error channel, which
is labeled here as an extremal relaxation, is rather unrealistic for large dimensions: typically,
certain transitions are much less likely than others. For instance, consider a n-qubit system
for which the transition of a qubit from its excited state |1〉 to its ground state |0〉 happens
with probability ε, by which I mean that the corresponding channel A looks like a n-fold
tensor product of qubit channels B, individually defined as standard amplitude damping:

B1 = |0〉〈0|+
√

1− ε|1〉〈1| ,
B2 =

√
ε|0〉〈1|. (4.151)

In this example, the transition from a computational state |s〉 to a computational state |s′〉
where s and s′ have a Hamming distance of 1 happens with a probability on the order of
ε. However, for a Hamming distance of 2, the probability drops to the order ε2. A quick
calculation (let (1± ε)n ≈ ±nε for the sake of simplicity in this example) suffices to show
that

σmax

(
∑
j 6=1

Aj A†
j

)
= (1 + ε)n − 1 ≈ nε , (4.152)

and

δΦdecoh(A) = 1−
(

1 +
√

1− ε

2

)2n

≈ nε

2
, (4.153)

which yields

σmax

(
∑
j 6=1

Aj A†
j

)
≈ 2δΦdecoh(A) , (4.154)

which is typically much smaller than the general bound 2nδΦdecoh(A).
This example motivates the following definition:
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Definition 8: Relaxation bounding constant

Consider a non-catastrophic error channelA = U ◦D with canonical Kraus operators
Aj (A1 is the LK operator). The relaxation bounding constant drelax is defined as

σmax

(
∑
j 6=1

Aj A†
j

)
= drelax δΦdecoh(A) . (4.155)

It follows from our example that for equable channels, drelax scales as the largest number
of orthogonal states which all transition to a single state with comparable rates (and for
which the rates are comparable to δΦdecoh).

With these new constants at hand, the following result is ready to be expressed:

Theorem 16: Bounding the spectral norm of channel deviations

Consider a non-catastrophic error channel A = D ◦ V with target Utarget and LK op-
erator A1. Let δΦcoh = δΦ(V ,Utarget), δΦdecoh = δΦ(D, I). Then the spectral norm of
A−Utarget is bounded as follows

max
M∈Md(C)

‖(A−Utarget)[M]‖2

‖M‖2
≤ 2

√
Γcoh

√
δΦcoh

+
√

Γdecoh(
√

Γdecoh +
√

drelax)δΦdecoh + O(δΦcoh) .
(4.156)

Proof. Let Ai be canonical Kraus operators associated with A and let A1 be the LK operator.
Let Utarget ∈ SU(d) be the targeted Kraus operator. The spectral norm of A− Utarget can be
re-expressed as

max
M∈Md(C)

‖(A−Utarget)[M]‖2

‖M‖2
= max

v∈Cd2

‖(A−Utarget)v‖2

‖v‖2

= max
v∈Cd2

‖(A∗1 ⊗ A1 −U∗target ⊗Utarget + ∑i>1 A∗i ⊗ Ai)v‖2

‖v‖2

= max
v,w∈Cd2

∣∣∣〈wv†, A∗1 ⊗ A1 −U∗target ⊗Utarget + ∑i>1 A∗i ⊗ Ai

〉∣∣∣
‖v‖2‖w‖2

,

(4.157)

where on the last line I used ‖v‖2 = maxw 〈w, v〉 /‖w‖2. Using the triangle inequality, it
follows that

max
M∈Md(C)

‖(A−Utarget)[M]‖2

‖M‖2
≤ max

v,w∈Cd2

∣∣∣〈wv†, A∗1 ⊗ A1 −U∗target ⊗Utarget

〉∣∣∣
‖v‖2‖w‖2

+ max
v,w∈Cd2

∑
i>1

∣∣〈wv†, A∗i ⊗ Ai
〉∣∣

‖v‖2‖w‖2
. (4.158)
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The second term is bounded as follows:

∑
i>1

∣∣〈wv†, A∗i ⊗ Ai
〉∣∣

‖v‖2‖w‖2
≤ ∑

i>1

‖I⊗ Aiv‖2‖AT
i ⊗ Iw‖2

‖v‖2‖w‖2
(Cauchy-Schwarz)

≤
√

∑
i>1

‖I⊗ Aiv‖2
2

‖v‖2
2

√√√√∑
j>1

‖AT
j ⊗ Iw‖2

2

‖w‖2
2

(Cauchy-Schwarz)

≤

√√√√σmax

(
∑
i>1

A†
i Ai

)√√√√σmax

(
∑
j>1

Aj A†
j

)

=
√

σmax
(
I− A†

1 A1
) √

drelax δΦdecoh(A) (Definition 8)

The other factor is bounded as follows

σmax

(
I− A†

1 A1

)
= 1− σ2

min(A1) ≤ 2(1− σmin(A1)) (Diff. of squares)

≤ 2ΓdecohE[1− σi(A1)] (Definition 7)

= 2Γdecoh(1−
√

Φdecoh(A?)) (4.159)

= ΓdecohδΦdecoh(A) + O(δ2Φdecoh(A)) . (4.160)

The first term on th RHS of eq. (4.158) is bounded be the spectral norm of the LK approxi-
mated error channel minus the identity:∣∣∣〈wv†, A∗1 ⊗ A1 −U∗target ⊗Utarget

〉∣∣∣
‖v‖2‖w‖2

≤
‖(UT

targetA∗1 ⊗U†
targetA1 − I⊗ I)v‖2

‖v‖2
(Cauchy-Schwarz)

≤ σmax

(
UT

targetA
∗
1 ⊗U†

target A1 − I⊗ I
)

. (4.161)

Now, let U†
targetA1 = V|A1|, |A1| = I− ∆decoh, and V = I− ∆coh (WOLOG, Tr V ∈ R+). By

substituting this in eq. (4.161), it follows that∣∣∣〈wv†, A∗1 ⊗ A1 −U∗target ⊗Utarget

〉∣∣∣
‖v‖2‖w‖2

≤ 2σmax (∆coh + ∆decoh − ∆coh∆decoh)

+ σ2
max (∆coh + ∆decoh − ∆coh∆decoh) (Trian. ineq.)

≤ 2σmax (∆coh) + 2σmax (∆decoh) + σ2
max (∆coh)

+ 4σmax (∆coh) σmax (∆decoh) + σ2
max (∆decoh)

+ 2σ2
max (∆coh) σmax (∆decoh) + 2σmax (∆coh) σ2

max (∆decoh)

+ σ2
max (∆coh) σ2

max (∆decoh) , (4.162)
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where on the last line, the triangle inequality and sub-multiplicativity of the spectral norm
were used. From definition 7 (equable channels), it immediately follows that

σmax(∆decoh) = 1− σmin(A1)

= ΓdecohE[1− σi(A1)] (Definition 7)

= Γdecoh(1−
√

Φdecoh(A?)) (4.163)

=
Γdecoh

2
δΦdecoh(A) + O(δ2Φdecoh(A)) , (4.164)

Similarly (let λj be the eigenvalues of V),

σmax(∆coh) = max
j
|1− λj|

= max
j

√
(1− Re(λj))2 + Im2(λj)

= max
j

√
2
√

1− Re(λj)

=
√

2Γcoh

√
1−E[λi] (Definition 7)

=
√

2Γcoh

√
1−

√
Φcoh

=
√

Γcoh
√

δΦcoh + O(δΦcoh) . (4.165)

Substituting eqs. (4.164) and (4.165) in eq. (4.162) yields∣∣∣〈wv†, A∗1 ⊗ A1 −U∗target ⊗Utarget

〉∣∣∣
‖v‖2‖w‖2

≤ 2
√

Γcoh
√

δΦcoh + ΓdecohδΦdecoh + O(δΦcoh) .

(4.166)

This completes the proof.

4.10.2 A bound on the diamond distance

A similar bounding technique can be applied to the diamond distance between channels A
and B, defined as

ε�(A,B) := max
ρ∈$d2

1
2
‖(A−B)⊗ Id[ρ]‖1 . (4.167)
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Theorem 17: The diamond distance closely connects with the coherent infidelity

Consider a non-catastrophic error channel A = D ◦ V with target Utarget and LK op-
erator A1. Let δΦ = δΦ(A,Utarget), δΦcoh = δΦ(V ,Utarget), δΦdecoh = δΦ(D, I),
Υ(A) = Υ. Then the diamond distance between A and Utarget is bounded as follows√

1 + Υ2 − 2Φ =
√

δΦcoh + O(δ2Φ) ≤ ε�(A,Utarget) (4.168)

ε�(A,Utarget) ≤
√

Γcoh
√

δΦcoh + 2ΓcohδΦcoh + ΓdecohδΦdecoh + O(δ2Φ) . (4.169)

In the decoherence-limited regime, where δΦcoh = βδΦ2
decoh, the diamond distance

can be bounded as

δΦ ≤ ε�(A,Utarget) ≤ (
√

βΓcoh + Γdecoh)δΦ + O(δ2Φ) . (4.170)

When errors are equable, the coherent infidelity essentially dictates the diamond dis-
tance: √

δΦcoh / ε�(A,Utarget) /
√

Γcoh
√

δΦcoh . (4.171)

The factor
√

Γcoh is only substantially large for coherently extremal channels, and stems from
the fact that the diamond distance involves a maximization over inputs, while the average
infidelity involves an average over inputs.

The diamond distance can only be substantially smaller than O(
√

δΦ) in decoherence-
limited scenarios, in which case is becomes of order O(δΦ). The leeway (see [WF14; Wal15])
in the relation between the diamond distance and the infidelity is mostly taken into account
by purely unitary processes.

Proof. The lower bounds comes directly from [WF14; Wal15; SWS15], up to a straightforward
manipulation of dimensional factors.

The proof for the upper bound borrows many techniques from [Wal15], but also incorpo-
rates techniques from the previous section to trim down the dimensional factors.

From [Wat12] (Theorem 6), it follows that

2ε�(A,Utarget) = sup
σ,ρ∈$d

‖(√ρ⊗ Id)Choi(A−Utarget)(
√

σ⊗ Id)‖1

= sup
σ,ρ∈$d

‖(√ρ⊗ Id)

(
∑

k
col(Ak)col†(Ak)− col(Utarget)col†(Utarget)

)
(
√

σ⊗ Id)‖1

(Equation (4.2))

= sup
σ,ρ∈$d

‖∑
k

col(Ak
√

ρT)col†(Ak
√

σ
T
)− col(Utarget

√
ρT)col†(Utarget

√
σ

T
)‖1

(Equation (2.10))

= sup
σ,ρ∈$d

‖∑
k

col(Ak
√

ρ)col†(Ak
√

σ)− col(Utarget
√

ρ)col†(Utarget
√

σ)‖1

(ρT, σT ∈ $d)
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From the triangle inequality:

2ε�(A,Utarget) ≤ sup
σ,ρ∈$d

{
‖col(A1

√
ρ)col†(A1

√
σ)− col(Utarget

√
ρ)col†(Utarget

√
σ)‖1

+ ‖∑
k 6=1

col(Ak
√

ρ)col†(Ak
√

σ)‖1

}
. (4.172a)

The ‖∑k 6=1 col(Ak
√

ρ)col†(Ak
√

σ)‖1 term can be upper-bounded by order δΦdecoh:

‖∑
k 6=1

col(Ak
√

ρ)col†(Ak
√

σ)‖1 ≤ ∑
k 6=1
‖col(Ak

√
ρ)col†(Ak

√
σ)‖1 (Triangle ineq.)

= ∑
k 6=1
‖‖Ak

√
ρ‖2‖Ak

√
σ‖2 (‖vw†‖1 = ‖v‖2‖w‖2)

≤
√

∑
j 6=1
‖‖Aj

√
ρ‖2

2

√
∑
k 6=1
‖Ak
√

σ‖2
2 (Cauchy-Schwarz)

=
√

Tr[(I− A†
1 A1)ρ]

√
Tr[(I− A†

1 A1)σ] (TP condition)

= ΓdecohδΦdecoh + O(δ2Φdecoh) . (Equation (4.160))

Hence, the order
√

δΦcoh will arise from the LK approximation of A. Let A1 = |A1|V, W =
UtargetV†, |A1| = I− ∆decoh and W = I− ∆coh. Then,

2ε�(A?,Utarget) = sup
σ,ρ∈$d

‖col(A1
√

ρ)col†(A1
√

σ)− col(Utarget
√

ρ)col†(Utarget
√

σ)‖1

= sup
σ,ρ∈$d

‖col(|A1|
√

ρ)col†(|A1|
√

σ)− col(W
√

ρ)col†(W
√

σ)‖1

≤ sup
σ,ρ∈$d

[
‖col(|A1|

√
ρ)col†(|A1|

√
σ)− col(

√
ρ)col†(

√
σ)‖1

+ ‖col(
√

ρ)col†(
√

σ)− col(W
√

ρ)col†(W
√

σ)‖1

]
(Triangle ineq.)

= sup
σ,ρ∈$d

[
‖col(∆decoh

√
ρ)col†(∆decoh

√
σ)− col(∆decoh

√
ρ)col†(

√
σ)− col(

√
ρ)col†(∆decoh

√
σ)‖1

+ ‖col(∆coh
√

ρ)col†(∆coh
√

σ)− col(∆coh
√

ρ)col†(
√

σ)− col(
√

ρ)col†(∆coh
√

σ)‖1

]
≤ sup

σ,ρ∈$d

[
‖∆decoh

√
ρ‖2‖∆decoh

√
σ‖2 + ‖∆decoh

√
ρ‖2‖
√

σ‖2 + ‖
√

ρ‖2‖∆decoh
√

σ‖2

+ ‖∆coh
√

ρ‖2‖∆coh
√

σ‖2 + ‖∆coh
√

ρ‖2‖
√

σ‖2 + ‖
√

ρ‖2‖∆coh
√

σ‖2

]
(Triangle ineq. followed by ‖vw†‖1 = ‖v‖2‖w‖2.)

≤ 2σmax(∆coh) + 2σmax(∆decoh) + σ2
max(∆coh) + σ2

max(∆decoh) . (4.173)
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Using eqs. (4.164) and (4.165) yields

2ε�(A?,Utarget) ≤ 2
√

Γcoh
√

δΦcoh + ΓdecohδΦdecoh + 4ΓcohδΦcoh + O(δ2Φ) . (4.174)

This completes the proof.

4.10.3 End of the first part

This chapter concludes the first part of this thesis. The introduced notions of decoherence
and equability gave at least some semblance of order in the intricate set of quantum pro-
cesses, especially given the existence of a unitary-decoherent polar factorization. The next
part of this thesis focuses on process characterization methods. Similarly to this part, the
chapters are based on articles for which my contribution was major. It is worth mentioning
that the next articles were written prior to the work introduced in the present chapter. In
particular, certain statements, phrased as conjectures or open problems, are in fact largely re-
solved by the work covered so far. As a result, the upcoming appended afterwords contain
highly valuable new observations.
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Part II

Quantum characterization through
randomized benchmarking
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Chapter 5

From randomized benchmarking
experiments to gate-set circuit fidelity:
how to interpret randomized
benchmarking decay parameters

5.1 Foreword

The present chapter mainly consists in a literal transcription of [Car+18], for which my con-
tribution was major. I made alterations to the original notation to ensure self-consistency
within the thesis. For instance, I changed “incoherent” errors to “decoherence-limited” er-
rors, a notion formalized more solidly in [CAE19] (which came after the following work).

5.2 Compendium

Randomized benchmarking (RB) protocols have become an essential tool for providing a
meaningful partial characterization of experimental quantum operations. While the RB de-
cay rate is known to enable estimates of the average fidelity of those operations under gate-
independent Markovian noise, under gate-dependent noise this rate is more difficult to in-
terpret rigorously. In this paper, we prove that single-qubit RB decay parameter p coincides
with the decay parameter of the gate-set circuit fidelity, a novel figure of merit which charac-
terizes the expected average fidelity over arbitrary circuits of operations from the gate-set.
We also prove that, in the limit of high-fidelity single-qubit experiments, the possible alarm-
ing disconnect between the average gate fidelity and RB experimental results is simply ex-
plained by a basis mismatch between the gates and the state-preparation and measurement
procedures, that is, to a unitary degree of freedom in labeling the Pauli matrices. Based on
numerical evidence and physically motivated arguments, we conjecture that these results
also hold for higher dimensions.

5.3 Introduction

The operational richness of quantum mechanics hints at an unprecedented computational
power. However, this very richness carries over to a vast range of possible quantum error
processes for which a full characterization is impractical for even a handful of quantum bits
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(qubits). Randomized benchmarking (RB) experiments [EAZ05; Lev+07; Kni+08; Dan+09;
MGE11; MGE12; CWE15; Cro+16] were introduced to provide a robust, efficient, scalable,
SPAM-independent1, partial characterization of specific sets of quantum operations of inter-
est, referred to as gate-sets. Such experiments have been widely adopted across all platforms
for quantum computing, eg. [Gae+12; Cór+13; Kel+14; Bar+14; Cas+16; Tak+16b; She+16;
McK+16; McK+17b], and have become a critical tool for characterizing and improving the
design and control of quantum bits (qubits).

Recently it has been shown that RB experiments on an arbitrarily large number of qubits
will always produce an exponential decay under arbitrary Markovian error models (that is,
where errors are represented as completely-positive maps). This ensures a well-defined the-
oretical characterization of these experiments and enables an important test for the presence
of non-Markovian errors, in spite of the gauge freedom between the experimental quantities
and a theoretical figure of merit such as the average gate fidelity [Pro+17a; Wal17; MPF18].
However, this theoretical advance still lacks a clear physical interpretation that rigorously
connects the experimentally observed decay to a fidelity-based characterization of a physical
set of gate- dependent errors. Linking an experimentally measured quantity to a physically
meaningful figure of merit is not a mere intellectual satisfaction. It is crucial to ensure that
a quantity measured in the context of a process characterization protocol indeed yields an
outcome that assesses the quality of operations. What if a very noisy quantum device could
yield a decent RB parameter? What if there exist scenarios where RB substantially underes-
timates the quality of a quantum device?

In this paper, we show that in the regime of high fidelity gates on single qubits, a sim-
ple physical interpretation of RB data does exist and allows a reliable characterization of
quantum operations. Further we conjecture, based on numerical evidence, that such an in-
terpretation extends to arbitrary dimensions. Consequently, this work provides the theoret-
ical foundation behind a fundamental tool for identifying and eliminating errors through
examining the results of RB experiments.

Consider a gate-set G = {g}, where the elements g are in U(d). The targeted realization
of the gate-set is noted as L(G), where L : U(d)→ CPTPd is defined as

L(g)[ρ] := gρg† , (5.1)
L(G) := {L(g)|g ∈ G} , (5.2)

where ρ ∈ $d(C). Similarly, the noisy implementation of the gate-set is denoted as Λ(G),
where Λ : U(d)→ CPTPd is a noise map. We denote a circuit composed of m elements by

Λ(g)m:1 := Λ(gm) · · ·Λ(g2)Λ(g1) . (5.3)

For leakage-free RB experiments with arbitrarily gate-dependent (but still Markovian) errors,
the average probability of an outcome µ after preparing a state ρ and applying a circuit of
m + 1 operations that multiply to the identity is [Wal17; MPF18]

Egm+1:1〈µ, Λ(g)m+1:1[ρ]〉 = Apm + B + ε(m), (5.4)

where 〈M1, M2〉 := Tr M†
1 M2 refers to the Hilbert-Schmidt inner product. On the right-hand

side of eq. (5.4), A and B are independent of m (i.e., they only depend upon ρ, µ and Λ(g))

1SPAM stands for “State preparation and measurement”.
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and ε(m) is a perturbative term that decays exponentially in m.
By design, RB gives some information about the error rate of motion-reversal (i.e., iden-

tity) circuits composed of gate-set elements. In this paper, we show how this information
relates to general circuits. Consider the traditional notion of average fidelity for a noisy cir-
cuit C̃ to a target unitary circuit C,

F(C̃, C) :=
∫ 〈
C̃(ψ), C(ψ)

〉
dψ, (5.5)

where the integral is taken uniformly over all pure states. Equation (5.5) corresponds to the
definition of the usual notion of average gate fidelity, but is instead formulated in terms
of “circuit”, which is to be understood as a sequence of elementary gates. We introduce
this nuance to define a novel figure of merit, the gate-set circuit fidelity, which compares all
possible sequences of m implemented operations from the physical gate-set realization Λ(G)
to their targets in L(G),

Definition 9: Gate-set circuit fidelity

F(Λ(G), L(G), m) := E [F(Λ(g)m:1, L(gm:1))] , (5.6)

=
1
|G|m ∑

gi∈G
F(Λ(g)m:1, L(gm:1)) , (5.7)

where gm:1 is a shorthand for gm · · · g1. The case m = 1 yields the average fidelity of the
gate-set realization Λ(G) to L(G). In general, the overall action of targeted circuits L(gm:1) is
reproduced by Λ(g)m:1 with fidelity F(Λ(G), L(G), m). Having access to the gate-set cir-
cuit fidelity enables going beyond quantifying the quality of gate-set elements as it also
quantifies the quality of circuits based on those elements. In this paper, we prove that for
all single-qubit gate-sets with fidelities close to 1 and for an appropriately chosen targeted
gate-set realization L(G), the gate-set circuit fidelity can be closely estimated via RB exper-
iments, for all circuit lengths m, even in cases of highly gate-dependent noise models. This
is possible because it turns out that F(Λ(G), L(G), m) essentially behaves like an exponen-
tial decay in m, uniquely parameterized by the RB decay constant p. The robust inclusion
of gate-dependence is a major step forward since it encompasses very realistic noise mod-
els. We conjecture this result to hold for higher dimensions, based on numerical evidences
and physically motivated arguments. Notice that the gate-set circuit fidelity quantifies the
expected fidelity of all circuits (built from gate-set elements), and not only motion-reversal
ones. This is an important observation to keep in mind because although RB experiments
intrinsically revolve around motion-reversal circuits, the figure of merit that it yields isn’t
limited to such paradigm. Quantifying the quality of all circuits is much more useful than
quantifying identity ones.

5.4 The dynamics of the gate-set circuit fidelity

It follows from the RB literature [EAZ05; MGE11] that for gate-independent noise models of
the form Λ(g) = E ◦ L(g) or Λ(g) = L(g) ◦ E , where E ∈ CPTPd is a fixed error, given a
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2-design gate-set G, the gate-set circuit fidelity behaves exactly as

F(Λ(G), L(G), m) =
1
d
+

d− 1
d

pm , (5.8)

where p is estimated through standard RB by fitting to eq. (5.4) with ε(m) = 0 and d is
the dimension of the system. The relationship between the survival probability decay curve
and the decay in eq. (5.8) shouldn’t be surprising. Indeed, consider a RB experiment with a
noise model of the form Λ(gi) = E ◦ L(gi) and a perfect inversion step L(gm+1) and perfect
SPAM. In such case, the gate-set circuit fidelity and the survival probability exactly coincide.
A less trivial matter is to show the link between the RB decay parameter and eq. (5.8) for
gate-dependent leakage-free noise models for which the choice of targeted gate-set is to be
treated more carefully. In fact, as we will show, a poor choice of targeted gate-set can lead to
a strong violation of eq. (5.8) in the sense that δF(Λ(G), L(G), m) ≡ 1− F(Λ(G), L(G), m)
can relatively differ from 1− ( 1

d +
d−1

d pm) by multiple orders of magnitude. An appropriate
choice of targeted gate-set will essentially restore the decay relation shown in eq. (5.8).

Equation (5.8) generalizes to

F(Λ(G), L(G), m) =
1
d
+

d− 1
d

ftrls(Λ(G), L(G), m) , (5.9)

where the fidelity on the traceless hyperplane is similar to the gate-set circuit fidelity, but is
averaged over the traceless part of the pure states, ψtrls = ψ− I/d:

ftrls(Λ(G), L(G), m) :=
E
(∫
〈Λ(g)m:1[ψtrls], L(gm:1)[ψtrls]〉dψ

)∫
〈ψtrls, ψtrls〉dψ

. (5.10)

The integrand in the numerator of the right-hand side of eq. (5.10) can be visualized as
the fidelity restricted on the Bloch space, comparing the ideally mapped Bloch vectors
ψtrls → L(gm:1)(ψtrls) to their noisy analog Λ(g)m:1[ψtrls]. Equation (5.9) is quickly obtained
by realizing that the symmetric integral over the Bloch space

∫
ψtrlsdψ = 0.

Under gate-dependent noise, 1 − ftrls(Λ(G), L(G), 1) could relatively differ from 1 −
p by several orders of magnitude [Pro+17a; QK18]. Such discrepancy was seen as a seri-
ous concern: the observed RB decay seemingly fails in characterizing the quality of quantum
operations. To see the possible immense disconnect between p and ftrls(Λ(G), L(G), 1), con-
sider the canonical example where single-qubit gates are perfectly implemented, but differ
from the targets G ∈ L(G) by a labeling of the Pauli axes:

Λ(X) = L(Y) , (5.11a)
Λ(Y) = L(Z) , (5.11b)
Λ(Z) = L(X) . (5.11c)

This noise model would lead to an absence of decay in the survival probability, that is p = 1.
Indeed, motion-reversal circuits are perfectly implementing the identity gate, regardless
of the length of the circuit. A quick calculation results in ftrls(Λ(G), L(G), m) = 0, which
demonstrates a difference in orders of magnitude | log(1− p)− log(1− ftrls(Λ(G), L(G), 1))|
that tends to infinity as p → 1. The RB experiment indicates no operational error while the
average gate fidelity indicates 1/2. Does the outcome of RB massively underestimate the
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error? Notice that since the implementation error is a permutation of labels, there is actually
no observable error in the device. The alarmingly low value of gate-set circuit fidelity of
Λ(G) to L(G) is simply a consequence of a poor choice of targeted gate-set realization.

As a more involved example, let the noise model be Λ(g) = UL(g)U † for any non-identity
unitary channel U = L(U) and let the set of targeted operations be L(G) (this includes
our previous mislabeling example as a special scenario). In such cases ftrls(Λ(G), L(G), 1)
can take any value in the interval [0, 1), depending on the choice of U . However, using
the same argument as in the previous example, the survival probability is not subject to a
decay (p = 1), showing once again how the decay parameter could arbitrarily differ from a
poorly defined average gate fidelity. This apparent disconnect arises due to a basis mismatch
between the bases in which the noisy gate-set and the targeted gate-set are defined. A
reconciliation of the RB observations with a gate-set circuit fidelity is obtained by changing
the set of targets to L(UGU†) since ftrls(Λ(G), L(UGU†), 1) = 1. One might argue that
implementing Λ(G) = UL(G)U † instead of the target realization L(G) should raise an
operational error. Not necessarily: consider a circuit uniquely constructed from operations
Λ(gi) ∈ Λ(G). According to Born’s rule, the probability of measuring the outcome i
associated with the positive operator µi after performing the circuit on a state ρ is:

pi = 〈µi, Λ(g)m:1[ρ]〉

=
〈

µi,UL(gm)U † · · · UL(g2)U †UL(g1)U †[ρ]
〉

=
〈

µi,UL(gm:1)U †[ρ]
〉

=
〈
µ′i, L(gm:1)[ρ

′]
〉

, (5.12)

where ρ′ = U †[ρ], µ′i = U †[µi]. That is, the error can be interpreted as part of SPAM proce-
dures rather than from operations. Since the unitary transformation can be pushed to either
SPAM procedures or coherent manipulations, it should be seen as a mismatch between them.
Indeed, the physical unitary conjugation Λ(G) = UL(G)U † doesn’t affect the internal action
of operations, but exclusively the connection between operations and SPAM procedures.
Changing the targeted gate-set realization L(G) to L(UGU†) is allowed by the degree of
freedom in labeling what is the basis for SPAM procedures and what is the reference basis
for processes.

In section 5.7.1, we show how exactly the disconnect between pm and
ftrls(Λ(G), L(UGU†), m) depends on the choice of targeted gate-set realization L(UGU†).
That is, we provide an expression of the form

ftrls(Λ(G), L(UGU†), m) = C(U)pm + D(m, U) , (5.13)

where U ∈ U(d) and corresponds to a physical change of reference (see theorem 20). A first
interesting observation is that D(m, U) is typically negligible or becomes rapidly negligible
as it is also exponentially suppressed in m2. This means that the relative variation in ftrls as

2Since D(1, U) is typically close to 0, the exponential suppression is quite effective compared to pm ≈ 1−
m(1− p) which is essentially linear for small m.
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the circuit grows in length,

ftrls(Λ(G), L(UGU†), m + 1)
ftrls(Λ(G), L(UGU†), m)

= p + ε(m, U) , (5.14)

depends weakly on the choice of targeted gate-set. More precisely, ε(m, U) is composed
of two factors: the first one decays exponentially in m and is at most of order (1− p)m/2,
while the second carries the dependence in U; the existence of a specific choice of U such
that this last factor becomes at most of order (1 − p)3/2 is proven in the single-qubit case
(section 5.7.2), and conjectured to hold in general. The explicit behaviour of ε(m, U) given a
numerically simulated gate-dependent noise model is illustrated in fig. 5.1.

Consequently, the gate-set circuit fidelity can be updated with a good approximation
through the recursion relation

F(Λ(G), L(UGU†), m + 1) ≈ 1
d
+ p

(
F(Λ(G), L(UGU†), m)− 1

d

)
. (5.15)

Roughly speaking, this means that the choice of basis in which are expressed the targets in
L(UGU†) is not highly significant when it comes to updating the gate-set circuit fidelity as
the circuit grows in depth. The RB decay rate p enables the decrease in fidelity due to adding
a gate to a circuit to be predicted.

However, to provide insight on the total value of the gate-set circuit fidelity given a cir-
cuit’s length m, we need a stronger relation between the RB estimate of p and the gate-set
circuit fidelity. Fortunately, the basis freedom in the choice of targeted gate-set can be fixed
in a way that allows us to estimate the total change in gate-set circuit fidelity for arbitrary
circuit’s lengths.

In section 5.7.2, we prove that the potentially large disconnect between p and
ftrls(Λ(G), L(UGU†), 1) under general gate-dependent noise is almost completely accounted
for by a basis mismatch which, as we argued earlier, doesn’t exactly correspond to a process
error since unitary conjugation does not affect the internal dynamics of operations.

Theorem 18: The RB decay connects with a (physical) circuit fidelity

Consider a 2-design gate-set G. For any single-qubit noisy gate-set physical realiza-
tion Λ(G) perturbed from L(G), there exists a targeted gate-set realization L(UGU†),
where U ∈ U(d) correpsonds to a physical unitary, such that

F(Λ(G), L(UGU†), m) =
1
d
+

d− 1
d

pm + O
(
(1− p)2) . (5.16)

In fact, we conjecture this result to hold for any dimension, or at least for most realistic
gate-dependent noise models. To grasp the physical reasoning behind this, we refer to the
end of section 5.7.2, as it rests on some prior technical analysis. The extension of theorem 18
to 2-qubit systems is supported by numerical evidences (see sections 5.7.1 to 5.7.2).

The unitary freedom appearing in the gate-set circuit fidelity means that there exists
an infinite amount of fidelity-based figures of merit describing noisy circuits, one for each
infinitely many targeted gate-set realization L(UGU†). Of course, there exist choices of
targeted operations that yield in gate-set circuit fidelities that differ from eq. (5.16) (see
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[Pro+17a; QK18]); the example shown in eqs. (5.11a) to (5.11c) is an elementary instance
thereof. Theorem 18 simply states that there exists a natural choice of gate-set realization
L(UGU†) that allows connecting the outcome of an RB experiment to a gate-set circuit fi-
delity. The choice of basis is like taking the perspective of the gates rather than the perspec-
tive of SPAM procedures (as is implicitly done when defining gates relative to the energy
eigenbasis of the system). In this picture, the gate-set circuit fidelity describes the accuracy
of the internal behaviour of operations as they act in concert.

To reformulate the result, the family of circuits Λ(g)m:1 built from a composition of m
noisy operations Λ(gi) ∈ Λ(G) mimics the family of circuit realizations L(Ugm:1U†) with fi-
delity 1

d +
d−1

d pm. In the paradigm where the initially targeted realizations L(gi) ∈ L(G) are
defined with respect to SPAM procedures, U captures the misalignment between the basis
in which the operations Λ(gi) ∈ Λ(G) are defined and the basis defined by SPAM proce-
dures. This goes farther: consider an additional 2-design gate-set H, for which the targeted
operational realizations L(h) ∈ L(H) are also are defined respect to SPAM procedures. From
theorem 18, there exists a physical unitary V for which ΛH(h)m:1 overlaps with the action
of L(Vhm:1V†) with fidelity 1

d + d−1
d qm (where q is estimated through RB). U†V captures the

basis mismatch between the gate-sets G and H. Such a non-trivial mismatch could easily be
imagined if, for instance, the physical realization ΛH of gates belonging to H were obtained
through a different physical process than the one modeled by Λ, or calibrated with regards
to alternate points of reference.

5.5 Finding the appropriate set of targeted gate realizations for spe-
cific noise models

We now discuss how the appropriate unitary conjugation on the initial targeted gate-set
can be calculated for specific noise models, whether from numerical simulations, analytic
approximations, or tomographic reconstructions. As shown in theorem 20 and eq. (5.13), the
total change of gate-set circuit fidelity depends on the physical basis in which the target gate-
set realization is expressed. In the single-qubit case, we showed the existence of a physical
basis U that reconciles ftrls(Λ(G), L(UGU†), m) with pm through theorem 18. One might
suspect that the unitary U can be found through the maximization of the gate-set fidelity:

U = argmax
V∈U(d)

F(Λ(G), L(VGV†), 1) , (5.17)

and indeed this would handle noise models of the form Λ(G) = UEL(G)U †, as

p = ftrls(Λ(G), L(UGU†), 1) ≥ ftrls(Λ(G), L(G), 1) .

However, this hypothesis fails for simple noise models of the form Λ(G) = U †EL(G)U †,
where

p = ftrls(Λ(G), L(UGU†), 1) ≤ ftrls(Λ(G), L(G), 1) .

Those last two examples show that p can be greater or lesser than ftrls(Λ(G), L(G), 1), de-
pending on the noise model. More examples are derived in [Pro+17a; QK18]. This particular
case study is informative as these two last noise models share something in common: there
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exists a choice of unitary U that cancels the noisy map on the right of the noisy gate-set real-
ization. Although such exact cancellation is not always possible, we now show that a close
approximation is sufficient. Consider the slightly more general noise model of the form
Λ(G) = ELL(G)ER, where we allow fixed but arbitrary error maps to the left and the right
of a target gate-set realization. It can be shown while staying under the scope of the original
analysis provided in [MGE11; MGE12] that pm = ftrls(ERELL(G), L(G), m), since EREL is the
effective error map between two otherwise perfect implementations of the gate-set elements.
In the single-qubit case (and for many, if not all physically motivated higher dimensional
noise models) there exists a unitary operation U ∈ U(d) such that

F(EREL, I) = F(ELL(G)ER, L(UGU†), 1) + O((1− p)2) , (5.18)

(see section 5.7.2). That is, the fidelity of the effective error channel occurring between two
noisy gate implementations can be seen as the gate-set circuit fidelity between a noisy gate-
set realization and an appropriately targeted realization. A choice of such physical unitary
is

U = argmax
V∈U(d)

F (ERV , I) , (5.19)

which essentially cancels the unitary part of ER
3. Another way to see this is that the unitary

freedom allows us to re-express the errors EL, ER as

EL → U †EL

ER → ERU .

We can then choose the unitary that depletes ERU from any coherent component. Intuitively,
re-expressing the error on one side to make it decoherence-limited prevents any type of uni-
tary conjugation of the form Λ(G) = UEL(G)U †.

For more general gate-dependent noise models, the idea remains more or less the same.
As shown in section 5.7.2, the right error ER is replaced by its generalization, the 4th order
right error E (4)R = Egi∈G

[
L(g4:1)

†Λ(g)4:1

]
(eq. (5.41a)). From there, we find:

Theorem 19: Finding the appropriate targeted gate-set

A proper choice of physical basis for which eq. (5.16) applies is

U = argmax
V∈U(2)

F
(

Egi∈G

[
L(g4:1)

†Λ(g)4:1

]
V , I

)
, (5.20)

U = L(U) cancels the unitary part of the 4th order right error.

This provides a means to guide the search of the appropriate targeted realization
L(UGU†) given a numerical noise model Λ(G). Indeed, the 4th order right error is easily

3Of course, argmax
V∈U(d)

F
(
V†EL, I

)
would also fulfill eq. (5.18).
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found, either by direct computation of the average Egi∈G

[
L(g4:1)

†Λ(g)4:1

]
, or more effi-

ciently by solving the eigensystem defined in eq. (5.28a). For higher dimensions, the op-
timization defined in eq. (5.20) can be solved via a gradient ascent parametrized over the
d2− 1 degrees of freedom of SU(d) (although the result of theorem 18 is only conjectured for
d > 2).

In the single-qubit case, the optimization procedure can be replaced by an analytical
search. Given the process matrix E (4)R of the 4th order right error, it suffices to find the po-
lar decomposition of its 3× 3 submatrix acting on the Bloch vectors: E (4)R Πtrls = DtrlsVtrls.
The unitary factor V corresponds to U †, while the positive factor D captures a decoherence-
limited process (rigorously defined in eq. (5.44)).

With this at hand, we performed numerically simulated RB experiments under gate-
dependent noise models. Each of the 24 Cliffords was constructed by a sequence of X and Y
pulses, Gx = P(σx, π/2) and Gy = P(σy, π/2), where

P(H, θ) := eiθH/2 . (5.21)

The 2-qubit Cliffords were obtained through the construction shown in [Bar+14; Cór+13],
where the 11520 gates are composed of single-qubit Clifford and CZ gates. The imple-
mentation of the 2-qubit entangling operation was consistently performed with an over-

rotation: Λ(CZ) = L
(

P(σ1
z σ2

z − σ1
z − σ2

z , π/2 + 10−1)
)

. In fig. 5.2, the single-qubit gate

generators are modeled with a slight over-rotation: Λ(X) = L
(

P(σx, π/2 + 10−1)
)

and

Λ(Y) = L
(

P(σx, π/2 + 10−1)
)

. This model exemplifies the failure of the maximization hy-
pothesis proposed in eq. (5.17). In figs. 5.1 and 5.3, the single-qubit gate generators are fol-

lowed by a short Z pulse, Λ(X) = L
(

P(σz, θz)
)

L(X) and Λ(Y) = L
(

P(σz, θz)
)

L(Y), which
reproduces the toy model used in [Pro+17a].

5.6 Conclusion

RB experiments estimate the survival probability decay parameter p of motion-reversal cir-
cuits constituted of operations from a noisy gate-set realization Λ(G) of increasing length
(see eq. (5.4)). While motion-reversal is intrinsic to the experimental RB procedure, the es-
timated decay constant p can be interpreted beyond this paradigm. In this paper we have
shown that, in a physically relevant limit, the very same parameter determines an interesting
figure of merit, namely the gate-set circuit fidelity (defined in eq. (5.6)): as a random oper-
ation from Λ(G) is introduced to a random circuit constructed from elements in Λ(G), p
captures the expected relative change in the gate-set circuit fideilty through eq. (5.15).

It is also possible to characterize the full evolution of gate-set circuit fidelity as a func-
tion of the circuit length. In this paper, we have also demonstrated that given a single-qubit
noisy gate-set realization Λ(G) perturbed from L(G), there exists an alternate set of target
gate realizations obtained through a physical basis change L(UGU†) such that the gate-set
circuit fidelity takes the simple form given in eq. (5.16). This gives a rigorous underpinning
to previous work that has assumed that the experimental RB decay parameter robustly de-
termines a relevant average gate fidelity (eq. (5.5)) for experimental control under generic
gate-dependent scenarios. We conjecture a similar result to hold for higher dimensions and
provide numerical evidence and physically motivated arguments to support this conjecture.
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Given any specific numerical noise model Λ(G) perturbed from L(G), we showed how to
obtain a physical unitary U for which eq. (5.16) holds. The procedure can be seen as a fidelity
maximation of the 4th order right error acting on the gate-set through a unitary correction (see
theorem 19).

The introduction of such a physical basis adjustment is natural because it has no effect
on how errors accumulate as a function of the sequence length. Rather, it only reflects a ba-
sis mismatch to the experimental SPAM procedures. This is in principle detectable by RB
experiments but in practice not part of the goals of such diagnostic experiments. In partic-
ular, differences in the (independent) basis adjustments required for distinct gate-sets will
not robustly appear in any RB-type characterization of the individual gate-sets, but will be
detected when comparing RB experiments performed over distinct gate-sets (e.g. compar-
ing independent single-qubit RB on two qubits - which has no two-qubit entangling gate -
with standard two-qubit RB). We leave the problem of characterizing relative basis mismatch
between independent gate-sets as a subject for further work.

5.7 Supplementary material

5.7.1 An expression for the total change in the gate-set circuit fidelity

In this section, we extend the standard RB analysis under gate-dependent noise provided
in [Wal17; MPF18] in order to prove the claim from eq. (5.14) that standard RB returns the
relative variation of the gate-set circuit fidelity.

In the following, a linear map A : Md(C) → Md(C) and its Liouville representation
A ∈ Md2(C) are represented by the same symbol. Context will suffice to differentiate them.
Let Πtrls(ρ) = ρ − Id Tr ρ/d be the projector onto the traceless hyperplane. We denote the
Frobenius norm, which is defined by the Hilbert-Schmidt inner product, as ‖ · ‖2. For in-
stance, in the qubit case ‖Πtrls‖2

2 = 3. We denote the induced 2-norm as ‖ · ‖∞, which corre-
sponds to the maximal singular value (and to the ∞-Schatten norm). Let ej be the canonical
unit vectors, A = ∑j,k aj,kejeT

k , and

vec(A) = ∑
j,k

aj,kek ⊗ ej . (5.22)

Using the identity

vec(ABC) = (CT ⊗ A)vec(B) , (5.23)

we have

ftrls(Λ(G), L(G), m) = Egi∈G

(
〈Λ(g)m:1Πtrls, L(gm:1)Πtrls〉

‖Πtrls‖2
2

)
=

vec†(Πtrls)

‖Πtrls‖2
T m vec(Πtrls)

‖Πtrls‖2
(5.24)

where the twirling superchannel T : Md2(C)→ Md2(C) is defined as

T := Eg∈G[Ltrls(g)⊗Λ(g)] (5.25)
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and Ltrls(g) := ΠtrlsL(g)Πtrls (see [CW15; Pro+17a; Wal17]). Changing the gate-set L(G) to
L(UGU†) for some physical unitary U ∈ U(d) leaves Πtrlsls invariant: Πtrls = UΠtrlsU †.
Therefore

ftrls(Λ(G), L(UGU†), m) =
vec†(UΠtrls)

‖Πtrls‖2
T m vec(UΠtrls)

‖Πtrls‖2
. (5.26)

The spectrum of T is unchanged under the basis change L(g) → L(UgU†). Moreover, its
most important eigenvectors are as follows:

Lemma 7

Let p be the highest eigenvalue of T and

Am := p−mEgi∈G

[
(Ltrls(gm:1))

†Λ(g)m:1

]
, (5.27a)

Bm := p−mE
[
Λ(g)m:1(Ltrls(gm:1))

†
]

. (5.27b)

Then we have

vec†(AT
∞)T = p vec†(AT

∞) , (5.28a)
T vec(B∞) = p vec(B∞) . (5.28b)

Proof. By eq. (5.23),

vec(Bm) = p−mEgiG((L∗(gm:1)trls ⊗Λ(g)m:1)vec(Πtrls) . (5.29)

As the Liouville representation is real-valued (WOLOG) and the gi are independently aver-
aged,

vec(Bm) = (T /p)m vec(Πtrls) . (5.30)

Since the noisy gate-set realization Λ(G) is a small perturbation from L(G), the spectrum
of T will be slightly perturbed from {1, 0, 0, . . .}. Therefore (T /p)m approaches a rank-1
projector as m increases and so vec(B∞) is a +1-eigenvector of T /p.

The same argument applies to AT
∞.

Lemma 7 allows us to write

T = p
vec(B∞)vec†(AT

∞)

〈AT
∞,B∞〉

+ ∆ , (5.31)

with ∆vec (B∞) = vec† (AT
∞
)

∆ = 0. In eq. (5.26), we can expand the vectors as

vec†(UΠtrls)

‖Πtrls‖2
= a(U)

vec†(AT
∞)

‖A∞‖2
+
√

1− a2(U)w†(U) (5.32a)

vec(UΠtrls)

‖Πtrls‖2
= b(U)

vec(B∞)

‖B∞‖2
+
√

1− b2(U)v(U) (5.32b)
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where

a(U) :=

〈
AT

∞,U
〉

‖Πtrls‖2
2

(
‖A∞‖2

2

‖Πtrls‖2
2

)−1/2

, (5.33)

b(U) :=
〈U ,B∞〉
‖Πtrls‖2

2

(
‖B∞‖2

2

‖Πtrls‖2
2

)−1/2

. (5.34)

and v(U), w(U) are implicitly defined unit vectors. Using this expansion together with
eq. (5.31) in eq. (5.26) yields the following result:

Theorem 20: Total gate-set circuit fidelity

The gate-set circuit fidelity obeys

F(Λ(G), L(UGU†), m) =
1
d
+

d− 1
d

(C(U)pm + D(m, U)) , (5.35)

where

C(U) :=

〈
AT

∞,U
〉

‖Πtrls‖2
2

〈U ,B∞〉
‖Πtrls‖2

2

(〈
AT

∞,B∞
〉

‖Πtrls‖2
2

)−1

=
〈Πtrls,A∞U〉
‖Πtrls‖2

2

〈
Πtrls,U †B∞

〉
‖Πtrls‖2

2

‖Πtrls‖2
2

〈Πtrls,A∞B∞〉
(5.36a)

D(m, U) :=
√

1− a2(U)
√

1− b2(U)w(U)†∆mv(U) . (5.36b)

In [Pro+17a; Wal17; MPF18] it is shown that standard RB provides an estimate of p.
Notice that p is independent of the basis appearing in the targeted gate-set realization,
L(UGU†).

From eq. (5.35), it is straightforward to show that

ε(m, U) :=
ftrls(Λ(G), L(UGU†), m + 1)

ftrls(Λ(G), L(UGU†), m)
− p =√

1− a2(U)
√

1− b2(U)
w(U)†∆m(∆− pΠtrls)v(U)

ftrls(Λ(G), L(UGU†), m)
, (5.37)

which is exponentially suppressed. We show in the next section that the eigenvalues of ∆ are
at most of order

√
1− p, which ensures a very fast decay, as shown in fig. 5.1. Equation (5.14)

is in fact a reformulation of eq. (5.37).

5.7.2 Varying the ideal gate-set of comparison

In this section, we prove theorem 18 by determining how the basis change in the target gate-
set representation L(UGU†) affects the coefficients in eq. (5.35).
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FIGURE 5.1: Absolute value of the deviation δ(m,V) ≡ ε(m, V) (the label of the
y-axis corresponds to the original notation appearing in [Car+18]) , described
in eq. (5.14) (also see eq. (5.37)), as function of circuit length m with noise model

generated by Λ(X) = L
(

P(σz, 10−1)
)

L(X) and Λ(Y) = L
(

P(σz, 10−1)
)

L(Y),

Λ(CZ) = L
(

P(σ1
z σ2

z − σ1
z − σ2

z , π/2 + 10−1)
)

(see eq. (5.21)). The red trian-
gles are obtained with the choice of basis V = I, while the blue circles are
obtained with the choice V = U where U is found through eq. (5.20). The
purple horizontal dashed line corresponds to (1− p)2, while the full green line
corresponds to (1 − F(Λ(G), L(G), 1))2. For both ideal gate-sets L(G) and
L(UGU†), the deviation becomes quickly negligible as the sequence length in-
creases. In fact, in the case V = U (blue circles), the deviation is always below

(1− p)2.

Let L(G) be a target gate-set realization defined with respect to the SPAM procedures.
We can write the elements of a noisy gate-set as

Λ(g) = L(g) + δ(g)L(g) , (5.38)

so that the perturbations δ(g) ∈ Md2(C) both capture the errors in the noisy gate and the
mismatch with the targeted reference basis. Under gate-independent noise with no basis
mismatch, i.e. Λ(g) = EL(g), the error can be expressed as E = I + δ(g). The infidelity of E
to the identity is defined as δF(E , I) := 1− F(E , I). Notice that δF(E , I) = F(δ(g), I). A ba-
sis mismatch will change the infidelity of the perturbations roughly to δF(UE , I)+ δF(U †, I)
for some unitary channel U , which will typically differ substantially from the fidelity inferred
from the associated RB experiment.

Experimentally, such basis mismatches will be relatively small as operations will be
somewhat consistent with SPAM procedures. Under this assumption, we now show that
there exists an alternate perturbative expansion,

Λ(g) = L(UgU†) + δ(UgU†)L(UgU†) , (5.39)

for which Eg∈GF(δ(UgU†), I) is in line with the data resulting from an RB experiment.
In section 5.7.1, we showed that (T /p)n converges to a rank-1 projector. We now quantify

the rate of convergence. Recall that T is perturbed from a rank-1 projector with spectrum
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FIGURE 5.2: gate-set circuit fidelity F(Λ(G), L(VGV†), m ≡ F ((̃G),VGV†, m)
(the label of the y-axis corresponds to the original notation appearing in
[Car+18]) as function of circuit length m with noise model generated by

Λ(X) = L
(

P(σz, 10−1)
)

L(X) and Λ(Y) = L
(

P(σz, 10−1)
)

L(Y), Λ(CZ) =

L
(

P(σ1
z σ2

z − σ1
z − σ2

z , π/2 + 10−1)
)

(see eq. (5.21)). The different colors por-
tray choices of basis; the yellow circles V = I, the blue stars V = U where U is
found through eq. (5.20), and the green squares V = U2. Here the lines corre-
spond to the fit for sequence lengths of m=5 to 10. The choice V = U produces
the evolution prescribed by theorem 18, which through extrapolation has an

intercept of 1.

{1, 0, 0, · · · }. Hence, by the Bauer-Fike theorem [BF60], for any eigenvalue λ 6= p of T ,

|λ− 0| ≤ ‖Eg∈G[Ltrls(g)⊗ δ(g)L(g)]‖∞ (Bauer-Fike)
≤ Eg∈G‖[Ltrls(g)⊗ δ(g)L(g)]‖∞ (triangle ineq.)
= Eg∈G‖δ(g)‖∞ (Unitary invariance)

≤ O
(

Eg∈G

√
F(δ(g), I)

)
([Wal15])

≤ O
(√

Eg∈GF(δ(g), I)
)

(concavity)

This spectral profile implies that (T /p)n converges quickly to a rank-1 operator since the
eigenvalues close to zero are exponentially suppressed.

Hence, we can approximate the asymptotic eigen-operators defined in eqs. (5.27a)
and (5.27b) as:

A∞ = A4 + O
([

Eg∈GF(δ(g), I)
]2
)

, (5.40a)

B∞ = B4 + O
([

Eg∈GF(δ(g), I)
]2
)

. (5.40b)
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FIGURE 5.3: 1 − F (G̃,VL(G)GV†, m = 1) ≡ δF(Λ(G), L(VGV†), m = 1)
(the label of the y-axis corresponds to the original notation appearing in
[Car+18]) as function of circuit length m with noise model generated by

Λ(X) = L
(

P(σz, 10−1)
)

L(X) and Λ(Y) = L
(

P(σz, 10−1)
)

L(Y), Λ(CZ) =

L
(

P(σ1
z σ2

z − σ1
z − σ2

z , π/2+ 10−1)
)

(see eq. (5.21))., with V = I (green squares)
and V = U (blue circles) where U is found through eq. (5.20). The red crosses

correspond to (1− p)/2 obtained through RB experiments.

In the simple noise model ELL(G)ER,A∞ ∝ ΠtrlsER and B∞ ∝ ELΠtrls. To pursue the analogy,
we denote the mth order right and left errors as

E (m)
R = Eg∈G

[
(L(gm:1))

†Λ(g)m:1

]
, (5.41a)

E (m)
L = Eg∈G

[
Λ(g)m:1(L(gm:1))

†
]

. (5.41b)

Combining eq. (5.41) and eq. (5.40), we get

A∞ ∝ ΠtrlsE
(4)
R + O

([
Eg∈GF(δ(g), I)

]2
)

, (5.42a)

B∞ ∝ E (4)L Πtrls + O
([

Eg∈GF(δ(g), I)
]2
)

. (5.42b)

The structure of single-qubit error channels allows us to pursue a deeper analysis. It
follows from the channel analysis provided in [RSW02] that, for high-fidelity qubit-channels,
the 3× 3 submatrix acting on the traceless hyperplane can always be decomposed as

EΠtrls = DVΠtrls (5.43)

where V is a physical unitary, and D is a decoherence-limited process. Here we label a
channel D as “decoherence-limited” if

〈Πtrls,D〉
‖Πtrls‖2

2
=
‖DΠtrls‖2

‖Πtrls‖2
+ O(δ2F(D, I)) . (5.44)
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Decoherence-limited channels have the additional property that, given an error channel E
[CWE16],

〈Πtrls,DE〉
‖Πtrls‖2

2
=
〈Πtrls,D〉
‖Πtrls‖2

2

〈Πtrls, E〉
‖Πtrls‖2

2
+ O(δ2F(DE , I)) . (5.45)

Expressing the 4th order right error E (4)R as

E (4)R Πtrls = DVΠtrls . (5.46)

allows us to maximally correct it through a physical unitary:

F(E (4)R V
†, I) = max

U
F(E (4)R U , I) ≥ F(E (4)R , I) . (5.47)

Using the property expressed in eq. (5.45), we get:〈
Πtrls, E

(4)
R V†VE (4)L

〉
‖Πtrls‖2

=

〈
Πtrls, E

(4)
R V†

〉
‖Πtrls‖2

〈
Πtrls,VE

(4)
L

〉
‖Πtrls‖2

+ O
([

Eg∈GF(δ(g), I)
]2
)

. (5.48)

Looking back at theorem 20 and using eqs. (5.42a), (5.42b) and (5.48) results in

C(V†) = 1 + O
([

Eg∈GF(δ(g), I)
]2
)

. (5.49)

Since both V and E (4)L have at most infidelity of order Eg∈GF(δ(g), I), it follows that the

composition VE (4)L must also have an infidelity of order Eg∈GF(δ(g), I), which guarantees√
1− b2(V†) = O

(√
Eg∈GF(δ(g), I))

)
, (5.50)

while decoherence limitations guarantee√
1− a2(V†) = O

(
Eg∈GF(δ(g), I)

)
. (5.51)

Using

|w(V†)†∆v(V†)| ≤ E‖δ(g)‖∞ ≤ O
(√

Eg∈GF(δ(g), I)
)

(5.52)

in eq. (5.36b), we find

D(1, V†) = O
([

Eg∈GF(δ(g), I)
]2
)

, (5.53)

which, together with eqs. (5.35) and (5.49) leads to

ftrls(Λ(G), L(V†GV), m) = pm + O
([

Eg∈GF(δ(g), I)
]2
)

. (5.54)
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This expression allows us to pick a better perturbative expansion than eq. (5.38). Indeed,
choosing

Λ(g) = L(V†gV) + δ(V†gV)L(V†gV) , (5.55)

ensures that the noisy operations I + δ(V†gV) have a gate-set circuit infidelity which is more
in line with the RB data:

Eg∈GF(δ(V†gV), I) = d− 1
d

(1− p) + O
([

Eg∈GF(δ(g), I)
]2
)

. (5.56)

Iterating the analysis leads to

ftrls(Λ(G), L(V†GV), m) = pm + O
(
(1− p)2) . (5.57)

This completes the demonstration of theorem 18.
Our current proof technique relies on the structure of single-qubit channels. For higher

dimensions, we conjecture that an analog of theorem 18 holds, although the scaling with the
dimension is unclear.

Conjecture 1: Polar decomposition for high-fidelity quantum channels

If the fidelity of E (4)R is high, then ∃ a physical unitary V† s.t. E (4)R V† is decoherence-
limited.

As we now show constructively, conjecture 1 holds for physically motivated noise models
composed of generalized dephasing, amplitude damping, and unitary processes. Under
such noise models,

E (4)R = UTDT · · · U2D2U1D1 (5.58)

for some unitaries Ui and decoherence-limited channels Di.
The channel UDU † is decoherence-limited for any physical unitary U , and the composi-

tion of decoherence-limited channels is also decoherence-limited, so eq. (5.58) can be rewrit-
ten as E (4)R = DV , where D and V are decoherence-limited and unitary respectively:

D = (UTDTUT
†) · · · (UT:1D1UT:1

†) (5.59)
V = UT:1 . (5.60)
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5.8 Afterword

5.8.1 Extending the results to all dimensions

Extending theorem 18 for d-dimensional systems follows from the work developed in chap-
ter 4.

Theorem 21: The RB decay connects with a (physical) circuit fidelity

Let G be a 2-design gate-set. Consider noisy gate-set physical realization Λ(G) per-
turbed from L(G), for which errors are equable in the strong sense and for which the
relaxation bounding constant drelax is small enough so that when invoking theorem 16,

‖Λ(g)− L(g)‖∞ ≤ O
(√

δF(Λ(g), L(g))
)

. (5.61)

Then, there exists a targeted gate-set realization L(UGU†), where U ∈ U(d) corre-
spond to a physical unitary, such that

F(Λ(G), L(UGU†), m) =
1
d
+

d− 1
d

pm + O
(
(1− p)2) , (5.62)

where the decay constant p can be efficiently estimated via randomized benchmark-
ing.

Notice that according to theorem 16, to violate eq. (5.61) while ensuring SSE errors, drelax
would have to be larger than O((δF)−1), which is a very unrealistic error scenario. In the
instance where the infidelity is on the order of 10−2, drelax would have to be significantly
larger than a hundred. That is, violating eq. (5.61) would necessitate a process for which
more than a hundred of orthogonal states would have comparable rates of transition to the
same state (and for which the rates would be on the order of δF).

In other words, the condition stated by eq. (5.61) is ensured by ruling out extremal de-
phasers, extremal unitaries, and extremal transitions. Let me now proceed to the proof of
theorem 21.

Proof. The extension of theorem 18 essentially follows from two results:

i. The spectral norm of realistic channel deviations scales at most as O(
√

δF).

ii. There exists a polar decomposition for (non-catastrophic) quantum channels of arbi-
trary dimensions.

Those two results are actually directly shown in chapter 4 (theorems 9 and 16 respectively),
but the road between them and the generalization of theorem 18 might not be immediately
clear to the reader.

Let me split the demonstration in two. First, since by assumption the spectral norm
deviations scales at most as O(

√
δF), the m-fold noisy twirl converges very quickly to a fixed

form. In other words, by Bauer-Fike theorem (or via first-order perturbation theory) the
eigenvalues perturbed from 0 of the matrix

T = Eg∈G[Ltrls(g)⊗Λ(g)] (5.63)
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are at most of order
√

Eg∈G[δF(Λ(g), L(g))]. In particular, that means that T 4/p4 is, up to

order
(
Eg∈G[δF(Λ(g), L(g))]

)2, a rank-1 projector. This simple realization allows to reformu-
late the statement of theorem 20 in a much more digestible way. That is, the gate-set circuit
fidelity can be expressed as

F(Λ(G), L(UGU†), m) =
1
d
+

d− 1
d

(C(U)pm + D(m, U)) , (5.64)

where

C(U) =
ftrls(E

(4)
R U ) ftrls(U †E (4)L )

ftrls((E
(4)
R U )(U †E (4)L ))

+ O
((

Eg∈G[δF(Λ(g), L(UgU†))]
)2
)

, (5.65a)

|D(1, U)| ≤

√√√√1−
u(E (4)R U )

f 2
trls(E

(4)
R U )

√√√√1−
u(U †E (4)L )

f 2
trls(U †E (4)L )

√
Eg∈G[δF(Λ(g), L(UgU†))] . (5.65b)

This ends the first part of the demonstration. The second part makes use of the polar decom-
position of non-catastrophic quantum channels.

By picking U such that either E (4)R U or U †E (4)L is decoherent, the quasi-multiplicativity of
the fidelity on the traceless hyperplane is ensured:

ftrls((E
(4)
R U )(U

†E (4)L )) = ftrls(E
(4)
R U ) ftrls(U †E (4)L ) + O

((
Eg∈G[δF(Λ(g), L(UgU†))]

)2
)

,

(5.66)

which in turns implies that

C(U) = 1 + O
((

Eg∈G[δF(Λ(g), L(UgU†))]
)2
)

. (5.67)

The one-to-one correspondence between the unitarity and the fidelity of decoherent WSE
channels implies

D(1, U) ≤ O
((

Eg∈G[δF(Λ(g), L(UgU†))]
)2
)

. (5.68)

To phrase theorem 21 in in less technical terms, the action of noisy 2-designs implicitly
defines an operational reference basis for which the circuit fidelity takes a simple form:

F(Λ(G), L(UGU†), m) ≈ 1
d
+

d− 1
d

pm . (5.69)

The decay constant can be efficiently estimated via a standard RB experiment, even in the
advent of gate-dependent errors. In particular, for m = 1, this means that the outcome of a
standard RB experiment really does directly connect with an average gate fidelity over the
gate-set physical realization Λ(G).
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5.8.2 Comparing data from different reference bases

The derivation of theorem 21 brings an important subject of awareness (which is shortly
discussed earlier in this chapter): experimental results arising from different gate-sets or
from similar gate-sets subject to different error models may yield metrics implicitly defined
through the scope of different targeted realizations. This doesn’t mean that the results of
two different RB experiments performed on different hardware cannot be compared: the ob-
tained fidelities both translate how well certain operations can be performed between them-
selves. However, by design, an RB experiment performed over a gate-set G doesn’t provide
much information about how well the physical realizations Λ(g) ∈ Λ(G) connect with other
sets of operations, unless those other sets share elements in common with Λ(G). This yields
an immediate question: what sufficient set of operations should two gate-sets share so that
they implicitly define the same (or a very close) reference? This question becomes relevant
when considering protocols such as iterated interleaved RB or simultaneous RB[Gam+12;
Mag+12; She+16], where the results of different RB experiments are compared to infer some
information about specific gates or about the level of cross-talk.

More generally, in the presence of gate-dependent errors, accounting for variations of the
implicitly defined comparative gate-set realization L(G) should take part – either in the data
analysis or in the experimental design itself – of any sensitive comparison scheme; without
such precaution, the interpretation of data could be compromised by gate-dependent effects
that significantly alter the implicitly defined targeted realization mapping from one experi-
ment to the next.
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Chapter 6

Characterizing Universal Gate Sets via
Dihedral Benchmarking

6.1 Foreword

The present chapter mainly consists in a literal transcription of [CWE15], for which my con-
tribution was major.

6.2 Compendium

We describe a practical experimental protocol for robustly characterizing the error rates of
non-Clifford gates associated with dihedral groups, including small single-qubit rotations.
Our dihedral benchmarking protocol is a generalization of randomized benchmarking that
relaxes the usual unitary 2-design condition. Combining this protocol with existing random-
ized benchmarking schemes enables practical universal gate sets for quantum information
processing to be characterized in a way that is robust against state-preparation and mea-
surement errors. In particular, our protocol enables direct benchmarking of the π/8 gate
even under the gate-dependent error model that is expected in leading approaches to fault-
tolerant quantum computation.

6.3 Introduction

A universal quantum computer is a device allowing for the implementation of arbitrary uni-
tary transformations. As with any scenario involving control, a practical quantum com-
putation will inevitably have errors. While the complexity of quantum dynamics is what
enables the unique capabilities of quantum computation, including important applications
such as quantum simulation and Shor’s factoring algorithm, that same complexity poses a
unique challenge to efficiently characterizing the errors. One approach is quantum process
tomography [CN97; PCZ97], which completely characterizes the errors on arbitrary quan-
tum gates but requires resources that scale exponentially in the number of qubits. Moreover,
quantum process tomography is sensitive to state-preparation and measurement (SPAM) er-
rors [Mer+13].

Randomized benchmarking [EAZ05; Kni+08; MGE11; MGE12] using a unitary 2-design
[Dan+09], such as the Clifford group, overcomes both of these limitations by providing an
estimate of the error rate per gate averaged over the 2-design. More specifically, it is a method
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for efficiently estimating the average fidelity

F(E) :=
∫

dψ〈ψ|E(ψ)|ψ〉 (6.1)

of a noise map E associated with any group of quantum operations forming a unitary 2-
design in a way that is robust against SPAM errors. This partial information is useful in prac-
tice as it provides an efficient means of tuning-up experimental performance, and, moreover,
provides a bound on the threshold error rate required for fault tolerant quantum computing
[Got10] that becomes tight when the noise is stochastic [MGE12; WF14; SWS15; Puz+14;
Mag+13; GB15].

An important limitation of existing randomized benchmarking methods is that they are
only efficient in the number of qubits [EAZ05; Dan+09; MGE11] for non-universal sets of
gates such as the Clifford group. While Clifford gates play an important role in many fault-
tolerant approaches to quantum computation [Got10], one still needs a means of benchmark-
ing an additional non-Clifford gate required for universality. One approach is to separately
benchmark distinct unitary 2-designs [Bar+14]. While this approach is relatively straightfor-
ward for characterizing gates at the physical level, it is unclear how to apply this approach
in the context of leading fault-tolerant proposals wherein particular non-Clifford operations
required for universality, such as the π/8 gate, are implemented via magic state distilla-
tion and gate injection [BK05; MEK12], which is a complex procedure that will be subject to
dramatically different error rates than those of the (physical or logical) Clifford gates. Al-
ternatively, randomized benchmarking tomography [Kim+14] can be employed, although
the fast decay curves can have a large uncertainty due to fitting an exponential to a small
number of significant data points.

In the present paper, we describe a protocol for benchmarking the average fidelity of a
group of operations corresponding to the dihedral group which does not satisfy the usual
2-design constraint for randomized benchmarking. However, we show that the dihedral
benchmarking protocol still allows the average fidelity to be estimated while retaining many
of the benefits of standard randomized benchmarking. Furthermore, by combining our di-
hedral benchmarking protocol with both standard [MGE11] and interleaved randomized
benchmarking [Mag+12], we give an explicit method for characterizing the average fidelity
of the π/8 gate directly. This is of particular interest because the π/8 gate combined with
the generators of the Clifford group (e.g., the CNOT, the Hadamard and the Pauli gates)
provides a standard gate set for generating universal quantum computation. Moreover our
protocol enables characterization of non-Clifford gates associated with small angle rotations,
which are of interest to achieve more efficient fault-tolerant circuits [LC13; For+15; DCP15].
Furthermore, the dihedral benchmarking protocol can be implemented either at the phys-
ical or logical level, but will find its greatest impact in the latter case, which is relevant to
fault-tolerant quantum computation via magic-state injection. In that setting, the quality of a
logical π/8 gate implemented via gate-injection will depend in a complex way on the quality
of the input (distilled) magic state, the errors on the physical stabilizer operations, and the
errors in the stabilizer measurements, all of which are required for the injection routine. Ap-
plying our protocol at the logical level provides a direct means of benchmarking the logical
error rate of the injected π/8 gate, which may be dramatically different from the error rates
achieved for the logical Clifford operations under the fault-tolerant encoding, without as-
sessing the performance of the individual components. Remarkably, dihedral benchmarking
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overcomes the key assumption of ‘weak gate-dependence’ of the noise that limits previous
benchmarking protocols. Specifically, the protocol is robust in the important setting when
the error on the non-Clifford gate, such as the π/8 gate, is substantially different from the
error on the Clifford operations. As noted above, this is the expected scenario in leading
approaches to fault-tolerant quantum computation.

X

R8(1)

x

y

z

y

x

FIGURE 6.1: The orbit, under the action of
the dihedral group D8, of an input state lo-
cated at a 45◦ degree latitude on the Bloch
sphere. R8(z) are the rotations of the oc-
tagon, while X is a reflection (or a rota-
tion in 3 dimensions, with the rotation axis
parallel to the octagon’s surface). The π/8
gate corresponds to the smallest rotation

R8(1).

6.4 Characterizing single-qubit unitary groups

We now outline a protocol that yields the average gate fidelity of the experimental imple-
mentation of a single-qubit unitary group of the form

Dj = 〈Rj(1), X〉, (6.2)

where 〈. . .〉 denotes the group generated by the arguments, j is a positive integer (or an
arbitrary real number), and

Rj(z) := eπizZ/j = cos(πz/j)I + i sin(πz/j)Z. (6.3)

Up to an overall sign, Dj is a representation of the dihedral group of order 2j, with XRj(z) =
Rj(−z)X, which is not a unitary 2-design and includes gates producing arbitrarily small
rotations as j increases. Note that the choice of rotation axis is arbitrary, and that any single-
qubit gate can be written as Rj(1) relative to some axis. Consequently, our protocol will allow
any single-qubit gate to be benchmarked. The Bloch sphere representation of D8 acting on
a qubit state is illustrated in fig. 6.1. This group contains the so-called π/8 gate, which
corresponds to the R8(1) rotation.

The dihedral benchmarking protocol for a fixed integer j is as follows. (Note that j can
also be a real number, in which case the sums below are replaced by integrals.)

1. Choose two strings of length m, z = (z1, . . . , zm) ∈ Zm
j and x = (x1, . . . , xm) ∈ Zm

2 ,
independently and uniformly at random.

2. Prepare a system in an arbitrary initial state ρ.1

1The constants A and B appearing in eqns. 6.5 and 6.6 depend on state preparation, as shown in eqns. 6.26–
6.28. These constants may be maximized by choosing an appropriate state preparation (and the corresponding
measurement). In particular, optimal states for eqn. 6.5 and eqn. 6.6 are |0〉〈0| and |+〉〈+| respectively.
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3. At each time step t = 1, . . . , m, apply Rj(zt)Xxt .

4. Apply the recovery gate, defined as

gm+1 := Xb1 Zb2 ∏m
t=1[Rj(zt)Xxt ]†,

where b1, b2 ∈ Z2 are fixed by considerations below.

5. Perform a POVM {µ, I− µ} → {+1,−1} for some µ ≈ ρ, to estimate the probability
Pr(+1|m, x, z, b1, b2) of outome +1.

6. Repeat steps 1-5 k times, where k is fixed by the requirement to estimate the average
recovery probability

p(m, b1, b2) := |2j|−(m+1) ∑x,z Pr(+1|m, x, z, b1, b2)

to a desired precision (see [MGE12; GFC14; WF14] for details on the required sampling
complexity).

For b1 = b2 = 0, the average recovery probability is

p(m, 0, 0) = A0 + A1λm
1 + A2λm

2 , (6.4)

where Ai are constants absorbing SPAM factors. Fitting two exponentials is generally more
difficult than fitting a single exponential, so we propose instead fitting to

p(m, 0, 0) + p(m, 0, 1)
−p(m, 1, 0)− p(m, 1, 1) = 4A2λm

2 (6.5)

and

p(m, 0, 0)− p(m, 0, 1) = 2A1λm
1 . (6.6)

As we will show below, the average gate fidelity is related to the fit parameters λ1 and λ2 by

F(EDj) =
1
2
+

1
6
(λ2 + 2λ1), (6.7)

where EDj is the noise over Dj and we assume that the noise is completely positive and trace-
preserving and is also gate and time-independent (though perturbative approaches to relax
these assumptions can be considered [MGE12; WF14])

6.5 Characterizing the π/8 gate

The π/8 gate, or R8(1) in the notation of eq. (6.3), is important in many implementations be-
cause it is used to supplement the Clifford gates to achieve universal quantum computation.
In leading approaches to fault-tolerant error-correction, the π/8 gate is physically realized
via magic-state injection [BK05], in which magic states are acted upon by Clifford transfor-
mation and post-selected stabilizer measurements. Because the physical (logical) Clifford

126



gates are applied directly (transversally) whereas the π/8 gate is implemented through the
above method, the error on the π/8 gate may be substantially different and requires sepa-
rate characterization. While the quality of the injected gate can be assessed by measuring the
quality of the input and output magic states as well as benchmarking the required stabilizer
operations, here we provide a direct method to estimate the average gate fidelity of the π/8
gate.

The π/8 gate is contained in D8 (see eqn. 6.2), which contains D4 as a subgroup. One
approach to characterizing the π/8 gate is to benchmark D4 and D8 separately. If the average
fidelity over D8 and D4 are similar, this is an indication that the π/8 gate has similar average
fidelity as the Clifford group. However, typically this will not hold for the reasons stated
above, in which case we suggest the following protocol. First benchmark D4 as per the
above protocol. Then adapt interleaved randomized benchmarking [Gam+12] to the above
protocol by replacing steps 3 and 4 (with j = 4) with the two following steps:

3′. At each time step t = 1, . . . , m, apply R8(1)R4(zt)Xxt .

4′. Apply the recovery gate, defined as

gm+1 := Xb1 Zb2 ∏m
t=1[R8(1)R4(zt)Xxt ]†.

We require the sequence length to be even to ensure that the recovery gate is in D4, which
follows from the commutation relation XRj(z) = Rj(−z)X. For b1 = b2 = 0, the average
recovery probability is similar to eqn. 6.4, but with different decay parameters:

p(m, 0, 0) = A′0 + A′1λ′1
m
+ A′2λ′2

m
+ . (6.8)

As in the previous section, the curves

p(m, 0, 0) + p(m, 0, 1)

−p(m, 1, 0)− p(m, 1, 1) = 4A′2λ′2
m (6.9)

and

p(m, 0, 0)− p(m, 0, 1) = 2A′1λ′1
m (6.10)

can be fitted instead to extract the decay parameters. The average gate fidelity of the com-
posed noise channel Eπ/8 ◦ ED4 (where Eπ/8 is the noise on the π/8 gate and ◦ denotes chan-
nel composition) is related to the fit parameters λ′1 and λ′2 by

F(Eπ/8 ◦ ED4) =
1
2
+

1
6
(λ′2 + 2λ′1). (6.11)

The average gate fidelity of the π/8 gate, F(Eπ/8) (as opposed to the fidelity of the com-
posite noise channel), can then be estimated from the relation [Kim+14; CWE16]

|Φ(Eπ/8)−Φ(ED4)Φ(Eπ/8 ◦ ED4)− (1−Φ(ED4))(1−Φ(Eπ/8 ◦ ED4))|

≤ 2
√

Φ(ED4)Φ(Eπ/8 ◦ ED4)(1−Φ(ED4))(1−Φ(Eπ/8 ◦ ED4)) , (6.12)
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where

Φ(E) :=
3
2

F(E)− 1
2

(6.13)

is the process fidelity. This bound is loose in general but tight when the Clifford gates in D4
have much higher fidelity than the π/8 gate (which is the regime of interest when optimizing
the overhead and fidelity of the distillation and injection routines) [Fow+12].

Smaller rotations can also be characterized in a similar fashion. The average fidelity of
a small rotation RJ(1) is estimated by implementing the same scheme, replacing π/8 with
RJ(1), D4 with Dj such that 2N · j = J for any fixed choice of N ∈ N, and by restricting the
sequence lengths to be multiples of 2N.

6.6 Analysis

We now derive the formula for the decay curves expressed in eqns. 6.4–6.6, 6.8–6.10 together
with the average fidelity eqns. 6.7 and 6.11. For convenience, we will use the Pauli-Liouville
representation of channels in which channel composition corresponds to matrix multipli-
cation (see, e.g., Ref. [WF14] for details). The Pauli-Liouville representation of an abstract
channel E , which we denote with the same letter E (the context suffices to differentiate the
matrix from the abstract channel), is the matrix of trace inner products between Pauli matri-
ces Pj and their images E(Pk) under E ,

Ejk = Tr(PjE(Pk)) . (6.14)

We assume that the experimental noise is completely positive and trace-preserving (CPTP)
and is also gate and time-independent (though perturbative approaches to relax these as-
sumptions can be considered [MGE12; WF14]), so that we can represent the experimental
implementation of RJ(1)Rj(z)Xx as

ΛJ(RJ(1)) ◦ΛDj(Rj(z)Xx) , (6.15)

where ΛJ , ΛDj are maps from U(2) to noisy operations in CPTP2:

ΛJ(RJ(1)) = L(RJ(1)) ◦ ERJ(1) (6.16a)

ΛDj(Rj(z)Xx) = EDj ◦ L(Rj(z)Xx) , (6.16b)

and L : U(d)→ CPTP2 is implicitly defined as

L(U)[ρ] = UρU† . (6.17)

ERJ(1), EDj ∈ CPTP2 are quantum error channels.
The standard Dj benchmarking protocol can be obtained by setting J = 1 and ERJ(1) = I4,

while the interleaved case corresponds to J = 2N · j.
For j > 2, the Pauli-Liouville representation of L(Rj(z)Xx) is block diagonal with three
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blocks, where the blocks corresponds to three inequivalent irreducible representations (ir-
reps) of the dihedral group, namely,

φ0(Rj(z)Xx) = 1 (trivial representation)

φ1(Rj(z)Xx) =

(
cos(2πz/j) (−1)x+1 sin(2πz/j)
sin(2πz/j) (−1)x cos(2πz/j)

)
(faithful representation)

φ2(Rj(z)XX) = (−1)x . (parity representation)

This is easily seen by looking at the action of Dj on the Bloch sphere (see fig. 6.1). The
trivial representation emerges from the unitality and trace-preserving properties of unitary
operations, which map any Bloch shell of constant radius to itself, including the center point.
The parity representation encodes the fact that the±Z poles of the Bloch sphere are invariant
under conjugation by Rj(z) and swapped under conjugation by X. The two-dimensional
representation encodes the action of Rj(z)Xx on the XY-plane of the Bloch sphere.

The twirl of a channel E over a group G is defined as

EG = |G|−1 ∑
g∈G

L(g−1)EL(g). (6.18)

As a consequence of Schur’s lemmas (see the supplementary information of Ref. [Gam+12]),
the twirl of any channel over Dj is

EDj = (ERJ(1)EDj)
Dj =


1 0 0 0
0 λ′1 0 0
0 0 λ′1 0
0 0 0 λ′2

 = φ0(I)⊕ λ′1φ1(I)⊕ λ′2φ2(I) (6.19)

for j > 2, where λ′2 := E33 and λ′2 := E11+E22
2 and the diagonal blocks correspond to the three

inequivalent irreps of Dj. Defining

Am : = (2j)−m ∑
x,z

1

∏
i=m

L(RJ(1))ERJ(1)EDj L
(

Rj(zi)Xxi
)

Bm : = (2j)−m ∑
x,z

m

∏
i=1

L
(

Xxi †Rj(zi)
†RJ(1)†

)
, (6.20)

the average over all sequences of length m can be expressed as the effective channel

C = EDj L
(

Xb1 Zb2
)
BmAm . (6.21)

But BmAm can be re-expressed as

BmAm = Bm−1(ERJ(1)EDj)
DjAm−1

= (ERJ(1)EDj)
DjBm−1Am−1

=
m

∏
j=1

(ERJ(1)EDj)
Dj , (6.22)
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where the the second line follows from the fact that EDj is proportional to the identity in each
of the blocks.

With these definitions, the average fidelity is [Nie02; Kim+14]

F(E) = 1
2
+

1
6
(E11 + E22 + E33)

=
1
2
+

1
6
(λ′2 + 2λ′1) (6.23)

as in eqn. 6.7 and 6.11. Using eqn. 7.14, the effective channel C from eqn. 6.21 can readily be
expressed as

C = EDj


1 0 0 0
0 (−1)b2 λ′1

m 0 0
0 0 (−1)b1+b2 λ′1

m 0
0 0 0 (−1)b1 λ′2

m

 . (6.24)

Therefore the recovery probability is

p(m, b1, b2) = Tr (µ C(ρ))

= (−1)b1 A2λ′2
m
+
(
(−1)b1+b2 B1 + (−1)b2 B2

)
λ′1

m
+ A0 , (6.25)

where

A2 := 2−1 · Tr
(

µ · EDj(Z)
)
· Tr (ρZ) , (6.26)

B1 := 2−1 · Tr
(

µ · EDj(Y)
)
· Tr (ρY) , (6.27)

B2 := 2−1 · Tr
(

µ · EDj(X)
)
· Tr (ρX) , (6.28)

A0 := 2−1 · Tr
(

µ · EDj(I)
)

. (6.29)

Eqns. 6.4–6.6, 6.8–6.10 then follow from appropriate choices of b1, b2 and simple algebra.

6.7 Numerical simulation

Although the previous analysis is derived for gate- and time-independent noise, the ran-
domized benchmarking protocol is both theoretically and practically robust to some level
of gate-dependent noise [MGE12; WF14]. We now illustrate through numerical simulations
that this robustness holds for the dihedral benchmarking protocol, particularly in the regime
where the noise is strongly gate-dependent (as expected when the gates are implemented
using different methods, namely, direct unitaries and magic state injection).

For our simulations, each operation within the dihedral group D8 is generated by com-
posing two gates; the first from D4 and the second is either identity or the π/8 gate. The
error associated with the first gate is a simple depolarizing channel with an average fidelity
of 0.9975. For the second gate, the error arises only after the π/8 gate, and corresponds to
an over-rotation with an average fidelity of 0.99. The total average fidelity over D8 is 0.9925.
Fig. 6.2 shows the two decay curves described by eqns. 6.5 and 6.6. Weighted non-linear
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FIGURE 6.2: (Color online) Decay curves corresponding to eqns. 6.5 and 6.6 for
a standard randomized benchmarking simulation with A2 ≈ 1

4 and A1 ≈ 1
2 re-

spectively. The shallow (blue) and steep (orange) lines correspond to eqn. 6.5
and eqn. 6.6 respectively. Each data point is obtained after averaging 500 se-
quences of fixed length. A weighted non-linear regression (performed using
the scipy Python package) gives an estimate of 0.9924(1) for the average fi-
delity over D8, compared to the analytic value 0.9925. See Numerical simulation

for details.
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FIGURE 6.3: Decay curves corresponding to eqns. 6.5 and 6.6 for an inter-
leaved randomized benchmarking simulation with with A2 ≈ 1

4 and A1 ≈ 1
2

respectively. The shallow (blue) and steep (orange) lines correspond to eqn. 6.5
and eqn. 6.6 respectively. Each data point is obtained after averaging 500 se-
quences of fixed length. Figure a) corresponds to high fidelity Clifford oper-
ations and a relatively noisy π/8 gate. Figure b) corresponds to errors of the
same magnitude on the Clifford operations and the π/8 gate. See Numerical

simulation for details.

regressions give an estimate of 0.9924(1) for the average fidelity, which is consistent with
the analytic value. We also simulate the interleaved randomized benchmarking protocol in
two different regimes (see fig. 6.3). The first regime (fig. 6.3a) corresponds to over-rotation
errors that are small for the Clifford operations, with average fidelity 1− 10−6, but large for
the π/8 gate, with average fidelity 1 − 10−2. The estimate of the fidelity of the π/8 gate
via our protocol, 0.9901(2), is extremely precise in this regime. The second regime (fig. 6.3b)
corresponds to a similar over-rotation with average fidelity 0.99 both for the Clifford group
and the π/8 gate. In this case the estimated value of F(Eπ/8) is 0.980 and the bound from
eqn. 6.12 only guarantees F(Eπ/8) to lie the interval [0.958, 1.000]. The rather loose bound in
this regime is an open problem for interleaved randomized benchmarking and is not specific
to the current protocol.

6.8 Conclusion

We have provided a protocol that extracts the average fidelity of the error arising over a
group of single-qubit operations corresponding to the dihedral group. While we have ex-
plicitly assumed that the rotation axis is the z axis, this is an arbitrary choice. Since any
single-qubit unitary can be written as a rotation about some axis on the Bloch sphere, our
protocol can be used to characterize any single-qubit gate.

Of particular importance are D8 and D4, which enable efficient and precise benchmarking
of the π/8 gate that plays a unique and important role in leading proposals for fault-tolerant
quantum computation. We have illustrated numerically that the fidelity of the π/8 gate can
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be estimated using an interleaved version of our protocol. This estimate is precise when the
quality of Clifford gates is significantly greater than the π/8 gate, which is a regime relevant
to near-term small-scale demonstrations of universal fault-tolerant quantum computation
where Clifford operations are performed transversally while the quality of the π/8 gate is
limited by the relatively high cost of magic state distillation.
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through grant W911NF-14-1-0103, CIFAR, the Government of Ontario, and the Government
of Canada through NSERC and Industry Canada.

6.9 Afterword

6.9.1 Group-based randomized benchmarking

Dihedral benchmarking was the first RB protocol that suggested using a family of gate-sets
that do not form a 2-design, but that certainly exhibit a group structure. The idea can be nat-
urally extended to other groups [Cro+16; Hel+18; SH18; OWE18; BE18; Erh+19]. Essentially,
by performing a twirl over a group structure, one can immediately invoke Schur’s orthogo-
nality relations to simplify the structure of a given error channel (for a group 2-design, errors
are transformed into simple depolarizing channels). The simplified channel is then typically
repeated, and a signal is extracted (the average recovery probability). Since the repeated
simplified channel has few parameters, it is generally possible to tie the signal to a fitting
model, and estimate desired error parameters.

Consider the simpler case of a randomizing gate-set G that forms a group (here G is a
subgroup of U(d)) and for which the irreps composing the Liouville representation of ideal
operations remain inequivalent. The Liouville matrix of a group element g ∈ G is equivalent
to a direct sum of inequivalent irreps φi ,

L(g) = B
(⊕

i

φi(g)

)
B−1 , (6.30)

where B is some invertible d2× d2 matrix. It follows immediately from Schur’s orthogonality
relations that a twirl of a error matrix E over the group G would yield:

EG =
1
|G| ∑

g∈G
L(g)EL(g−1) = B

(⊕
i

λiφi(e)

)
B−1 , (6.31)

where

λi =

〈
B (0⊕ · · · 0⊕ φi(e)⊕ 0⊕ · · · ⊕ 0)B−1, E

〉
Tr φi(e)

. (6.32)

By repeating the twirled channel many times, as depicted in the gate-independent analysis
of group-based RB protocols, and by choosing specific state preparation and measurement
procedures, one typically get signal which consists in a sum of exponentials:

〈µ|(EG)m|ρ〉 = ∑
i

Ai(ρ, µ)λm
i . (6.33)
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The model can get a little more intricate, but not overbearingly so, when the Liouville repre-
sentation of the randomizing group contains equivalent irreps [OWE18]. The process fidelity
of E to the identity is retrieved via

Φ(E , I) = ∑
i

λi
Tr φi(e)
Tr L(e)

. (6.34)

This means that one typically want to either estimate all the λis, or sample from them with
weights wi = Tr φi(e)/d2. Of course, one might be interested in the λis themselves for the
sake of noise reconstruction techniques.

To estimate the λis, the strategy is typically to vary over different SPAM procedures
(i.e. (ρ, µ) pairs) in order to put emphasis on different decays or different linear combi-
nations of decays. Recall that in dihedral benchmarking, the recovery operation is the se-
quence inverse supplemented by a Pauli of the form Xb1 Zb2 . This extra (compiled) Pauli
in the last step can be seen as taking part of the measuring procedure, that is taking µ to
µ(b1, b2) = Xb1 Zb2 µZb2 Xb1 . After gathering enough data points from eq. (6.33), by changing
the sequence length m and the SPAM procedures (ρ, µ), Φ(E , I) is estimated. For instance,
in dihedral benchmarking, multiple types of SPAM procedures are performed and specific
linear combinations of the respective recovery probabilities are considered in order to iso-
late the decays. That is, the fitting model eq. (6.33) is effectively broken up in simpler fitting
models of the form

fi(m) = A′iλ
m
i . (6.35)

Fitting a single exponential is typically much easier and stable than fitting a sum of exponen-
tials for which the individual decays are close to each other. The trick of isolating the decays
that appears in dihedral benchmarking can be generalized for other groups by simply ap-
pealing to character orthogonality relations [Hel+18].

6.9.2 Generator-based randomized benchmarking

Group-based RB borrows most of its tools from the representation theory of groups, and in
particular from Schur’s orthogonality relations (including character theory [Hel+18]). While
the algebraic richness of group structures guarantees important simplifications of error ac-
cumulation in random circuits, it also typically demands more and more elaborate circuit
constructions as the system dimension grows in size2. This in turns complexifies the imple-
mentation of RB experiments, as their realization requires the design of efficient gate sam-
plers and gate compilers. This is not necessarily a fundamental problem. For instance, there
exist efficient recipes for constructing Clifford gate compilers and samplers. Moreover, de-
signing gate compilers, despite being demanding, should be seen as an essential part in the
realization of a computing device. The more fundamental reason to consider algebraically
lighter randomizing schemes is twofold:

2This of course depends on the group and on the set of primitive operations. In some architectures, the n-qubit
Pauli group might be directly obtained from native operations.

134



i. By design, group operations have lower fidelities than the primitive operations that
generate them. In most proposed architectures, for which the qubit connectivity is lim-
ited, the discrepancy between those fidelities could grow considerably with the sys-
tem’s dimension. Since circuits composed of m random group elements will see their
fidelity drop more rapidly than sequences of m primitive operations, one can imagine
a regime where the signal given by group-based RB, eq. (6.33), would be very faint in
comparison to the signal coming from a generator-based random sequence. Design-
ing RB experiments based on weaker algebraic structures would allow the possibility
to characterize devices in regimes where more traditional group-based RB would be
useless.

ii. The connection between primitive operations and the result of group-based RB experi-
ments could become fainter as circuit constructions for generating group elements gain
in depth. Interleaving primitive operations with group elements would yield single-
gate fidelity estimates subject to the bounds derived in chapter 3, which would render
the estimate completely meaningless as the infidelity of the randomizing set gets larger.

These concerns, which are only valid in specific (but relevant) regimes, could be allevi-
ated by simplifying the structure of the randomizing gate-set [Pro+18; SH18; Erh+19]. Notice
that the work of [Pro+18; SH18] suggest a generator-based approach, which differs from the
scalable group-based technique known as cycle benchmarking, developed in [Erh+19]. De-
spite invoking group structures, cycle benchmarking is not vulnerable to the two previous
scalability concerns since the randomizing group (the n-fold Pauli group) connects directly
with a set of generators, and doesn’t require intricate constructions as the system size in-
creases. In the next chapter, I will introduce some original elements of theory regarding
generator-based RB under gate-dependent effects.
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Chapter 7

Generator-based randomized
benchmarking

7.1 Foreword

This chapter contains two related projects regarding generator-based RB protocols.
The first one, in which I heavily contributed, concerns the analysis of a well-known RB

protocol implemented in 2008 that was using a randomizing gate-set that was neither a 2-
design nor a group [Boo+19]. The protocol can in fact be cast as a simple case of generator-
based RB experiment. Notice here that the term “generator” refers to the generators of a
group, and doesn’t need to relate to native gates (although primitive gates form a generating
set). The simplicity of the analysis provided in [Boo+19] is a good stepping stone to reason
about more advanced generator-based RB protocols.

The second (multipart) project concerns a generator-based RB protocol labeled as “di-
rect randomized benchmarking” (DRB) [Pro+18]. The protocol itself, as well as some anal-
ysis techniques were mostly lead by Dr. Timothy J. Proctor. However, I did take part in
reasoning about “sequence-asymptotic 2-designs” (a notion that differs from “asymptotic 2-
designs” introduced by of Gross et al. [GAE07]), and about the analysis of the DRB signal
under general realistic gate-dependent effects. Hence, in this chapter, I will briefly introduce
the protocol and focus mainly on its signal analysis without covering the statistical consid-
erations regarding the fitting procedures.

7.2 Randomized Benchmarking under Different Gate-sets

The present section consists in a literal transcription of the first (theory oriented) sections
of [Boo+19], for which my contribution was major. I only left the discussion regarding the
gate-independent analysis of “NIST RB”.

7.2.1 Compendium

We provide a comprehensive analysis of the differences between two important standards
for randomized benchmarking (RB): the Clifford-group RB protocol proposed originally in
Emerson et al (2005) and Dankert et al (2006), and a variant of that RB protocol proposed
later by the NIST group in Knill et al, PRA (2008). Our analysis provides an important first
step towards developing definitive standards for benchmarking quantum gates and a more
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rigorous theoretical underpinning for the NIST protocol and other RB protocols lacking a
group-structure.

7.2.2 Introduction

Clifford-group randomized benchmarking (RB) [EAZ05; Dan+06; Dan+09] has become the
de facto standard tool for assessing and optimizing the quantum control required for quan-
tum computing systems by estimating error rates associated with sets of elementary gates
operations. It has been known for some time that this protocol leads to an invariant expo-
nential decay [EAZ05; Dan+06; Lev+07; Dan+09] because it is equivalent to a sequence of
twirls [Lev+07] with unitary-two designs [Dan+06; Dan+09].

More recently, the robustness of the Clifford-group RB protocol has been supported by
a rigorous theoretical framework, including proofs that an exponential fidelity decay will
be observed under very broad experimental conditions, including essentially arbitrary state
preparation and measurement errors [MGE11; MGE12] and gate-dependent errors [Wal17],
as well as proofs that the observed error rate relates directly to a well-defined notion of
gate-fidelity [Wal17; Pro+17a; Car+18], which fully overcome recent concerns about relat-
ing measured RB error rates to a meaningful concept of gate-fidelity under gate-dependent
errors [Pro+17a].

While a wide-variety of group-based generalizations of RB have been proposed in recent
years, e.g. [Bar+14; WF14; CWE15; WBE15; Cro+16; WBE16; Wal17; OWE18; SH18; Hel+18],
in this Letter we focus on clarifying the physical relevance of a standing conflation in the lit-
erature between the now standard Clifford-group RB protocol proposed in [EAZ05; Dan+06;
Dan+09] and an alternate version of RB proposed later by NIST [Kni+08]. As described be-
low, these are distinct protocols that measure distinct properties of the error model and thus
can produce different error rate estimates under the same, realistic experimental conditions.
Moreover, because the NIST protocol does not admit a closed-group or unitary two-design
structure, the rigorous theoretical framework justifying Clifford-group RB does not trivially
extend to support the physical interpretation and robustness of NIST RB.

In this Letter we identify the operationally-relevant differences between the Clifford-
group RB protocol and the NIST version of RB which clarifies how they can lead to very
different error rate estimates given the same error model (as defined in terms of the elemen-
tary control pulses). We then provide the first rigorous proof that the NIST RB protocol does
indeed produce an exponential decay under gate-independent error models. This is an im-
portant step toward developing a theoretical justification for the NIST protocol and other RB
protocols that do not admit a group-structure in the case of gate-dependent errors and the ul-
timate goal of a theoretical framework within which error reconstruction under RB protocols
with different gate sets can be extracted in a unified and consistent manner. Our analysis is
thus also essential for comparing cross-platform benchmarking methods and standards for
quantum computing.

7.2.3 Background and Motivation

The original proposal for randomized benchmarking from Emerson et al. [EAZ05] considered
implementing long sequences of quantum gates drawn uniformly at random from the group
SU(d) for any quantum systems with Hilbert space dimension d.

138



That work proved that the measured fidelity would follow an exponential decay with a
decay rate that is fixed uniquely by the error model, that is, the measured decay rate would
not depend on the choice of initial state or the specific random quantum gate sequences.

This protocol suffered from two limitations: the random gates were drawn from a con-
tinuous set, which is impractical even for d = 2, and the protocol would not be efficient
for large systems because a typical random element of U(d) requires exponentially long gate
sequences under increasing numbers of qubits. Additionally, in that limit the inversion gate
may not be computed efficiently.

However, practical and efficient solutions to both of these problems were proposed in
Dankert et al. [Dan+06; Dan+09] in 2006, which proved and observed that drawing gates
uniformly at random from the Clifford group would lead to the same exponential decay rate
as computed in the protocol proposed earlier in Emerson et al. [EAZ05], which follows from
the unitary 2-design property of the Clifford group.

This connection is made more explicit through the observation that a random sequence
of gates drawn from any group is equivalent to an independent sequence of twirls under
that group, as shown explicitly in [Lev+07] and had been conjectured earlier in [EAZ05].

Collectively these papers define what is now known as Clifford-group RB, an efficient
and practical method for assessing error rates for quantum processors on arbitrarily large
numbers of qubits, summarized here as Protocol 1. This Clifford-group RB protocol has
become a de facto standard for benchmarking and optimizing gate performance and has been
implemented by a large number of groups across various hardware platforms to characterize
single- and multi-qubit gate operations, see, e.g., Refs [Muh+15; Kel+14; Bar+14; McK+17b;
She+16; Xia+15; Tar].

The theoretical underpinnings of the standard protocol were clarified and further devel-
oped by Magesan et al. [MGE11; MGE12], which showed that the exponential decay rate was
robust to state preparation and measurement errors (SPAM), and by Wallman [Wal17] and
Dugas et al. [Car+18], which showed that the exponential decay rate was meaningfully re-
lated to a gate-fidelity in spite of the gauge freedom highlighted by Proctor et al. [Pro+17a]
that occurs in the usual definition of the average gate-fidelity.

Additionally, the work of Wallman [Wal17] established that the RB error rate is robust
to very large variations in the error model over the gate set (known as gate-dependent er-
ror models) and thus established that RB can also be an effective tool for diagnosing non-
Markovian errors. This follows from the fact that only non-Markovian errors (including
what are sometimes called time-dependent Markovian errors) can produce a statistically sig-
nificant deviation from an exponential decay under a Clifford-group RB experiment.

A different version of the 2005 Emerson et al. [EAZ05] protocol was proposed by Knill
et al. [Kni+08] in 2008 and implemented in the NIST ion trap. This proposal involved the
same kind of motion reversal experiment proposed in Emerson et al [EAZ05] but selects a
random sequences of gates drawn from a non-uniform sampling of the single-qubit Cliffords,
defined as “Pauli-randomized π/2 gates". The precise recipe for this protocol is summarized
as Protocol 2. The NIST version of the randomized benchmarking protocol continues to be
implemented mainly in ion traps [Bro+11; Har+14]. We note that in contrast to the earlier
Clifford-group RB protocol which is defined for single- and multi-qubit gate operations, the
NIST version of RB is defined only for single-qubit gate operations.

In this Letter, we prove that the measured fidelity under the NIST protocol will follow an
exponential decay, which has never been established for this protocol, and relate the decay
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rate to the intrinsic properties of the error model, demonstrating how it differs from the
properties measured by Clifford-group RB. This analysis also provides first step towards
developing a self-consistent theoretical framework for interpreting and relating the results of
the large and growing family of RB-style protocols, which all share the structure of applying
random sequences of gates and differ mainly through the choice of which random gate-
sets [CWE15; Cro+16; WBE16; CW15; WBE15; Gam+12; Bar+14; Pro+18; Kim+14; Eme+07;
MGE12; She+16; Wal17; WG18; Xia04].

Finally, an additional motivation for the present work comes from the recent conceptual
development [WE16] establishing how accurately RB error estimation methods can inform
the design and ‘in vivo’ performance of large-scale quantum computations. This develop-
ment overcomes a standing criticism of RB protocols that the very nature of a randomization
protocol limits these protocols to detect only the stochastic component of coherent errors -
and hence that RB-type protocols are not able to capture the full impact of these errors. Co-
herent errors are those that typically arise from imperfect quantum control due to residual
mis-calibrations 1 and pose a major challenge for reliable quantum computation. However,
this perceived limitation has become a strength of RB protocols thanks to the concept of ran-
domized compiling [WE16].

Randomized compiling is an important generalization and improvement to the concept
of Pauli-Frame Randomization (PFR) proposed earlier in [Kni05] that does not require any
overhead for the randomization and works for universal gate sets 2. When implementing
a quantum algorithm via randomized compiling, the only performance limiting component
of a coherent error is precisely the stochastic component that is detected via RB protocols.
In summary, a precise and accurate understanding of RB error estimates is highly relevant
because RB detects precisely the component of the error that determines the ‘in vivo’ perfor-
mance of the gate operations within a large-scale circuit performed via randomized compil-
ing.

1Note that cross-talk is a non-trivial coherent error that results from control errors affecting distant qubits.
2In particular, relative to PFR, randomized compiling (i) does not add additional overhead to each clock

cycle, which it achieves by ‘compiling in’ the randomizing gates, (ii) works for universal gate sets, and (iii)
rigorously characterizes how close the effective error model is to a purely stochastic error model under errors
gate-dependent errors
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7.2.4 Results

Standard RB vs NIST RB

The standard RB protocol (SRB) [EAZ05; Dan+06; Dan+09] is summarized in protocol 1.
Protocol 1: Standard Clifford-group RB, as described in [EAZ05; Dan+06; Dan+09].

1. Sample a set of m gates {g1, · · · , gm} picked independently and uniformly at
random from the Clifford group C defined in eq. (7.3);

2. Determine the recovery gate gm+1 (see text below);

3. Prepare a state ρ ≈ |0〉〈0|;

4. Perform the sampled gates from step 1, followed by the recovery gate gm+1
determined in step 2:
Λ(g)m+1:1 = Λ(gm+1) ◦ . . . ◦Λ(g1);

5. Measure a POVM {µ, I− µ}, where the first observable is µ ≈ L(gm+1:1)[|0〉〈0|],
and respective outcome labels are {“recovery”, “non-recovery”};

6. Repeat steps 3–5 a number times to estimate the probability of observing the
“recovery” event Pr(“recovery”|{gi}, m) = Tr µΛ(g)m+1:1[ρ];

7. Repeat steps 1–6 for s different sets of m randomly sampled gates {gi};

8. Repeat steps for 1–7 for different values of m of random gates.

9. Fit the estimated recovery probabilities to the decay model

AC pm
C + BC ; (7.1)

10. Estimate the Clifford gate-set infidelity through

δF(Λ(C), L(C)) = (1− pC)/2 . (7.2)

The recovery operations mentioned in step 2 is usually an inversion gate, where gm+1 =
(gm:1)

−1, in which case the recovery observable simply corresponds to the initial state: µ ≈
|0〉〈0|. However, performing the inverse only up to a random bit flip, i.e gm+1 = Xb

π(gm:1)
−1,

leads to a simpler decay model with less free parameters since it fixes BC [Har+19]. Of course
in this case one has to keep track of the bit flip, that is µ ≈ |b〉〈b|. Such a randomized recovery
operation was proposed originally in [Kni+08].

SRB is typically implemented using the Clifford group C as a randomizing gate-set, as
specified in the first step of protocol 1, but the derivation of the decay model shown in
eq. (7.1) holds for any unitary 2-design [Dan+06; Dan+09]. The Clifford group is defined
as follows. First consider the pulses along any Cartesian axis system

Xθ := e−iθ/2 σX , Yθ := e−iθ/2 σY , Zθ := e−iθ/2 σZ ,
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where σi denote the unitary Pauli matrices. The Pauli group P is defined in terms of the
identity operation and 3 elementary π pulses: P := {I, Xπ, Yπ, Zπ}.

The Clifford group C is defined as the normalizer of the Pauli group
and can be obtained from the Pauli group composed with the coset
S := {I, Xπ/2, Yπ/2, Zπ/2, Zπ/2Xπ/2, X−π/2Z−π/2}:

C := S · P = {S · P | S ∈ S, P ∈ P} . (7.3)

Some other experimental groups performed RB using alternate 2-design gate-sets in step
1 of protocol 1[Bar+14]. Amongst the set of possible unitary 2-designs, it is worth mentioning
those following subsets of C. Consider the cyclic group T := {I, Zπ/2Xπ/2, X−π/2Z−π/2},
then the following sets both form 2-designs of order 12:

C12 := T · P = {T · P | T ∈ T, P ∈ P} , (7.4)
√

ZC12 := Zπ/2 ·C12 = {Zπ/2 · C | C ∈ C12} , (7.5)

with C12 ∪
√

ZC12 = C. Obviously, the decay parameters as well as the infidelity depend on
the randomizing gate-set (hence the indices).

The validity of the decay model and the connection between the decay parameter and
the gate-set infidelity have been demonstrated in the case of gate-independent Markovian
noise scenarios in [EAZ05]. The proofs of eq. (7.1) and eq. (7.2) have been generalized to
encompass gate-dependent noise scenarios in [Wal17; MPF18] and [Car+18] respectively3.

Although the proof techniques can get mathematically heavy, their essence remains sim-
ple: the algebraic richness of 2-designs prevents errors to accumulate in an unpredictable
way as the circuit grows in length. As we show with more care in the next section, the ran-
dom sampling over the gate-set tailors the effective errors at each cycle in a depolarizing
channel for which the evolution is parameterized by a single real number p. The errors are
stripped out of all their properties except one, which turns out to be in one-to-one corre-
spondence with their average infidelity. By modifying the sampled circuits lengths, we can
estimate the parameter p and retrieve the infidelity.

While unitary 2-designs are provably effective randomizing gate-sets, leading to the
model portrayed in eq. (7.1), some algebraically weaker gate-sets have indicated a similar
exponential decaying behaviour.

The gate-set N used in NIST RB [Kni+08] is a composition of a set Q := {X±π/2, Y±π/2},
consisting of π/2 pulses in the xy-plane, with the Pauli operators:

N := Q · P = {Q · P | Q ∈ Q, P ∈ P} . (7.6)

N has order 8, and although it contains all its inverse elements (that is ∀g ∈ N, ∃g−1 ∈ N s.t.
g · g−1 = I), it is not closed under multiplication. It does not form a group, nor a 2-design;
however, the closure 〈N〉 forms the Clifford group C.

RB sequences can be seen as Markov chains [MEK12], where the elements of the chain
are the aggregate circuits, that is C1 = g1, C2 = g2g1, Cm = gm:1. Indeed, the probability
distribution on circuits Cm = gm:1 simply depends on the circuit Cm−1 and on the probability
distribution of the random gate applied at step m. In standard RB, Ci is always uniformly

3In gate-dependent noise scenarios, the connection between the RB decay parameter and the gate-set infidelity
remains a (strongly supported) conjecture for d > 2.
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distributed over the Clifford group. In NIST RB, C2n (or C2n+1) converges to a uniform dis-
tribution over C12 (or

√
ZC12), as shown in fig. 7.1.

FIGURE 7.1: Probability distribution over the Clifford gates C (labelled as in
[Bar+14]) after m gates (i.e clock cycles) of NIST RB drawn uniformly at ran-
dom from N ⊂ C. This leads to a non-uniform sampling over the Cliffords that
varies as m increases. Asymptotically, for a sequence of even (or odd) length,
the probability distribution tends toward a uniform distribution over C12 (or√

ZC12). The grey line indicates an equal probability over the full 24 Clifford
group C.

While this approach to RB has been useful for estimating error rates [Kni+08; Bro+11;
Har+14], in the absence of a unitary 2-design structure, it is not clear how to relate the
measured probabilities from protocol 2 to the usual decay predicted under SRB, or to any
infidelity for that matter. In this paper we provide a concrete analysis of the outcome of pro-
tocol 2, which yields a justification and interpretation for the decay model eqs. (7.7) and (7.8).

It is important to emphasize that NIST RB now falls into a family of RB protocols defined
as “direct RB” [Pro+18]. The analysis below gives a concrete instance of direct RB that both
justifies and interprets past experiments and gives an insightful example of the main idea
behind direct RB.
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Protocol 2: NIST RB, as described in [Kni+08].

1. Sample a set of m gates {g1, · · · , gm} picked independently and uniformly at
random from the NIST gate-set N defined in eq. (7.6);

2–8. Idem as in protocol 1.

9. Fit the estimated recovery probabilities to the decay model

AN pm
N + BN . (7.7)

10. Estimate the NIST gate-set infidelity through

δF(Λ(N), L(N)) = (1− pN)/2 . (7.8)

Theoretical Analysis of NIST RB under a gate-independent error model

The goal of this section is to provide the key insight behind the mechanics of NIST RB. To
lighten up the mathematical machinery, we assume a gate-independent error model, where
the noisy gates are followed by an error E :

Λ(g) = E ◦ L(g) , (7.9)

where

L(g)[ρ] = gρg† . (7.10)

In such model, the gate-set infidelities δF(Λ(C), L(C)) and δF(Λ(N), L(N)) are de facto
equal to the infidelity of the error δF(E , I). We proceed in showing that δF(E , I) can be
estimated by both protocols 1 and 2.

The recovery probabilities look like

Tr

µEL

Xb
πg−1

m:1︸ ︷︷ ︸
gm+1

 EL(gm) · · · L(g2)EL(g1)[ρ]

 . (7.11)

Shoving the last error E as well as the random bit flip Xb
π in the measurement procedure (that

is, µ→ L(Xb
π)E †[µ]), leaves us with the random sequence which is at the heart of both NIST

RB and SRB protocols:

S({gi}) = L(g−1
m:1)EL(gm) · · · EL(g2)EL(g1) . (7.12)

In SRB, the next step in the analysis consists in redefining the gates as gi = g′i g
′−1
i−1 (with

g1 = g′1), where both gi and g′i are picked uniformly at random from the randomizing set.
Such a relabeling is possible because the randomizing gate-set is usually a group. Averaging
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over all sequences yields

Eg′i∈CS({gi}) = E{g′i}L(g′−1
m )EL(g′m) · · · L(g′−1

2 )EL(g′2)L(g′−1
1 )EL(g′1)

=
(
EC
)m

, (7.13)

where

EC := |C|−1 ∑
g∈C

L(g−1)EL(g) (7.14)

is referred to as the twirl of the error E over the gate-set C. If C is a 2-design, then the
twirled channel EC is reduced to a depolarizing channel. To mathematically concretize the
description of a channel E , we resort to the 4 × 4 Pauli-Liouville representation, which is
defined as

Eij :=
1
2

Tr B†
j E(Bi) (7.15)

where B0 = I, B1 = σ̂x, B2 = σ̂y, B3 = σ̂z. In such representation, the depolarizing channel
EC is expressed as a diagonal matrix diag(1, pC, pC, pC), where pC is a real number close to
1:

pC =
E11 + E22 + E33

3
. (7.16)

The averaged core sequence hence evolves as

Egi∈CS({gi}) =
(
EC
)m

= diag(1, pm
C , pm

C , pm
C) . (7.17)

Deriving eq. (7.1) is then simply a matter of incorporating SPAM procedures in the evalua-
tion of the recovery probabilities. Straightforward algebra links the infidelity of E with its
diagonal Liouville matrix elements through

δF(E , I) =
1
2
− E11 + E22 + E33

6
. (7.18)

The relation between the decay constant pC and the gate-set infidelity rC = r(E , I) results
from combining eq. (7.16) and eq. (7.18).

The relabeling trick resulting in a m-composite depolarizing channel is not possible in
NIST RB: N is neither a group nor a 2-design. However, although N has a weaker algebraic
structure, it is not completely devoid of interesting properties. Indeed, every element of N
can be written as Pleft ·Q · Pright, where Pleft, Pright ∈ P and Q ∈ Q. Using this, we can relabel
every gate gi as

g1 = P1Q1 , (7.19a)

gi = PiQiP−1
i−1 (i = 2, · · · , m) , (7.19b)

g−1
m:1 = Q−1

m:1P−1
m (7.19c)
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where Pi is chosen UAR from the Pauli group P, and Qi are chosen UAR from Q. Using such
a manipulation and randomizing over the Paulis transform the core sequence into

EPi∈PS({gi}) = L
(

Q−1
m:1

)
EPL(Qm) · · · EPL(Q2)EPL(Q1) , (7.20)

where EP is the error channel twirled over the Pauli group. In the Pauli-Liouville picture, the
Pauli group has 4 inequivalent irreps; the twirled channel is diagonal:

EP = diag(1, x, y, z) , (7.21)

where x = E11, y = E22, z = E33. The relabeling method still can’t be used with the Qi’s, but
the simplification of the noise channel E through the Pauli twirl unveils a recursive approach.
Consider the m = 1 case:

Eg1∈NS({g1}) = EQ1∈QL
(

Q−1
1

)
EPL(Q1) = EN , (7.22)

where the twirl over the NIST gate-set results in

EN = diag
(

1,
x + z

2
,

y + z
2

,
x + y

2

)
. (7.23)

The m = 2 case suggests a recursion relation:

Egi∈NS({gi}) =
(
ENEP)N

, (7.24a)(
ENEP)N

= diag(1, x2, y2, z2) , (7.24b)

where

x2 =
x (x+z)

2 + z (x+y)
2

2
, (7.25a)

y2 =
y (y+z)

2 + z (x+y)
2

2
, (7.25b)

z2 =
x (x+z)

2 + y (y+z)
2

2
. (7.25c)

Indeed, the general case can be expressed as

Egi∈NS({gi}) =
(((
ENEP)N EP

)N
EP · · ·

)N

, (7.26a)(((
ENEP)N EP

)N
EP · · ·

)N

= diag(1, xm, ym, zm) , (7.26b)
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where the recursion relation can be stated as

xm =
x · xm−1 + z · zm−1

2
, (7.27a)

ym =
y · ym−1 + z · zm−1

2
, (7.27b)

zm =
x · xm−1 + y · ym−1

2
. (7.27c)

Using basic linear algebra, this system of recursive equations can be expressed asxm
ym
zm

 = M

xm−1
ym−1
zm−1

 = Mm

1
1
1

 , (7.28)

where

M =
1
2

x 0 z
0 y z
x y 0

 . (7.29)

x,y and z differ from 1 by at most order δF(E , I). Hence, up to the second order in the
infidelity, M has the following spectrum:

λ1 ≈
x + y + z

3
= pC , (7.30a)

λ2 ≈
x + y

4
, (7.30b)

λ3 ≈ −
x + y + 4z

12
. (7.30c)

Since λ1 ≈ 1, λ2 ≈ 1/2 and λ3 ≈ −1/2, Mm converges very quickly to a rank-1 operator as
m increases. This means that for m large enough so that 1/2m becomes negligible, xm, ym, zm
are proportional to λm

1 :

Egi∈NS({gi}) ≈ diag(1, c1λm
1 , c2λm

1 , c3λm
1 ) , (7.31)

where ci are proportionality constants. Equation (7.7) is obtained by incorporating the SPAM
procedures in evaluating the recovery probabilities, and by relabeling λ1 as pN. Finally,
the relation between the decay pN and the gate-set infidelity δF(Λ(N), L(N)) = δF(E , I) is
retrieved via eq. (7.30a):

δF(Λ(N), L(N)) = (1− pN)/2 + O(δ2F) , (7.32)

which essentially states that the NIST RB decay parameter pN provides a very good estimates
of the gate-set infidelity δF(Λ(N), L(N)) through eq. (7.8).

With this analysis behind us, let’s compare the internal mechanics of protocols 1 and 2.
First of all, both protocols make use of randomizing gate-sets, C and N respectively. In
both cases, the randomization tailors the error dynamics such that the average core se-
quence EgiGS({gi}) evolves with respect to a single decay parameter, as show in eqs. (7.17)
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and (7.31).
An interesting difference here is that the Clifford randomization simplifies the error into a

1-parameter depolarizing channel at each time step, while the NIST randomization doesn’t,
as shown in eq. (7.23). In the latter case, certain error components remain “imperfectly shuf-
fled” after a few random gates, leaving space for a multi-parameterized noise evolution por-
trayed by eqs. (7.28) and (7.29). However, as the random sequence gets longer, the evolution
quickly converges to a 1-parameter decay. The fact that this decay relates to the infidelity
shouldn’t be surprising, since diag(0, 1, 1, 1) is a channel component that commutes with ev-
ery unitary (so is “immune” to twirling). Given an error E , its corresponding coefficient is
(E11 + E22 + E33)/3, which is in one-to-one correspondence with the infidelity δF(E , I) via
eq. (7.18).

7.3 Direct randomized benchmarking

Section 7.3.1 consists of a quick summary of the protocol derived mostly by Dr. Timothy J.
Proctor in [Pro+18]. The subsequent subsections, however, consists of some analytic tools
regarding the protocol in question, for which my contribution was major.

7.3.1 The protocol

The theory behind direct randomized benchmarking allows to benchmark a wide family of
gate-sets, but for the sake of simplicity, consider the simple gate-set H which consists in
operations that are native to the device, that can be operated during the same cycle, and that
ultimately generate the n-qubit Clifford group C. Such gate-set will be referred to as a native
1-cycle generating set of C. A three qubit example could be, if the device allows it,

H = {CNOT1,2 ⊗ h3, h1 ⊗CNOT2,3, h1 ⊗ h2 ⊗ h3|hi ∈ {H,
√

Z, X} ⊂ U(d)} . (7.33)

Consider a native 1-cycle generating set H of the Clifford group C, consider a probability
distribution Ω with full support over elements of H, and consider a Markovian error map
Λ : U(d)→ CPTPd. Then consider the following protocol:
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Protocol 3: Direct randomized benchmarking.

1. Sample a Clifford gate g0 uniformly from the Clifford group C; sample a set of m
gates {g1, · · · , gm} picked independently from the distribution Ω over the
generating set H;

2. Determine the recovery gate gm+1 (see text below);

3. Prepare a state ρ;

4. Perform the sampled gates (starting with the implementation of g) from step 1,
followed by the recovery gate gm+1 determined in step 2:
Λ(g)m+1:0 = Λ(gm+1) ◦ . . . ◦Λ(g0);

5. Measure a POVM {µ, I− µ}, where the first observable is µ ≈ L(gm+1:0)(ρ), and
respective outcome labels are {“recovery”, “non-recovery”};

6. Repeat steps 3–5 a number times to estimate the probability of observing the
“recovery” event Pr(“recovery”|{gi}, m) = Tr µΛ(g)m+1:0[ρ];

7. Repeat steps 1–6 for s different sets of m randomly sampled gates {gi};

8. Repeat steps for 1–7 for different values of m of random gates.

9. Fit the estimated recovery probabilities to the decay model

A0(ρ, µ) + A1(ρ, µ) pm ; (7.34)

10. Estimate the native 1-cycle gate-set weighted infidelity through

∑
h∈H

Ω(h) δF(Λ(h),BL(h)B−1) =
d− 1

d
(1− p) , (7.35)

where B ∈ Md2(C) implicitly defines a specific gauge.

Similarly to protocol 1, choosing ρ ≈ |0〉〈0|⊗n and the recovery gate to be the sequence
inverse up to random bit flips, i.e. sample gm+1 from Xb1 ⊗ · · · ⊗ Xbn(gm:0)−1 where bi ∼
Bernouilli(1/2), allows to effectively remove the constant A0(ρ, µ) from the fitting model
[Har+19].

The fitting model suggested at step 9 is an approximation of the exact signal, which is of
the form

A0(ρ, µ) + A1(ρ, µ)pm + ∑
i>1

Ci(ρ, µ)λm
i , (7.36)

where |λi|m are expected to decay to 0 much faster than pm. If |λi| are on the same order as
p, direct RB may fail to yield a reliable signal. In such case, the algebraic structure needs to
be enriched, either by modifying the distribution Ω, or by adding elements (and potentially
more cycles) to the randomizing gate-set.

Instead of being approximated, the fitting model could also take the additional terms
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into account, via techniques such as the Padé-Laplace method [YC87]. Recall that the ap-
pearance of additional fast-decaying constants was observed in the simple analysis of proto-
col 2 (NIST RB). In particular, it was shown that those supplementary decays were roughly
upper-bounded in absolute value by 1/2.

The consideration of native 1-cycle gate-set as randomizing sets is mostly for the sake of
simplicity. Choosing a gate-set for which the elements generate a 2-design is sufficient. This
generalization includes protocol 2.

Once more analysis tools will be at disposal, I will include a short discussion regarding
the gauge transformation L(h)→ BL(h)B−1.

7.3.2 Generalizing twirls

In [SH18], França and Hashagen develop tools for treating twirls over generators. They
successfully demonstrate a decay model for some set of generators (closed under inversion),
given a gate-independent approximately covariant error model. Here I propose a different
method of analysis4, which allows to treat a wider variety of gate-sets (including native 1-
cycle generating gate-sets), as well as general gate-dependent error models. I will focus on
generators of the Clifford group for the sake of simplicity, but the idea should generalize
naturally to finite groups.

Let φ0, φ1, φ2, · · · , φN−1 represent the isomorphism classes of irreducible representations
of the n-qubit Clifford group C (let the unitary matrices φi be of dimension di × di). More-
over, let φ0(g) = 1 and φ1(g) = φBloch(g) be the trivial representation and the (irreducible)
representation of the group when acting on Bloch vectors. The process matrix is equivalent
to L(g) = φ0(g)⊕ φ1(g). Notice that φBloch is irreducible iff the group forms a 2-design.

Consider the direct sum of all inequivalent irreps

R(g) :=
N−1⊕
i=0

φi(g) . (7.37)

This special dR × dR unitary representation is a the heart of the following generalization of
twirls:

4This method of analysis was co-developed with Dr. Timothy J. Proctor.
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Definition 10: Twirls

Consider a generating set H of the n-qubit Clifford group C (possibly C itself), a prob-
ability distribution Ω with full support over elements of H, and a Markovian error
model Λ : U(d) → Md2(C). Let the d2 × d2 process matrix of ideal operations be
expressed as L(g) = φ0(g)⊕ φ1(g) = 1⊕ φBloch(g). Let the dR × dR matrix R(g) be
defined as in eq. (7.37).
The noiseless twirl TΩ,L : Md2×dR

→ Md2×dR
is a linear operation defined as

TΩ,L[A] = ∑
g

Ω(g)L(g)AR†(g) , (7.38)

where A is a d2 × dR matrix. The noisy twirl is similarly defined as

TΩ,Λ[A] = ∑
g

Ω(g)Λ(g)AR†(g) . (7.39)

If elements of Md2×dR
are column-vectorized, twirls can be expressed as a matrices:

TΩ,L = ∑
g

Ω(g)R∗(g)⊗ L(g) (7.40)

TΩ,Λ = ∑
g

Ω(g)R∗(g)⊗Λ(g) . (7.41)

Notice the slight abuse of notation; just as for superoperators, the usage of the matrix
form will be distinguished from the abstract form depending on the context.

This definition might seem abstruse at a first glance: the domain of twirls doesn’t cor-
respond to d2 × d2 matrices (which include superoperators), and the definition relies on the
representation R(g), for which the dimension is much larger that d2 (Notice that is contains
L(g) as a block.). However, as I will show later, it is precisely this domain extension that will
allow to treat gate-dependent error models.

Before pursuing with analyzing generator-based RB, consider the simpler case where
twirls defined as in definition 10 are carried uniformly over the Clifford group.

The Clifford twirl

Consider the noiseless twirl matrix TΠ,L where the group of interest is the Clifford group C,
and Π is the uniform distribution. From definition 10, the twirl matrix is expressed as:

TΠ,L =
1
|C| ∑

g∈C
R∗(g)⊗ L(g) (7.42)

=
1
|C| ∑

g∈C

(
⊕i=N−1

i=0 φ∗i (g)
)
⊗
(
⊕i=1

i=0φi(g)
)

. (7.43)
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Now, consider a d2 × dR matrix A. This matrix can be decomposed in distinct sectors:

A =

[
A(0,0) A(0,1) · · · A(0,N−1)

A(1,0) A(1,1) · · · A(1,N−1)

]
, (7.44)

where A(0,i) are 1× di matrices, and A(1,i) are (d2 − 1)× di matrices. From simple vectoriza-
tion identities, it follows that

TΠ,L[A] =
1
|C| ∑

g∈C

[
φ0(g)A(0,0)φ†

0(g) φ0(g)A(0,1)φ†
1(g) · · · φ0(g)A(0,N−1)φ†

N(g)
φ1(g)A(1,0)φ†

0(g) φ1(g)A(1,1)φ†
1(g) · · · φ1(g)A(1,N−1)φ†

N(g)

]
.

(7.45)

It follows directly from Schur’s lemma (see [Art, p.308, Theorem 10.7.6]) that only 2 sectors
do not vanish:

TΠ,L[A] =
[
A(0,0) 0 0 · · · 0

0 φBloch(e) · TrA(1,1)

Tr φBloch(e)
0 · · · 0

]
. (7.46)

In other words, TΠ,L is a rank-2 projector. This can be seen again by rewriting the twirl
operator as (recall that L(g) = φ0(g)⊕ φ1(g))

TΠ,L =
1
|C|∑g

φ∗0(g)⊗ L(g)︸ ︷︷ ︸
Rank 1 proj.

⊕ 1
|C|∑g

φ∗1(g)⊗ L(g)︸ ︷︷ ︸
Rank 1 proj.

i=N−1⊕
i=2

1
|C|∑g

φ∗i (g)⊗ L(g)︸ ︷︷ ︸
0

. (7.47)

From Weyl’s inequalities, the noisy twirl TΠ,Λ only deviates slightly from a rank-2 projector:

TΠ,Λ =
1
|C|∑g

φ∗0(g)⊗Λ(g)︸ ︷︷ ︸
Close to a rank 1 proj.

⊕ 1
|C|∑g

φ∗1(g)⊗Λ(g)︸ ︷︷ ︸
Close to a rank 1 proj.

i=N−1⊕
i=2

1
|C|∑g

φ∗i (g)⊗Λ(g)︸ ︷︷ ︸
Close to 0.

. (7.48)

How can one reason about this matrix? Algebraically speaking, implementing quan-
tum operations is an attempt to recreate, through physical processes, the action of
L(g) = φ0(g)⊕ φ1(g) on quantum states. For any group 2-design, φBloch is an irrep. A finite
group (such as the Clifford group) has a finite amount of inequivalent irreps (represented
here as φi). An important result in representation theory, known as Schur’s lemma, states
that those irreps induce intrinsically different actions. In particular, irreps must obey strong
inner product laws, know as “ Schur orthogonality relations” of irrep entries [Ser, Section
2.2, corollaries 2 and 3.]:

∑
g∈C

[φi(g)]∗jk[φi′(g)]j′k′ = δii′δjj′δkk′ |C|/di , (7.49)

The last terms (i.e. i ∈ {2, · · · , N − 1}) in direct sum on the RHS of eq. (7.48) essentially
describe the extent to which the map Λ is still “Schur orthogonal” to φ2, · · · , φN−1. Analo-
gously, the first two terms in the direct sum on the RHS of eq. (7.48) capture how the map Λ
obeys the orthogonality relations (eq. (7.49)) with φ0 and φ1. In other words, the twirl matrix

152



TΠ,Λ encapsulate all the “coefficient inner products” (which become the coefficient orthogo-
nality relations stipulated by eq. (7.49) in the ideal case) between the map Λ and the irreps
φi.

7.3.3 The convergence of sequence-asymptotic 2-designs

The Clifford twirl TΠ,L forms a rank-2 projector on depolarizing channels. Now, consider the
weaker twirl

TΩ,L = ∑
g

Ω(g)φ∗0(g)⊗ L(g)
⊕

∑
g

Ω(g)φ∗1(g)⊗ L(g)
i=N−1⊕

i=2
∑
g

Ω(g)φ∗i (g)⊗ L(g) . (7.50)

It is not too much effort to show that iterating this twirl converges to TΠ,L. The idea is to look
at individual blocks in the direct sum in eq. (7.50), and use Schur’s lemma.

Lemma 8: Bounding the spectral norm of the twirling blocks

Let φi and φj be two irreps of the n-qubit Clifford group C. Consider a generating gate-
set H of C, and a probability distribution Ω over elements of H (with full support over
H). Consider the following matrix

M = ∑
g

Ω(g)φ∗i (g)⊗ φj(g) . (7.51)

If φi and φj are inequivalent, the spectral norm of M is strictly smaller than 1. If
φi = φj, M has exactly one singular value (which is also an eigenvalue) of 1, and the
other singular values are strictly smaller than 1.

Proof. The proof follows almost immediately from Schur’s lemma. Consider the positive
semidefinite matrix

M† M = ∑
g,h

Ω(h)Ω(g)φ∗i (h
−1g)⊗ φj(h−1g) , (7.52)

for which the singular spectrum obeys σi(M† M) = σ2
i (M). First, notice that by the triangle

inequality, the spectral norm of M† M is upper bounded by 1 (hence it applies to M as well):

‖M† M‖∞ ≤∑
g,h

Ω(h)Ω(g)‖φ∗i (h−1g)⊗ φj(h−1g)‖∞ = 1 . (7.53)

Now suppose that there exists a unit vector v for which M† Mv = v. Obviously, since M† M
is a convex sum of unitaries, this can only happen if

φ∗i (h
−1g)⊗ φj(h−1g)v = v ∀h, g ∈ H . (7.54)

WOLOG, let v = col(A), where A ∈ Mdj×di(C). The above expression can be re-expressed
as

φj(h−1g)A = Aφi(h−1g) ∀h, g ∈ H . (7.55)
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Since, the elements of H generate the group C, it follows that

φj(g)A = Aφi(g) ∀g ∈ C . (7.56)

Consider the case where φi and φj are inequivalent irreps. It follows from Schur’s lemma
that A = 0 or, to put it simply, that M† M has no singular value of 1.

Consider the case where φi = φj. It follows from Schur’s lemma that A = Idi /
√

di is the
unique non-trivial solution of eq. (7.56) (up to scaling factor).

The statement about the singular values of the twirl TΩ,L can be translated into a
statement regarding its eigenvalues. Let the eigenvalues corresponding to the ith block

∑g Ω(g)φi(g)⊗ L(g) of the twirl matrix TΩ,L be labeled as λ
(i)
k , and let |λ(i)

0 | ≥ · · · ≥ |λ
(i)
d2

i−1|.
Similarly, let the singular values corresponding to the ith block ∑g Ω(g)φi(g)⊗ L(g) of the

twirl matrix TΩ,L be labeled as σ
(i)
k , and let σ

(i)
0 ≥ · · · ≥ σ

(i)
d2

i−1.
For i > 1, it follows from lemma 8 that the spectral norm of the blocks is strictly smaller

than 1. Since the spectral radius is upper bounded by the spectral norm, |λ(i)
k | < 1 for i > 1.

For the first 2 blocks (i ∈ {0, 1}), their exists two eigenvalues of 1, one for each block:

∑
g

Ω(g)[φ0(g)⊕ φ1(g)]⊗ L(g)col(1⊕ 0φ1(e)) = col(1⊕ 0φ1(e)) , (7.57a)

∑
g

Ω(g)[φ0(g)⊕ φ1(g)]⊗ L(g)col(0⊕ φ1(e)) = col(0⊕ φ1(e)) . (7.57b)

It follows from Weyl’s inequality between eigenvalues and singular values that

|λ(0)
0 λ

(0)
1 | ≤ σ

(0)
0 σ

(0)
1 . (7.58)

Since λ
(0)
0 = σ

(0)
0 = 1, |λ(0)

1 | ≤ σ
(0)
1 . From lemma 8, σ

(0)
1 < 1, hence |λ(0)

1 | < 1. A similar
argument applies to the second block.

To put it simply,

TΩ,L = ∑
g

Ω(g)φ∗0(g)⊗ L(g)︸ ︷︷ ︸
{λ(1)

k }=1∪{λ(1)
k }k>0

|λ(1)
k |<1, ∀k>0

⊕
∑
g

Ω(g)φ∗1(g)⊗ L(g)︸ ︷︷ ︸
{λ(2)

k }=1∪{λ(2)
k }k>0

|λ(2)
k |<1, ∀k>1

i=N−1⊕
i=2

∑
g

Ω(g)φ∗i (g)⊗ L(g)︸ ︷︷ ︸
|λ(i)

k |<1

. (7.59)

The eigenspace spanned by the eigenvalues of 1 is the same as the row space of the Clifford
twirl TΠ,L. In particular, this implies that the twirl T m

Ω,L converges to the Clifford twirl TΠ,L

as m goes to infinity. To make a more precise statement, consider a d2 × dR matrix A

A =
[
A(0) A(1) · · · A(N−1)

]
, (7.60)
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where A(i) are d2 × di sectors. Then, it follows immediately from lemma 8 and the compati-
bility of the spectral norm with ‖ · ‖2 that

‖(T m
Ω,L − TΠ,L)[A]‖2 ≤

(
σ
(0)
1

)m
‖A(0)‖2 +

(
σ
(1)
1

)m
‖A(1)‖2 + ∑

i>1

(
σ
(i)
0

)m
‖A(i)‖2 . (7.61)

Because of this convergent property, the the pair (Ω, H) – where Ω is a probability distribu-
tion with full support of elements of H, and where H generates a group 2-design – is labeled
as a sequence-asymptotic 2-design.

The distribution

Ωm(g) := ∑
hi

hm:1=g

Ω(hm) · · ·Ω(h1) , (7.62)

which is obtained when considering random sequences of length m where each element
hi ∈ H is sampled independently at random from Ω, doesn’t generally converge to a uniform
distribution over the group C. Recall that in the simple NIST RB protocol (protocol 2), the
distribution Ωm oscillates between at support over C12 and a support over

√
ZC12. The

convergence of Ωm is not needed for obtaining a convergent twirling. Instead of requiring
the usage of randomizing gate-sets that ensure the unnecessary convergence of Ωm, the direct
RB protocol appeals to sequence-asymptotic 2-designs, which are sufficient (and necessary)
to ensure that ∀ε > 0 , ∃N ∈ N s.t. the twirl T m

Ω,L forms an ε-approximate 2-design for all
m > N.

7.3.4 Noisy twirls over sequence-asymptotic 2-designs

Acceptable regime for direct RB

The noisy twirl TΩ,Λ is a perturbation away from the error-free twirl TΩ,L. To quantify the
perturbation, consider a realistic error model where (see theorem 16)

∑
g

Ω(g)‖Λ(g)− L(g)‖∞ ≤ O

(√
∑
g

Ω(g)rcoh(g)

)
. (7.63)

A simple usage of the Weyl’s inequality suffices to show that the singular values of TΩ,Λ only
deviate from the singular values of TΩ,L by order O(

√
∑g Ω(g)rcoh(g)).

The direct RB protocol is expected to perform well in the regime where the spec-
tral gap for singular values, ∆ := 1 − ‖TΩ,L − TΠ,L‖∞, is significantly larger than
O(
√

∑g Ω(g)rcoh(g)). Notice that for Clifford RB (protocol 1), the value of the gap is 1.
The two eigenvalues perturbed from 1 are of special interest. The eigenvalue of 1 corre-

sponding to the first block of the twirl stays unchanged under trace-preserving error maps:

col†(φ∗0(e)⊕ 0φ∗1(e))∑
g

Ω(g)[φ0(g)⊕ 0φ1(g)]⊗Λ(g) = col†(φ0(e)⊕ 0φ1(e)) . (7.64)

The generalization to include leakage should be straightforward [WF14; WBE14; WBE15].
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The eigenvalue of 1 corresponding to the second block of the twirl is perturbed to p, for
which the value can be approximated through first order perturbation theory:

p ≈
col†(0⊕ φ1(e))∑g Ω(g)[0⊕ φ∗1(g)]⊗Λ(g)col(0⊕ φ1(e))

d2 − 1
(First order pert.)

= ∑
g

Ω(g)
Tr
[
Λ(g)φ1(g)L(g−1)

]
d2 − 1

= ∑
g

Ω(g) ftr(Λ(g), L(g)) . (7.65)

In the regime where the (singular) spectral gap ∆ is significantly larger than
O(
√

∑g Ω(g)rcoh(g)), |p| is ensured to be larger than all the other eigenvalues, since their

magnitude must deviate from 1 by at least O(
√

∑g Ω(g)rcoh(g)). Since the second block of

the twirl has a real representation (recall that φBloch(g) has a real representation), the eigen-
values of the second block must either be real or come in conjugate pairs. Since the magni-
tude of p is greater than the other eigenvalues, p must be real.

Interpretation of the decay constant p

The expression eq. (7.65) is an approximation of p. Here, I show that p exactly connects with
a fidelity through a gauge transformation:

p = ∑
g

Ω(g) ftr(Λ(g),BL(g)B−1) . (7.66)

Consider two right eigenvectors of the first two block of the twirl matrix:

∑
g

Ω(g)[φ∗0(g)⊕ 0φ∗1(g)]⊗Λ(g)col(A0) = col(A0) (7.67a)

∑
g

Ω(g)[0φ∗0(g)⊕ φ∗1(g)]⊗Λ(g)col(A1) = pcol(A1) , (7.67b)

with TrA0 = 1, TrA1 = d2 − 1. Recall that

A0 ≈ φ0(e)⊕ 0φ1(e) (7.68a)
A1 ≈ 0φ0(e)⊕ φ1(e) . (7.68b)

There is more constraints on the form of A0 and A1. First realize that replacing Ai by
Ai(δ1iφ0(e) ⊕ δ2iφ1(e)), where δij denotes the Kronecker delta function, leaves eqs. (7.67a)
and (7.67b) invariant. Second, notice that due to the trace preserving condition

(
L(e)⊗ [φ0(e)⊕ 0φ1(e)]

) (
∑
g

Ω(g)[0φ∗0(g)⊕ φ∗1(g)]⊗Λ(g)

) (
L(e)⊗ [φ0(e)⊕ 0φ1(e)]

)
= 0 ,

(7.69)
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which grants the second block of the twirl matrix a lower triangular block structure. The
lower triangular structure in turns implies that

A1 = [0φ0(e)⊕ φ1(e)]A1 [0φ0(e)⊕ φ1(e)] . (7.70)

Hence, A0 and A1 are of the form

A0 =

[
1 01×(d2−1)
b 0(d2−1)×(d2−1)

]
, (7.71a)

A1 =

[
0 01×(d2−1)

0(d2−1)×1 Btrls

]
, (7.71b)

(7.71c)

where b is a (d2 − 1)× 1 vector and Btrls is a (d2 − 1)× (d2 − 1) matrix. For small perturba-
tions, Btrls is expected to be invertible.

For small perturbations, B := A0 +A1 is invertible, and defines a valid gauge transfor-
mation:

BL(g)B−1 . (7.72)

Notice that B−1 is of the form

B−1 =

[
1 0
0 B−1

trls .

] [
1 0
−b Id2−1 .

]
(7.73)

From there,

∑
g

Ω(g)Φ(Λ(g),BL(g)B−1) = ∑
g

Ω(g)
Tr
[
Λ(g)BL(g)B−1]

d2

=
Tr
[
(A0 + pA1)B−1]

d2

=
Tr [1⊕ pφ1(e)]

d2

=
1
d2 +

d2 − 1
d2 p . (7.74)

7.3.5 A signal analysis for direct RB under gate-dependent effects

The main motivation behind the appearance of R(g) (defined in eq. (7.37)) in the definition
of twirls (definition 10) stems from the following lemma and its corollary:
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Lemma 9: {R(g)} are linearly independent

{R(g)}, where the the representation R is defined through eq. (7.37), forms a linearly
independent set of dR × dR matrices (dR = ∑i di). That is

∑
g

cgR(g) = 0 , (7.75)

if and only if the coefficients cg = 0 ∀g ∈ C.

Proof. First, let’s upper bound the amount of parameters of {R(g)}. The matrices R(g) are a
direct sum of di × di irreducible matrices. This means that there are ∑i d2

i entries that are not
always 0. Representation theory tells us that ∑i d2

i = |C| [Art, p. 300, Theorem 10.4.6 c)].
This means that there are at most |C| independent parameters. In the next part of the

proof, we show that there are at least |C| independent parameters. It suffices to show the
existence of |C| orthogonal matrix elements obtained from linear combinations of {R(g)}.
This is quickly obtained from the Schur orthogonality relations of irrep entries, eq. (7.49). By
picking the coefficients cg = [φi(g)]∗jk, the matrix ∑g cgR(g) contains zero entries, except for
the element on the row d0 + · · ·+ di−1 + j and column d0 + · · ·+ di−1 + k, which is |C|/di.
This procedure allows to isolate ∑i d2

i = |C| orthogonal matrices.

The appeal behind the representation R(g) is that since {R(g)} forms a linearly indepen-
dent set, there exists a linear function that maps R(g) to Λ(g):

Corollary 3: Linear mapping between R(g) and Λ(g)

Let the representation R be defined through eq. (7.37), and consider an arbitrary error
map (possibly gate-dependent) acting on Clifford gates Λ : U(d) → Md2(C). There
exists a linear function such that

∑
ij

χijAiR(g)Bj = Λ(g) , (7.76)

where {Ai} is any basis for d2× dR matrices, and {Bj} is any basis for dR× d2 matrices.

The proof trivially follows from lemma 9. With this result at hand, an exact decay model
for the recovery probability (see eq. (7.36)) can be obtained:

Theorem 22: Decay model for the recovery probability

Consider the direct RB protocol described by protocol 3. The average recovery proba-
bility takes the following form

E Pr(“recovery”|{gi}, m) = A0(ρ, µ) + A1(ρ, µ)pm + ∑
i

Ci(ρ, µ)λm
i , (7.77)

where {1, p} ∪ {λi} are the eigenvalues of the noisy twirl matrix TΩ,Λ.

158



Proof. Let

Λ(g) = ∑
ij

χijAiR(g)Bj for g ∈ C , (7.78)

where col(Ai) are right eigenvectors of the noisy twirl matrix TΩ,Λ, and col(B†
i ) are left eigen-

vectors (both associated with the eigenvalue λi). Let λ0 = 1 and λ1 = p.
For simplicity, let the recovery operator be the sequence inverse. Compiling bit flips can

be interpreted as changing the POVM. The average direct RB operational sequence can be
expressed as

∑ Ω(g1) · · ·Ω(gm)Π(h) Λ(h)Λ(gm) · · ·Λ(g1)Λ(g−1
1 · · · g

−1
m h−1)

=∑ χij Ω(g1) · · ·Ω(gm)Π(h) Λ(h)Λ(gm) · · ·Λ(g1)AiR(g−1
1 · · · g

−1
m h−1)Bj , (7.79)

where Π is the uniform distribution over the Clifford group. By column-vectorizing the
matrix form of eq. (7.79), the twirl matrices naturally appear:

col
[
∑ Ω(g1) · · ·Ω(gm)Π(h) Λ(h)Λ(gm) · · ·Λ(g1)Λ(g−1

1 · · · g
−1
m h−1)

]
=∑ χij(BT

j ⊗ L(e))TΠ,ΛT m
Ω,Λcol(Ai) ,

=∑ χij(BT
j ⊗ L(e))TΠ,Λλm

i col(Ai) ,

=∑
i

λm
i col

[(
∑
g

Π(g)Λ(g)AiR(g−1)

)(
∑

j
χijBj

)]
. (7.80)

Recall that λ0 = 1 and λ1 = p. By introducing SPAM procedures, the average recovery
probability can be expressed as

E Tr µΛ(g)m+1:0[ρ] = A0(ρ, µ) + A1(ρ, µ)pm + ∑
i>1

Ci(ρ, µ)λm
i , (7.81)

where

A0(ρ, µ) = 〈µ|
(

∑
g

Π(g)Λ(g)A0R(g−1)

)(
∑

j
χ0jBj

)
|ρ〉 (7.82a)

A1(ρ, µ) = 〈µ|
(

∑
g

Π(g)Λ(g)A1R(g−1)

)(
∑

j
χ1jBj

)
|ρ〉 (7.82b)

Ci(ρ, µ) = 〈µ|
(

∑
g

Π(g)Λ(g)AiR(g−1)

)(
∑

j
χijBj

)
|ρ〉 . (7.82c)

The impact of the term ∑i>1 Ci(ρ, µ)λm
i on the fitting model is expected to become quickly

negligible for two reasons. First, by design, direct RB is expected to perform when λm
i s decay

much faster than pm. Second, in the noiseless case, A1(ρ, µ) = 〈µ|0⊕φBloch(e)|ρ〉 ≈ (d− 1)/d
and A0(ρ, µ) = 〈µ|1⊕ 0φBloch(e)|ρ〉 ≈ 1/d and Ci(ρ, µ) = 0. In the noisy case, the coefficients
Ci(ρ, µ) are expected to be perturbed from 0, and so is their sum. To put it differently, when
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considering the Laplace transform of the recovery signal given by eq. (7.77),

L [Pr(“recovery”|{gi}, m)] (x) =
A0(ρ, µ)

x
+

A1(ρ, µ)

x− p
+ ∑

i>1

Ci(ρ, µ)

x− λi
, (7.83)

the peak corresponding to p is easily distinguishable from the peaks corresponding to λi for
i > 1 [YC87]. Recall that by compiling random bit flips in the recovery step, the singularity
at x = 0 can essentially be eliminated [Har+19]. While the distinguished singularity at x = p
indicates that p should be efficiently estimated, I leave the rigorous demonstration of a robust
estimator p̂ for further work.
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Chapter 8

Summary and conclusion

The development of randomized benchmarking methods involve three related undertakings:

i. The design of new circuit families and sampling distributions, for which the result-
ing raw data (i.e. the collection of “success” and “failure” events) could carry novel
information.

ii. The development of more advanced analytical and statistical tools to translate raw data
into valuable error parameters.

iii. The study of inference techniques allowing to leverage the knowledge of a few figures
of merit to quantify the outcome reliability of simple or complex computations.

The work presented in this thesis offers important developments in the three avenues men-
tioned above. In part I, the emphasis was on the relation between the quality of elementary
operations and circuits thereof (item iii.). In chapter 3, which is based on [CWE16], it was first
shown that the process infidelity of a composition of errors is upper bounded by a quadratic
relation in the circuit’s length m, modulated by the process infidelity of its elements:

δΦ(Am:1) ≤ C1

m

∑
i=1

δΦ(Ai)︸ ︷︷ ︸
Linear

+ C2

(
m

∑
i=1

√
δΦ()Ai

)2

︸ ︷︷ ︸
Quadratic

+ O

( m

∑
i=1

δΦ(Ai)

)2
 . (8.1)

The relation was shown to be saturated in even dimensions. In the saturation examples,
the quadratic signature was obtained through unitary processes. It took the tools derived in
chapter 4 to pinpoint physical unitaries as the sole cause of such behavior. Still in chapter 3,
the constant C2 appearing eq. (8.1) was shown to be modulated by the coherence level of
errors. In particular, it was shown that

|δΦ(A ◦ B)− δΦ(A)− δΦ(B)| ≤ 2
√
(δΦ(A)− δΥ(A)) (δΦ(B)− δΥ(B)) . (8.2)

This simple result is a good example where the study of the evolution of figures of merit in
circuits (item iii.) can provide better analytical tools to translate RB data into more precise
information (item ii.). Indeed, eq. (8.2) can be re-expressed to improve the confidence interval
on the infidelity of a specific gate of interest by combining the results of three distinct RB
experiments (see corollary 2, section 3.7).

In chapter 4, which is based on [CAE19], the relation between the circuit infidelity and
the infidelity of circuit components is made much more limpid. It is first shown that there
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exists an unambigous way to factorize any non-catastrophic channelA into a decoherent and
a physical unitary component: A = V ◦D. It is then shown that under realistic assumptions,
which is rigourously defined through the equability condition (see definition 7), the process
infidelity of A = V ◦ D to its target U is expressed as a sum:

δΦ(A,U ) = δΦ(D)︸ ︷︷ ︸
δΦdecoh

+ δΦ(V ,U )︸ ︷︷ ︸
δΦcoh(A,U )

+ O
(
δ2Φ(A,U )

)
. (8.3)

More remarkably, still under the equability condition, it is shown that the process fidelity of
a composition Am:1 of elements Ai = Vi ◦ Di obeys

Φ(Am:1,Um:1) = Φ(Vm:1,Um:1)
m

∏
i=1

Φ(Di) + O
(
δ2Φ(Am:1,Um:1)

)
, (8.4)

which fully generalizes eq. (8.1). In particular, in the regime where δ2Φ(Am:1,Um:1) is neg-
ligible, eq. (8.4) rigourously confirms the intuition provided by the saturation examples for
eq. (8.1): any non-linear signature in the infidelity must be attributed to unitary processes
alone.

The equability condition introduced to obtain eq. (8.4) was also used to derive strong
connections between process fidelities – which are akin to inner products – to norms such as
the diamond distance and the superoperator spectral norm (see theorems 16 and 17). Those
norms frequently appear in quantum circuit error analyses but, as opposed to process fi-
delities, they aren’t efficiently extractable through experimental means, which motivates the
appeal of relating them to more pragmatic quantities (item iii.). As shown in [WF14; Wal15;
SWS15], the diamond distance ε� is expected to generally scale as the square root of the infi-
delity. What is shown more precisely here is that in the regime where the coherent infidelity
δΦcoh(A,U ) is comparable to the total infidelity δΦ(A,U ),√

δΦcoh(A,U )
δΦ
/ ε�(A,U )

δΦ
/
√

Γcoh

√
δΦcoh(A,U ) , (8.5)

where Γcoh is a strict-sense equability constant appearing in definition 7, and it is not ex-
pected to scale with the dimension. Similarly, the spectral norm is upper-bounded by
O(
√

δΦcoh(A,U )):

max
M∈Md(C)

‖(A−Utarget)[M]‖2

‖M‖2

δΦ
/ 2

√
Γcoh

√
δΦcoh . (8.6)

Such scaling in the spectral norm will allow to confidently generalize the results obtained in
[Car+18], as discussed in the second part of this thesis.

The second part of this thesis treats of the interpretation of RB data (item ii.), and of
the design of larger families of benchmarking experiments (item i.). Standard RB is ex-
pected to yield, by estimating the ratio of “success” events for multiple circuit lengths, a
single exponential decay of the form Apm + B [MGE11; MGE12]. This behavior has been
proven to occur even in the case of gate-dependent Markovian error models, although the
connection between the estimated decay parameter p and a physically meaningful figure of
merit was generally left unresolved [Pro+17a; Wal17]. More precisely, the decay parameter
p was shown to correspond to an average gate-set fidelity to a targeted gate-set realization
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expressed in some potentially nonphysical gauge (defined through the linear transformation
B ∈ Md2(C)):

1
d
+

d− 1
d

p = Eg∈GF(Λ(g),BL(g)B−1) . (8.7)

In chapter 5, which is based on [Car+18], the decay constant is reconciled to high precision
with a physically meaningful gate-set fidelity in the single qubit case (item ii.). That is, it is
shown that there exists a physical gauge transformation, defined by a unitary U ∈ U(d) such
that

1
d
+

d− 1
d

p = Eg∈GF(Λ(g), L(UgU−1)) + O
(
(1− p)2) . (8.8)

In [Car+18], eq. (8.8) is conjectured to hold for all dimensions. The conjecture is proved later
in chapter 5 by using the polar decomposition of quantum channels, as well as the bound on
the spectral norm of superoperators, eq. (8.6) (both shown in chapter 4). This is not merely
an existence proof; given an error map Λ and a randomizing 2-design G, there is a (gauge-
fixing) procedure to find the physical target gate-set realization that connects the fidelity with
an experimentally observable decay.

In chapter 6, which is based on [CWE15], a group-based generalization of RB, referred to
as dihedral benchmarking, is proposed for single qubit operations (item i.). Instead of invok-
ing a 2-design randomizing gate-set, the dihedral group is considered (see eq. (6.2) for the
definition). An advantage of considering the dihedral group as a gate-set is that it naturally
yields a characterization procedure for the π/8 gate, an operation which is often proposed to
be implemented via drastically different physical procedures than Clifford operations[BK05].
The mathematical toolkit used to ensure the functioning of dihedral benchmarking (i.e. rep-
resentation theory and character theory) can be also used to extend benchmarking techniques
to other group-based protocols [Cro+16; Hel+18; SH18; OWE18; BE18; Erh+19].

Chapter 7 is divided in two main sections. The first one is based on [Boo+19], and consists
of a reinvestigation of “NIST RB”, a protocol described in [Kni+08] (item ii.). The experiment
had the particularity of using a randomizing gate-set that neither formed a group, nor a
2-design, rendering typical group-based analysis tools unusable. Under the assumption of
gate-independent errors, it was formally shown in [Boo+19] that the NIST RB experiment
yields, for large enough sequence lengths values, a decay model of the form Apm + B where
p can be related to a gate-set fidelity. The second section of chapter 7 revolves around the
analysis of a more general generator-based protocol, known as direct RB [Pro+18] (items i.
and ii.). In particular, it is shown that even in the advent of gate-dependent errors, choosing
a randomizing gate-set H for which the elements generate a 2-design is typically sufficient1

to yield a decay model of the form

Apm + B + ∑
i

Ciλ
m
i , (8.9)

where Ci are expected to be small, and where the various |λi|m decay noticeably faster than
pm. Moreover, it is shown that the decay constant p connects with a gate-set fidelity to a
(potentially nonphysical) target gate-set realization.

1Provided that the gate-set infidelity is much smaller than the spectral gap featuring in the twirl matrix.
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This summarizes the work presented in this thesis. Many further developments based
on those ideas can be proposed. To enumerate two promising avenues:

i. As shown in eq. (8.4), any deviation from a simple fidelity decay is due to a unitary
evolution. This realization is expected to enable the design (item i.) of scalable RB-type
experiments conceived to estimate the level of coherence in quantum errors.

ii. The gauge-fixing procedure involved in finding the target gate-set realization in
eq. (8.8) doesn’t fundamentally rely on 2-designs. In particular, it seems possible that
weaker algebraic structures, such as the generators of 1-designs are enough to fix refer-
ence gauges. This would be a valuable result for the development of direct RB routines,
for which reference gauge-fixing could be ensured at a low operational cost.
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