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Abstract— One of the main issues of the wind plant power generation nowadays is that the current stand alone controller of each 
turbine in the wind plant is not able to cope with chaotic nature of wake aerodynamic effect. Therefore, it is necessary to re-tune the 
controller of each turbine in the wind plant such that the total power generation is improved. This article presents an investigation of 
a data driven approach using moth-flame optimization algorithm (MFO) to the problem of improving wind plants power generation. 
The MFO based technique is applied to search the turbine’s optimum controller such that the aggregation power generation of a wind 
plant is maximized. The MFO is a population based optimization method that mimics the behavior of moths that navigate on specific 
angle with respect to the moon location. Here, it is expected that the MFO can solve the control accuracy problem in the existing 
algorithms for maximizing wind plant. A row of wind turbines plant with wake aerodynamic effect among turbines is adopted to 
demonstrate the effectiveness of the MFO based technique. The model of the wind plant is derived based on the real Horns Rev wind 
plant in Denmark. The performance of the proposed MFO algorithm is analyzed in terms of the statistical analysis of the total power 
generation. Numerical results show that the MFO based approach generates better total wind power generation than spiral dynamic 
algorithm (SDA) based approach and safe experimentation dynamics (SED) based approach. 
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I. INTRODUCTION 

These days, wind energy has known to be one of the most 
economical sources of renewable energy. In recent years, 
there is a considerable development of wind energy around 
the world. The main point is to maximize the energy 
generation of the existing wind plant and minimize the cost-
of-energy produced by the wind plants. There are some of 
the control variables that need to be tuned to achieve the 
maximization of power generation of the wind plants, such 
as angle of blade and yaw, and torque generator. Moreover, 
this tuning variable also plays a significant part in the energy 
generation of the rear wind turbines because of turbulence or 
wake interactions between wind turbines. Optimal wind 
plant operation requires a full understanding of wake 
interactions as well as the turbine's behavior. 

Recently, the optimization of power generation of existing 
wind plant exhibits a challenging issue which is the 
complexity of the wake iteration between wind turbines that 
is difficult to model. This has led to a data-driven approach 
that is proven as a promising solution to produce the 
maximum power generation of the wind plant. The data-
driven approach will produce desired convergence without 
requiring characterization of the aerodynamic interaction 

among turbines [1]. There are many studies that focus on 
optimizing the aggregation power generation of wind plant, 
such as safe experimentation dynamics (SED) method [1]-
[3], maximum power point tracking (MPPT) [4]-[5], spiral 
dynamic algorithm (SDA) [6], simultaneous perturbation 
stochastic approximation (SPSA) [7], particle swarm 
optimization (PSO) [8] and random search (RS) [9] 
algorithms. Note that most of the data-driven methods 
mostly tackle the problem of improving the power 
generation of existing installed wind plant, where no 
modification on the wind turbine position can be done. In 
particular, we only can improve its control algorithm, such 
as fine-tune its blade angle or wind turbine yaw angle. 

On the other hand,  Moth-Flame Optimization (MFO) [10] 
method, which is introduced by Seyedali Mirjalili in 2015, is 
also a useful tool for improving the power generation of the 
wind plant. This is because this technique has been 
successfully solving various of real-world problems, such as 
find optimal power flow [11], harmonic elimination of 
multilevel inverters [12], feature selection problem [13], and 
multi-objective problem [14], optimal machining parameters 
in manufacturing processes [15], medical diagnoses [16], 
tomato disease detection [17], handwritten recognition [18], 
optical network unit placement [19] and many more. Hence, 
it is worth to investigate the potential of the MFO based 
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method in improving the total power generation of the 
existing wind plant. 

This article investigates the effectiveness of moth-flame 
optimization (MFO) as a data-driven approach for improving 
the power generation of a row of wind turbines plant. Next, 
the assessment in terms of mean, best, worst and standard 
deviation of wind plant power generation is presented. 
Moreover, the results are also compared with SDA and  SED 
[1] based approaches. The combination of the number of 
agents or populations and iterations is also investigated since 
this combination may influence the performance of the 
algorithm in producing the optimum results. 

The structure of this article is organized as follows. 
Section II explains material and method, which consists of 
the formulation of the wind plant optimization problem, the 
MFO algorithm and the procedure to adopt it in a data-
driven approach. In Section III, the data-driven based MFO 
is verified to a row of wind turbines plant. Then, a 
performance comparison between the MFO, Spiral Dynamic 
Algorithm, and the Safe Experimentation Dynamics based 
approaches are also elaborated in Section III. In the final 
section, we conclude our findings. 

II. MATERIAL AND METHOD 

A. Problem Formulation 

For this study, consider a wind plant with a � number of 
wind turbines with either random or deterministic formation 
of wind turbine position. The controller of the turbine � is 
denoted as ��(� = 1,2, … , �), which is a generic symbol of 
the turbine regulators, like pitch the angle of the blade and 
speed of turbine the e motor [20]. The power generation of 
turbine � is expressed by
�(��, ��, . . . , ��) (� = 1,2, . . . , �) . 
The time-varying magnitude of wind speed with different 
direction is considered in this investigation. Hence, the 
controller ��, ��, . . . , ����, ����. . . , �� , which are not included 
turbine k, might also affect the power generation of turbine�, 
i.e., 
�  . This is due to the aerodynamic interaction among 
turbines. In the same way, any changes of the controller �� 
not only change the power generation 
� but also the power 
generation of other turbines, i.e., 
�, 
�, . . . , 
���, 
���. . . , 
� . 
Therefore, we can state that the power generation of turbine �  is highly affected by the controller ��  and is weakly 
affected by other controllers, i.e., ��, ��, . . . , ����, ����. . . , ��. 
The relation between power generation 
�  and controllers ��, ��, … , �� is assumed to be unknown since the turbulence 
behavior between turbines are very complex in reality and it 
is hard to get a precise wind plant’s dynamic model. 

 
Nevertheless, it is assumed that the aggregate power 

generation of the wind plant is observable where it is 
expressed by: 

 


(̅��, ��, . . . , ��) = � 
�(��, ��, . . . , ��)�
���  

 
(1) 

 
Finally, the wind plant control problem is stated by:  

 
Problem 1. Consider the wind plant aggregate power 
generation 
(̅��, ��, … , ��) is given in (1) and let functions  


�(� = 1,2, … , �)  are unknown with respect to its 
controller ��(� = 1,2, … , �) . Next, find controller ��ℎ� �(� = 1,2, … , �)  such that 
(̅��, ��, … , ��)  is 
maximized. 

B. Moth-Flame Optimization Algorithm 

Firstly, define �: �� → �  as a loss function and � ∈��(" = 1,2, … , #)  is the tuning parameter for #  size of 
populations. Next, for" = 1,2, … , #, a maximization problem 
is given by 
 max'(,'),…,'* �(� ).  

(2) 

 
The Moth-Flame Optimization algorithm updates � (" =1,2, … , #) using 
 � (� + 1)= , - �./ cos(23�) + 45(�), "� " ≤ �789� #:,- �./ cos(23�) + 4;<=�> ?/.(�), "� " > �789� #:, 

 

(3) 
 

 
where " = 1,2, … , # for � = 0,1, … . This equation is referred 
as the logarithmic spiral equation that used to update the 
next position for each moth. Here, �  indicates the moth 
while   45 ∈ ��(B = 1,2, … , �789� #:)  represents the flame. In 
particular, if  " ≤ �789� #: , then � (� + 1)  is updated 
according to 45 , where 45 = 4 ∈ ��, " = 1,2, … , # . 
Meanwhile, for " > �789� #: , � (� + 1)  is updated 
according to 4;<=�> ?/.  . The symbol -  represents the 
displacement between the "CDmoth and the BCD flame, which 
is calculated as follows: 
 - = E45(�) − � (�)E.  

(4) 
 

In equation (3), G is a constant for describing the shape 
of the logarithmic spiral, while :  is a generated random 
number between H to 1, where H is linearly decreasing gain 
from -1 to -2 iteratively, as shown in (5) 

 H = −1 + � × J(−1)��=K L. (5) 

 
Here, � is the current number of iteration and ��=K is the 

maximum number of iterations. In order to get high 
exploitation of the promising solutions, the number of 
flames with respect to the iteration number is proposed as 
below: 
 �789� #: = M:N#O P4�=K − � × 4�=K − ���=K Q 

 
(6) 

 
where 4�=K is maximum number of flames, � is the current 
number of iteration and ��=K  is the maximum number of 
iteration. Then, the procedure of the MFO algorithm is given 
by: 
 
Step 1: Determine the size of populations# , maximum 

number of iterations��=K and the constant G . Let 
algorithm start with � = 0. 
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Step 2:  Determine the first tuning parameter� (0) ∈ �� , " = 1,2, … , #  arbitrarily in a searching space. 
Compute the flame number equation in (6). Then, 
sort � (0) in descending order where from higher 
value of objective function to lower value of 
objective function and find the best solution�∗ . 
Here, �∗ = � S(0)  for "T = arg max �(� (0)) , " =1,2, … , #. Next, store the result at4 (0) ∈ �� , " =1,2, … , #. Proceed with step 4. 
 

Step 3:  Compute the �789� #:  at (4). Next, merge � (� − 1) and followed by 4 (� − 1) as follows 
 

9�MW�O X:XN78�":# =   
⎣⎢⎢
⎢⎢⎢
⎢⎡����⋮�?4�4�⋮4?⎦⎥⎥

⎥⎥⎥
⎥⎤
 

 
 
 

(7) 

 
then sort 9�MW�O X:XN78�":#in descending order 
where from higher value of objective function to 
lower value of objective function. Select the best # 
positions from 9�MW�O X:XN78�":#  as the flame 
and store the result at 4 (�) ∈ ��, " = 1,2, … , # . 
Find the best solution, �∗  in �∗ = � S(�) , where "T = arg max �(� (�)), " = 1,2, … , #. 
 

Step 4: Execute the MFO algorithm in (3). 
 

Step 5: Update� = � + 1. Proceed Step 3 if a termination 
criterion ��=K is not achieved. In another way, the 
procedure terminates with the optimal tuning 
parameter �∗. 

 
In Step 5, the termination of the procedure is selected 

from the maximal iterations, where the procedure terminates 
once a pre-specified ��=K  is achieved. In this case, a 
preliminary trials is performed to observe its convergence 
curve in order to decide the maximum iteration. 

C. Data Driven Design 

Note that the presented MFO algorithm in Section II-B is 
generic algorithm that can be applied for many engineering 
optimization problems. Therefore, another procedure is 
required to apply the MFO algorithm for wind plant 
optimization problem. By applying the MFO technique in 
the previous section, the data driven MFO based technique 
for finding the optimal controller of wind plant power 
generation is given by: 

  
Procedure I: Determine the number of iterations ��=K. 
 
Procedure II: Apply the MFO procedure in Section II-B by 
denoting 
 ̅ = � and� = � . 
 
Procedure III:  This data-driven procedure terminates 
after ��=K . The optimal controller �∗ = �∗  and the 
corresponding aggregate power generation 
 ̅is observed. 

III.  RESULTS AND DISCUSSION 

Now, we validate the data-driven based MFO algorithm in 
improving wind plant power generation. Initially, a wind 
plant model that represents an actual wind plant is adopted to 
assess the data-driven method. Here, the model of the wind 
plant, which is take from [20] is explained. Next, the MFO 
algorithm technique is used to a row wind plant model. 

A. Dynamic Model of Wind Plant 

Let ` = 1,2, … , #,  be the set of n turbines in the wind 
plant, the approaching wind speed is defined byab , the 
diameter of turbine motor is denoted by c� , the region of 
motor swept of turbine 7  is defined by d< . The roughness 
coefficient that depicts the gradient of wake propagation is 
denoted by the symbol ∅ , the overlay area between the 
turbine �wake and turbine 7motor swing area is defined by d�→</f . The notation (g, Mb) is represented as a center point in 
the wake of the turbine withg is the length to the turbine 
motor circle plane and Mb is the length to the center of the 
turbine motor axis. Next, the resultant wind speed is given 
by:  

 

ah< = ab i1 − 2j � Jk� P c�c� + 2∅(g< − g�)Q� d�→</fd< L�
�lm:nopnq

r 

 
(8) 

where g� is the length to the turbine �  motor circle plane, 
while g< is the length to the turbine 7  motor circle plane. 
Figure 1 depicts the demonstration of wake interaction 
between the two turbines. For 7 s ` , the wind speed ah<  is 
computed based on the wind speed resultant deficit 
generated by each front turbine. We assume that the wake 
grows proportionally to the length g and its diameter has a 
round cross-section. Note that, in reality, we may not expect 
an ideal proportionality of wake with round cross-section. 
Furthermore, the individual turbine power is expressed by:  
 
< = 2td<�<(1 − �<)�ah<u 

 
(9) 

 
where t is the air density. 
 
Remark 1. Note that, in this study, our proposed data-driven 
MFO only use the measurable total power generation 
without even know the detailed model of wind plant in (8) 
and (9). In order to represent this dynamic model of the wind 
plant, the algorithm will capture the data of total power 
aggregation after the incoming wind has pass through all the 
turbines from the first row until the final row. In that case, 
our proposed method has a good potential to be applied in 
actual wind plant system since the data-driven MFO only 
capture the total power data without even know the complex 
aerodynamic interactions amongst turbines. 
 

20



 
Fig.1 The diagram of wake interaction 

B. Numerical Evaluation 

The performance of the MFO based algorithm is 
demonstrated using a ten turbines row of wind plant, which 
is illustrated in Figure 2. The diameter of each wind turbine 
is 80 m. The length between each turbine is equivalent to the 
total diameter of seven turbines, which is 560 m. Other 
coefficients of wind plant, such as air densityt, roughness 
coefficient ∅  is taken from [7]. In this study, the 

performance of the MFO, is benchmarked with the SDA 
based method and SED based method.  

Firstly, the wind speed is assumed to be constant at  a� = 8 m/s. Then, MFO coefficients are set after run for 
several preliminary experiments, where G is set between 0.75 
to 1.0 with 0.05 increment. The coefficients of SDA based 
approach is denoted byM = 0.97 andw = 3/4. Meanwhile, 
the coefficients of SED based approach with updated step 
size z{ = 0.03  and the probability to update the tuning 
parameter} =  0.3 are used. Note that the MFO based 
method only requires one pre-defined parameter b; while the 
SDA and SED based methods require two pre-defined 
parameters. Hence, the MFO based method requires less 
effort to fine tune thepre-defined parameter. The initial 
controller value of each turbine is set between 0 and 0.3333. 
In order to observe the stochastic behavior in the proposed 
approaches, 100 trials are performed to MFO, SED and SDA 
based approaches.  

 

 

 
Fig.2A row of wind turbines 

 
Here, 10000 number of evaluations is allocated for MFO, 

SDA and SED based approaches such that a fair comparative 
assessment is obtained. For SED based approach, we set ��=K = 10000 because it only needssingle evaluation or one 
experiment per iteration while for the SDA based approach 
and the MFO based approach,  ��=K = 200 and # = 50 are 
chosen. Note that the combination of maximum number of 
iteration and size of population is selected such that a better 
total power generation is obtained.  

Figures 3 and 4 show the result of the simulation by using 
MATLAB, for the wind plant total power generation 
responses of MFO and SDA based approaches after 500 
iterations by using 20 number of agents. From the graph 
pattern, it is observed that the loss function response of the 
MFO based approach is as good as SDA based approach. 
Meanwhile, Figure 5 demonstrates the simulation result of 
total power generation by using SED based approach. Since 
SED based approach is a single search agent, we set ��=K = 10000. The simulation starts at � = 0 and stop after �  reaches 10000, where the optimal design parameter is 
obtained. 

Table 1 tabulates the statistical evaluation of the 
aggregate power generation for MFO based approach after 
10000 evaluations. The optimal value of G is selected based 
on the maximum value for the best, mean and worst of total 
power generation and minimum value of standard deviation. 
Notice that there are four data that reach higher best total 
power generation (4.7648415724 MW) which are G =0.95,0.80, 0.75, and0.70 . Moreover, G = 0.95  produces 
slightly lower standard deviation value than other G values. 
This shows that the best value of G for defining the shape of 
logarithmic spiral isG = 0.95 . Table 2 tabulates the total 
power generation analysis of MFO based approach 
compared to SDA and SED based approaches. It is clearly 
shown that the MFO based method yields higher best total 
power generation (4.7648415724MW) than the SDA 
(4.7648415723MW) and SED (4.7644075485MW) based 
approaches. The average and lowest values of the total 
power generation also shows the same pattern. MFO 
algorithm also reaches lowest standard deviation than the 
SDA and SED based approaches. This result verifies that 
MFO algorithm can achieve maximum total power 
generation consistently. 
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Fig.3 Graph Response Total Power Generation of MFO algorithm 

 
Fig.4 Graph Response Total Power Generation of SDA algorithm 

 

 
Fig.5 Graph Response Total Power Generation of SED algorithm 
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TABLE I 
PERFORMANCE COMPARISON OF TOTAL POWER GENERATION FOR 

DIFFERENT VALUE OF � 

G Mean (MW) Best (MW) Worst (MW) 

S
ta

nda
rd

 
D

e
via

tion 

1.00 4.7641691656 4.7648415724 4.6976008998 6.7241e+03 

0.95 4.7648415724 4.7648415724 4.7648415724 5.6161e-10 

0.90 4.7630743588 4.7648415724 4.6764808948 1.2433e+04 

0.85 4.7641691656 4.7648415724 4.6976008999 6.7241e+03 

0.80 4.7648415724 4.7648415724 4.7648415724 4.3903e-10 

0.75 4.7648415724 4.7648415724 4.7648415724 3.7441e-10 

0.70 4.7648415724 4.7648415724 4.7648415724 3.7441e-10 

 

TABLE II 
 THE COMPARISON PERFORMANCE OF TOTAL POWER GENERATION (MW) 

BETWEEN MFO, SDA AND SED BASED APPROACH 

S
tatistical 

E
valu

atio
n 

MFO SDA SED 

Average 4.7648415724 4.7648415723 4.7644075485 

Highest 4.7648415724 4.7648415723 4.7648415242 

Lowest 4.7648415724 4.7648415723 4.7627457259 

Standard 
Deviation 5.6161×10-10 1.1039824×10-7 4.513106×102 

IV.  CONCLUSION 

This paper presents a data-driven method based on moth-
flame optimization (MFO) algorithm has been investigated. 
This study aims to propose a MFO for a power generation of 
wind plant and compare the findings with SDA and SED 
based approaches. In this simulation results, the MFO based 
method exhibits a slightly higher total power generation than 
the SDA and SED based approaches. This proves the 
potential of MFO based approach for data driven method of 
wind plant control. In the future, it is necessary to improve 
the convergence speed of MFO since it will take longer time 
if the size of wind plant is large. In this case, one might 
consider a multi-resolution version of MFO to increase the 
convergence speed. 
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