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Abstract
Background: Endothelial cells (EC) cultured under altered gravity conditions show a 
cytoskeletal disorganization and differential gene expression (short-term effects), as well as 
apoptosis in adherently growing EC or formation of tubular 3D structures (long-term effects). 
Methods: Investigating short-term effects of real microgravity, we exposed EC to parabolic 
flight maneuvers and analysed them on both protein and transcriptional level. The effects of 
hypergravity and vibration were studied separately. Results: Pan-actin and tubulin proteins 
were elevated by vibration and down-regulated by hypergravity. β-Actin was reduced by 
vibration. Moesin protein was reduced by both vibration and hypergravity, ezrin potein was 
strongly elevated under vibration. Gene expression of ACTB, CCND1, CDC6, CDKN1A, VEGFA, 
FLK-1, EZR, ITBG1, OPN, CASP3, CASP8, ANXA2, and BIRC5 was reduced under vibration. 
With the exception of CCNA2, CCND1, MSN, RDX, OPN, BIRC5, and ACTB all investigated 
genes were downregulated by hypergravity. After one parabola (P) CCNA2, CCND1, CDC6, 
CDKN1A, EZR, MSN, OPN, VEGFA, CASP3, CASP8, ANXA1, ANXA2, and BIRC5 were up-, while 
FLK1 was downregulated. EZR, MSN, OPN, ANXA2, and BIRC5 were upregulated after 31P. 
Conclusions: Genes of the cytoskeleton, angiogenesis, extracellular matrix, apoptosis, and cell 
cycle regulation were affected by parabolic flight maneuvers. We show that the microgravity 
stimulus is stronger than hypergravity/vibration.
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Introduction

The endothelial cells (EC) form the inner coating of blood vessels and they are key 
players in human cardiovascular physiology. EC can regulate blood pressure by secreting NO 
and are very sensitive to external stimuli upon which they may activate different mechanisms 
of defense [1-5].

Furthermore, when exposed to altered gravity conditions, EC showed strong reactions 
ranging from alterations in cytoskeletal arrangement and gene expression after only 22 s 
of real microgravity to long-term effects such as formation of defined 3D structures on the 
Random Positioning Machine (RPM), a device which aims to simulate microgravity on Earth 
by randomly rotating the sample around all three axes in space, and thereby cancels out the 
effect of the gravity vector over time [6-11]. Some of these 3D structures assume tubular 
shapes resembling vascular intimas and recent studies have shown that these structures are 
a promising basis toward the systematic tissue engineering of vessels [12, 13].

During and after spaceflights, astronauts suffer from many different health problems, 
including an impaired immune system, bone and muscle loss, orthostatic intolerance, 
and cardiovascular problems [14, 15]. The latter are very likely caused by an endothelial 
dysfunction. There are several studies demonstrating the effects of both simulated and 
real microgravity on ECs. Cytoskeletal remodelling and actin reduction was a common 
observation in all the experiments and occurred on a clinostat, on a RPM and in cells cultured 
in a Rotating Wall Vessel (RWV) bioreactor. In addition to this, it was also found that the 
expression of surface adhesion molecules and extracellular matrix proteins was changed. 
Some of these changes resemble those observed in cardiovascular disease [16-20]. 

After first discovering some altered signalling pathways in ECs cultured on a RPM [10, 
13], we have recently analyzed the short-term effects of real microgravity during several 
parabolic flight campaigns [11]. Our findings were consistent with those described above, 
but in contrast to the microgravity simulation techniques, there are several additional 
factors which might have an influence on the EC cultured on board of the aircraft. There 
will always be a certain amount of vibrations. In addition, there are before and after each 
phase of microgravity two phases of hypergravity of 1.8 g. The influence of hypergravity 
on endothelial cells has been studied before, but with different g-forces (3 g) and different 
durations of exposure (10 min and 48 h, respectively) [21, 22]. Vibrations, however, have 
not been intensively investigated. Several cell types, among them ECs, have been cultured on 
devices which transmit vibrations in the nanometer scale into the cells [23], but no effects 
have been found. Low-frequency fluid vibration at up to 12 Hz revealed an ERK1/2 mediated 
ET-1 release [24], but these frequencies are not comparable to those on the ZERO-G aircraft.

It is important to investigate and characterize the influence of short-term hypergravity 
and vibration during a parabolic flight. We therefore aimed to simulate the acceleration 
profile of one or 31 parabolas as well as the vibrations occurring during the whole flight. 
Protein as well as gene expression were analyzed and compared to the results obtained from 
cells exposed to a parabolic flight. 

Further insights into the biological processes of ECs in Space will advance the 
possibilities of both the effective treatment of impaired endothelium in astronauts in Space 
missions as well as the refinement of tissue engineering techniques towards the generation 
of a functional blood vessel.

Materials and Methods

Cell culture procedure
Human endothelial EA.hy926 cells [25] were grown in RPMI 1640 medium (Invitrogen, Eggenstein, 

Germany) supplemented with 10 % fetal bovine serum (Biochrom, Berlin, Germany), 100 units penicillin/
mL, and 100 µg streptomycin/mL.

http://dx.doi.org/10.1159%2F000343380
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The cell culture procedure for the parabolic flight campaigns was published recently [26]. Briefly, for 
the flight experiments we used both T75 cell culture flasks (75 cm2, Sarstedt, Nümbrecht, Germany) with 
subconfluent layers of 106 cells, filled with 10 mL of medium. Syringes containing the appropriate fixative 
were connected to the flasks via a flexible tube and three-way valve.

Cells for quantitative real-time PCR were fixed with RNAlater (Applied Biosystems, Darmstadt, 
Germany) at a ratio of 4:1, while samples for Western blot analysis were fixed by addition of ethanol up to 
a final concentration of 70 %.

One hour before each flight, the cell culture flasks were transported to the aircraft (Fig. 1A) in 
transportable Cell Trans 4016 incubators (Labotect, Göttingen, Germany) and placed into similar devices 
which were installed on an experimental rack (Fig. 1B) and pre-heated to 37 °C. Furthermore, in-flight 1 g 
control samples were incubated in a centrifuge which was also mounted on the rack. This centrifuge was 
controlled by a g-sensor and began operation upon reaching microgravity. In addition, corresponding static 
1 g samples were cultured in the laboratory (1 g controls).

Cells were fixed after P1 and P31. All cell samples were transported back to the laboratory for further 
investigations immediately after landing of the aircraft.

Of both parabolic flight samples (µg) and 1 g control groups, we collected N=6 T75 cell culture flasks 
for Western blot analyses (P31) and N=6 for quantitative real-time PCR (P1, P31).

Parabolic flight
All parabolic flight experiments were conducted aboard the Airbus A300 ZERO-G, which is operated 

by Novespace and is based in Bordeaux, France. On each of the three days of the campaign, a parabolic flight, 
which lasts about 3 h, including take-off and landing and encompasses 31 parabolas, takes place. Every 
parabola started from a steady normal horizontal flight and typically included two hypergravity (1.8 g) 
periods of 20 s, separated on average by a 22 s microgravity period. The first test parabola was followed by 
six series of five parabolas, separated by breaks of 4 and 8 min, respectively. The microgravity level achieved 
by parabolic flights is 0±0.05 g. The data presented emerged from the 12th, 13th, 14th and 16th parabolic flight 
campaigns of the German Space Agency (DLR), representing a total of 12 parabolic flights or 372 parabolas. 

Hypergravity experiments
The method was recently published in detail [26]. Hypergravity was achieved by centrifugation on 

a Multi Sample Incubator Centrifuge (MuSIC, DLR, Cologne, Germany) (Fig. 1C) placed in an incubator at  
37 °C and 5% CO2. Confluently growing cells from T75 cell culture flasks were trypsinized and transferred 
into 5-mL tubes. The tubes were filled up with cell culture medium and the cells were allowed to equilibrate 
before centrifugation. Corresponding to the fixation times of the cells on the parabolic flight, the cells were 
exposed to two 20 s long 1.8 g phases interrupted by a 22 s pause (P1) and 2 h lasting 1.8 g phases (P31). 
Control experiments on the Short Arm Human Centrifuge (SAHC) at the DLR with cells growing in T75 cell 
culture flasks showed no difference to the results from the MuSIC device (data not shown). We collected N=5 

Fig. 1. Platforms to inve-
stigate altered gravity and 
vibration on human endo-
thelial cells. Parabolic flight 
airplane, the Novespace 
A300 ZERO-G Airbus (A, No-
vespace). Overview of the ex-
perimental rack (B), detailed 
views on the MuSIC (Multi 
Sample Incubator Centrifuge, 
C) and the Vibraplex vibra-
tion platform (D). both DLR, 
Cologne, Germany.
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1g controls and N=5 1.8 g hyper-g samples (P1 and P31) for Western blot analyses (N=5) and quantitative 
real-time PCR (N=5), respectively. The 1g controls were grown in a neighbouring equal incubator.

Vibration experiments
The detailed method was published earlier [26]. The Vibraplex vibration platform (frequency range 

0.2 Hz - 14 kHz) was used to create vibrations comparable to those occurring during parabolic flights (Fig. 
1D). Corresponding vibrations to the three phases pull up (1.8 g), free fall (µg), and pull out (1.8 g) were 
recorded and analysed by Schmidt [27]. These data were then used for our simulation experiments with 
the Vibraplex. For quantitative real-time PCR analyses, we collected N=18 samples of the groups 1 g and 31 
parabolas of vibration. The 1g controls were grown separately in a similar incubator.

RNA isolation 
After the flight, the fixative was discarded and replaced by 10 mL of RNAlater. Subsequently the 

flasks were stored at 4 °C and transported to our laboratories in Berlin. The RNAlater was replaced by PBS 
(Invitrogen, Darmstadt, Germany). The cells were scraped off using cell scrapers (Sarstedt, Nümbrecht, 
Germany), transferred to tubes and pelleted by centrifugation (2500xg, 10 min, 4 °C). The RNeasy Mini 
Kit (Qiagen, Hilden, Germany) was used according to the manufacturer’s instructions to isolate total RNA. 
RNA concentrations and quality were determined spectrophotometrically at 260 nm using a NanoDrop 
instrument (Thermo Scientific, Wilmington, DE, USA). The isolated RNA had an A260/280 ratio of >1.5.

cDNA designated for the quantitative real-time PCR was then obtained with the First Strand cDNA 
Synthesis Kit (Fermentas, St. Leon-Rot, Germany) using 1 µg of total RNA in a 20 µL reverse transcription 
reaction mixture.

Quantitative real-time PCR 
Quantitative real-time PCR was used to determine the expression levels of the genes of interest. The 

Primer Express® software was utilised to design appropriate primers with a Tm of about 60 °C (Table 1). 
The primers were synthesised by TIB Molbiol (Berlin, Germany). All assays were run on a StepOnePlus 

Table 1. Primers used for quantitative real-
time PCR. All sequences are given in 5’-3’ 
direction

http://dx.doi.org/10.1159%2F000343380
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Real-Time PCR System using the Power SYBR®Green PCR Master Mix (both Applied Biosystems, Darmstadt, 
Germany). The reaction volume was 25 µL including 1 µL of template cDNA and a final primer concentration 
of 500 nM. PCR conditions were as follows: 10 min at 95 °C, 40 cycles of 30 s at 95 °C and 1 min at 60 °C, 
followed by a melting curve analysis step (temperature gradient from 60 °C to 95 °C with +0.3 °C per cycle).

If all amplicons showed one single Tm similar to the one predicted by the Primer Express software 
the PCR reactions were considered specific. Every sample was measured in triplicate and we utilized the 
comparative CT (∆∆CT) method for the relative quantification of transcription levels. 18S rRNA was used as 
a housekeeping gene to normalize our expression data.

Western blot analysis
SDS-PAGE, immunoblotting and densitometry were carried out on six replicates following routine 

protocols [28-30]. Antibodies against the following antigens were used: α-tubulin, pan-actin, and β-actin, 
moesin and radixin (dilution 1:1000, all antibodies were purchased by Cell Signaling Technology Inc., MA, 
USA). For the densitometric quantification of the bands, the stained membranes were scanned and analysed 
using the Image J (http://rsb.info.nih.gov/ij/) software [31]. Since no suitable protein was found which 
could serve as a loading control under the investigated experimental conditions, we carefully loaded equal 
amounts of protein (40 µg in 10 µL) onto each gel lane and normalized the densitometric data to this value.

Statistical analysis
All statistical analyses were performed using the SPSS 16.0 software (SPSSS, Inc, Chicago, IL, USA). 

We employed either one-way ANOVA or the Mann-Whitney-U-test where applicable. Differences were 
considered significant at the level of p<0.05. All data are represented as means ± standard deviation.

Results

Hypergravity and Vibration
Changes on the Protein Level. In order to investigate the impact of hypergravity and 

vibration on the protein levels of selected genes of interest, we performed Western Blot 
analyses on ECs exposed to both conditions as described in the methods section. The Pan-
actin and alpha-tubulin contents of the cells were significantly elevated by vibration and 
significantly down-regulated by hypergravity. In contrast, the beta-actin protein was reduced 
by vibration, but hypergravity did not change its amount (Fig. 2).

Furthermore, we examined two proteins belonging to the ERM-family of regulators of 
membrane–cortex interactions and signaling: ezrin and moesin. Ezrin protein was strongly 

Fig. 2. The influence 
of hypergravity and vi-
bration on cytoskeletal 
proteins. Western Blot 
analyses are shown for 
the proteins pan-Actin, 
β-Actin, and α-Tubulin. 
1g: 1g control cells; V: 
cells exposed to simulat-
ed vibration; 1.8g: cells 
exposed to 31 parabolas 
of hypergravity accord-
ing to the parabolic flight 
profile; #P<0.05 vs. cor-
responding 1g control. 
Values are given as mean 
± standard deviation.
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and significantly elevated in EC cultured under conditions of vibration, cultivation under 
hypergravity of 1.8g did not induce changes. In contrast, moesin protein was significantly 
reduced by both vibration and hypergravity in ECs after 2 hours (Fig. 3).

Changes on the Transcriptional Level. In addition to the genes belonging to the proteins 
analyzed in the Western Blots, we choose further transcripts of interest, mainly those which 
are involved in the regulation of the cell cycle, angiogenesis, (3D) proliferation, cellular 
signalling, apoptosis and extracellular matrix. The list comprised ACTB, CCNA2, CCND1, CDC6, 
CDKN1A, VEGFA, VEGFD, FLK1, EZR, MSN RDX, ITGB1, SPP1 (OPN), CASP3, CASP8, ANXA1, 
ANXA2, and BIRC5 (Survivin).

ACTB gene expression was significantly diminished after 2 h by hypergravity. Vibration 
also reduced the expression of ACTB significantly (Fig. 4A).

Transcription of CCNA2 and CCND1 was not affected by hypergravity, while CDC6 
gene expression was significantly decreased after 2 h and CDKN1A transcript levels were 
significantly suppressed after 20 s of hypergravity. Except for CCNA2, the other three 
transcripts were found to be down-regulated by vibration (Fig. 4B).

Hypergravity had an impact on all three investigated angiogenic genes. Both VEGFA 
and VEGFD were significantly down-regulated in the 1P (hypergravity simulation of one 
parabola) group, but only VEGFD remained suppressed in the 31P (hypergravity simulation 
of 31 parabolas) group. FLK1, on the other hand was clearly, although not mathematically 
significantly, up-regulated in the 1P group and reverted back to control levels after 2h of 
hypergravity. Vibration decreased VEGFA- and FLK1-expression significantly (Fig. 4C).

Of the ERM genes, only EZR showed a reaction to hypergravity and vibration. In both 1P 
and 31P groups as well as in cells grown under vibration EZR expression was significantly 
decreased in comparison to the control groups (Fig. 4D).

ITBG1 transcript levels were decreased in both hypergravity groups as well as in cells 
exposed to vibration. OPN expression on the other hand, did not change significantly under 
hypergravity, but also decreased significantly under vibration (Fig. 4E).

CASP3 and -8 gene expression were significantly decreased in the hypergravity 1P group, 
but while CASP3 remained suppressed in the 31P cells, CASP8 rose back to normal levels. Both 
transcripts were downregulated by vibration. Similarly, ANXA1 and ANXA2 expression were 
significantly reduced in hypergravity 1P cells, but no significant difference was found in 31P 
cells compared to 1 g control cells. Vibration only decreased ANXA2 expression significantly 
but did not affect ANXA1. BIRC5 did not show any significant effects in hypergravity, although 
a similar tendency for decreased transcription was observed. Vibration reduced BIRC5 
transcript levels significantly (Fig. 4F).

Parabolic Flight
Changes on the Transcriptional Level. To compare the results from the isolated 

hypergravity and vibration experiments with the effects from a real parabolic flight, we also 

Fig. 3. The influence of hy-
pergravity and vibration on 
ERM proteins. Western Blot 
analyses are shown for the 
proteins ezrin and moesin. 
1g: 1g control cells; V: cells 
exposed to simulated vibra-
tion; 1.8g: cells exposed to 
31 parabolas of hypergravity 
according to the parabolic 
flight profile, #P<0.05 vs. 
corresponding 1g control. 
Values are given as mean ± 
standard deviation.
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D

E

continued

measured the gene expression levels of our selected transcripts using the quantitative real-
time PCR technique.

Although we observed a general tendency of transcriptional upregulation of ACTB 
during parabolic flight, these changes did not prove to be statistically significant (Fig. 5A).

After one and 31 parabolas of real microgravity CCNA2, CCND1, CDC6, and CDKN1A were 
all strongly and significantly up-regulated in comparison to the 1 g control cells (Fig. 5B).

Both VEGFA and VEGFD expression was significantly elevated after 31 parabolas, while 
FLK1 was clearly down-regulated after one parabola and reverted back to control levels after 
31 parabolas (Fig. 5C).

Under the conditions of parabolic flight the transcription of EZR and MSN showed 
an identical pattern. After one parabola both genes were strongly up-regulated, and 
transcription decreased after 31 parabolas, but still remained significantly higher than in  
1 g control cells (Fig. 5D).

Levels of ITGB1 transcript did not change significantly during the whole parabolic flight, 
whereas OPN gene expression increased over time, reaching a significant peak after the 31st 
parabola (Fig. 5E).

CASP3, -8, and ANXA1 transcription were significantly upregulated after the first 
parabola and remained at this level until after the 31st parabola. In contrast to this ANXA2 
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and BIRC5 gene expressions were strongly elevated after one parabola and decreased after 
the 31st parabola, while still remaining significantly elevated compared to 1g control cells 
(Fig. 5F).

Discussion

We have shown previously that cells, when exposed to a parabolic flight, undergo 
severe changes already after the first parabola [11, 26]. During parabolic flights, periods 
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Fig. 4. Quantitative real-time PCR – vibration and hypergravity. Quantitative real-time PCR analyses are 
shown for A: gene of the cytoskeleton, B: genes involved in cell cycle regulation, C: genes involved in angio-
genesis, D: ERM genes, E: extracellular matrix genes, and F: genes involved in apoptosis. 1P: 1 parabola of 
hypergravity according to the parabolic flight profile; 31P: 31 parabolas of hypergravity according to the 
parabolic flight profile; #P<0.05 vs. corresponding 1g control; *P<0.05 vs. P1. Values are given as mean ± 
standard deviation.
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of micro- and hypergravity alternate and are accompanied by vibrations. In this study, we 
aimed to investigate to what extent hypergravity and vibrations in addition to microgravity 
influence the protein- and gene expression of the cell line EA.hy926 during a parabolic flight. 
Therefore we exposed the cells to the various conditions separately and analyzed genes 
involved in the cytoskeleton (ACTB, EZR, MSN, RDX), cell cycle regulation (CCNA2, CCND1, 
CDC6, CDKN1A), angiogenesis (VEGFA, VEGFD, FLK1), cell adhesion, migration and signalling 
(EZR, MSN, RDX), apoptosis (CASP3, CASP8, ANXA1, ANXA2, BIRC5), as well as extracellular 
matrix (ECM) (ITGB1, OPN) (Table 2).

Cytoskeleton
ACTB gene and protein expression correlate directly under vibration, with both 

showing a significant decrease. Interestingly, also hypergravity induced a reduction in ACTB 
gene expression, while ACTB protein levels remained unchanged. Tubulin protein was 
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downregulated in hypergravity and upregulated by vibration. This is in good agreement with 
earlier studies, where we showed similar tendencies for TUBB gene expression [26]. The 
results for the parabolic flight correspond with earlier observations [11, 26], which showed 
that cytoskeletal proteins underwent a drastic rearrangement, but did not change their 
concentration inside the cells. These results suggest that hypergravity/vibration are severe 
stress factors for the cells and induce a deterioration of the cytoskeletal network.

The ezrin (EZR), radixin (RDX) and moesin (MSN) proteins are usually referred to as 
the ERM proteins and play a crucial role in the organization and maintenance of the cell 
cortex, the interface between the extracellular environment and the cytoskeleton [32]. The 
three proteins share a high similarity in their amino acid composition, yet there are some 
differences that hint towards specialized functionality. Ezrin is mostly found in epithelial 
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cells, moesin in endothelial cells, and radixin in hepatocytes [33-35]. They all share a 
common appearance and are composed of an amino-terminal FERM (Four point one, ERM) 
domain, mediating membrane association, an a-helix rich middle, and an F-actin binding 
site (C-ERMAD, the C-terminal ERM-association domain) at the carboxy terminus [36]. 
The best documented and probably most important function of the ERMs is the bundling 
and arrangement of F-actin filaments parallel to the cell membrane, but numerous studies 
suggest additional roles for them. ERMs have been implicated in Rho signalling [37-40] 
and, interestingly, lumen morphogenesis [41-43]. We detected a down-regulation of the 
corresponding ERM genes by hypergravity/vibration while real microgravity leads to their 
up-regulation. This might explain the observed actin rearrangement after one parabola and 
may also be one first step towards tube formation as seen in long-term RPM experiments, 
whereas under hypergravity or vibrations none such effects were present.

Angiogenesis
The proteins VEGF-A and –D, encoded by VEGF-A and VEGFD genes, belong to the vascular 

endothelial growth factor family comprising the five members VEGFA, -B, -C, -D, and F as well 
as placenta growth factor (PlGF) [44-46]. VEGF-A is the most important type of VEGF for 
angiogenesis, i.e. the formation of new vessels from existing ones [44]. When VEGF proteins 
are secreted, they are bound by tyrosine kinase receptors. For VEGF-A and VEGF-D FLK-1, 
also known as VEGFR-2, encoded by FLK1, is the most important receptor and it is mainly 
expressed in vascular endothelial cells [45]. The VEGF/VEGFR-2 regulatory system plays a 
central role in angiogenesis and is also involved in various other biological functions, such 
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Fig. 5. Quantitative real-time PCR – real microgravity. Quantitative real-time PCR analyses are shown for A: 
gene of the cytoskeleton, B: genes involved in cell cycle regulation, C: genes involved in angiogenesis, D: ERM 
genes, E: extracellular matrix genes; and F: genes involved in apoptosis. 1P: cells after one flown parabola; 
31P: cells after 31 flown parabolas; #P<0.05 vs. corresponding 1g control; *P<0.05 vs. P1. Values are given 
as mean ± standard deviation.
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as wound healing and burn injury, regulation of endothelial growth or pathophysiological 
processes such as tumor vascularisation, and is also a survival factor for endothelial cells 
[47-50].

In our hypergravity experiments, both VEGFA and VEGFD were down-regulated and, 
possibly as a reaction to VEGF-A and -D depletion, FLK1 gene expression was up-regulated. 
This seems to hint towards the induction of a non-angiogenic phenotype by this kind of 
treatment. In contrast to this, real microgravity seems to promote angiogenesis, by up-
regulating both growth factors and their receptor.

Extracellular matrix
Both the ITGB1 and the OPN gene expression were decreased in hypergravity or vibration. 

Integrins mediate cell adhesion to ECM and cell-cell contacts. They also play an important 
role in development and immune responses, and are also vital in the development of many 
human diseases [51]. Osteopontin, encoded by OPN, is secreted by the cells and is a part of 
the ECM. As such it is also a ligand for different integrins [52, 53]. Besides being implicated 
in chemotaxis and cell activation it was also shown, that osteopontin is an important anti-
apoptotic factor, as it is able to block programmed cell death in stress-exposed endothelial 
cells [54-56]. The observation, that both ITGB1 and OPN genes are down-regulated under 
hypergravity and vibration and up-regulated in microgravity shows that alterations in 
gravity have an influence on cell adhesion and cell survival with microgravity inducing 
protective effects.

Apoptosis
The CASP3, CASP8, ANXA1, ANXA2, and BIRC5 (also known as Survivin) genes are all 

implied in the process of programmed cell death, also called apoptosis. The process of 
apoptosis manifests itself by an internal proteolytic digestion which leads to a breakdown 

Table 2. A brief summary of gene-expression and protein content data

Gene expression 
 

  Hypergravity Vibration Parabolic Flight 
Biological Function Gene Symbol 1P 31P 31P 1P 31P 
Cytoskeleton       
 ACTB (-) - - (+) (+) 
Cell cycle regulation       
 CCNA2    + + 
 CCND1 (-) (-) - + + 
 CDC6 (-) - - + + 
 CDKN1A - (-) - + + 
Angiogenesis       
 VEGFA -  - (+) + 
 VEGFD - - (-)  + 
 FLK1 (+)  - -  
Cell adhesion, migration, 
and signalling       
 EZR - - - + + 
 MSN    + + 
 RDX     (+) 
Extracellular matrix       
 ITBG1 - - -   
 OPN (-) (-) - (+) + 
Apoptosis       
 CASP3 - - - + + 
 CASP8  -  - + + 
 ANXA1 -   + + 
 ANXA2 -  - + + 
 BIRC5  (-) - + + 

Protein Content 
 

  Hypergravity Vibration Parabolic Flight 
Biological Function Protein Name 1P 31P 31P 1P 31P 
Cytoskeleton       
 pan-Actin n.d. - + n.d. n.d. 
 beta-Actin n.d.  - n.d. n.d. 
 alpha-Tubulin n.d. - + n.d. n.d. 
Cell adhesion, migration, 
and signalling       
 Ezrin n.d.  + n.d. n.d. 
 Moesin n.d. - - n.d. n.d. 
P: one parabola; 31P: 31 parabolas; +,-: significant up- or downregulation compared to 1g control;   
(+,-  ):suggestive up- or downregulation compared to 1g control; blank: no change compared to 1g 
control; n.d.: not determined 
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of cellular function and infrastructure. Possible triggers of apoptosis are manifold and can 
range from lack of growth factors, DNA damage, ionizing radiation, ischemic injury, and 
more [57-62].

The majority of apoptotic pathways are mediated by a family of cysteine aspartate-
specific proteases, commonly called the “caspases”. These caspases can be grouped into the 
initiator (caspase-8 and -10) and the effector caspases (caspases-3, -6, and -7). CASP8 and 
CASP3 are involved into the so-called extrinsic pathway. Here, specific death-receptors on 
the cells surface trigger a cascade which first activates the initiator caspase-8, which in turn 
cleaves and activates the executioner caspase-3. Caspases disrupt many proteins involved in 
cytoskeletal integrity and cell-cell communication, they attack the endoplasmatic reticulum, 
the golgi apparatus and the nucleus itself [62-64].

ANXA1 and ANXA2 belong to the annexin superfamily of calcium or calcium and 
phospholipid binding (“annexing”) proteins, which comprises a total of 13 members [65]. 
ANXA1 and ANXA2 expression is highly abundant in smooth muscle and endothelial cells 
[66, 67]. The annexins have multiple physiological roles: they can regulate the plasma 
membrane architecture, interact with the actin cytoskeleton and are also involved in the 
regulation of intracellular Ca2+ homeostasis [68-70]. Interestingly, ANXA1 in particular 
was also reported to be a regulator of cell proliferation and apoptosis. It has been shown, 
that ANXA1, by being a substrate for the EGF rector tyrosine kinase, is an inhibitor of EGF-
dependent cell proliferation [71, 72]. Furthermore many, but not all studies indicated that 
ANXA1 is an inducer of apoptosis. Overexpression of ANXA1 in monocytic cells led to an 
enhanced TNF-α-induced apoptosis. 5 days after transfection with full-length ANXA1, about 
70% of these cells underwent apoptosis and changes in ANXA1 expression had an effect 
on caspase-3 activity. Exogenous ANXA1 promoted Ca2+ influx into human neutrophils and 
accelerated apoptosis [73-75].

BIRC5 (also known as survivin) is an inhibitor of apoptosis proteins and is involved in 
cell division and apoptosis suppression [76-78]. The exact mechanism of action of survivin 
is not completely understood, but studies have shown that it directly interacts with effector 
caspases-3 and -7, thus preventing their activation. Furthermore, it can also interfere with 
the caspase-independent AIF pathway of cell death [79, 80].

In this work we have observed, that the proapoptotic genes CASP3, CASP8, ANXA1, 
and ANXA2 as well as the antiapoptotic gene BIRC5 were downregulated in hypergravity/
vibration and upregulated in real microgravity during a parabolic flight. It has been observed 
earlier, that endothelial cells, when exposed to prolonged simulated microgravity on an RPM 
for up to 72 h, develop apoptosis [10], therefore our results for the parabolic flight might 
represent the first steps, still contained by the similarly overexpressed BIRC5, towards the 
development of overt programmed cell death at a later stage, which is supported by the 
fact that EC on a parabolic flight did not show any visible sign of apoptosis [26]. Our results 
with cells exposed to hypergravity/vibration seem to hint towards the induction of a non-
apoptotic cell state, which might have further impact for cell culture or tissue engineering 
techniques. This is the first time this kind of analysis was performed on endothelial cells and 
further work is required to study these effects in more detail.

Cell Cycle Regulation
Cyclin A2, encoded by CCNA2, and cyclin D1, ecoded by CCND1, belong to the big family of 

cyclins. In general, cyclins regulate cell cycle progression. This is mediated by the sequential 
activation of different cyclins. They all bind, activate, and determine the substrate specificity 
of their binding partners, the serine-threonin kinases, also called cyclin-dependent kinases 
(Cdks) [81, 82].

The cyclins can be subdivided into the different calluses A to I, and T, which have different 
functions. While cyclin A1 is exclusively expressed in testis and germ line, cyclin A2 is  
found practically ubiquitously in cultured cells and different cancers [83-85]. By interacting 
either with Cdk2 or Cdk1 it is able to control both S phase and G2/M transition, respectively. 
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During the S phase cyclin A2 regulates the DNA synthesis, while it acts as a trigger for cyclin 
B1-Cdk1 activation at the G2/M transition [86-89].

The D-type cyclins are important players in the entry into the G1/S phase of the mitotic 
cell cycle, but they have also been implicated in differentiation, regulation of transcription 
or apoptosis [90-92].

CDKN1A, also known as p21Waf1/Cip1/Sdi1, functions as an inhibitor of a broad spectrum of 
Cdks [93, 94] and was first identified as one component of a complex together with cyclin 
D1, a Cdk, and PCNA [95]. CDKN1A is involved in a variety of biological processes. Most 
prominently it is a negative regulator of cell cycle progression, which maintains cells in the 
G0 phase upon accumulation [96, 97]. Furthermore, CDKN1A is also implicated in apoptosis. 
Generally, downregulation of CDKN1A leads to p53-dependent apoptosis. DNA damage, for 
example, induces cleavage of CDKN1A by caspase 3, which can promote apoptosis in growth-
arrested cancer cells [98]. In addition, it was also shown to be involved in DNA repair and 
senescence [99, 100].

Interestingly, a recent study investigating T lymphocytes on a 2D clinostat and on a 
parabolic flight also reported an increase in CDKN1A expression under both conditions 
[101].

CDC6, cell division cycle 6, is a central and essential factor of DNA replication and highly 
conserved in all eukaryotic organisms. Downregulation of CDC6 levels have been shown to 
prevent G1 cells from progression into S phase [102, 103]. Furthermore it was found that 
lack of CDC6 stops cell proliferation and induces apoptosis [104, 105].

Our results show that these important genes for cell cycle regulation are transcribed 
in an altered way under both hypergravity/vibration and conditions of a parabolic flight 
compared to the static 1 g control. The expression patterns indicate that cells cultured under 
hypergravity or vibration alone undergo changes which lead to a slowed down cell cycle, 
while parabolic flights (hypergravity + vibration + microgravity) induce proliferation.

Conclusions

In the present study we have shown that ACTB, EZR, MSN, RDX, CCNA2, CCND1, CDC6, 
CDKN1A, VEGFA, VEGFD, FLK1, ITGB1, OPN, CASP3, CASP8, ANXA1, ANXA2, and BIRC5 are 
expressed in a gravity- and/or vibration-dependent manner in endothelial cells (for a 
concise overview see Table 2). It is noteworthy, that isolated hypergravity and vibration have 
diametrically different effects on the expression of these genes compared to the exposure 
to parabolic flight. Up to now, the exact mode of sensing the three conditions applied is not 
yet completely elucidated. So far suggested mechanisms can be divided into centralized/
direct and decentralized/indirect models. Centralized models comprise the action of 
mechanosensitive ion channels [106-108], mechanosensitive protein kinases [109, 110], or 
caveolae [111, 112]. In addition, evidence for indirect mechanisms involving integrins [113-
115] or the cytoskeleton [116] have also been reported. We hypothesize that gravisensing 
is mainly mediated by an indirect mechanism involving the cytoskeleton, because we had 
observed a rearrangement of various cytoskeletal components after one parabola [11] as well 
as after prolonged exposure of endothelial cells to simulated microgravity on an RPM for 5 
to 7 days [9, 10, 12, 13]. Furthermore, centrifugation and parabolic flights have diametrically 
different effects on the expression of the genes investigated. This seems to hint towards an 
ability of the cells to sense different levels of gravity and not only gravitational changes. 
But the signal exerted by microgravity is able to override the effects of the hypergravity 
phases and the vibration, because the parabolic flight results resemble more the RPM than 
the centrifugation results. Therefore, microgravity represents the strongest stimulus during 
this kind of experiment.
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