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Abstract: The occurrence of extreme phenomena and their devastating impact
have been on the agenda, especially in areas of environmental and economic-
financial sciences, extending to insurance activity. The theory of extreme values
allows an adequate approach in the statistical study of data associated with this
type of phenomena. Heavy tail models thus play an important role and are in-
creasingly a resource. In this work we will revisit some max/min-autoregressive
and maximum-moving models and contribute to their characterization by deriv-
ing their autocorrelation structure based on the Spearman and Kendall coeffi-
cients, both useful tools in the identification of models in real data applications.
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1 Introduction

Climate change, as well as economic and financial crisis, are affecting our
daily lives, with impacts that can be tragic. Data analysis of extreme values
has been assuming a growing importance between the scientific community
and the theory of extreme values offers itself as an appropriate tool. The
occurrence of extreme phenomena generates data from heavy tails, that is,
data from random variables (r.v.’s) whose linearly normalized maximum
distribution lies in the domain of attraction of a Fréchet law. ARMA linear
models with Gaussian innovations, while very versatile and popular, are
not suitable for heavy-tail data. MARMA or max-ARMA models, in which
the sum operator (Σ) and the Gaussian law are respectively replaced by the
maximum operator (

∨
) and the Fréchet law, appeared as an alternative,
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with a simpler theoretical treatment (Davis and Resnick, 1989). Pareto
autoregressive models are based on the minimum operator (

∧
) and, as the

name implies, have a Pareto marginal law. Various application properties
and/or examples can be seen in, e.g., Alpuim (1989), Arnold (2001), Carcea
et al. (2015), Ferreira and Ferreira (2013), and references therein.
In this work we will consider the first-order max-autoregressive model
MARMA(1,0) or MAR(1), the moving-maximum model MARMA(0,1) or
MMA(1) and the first order Pareto autoregressive model, Yeh-Arnold-
Robertson Pareto(III), denoted YARP(1). Our aim is to characterize the
behavior of the autocorrelation function, contributing to the identification
of these processes in the context of modeling. Since this function implies
the existence of finite second moments, which is not always assured in
heavy-tail models, we will derive the variants of Spearman’s ordinal and
Kendall’s concordance autocorrelation. Based on a simulation study, we
will see that classical estimators of Spearman and Kendall coefficients have
a good performance.

2 MAR(1), MMA(1) and YARP(1) models

Consider the innovations sequence {Zn}n≥1 of independent and identically
distributed (i.i.d.) r.v.’s with unit Fréchet distribution function (d.f.), i.e.,
FZ(x) = exp(−1/x), x > 0. Then {Xn}n≥1, satisfying the recursion,

Xn = cXn−1 ∨ (1− c)Zn, 0 < c < 1, (1)

is said to be a first order max-autoregressive process, denoted MAR(1). As-
sume that X0 has also a unit Fréchet d.f., and thus FX(x) = exp(−1/x) =
FZ(x) ≡ F (x), x > 0.
The first order moving-maximum, MMA(1), satisfies the recursion,

Xn = cZn ∨ (1− c)Zn−1, 0 < c < 1 (2)

Consider Z0 with unit Fréchet d.f., and thus FX(x) = exp(−1/x) = FZ(x) ≡
F (x), x > 0.
Consider the innovations sequence {εn}n≥1, whose r.v.’s are i.i.d. coming

from a Pareto(III)(0,σ,α), i.e., 1 − FX(x) = [1 + (x/σ)
α

]
−1

, σ, α > 0 and
sequence {Un}n≥1 of i.i.d. r.v.’s coming from Bernoulli(p), 0 < p < 1,
independent of εn, n ≥ 1. The sequence {Xn}n≥1, is said to be a first order
autoregressive Yeh-Arnold-Robertson Pareto(III), in short YARP(1), if

Xn = p−1/αXn−1 ∧
1

1− Un
εn (3)

holds, where 1/0 corresponds to +∞. The marginal d.f. is Pareto(III)(0,σ,α),
and we consider X0 _Pareto(III)(0,σ,α) (Arnold, 2001). In the following
we assume, without loss of generalization, that σ = α = 1.
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3 Results and conclusions

Pearson’s linear correlation is perhaps the most well-known and used mea-
sure of dependence. Its popularity is essentially due to the fact that it is
the main measure of dependence on the elliptical distributions, such as the
multivariate normal and t-Student. However, outside this family of distri-
butions can lead to a poor or erroneous characterization, counting that, it
presupposes the existence of second finite moments. Spearman (ρ(S)) and
Kendall (τ) correlation coefficients thus arise as alternative measures. Both
coefficients can be formulated based on the copula function (Embrechts et
al. 2002) and can be applied to vectors (X1, X1+m) of a stationary sequence
{Xn}n≥1, with common marginal fd F , now called lag-m autocorrelation,
for m = 0, 1, 2, . . . . Defining the lag-m copula function

Cm(u, v) = P (F (X1) ≤ u, F (X1+m) ≤ v), (u, v) ∈ [0, 1]2,

we have

ρ(S)m = 12

∫ 1

0

∫ 1

0

Cm(u, v)dudv − 3, τm = 4

∫ 1

0

∫ 1

0

Cm(u, v)dCm(u, v)− 1 . (4)

In this work, based on (4), we derive the expressions of Spearman and
Kendall coefficients within MAR(1), MMA(1) and YARP(1) processes,
stated below:

• MAR(1): ρ
(S)
m = 3cm

cm+2 and τm = cm;

• MMA(1): ρ
(S)
1 = 3c(1−c)

2−c(1−c) , τ1 = c(1−c)
1−c(1−c) and ρ

(S)
m = τm = 0, if m > 1.

• YARP(1): ρ
(S)
m = 3pm(1−p2m+2pm log(pm))

(1−pm)3 and τm = 2pm(1+pm(−1+log pm))
(1−pm)2 .

Observe that MAR(1) Kendal’s coefficient presents a geometric decrease,
similar to the first order linear auto-regressive process AR(1).
In representing the curves of each coefficient as function of the model pa-
rameter, for each lag-m, we see that Spearman’s autocorrelation is greater
than Kendall’s autocorrelation at smaller lags in all processes. Both types
of dependence increase as the model parameter also grows, in the case
of MAR(1) and YARP(1) processes, which is expected according to their
generation formula, respectively (1) and (3). This is not the case of the
MMA(1) process in (2) where the lag-1 autocorrelation increases if c ∈
]0, 1/2[ but decreases as c ∈]1/2, 1[ grows. Both autocorrelation functions
are very similar within MAR(1) and YARP(1). However, whatever the lag-
m, the YARP(1) process always presents the highest correlations. On the
other hand, the MMA(1) presents the lowest ones.
A simulation study was conducted in order to evaluate the performance
of the classical estimators of Spearman and Kendall autocorrelation coef-
ficients. We have simulated 200 replicas of samples of size n = 1000 from
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each process, considering the values 0.25, 0.5, 0.75 for the respective pa-
rameters, at the lags m = 1, 2, 3, 4, and derived the absolute bias (abias)
and root mean squared error (rmse). The results are better for smaller lags
and are quite similar between the processes and between the coefficients.
In the larger lags, estimates tend to be slightly better for lower values of
the model parameter. To illustrate, we present the results of the MAR(1)
process in Table 1.

TABLE 1. Simulation results of MAR(1) process.

m=1 m=2 m=3 m=4

ρ
(S)
m abias rmse abias rmse abias rmse abias rmse

c=0.25 0.0224 0.0282 0.0255 0.0318 0.0257 0.032 0.0272 0.0338
c=0.5 0.0186 0.0244 0.0299 0.0386 0.0347 0.0439 0.0358 0.0439
c=0.75 0.0134 0.0167 0.0253 0.0311 0.0340 0.0417 0.0407 0.0501

m=1 m=2 m=3 m=4

τm abias rmse abias rmse abias rmse abias rmse

c=0.25 0.0151 0.0190 0.0170 0.0212 0.0171 0.0213 0.0181 0.0226
c=0.5 0.0147 0.0190 0.0207 0.0268 0.0232 0.0293 0.0237 0.0290
c=0.75 0.0121 0.0147 0.0201 0.0247 0.0255 0.0312 0.0294 0.0358
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