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Abstract

Buruli Ulcer (BU) is a cutaneous disease caused by Mycobacterium ulcerans. The patho-

genesis of this disease is closely related to the secretion of the toxin mycolactone that

induces extensive destruction of the skin and soft tissues. Currently, there are no effective

measures to prevent the disease and, despite availability of antibiotherapy and surgical

treatments, these therapeutic options are often associated with severe side effects. There-

fore, it is important to develop alternative strategies for the treatment of BU. Endolysins

(lysins) are phage encoded enzymes that degrade peptidoglycan of bacterial cell walls.

Over the past years, lysins have been emerging as alternative antimicrobial agents against

bacterial infections. However, mycobacteria have an unusual outer membrane composed of

mycolylarabinogalactan-peptidoglycan. To overcome this complex barrier, some mycobac-

teriophages encode a lipolytic enzyme, Lysin B (LysB). In this study, we demonstrate for the

first time that recombinant LysB displays lytic activity against M. ulcerans isolates. More-

over, using a mouse model of M. ulcerans footpad infection, we show that subcutaneous

treatment with LysB prevented further bacterial proliferation, associated with IFN-γ and TNF

production in the draining lymph node. These findings highlight the potential use of lysins as

a novel therapeutic approach against this neglected tropical disease.

Author summary

Buruli Ulcer (BU) is a necrotizing skin disease caused byMycobacterium ulcerans.
Although the current antibiotic treatment for BU is effective, daily administrations for a

prolonged period of time, combined with potential risk of severe side effects, negatively
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impact on patient adherence. In that sense, we tested the efficacy of an alternative strategy

based on Lysin B (LysB), a phage encoded lipolytic enzyme that degrades the mycolylara-

binogalactan-peptidoglycan complex present in the mycobacterial cell wall. In this study,

we show that LysB not only displays lytic activity against M. ulcerans isolates in vitro, but

also leads to a decrease ofM. ulcerans proliferation in infected mouse footpads. These

findings highlight the potential use of lysins as a novel therapeutic approach against this

neglected tropical disease.

Introduction

Buruli ulcer (BU) is a necrotic cutaneous disease caused byMycobacterium ulcerans and repre-

sents the third most prevalent mycobacterial infection worldwide, after tuberculosis and lep-

rosy [1].

BU pathogenesis is closely related to the secretion of the polyketide toxin mycolactone that

presents cytotoxic and immunosuppressive properties [2–4]. Early presentations of active BU

include a painless pre-ulcerative nodule, papule, plaque or edematous lesion, which can evolve

into typical ulcers or, in the most extreme cases, may result in extensive skin destruction, mul-

tifocal lesions or bone involvement [5].

The standard antibiotic regimen recommended by the World Health Organization (WHO)

consists of daily administration of rifampicin and either clarithromycin or streptomycin for a

period of 8 weeks [6,7]. Despite its proven clinical efficacy, the prolonged administration asso-

ciated with potentially severe nephrotoxic, hepatotoxic and ototoxic side effects [6] and the

possibility of the emergence of drug resistant strains [8], render the search for alternative treat-

ments a necessity.

Our group has previously demonstrated that bacteriophage therapy has potential as an

innovative and effective therapy againstM. ulcerans infection [9]. Indeed, our results in the

murine model show that treatment with mycobacteriophage D29 decreases the proliferation of

M. ulcerans in the subcutaneous tissue resulting in marked macroscopic improvement of skin

lesions. Following this line of research, endolysins (lysins) are phage encoded enzymes pro-

duced during the late phase of the bacteriophage infection cycle, so as to degrade the cell wall

peptidoglycan of the bacterial host, enabling the release of viral progeny [10–12]. Over the past

decade, the development, characterization and exogenous application of recombinant and

purified bacteriophage lytic enzymes has been successfully evaluated in several animal models

of human diseases, such as sepsis, endocarditis, pharyngitis, pneumonia, meningitis and

mucosal and skin infection [13–21]. Moreover, the use of a commercial endolysin for the treat-

ment of Staphylococcus aureus skin infections has already been approved [22].

Mycobacteria have an unusual outer membrane composed by mycolic acids esterified with

arabinogalactan (AG), which is linked to peptidoglycan, forming the mycolylarabinogalactan-

peptidoglycan (mAGP) complex, a potential barrier to phage-mediated lysis [23]. Mycobacter-

iophage genome sequences show that, in addition to lysins that degrade the peptidoglycan

layer of bacterial cell walls [24–26], some mycobacteriophages also encode a second lysin that

targets the mAGP complex, known as Lysin B (LysB) [27–29]. As described by Payne et al.
[27], mycobacteriophage D29 encodes LysB, a mycolylarabinogalactan esterase that cleaves the

ester linkage joining the mycolic acid-rich outer membrane to AG, releasing free mycolic acids

[30]. Although few studies have shown that LysB can also act externally, suggesting its promis-

ing antimicrobial effect, there is no proven efficacy in vivo [31].
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In the present study, following the in vitro evaluation of the lytic activity of recombinant

mycobacteriophage D29 LysB againstM. ulcerans isolates, the therapeutic effect of LysB during

M. ulcerans infection was evaluated in the mouse footpad model of infection. The progression

of macroscopic/microscopic pathology and bacterial loads, as well as the cytokine profiles,

were evaluated in the footpad and the draining lymph node (DLN).

Materials and methods

Bacteria and culture conditions

Mycobacterium smegmatismc2,Mycobacterium bovis BCG andMycobacterium tuberculosis
H37Rv (PREMAS Biotech, New Delhi) were grown in Middlebrook 7H9 broth with or without

ADC, at 37˚C.M. ulcerans strains (Institute of Tropical Medicine, Antwerp) were grown on

Middlebrook 7H9 supplemented with 1.5% agar at 32˚C for approximately 6–8 weeks. Other

bacteria used in this study, S. aureus ATCC 29213, Bacillus subtilisHER1243, Enterococcus fae-
calis ATCC 29213, Escherichia coli ATCC 25922, Klebsiella pneumoniaeMTCC109, and Pseu-
domonas aeruginosa, were grown in Mueller-Hinton broth.

Expression and purification of LysB

The mycobacteriophage D29 LysB gene (GenBank: accession number AF022214) was ampli-

fied by PCR from mycobacteriophage D29 DNA using the primer: 5´-CCCTGGAACATATG

AGCAAGCCC-3´ (nt 6606 to 7370). The amplification product was cloned into the expression

vector pET28a fused to an N-terminal 6xHis tag. The resulting plasmid pET28a–LysB was

used to overexpress LysB using E. coli BL21 (DE3) as a host for expression. Expression cul-

tures were grown to an optical density (OD) between 0.4 and 0.6 at 600 nm, in Luria-Bertani

broth containing kanamycin (50 μg/mL). Protein expression was induced with 1mM iso-

propyl-D-thiogalactopyranoside (IPTG) with shaking for 4 h at 37˚C. Bacterial cells were

harvested by centrifugation (10000xg, 5 min, 4˚C), resuspended in phosphate buffer (50

mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, pH 8), sonicated on ice for 5x 10 s pulses

separated by 10 s rests and then centrifuged (10000x g, 5 min, 4˚C). For purification, the

supernatant was applied to a nickel-nitrilotriacetic acid (Ni-NTA) agarose column and the

protein was eluted under native conditions with 500 mM imidazole in phosphate buffer

according to the manufacturer’s instructions. The purity of the protein was analyzed by

12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by

Coomassie blue staining. Protein-containing fractions were combined and filter sterilized

(0.22 μm). Protein concentration was determined using NanoDrop ND-1000. For more

details, please see S1 Fig.

Site directed mutagenesis

The S82A mutation in LysB encoding gene was introduced by site directed mutagenesis kit

(Strategene) according to the protocol provided by the manufacturer. pGDC403 was used for

introducing the mutation using the following primers: forward (GMB820) - 5’GATGGCGGG

TTACGCGCAGGGAGCCAT-3’ and reverse (GMB821)- 5’GATGGCTCCCTGCGCGTAAC

CCGCCAT-3’. The PCR conditions were as follows: 95˚C– 2 min, 95˚C– 30 s, 60˚C– 30 s,

66˚C– 30 s. The amplified product was treated with DpnI for 2 h at 37˚C followed by transfor-

mation into E. coli Top 10 cell. The mutation was confirmed by gene sequencing and the plas-

mid was designated as pGDC523.

Lysin B treatment against experimental Buruli ulcer
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Calcium precipitation assay

The lipolytic activity of the purified LysB was confirmed by spotting on Middlebrook 7H9

plates containing substrates as follows: 1% (v/v) Tween 20 with 1 mM CaCl2.Plates were incu-

bated at 37˚C for at least 24 h. Enzymatic activity was indicated by the formation of a white

precipitate spot [28,32].

PNP release assay

The release of p-Nitrophenol (PNP) by lipase activity of LysB on p-nitrophenol butyrate

(PNPB) was measured by using 200 μl reaction mixture containing 50 μg of purified LysB and

10 mM PNPB in 25 mM Tris buffer (pH 7.2) at room temperature for 15 minutes followed by

measuring at 410 nm.

Drug susceptibility assay

The minimum inhibitory concentration (MIC) determination forM. smegmatis,M. bovis
BCG,M. tuberculosis, and M. ulcerans was performed using the microtitre plate based colori-

metric assay. LysB protein or drug of a known concentrations were double diluted serially in

media in a 96-well plate from the 2nd well to 11th well. The 1st well was used as media control

and the 12th as cell control. Bacterial suspensions were added to achieve 3–5 X 105 CFU/ml in

each well. The plates were incubated at 37˚C for 3 days forM. smegmatis, 7 days forM. bovis
BCG andM. tuberculosis, and 15 days forM. ulcerans. At the end of incubation period, resa-

zurin dye (0.02%) with 10% Tween 80 was added to all the wells and the MIC was determined

spectroscopically at 575 and 610 nm. The MIC was defined as the lowest concentration of the

protein or drug showing 80% inhibition of growth.

For the MIC determination in Gram-positive and Gram-negative bacteria, microtitre plates

were prepared as described above and incubated at 35˚C for 16–18 hours. After the incubation

period, plates were read spectrophotometrically at 600 nm.

Plate lysis assay

The plate lysis assay was performed as previously described [33]. Clinical isolates were grown

in Middlebrook 7H9 broth at 32˚C to an OD600 of 1.0 and clumps were dispersed by passing

the bacterial suspension several times through a 25-gauge needle. The bacterial suspension

(105 CFU/mL) was plated on Middlebrook 7H9 supplemented with 1.5% agar. A stock solu-

tion of purified LysB was serially diluted in phosphate buffer (final concentration 10–0.1 μg/

mL) and spotted onto bacterial lawns that air dried for 30 min. Phosphate buffer was spotted

as a negative control. Plates were incubated at 32˚C for approximately 6–8 weeks. Antimicro-

bial activity of LysB was indicated by a clear lysis zone within the lawn whereM. ulcerans
growth was prevented.

Checkerboard MIC assay

The combination MIC experiments were performed in a 96-well plate. In the first step, drug

was double diluted row wise, while LysB was double diluted column wise. One column was

maintained without drug and one row was maintained without protein to serve as controls.

Bacterial cultures containing 3-5x105 CFU/ml was added to the wells and incubated for 3 (M.

smegmatis), 7 (M. bovis BCG orM. tuberculosis), or 15 days (M. ulcerans). Resazurin dye was

added and MIC was determined as described above. The fractional inhibitory concentration

(FIC) index was calculated as FIC of protein + FIC of drug. FIC of protein or drug was calcu-

lated as MIC of protein or drug in combination/MIC of drug or protein alone. FIC Index

Lysin B treatment against experimental Buruli ulcer

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007113 August 19, 2019 4 / 17

https://doi.org/10.1371/journal.pntd.0007113


of< 0.5 was considered synergy, 0.5–1.0 additive, 1.0–4.0 indifferent and> 4.0 as

antagonistic.

Haemolysis assay

LysB was serially diluted in PBS and human red blood cells were added at 10% haematocrit.

The 96-well plate was incubated at 37˚C for 1 h, followed by centrifugation at 3000 rpm for 15

min. 100 μL supernatant was transferred to a fresh plate and the plate was read at 540 nm

using Spectramax. PBS and Triton-X100 were included in the assay as negative and positive

controls respectively. The percentage of haemolysis was calculated by considering positive

control value as 100%.

In vivo bioavailability and enzymatic activity of LysB

The bioavailability and lipolytic enzymatic activity of LysB were evaluated at different time

points in sera, footpads and DLN of mice subcutaneously (s.c.) injected in the footpad with

50 μg of LysB. Sera were collected by retro-orbital bleeding, footpads were minced, resus-

pended in PBS and vortexed with glass beads, and DLN were passed through a 40 μM cell

strainer. Footpad and DLN suspensions were further centrifuged for 10 min at 5000 rpm, and

supernatant was considered the total protein extract. For the evaluation of protein bioavailabil-

ity in samples, a western blot was performed. Briefly, samples were loaded and resolved by a

12% SDS-PAGE and transferred to 0.2 μm Nitrocellulose membranes (Bio-Rad) with the

semi-dry Trans-Blot Turbo system (Bio-Rad). Membranes were blocked and subjected to

immunoblotting with anti-mouse 6xHis antibody peroxidase conjugate (Clontech Lab. Inc.,

Takara). The 6xHis-tagged LysB was detected with SuperSignal (Thermo Scientific #34095) in

a Universal Hood II (Bio-Rad). The enzymatic activity of LysB in samples was assessed by a

lipase assay, as described above.

Animals

Eight-week-old female BALB/c mice were obtained from Charles River (Barcelona, Spain) and

were housed under biosafety level 3 conditions with food and water ad libitum.

Footpad mouse model of M. ulcerans infection

For the preparation of inoculum, M. ulcerans 98–912 was recovered, diluted in PBS and vor-

texed using glass beads. Mice were s.c. infected in the left hind footpad with 0.03 ml ofM.

ulcerans suspension containing 5.5 log10 CFU.

Treatment of M. ulcerans-infected mice with LysB

Treatment was initiated when footpads of mice were swollen to 2.7 mm and was performed by

two s.c. injections in the infected footpad with 50 μg of LysB in PBS at 10- and 13-days post-

infection. Control-infected mice were injected with PBS without protein. Two groups of unin-

fected animals were also injected with LysB or vehicle PBS buffer alone, as controls.

Assessment of footpad swelling

After infection, as an index of lesion development, footpad swelling of mice was monitored

throughout the experiment, using a caliper to measure the diameter of the frontal area of the

footpad. For ethical reasons, mice were sacrificed after the emergence of ulceration and no fur-

ther parameters were evaluated.

Lysin B treatment against experimental Buruli ulcer
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Bacterial growth

M. ulcerans growth was evaluated in footpad tissues. Briefly, footpad tissue specimens were

minced, resuspended in PBS and vortexed with glass beads to obtain homogenized suspen-

sions. Serial dilutions of the footpad were plated on Middlebrook 7H9 supplemented with

1.5% agar.M. ulcerans numbers were counted after 6 to 8 weeks of incubation at 32˚C and

expressed as colony forming units (CFU).

Detection of cytokines

The levels of the cytokines tumor necrosis factor (TNF) and gamma interferon (IFN-γ) in the

supernatant of homogenized suspensions from DLN of mice were quantified by using a Quan-

tikine Murine ELISA kit (R&D systems), according to the manufacturer’s instructions.

Ethics statement

This study was approved by the Portuguese national authority for animal experimentation

Direção Geral de Alimentação e Veterinária (DGAV 8421 from 2018). Animals were kept and

handled in accordance with the Directive 2010/63/EU of the European Parliament and of the

Council, on the protection of animals used for scientific purposes (transposed to Portuguese

law–Decreto-Lei 2013/113, 7th of august).

Statistical analysis

Differences between the means of experimental groups were analyzed with the two-tailed Stu-

dent t test. Differences with a P value of� 0.05 were considered significant.

Results

Recombinant LysB is a specific inhibitor of mycobacteria

Mycobacteriophage D29 LysB was purified to> 90% homogeneity as untagged (Fig 1A) or

His6-tagged protein (Fig 1B) and both proteins showed comparable biochemical activity. LysB

lipolytic activity was tested using the CaCl2 precipitation assay on Middlebrook 7H9 agar

plates containing Tween 20 as substrate [28,32]. Tween are esters of oleic (C18) and lauric

(C12) acids, respectively, and can be cleaved by lipolytic enzymes to produce fatty acids and

alcohol. The presence of Ca2+ in the medium causes the formation of an insoluble fatty acid

salt that presents itself as a white precipitate. As observed in Fig 1D, LysB produced a spot of

white precipitate, confirming the enzymatic lipolytic activity of purified recombinant myco-

bacteriophage D29 LysB. No enzymatic activity was observed with plates with no Tween sub-

strate (Fig 1E).

In order to demonstrate that LysB-mediated activity is enzymatic in nature, the active site

serine (S82) residue was changed to alanine. S82 had been earlier predicted to be a part of cata-

lytic triad (S82, D166, H240) of LysB [27]. The intended mutation was confirmed by DNA

sequencing of lysB gene. The mutant protein was purified (Fig 1C) and tested for enzymatic

activity by CaCl2 precipitation assay and by para-nitrophenyl butyrate (PNPB). The mutant

protein did not show any precipitation of CaCl2 in the presence of Tween 20 (Fig 1D) nor did

it show any PNP release using PNPB as substrate, when compared to wild-type LysB (Fig 1F).

This demonstrated that the alteration of S82 to A82 abolished the enzymatic activity of LysB

protein.

LysB susceptibility assays were performed on different mycobacterial species, includingM.

smegmatis,M. bovis BCG andM. tuberculosis, and also on a number of Gram-positive and

Gram-negative bacteria, such as S. aureus, B. subtilis, E. faecalis, E. coli, K. pneumoniae and P.

Lysin B treatment against experimental Buruli ulcer
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aeruginosa. The MIC of LysB forM. smegmatis,M. bovis BCG andM. tuberculosis was found

to be 1.5, 0.19 and 0.20 μg/ml, respectively, while LysB purified from ΔS28 lysB did not inhibit

mycobacterial growth at the highest concentration tested (100 μg/ml), proving that enzymatic

killing of mycobacteria was mediated through the active site serine residue. Regarding the anti-

microbial activity of LysB against Gram-positive and Gram-negative bacteria, no inhibition

was observed on bacterial proliferation, even at the highest concentration tested (500 μg/ml).

Collectively, these results show that LysB is a specific inhibitor of mycobacteria.

In that sense, we proceeded with the MIC determination for three representative strains of

M. ulcerans that produce distinct types of mycolactone [34]: strain 1615, mycolactone A/B;

strain 94–1327, mycolactone C; and strain 98–912, mycolactone D. The tested isolates showed

susceptibility not only to the gold-standard rifampicin (Fig 2A), with a MIC of 0.0096 μg/ml,

but also to LysB (Fig 2B), with MIC of 0.079 μg/ml. To further expand these results, purified

LysB was tested against an extended panel ofM. ulcerans isolates using the plate lysis assay.

Representative isolates from endemic BU areas were selected based on their genetic and phe-

notypic characteristics, including the type of mycolactone produced and their virulence for

Fig 1. Lipolytic activity of LysB proteins. (A) Untagged, (B) His6-tagged protein and (C) 82A mutant LysB proteins

were purified to> 90% homogeneity. Lane 1- molecular weight marker, lane 2–10μg protein. (D-E) The lipolytic

activity of wild-type and mutant ΔS28 LysB was determined by the calcium precipitation assay using medium

supplemented with 1 mM CaCl2 in the (D) presence or (E) absence of Tween-20 as substrate. Enzymatic activity is

indicated by the formation of a white precipitate spot. (F) Lipase activity of wild type and mutant LysB proteins was

also determined by the PNP release assay.

https://doi.org/10.1371/journal.pntd.0007113.g001
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mice (Table 1) [4,35–39]. Similar to the drug susceptibility assay, allM. ulcerans isolates tested

were susceptible to the action of LysB protein, causing a clear spot zone indicating cell lysis in

M. ulcerans lawns (Table 1).

Combinations of LysB and antimycobacterial drugs are synergistic

In order to determine if LysB could show synergistic inhibitory effect with other antimycobac-

terial drugs, checkerboard assays were set up with LysB in combination with RIF usingM.

smegmatis,M. bovis BCG andM. ulcerans cultures. WithM. smegmatis, we observed that LysB

could lower the MIC value of RIF and the FIC index was calculated to be 0.06. The low FIC

Fig 2. Antimicrobial activity of Rifampicin and LysB against M. ulcerans isolates. The inhibitory effect of (A) RIF

and (B) LysB againstM. ulcerans strain 98–912 (circle), strain 94–1327 (square), and strain 1615 (triangle) were

determined using the microtitre plate based colorimetric assay. Plots are representative of two independent

experiments.

https://doi.org/10.1371/journal.pntd.0007113.g002
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index (< 0.5) suggested that a combination of LysB and this anti-mycobacterial drug acts in a

synergistic manner in inhibiting M. smegmatis growth. In the case ofM. bovis BCG andM.

ulcerans, the corresponding FIC index value was 0.56 and 1.0, respectively, when LysB was

used in combination with RIF, suggesting an additive effect.

LysB is enzymatically active in vivo
To determine the bioavailability and presence of enzymatically active LysB in vivo after s.c

injection in the footpad, the protein was measured in footpads, DLN, and sera. In a western

blot analysis of footpad supernatant, LysB was consistently detected, and the levels remained

present during the first 4h after administration (Fig 3A). At 6 h after injection, LysB was still

detected, although at lower levels (Fig 3A). In order to analyze if LysB maintained its lipolytic

enzymatic activity in vivo, a lipase assay was performed [28,33]. As shown in Fig 3B, lipolytic

activity was detected in footpad suspensions until 8h after injection. Regarding sera samples,

although LysB was not detected by western blot analysis, lipolytic activity was observed (Fig

3B). No lipolytic activity or presence of LysB was detected in the DLN.

Treatment with LysB prevents M. ulcerans proliferation in the footpad

To investigate the efficacy of LysB treatment for the control ofM. ulcerans in vivo, we used the

footpad mouse model of infection [4,9,36–39]. Mice were s.c. infected in footpads with 5.5

log10 CFU ofM. ulcerans strain 98–912. After 10 days, when footpad swelling reached 2.7 mm

(Fig 4A), and at 13 days post-infection, mice were treated subcutaneously in the footpad with

50 μg of LysB in PBS. As shown in Fig 4B,M. ulcerans proliferated in infected footpads of non-

treated mice over the course of experimental infection (P<0.01), while Lys B treatment

Table 1. Antimicrobial activity of LysB against M. ulcerans isolates.

M. ulcerans strain Origin Geographical origin Type of Mycolactone Lysin B (μg/mL) �

97–1116 Plaque Benin A/B 0.5

94–1331 nd Papua New Guinea A/B 0.5

5114 Ulcer Mexico - 0.1

00–1441 Aquatic insect Benin A/B 0.1

94–1324 Ulcer Australia C 0.1

� Minimum concentration of LysB tested causing a lysis zone in M. ulcerans lawns. The results are representative of three independent assays.

nd: not determined

https://doi.org/10.1371/journal.pntd.0007113.t001

Fig 3. Assessment of bioavailability and enzymatic activity of LysB in the footpad and serum of mice. Mice were

injected subcutaneously in the left footpad with LysB. At different time points, the presence of LysB was assessed by

Western blot (A) and LysB enzymatic activity was determined by a lipase assay (B), in footpad supernatant and serum;

hpi, hours post-injection; C, control mice; + lipase activity;—no activity. Results are from one representative

experiment of two independent experiments.

https://doi.org/10.1371/journal.pntd.0007113.g003
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prevented further bacterial multiplication, resulting in a significant 1 log difference from

untreated controls at day 16 post-infection. The administration of vehicle PBS or LysB alone

in uninfected footpads did not induce significant swelling of the footpad. Collectively, these

results show that the administration of LysB toM. ulcerans infected tissue has a protective

effect, significantly preventing bacterial proliferation.

Treatment with LysB induces increased levels of IFN-γ and TNF in the

DLN

Previous studies from our laboratory showed thatM. ulcerans disseminates to the DLN, where

the differentiation/expansion of mycobacteria-specific specific T cells occurs, contributing for

the control ofM. ulcerans proliferation through the production of IFN-γ [36,39] and TNF [4].

To determine whether LysB treatment impacts host immune response, we carried out a com-

parative analysis of cytokine kinetics in the DLN.

Treatment with LysB resulted in a significant increase in the levels of IFN-γ in the DLN

(P<0.01) at day 16 post-infection (six days after the beginning of the treatment), as compared

with non-treated mice (Fig 5A). The protein levels of the pro-inflammatory cytokine TNF

were low in the DLN of non-treated mice (Fig 5B). In contrast, in LysB-treated mice, signifi-

cant levels of TNF (P<0.01) were detectable at day 16 post-infection (day 6 post-treatment)

(Fig 5B).

Discussion

We have previously shown in the mouse footpad model ofM. ulcerans infection that a single s.

c. injection of the lytic mycobacteriophage D29 can effectively decrease the proliferation ofM.

ulcerans resulting in marked macroscopic improvement of skin lesions [9]. However, the safe

and controlled use of phages in humans still requires further experimentation to fulfill the sci-

entific requirements of current pharmaceutical agencies. Therefore, there is currently a move-

ment in favor of bacteriophage endolysins (lysins), as an alternative innovative therapeutic

strategy. The potential of purified recombinant bacteriophage lytic enzymes (lysins) has been

regarded as a viable method to control bacterial pathogens, including S. aureus [20,21,33,

40,41], Streptococcus pneumoniae [13–15,17,19], group B streptococci [21], and Bacillus
anthracis [42]. Recently, a new engineered endolysin (Artilysin Art-175) has shown activity

against gram-negative pathogens [43]. In addition, endolysins have advantageous characteris-

tics that avoid most of the common resistance mechanisms against antibiotics [42]. The potent

anti-mycobacterial activity shown herein by LysB compares well with the antibacterial potency

of lysins. Although the ability of lysins as antibacterial agents is due to their action as murein

hydrolases that cleave peptidoglycan bonds of bacteria without an outer membrane or surface

lipids and waxes, LysB specifically acts upon mycobacteria due to its activity as a mycolylarabi-

nogalactan esterase that hydrolyses the ester linkage that joins the mycolic acid-rich outer

membrane to arabinogalactan [27]. Thus, lysins and LysB, despite working by different mecha-

nisms of action, show potent antibacterial activity which is most likely dur to their ability to

Fig 4. Lesion progression and M. ulcerans proliferation in footpads of infected mice. Mice were infected

subcutaneously in the left footpad with 5.5 log10 CFU ofM. ulcerans strain 98–912. After the emergence of

macroscopic lesion (footpad swelling of 2.7mm) mice were subjected to treatment with two doses of subcutaneous

injection of LysB (10 and 13 days post-infection—dashed lines). (A) Footpad swelling (n = 15) and (B) bacterial

proliferation (n = 6) was assessed in non-treatedM. ulcerans infected mice (black circles) and LysB treatedM. ulcerans
infected mice (white circles). Mice were sacrificed for ethical reasons after the emergence of ulceration. Results are

from one representative experiment of two independent experiments. Data points represent the mean ± SD.

Significant differences between treated and non-treated mice were performed using Student’s t test (��, p�0.01).

https://doi.org/10.1371/journal.pntd.0007113.g004
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mechanically weaken and disrupt the bacterial cell wall. This hypothesis is supported by the

loss of biochemical and antimycobacterial activity in the S82A mutant and by the fact that

LysB shows synergy with an antimycobacterial drug, which probably results from increased

cell wall permeability in the presence of LysB.

Due to the importance of the mAGP-complex for the stability of the mycobacterial cell

envelope [44], we were prompted to test the therapeutic potential of LysB in the context ofM.

ulcerans infection. In this study, we have demonstrated the potential of mycobacteriophage

D29 LysB therapy againstM. ulcerans infection in the mouse footpad model. Indeed, we show

that treatment with LysB can effectively prevent proliferation of the highly virulent mycolac-

tone-producing M. ulcerans strain 98–912, even at an advanced stage ofM. ulcerans infection.

Importantly, our in vitro results show a high susceptibility of severalM. ulcerans isolates to

LysB, indicating that its activity in vivo is not limited toM. ulcerans 98–912.

The therapeutic efficacy of LysB treatment depends on the presence of biologically active

LysB in vivo. As previously described, a rapid decrease in lysin levels after administration can

result in the decrease of the amount of active lysin [19,45]. Indeed, in a pneumococcal menin-

gitis mouse model, the bacterial load in the cerebrospinal fluid increased as the concentration

of Cpl-1 lysin decreased over time [19]. Based on these observations, and in order to improve

the LysB bioavailability in mouse footpads, we decided to perform two s.c. administrations in

the footpad. The subcutaneous route of administration was chosen because it allows almost

complete absorption at the site of injection and therefore is considered an accurate measure of

the amount of LysB necessary to be effective. Nevertheless, the possibility of developing a for-

mulation for the topical application of lysins would be of great interest to increase patient com-

pliance. Additionally, repeated administrations of LysB can be done to treat bacterial

infections without adverse effects or loss of efficacy, since it has been demonstrated using dif-

ferent lysins and pathogens (S. pneumoniae, S. aureus, Streptococcus pyogens and B. anthracis)
[46], that the development of antibodies against lysins are non-neutralizing. In fact, when

naïve and lysin-immunized mice were challenged with S. pneumoniae and afterwards treated

with Cpl-1 lysin, no differences were observed between the groups of mice regarding reduction

of bacterial numbers [45].

It is known that the differentiation/proliferation of IFN-γ producing mycobacteria-specific

lymphocytes occur in mouse DLN early after experimental M. ulcerans infection [36]. How-

ever, this transient protective host response is not sufficient to inhibit the proliferation of viru-

lentM. ulcerans in mice, as increasing concentrations of mycolactone at the infection site

impair the effector activity of macrophages and induce cell and tissue destruction [4,38,39]. In

our study, LysB administration effectively decreased the bacterial load in the infected tissue,

which likely resulted in a reduction of mycolactone levels and allowed the continuous develop-

ment of a protective host immune response and a significant increase in the levels of pro-

inflammatory cytokines in the DLN.

For therapeutic use, an antimicrobial agent should not affect mammalian cells and only tar-

geting the pathogen. Lysins target structures unique and highly conserved to bacterial cells and

as such should not present a potential toxic threat to humans and animals [47]. This has been

Fig 5. Cytokine profile in DLN of LysB-treated M. ulcerans infected mice. Mice were infected subcutaneously in the

left footpad with 5.5 log10 CFU ofM. ulcerans strain 98–912. After the emergence of macroscopic lesion (footpad

swelling of 2.7mm) mice were subjected to treatment with two doses of subcutaneous injection of LysB (10 and 13 days

post-infection). (A) Levels of IFN-γ and (B) TNF were quantified by ELISA in DLN of non-treatedM. ulcerans
infected mice (black bars), LysB treatedM. ulcerans infected mice (white bars) and LysB treated non-infected mice

(grey bars). Results are from one representative experiment of two independent experiments. Bars represent the

mean ± SD (n = 6). n.d., not detected. Dashed lines represent the detection limit. Significant differences between

treated and non-treated mice were performed using Student’s t test (��, p�0.01).

https://doi.org/10.1371/journal.pntd.0007113.g005
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supported by several reports using lysins in preclinical studies in mouse models [15,45,48]

and, in agreement, in our study, since the administration of LysB did not result in increased

haemolysis in vitro and was not associated with detectable side effects in the mouse model

until the end of the experimental period.

This is the first study on mycobacteriophage LysB activity againstM. ulcerans infection.

Importantly, LysB could be used as an adjuvant to improve the current antibiotic regimen,

given its in vitro additive effect when in combination with rifampicin. Although the develop-

ment of a treatment protocol using LysB will require further optimization, namely regarding

the optimal mode of administration, dosage and schedule, this is the first study providing

proof of concept of the antimicrobial activity of LysB againstM. ulcerans infection.

Supporting information

S1 Fig. Purification of various LysB proteins. Purification of His tagged native (A) and 82A

mutant of LysB (B) was done by Ni affinity chromatography, while the untagged native LysB

was purified by conventional chromatography (C). In A and B, lane 1 –cell pellet, lane 2 –cyto-

solic fraction (load), lane 3 –molecular size marker, lane 4 –flow through, lane 5 –imidazole

wash, lane 6 and 7–10 and 20 μl of the eluate fractions. C shows ion exchange chromatography

purification. Lane 1 –load, lane 2 –molecular size marker, lane 3 and 4 –flow through, lane 5

and 6 –wash fractions, lanes 7 to 16 –eluates.
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