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Abstract. Many efforts have been made in nuclear structure physics to interpret the nature of low-lying excited
0+ states in well-deformed rare-earth nuclei. However, one of the difficulties in resolving the nature of these
states is that there is a paucity of data. In this work, excited 0+ states in the N = 92 nucleus 160Er were
studied via the 162Er(p, t)160Er two-neutron transfer reaction, which is ideal for probing 0+ → 0+ transitions, at
the Maier-Leibnitz-Laboratorium in Garching, Germany. Reaction products were momentum-analyzed with a
Quadrupole-3-Dipole magnetic spectrograph. The 0+2 state was observed to be strongly populated with 18% of
the ground state strength.

1 Introduction

The nature of excited 0+ states in well-deformed nuclei
remains an open question in nuclear structure physics.
Traditionally, deformed nuclei are suggested to have β-
vibrational and γ-vibrational bands which result from col-
lective low-lying surface vibrational excitations [1]. Re-
cent data in nuclei near N = 90, such as Gd [2–4], Sm [5–
8] and Dy [9–11], have put into question whether the na-
ture of low-lying excited 0+ states should be re-examined
[12, 13].

Two-neutron transfer reactions are excellent probes to
study excited 0+ states as they are sensitive to pairing cor-
relations in nuclei [14–17]. This is demonstrated by the
strongly-populated 0+2 states which emerged in both (p, t)
and (t, p) reactions in the N = 90 region [7]. In partic-
ular, the cross sections of the first excited L = 0 exci-
tations were comparable to that of their ground states in
N = 88 − 90 nuclei, indicating a rapid onset of deforma-
tion [7, 13].

Evidence of collectivity in the N = 90 region is
also demonstrated by the simultaneous increase of the
B(E2; 0+1 → 2+1 ) value and the E4+1 /E2+1 energy ratio, plot-
ted in Figure 1, indicating that a rapid transition between
the vibrational and rotational limits occurs near N = 90.
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Figure 1. B(E2; 0+1 → 2+1 ) value and E4+1
/E2+1

ratio systematics in
the N = 90 region plotted as a function of neutron number. The
dramatic increase in both quantities suggests that these isotopes
lie in a transitional region of rapid shape change. The Er isotopic
chain also possesses similar characteristics.

2 Experimental Details

Excited states in 160Er have been studied via the 162Er(p, t)
reaction at the Maier-Leibnitz-Laboratorium (MLL) in
Garching, Germany. Proton beams up to 2 µA were ac-
celerated to 22 MeV or 24 MeV using a 14 MV tandem
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Figure 2. ∆E- E histogram for the 162Er(p, t) reaction at 30◦. A
gate is placed on the outgoing tritons (left), to eliminate coinci-
dence tagging of a deuteron contaminant (right).

Van de Graaff accelerator. The proton beam impinged on
a highly-enriched 162Er target. Reaction products were
momentum-analyzed with a Quadrupole-3-Dipole (Q3D)
magnetic spectrograph. In the focal plane of the Q3D, two
proportional counters produce two energy-loss signals, ∆E
and ∆E1. A thick plastic scintillator located behind the
proportional counters stop the particles to determine their
energy, E. An example of a ∆E- E histogram used to iden-
tify and gate on reaction ejectiles is shown in Figure 2.

An elastic scattering angular distribution was collected
from 15◦ to 115◦ to determine the target thickness and se-
lect an appropriate global optical model potential (OMP)
[18–22] to be used in the Distorted Wave Born Ap-
proximation (DWBA) calculation. The target thickness
was determined to be 61(3) µg/cm2 by normalizing the
cross section at 15◦ to the Becchetti and Greenlees OMP
[18], which best reproduced the distribution minima. In
this work, the DWBA calculations were performed using
FRESCO, a coupled-channel reactions code [26]. The iso-
topic purity of 99% is remarkable given the 0.14(1)% nat-
ural abundance [24] of 162Er.

3 Results and Conclusions

Evaluated data for levels in 160Er [23] were used to cali-
brate the triton spectrum, plotted in Figure 3. Members up
to Jπ = 4+ were assigned by comparison of angular dis-
tributions to DWBA calculations. It is worth noting that
some of the members of the higher-lying Kπ = 0+ and
Kπ = 2+ bands are speculative, motivated by the similarity
of the 160Er band structures to those of 162Er and 152Sm,
but are in agreement with those observed in unevaluated
works [10, 25].

To report the strength of the excited 0+ states relative
to the ground state, the relative cross section strength, S, is
defined by

S =
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Table 1. Energy and relative strengths of excited 0+ states,
normalized at 5◦ to the DWBA calculation.

Eexp (keV) S(0+ex/0
+
1 )(%)

0 100
894 18(1)
1279 1.0(1)
1528 1.0(1)
1864 1.4(5)
1930 0.10(3)
2032 1.7(1)
2129 0.7(1)

where the differential cross sections are stated in the
centre-of-mass frame. Normalizing both the excited and
ground states to the DWBA calculation applies a Q-value
correction to account for the dependence of the reaction
cross section on excitation energy. Figure 4 shows the
agreement between the 0+1 and 0+2 state cross sections and
their DWBA calculations.

The relative cross section strength of excited 0+ states
in this work are listed in Table 1. The low-lying Kπ = 0+

band head is strongly populated with 18% of the ground
state strength, while higher excited 0+ states have a relative
strength of less than 2%. The strong population of the 0+2
in (p, t) reactions in the N = 92 region, reminiscent of the
strong (p, t) strength in the N = 90 region [7], may suggest
that the same mechanism is responsible for the strength of
0+ states in both N = 90 and N = 92 nuclei.
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Figure 3. Energy-calibrated spectrum from the 162Er(p, t) reaction at a beam energy of 24 MeV and Q3D angle of 30◦. The angular
momentum of some of the more prominent peaks are labelled.
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Figure 4. Comparison of the angular distributions of the 0+1 state (left) and 0+2 state (right) to their DWBA calculations at a beam energy
of 24 MeV, demonstrating the level of certainty in assigning J=0+ states due to the unique shape of its angular distribution.
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