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The magneto-optical response of monolayer transition metal dichalcogenides (TMDs), including
excitonic effects, is studied using a nanoribbon geometry. We compute the diagonal optical con-
ductivity and the Hall conductivity. Comparing the excitonic optical Hall conductivity to results
obtained in the independent particle approximation, we find an increase in the amplitude corre-
sponding to one order of magnitude when excitonic effects are included. The Hall conductivities are
used to calculate Faraday rotation spectra for MoS2 and WSe2. Finally, we have also calculated the
diamagnetic shift of the exciton states of WSe2 in different dielectric environments. Comparing the
calculated diamagnetic shift to recent experimental measurements, we find a very good agreement
between the two.

I. INTRODUCTION

With the successful exfoliation of monolayers of tran-
sition metal dichalcogenides [1], a new group of interest-
ing semiconducting materials became available for study
and potential applications. The characteristics of mono-
layer TMDs include a direct band gap [1–3], broken inver-
sion symmetry [4, 5], strong spin-orbit coupling [6], and
strongly bound excitons and excitonic complexes [7–10].
In addition to these characteristics, monolayer TMDs
have also been shown to exhibit interesting magneto-
optical properties such as valley polarized Landau levels
[11–13], valley Zeeman splitting [14–18], and magnetic
field induced rotation of the polarization state of light
[19, 20]. These properties have inspired potential new
applications in areas such as optoelectronics [21] and val-
leytronics [22, 23]. Magnetic fields have also been used
to probe exciton properties, such as effective mass, size
[24–26], and how they are affected by the dielectric envi-
ronment [27].

So far, the theoretical analysis of TMD magnetoex-
citons has relied on effective mass models, such as the
Wannier model [10, 24, 27, 28]. We recently validated
that the Wannier model can be used to accurately de-
scribe certain properties of magnetoexcitons [29]. How-
ever, in the Wannier model, the Bloch part of the wave
function is replaced by a plane wave, which makes the
task of computing the single-particle momentum matrix-
elements unfeasible. For the diagonal optical response
there is a solution to this problem [30], but for the Hall
conductivity no solution currently exists. Thus, the Wan-
nier model cannot be applied to the task of calculating
the Hall conductivity, which is a necessary step in com-
puting the magneto-optical Kerr effect and the Faraday
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rotation [31, 32]. The issue can be resolved in the inde-
pendent particle approximation (IPA) [13, 33, 34], but
the optical properties of TMDs are dominated by exci-
tonic effects. Hence, for an accurate description of the
magneto-optical response of TMDs, excitons should be
included.

The main computational difficulty in going beyond ef-
fective mass models when treating magnetoexcitons is
that the external magnetic field breaks the translation
symmetry of the system. Depending on the choice of
magnetic vector potential gauge, translation symmetry
will be broken in at least one direction. The transla-
tion symmetry can be restored by considering a mag-
netic supercell, but the size of the supercell is inversely
proportional to the magnetic field strength[33]. Con-
sequently, for realistic field strengths, a very large su-
percell is needed, thus, making the task of computing
the excitonic properties unfeasible [35]. In the present
work, we address this issue by using a system of finite
width in the direction, for which translation symmetry is
broken. This approach corresponds to considering wide
TMD nanoribbons. By increasing the size of the system
in the finite direction, we are able to recover the two-
dimensional (2D) response, including excitonic effects.
Using this approach, we then describe quantitatively the
excitonic effects on both the diagonal conductivity and
the Hall conductivity of monolayer TMDs perturbed by
an external magnetic field. This allows us to compute
Faraday rotation spectra as well as excitonic diamagnetic
shifts.

The paper is structured as follows: In Sec. II, the tight-
binding model used to describe the single-particle prop-
erties of both 2D monolayer TMDs and nanoribbons is
introduced. In this section, we also check the width con-
vergence of the nanoribbon optical response in the inde-
pendent particle approximation. In Sec. III, we include
excitonic effects in our model and check convergence of
the optical response. Finally, in Sec. IV, the magneto-
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FIG. 1. (a) Schematic of the tight-binding couplings in the
NNN-TB model for monolayer MX2 TMDs. (b) Unit cell of
a MX2 armchair nanoribbon of width (N − 1)a/2 and length√

3a, where a is the lattice constant. (c) Band structure of
WSe2 along the path in the Brillouin zone specified by the
letters. The blue and red lines are the spin-up and -down
bands, respectively. (d) Brillouin zone of monolayer TMD.

optical response including excitons is studied using our
nanoribbon model. In this section, we also calculate the
diamagnetic shift of excitons in WSe2 and compare to
recent experimental results.

II. SINGLE-PARTICLE PROPERTIES

In this section, we present the theoretical framework
used to describe the single-particle properties of mono-
layer TMDs and nanoribbons. Two important character-
istics of monolayer TMDs are strong spin-orbit couplings
(SOC) and broken electron-hole symmetry. These re-
sult in spin-splitting of the conduction and valence-band-
edge states and different effective masses for electrons
and holes [4, 36]. To include these characteristics in the
description of the single-particle properties of monolayer
TMDs, we apply a next-nearest-neighbor tight-binding
(NNN-TB) model. Recently, a similar model was used in
both the study of spin Hall effects in monolayer TMDs
[37] and to compute the optical response of gapped and
proximitized graphene [38]. In addition to the nearest
neighbor hopping term γ1 used in Refs. 37 and 38, we
also include a finite spin-independent hopping term γ2

between second-nearest neighbors. This additional hop-
ping term is used to model the different effective masses
of electrons and holes. The couplings for a TMD with lat-
tice constant a are illustrated in Fig. 1(a). Here, −∆ and
∆ denote the on-site energies for transition metal (M)

and chalcogen (X) atoms, respectively. Additionally,
isλMη is the spin-orbit coupling between second-nearest
neighbor transition metal atoms [39], where s = ±1 de-
notes the spin and η = ±1. The value of η depends on
the rotation sense in a hexagon, η = +1(−1) for clock-
wise (counterclockwise) orientation. For simplicity, we
assume that the spin-orbit coupling between chalcogen
atoms is negligible. The same couplings are used to de-
scribe both TMD monolayers and nanoribbons.

We begin by considering a TMD monolayer placed in
the xy-plane. The couplings described above give the
following two-band Hamiltonian for a state with wave-
vector k:

Ĥ =

[
∆− γ2h −γ1f
−γ1f

∗ −∆− sλMg − γ2h

]
, (1)

where

f(k) = eikxa/
√

3 + 2e−ikxa/2
√

3 cos(kya/2), (2)

g(k) = 2

[
sin

(
kxa
√

3

2
+
kya

2

)
− sin(kya)

− sin

(
kxa
√

3

2
− kya

2

)]
, (3)

h(k) = 2

[
cos

(
kxa
√

3

2
+
kya

2

)
+ cos(kya)

+ cos

(
kxa
√

3

2
− kya

2

)]
. (4)

To determine the hopping parameters γ1 and γ2, we fit
to the effective masses of electrons and holes in mono-
layer TMDs extracted from first-principles calculations
in Ref. 40. When doing this, we assume for simplicity
that λM = 0. Then, the energy bands are given by

E±(k) = γ2h(k)±
√

∆2 + γ2
1 |f(k)|2. (5)

By expanding E±(k) around the K point (kx, ky) =

2π(1/
√

3, 1/3)/a in the Brillouin zone (illustrated in
Fig. 1(d)), we get the following relations between the

∆ (eV) γ1 (eV) γ2 (meV) λM (meV) a (Å) r0 (Å)

MoS2 1.24 1.498 8.2 14.4 3.18 44.3
MoSe2 1.09 1.359 92.5 18.3 3.32 51.2
WS2 1.22 1.661 -51.7 43.3 3.19 39.9
WSe2 1.04 1.444 -43.6 48.5 3.32 46.2

TABLE I. Model parameters for the four common TMDs.
The on-site energy, lattice constants, and the screening
lengths r0 are taken from Ref. 40. The SOC strengths are
calculated from the spin-splitting in Ref. 40, and the tight-
binding couplings γ1 and γ2 are found by fitting to the electron
and hole effective masses of Ref. 40.
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hopping parameters and the effective masses:

3a2γ2
1

8∆
+

3a2

4
γ2 =

~2

2m∗e
, (6)

3a2γ2
1

8∆
− 3a2

4
γ2 =

~2

2m∗h
. (7)

Here, m∗e(h) is the effective electron (hole) mass and ~
is the reduced Planck’s constant. Solving for γ1 and γ2

in Eqs. (6) and (7) gives the hopping parameters. The
spin-dependent band gaps at the K and K ′ points are
given by Eg = 2∆∓ 3

√
3sλM , where + (−) holds at the

K (K ′) point. The value of the SOC parameter λM is
determined by matching the split to the spin-splitting of
the valence-band-edge calculated in Ref. 40. The result-
ing band structure for WSe2 is plotted in Fig. 1(c). In
Table I, we provide the complete set of parameters used
for monolayer TMDs in the present paper.

We introduce the external magnetic field by trans-
forming the hopping integrals according to the Peierls
substitution [41], which is simply the transformation
t 7→ tij = teiφij , where t is equal to either γ1, γ2, or
λM . The Peierls phase φij is given by

φij =
e

~

∫ Rj

Ri

A · dl. (8)

Here, e is the elementary charge, Ri and Rj denote the
location of atoms at site i and j, respectively, and A is
the magnetic vector potential, related to the magnetic
field by B = ∇ × A. We take the magnetic field to be
given by B = Bẑ, where B is the magnetic field strength.
For 2D systems the phase factor evidently breaks transla-
tion symmetry, but it can be restored by using a suitable
magnetic supercell [42]. As mentioned in Sec. I, the rela-
tion between field strength and the supercell size makes
the calculation of excitonic properties unfeasible for re-
alistic magnetic fields. However, for a nanoribbon sys-
tem, which is finite in the y-direction, the Landau gauge,
A = −Byx̂, does not affect the translation symmetry of
the system [35]. Hence, no restrictions on the magnetic
field strength and no magnetic supercell are required.
This is the motivation for using nanoribbons as a tool
to describe the magneto-optical response of monolayer
TMDs for arbitrary magnetic field strengths. We will
consider armchair nanoribbons, which are infinite in the
x-direction and have a finite width of W = (N − 1)a/2,
where N is the number of dimer lines in the y-direction.
The unit cell is illustrated in Fig. 1(b). By increasing
N , we expect the optical response of the nanoribbons to
converge to that of the 2D system.

To calculate the linear optical conductivity, we make
use of the following expression for the spin-up and -down
contribution to the linear optical conductivity [33]

σsαβ(ω) = − ie
2~2ω

m2A

∑
cvk

pαcvk,sp
β
vck,s

E2
cvk,s(Ecvk,s − ~ω − i~Γ)

, (9)

FIG. 2. Single-particle linear optical conductivities of MoS2

and WSe2 for B = 130 T and ~Γ = 25 meV. The blue lines
refer to the 2D conductivities and red and yellow lines to the
nanoribbon case.

with α, β ∈ {x, y}, ~ω the photon energy, m the free
electron mass, A = WL the system area, where W is
the system width and L is the system length, pαcvk,s the

momentum matrix elements, and Ecvk,s := Ec(k, s) −
Ev(k, s) the transition energy. The sum runs over all
combinations of conduction (c) and valence (v) bands and
k-points, and we have neglected the non-resonant term of
the conductivity. In the nanoribbon geometry, the limit
where L goes to infinity should be taken. In practice
this is done by converting the sum over k-points to an
integral by using that the distance between two k-points
is equal to ∆k = 2π/L. The linear optical conductivity
tensor elements are then found by summing over spin, i.e.
σαβ(ω) = σ+

αβ(ω) + σ−αβ(ω). By symmetry, we have the

relation σ+
αα(ω) = σ−αα(ω) for the diagonal elements, and

σ+
αβ(ω) = −σ−αβ(ω) for the off-diagonal elements when

B = 0 T. We note that the expression in Eq. (9) holds
for both nanoribbons and 2D monolayers, but k denotes
a scalar quantity in the former case and a vector quantity
in the latter case.

In Fig. 2, we show the real part of the optical conduc-
tivity in the single-particle approximation for 2D mono-
layers and nanoribbons. All spectra are plotted in units
of σ0 = e2/4~ and calculated for a Brillouin zone dis-
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cretized using 120 k-points. Throughout, we focus on
MoS2 and WSe2 as examples of monolayer TMDs, but
similar results hold for other types of TMDs. Landau
levels (LL) are clearly visible in both the diagonal and
off-diagonal response. The plots also illustrate the finite
off-diagonal conductivities, the so-called Hall conductiv-
ities, present when there is an external magnetic field.
Comparing the response of the N = 100 and N = 300
nanoribbons to the bulk conductivity, we see that for
σxx(ω) and σ+

xy(ω) both nanoribbon widths capture the
qualitative features. However, the wider nanoribbons
more accurately capture the position of the higher Lan-
dau levels and the amplitudes of the peaks. In con-
trast, for σxy(ω) very wide nanoribbons are needed to
obtain good convergence of the amplitudes. This is due
to the fact that σxy(ω) is the sum of σ+

xy(ω) and σ−xy(ω),
both of which are much bigger in amplitude than σxy(ω).
Thus, while the difference between the spin-dependent
off-diagonal response of nanoribbons and 2D is small
compared to the amplitude of σ+

xy(ω) it is large compared
to the amplitude of the Hall conductivity. Consequently,
making the Hall conductivity susceptible to poor conver-
gence. The excitonic spectra are expected to show bet-
ter convergence since the optical response is dominated
by excitons, and the excitons are strongly localized in
TMDs [7, 8, 43]. Finally, we note that the valley Zeeman
splitting is not described by the TB Hamiltonian in this
paper.

III. EXCITONIC EFFECTS

In this section, we include excitonic effects in our de-
scription of TMD monolayers and nanoribbons. The ap-
proach follows that of Refs. 35 and 44. We expand the
excitonic wave function |exc〉 in a basis of singlets formed
by excitations between a single pair of spin-dependent
valence and conduction bands at k, such that the wave
function is given by

|exc〉 =
∑
cvk,s

Ascvk|vks→ cks〉, (10)

where Ascvk are the expansion coefficients and |vks →
cks〉 the singly excited states. Note, that we only in-
clude excitations between bands of equal spin and that
k can be either a vector or scalar quantity depending
on the dimensionality of the system under consideration.
The excitonic states are governed by the Bethe-Salpeter
equation (BSE) [7], which for the expansion in Eq. (10)
take the following form

Ecvk,sA
s
cvk +

∑
c′v′k′,s′

W s,s′

cvk,c′v′k′A
s′

c′v′k′ = EAscvk. (11)

Here, W s,s′

cvk,c′v′k′ is the electron-hole interaction matrix-
elements and E is the exciton energy. Note, that we have
neglected the exchange term in the BSE for simplicity.

Then, the electron-hole interaction matrix-elements are
given by

W s,s′

cvk,c′v′k′ = 〈vks→ cks|U |v′k′s′ → c′k′s′〉, (12)

where U is the electron-hole interaction potential defined
below. Performing the spin-integral in Eq. (12), we find

W s,s′

cvk,c′v′k′ =δs,s′
x

d2rd2r′φ∗cks(r)φvks(r
′)

× U(r− r′)φc′k′s(r)φ∗v′k′s(r
′). (13)

Here, φαks(r) are the tight-binding states with α ∈ {c, v}.
Equation (13) shows that the spin-up and -down equa-
tions decouple and can be solved independently.

In a strict 2D system the electron-hole interaction is
not the usual Coulomb potential, but instead modeled by
the Keldysh potential [45, 46]

U(r) = − e2

8ε0r0

[
H0

(
κr

r0

)
− Y0

(
κr

r0

)]
. (14)

Here, ε0 is the vacuum permittivity, H0 and Y0 are Struve
and Neumann functions, respectively, r = |r|, r0 is an in-
plane screening length, and κ is the average of the relative
dielectric constant of the substrate and capping material.
The values of r0 used in this paper are listed in Tab. I.
For the strict 2D system, a straightforward calculation
of the matrix-elements in Eq. (13) can be done using
the approach of Ref. [44]. For the nanoribbon geometry,
additional considerations are needed. We want the exci-
tonic properties in the nanoribbon geometry to converge
to those of the 2D system, when the ribbon width is suf-
ficiently large. Thus, we need to modify the approach of
Ref. [44] to work for structures, which are periodic in one
direction, but have non-negligible width. The details are
provided in Appendix A, but the main result is that for
the nanoribbon geometry the matrix-elements W s,s

cvk,c′v′k′

can be computed from

W s,s
cvk,c′v′k′ =

∑
n,m

In,sck,c′k′I
m,s
v′k′,vkU

k,k′

n,m . (15)

Here n and m run over the atomic sites in the unit cell
and In,sαk,βk′ = Cn∗αksC

n
βk′s is the Bloch overlap given by the

product of the tight-binding eigenvector elements belong-
ing to site n. Finally, the integral factor Uk,k

′

n,m is defined
as

Uk,k
′

n,m = − e2

2πLε0

∫ ∞
0

dzK0

(√
r2
0z

2 + Y 2
nm |k − k′|

)
e−κz,

(16)
where K0 is a modified Bessel function of the second
kind and Ynm = Yn−Ym is the difference between the y-
coordinates of the atoms belonging to orbitals n and m.
The integral in Eq. (16) is computed numerically using a
suitable Gauss-quadrature.

The eigenvalue problem defined in Eq. (11) can be
solved by diagonalization. Due to the decoupling of spin-
up and -down equations, the matrix to be diagonalized
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FIG. 3. Many-body diagonal conductivity of MoS2 and WSe2
for B = 0 T, ~Γ = 50 meV, and κ = 1. The blue lines
refer to the 2D conductivities and yellow and red lines to the
nanoribbon spectra.

is block diagonal. Thus, to obtain the full solution two
eigenvalue problems of dimension NcNvNk have to be
solved. Here, Nc and Nv are the number of conduction
and valence bands, respectively, and Nk is the number of
k-points. For a magnetic field of 100 T the 2D magnetic
supercell consists of roughly 2000 atoms, hence making
diagonalization of the BSE problem computationally un-
feasible. On the other hand, using nanoribbons as a the-
oretical tool the linear optical response converges to the
bulk 2D response when the nanoribbon unit cell contains
roughly 200 atoms. The result is that the computations
are feasible, although still very demanding. However, if
only the optical response and not the full eigenvalue de-
composition is needed a significant reduction in compu-
tational complexity can be obtained by using the Lanczos
approach in Refs. 35 and 44.

The Lanczos routine is based on the fact that real part
of the linear optical conductivity can be computed from
the expression [44]

Reσαβ(~ω) = − e2

m2ωA

∑
s

Im〈Pαs|Ĝs(~ω)|Pβs〉, (17)

with α, β ∈ {x, y}, Ĝs(~ω) the many-body Green’s func-
tion given below, and Pαs given by

|Pαs〉 := P̂α|0, s〉 =
√

2
∑
cvk

Ascvkp
α
cvk,s. (18)

Here, |0, s〉 is the many-body ground state, P̂α is the
many-body momentum operator, and pαcvk,s denote the
single-particle momentum matrix elements. The many-
body Green’s function in Eq. (17) is given by

Ĝs(~ω) = lim
~Γ→0+

(~ω + i~Γ− Ĥs)
−1, (19)

FIG. 4. Excitonic optical conductivity of MoS2 and WSe2 as
function of the external magnetic field. The first row illus-
trates ∆Reσxx(ω), which is the difference between the diag-
onal conductivity at a finite magnetic field strength and at 0
T. The dashed grey lines show the unperturbed spectra. The
second row are the Hall conductivities at different magnetic
field strengths. Spectra are for nanoribbons with N = 100
and κ = 1.

where Ĥs is the many-body Hamiltonian. In practice, we
allow a small finite ~Γ to add broadening to the spec-
tra. The matrix elements of the Green’s function in
Eq. (17) are evaluated effectively as in Ref. 35, i.e. using
the Lanczos-Haydock routine for tridiagonalization [47].
Computationally this is still a daunting task due to the
size of the problem. For a nanoribbon with N = 100 and
using a discretization with Nk = 120, the matrix that is
to be tridiagonalized has dimension 1.2 · 106 × 1.2 · 106.
We reduce the size of the problem by disregarding the top
and bottom half of the conduction and valence bands, re-
spectively, which primarily affect the high-energy part of
the spectra.

In Fig. 3, we show the convergence of the nanoribbon
conductivities to the 2D response in the unperturbed case
(B = 0). The two main exciton peaks at 1.88 eV and
2.02 eV for MoS2 and at 1.37 eV and 1.82 eV for WSe2

are denoted by A and B, respectively. The results show
a good convergence for the nanoribbon with N = 100.
Both the A and B exciton peaks coincide with the bulk
results and the peaks corresponding to the excited states
also match the bulk results. The discrepancy at high
photon energies are due to us disregarding some bands
in the excitonic calculations. Regarding the amplitude
of the peaks, we see that the amplitude is close to the
bulk result for Reσxx, while the Reσyy results could be
improved by using wider nanoribbons. However, as our
goal is to study the effect of an external magnetic field
on the optical response, the convergence shown in Fig. 3
is satisfactory. Comparing to the spectra of unperturbed
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FIG. 5. Plot of the Verdet constant for normal incident light
on a TMD monolayer in vacuum.

TMDs in Ref. 9, we see that the qualitative features agree
well.

IV. RESULTS

In this section, we present the results obtained from the
theoretical framework of Secs. II and III. All calculations
are based on the nanoribbon geometry and are calculated
for nanoribbons withN = 100. This corresponds to a rib-
bon width of 15.7 nm and 16.4 nm for MoS2 and WSe2,
respectively. The one-dimensional Brillouin zone is dis-
cretized using 120 k-points. For all spectra, a broadening
of ~Γ = 50 meV is used.

In Fig. 4, the first row of plots show the change of the
real part of the diagonal conductivity as a function of the
magnetic field strength relative to the zero field case. To
illustrate this, we have plotted the difference between the
diagonal conductivity at a finite magnetic field strength
and at 0 T. The plots show that the exciton peaks in
MoS2 and WSe2 exhibit a small blueshift in response to
the applied magnetic field. This small but important
phenomena is what allows for experimental estimation
of the spatial extent and effective mass of excitons. We
will evaluate the size of the shift and discuss this in de-
tail below. In addition to the blueshift of the peaks, the
amplitudes also increase slightly as the field strength in-
creases. Comparing to the amplitude of the peaks in the
unperturbed spectra in Fig. 3, the increase in amplitude
due to the magnetic field is only a few percent for a field
strength of 130 T. Thus, both effects are small changes
to the unperturbed results. Finally, in the high energy
part of the spectra, the results show the emergence of
an oscillating modulation appearing at strong magnetic
fields. These oscillations correspond to transitions be-
tween Landau levels.

The second row of plots in Fig. 4 shows the Hall
conductivities of MoS2 and WSe2. In contrast to the
diagonal conductivity, the magnetic field significantly
alters the off-diagonal conductivities. Just as in the
single-particle case, the time-reversal symmetry present
in the absence of an external magnetic field ensures that

FIG. 6. Excitonic optical conductivity of WSe2 in different di-
electric environments. The top panel shows the diagonal con-
ductivity in the unperturbed case. The middle panel shows
the change in the diagonal conductivity from the unperturbed
case to the B = 30 T case. The bottom panel shows the Hall
conductivities calculated at B = 30 T.

the Hall conductivities are identical zero. When time-
reversal symmetry is broken by the external magnetic
field finite Hall conductivities are found even at small
magnetic field strengths. This is illustrated in Fig. 4
for MoS2 and WSe2. Comparing the excitonic magneto-
optical response in Fig. 4 to the IPA results in Fig. 2,
we see that excitonic effects change the optical response
significantly. In addition to changing the overall shape
of the spectra, we also see that the excitonic Hall con-
ductivities are approximately one order of magnitude
larger than the IPA response. Hence, for an accurate
description of the magneto-optical properties of mono-
layer TMDs, it is clearly important to account for ex-
citons. Regarding the magnetic field dependence of the
Hall conductivities in Fig. 4, we see that the amplitude
scales linearly with the magnetic field strength. How-
ever, as we go to stronger fields, small changes in the
shape of the spectra occur. These changes are due to the
emergence of Landau levels and additional effects that
are non-linear in B, such as the diamagnetic shift.

The finite Hall conductivity, present when there is an
external magnetic field, causes the system to exhibit a
magneto-optical Kerr effect (MOKE) and a Faraday ef-
fect. The MOKE is a rotation of the polarization state
of light when reflected off the surface of a magnetized
material, while the Faraday effect is a rotation of the
polarization of the transmitted light. Here, we compute
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the Faraday rotation angle θ for normal incidence of light
on a single layer of TMD. The rotation angle for a single
passage of the monolayer can be approximated by [32, 48]

θ =
1

(n1 + n2)cε0
Reσxy(ω), (20)

where n1 and n2 are the refractive index of the sub-
strate and capping material, respectively, and c is the
speed of light. The expression in Eq. (20) is valid when
σxx � σxy. As the Hall conductivity scales linearly with
B at small field strengths, the Faraday rotation angle
is often expressed as θ = V B, where V is the so-called
Verdet constant. In Fig. 5, we have computed the Verdet
constant for freestanding MoS2 and WSe2. As shown by
the figure, the rotation for a single passage of the TMD
monolayer is very small. However, this could be increased
by placing the monolayer in an optical cavity in order to
enhance the rotation by multiple passes [48, 49].

As mentioned in Sec. III, the electron-hole interaction
is screened by the substrate and capping materials. This
screening is described by the κ parameter, which is sim-
ply the average of the relative dielectric constant of the
substrate and capping material. In Fig. 6, the optical
conductivity of WSe2 is shown for κ values of 1, 1.55, and
4.5. These values correspond to WSe2 placed in vacuum,
on a SiO2 substrate, or encapsulated in hBN, respec-
tively. It should be noted, that an exchange self-energy
correction to the single-particle band gap exists, and this
effect is not included in our simple model. The self-energy
correction is decreases when the screening from the sur-
roundings increases [29, 34]. To account for this miss-
ing effect, the spectra in Fig. 6 are shifted by the band
gap energy. This allows us to observe changes in exciton
binding energy as a function of κ. The first plot is of the
diagonal conductivity for B = 0 T, and the results show a
blueshift of the exciton peaks as κ increases. This is due
to a decrease in the exciton binding energy as the screen-
ing from the surroundings is increased. The binding en-
ergy decreases from 455 meV to 160 meV as κ increases
from 1 to 4.5. The second row shows the change in the
diagonal conductivity between the unperturbed case and
the B = 30 T case. The plots show that the diamagnetic
shift of the 2s exciton states becomes harder to observe
at higher values of κ, and that the Landau levels are not
affected by the dielectric environment. Finally, the last
plot is of the Hall conductivities. Here, the same blueshift
is observed as in the diagonal conductivity. When going
to the limit κ → ∞, we recover the IPA results, as has
been checked numerically.

In the low-field limit, the magnetic field dependence
of the energy of s-type excitons can be described by the
relation EB ≈ E0 + σB2, where E0 is the unperturbed
exciton energy and σ is the diamagnetic shift coefficient.
The quadratic diamagnetic shift of the exciton peaks is
illustrated in Fig. 7 for the A exciton in WSe2. This co-
incides precisely with the small shift observed in the di-
agonal conductivities in Fig. 4. As mentioned, the value
of σ is related to the spatial extent of the exciton. The

FIG. 7. Diamagnetic shift of the peak associated with the 1s
state of the A exciton in WSe2. The vertical dashed lines in-
dicate the peak position at different magnetic field strengths.
The upper panel illustrates the fit of the function E0 + σB2

(blue line) to the peak positions marked by the red dots.

relation is given by σ = e2〈r2〉/8µ, where
√
〈r2〉 is the

root-mean-square (rms) radius of the exciton and µ is the
reduced exciton mass. If µ is known, this relation allows
for an experimental estimate of the exciton size. As the
Lanczos method only provides the optical conductivity,
and not the exciton energies, we compute the shift co-
efficient by following the exciton peak in the spectra as
the field strength changes. The shift of the exciton peak
is then fitted to a parabola, and the diamagnetic shift
coefficient is found. Doing this for the A exciton peak
of freestanding WSe2, we find a σ-value of 0.22 µeV/T2.
Using the same effective masses as applied to find the TB
parameters, we find an rms radius of 1.52 nm for the A
exciton.

κ σ - BSE σ - Wannier σ - Exper.

1.00 0.22 0.13
1.55 0.24 0.15 0.18[27]
2.25 0.27 0.17 0.25[27]
3.30 0.31 0.19 0.32[27]
4.50 0.36 0.23 0.24[26], 0.31[24]

TABLE II. Calculated and experimental values of σ in units
of µeV/T2 for the 1s state of the A exciton in WSe2. The first
column is the values calculated using the approach presented
in this paper, while the second column is values calculated
using the Wannier model from Ref. 29.
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The dielectric environment is expected to affect the
size of the diamagnetic shift. Increasing κ results in less
tightly bound excitons, thus having a larger radius. This
consequently results in larger diamagnetic shift coeffi-
cients. This effect was studied experimentally in Ref. 27.
In Table II, we summarize our findings with regard to the
effect of the dielectric environment on the diamagnetic
shift coefficient. We have also included values computed
from the Wannier model presented in Ref. 29. The Wan-
nier model consistently underestimates σ, when compar-
ing to the experimental values and the values computed
using the nanoribbon approach. The explanation for this
is found in the fact that the Bloch overlaps are disre-
garded in the Wannier model. This causes the excitons
to be stronger bound in the Wannier framework than in
BSE framework and, consequently, have smaller diamag-
netic shift coefficients. This shows the importance of in-
cluding the Bloch overlaps when modeling magnetoexci-
tons. Comparing the diamagnetic coefficients calculated
using the nanoribbon approach to the experimental re-
sults, we observe a better agreement.

V. SUMMARY

In summary, we have used nanoribbons as a theoret-
ical tool for the study of the magneto-optical response
of monolayer TMDs. We have shown that by increasing
the width of the nanoribbons the optical response will
converge to that of a 2D monolayer. This has proven
to be useful for including excitonic effects in the calcu-
lation of the magneto-optical response of TMDs, since a
strict 2D calculation is not currently feasible. Beginning
from a simple tight-binding model, we added excitonic
effects in the framework provided by the Bethe-Salpeter
equation. The linear optical conductivity was calculated
effectively using the Lanczos-Haydock routine. We found
that a 15-16 nm wide nanoribbon system is sufficient for
a reasonable convergence of the optical response.

Using this approach, we are able to compute the ex-
citonic Hall conductivity of monolayer TMDs. The cal-

culated Hall conductivity spectra can be used to com-
pute Faraday rotation in monolayer TMDs, an important
magneto-optical effect. We also evaluated the diamag-
netic shift coefficient, which provides a useful quantity for
evaluating the size of excitons. So far, the experimentally
determined diamagnetic shift coefficients have only been
compared to theoretical results based on effective mass
models. But our approach provide the option of going
beyond effective mass models when analyzing experimen-
tal data. We compared the theoretical diamagnetic shift
coefficient given by our calculation to values calculated
using a Wannier model and to recent experimentally de-
termined coefficients. The comparison with the values
computed from the Wannier model showed the impor-
tance of including Bloch overlaps, while the comparison
with experimental values showed a very good agreement
between our calculations and the experimental results.

Finally, another potential use of the approach pre-
sented in this paper is as a benchmark for future strict
2D models. As it is currently not possible to compute
the excitonic Hall conductivities in any 2D model, the
Hall conductivity presented here can provide a reference
when attempting to develop new models.
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Appendix A: Electron-hole interaction matrix elements for nanoribbons

In this appendix, we will find an expression for the matrix-elements in Eq. (13) for the nanoribbon geometry. We
begin by considering the product of two tight-binding states, such as the ones in Eq. (13). Exploiting the fact that
the atomic orbitals are localized and orthogonal, we can write

φ∗αks(r)φβk′s(r) ≈ 1

Nuc

∑
n,X

In,sαk,βke
i(k′−k)Xϕ2

n(r−Xx̂), (A1)

where Nuc is the number of unit cells, X is the location of the unit cell in the periodic direction, In,sαk,βk = Cn∗αksC
n
βk′s

are the products of the tight-binding eigenvector elements belonging to the n’th atomic orbital and ϕn are the atomic
orbitals. The X sum runs over the location of the unit cells in the periodic direction. To evaluate the matrix-elements,
we need integrals of the form

Un,m(X,X ′) =
x

ϕ2
n(r−Xx̂)U(r− r′)ϕ2

m(r′ −X ′x̂)d2rd2r′. (A2)
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For strongly localized atomic orbitals, we can assume the effective interaction

Un,m(X,X ′) ≈ Ueff
n,m(X −X ′) ≡ − e2

8ε0r0

[
H0

(
κ
√

(X −X ′)2 + Y 2
nm

r0

)
− Y0

(
κ
√

(X −X ′)2 + Y 2
nm

r0

)]
. (A3)

Here, Ynm denotes the difference in y-coordinates of the atomic site belonging to orbitals n and m. This effective inter-
action is validated by its ability to recover the 2D results, as shown in the paper. In the following, it is advantageous

to rewrite Ueff
n,m(X −X ′) using an integral form of the Keldysh potential [50]. This gives

Ueff
n,m(X −X ′) = − e2

4πε0

∫ ∞
0

1√
(r0z)2 + (X −X ′)2 + Y 2

nm

e−zκdz. (A4)

The interaction matrix-elements in Eq. (13) can then be approximated by

W s,s′

cvk,c′v′k′ ≈ δs,s′
∑
n,m

In,sck,c′k′I
m,s
v′k′,vk

1

L

∫
ei(k

′−k)XUeff
n,m(X)dX, (A5)

where we have converted the sum over X to an integral and L denotes the length of the system. Finally, we have to
do the X integration, which corresponds to taking the Fourier transform of the effective interaction. This gives

1

L

∫
ei(k

′−k)XUeff
n,m(X)dX = − e2

2πLε0

∫ ∞
0

dzK0

(√
r2
0z

2 + Y 2
nm |k − k′|

)
e−κz, (A6)

where K0 denotes a modified Bessel function of the second kind. The remaining integral over z can be evaluated
numerically. Inserting Eq. (A6) into Eq. (A5), we obtain an expression for the interaction matrix-elements in the
nanoribbon geometry.
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