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Calculating Ultra-Strong and Extended Solutions for
Nine Men’s Morris, Morabaraba, and Lasker Morris

Gábor E. Gévay, and Gábor Danner

Abstract—The strong solutions of Nine Men’s Morris and
its variant, Lasker Morris are well-known results (the starting
positions are draws). We re-examined both of these games, and
calculated extended strong solutions for them. By this we mean
the game-theoretic values of all possible game states that could
be reached from certain starting positions where the number of
stones to be placed by the players is different from the standard
rules. These were also calculated for a previously unsolved
third variant, Morabaraba, with interesting results: most of the
starting positions where the players can place an equal number
of stones (including the standard starting position) are wins for
the first player (as opposed to the above games, where these
are usually draws). We also developed a multi-valued retrograde
analysis, and used it as a basis for an algorithm for solving
these games ultra-strongly. This means that when our program
is playing against a fallible opponent, it has a greater chance of
achieving a better result than the game-theoretic value, compared
to randomly selecting between “just strongly” optimal moves.
Previous attempts on ultra-strong solutions used local heuristics
or learning during games, but we incorporated our algorithm
into the retrograde analysis.

I. INTRODUCTION

Nine Men’s Morris and its variants are two-player, sequen-
tial, perfect information, deterministic, finite, zero-sum games,
and there are three possible outcomes: win, draw, loss (these
are given from the point of view of a specific player).

A. Solving games

Solving games is possible on several levels [1]:
• Ultra-weakly solved: the game-theoretic value of the

starting position was obtained by a possibly non-construc-
tive proof, which does not give us any actual strategy to
achieve the proven value.

• Weakly solved: the game-theoretic value of the starting
position is known, and we also have a strategy to achieve
that. (This might require a database with the game-
theoretic values for a large subset of the game states.)
Checkers, for example, was solved in this sense [2].

• Strongly solved: a strategy is known that achieves the
game-theoretic value starting from any game state that

Gábor E. Gévay is with the Eötvös Loránd University, email:
ggab90@gmail.com.

Gábor Danner is with the University of Szeged, email:
gabor.danner@gmail.com.

c© 2015 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
DOI: 10.1109/TCIAIG.2015.2420191

can be reached from the starting position. This has the
effect that it can play perfectly even if mistakes were
made on one or both sides.

• Ultra-strongly solved [3]: a strategy is known which
increases our chances to achieve more than the game-
theoretic value when faced with a fallible opponent (i.e.
a player who is not playing perfectly).

• Extended strong solution: We define this as a strong
solution for an extended state space, namely, for all
the positions reachable from a set of alternative starting
positions. This can provide further insight into the game.
In this paper, we examined the positions that can be
obtained from the usual starting position by modifying
the number of pieces to be placed by the players.

The standard method for strongly solving games is to use
retrograde analysis (that is, to propagate values from end
states using the minimax principle) to calculate a database
containing the game-theoretic values of all the game states
[4]. (See Section III for details.) A game-playing program can
use this database at every move by looking ahead one move,
and maximizing the game-theoretic value of the state (from
its perspective) after its move. But if there are cycles in the
state space graph, then this algorithm does not ensure winning.
This might happen when we reach a game state during a
game that has already occurred: if we choose our moves
deterministically, then the game might never end, thus we
cannot realize the game-theoretic value. Choosing randomly
does not really solve this problem, because that way the games
might stretch out too long.

The standard solution to this problem is to also calculate a
depth to win value for all (not draw) game states. This value
gives the number of moves that will happen until the end of
the game if both players play optimally, not just regarding the
game-theoretic values, but also in minimizing or maximizing
the number of moves to the end, based on whether they are
winning or losing. This way, it cannot happen that we move
away from the winning end state from time to time.

We used this method to calculate the extended strong
solutions for standard Nine Men’s Morris, and its variants,
Lasker Morris, and Morabaraba.

Strong solutions have an important property. Many of the
positions among the theoretical draw positions are weak for
one of the players for practical purposes (if he is not a perfect
player), meaning that the player is just one small mistake
away from getting into a theoretical losing position. In these
cases the opponent is usually in an easier situation, because
his small mistakes do not affect the game-theoretical value of
the position. The program based only on the strong solution
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completely disregards this phenomenon, and tends to get to
these weak positions. In the case of standard Nine Men’s
Morris and Lasker Morris, this results in lots of draws, even
against novice players. Gasser mentions this problem in his
PhD dissertation [5].

To solve this problem we developed a variant of retrograde
analysis to classify the draws and used it to calculate ultra-
strong solutions for all three variants.

B. Rules

For the rules of Nine Men’s Morris, see for example
Gasser’s work [6]. There are two points in the rules, for which
there is no consensus. The first question is what should happen
when two mills are closed with one move. The second is
whether a player should be allowed to take a stone from
a mill, when all the opponent’s stones are in mills. Our
implementation followed Gasser’s decisions: mill closure is
always followed by taking exactly one stone. Moreover, we
regard position repetitions as draws.

The main difference between Lasker Morris [7] and the
standard variant is that there are no distinct placement and
movement phases, i.e. the players can decide at every move
whether they want to place a stone on the board or move one
of their stones (as long as they have remaining stones to place).
The other difference is that players can place 10 stones instead
of 9.

Morabaraba differs from the standard variant in the graph
of the game board (see Fig. 3 and Fig. 4), and in the number
of stones the players can place, which is 12. There is also a
special rule: if the board becomes full (because neither player
closed a mill during the opening), the game ends in a draw.
There is no consensus about whether to use the rule or not, so
we implemented both versions. The state space of Morabaraba
is about four times bigger than that of the standard variant.

C. Related work

Ralph Gasser calculated a strong solution for the moving
phase of the standard Nine Men’s Morris, and established
the game-theoretic value of the game to be a draw [6].
One reason of the importance of Gasser’s work, is that he
provided a perfect, and almost minimal hash function that
takes the symmetries of the board into account, which allows
an almost 16-fold reduction of the state space. Peter Stahlhacke
calculated a strong solution for Lasker Morris [8]. To our
knowledge, there were no solution attempts for Morabaraba.

There are several approaches for achieving better results
than the game-theoretic value against a fallible opponent. A
simple method is to combine the perfect program with an AI
that uses α-β search, by having the latter choose only from the
perfect moves [5]. Other local heuristics use the information in
the solution database about the game states which are at most
a few moves away from the current position. For example, one
can look at the ratio of optimal moves to all the moves in a
position. The DTW (depth-to-win) of the non-draw states can
also be relevant, because a model of a fallible opponent might
assume that it is using shallow searches on the game-tree.
These heuristics can be combined recursively by multiplying

probabilities of making an optimal move along the considered
paths [9], [10]. Schaeffer [11, p. 258, 331] used small searches
in positions recognized as draws by the endgame databases in
his heuristic (α-β) Checkers playing program Chinook. Other
approaches are to learn desirability values about individual
positions during games [12], or learn a model of the opponent
[13].

Our approach is different, because we modified the retro-
grade analysis to calculate additional information about the
game states, and developed a global1 heuristic to increase our
chances of achieving more than the game-theoretic value.

Čermák et al. studied [14] the performance of refinements
of Nash Equilibria in smaller, imperfect-information games
against fallible opponents. Their methods are computationally
significantly more expensive, so they could not be used for
Nine Men’s Morris.

A variation of retrograde analysis which can handle more
than three outcomes was described by Lincke [15] for use with
Awari, but that algorithm is quite different from ours. It uses
less memory (but it is also slower), because it stores only two
bits per positions, and does not calculate DTWs.

D. The structure of the paper

Although retrograde analysis is a well-known algorithm,
implementations often differ in important details, because they
are tailored to the actual problem. For example, an important
point to note for Nine Men’s Morris and its variants is that
there is a natural subdivision of the state space. In the next
Sections we describe this partitioning, then briefly describe
the basic retrograde analysis algorithm, which is followed by
some implementation details along with a pseudocode.

Then we give a modified version of retrograde analysis
which is able to handle more outcomes than win/draw/loss,
and we use this as a basis for a new algorithm to classify draws
into subclasses and achieve an ultra-strong solution. Finally,
we present the results of the computations and then outline an
extension and generalization of the algorithm.

II. PARTITIONING THE STATE SPACE

Without partitioning the state space, retrograde analysis
would require holding some information about every game
state in memory, because random access disk I/O is very slow.
A natural way to partition the state space of Nine Men’s Morris
and its variants is to specify a subspace by four integers: the
number of stones on the board for the first and second players,
and the number of stones to be placed by the first and second
players. The largest subspace has 603,332,730 game states
(using Gasser’s hash function to take symmetries into account
[5]).

Notice that if we swap the white and black stones and
change the player to move in a particular position, then we
get a game state which has the same game-theoretic value as
the original (given from the point of view of the player to
move). There are multiple ways to use this to achieve a 2-fold

1Global in the sense that the evaluation of a game state calculated by our
algorithm takes into account the heuristic values of all states reachable from
that state.
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reduction of the state space. What we did is to drop every
position where Black is to move. When we need the value
of a position which was dropped, then we use the swapped
position instead.

An unfortunate consequence of this is that the dependency
graph2 of the subspaces ceases to be acyclic, since in the
moving phase, we no longer have to take a stone from the
board to leave a subspace. Rather, every sliding move in
a subspace where the number of stones on the board (or
the number of stones to be placed) for the two players are
different, moves into the subspace where the first two and
the last two identifying numbers are swapped (we call this
operation negating a subspace). So, for example, there are
edges in both directions between the subspaces 5,7,0,0, and
7,5,0,0 (another example, which can occur only in Lasker
Morris, is 5,7,2,1, and 7,5,1,2). The only cycles introduced
this way are back and forth edges between subspaces, and a
subspace can only be part of at most one cycle. We regard such
subspace pairs (and also individual subspaces which are not
part of a cycle) as work units, because the retrograde analysis
has to work with both of them at the same time. Let us call a
work unit transient, if every move in every position in it leaves
the work unit. Notice that a transient work unit can contain
only one subspace, which we call a transient subspace. Let
us call a subspace ESC (Equal Stone Count) if both players
have the same number of stones both on the board and to be
placed.

Calculating the values of the positions in a work unit
involves the one or two subspaces in the work unit (we
call these primary subspaces) and those other subspaces on
which the primary subspaces directly depend, i.e. those for
which there is a move from a position in a primary subspace
that leads to a position in them (we call these secondary
subspaces). Information is propagated from secondary and
primary subspaces to primary subspaces.

Another advantage of partitioning the state space is that
pairs of work units which does not have a directed path
between them in the dependency graph can be easily worked
on in parallel. The scope of this is determined by the available
memory (apart from the number of processor cores we have),
because working on one of the larger work units requires
multiple gigabytes of memory. The speed of the memory
is also an important factor, since the frequency of memory
accesses increases with more parallelism.

III. RETROGRADE ANALYSIS

A. The basic algorithm

Retrograde analysis works from the ending positions back-
wards by calculating values according to the minimax principle
[16]. To have an algorithm that can handle cycles in the state
graph, we have to notice that in order to establish a position
to be a win, we do not need the values of all the successors of
the position. Rather, it is enough if we know that at least one
of the successors is a loss (from now on, we are thinking as

2We can construct the following dependency graph of the subspaces: each
subspace corresponds to a node, and there is an arc from u to v, if there is
a state in u from which we can go to a state in v with one move.

in negamax: position values are understood from the point of
view of the player to move). To also correctly determine the
DTW values when making use of the above point, we have to
process positions in increasing order of DTW. Here, processing
positions means repeatedly picking a position of which the
final value is already known, and updating the knowledge we
have about its predecessors.

Two kinds of information are kept for a position: count
means the number of successors that we have not processed
yet, and value means the game-theoretic value of the position
(with DTW). The algorithm can be organized in such a way
that these are not needed at the same time, and when we have
a value for a position, then it is already final. We say that
a position is count-state if the information currently recorded
for it is a count, and similarly for value-state. If a position is
still a count-state after no position remains to be processed,
then it is a draw.

See figures 1 and 2 for the pseudocode.

B. Implementation for a partitioned state space
The question arises that how to pick positions to be pro-

cessed. Gasser repeatedly scanned the entire file for positions
that are done, and thus can be processed [5]. We decided to
use a queue instead, for efficiency reasons. When a position
becomes value-state, we push it into the queue. Picking a
position to process is done by popping the queue. (This ensures
the right order, because the DTW values always increase by
one.)

There is some difficulty with this when the state space is
partitioned: the range of DTW values can overlap between
subspaces, so it would be inconvenient to process positions
globally in the order of DTW. This means that sometimes
we process a position that has a greater DTW value earlier
than some positions that have lower DTW values. Notice that
this is not a real problem: we only wanted to process the
positions in increasing DTW order, to avoid the situation when
processing some position affects our knowledge about some
already processed positions (which would obviously create
inconsistencies in the database). But if we keep the order
locally, i.e. during the processing of one work unit, then this
problematic situation does not occur. The reason is that the
only case when we process a position v with smaller DTW
later than a position u with larger DTW, is when the work unit
of v is processed later than the work unit of u, in which case
the value of v cannot possibly have an effect on the value of
u, since a path in the state graph does not exist from u to v.

Thus we have to make sure that every one of the value-
states in the secondary subspaces (which have a wide range
of DTW values) gets processed at the right time, that is, when
the processing of positions in the primary subspaces reaches
the same DTW value. Theoretically thinking, this could be
achieved by using a priority queue with DTW as the key
instead of a regular queue, but a faster way in practice is to use
two queues3 and continuously merge them when popping: one

3Note that if we calculated the depths to the taking of the next piece instead
of the DTW, then the problem would be trivially solved with only one queue,
because then all the states in the secondary subspaces would come before all
the states in the primary ones.
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1. Initialization
for all positions p do

if p is a win end-state then
R[p]← value(win in 0)
Push p into the priority queue

else if p is a loss end-state then
R[p]← value(loss in 0)
Push p into the priority queue

else if p is a draw end-state then
R[p]← count(0)

else
R[p]← count(number of possible moves in p)

end if
end for

2. Processing the priority queue
while the priority queue is not empty do

Pop a position e from the priority queue
for all predecessors p of e do

if R[p] is count then
if R[e] is a win then

Decrement R[p].count
if R[p].count = 0 then
R[p]← value(loss in 1 +R[e].value.DTW )
Push p into the priority queue

end if
else
R[p]← value(win in 1 +R[e].value.DTW )
Push p into the priority queue

end if
end if

end for
end while

Fig. 1: Pseudocode of retrograde analysis. Recall that the
kinds of information recorded for a position (in the array
R) are count(n) and value(win/loss in n), but only one of
these is stored at a time (union type). (Also, in Nine Men’s
Morris and its variants, win/loss can be determined by the
parity of DTW.) The priority queue is keyed with DTW, and
in the simplest case, it can be implemented with a simple
queue, because states are processed monotonically. But when
end states can have different DTWs (because we take into
account the partitioning of the state space, see Fig. 2), then
the method of two queues can be used as described at the end
of Subsection III-B. Note that states in secondary subspaces
are treated as end states. Also note that e can be in either
a primary or a secondary subspace, but the predecessors are
restricted to the primary subspaces.

1. Pre-initialization of primary subspaces
for all positions e in primary subspaces do

if we can close a mill in e and the opp. has 3 stones then
R[e]← value(win in 1)

else
R[e]← count(0)

end if
end for

2. Setting counts to the number of successors and pushing
value-states
for all positions e in primary and secondary subspaces do

for all predecessors p of e do
if p is in a primary subspace and R[p] is count then

Increment R[p].count
end if

end for
if R[e] is value then

Push e into the priority queue
end if

end for

3. Handling blocked states
for all positions e in primary subspaces do

if R[e] = count(0) then
R[e]← value(loss in 0)
Push e into the priority queue

end if
end for

Fig. 2: Initialization of retrograde analysis tailored to Nine
Men’s Morris and to the partitioning of the state space. This
replaces Step 1 in Fig. 1.

of the queues contains non-draw positions from the secondary
subspaces (and end states from the primary ones) and is
initialized at the start of processing the work unit, and the
other is populated by positions from the primary subspaces as
they become ready. We call the former the secondary queue.

Initializing the secondary queue involves sorting the posi-
tions of several (in our case, up to six) subspaces, which might
not fit into memory, so we used a bucket sort on disk to do
this. The primary queue could be implemented on disk with
only sequential accesses, but we stored it in main memory for
simplicity and reducing disk I/O (for better parallelism).

The time complexity of the algorithm is O(E+V D+SB),
where V is the number of positions, E is the number of edges
between these, D is the maximal in-degree of a node of the
subspace graph, S is the number of subspaces, and B is the
maximal DTW. The factor B comes from the bucket sort.
V D comes from reprocessing positions multiple times as part
of secondary subspaces. We assumed that the complexity of
generating predecessors of a position is the number of prede-
cessors that are in primary subspaces (without this assumption,
the complexity would be O(ED + E + V D + SB)).
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C. Handling more than three outcomes

We now modify the general algorithm described in the
previous section to more than three outcomes. We assume that
outcomes range from −w to w. Our algorithm proceeds from
more extreme outcomes to more drawish outcomes: we start
by determining the positions that have values −w and w, then
−w + 1 and w − 1, and so on. While we are determining
positions with absolute value c, the positions with absolute
values smaller than c have the same role as draws in the basic
algorithm, and the positions with values −c and c will behave
like losses and wins. The zeros are not processed.

At the beginning of the algorithm, non-zero end states are
inserted into the secondary queue in the appropriate order (the
first key of the ordering is the negated absolute value, and the
second one is the DTW). Popping them at the right times can
be achieved by the merging method we mentioned earlier.

In the basic algorithm, we made use of the fact that when
one successor of a position u becomes a loss, we know that
u is a win. There is a similar fact here, which points out
the importance of going from larger absolute values towards
smaller ones.

Assume that we are processing positions with absolute
value v. If we discover a position with value −v among the
successors of a position s, then we immediately know that
the value of s is v. We will not find a successor b later with
value smaller than −v, because b should have already been
processed earlier. Furthermore, in the moment when we have
processed all successors of a position s, then if none of them
had negative values, then we know that the value of s is −v
because so far we only processed nodes that have absolute
values of at least v.

What we have showed in the previous paragraph is that
when we write a value for a position, then it is indeed the
correct final value of it. What remains to be proven is that we
cannot have the situation that we should have already written
a value for a particular position, but we have not. When we
have finished writing the values of the positions with absolute
values of v, then the absolute values of the positions that we
have not yet written must really be v − 1 at most, since it is
not possible that all the successors of such a position has at
least the value of v, or that it has a successor that has at most
the value of −v.

The above algorithm also minimizes DTW values in “win-
ning” (positive valued) states, and maximizes in “losing”
(negative valued) states. Positions that remain count-states do
not have DTW information. (Note that these can be viewed as
implicitly having the value of 0.)

The pseudocode in the previous subsection can be adapted
for this algorithm with small modifications:

• The comparison operator used by the queue operations
has to use the negated absolute values of the states as a
first key, and the DTW should only be the second key.
Thus we process the positions with the same absolute
values in the order of DTW.

• Propagating a value to a predecessor now involves negat-
ing the game-theoretical value.

The time complexity changes a bit because of the extended
range the bucket sort has to deal with: O(E + V D + SRB),
where R is the range of the first key.

This algorithm can be used for any game with the properties
described at the beginning of the introduction, but with more
than three possible outcomes, e.g. Awari or Othello.

IV. THE ULTRA-STRONG SOLUTION

The ultra-strong solution means that our program has a
better chance to achieve a better result than the game-theoretic
value against a non-perfect opponent, compared to a program
which is based only on the strong solution. The outcome of a
Nine Men’s Morris game (and its variants) can be win, draw,
or loss. In (game-theoretically) winning states we are already
in the best possible position (we are going to win, because we
play perfectly). In losing states, maximizing DTW is already a
good heuristic to lead the game into positions which are hard
for the opponent to win. Therefore we designed an algorithm
to classify draws into subclasses.

We need the notion of stable draw for this: a draw is stable
if there exists an optimal sequence of moves which does not
leave the current work unit. (Not all draws are stable: positions
in work units where the players have remaining stones to
place are obviously not stable; furthermore, there are lots of
positions in other work units where the only way for both
players to keep the draw is to attack and close mills. Also
notice that not all stable states are part of a cycle in the
subgraph of optimal moves.)

Our method for distinguishing draws is based on the fol-
lowing goal: if we do not see a winning move, then at least
try to go in the direction of stable draws where our opponent
is in a (heuristically) difficult situation. Furthermore, it also
seems reasonable to assume that when aiming for such draws,
our opponent will “have a hard time” finding the moves that
keep up the draw even before reaching the stable draw. Our
results show that this is indeed the case: for example, in the
standard variant, after our program has already managed to get
to a game state from which optimal play leads to the subspace
6,3,0,0, our opponent almost always makes a mistake before
even reaching the final work unit, and we win the game.

So we need a heuristic which can assign values to stable
states, and then an algorithm which assigns different values to
draws based on the value of the stable state that will be reached
by optimal play. Notice that the algorithm cannot just pick the
stable states at the beginning, use the heuristic to assign values
to them, and then propagate these with standard multi-valued
retrograde analysis, because we do not know in advance which
states are stable, as this depends on the values of lots of other
states. (Also notice that what was a stable state before we
distinguished the draws is not necessarily stable now, so we
also cannot just use these as a starting point.)

A. The heuristic for assigning values to stable states

First, we describe the heuristic that is used to assign values
to stable states. Actually, we assigned values to subspaces, and
the value of a stable state is the same as the subspace in which
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it lies. A natural idea is to use the difference of the number
of stones of the players.

We focused on another heuristic, where we used information
from the already calculated databases: if the ratio of wins
in a subspace is high, then it is obviously a good subspace
for us (at least when the subspace is not ESC). The ratio of
draws can also be relevant. If there is another subspace in
the work unit, then a large ratio of losses in that subspace is
also good for us (note that values in the other subspace are
understood from the point of view of the opponent). Thus a
pair of subspaces (s,−s) in a non-transient work unit is in a
symmetrical relationship (the members of the pair need not be
different from each other). In Section IV-B it is shown that the
algorithm works correctly only if the assigned values of these
pairs are opposites of each other. So the heuristic formula we
used takes both subspaces of the pair into account:

vals = (Ws + L−s +Ds/2 +D−s/2)/(Ts + T−s)

where Ws, Ls, Ds are the numbers of wins, losses, and
draws, respectively, and Ts is the total number of states in
the subspace. For subspaces in transient work units we use
the following formula:

vals = (Ws +Ds/2)/Ts

Using floating point numbers for subspace values during the
computation would require too much memory, so we assigned
ranks to subspaces instead: we ordered them based on the
above values and used their place in the ordering. These ranks
are centered around 0, and there is a correction to make:
we have to make sure that the ranks of subspaces in a non-
transient work unit are the negations of each other (for non-
transient ESC subspaces, this means that they have to have
the rank of 0). This correction results in holes in the range of
ranks.

After using the ranking method described above, the rank
of the subspace 8,9,0,0 seemed too high. For example, the
program wanted to go to this subspace more than to 6,3,0,0.
So we manually lowered the rank of this subspace, and the
program got stronger (achieved more wins).

Wins and losses receive values just outside the range of
the values calculated by the above ranking method. In the
remaining part of the paper, game-theoretic values of states
come from this extended range.

B. A new variant of retrograde analysis to classify draws

This algorithm uses the heuristic of the previous section and
is based on the multi-valued retrograde analysis described in
Section III-C. Recall that the value of a position now consists
of two parts: the game-theoretic value and the DTW. We refer
to these here as first and second keys, respectively. (Note that
these keys are not directly the keys of an ordering.)

1) Storing relative values: The difficulty lies in the fact
that with the algorithm described in Subsection III-C, the
stable states can only be count-states (which can be viewed as
implicitly having the value of 0 as the first key), but now we
would need to assign different game-theoretic values to these.
This is achieved by storing relative values in the first key:

how much better (or worse) subspace than the current one we
end up in with optimal play. This way, stable states look like
having the appropriate first keys from the absolute viewpoint.
For this, we need to adjust the first keys when propagating
between subspaces: first, to the absolute viewpoint, then do the
usual negation, then adjust to the value of the subspace that
we are propagating to. Count-states are treated as if they had
0 as first key when making adjustments, and if the first key of
a value-state is adjusted to 0, then it is treated as a count-state
(the actual count is not important in this case, since this can
only happen in a secondary subspace, so we never propagate
into it).

This can be implemented by already making all the adjust-
ments while loading the secondary subspaces into memory (by
adding the sum of the values of the two subspaces), because
every state is propagated to only one primary subspace in Nine
Men’s Morris4. The ordering of the queue has to be based on
the values adjusted this way. Also notice that no adjustment is
needed when propagating between primary subspaces, because
the subspace values were constructed such that the sum of the
values of the members of a non-transient work unit is 0.

2) Generalizing depth-to-win: It is not apparent how to
extend the definition of DTW to draws, since it is not im-
mediately clear that who should maximize or minimize it, and
when. To determine this, we have to recall the intent of the
players with minimizing and maximizing DTW. In the basic
retrograde analysis, the winning player has to minimize DTW
in order to avoid the situation where we are in a winning
state, but cannot realize this, because we move away from it
from time to time. When someone is losing against a perfect
player, there is no point in maximizing DTW. Yet, we have
to assume that he does that, because from the point of view
of the winning player we have to “prepare for the worst”. In
other words, for the minimization of DTW to work, we must
do the opposite for the other player, because a minimax-based
approach can only optimize for symmetric (zero-sum) utility
functions.

Now the question is, should we be maximizing or mini-
mizing when the state is a draw so there is no clear winning
or losing player? As we mentioned earlier, we are seeking
good valued stable states not just because being in the final
subspace will be good for us, but we hope that the opponent
will make a mistake on the way to reach it. Thus how much
time we spend in good valued subspaces even before reaching
the final subspace is of importance. We would like to use the
DTW to optimize for spending as much time (before reaching
a stable state) as possible in subspaces which are better than
the final one (cf. DTW in losing states). In order for this to
make sense, we should optimize for spending as little time as
possible in a subspace that has a worse value than the final
one (and also to avoid the situation that we do not progress
into a better subspace).

This is a multi-objective optimization task which we solve
by linear scalarization: we maximize the (signed) difference
between the number of moves taken in subspaces that are

4For other games, this can be achieved by the method described in Section
VII-A.
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better than the final one and the number of moves taken in
subspaces that are worse than the final one. (Note that this is
symmetric (zero-sum) for the players.) (Also note that it might
very well happen that the optimal sequence of moves leads
through better and worse subspaces then the final destination.)

This can be implemented in the following way:

• we increment DTW upon propagation as usual;
• when we are comparing two values with equal first keys,

we decide on minimizing or maximizing the second one
(DTW) based on the sign of the first key (which reflects
the relation between the values of the current and final
subspaces) (minimize when negative);

• when a first key changes sign during an adjustment (see
Subsection IV-B1), we negate the second one. This way,
the steps of the optimal path which are taken in oppositely
optimized subspaces are reflected in DTW with opposite
signs.

Note that the first two items correspond to the way the
algorithm in Subsection III-C manages DTWs. The third item
is not needed in that algorithm, because the values stored there
are not relative (cf. Subsection IV-B1).

Also note that this is equivalent with the following imple-
mentation: we always maximize DTW, but we increment or
decrement it based on the sign of the first key (increment when
negative) and we negate the DTW at every move5. This way
DTW always equals the aforementioned utility function (while
in the other implementation it is the negated utility function
when the first key is positive).

Also note that the traditional DTW can be viewed as a
special case of the above if we consider the values of the
subspaces of non-terminal states to be 0. (End-states can be
considered to be in a virtual subspace: there is a virtual lose
subspace and a virtual win subspace.) In this case, one of
the terms of the aforementioned utility function is always 0
(depending on the sign of the first key).

A limitation of the algorithm is that if the optimal path goes
through an s2 subspace which has the same v value as the final
s1 subspace, then DTWs only take into account the part of the
path before s2. This happens because states in s2 that have v
as first keys from an absolute point of view are considered
count-states, so we lose the DTW information coming from
secondary subspaces. Nevertheless, this does not seem to be
a big problem.

The following equality holds for the DTWs calculated by
the above algorithm:

d(g) = sgn(k1(g))

n−1∑
i=0

sgn(k1g(gi)),

where gi are the positions of the optimal path starting from
g, n is the number of the first count-state or end state on the
optimal path, k1 gives the relative first key of a state, and k1g
negates this, if the player to move is not the same as in g.

5We can choose the order of the negation and incrementa-
tion/decrementation operations either way, but we have to make sure
that the negation of the first key happens together with the negation of the
DTW.

If we do not assume that the optimal path is known, then
the above formula can be written in the following form:

d(g) = sgn(k1(g)) min
p∈Pg

∑
v∈p

sgn(k1g(v)),

where Pg denotes the set of optimal paths (by the first key
from the absolute viewpoint) up until the first count-state or
end state, and v is a state on a path.

The heuristic could be enhanced a little if we would not
increment DTW by only 1, but by a number that is dependent
on how much better subspace we are in, than the final one.
But the values of subspaces are on an ordinal scale (mainly
because of practical reasons), which does not fit well to this,
so we did not implement it.

V. RESULTS

The computed databases for the ultra-strong solu-
tions, and other resources6 are available at our website:
http://compalg.inf.elte.hu/~ggevay/mills/.

Table I shows some statistics about the variants. Note
that the numbers for Lasker Morris are different from what
Stahlhacke gave [8], because he used slightly different rules.

Some of the databases were computed on an Intel Core i7-
2630QM (2 GHz) machine with 16 GB of memory. Strongly
solving Morabaraba took approximately 2 days, ultra-strongly
solving the standard variant took one and a half days. Comput-
ing the extended solution of Lasker Morris took the most time,
about 9 days on the same machine. Calculating the extended
solution of Morabaraba took about 5 days on an AMD Phenom
II X4 955 (3.2 GHz) machine with 20 GB memory. (The
memories were larger than that of average computers to allow
greater parallelism.) Note that in the case of Lasker Morris,
not only the state space is larger, but the average number of
possible moves in a position is also larger.

A. Morabaraba

The game-theoretic value of Morabaraba is win in 49. This
is in contrast with the other two variants, which are draws. Fig.
3 shows the values of all possible first moves of Morabaraba.
Because of the board symmetries, actually only four of these
moves are different. Two of them result in a draw, and the
other two are wins in 49 and 69 moves.

Fig. 5 shows the distribution of DTWs in Morabaraba, and
Fig. 6 shows a game played optimally. Fig. 7 shows the
position with the maximal DTW (124).

6The programs that can compute and use the databases, and the heuristic
α-β program that we used for testing are also available with their sources.

Variant #states (extended) W/D/L % max. DTW
Standard 27bn (284bn) 53.6/22.3/24.1 206
Lasker Morris 133bn (398bn) 52.5/14.3/33.2 214
Morabaraba 112bn (284bn) 60.7/4.6/34.7 124

TABLE I: Number of states (also for extended solutions),
win/draw/loss ratios, and maximal DTW for the three variants
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Fig. 3: Game-theoretic values with DTWs of all possible
moves in the starting position of Morabaraba. The optimal
moves are marked with an “!”.

Fig. 4: A game-theoretical draw position in the standard or
Lasker variant. White to move. Although White can preserve
his material advantage, he cannot win. This is one of the only
two such positions in the subspace of 8 white and 3 black
stones. The only move here that can keep this stone count
indefinitely is marked with an arrow.
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Fig. 5: Distribution of DTWs in Morabaraba. The very first
bar shows the number of draws. Note that every second bar
corresponds to an even depth, which means that it represents
the number of losses with that depth. These are usually smaller
than neighbouring bars, because it is an advantage to have the
right to move first.

f2, f6; b6, b2; a1, c5; g1, e3; d1xf6, f6; g7, g4;
a7, e4; e5, f4xe5; a4xe3, e3; e5, c3; d3, c4xd3; d3,
d2; a7-d7, c4-b4; d7-a7xc5, f6-d6; g7-f6, g4-g7;
g1-g4, c3-c4; a7-d7, c4-c3; g4-g1xg7, f4-g4; f6-f4,
d6-d5; b6-a7xg4, d5-d6; e5-f6xd6, b4-c4; f6-g7xe3,
c4-b4; g7-f6xe4, b4-b6; f6-g7xb2, c3-e5; f4-g4xd2

Fig. 6: A game of Morabaraba played optimally (using the
standard notation for moves)

B. Extended solutions

Tables II, III, and IV show the game-theoretic values of the
various starting positions involved in the extended solutions of
the three variants. Uiterwijk and van den Herik investigated
[17] the advantage of the initiative (i.e. having the right to
move first) in mnk-games and domineering on various board
sizes. The extended solution tables for Nine Men’s Morris and
its variants can also be examined in this respect.

-

L38 !L124 L32

-

L42L36-

-

- L40 L42

L32

---

-

L24

-

!L124

L36

L44

L30

L24

Fig. 7: The Morabaraba position with the maximal DTW (124
plies). Both players have 7-7 pieces left to place.



9

The main diagonals divide the tables into positions where
either White or Black has more stones to be placed. First, let
us focus our attention to the cells not on the main diagonals. It
is clear that having one more stone to be placed is a substantial
advantage, since it completely outweighs the advantage of the
initiative in all three variants: there are no wins for White if
he can place fewer stones than Black, and these are even all
losses above 5-6 stones to be placed.

However, if we also consider the DTWs in these cells,
we can see a more fine-grained picture: almost all the wins
for White below the main diagonals are quicker wins than
the corresponding symmetrical positions for Black, so having
the initiative means some advantage after all. (Note that this
advantage is more pronounced in the non-standard variants.)

The diagonals show game-theoretic values of positions
where the players can place an equal number of stones. These
are all draws in Lasker Morris (except the 3-3 stones), and all
wins in Morabaraba above 6-6 stones to be placed. However,
in the standard variant, the values of the positions where the
players can place 11 or 12 stones are losses for White!

We can conjecture about the reason for this surprising result.
When we are placing a stone on the board, we can place it
anywhere, but when we can only slide a stone, then our options
are much more limited. This means that after Black places his
last stone on the board, White can respond to the situation
created by Black with (generally) less powerful moves. Also
notice that after 22 (or 24) stones have been placed on the
board, there is very little room left to slide pieces around
(especially if one of the players played defensively during the
opening), so there is a high chance that someone loses the
game because of being unable to make a move. These two
observations complement each other: Black has an advantage
right when there is a high chance to end the game.

The role of the sometimes used rule that a full board results
in a draw (rather than a loss for White) can also be examined.
The only cells in the tables where it has a chance to make a
difference are the bottom right cells. However, Morabaraba is
a win for White, so this cannot possibly be affected by this
rule. We found that this starting position is a draw with or
without this rule in Lasker Morris, but in the standard variant
this position changes into a draw from a loss upon introducing
the rule.

There are a few places in the tables where one more stone
for White results in a worse value. These are 3,3 and 11,12
for the standard variant, 3,3 for Lasker Morris, and 10,7 for
Morabaraba. A similar place is 7,11 in Morabaraba where one
more stone for Black results in a deeper loss for White.

Table V shows the win/draw/loss percentages for the (ex-
tended) standard and Lasker Morris variants for subspaces
where all stones have been placed. Table VI shows the same
for Morabaraba. A notable fact is that in Morabaraba there
are no draws at all in the 3,3 subspace, as opposed to the
standard and Lasker Morris variants where the ratio of the
draws is 0.16%.

Tables VII and VIII shows the maximal depth-to-win values
in subspaces where all stones have been placed.

3 4 5 6 7 8 9 10 11 12
3 W23 D D L12 L12 L12 L12 L12 L12 L12
4 D D D D L20 L16 L16 L16 L16 L16
5 W9 D D D L24 L22 L20 L20 L20 L20
6 W9 D D D L34 L26 L24 L24 L22 L22
7 W9 W17 W25 W33 D L36 L28 L26 L26 L24
8 W9 W15 W21 W25 W33 D L36 L30 L28 L26
9 W9 W15 W19 W23 W27 W35 D L36 L32 L28
10 W9 W15 W19 W23 W25 W29 W35 D L36 L28
11 W9 W15 W19 W21 W25 W27 W29 W31 L44 L28
12 W9 W15 W19 W21 W23 W25 W27 W27 W27 *L26

TABLE II: Game-theoretic values and DTWs of different
starting positions of the standard Nine Men’s Morris. The first
numbers of the rows and columns show the number of stones
to be placed by White and Black, respectively. The position
marked with an “*” becomes a draw, if we use the rule that a
full board results in a draw. (This is the only case across all
three variants where this rule makes a difference in the value
of a starting position.)

3 4 5 6 7 8 9 10 11 12
3 W23 D D L12 L12 L12 L12 L12 L12 L12
4 D D D L24 L16 L16 L16 L16 L16 L16
5 W9 D D D L24 L20 L20 L20 L20 L20
6 W9 W19 D D L40 L26 L24 L22 L22 L22
7 W9 W15 W21 W39 D L40 L30 L28 L26 L26
8 W9 W15 W19 W25 W33 D L44 L34 L32 L30
9 W9 W15 W17 W23 W29 W35 D L46 L36 L34
10 W9 W15 W17 W21 W25 W31 W37 D L44 L38
11 W9 W15 W17 W21 W25 W29 W33 W39 D L46
12 W9 W15 W17 W21 W25 W29 W31 W35 W41 D

TABLE III: Game-theoretic values and DTWs of different
starting positions of Lasker Morris

C. Ultra-strong solutions

We examined two heuristics for the values of stable states
(see Subsection IV-A): one is based on stone difference and
the other is based on win/draw/loss ratios in the work unit. In
the following paragraphs we discuss the latter, except where
noted otherwise.

Recall that in the databases for the ultra-strong solutions,
the subspace which we end up in via optimal play determines
the value of a draw. Table X shows the frequencies of these
values (adjusted to absolute viewpoint) for the three variants.
Unfortunately, 64.21% and 55.66% of the draw positions has
the value of 0 in the standard variant and Lasker Morris,
respectively. Table XI shows the same for the stone difference
heuristic.

In the standard variant, the value of the starting position

3 4 5 6 7 8 9 10 11 12
3 W9 D L12 L12 L12 L12 L12 L12 L12 L12
4 W9 D D L20 L18 L16 L16 L16 L16 L16
5 W9 D D L22 L20 L20 L18 L18 L18 L18
6 W9 W17 W23 D L26 L26 L24 L24 L22 L22
7 W9 W13 W19 W25 W45 L32 L30 L26 L26 L28
8 W9 W13 W19 W21 W27 W53 L50 L34 L32 L30
9 W9 W13 W17 W21 W25 W31 W43 L56 L40 L36
10 W9 W13 W17 W21 W23 W29 W37 W51 L54 L40
11 W9 W13 W17 W21 W25 W27 W33 W39 W45 L52
12 W9 W13 W17 W21 W25 W27 W31 W33 W37 W49

TABLE IV: Game-theoretic values and DTWs of different
starting positions of Morabaraba



10

3 4 5 6 7 8 9 10 11 12
3 83 / 0+ / 17 13 / 87 / 0 0+ / 99 / 0+ 0 / 97 / 3 0 / 53 / 47 0 / 9 / 91 0 / 0+ / 100 0 / 0 / 100 0 / 0 / 100 0 / 0 / 100
4 10 / 90 / 0+ 0+ / 100 / 0+ 0+ / 100 / 0+ 0+ / 94 / 6 0+ / 27 / 73 0+ / 7 / 93 0+ / 0+ / 100 0+ / 0 / 100 0+ / 0 / 100 0+ / 0 / 100
5 23 / 77 / 0 0+ / 100 / 0+ 0+ / 100 / 0+ 0+ / 93 / 7 0+ / 40 / 60 0+ / 12 / 88 0+ / 2 / 98 0+ / 0+ / 100 0+ / 0+ / 100 0+ / 0+ / 100
6 40 / 60 / 0 23 / 77 / 0+ 24 / 76 / 0+ 15 / 82 / 3 7 / 56 / 37 2 / 27 / 70 1 / 6 / 94 0+ / 1 / 99 0+ / 0+ / 100 0+ / 0+ / 100
7 91 / 9 / 0 92 / 8 / 0+ 88 / 12 / 0+ 74 / 25 / 1 47 / 38 / 15 21 / 37 / 42 8 / 16 / 76 3 / 4 / 93 2 / 1 / 98 1 / 0+ / 99
8 100 / 0+ / 0 99 / 1 / 0+ 98 / 2 / 0+ 94 / 6 / 0+ 80 / 16 / 4 54 / 28 / 18 28 / 24 / 47 13 / 11 / 75 7 / 3 / 90 5 / 1 / 94
9 100 / 0+ / 0 100 / 0+ / 0+ 100 / 0+ / 0+ 99 / 1 / 0+ 96 / 3 / 1 83 / 11 / 7 59 / 19 / 22 36 / 15 / 49 23 / 7 / 70 18 / 3 / 80

10 100 / 0 / 0 100 / 0 / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 99 / 0+ / 0+ 95 / 3 / 2 82 / 8 / 10 62 / 11 / 27 46 / 7 / 47 39 / 2 / 59
11 100 / 0 / 0 100 / 0 / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 98 / 1 / 1 92 / 3 / 6 78 / 4 / 17 64 / 3 / 33 53 / 0+ / 47
12 100 / 0 / 0 100 / 0 / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 99 / 0+ / 1 94 / 1 / 5 83 / 1 / 16 64 / 0+ / 36 0 / 0 / 100

TABLE V: Win/draw/loss percentages (rounded) in the (extended) standard variant for subspaces where no stones are left to
be placed (White to move). The first numbers of the rows and columns show the number of stones on the board for White
and Black, respectively. This table is the same for Lasker Morris.

3 4 5 6 7 8 9 10 11 12
3 83 / 0 / 17 20 / 78 / 2 3 / 92 / 5 0+ / 60 / 40 0 / 17 / 83 0 / 0+ / 100 0 / 0 / 100 0 / 0 / 100 0 / 0 / 100 0 / 0 / 100
4 21 / 78 / 1 6 / 93 / 1 1 / 95 / 4 0+ / 36 / 64 0 / 8 / 92 0 / 0+ / 100 0 / 0 / 100 0 / 0 / 100 0 / 0 / 100 0 / 0 / 100
5 43 / 57 / 0+ 12 / 88 / 0+ 9 / 89 / 2 3 / 53 / 44 1 / 18 / 82 0+ / 2 / 98 0+ / 0+ / 100 0+ / 0+ / 100 0+ / 0+ / 100 0+ / 0 / 100
6 88 / 12 / 0 90 / 10 / 0+ 82 / 18 / 0+ 52 / 33 / 15 19 / 35 / 46 3 / 9 / 88 0+ / 1 / 98 0+ / 0+ / 100 0+ / 0+ / 100 0+ / 0+ / 100
7 99 / 1 / 0 99 / 1 / 0 98 / 2 / 0+ 88 / 10 / 2 60 / 24 / 16 25 / 24 / 51 6 / 8 / 87 1 / 1 / 98 0+ / 0+ / 100 0+ / 0+ / 100
8 100 / 0+ / 0 100 / 0+ / 0 100 / 0+ / 0+ 99 / 1 / 0+ 91 / 6 / 3 67 / 15 / 18 32 / 15 / 53 10 / 6 / 84 2 / 1 / 96 1 / 0+ / 99
9 100 / 0 / 0 100 / 0 / 0 100 / 0+ / 0+ 100 / 0+ / 0+ 99 / 1 / 0+ 92 / 4 / 4 70 / 10 / 21 39 / 9 / 52 17 / 4 / 79 9 / 1 / 90

10 100 / 0 / 0 100 / 0 / 0 100 / 0+ / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 99 / 1 / 1 91 / 3 / 7 70 / 6 / 24 45 / 5 / 50 31 / 2 / 67
11 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 97 / 1 / 2 87 / 2 / 11 68 / 3 / 29 56 / 0+ / 44
12 100 / 0 / 0 100 / 0 / 0 100 / 0 / 0 100 / 0+ / 0+ 100 / 0+ / 0+ 100 / 0+ / 0+ 98 / 0+ / 1 91 / 1 / 8 75 / 0+ / 25 0 / 100 / 0

TABLE VI: Win/draw/loss percentages (rounded) in Morabaraba for subspaces where no stones are left to be placed (White
to move). (Note that the bottom right entry depends on whether we use the rule that a full board results in a draw.)

3 4 5 6 7 8 9 10 11 12
3 26 33 31 6 30 34 30 16 14 12
4 32 9 28 156 112 112 110 26 20 18
5 3 29 57 162 160 160 114 114 54 34
6 7 157 163 167 184 186 173 169 169 135
7 31 111 159 185 181 204 202 180 152 134
8 33 111 153 185 203 196 202 202 180 162
9 25 103 113 172 201 201 191 191 186 180

10 15 19 113 168 179 181 189 192 193 176
11 13 17 33 134 151 179 185 185 185 148
12 11 15 31 128 125 161 161 175 147 0

TABLE VII: Maximal depth-to-win values for the (extended)
standard variant for subspaces where no stones are left to be
placed (White to move). This table is the same for Lasker
Morris.

3 4 5 6 7 8 9 10 11 12
3 16 23 27 32 34 34 16 8 8 8
4 22 19 34 46 42 38 20 12 12 10
5 26 35 33 56 60 56 54 38 27 27
6 33 45 57 81 86 86 78 56 48 39
7 33 41 59 87 101 102 96 96 85 69
8 33 31 55 83 101 103 102 106 108 94
9 9 13 43 77 95 103 105 108 110 108
10 7 11 25 53 93 107 109 111 112 114
11 7 11 26 46 68 94 109 113 103 96
12 7 9 13 34 51 93 106 106 90 N/A

TABLE VIII: Maximal depth-to-win values for Morabaraba
for subspaces where no stones are left to be placed (White to
move)

is also 0. This results in that lots of games still end with a
draw (often in a 0-ranked subspace) even with our ultra-strong
solution. However, the number of these games is substantially
less than without distinguishing the draws.

The ultra-strong solution works better for Lasker Morris:
here, the value of the starting position is 399. This means that

0.1-0.2 0.2-0.4 0.4-0.8 0.8-1.6
Ultra-str. (W/D/L rat. heur.) 57% 42% 28% 25%
Ultra-str. (stone diff. heur.) 52% 51% 36% 32%
Strong 17% 21% 17% 12%

TABLE IX: Win ratios of the strong and the two ultra-strong
solutions in the standard variant against the heuristic (α-β)
opponent with different node count settings: the numbers in
the header give the number of nodes (in millions) searched
by the heuristic program before each move (uniform random
in the given interval, to provide greater variety to the games).
Each match consisted of at least 200 games. (The sides were
switched after each game.)

when the program is the first player, it starts from a substantial
advantage, and the opponent is just a small mistake away from
losing the game.

To actually test the effectiveness of the ultra-strong solu-
tions, we ran matches of the standard variant against a non-
perfect program that uses α-β search7. The ultra-strong solu-
tions performed significantly better than the strong solution.
We also compared the two heuristics for assigning values
to stable states. We expected the win/draw/loss ratio based
heuristic to be better, but the results have not confirmed this.
The win ratios can be seen in Table IX. In all our test games,
the game was considered a draw if 50 consecutive moves
happened without placing or taking a stone.

We also did some testing at a website (flyordie.com)
where usually humans play against each other. With the

7The program uses iterative deepening, transposition table, enhanced trans-
position cutoff, and killer move heuristic. It examines about 2-4 million nodes
per second, and achieves ∼9-21 plies. The evaluation function takes into
account the stone ratio, the number of available stone-sliding moves, and the
possession of the points of the board that have four neighbors.
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d7, d6; d2, f4; b6, b4; e4, c3; c4, d3; e3, e5; f2,
d1; g7, a7? (the value becomes the value of the 8,9,0,0 subspace; the
only move that would have kept the value 0 is c5); b2xb4, b4;
g7-g4, e5-d5; e4-e5, d1-a1; e3-e4, b4-a4xd7? (now we
are heading for the 3,6,0,0 subspace; the only move that would have kept
the value is a1-d1); c4-b4xd6, a1-d1; b4-c4, a4-b4;
g4-g7, a7-d7; e4-e3, d5-d6? (the value of the position after this
move is win in 75 moves); e5-d5, d7-a7; g7-d7, d1-a1;
e3-e4, d3-e3 (win in 21 moves); d2-d1, b4-a4xd7;
c4-b4xf4, a7-d7; d1-d2xa1, Black resigns

Fig. 8: A won game of standard Nine Men’s Morris against a
strong master player at the flyordie.com website. Moves that do
not keep the game-theoretic value (in the ultra-strong solution
sense) are marked with a “?”. Our program played as White.

f4, b4; a4, d2; f6, f2; b2, d7; d1, g7; a7, a1; d5,
g4; g1, c3; e3, c5; f6-d6, d2-d3; f4-e4, b4-c4xd5?;
d6-d5, g4-f4; d5-e5xa1, c4-b4; e5-d5, b4-c4xd5;
b2-b4, d3-d2; a4-a1xf4, g7-g4; e4-f4, c3-d3;
b4-a4xc4, Black resigns

Fig. 9: A won game of standard Nine Men’s Morris against
the strongest player at the flyordie.com website. Our program
played as White. The crucial mistake is made at the move
marked with a “?”. The position after this move is a win in 41
moves. b4-c4xe3 would have kept the draw (in a 0 valued
subspace).

standard variant, the ultra-strong program played 36 games
against players titled “master” in the website’s scoring system,
and was able to win 18 of these (50%). The strong program
played 47 games against masters, and won only 11 (23%).
The ultra-strong program also played 19 games with the
strongest player on the website (among thousands), of which
our program was able to win 6 (32%). Two of the games
played against strong humans can be seen on Figs. 8 and 9.
(The α-β program is just below master level on the same
website.)

In Lasker Morris, there were not enough strong players at
the website to carry out proper testing, but the ultra-strong
version seemed to be stronger here as well. In Lasker Morris,
draws are much less frequent than in the standard variant
(even with the strong solution). Recall, that according to our
algorithm, the value of the starting position of Lasker Morris
is quite high. The correctness of this is somewhat corroborated
by the fact, that we won every one of the 16 games that the
ultra-strong program played as the first player (often by the
opponent making a fatal mistake in the first few moves), but
there were two draws among the 17 games when playing as
the second one.

We had the same problem with Morabaraba (not enough
strong players). Additionally, when the ultra-strong program
played Morabaraba as the second player, it usually either lost
the game or the game transitioned directly from a losing
position into a winning position. Unfortunately, this means
that our ultra-strong solution did not help in these games, as
only the draw-valued positions are treated differently from that
of the strong solution. (In non-draw positions both optimize
for DTW.)

We also experimented with some local heuristics to choose
between the moves that the database says to be optimal, but

Subspace Rank %
N/A 0 64.21%
6,3,0,0 112 15.6 %
3,6,0,0 -112 12.34%
3,5,0,0 -60 1.3 %
5,3,0,0 60 1.19%
5,4,0,0 29 0.78%
9,8,0,0 59 0.72%
8,7,0,0 113 0.65%
7,8,0,0 -113 0.54%
8,9,0,0 -59 0.53%
Other 2.13%

(a)

Subspace Rank %
N/A 0 55.66%
6,3,0,0 231 13.78%
3,6,0,0 -231 12.67%
4,3,0,1 -88 2.96%
3,4,1,0 88 2.59%
5,3,0,0 184 1.23%
3,5,0,0 -184 1.16%
9,8,0,0 354 0.96%
8,7,0,0 361 0.71%
8,9,0,0 -354 0.70%
Other 7.58%

(b)
Subspace Rank %
3,4,0,0 -11 37.86%
4,3,0,0 11 27.97%
N/A 0 11.51%
5,3,0,0 54 8.38%
3,5,0,0 -54 7.69%
5,4,0,0 28 1.01%
4,5,0,0 -28 0.96%
11,10,0,0 86 0.71%
10,11,0,0 -86 0.65%
10,9,0,0 99 0.40%
Other 2.87%

(c)

TABLE X: Distribution of first keys (adjusted to absolute
viewpoint) among draws when draws are distinguished for
standard Nine Men’s Morris (a), Lasker Morris (b), and
Morabaraba (c)

Diff %
5 0 %
4 0 %
3 15.6 %
2 1.44%
1 30.82%
0 3.44%

-1 34.95%
-2 1.51%
-3 12.23%
-4 0.01%
-5 0 %

(a)

Diff %
5 0.00%
4 0.01%
3 13.85%
2 1.90%
1 32.31%
0 5.93%

-1 31.62%
-2 1.66%
-3 12.73%
-4 0.01%
-5 0.00%

(b)

Diff %
5 0 %
4 0.01%
3 0.07%
2 8.88%
1 30.73%
0 11.51%

-1 40.59%
-2 8.14%
-3 0.07%
-4 0.01%
-5 0 %

(c)

TABLE XI: Distribution of first keys (adjusted to absolute
viewpoint) among draws when draws are distinguished for
standard Nine Men’s Morris (a), Lasker Morris (b), and
Morabaraba (c) using the stone difference heuristic

these did not have a significant effect on the results. (For
example, minimizing the number of optimal moves in the
position that results from our move.)

D. Verification of the calculations

We took the approach of Gasser [5] for the verification of
the databases: a separate verifier program went through all the
positions, and checked if their values are consistent with the
values of their successors (also taking into account DTWs).

VI. CONCLUSION

We strongly solved Morabaraba, which turned out to be
a win for the first player in 49 moves. We also calculated
extended strong solutions for Nine Men’s Morris, Lasker
Morris, and Morabaraba which provided some insights into
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these games (and also confirmed the result of Stahlhacke [8]
that Lasker Morris is a draw).

Furthermore, we developed a multi-valued retrograde anal-
ysis. Then we modified this to have an algorithm which can
solve these games ultra-strongly. This means that the program
has a much higher chance to win a game of Nine Men’s
Morris or Lasker Morris against a fallible opponent instead
of just drawing it, compared to a program which uses only a
strong solution. This is important, because when a program is
playing Nine Men’s Morris based only on the strong solution,
it is surprisingly easy for the opponent to achieve a draw. The
algorithm classifies draws into subclasses based on a heuristic
value of the subspace that can be reached via perfect play. We
investigated two heuristics for the subspace values.

We compared our ultra-strong solution to the strong solution
by having them play against a heuristic (α-β) program, and
against human players, and found that it achieved wins more
often.

VII. FUTURE WORK

A. Splitting positions based on the type of the player to move

When we are aiming for the strong solution, the players
can be treated identically, but from the point of view of the
ultra-strong solution, there is a perfect player, and a fallible
one. (For simplicity, we refer to these as computer and human,
respectively.) Note that previously we did not specify the type
of the player to move in a given position. At the expense of
doubling the state space, one can use more refined heuristics.
Subspaces get a fifth parameter which specifies the player to
move. This way, non-transient work units have exactly two
subspaces: one human-to-move and one computer-to-move.
Since these subspaces must have the opposite values, it is more
convenient to talk about assigning values to work units. These
values are the same as the values of the computer-to-move
subspaces in the work units.

Now we can use a heuristic that assigns high value to a
work unit where most of the computer-to-move positions are
wins (and therefore the fallible player can easily wander into a
loss), but disregards the values of the human-to-move positions
(since the program does not make any mistakes when choosing
the human-to-move position to move into). Previously we
assigned neutral values to the subspaces of work units with
many draws in it, but now we can assign low/high values to
the computer/human-to-move subspaces of such work units.
The motivation behind this is that a drawish work unit is bad
for the perfect player if he wants to get his opponent to make
a mistake, and is good for the human, since he can achieve a
draw more easily (he cannot hope to win anyway).

Note that this might also solve the problem that too many
subspaces had to be assigned the value of 0.

B. Generalization to other games

Our draw distinguishing algorithm can be used for any
game with the properties described at the beginning of the
introduction. But to be effective, there should exist a fine-
grained enough partitioning of the state space, so that the
partitions can be assigned meaningful heuristic values, and all

cycles are confined to within one partition. In the general case,
the splitting of positions to computer-to-move and human-to-
move positions described in the previous subsection would be
required8. The partitions would correspond to the work units,
and the subsets where a specific player type is to move would
correspond to subspaces.

For example, a checkers playing program could probably
benefit from this algorithm. The state space of that game is
much larger, so our algorithm could only be used for some
endgame databases, but that could still make a difference in
some cases.
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