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Abstract

In the present work, we shall expose a general overview of the Standard Model

(SM) and a brief introduction of Supersymmetry (SUSY). With these ideas, we

shall set the bases on which the Minimal Supersymmetric Standard Model (MSSM)

is developed. The MSSM parameter space has more than 100 free parameters but

it can be constrained according to experimental evidences.

In order to do so, we shall a numerical analysis of the dependence of the mass of

the Higgs boson and W boson in that supersymmetric model. First, we �nd ranges

of free MSSM parameters that provide the mass of the light Higgs boson in the

MSSM h0 about 125 GeV i.e. that are in agreement with the mass of the Higgs

boson discovered by CMS and ATLAS in 2012. Afterwards, we study the e�ect

of these free MSSM parameters in the prediction of the W boson mass mW . In

particular, large di�erences between the MSSM and the SM prediction of the mass

ofW boson are sought in these ranges of free parameters. Finally, in agreement with

these di�erences, we discuss how the MSSM parameter space could be constrained

by (future) precision measurements of mW .

Keywords: Supersymmetry, Standard Model, Minimal Supersymmetric Standard
Model, Higgs boson, W boson, Free parameters, FeynHiggs





Resumen

En este trabajo, se expone una visión general del Modelo Estándar (SM) y una

breve introducción de Supersimetría (SUSY). Con estas ideas, se darán las bases

en las cuales se desarrolla el Modelo Estándar Mínimo Supersimétrico (MSSM). El

espacio de parámetros del MSSM lo componen más de 100 parámetros libres los

cuales pueden ser acotados de acuerdo a evidencias experimentales.

Para ello, se realiza un análisis numérico de la dependencia de la masa del bosón de

Higgs y del bosón W en este modelo supersimétrico. Primero, se hallan los rangos

de los parámetros libres del MSSM que proporcionan una masa del bosón de Higgs

ligero del MSSM h0 alrededor de 125 GeV, es decir, que esté de acuerdo con la masa

del bosón de Higgs descubierto por CMS y ATLAS en 2012. Después, se estudia el

efecto de estos parámetros libres del MSSM en la predicción de la masa del bosón W

mW . En particular, se buscan grandes diferencias entre las predicciones del MSSM y

del SM para la masa del bosón W . Finalmente, de acuerdo con estas diferencias, se

discute cómo acotar el espacio de parámetros del MSSM en base a (futuras) medidas

precisas para mW .

Palabras clave: Supersimetría, Modelo Estándar, Modelo Estándar Mínimo
Supersimétrico, Bosón de Higgs, Bosón W , Parámetros libres, FeynHiggs
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1 Introduction

Nowadays, the Standard Model (SM) of particle physics is (besides General Relativity)
the most important theory that we have because it includes all that know about sub-
atomic particles and their interactions. Moreover, this theory predicts the existence of a
scalar particle called Higgs boson, which was con�rmed by CMS [1] and ATLAS [2] (LHC
experiments) on 4 July 2012. This discovery closed the particle content of the SM but
open new frontiers for understanding it.

Additionally, the SM is not considered as a complete theory of fundamental interactions
since, although it has numerous successes and a huge experimental prediction, there are
some problems (or features) that this theory is not able to explain. Thus, the discovery of
the Higgs boson also opens new frontiers to theories beyond the Standard Model (BSM).

This work focuses on the Minimal Supersymmetric Standard Model (MSSM) [3�5], a well
motivated BSM theory. In particular, this model is the minimal extension to the SM
that includes Supersymmetry (SUSY) [6] that is a symmetry of nature that proposes a
relationship between bosonic and fermionic degrees of freedom, i.e. it predicts the existence
of new particles called superpartners.

The main reason to focus on the MSSM is because it solves many SM problems (The
MSSM has a candidate for Dark matter, it solves the problem of the stability of the mass
of the Higgs boson with respect to quantum corrections, the gauge couplings unify at
the GUT-scale,...). However, it is important to highlight that, unlike the SM, the MSSM
predicts the existence of �ve Higgs bosons, these are:

• Three neutral bosons: light Higgs boson h0 (CP-even) and two heavy Higgs boson
H0 (CP-even) and A0 (CP-odd). The mass of the light CP-even Higgs boson can
be calculated in terms of the other model parameters

• Two charged bosons: positive H+ and negative H− charged Higgs boson.

On the one side, it is important to say that, at this time, there is no experimental evidence
to support the MSSM (and SUSY) yet [7, 8]. Nevertheless, there is no experimental
evidence that contradicts the existence of SUSY.

On the other side, it is possible to put limits on the values of the free parameters of
the model that are achieved from experimental observations. So, it is possible to obtain
ranges of the values of the parameters that are not against to experimental observations.

In this work will give a general overview of the SM and a brief introduction of SUSY.
With these ideas, we can explain the bases on which the MSSM is developed. After this,
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we will do a numerical study of the dependence of the mass of the Higgs boson and W
boson in that supersymmetric model. That analysis will have two parts:

• It is studied the dependence of the mass of h0 with parameters of the MSSM. As
explained below, it is possible to link the MSSM light Higgs boson with the Higgs
boson discovered by CMS and ATLAS in 2012, whose mass is mexp

H = (125.09 ±
0.16) GeV [9]. So, this part focuses on varying a set of MSSM parameters in order
to get that the mass of h0 (the mh0 is predicted in terms of free MSSM parameters)
is close to 125 GeV i.e. �nd ranges of free parameters that are in agreement with
mh0 = (125± 3) GeV (the ±3 GeV is because of the theory uncertainty [10]).

• Within this allowed region, we study the e�ect of these free MSSM parameters in
the prediction of the W boson mass mMSSM

W , which experimental value is mexp
W =

(80.379± 0.013) GeV [11]. So, this part analyses the dependence of mMSSM
W within

the allowed parameter space. We show how much mMSSM
W can still deviate from

the SM predictions mSM
W . We discuss how the MSSM parameter space could be

constrained by (future) precision measurements of mW .

1.1 Natural units

In this work we shall use the typical system of units used in particle physics. It is known
as natural units where the fundamental constants are ~ (the unit of action in quantum
mechanics, ~ = 1.055 · 10−34 J s), c (the speed of light in vacuum, c = 2.998 · 108 m s−1)
and the mass of the particles are given in energy units GeV (1 GeV = 1 · 109 eV =
1.602 · 10−10 J).

On the one hand, using this system, all physics quantities are expressed as powers of GeV
as it is shown in Tab. 1.1.

Quantity Natural units ~ = c = 1

Mass GeV / c2 GeV

Momentum GeV / c GeV

Energy GeV GeV

Time (GeV / ~)−1 GeV−1

Table 1: Physics quantities and their units using natural units.
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On the other hand, in order to simplifying algebraic expressions (as we can see in Eq. (1), [12]),
this system introduces a subtle but important change: the physics constants ~ and c take
the same value ~ = c = 1,

E2 = p2c2 +m2c4 −→ E2 = p2 +m2. (1)

Moreover, we also used Heaviside-Lorentz units with the purpose of simplifying the equa-
tions of classical electromagnetism [12]. In this way, the relationship between �ne structure
constant αe and the electron charge is

αe =
e2

4π
≈ 1

137
. (2)

1.2 The Standard Model formalism

Once we have de�ned the system of units, we going to expose a brief review of the most
important properties of the fermion �elds in order to introduce elements that we will be
used in the next sections. Firstly, it is important to remark when we refer to Lagrangian
L in the text we will refer to Lagrangian density. The link between "real" Lagrangian L
and L is given by

L =

∫
L d4x. (3)

On the other hand, the fermions in the SM (see Fig. 1) are described by Dirac fermions thus
they are four-vector quantum �elds Ψ (it also know as Dirac spinors) whose description
is given by the Dirac Lagrangian as follow [12]

LDirac = iΨ̄γµ∂µΨ−mΨ̄Ψ, (4)

being Ψ̄ ≡ Ψ†γ0 and γµ are the gamma matrices (Eq.(4) and Eq.(9) are di�erent represen-
tations of the same Lagrangian). The form of those gamma matrices (with µ = 1, 2, 3, 4)
are

γ0 =

(
I 0
0 −I

)
, γk =

(
0 σk
−σk 0

)
, γ5 =

(
0 I
I 0

)
, (5)

being I the identity matrix, γ5 ≡ iγ0γ1γ2γ3 and σk the Pauli matrices de�ne as

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6)

Finally, we de�ne the projector operators as

PL = 1
2
(1− γ5), PR = 1

2
(1 + γ5). (7)
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Based on these operators, it is possible to rede�ne the Dirac spinors as

Ψ = PLΨ + PRΨ = ΨL + ΨR, (8)

where they are called left-handed and right-handed chiralities, respectively.
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2 Theoretical basis

Particle physics is a branch of physics whose purpose is to answer a transcendental ques-
tion: "what are we made of?" i.e. to know what are the smallest constituents of Universe
and to understand how they interact with each other. These constituents are called ele-
mentary particles and their interactions are called forces [12].

To know what are the elementary particles that constitute matter has been one of the
great goals of the science since the beginning of knowledge. Until the end of the 19th
century, physics considered that atoms were these fundamental constituents. This was
believed until 1911 when Ernest Rutherford, from a correct analysis of the Geiger-Marsden
experiments, concluded that atoms were composed of a charge positive nuclei with the
electrons around them [13]. Years later, in the early 20th century, with similar Geiger-
Marsden experiments, it was discovered that nuclei are composed of two types of particles:
protons (Ernest Rutherford in 1919 [14]) and neutrons (James Chadwick in 1932 [15]),
being these particles called nucleons. In 1969, from deep inelastic scattering experiments,
it was discovered that nucleons are not elementary since they are composed of a new
type of particle: quarks [16, 17]. At the current time, all of matter that we can see are
composed of quarks (quark u and quark d) and electrons, being these particles considered
as elementary particles.

On the other hand, as mentioned earlier, particle physics also studies the interaction
between particles. In the nature exists four fundamental forces where three of them are
described by a Quantum Field Theory (QFT) [18] (the electromagnetism, the weak and
the strong interaction) where the interaction between particles of matter, for example the
electromagnetism, are mediated by the exchange of photons. In short, the interactions are
described by the exchange of force-carrying particles where these are called gauge bosons.
The four fundamental forces and their respective gauge bosons are shown in Tab. 2

Interaction Gauge bosons Mass / GeV

Electromagnetic photon −→ γ 0

Weak
W boson −→ W±

Z boson −→ Z0

80.4

91.2

Strong gluon −→ g 0

Gravitational graviton (hypothetical) −→ G < 6 · 10−41

Table 2: The four fundamental forces of nature, the force-carrying particles and their

respective masses [19].
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Today, the only theory that successfully describes the behavior of these fundamental
particles is the Standard Model (SM) of particle physics. It describes very accurately
the weak, the strong and the electromagnetic interactions but it does not include the
gravitational interaction. In this section we will brie�y discuss the basics of this theory
and some problems (or features) that this theory can not answer.

2.1 The Standard Model

At the current time, the SM of particle physics (SM) is the most powerful theory at
experimental level which also predicts the existence of a set of particles which have been
discovered. In addition to that, it is the only theory of physics that provides a successful
description of three of the four fundamental forces of nature (the strong, the weak and
the electromagnetic interactions). However, as we will see in Sec. 2.1.6, it is important
to highlight that the SM presents some imperfections that this model is not able to
solve. Despite this, the SM is undoubtedly the best theory that provides a description of
behaviour of, until now, the considered fundamental particles.

2.1.1 Particle content of the SM

The SM contains a large number of particles which present di�erent characteristics and
di�erent ways to interacting. A good property to classify the particles is their spin. Those
particles that have spin 1/2 (half-integer spin) are called fermions and those that have
integer spin are known as bosons. The fermions f are also called matter particles and
they have two degrees of freedom expressed in terms of their chirality i.e. left-handed
and right-handed chirality (fL, fR) with exception of neutrinos which have only been
observed with left-handed chirality [20]. There are two types of fermions: quarks and
leptons. The quarks are the constituents of particles like protons and neutrons and these
elementary particles are the only ones that experiences the strong interaction plus the rest
of interactions1. On the other hand, there are two types of leptons: the neutral leptons
(or neutrinos), that only experiences the weak interaction, and the charged leptons (or
electron-like leptons), that feel both weak and electromagnetic interactions. Moreover,
the fermions can be organized in families of particles which have similar properties except
their masses. According this property, it is possible to de�ne three generations of particles:
the �rst generation (or the lightest generation) corresponds to the ordinary or "everyday"

1Although the SM is not able to explain gravitation and, today, it is not understood the behaviour of

subatomic particles through this force, it is assumed that all particles feel the graviational interaction.
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matter and the second and third generation (each heavier than the previous) correspond
to exotic matter. All the fermions are summarized in Fig. 1.

Figure 1: The particle content of the Standard Model of particle physics with their

respective masses plus the gravitational force and his hypothetical force-carrying particle:

the graviton [21].

As we mencioned previously, the particles with integer spin are called bosons. In the SM
(in agreement with the experimental discoveries) exits two types of bosons: the gauge
bosons and the Higgs boson. The gauge bosons2 have spin 1 and these are the carrier
particles of the fundamental interactions i.e. the interaction between particles is produced

2All discovered gauge bosons have spin 1 and, in addition to that, they also called as vector bosons.
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by the exchange of gauge bosons. The carrier particles of the electromagnetic interaction
are the photons γ, the carrier particles of the strong interaction are the gluons g and the
mediators of the weak interaction are the neutral Z boson Z0 and the charged W bosons
W±. On the other hand, the particle with spin 0 are known as Higgs boson3 which
exists as a consequence of the Brout-Englert-Higgs mechanism [22, 23] which is essential
to understand how matter particles and gauge bosons acquire their masses. Finally, all
the bosons are also summarized in Fig. 1.

2.1.2 Gauge symmetries

Most physical theories are formulated in the framework of the Quantum Field Theory
(QFT) which, in short, is a theoretical framework where the quantum mechanics and
special relativity are united. Moreover, it includes the idea of �eld which covers all the
space-time where the gauge bosons mentioned in Sec. 2.1.1 would be excitations of the
respective �elds [18]. Some �eld theories are based on gauge theories which, shortly,
the Lagrangian L is invariant under certain transformations of symmetry being the sym-
metries that make invariant the Lagrangian called gauge symmetries. Moreover, these
symmetries can be de�ned as local symmetries if these depend on the point of the space-
time.

In the next section, we describe the construction of the Lagrangian of quantum electro-
dynamics theory in order to give a better understanding of these concepts.

2.1.3 Quantum electrodynamics

The theory of quantum electrodynamics (QED) is the most simple gauge theory that was
developed and it describes the interaction of charged particles (with spin 1/2) with the
electromagnetic �eld. In this section, we will start with the Lagrangian of free fermionic
particle in order to build the Lagrangian of QED. It is important to say that many of the
following results, concepts and calculations are based on [12].

The Dirac Lagrangian for a fermionic charged particle, e.g. an electron, has the form

LDirac = Ψ̄(x)(iγµ∂µ −m)Ψ(x), (9)

where Ψ are the Dirac spinors, Ψ̄ ≡ Ψ†γ0 and γµ are the Dirac matrices.

3The Higgs boson has spin 0 thus it is a scalar boson.
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Now, we apply to Ψ a gauge transformation whose form is

Ψ(x) −→ Ψ′(x) = eiαΨ(x),
Ψ̄(x) −→ Ψ̄′(x) = e−iαΨ̄(x),

(10)

where α ∈ R. As LDirac does not change under a phase transformation, it is said that
Eq.(9) has a U(1) global symmetry4. However, we are interested in U(1) being a local
symmetry then it is necessary to change the parameter α as function to space-time i.e. to
de�ne α ≡ α(x). It is evident that, as we can see in Eq.(11), the Dirac Lagrangian does
not remain invariant under this transformation.

LDirac −→ L′Dirac = (e−iα(x))Ψ̄(x)(iγµ∂µ −m)(eiα(x))Ψ(x) =

=���
��

(e−iα(x))Ψ̄(x)(iγµ∂µ −m)
��

��(eiα(x))Ψ(x) +

+���
��

(e−iα(x))Ψ̄(x)(iγµ [i∂µα(x)])
��

��(eiα(x))Ψ(x)

=⇒ L′Dirac = Ψ̄(x)(iγµ∂µ −m)Ψ(x) − Ψ̄(x)γµ [∂µα(x)] Ψ(x) 6= LDirac.

(11)

In order to delete the extra term in Eq.(11) and, with that, get a Lagrangian invariant
under U(1) local symmetry it is necessary to add a new vector �eld Aµ(x) which is a
gauge �eld associated to the photon. This new �eld changes as

Aµ(x) −→ A′µ(x) = Aµ(x) +
1

q
∂µα(x), (12)

where q is the electric charge. Besides that, it is required to rede�ne the derivate as

∂µ −→ Dµ ≡ ∂µ − iqAµ(x). (13)

Then, if we replace ∂µ with Dµ in Eq.(9), we will a new Dirac Lagrangian like follow

LDirac = Ψ̄(x)(iγµDµ −m)Ψ(x) = Ψ̄(x)(iγµ∂µ −m)Ψ(x) + qΨ̄(x)γµΨ(x)Aµ(x) (14)

where if we apply a U(1) local transformations, we have

LDirac −→ L′Dirac = Ψ̄(x)(iγµ∂µ −m)Ψ(x) −
((((

((((
(((

Ψ̄(x)γµ [∂µα(x)] Ψ(x) +

+
((((

(((
((((Ψ̄(x)γµ [∂µα(x)] Ψ(x) + qΨ̄(x)γµΨ(x)Aµ(x)

=⇒ L′Dirac = Ψ̄(x)(iγµ∂µ −m)Ψ(x) + qΨ̄(x)γµΨ(x)Aµ(x) = LDirac.

(15)

4The global group U(1) is composed for all complex numbers with absolute value equal to 1 [24].
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which, as it has been demonstrated, remains invariant under U(1) local transformations.
At last, including in Eq.(15) the kinetic term for the massless spin 1 �eld (from Maxwell's
equations Lagrangian in the vacuum) the QED Lagrangian can be written as

LQED = −1

4
FµνF

µν − jµAµ + Ψ̄(x)(iγµ∂µ −m)Ψ(x), (16)

where jµ = −qΨ̄(x)γµΨ(x) is the four-vector current density, Fµν = ∂µAν −∂νAµ and the
FµνF

µν term is also invariant under U(1) local transformations.

Finally, it is important to emphasize the fact that we have required a local gauge symmetry
in the Lagrangian of our system it has led us to build a Lagrangian description of the
electromagnetic interaction.

2.1.4 Electroweak interaction

In the same way that the SM describes QED as U(1) gauge local symmetry, it explains
the weak interaction as SU(2)L gauge local invariance where the L subindex is due to
this symmetry only a�ects left-handed fermions. Under this interaction, the fermions
"charge" is called weak isospin I. According to the de�nition of I, it is possible to write
the wavefunction ϕ in terms of the isospin doublets and singlets. The isospin doublet for
left-handed fermions has the expression

ϕL =

(
νe
e−

)
L

, (17)

for the �rst generation of leptons. As we can see in Eq.(17) ϕL is a doublet that has

total weak isospin I equal to 1/2 and the third component of weak isospin I
(3)
L is equal

to +1/2 for νeL and equal to −1/2 for eL. On the other hand, for right-handed fermions,

the weak isospin is a singlet ϕR = e−R whose value IR = I
(3)
R = 0. In addition to that, due

to the presence of this isospin, it is neccesary the existence to three weak current one for
each gauge �elds W

(k)
µ (with k = 1, 2, 3) i.e. the gauge �elds W

(k)
µ are the �elds associate

to SU(2)L gauge local group. At last, combinations of W
(1)
µ and W

(2)
µ give rise to weak

charged-currents which are associated to W± bosons.

However, we have a weak neutral-current that is not yet possible to identify with the Z0

boson. Starting from this, we have γ boson gauge associates a Aµ gauge �eld and Z0

boson gauge associates a Zµ gauge �eld (we have not yet de�ned it), both are neutral.
Nevertheless, the U(1) local group does not couple with the SU(2)L. Starting from this,
Glashow, Salam and Weinberg (GSW) [25�27] build a new model that explains the weak
and electromagnetic interaction as a only one force: the electroweak interaction (EW).

10



First, GSW electroweak model changes the U(1) local gauge symmetry for U(1)Y , where
Y is called hypercharge which couples with a new gauge �eld Bµ. Moreover, the Y is
related with electric charge and third component of weak isospin I(3). The Y can be
identi�ed as

Y = 2
(
Q− I(3)

)
, (18)

where this expression is known as Gell-Mann-Nishijima formula [28,29]. Now, the Aµ and

Zµ gauge �elds are witten as lineal combinations of the W
(3)
µ and Bµ as follow in this

uni�ed model
Aµ = +Bµ cos θW +W

(3)
µ sin θW ,

Zµ = −Bµ sin θW +W
(3)
µ cos θW ,

(19)

where θW is the weak mixing angle. Finally, we will build the simplest electroweak
Lagrangian LEW which is invariant under SU(2)L × U(1)Y . First, we de�ne the isospin
doublets left-handed and singlets right-handed as

χe =

(
νeL
eL

)
, χu =

(
uL
dL

)
,

ψe = eR, ψu =

{
uR
dR

,

(20)

for the �rst generation of fermions. According to Eqs.(18 and 20) the isospin doublets
have the same YL value and the isospin singlets have YR 6= 0 which involves that, as
expected, the right-handed fermions couple with Bµ gauge �eld. In addition to that, it is
necessary to rede�ne the derivates as follows

DLµ = ∂µ − ig2
σk
2
W

(k)
µ + ig1

YL
2
Bµ, DRµ = ∂µ + ig1

YR
2
Bµ (21)

where g2 and g1 are the gauge couplings of weak isospin (or weak mixing) and hypercharge,
respectively, being both couplings relate to the electron charge by

e =
g1g2√
g2

1 + g2
2

, (22)

and both couplings are related to the weak mixing angle by

e = g2 sin θW = g1 cos θW . (23)

This relation between both couplings allows us to de�ne the gauge �elds in Eq.(19) as
follows

Aµ =
1√

g2
1 + g2

2

(+g1Bµ + g2W
(3)
µ ),

Zµ =
1√

g2
1 + g2

2

(−g1Bµ + g2W
(3)
µ ),

(24)
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Based on all of the above, the simplest electroweak Lagrangian L can be written as

LEW =
∑
f

(
χ̄f iγ

µDLµχf + ψ̄f iγ
µDRµψf

)
− 1

4
W (k)
µν W

(k)µν − 1

4
BµνB

µν , (25)

where the χf and ψf refer to each doblets and singlets of fermions and it has been included

the kinetic terms associate to Bµ and W
(k)
µ gauge �elds. However, the main problem of

this electroweak Lagrangian is there are not mass terms for fermions and bosons and, as
we know experimentally, all the particles (except the photon γ) involved in the electroweak
interaction have mass. So, it is necessary that appear mass terms in Eq.(25), specially
with the form

−mf Ψ̄fΨf , (26)

for fermions and with the form

+
1

2
m2
XXµX

µ, (27)

for bosons, being Xµ a gauge �eld. If we include these terms in Eq.(25), LEW will be not
invariant under SU(2)L×U(1)Y transformations thus it is necessary to �nd a mechanism
to provide mass to fermions and the electroweak bosons. The way in which these particles
get their mass through the Brout-Englert-Higgs mechanism [22,23], it also well known as
the Higgs mechanism5.

2.1.5 The Higgs mechanism

In the SM, particles acquire their mass through their interaction with the Higgs �eld
which is a quantum �eld that permeates all the space. The way that mechanism gives
mass to the electroweak bosons is due to break spontaneously the electroweak symmetry.
For this it is necessary to include in Eq.(25) the corresponding new contribution of this
mechanism which form is

LH = (DLµφ(x))†Dµ
Lφ(x)− V (φ(x)), (28)

where φ(x) is a complex doublet and it is well known as Higgs doublet which can be
written as

φ(x) =

(
φ+(x)
φ0(x)

)
, (29)

where φ+ and φ0 have two components each one therefore the Higgs doublet contains four
degree of freedom. Moreover, the scalar potential V (φ(x)) is given by

V (φ(x)) = −µ2
SMφ

†φ+
λ

4
(φ†φ)2 = −µ2

SM|φ|2 +
λ

4
|φ|4. (30)

5From now on, we will refer to the Brout-Englert-Higgs mechanism as the Higgs mechanism.
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The most important feature of this potential is it has a non-zero minimum when (φ†φ)0 =

|φ|20 =
2µ2SM
λ
≡ v2

2
where v is the vacuum expectation value (vev). This potential has

that non-zero minimun when µ2
SM > 0, being this feature which makes that the Higgs

mechanism breaks the EW symmetry. Then, we can choose the vev for the Higgs �eld as

|φ|0 =
v√
2

=⇒ φ0 =
1√
2

(
0
v

)
, (31)

and the Higgs doublet in Eq.(29) can be expanded about this minimum as follows

φ(x) =

(
ξ1(x) + iξ2(x)

v + η(x) + iξ4(x)

)
, (32)

where η(x) is a scalar �eld and ξ1, ξ2 and ξ3 are �elds associated with non-physical
Goldstone bosons. If we write the Higgs doublet φ(x) as gauge unitary6, we will obtain
φ(x) as follows

φ(x) =

(
0

v +H(x)

)
, (33)

where H(x) is a physical �eld that is associated with the Higgs boson. Based on the last
result, we can understand that one φ degree of freedom turns into a physical Higgs boson.
As we will see, the other three degrees of freedom are used to give mass of the W±, Z0

gauge bosons. If we substitute the last result in LH we will get terms which correspond
with mass terms of the EW bosons. We call at the part of LH that only considers the
EW mass terms as LEWmasses, whose form is

LEWmasses =
v2g2

2

4

(
W (1)
µ + iW (2)

µ

) (
W (1)µ − iW (2)µ

)
+
v2

4

(
−g1Bµ + g2W

(3)
µ

)2
, (34)

where, at the same way to Eq.(24), it is possible to de�ne two new �elds as lineal combi-

nantions of the W
(1)
µ and W

(2)
µ as follows

W+
µ =

1√
2

(
W

(1)
µ − iW (2)

µ

)
,

W−
µ =

1√
2

(
W

(1)
µ + iW

(2)
µ

)
,

(35)

where that are the gauge �elds associate to W± gauge bosons. Finally, if we consider the
expresions in Eqs.(24 and 35) and the boson mass term given by Eq.(27) we can write
LEW masses as

LEWmasses =
v2g2

2

8
W+
µ W

−µ +
v2

8
(g2

1 + g2
2)ZµZ

µ, (36)

6In short, to write the Higgs doublet as gauge unitary consists in to delete the Goldstone �elds and

to get a real �eld.
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and, in consequence, we can obtain the masses of the EW bosons. The mass expressions
of the EW bosons are:

1

2
m2
W =

v2g2
2

8
W+
µ W

−µ =⇒ mW =
vg2

2
(37)

for the W± bosons,

1

2
m2
Z =

v2

8
(g2

1 + g2
2)ZµZ

µ =⇒ mZ = v

√
g2

1 + g2
2

2
=

mW

cos θW
(38)

for the Z0 bosons and, as expected, that there is not mass term for the gauge �eld Aµ
implies that its respective gauge boson (the photon γ) has no mass. Similarly, it is possible
to get the fermions mass but now the fermions mass terms has the Eq.(26) form. Finally,
the expression of the coupling of Higgs boson HSM with fermions are:

LHSMf̄f = − g2mf√
2mW

f̄f HSM (39)

2.1.6 Standard Model problems

As we said at the beginning of the Sec. 2.1, the SM presents some imperfections or features
that it is not able to give resolve. These �aws open new frontiers to theories beyond the
Standard Model (BSM) which, keeping the structure of the SM, add new symmetries or
interactions in the model which involve new particles, i.e. the BSM theories are based on
the addition of new physic in the SM.

Below are shown a brief explanation to the main problems that the SM is not capable to
solve.

Dark matter

The dark matter receives this name because it is a kind of matter that does not interaction
with the electromagnetic radiation thus it is not possible to detect with our telescopes but
we can detect its gravitational in�uence. Most of the scienti�c community accepts the
existence of dark matter since there are many experimental astrophysical evidences that
prove their existence [30] as the measuring of the dynamics of galaxies or gravitational
lensing e�ect. It is true that there are alternatives to dark matter, as modi�ed gravity [31],
but they are not of able to describe the wealth of experimental data.

The experimental evidences show that dark matter must be massive and stable, without
electrc charge [32]. In all the particle content of the SM does not exist a type of particle
that could be a dark matter candidate, being this one of the main problems of the SM.
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Grand uni�cation

One of the goals of the theoretical physics is to get a Theory of Everything i.e. a theory
that uni�es the four fundamental forces of the nature. In the SM is possible to unify the
electromagnetism and the weak interactions in one just force: the electroweak interaction.
However, it seems that the strong interaction does not converge with the other forces in
the SM. The aim is to build a theory that �nds a energy scale for which the gauge
couplings gs, g1 and g2 (associated to strong interaction, hypercharge and weak isospin,
respectively) converge to a common value. Those theories are known as Grand Uni�cation
Theories (GUT) [33] and, as we can deduce, the SM is not a theory of this type.

Hierarchy problem

In this model, the hierarchy problem is know as the problem of naturalness of the SM
which is based on why the mass of the Higgs boson mH is so far from the Planck scale [34].
In the SM, the mass of the Higgs boson receives radiative corrections from all particles
with which it interacts then it would be natural for mH to be around at the theoretical
cut o�, the Planck scale, being this [35]

MPlanck =

√
~c

G
' 1019 GeV, (40)

where it is considered that the strength of the gravitational interaction is similar to
the strength of the other forces [36]. However, we know that the Higgs boson sets the
mass of the EW bosons W± and Z0 thus the mass of the Higgs boson must be around
mW ' mZ ' 100 GeV (CMS and ATLAS measured mexp

H = (125.09 ± 0.16) GeV). So,
the SM needs unnaturally large cancellations of contributions to mH i.e the Higgs boson
mass is another question that the SM is not capable to answer.

2.2 Supersymmetry

In the last decades, as a consequence of the problems of the SM, numerous BSM theoretical
models have been developed in order to solve these �aws that the SM presents. However,
among all these models, those that are based on the idea of Supersymmetry (SUSY) stand
out that, as described in [37], "... it is one of the most strikingly beautiful recent ideas in
Physics".

The SUSY base is sustained in the existence of new symmetry of the nature which re-
lates bosonic and fermionic degrees of freedom i.e. for each fermionic degree of freedom
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(fL, fR), corresponding to their chiralities, it has associated a bosonic supersymmetric
degree of freedom (f̃L, f̃R) and vice versa. In short, SUSY can be de�ned as a symmetry
transformation Q̂ that turns fermionic (bosonic) states into bosonic (fermionic) states as
follow

Q̂
∣∣Fermion

〉
=
∣∣Boson

〉
,

Q̂
∣∣Boson

〉
=
∣∣Fermion

〉
,

(41)

where the operator Q̂ relates these two states. In addition, it is important to say that
those new states will be referred as supersymmetric partners or superpartners.

As example of supersymmetric model, it is considered a particular case of the Wess-
Zumino model [38] composed by a massless left-handed fermion ΨL with spin 1/2 and a
massless boson with spin 0 de�ned by the complex escalar �eld φ, both without interaction
between them. For the following explanation we have taken into account [38] and [39].
The system described here is de�ned by the Klein-Gordon Lagrangian as

L = −∂µφ†(x)∂µφ(x) + iΨL(x)γµ∂µΨL(x). (42)

An in�nitesimal SUSY transformation on this system should change it as follow

φ(x) −→ φ′(x) = φ(x) + δφ(x)

ΨL(x) −→ Ψ′L(x) = ΨL(x) + δΨL(x)
, (43)

with
δφ(x) ' εΨL(x), δΨL(x) ' εφ(x), (44)

where ε is a parameter that characterize the SUSY transformation. As we can see, this
symmetry relates the scalar �eld φ with the spinor ΨL and vice versa. The next step would
be to correctly de�ne ε, δφ(x) and δΨL(x) in order to get that Lagrangian is invariant
under this type of symmetry transformation. A complete development can be seen in [39].

In this section, a brief introduction of how to construct a SUSY Lagrangian it has been
shown. Based on these ideas, in Sec. 2.3 it is exposed the Minimal Supersymmetric
Standard Model which is the simplest SUSY theory constructed from the SM.

2.3 The Minimal Supersymmetric Standard Model

The minimal supersymmetric extension of the SM is the Minimal Supersymmetric Stan-
dard Model (MSSM) i.e. the MSSM is the minimal supersymmetric theory that contains
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the SM. Consequently, this new model includes all the particle content of the SM plus the
new superpartner particles.

As we explained before, SUSY is a symmetry that links bosonic and fermionic degrees of
freedom: each bosonic degree of freedom have associated a fermionic degree of freedom and
vice versa. This is the reason for the existence of new particles which are superpartners
of SM particles. Moreover, notice that if SUSY is exact the superpartners must have the
same mass. Since these superpartners have not been discovered, they must have a mass
larger than their SM partners, i.e. SUSY is a broken symmetry [40]. According to this
aspect it is necessary to include new free parameters in this theoretical model. These new
parameters are called soft SUSY-breaking parameters which a�ect the SUSY particles in
order to these do not have the same mass as the SM particles.

In the following sections we will give a brief introduction of the MSSM sectors and we
will also highlight the most important free parameters in each sector.

2.3.1 The Higgs Sector of the MSSM

Within this theory, unlike the SM, it is necessary to have two complex Higgs doublets in
order to give masses to up-type and down-type fermions [41]. These doublets are Hu and
Hd and they have the form

Hu =

(
H+
u

H0
u

)
Hd =

(
H0
d

H−d

)
, (45)

where Hu (Hd) couples to u-type7 (d-type8) fermions i.e. complex Higgs doublets Hu and
Hd give the mass of u-type and d-type fermions, respectively.

On the other hand, each component of the Higgs doublets have linked a superpartner
with spin 1/2. These superpartners are called higgsinos and they have the form

H̃u =

(
H̃+
u

H̃0
u

)
H̃d =

(
H̃0
d

H̃−d

)
, (46)

which are discussed in Sec. 2.3.4. Like the SM, the reason why these doublets give the
mass of the rest of particles is because these doublets obtain a vev, called vu and vd for

7The u-type are the quarks u (up), c (charm) and t (top).
8The d-type fermions are the quarks d (down), s (strange) and b (bottom) and the leptons e− (electron),

µ− (muon) and τ (tau).
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Hu and Hd, respectively. Notice that vu and vd should not be independient, they must
satisfy

√
v2
u + v2

d = v ' 246 GeV. Moreover, we can de�ne vu and vd as

vu = v sin β, vd = v cos β, (47)

and, based on this de�nition, the ratio of vev is [37]

tan β =
vu
vd
, (48)

where tan β is a free parameter of the MSSM and, as we will see later, this is one of the
most important Higgs sector parameters.

Another important free parameter of the MSSM is the higgsino mass parameter µ which
appears into the scalar potential of the MSSM VMSSM [39]. Inside the Higgs sector, this
scalar potential of the neutral components has the form

VMSSM = (|µ|2 +m2
Hu)|H0

u|2 + (|µ|2 +m2
Hd

)|H0
d |2−

−BH0
uH

0
d −B∗H0∗

u H
0∗
d +

1

8
(g2 + g

′2)(|H0
u|2 − |H0

d |2)2,
(49)

where, as we explain later, µ also contributes in the mass of others supersymmetric par-
ticles.

The two complex Higgs doublets contain eight degrees of freedom. Like the SM, three of
them are used to give mass of the gauge bosons but now we have �ve degrees of freedom
which will turn into �ve physical Higgs bosons: three neutral (light Higgs boson h0 and
two heavy Higgs bosons, H0 and A0) and two charged (H+ and H−). At tree level, the
mass of these �ve Higgs bosons are [42, 43]:

A0 : mA0 ,

h0 : mh0 = 1√
2

(
m2
A0 +m2

Z −
√

(m2
A0 +m2

Z)2 − 4m2
A0m2

Z cos2(2β)
)1/2

,

H0 : mH0 = 1√
2

(
m2
A0 +m2

Z +
√

(m2
A0 +m2

Z)2 − 4m2
A0m2

Z cos2(2β)
)1/2

,

H± : mH± =
(
m2
A0 +m2

W

)1/2
,

(50)

where mh0 < mA0 < mH0 at tree level and the mass of A0 (or the mass of H±) is another
important Higgs sector parameter of the MSSM. However, according to h0 expression in
Eq.(50), the mass of h0 is bounded from above:

mh0 < mZ , (51)
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and, when the mass of A0 is much larger than the mass of Z boson m0
A � mZ , called the

decoupling limit [44], the tree level mass of h0 has the form [42]:

mh0 = mZ | cos(2β)|, (52)

when we assume the decoupling limit, the light Higgs boson h0 has a behavior to SM
model boson (called SM-like Higgs boson) and the other Higgs bosons A0, H0 and H±

are mass degenerate as we obtained with FeynHiggs-2.14.2 in the mmod+
h scenario, see

below.
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Figure 2: Masses of all MSSM Higgs bosons (h0, A0, H0 and H±) as a function of

mA0 . In the decoupling limit (mA0 � mZ) the light Higgs boson h0 has a behavior to

SM model boson and the other Higgs bosons are mass degenerate. Data obtained with

FeynHiggs-2.14.2 in the mmod+
h scenario.

According to Eq.(52), the mass of h0 must be lower than the Z boson mass i.e. mZ gives
an upper limit to the mass of the h0, mh0 < mZ = 91.2 GeV. This theoretical upper
limit for mh0 is far away from the experimental value of mH = 125 GeV at the LHC [9].
However, this di�erence is corrected by radiative corrections due to contributions from all
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sectors of the MSSM [45] then the mass of h0 has the form

m2
h0 = m2,tree

h0 + ∆m
2,t/t̃

h0 + ∆m
2,b/b̃

h0 + ∆m
2,τ/τ̃

h0 + ∆m2,QCD
h0 + ... (53)

wherem2,tree
h0 is the mass squared of h0 at tree level, ∆m

2,t/t̃

h0 are one-loop contributions from

top-stop sector, ∆m
2,b/b̃

h0 are one-loop contributions from bottom-sbottom sector, ∆m
2,τ/τ̃

h0

are one-loop contributions from tau-stau sector and ∆m2,QCD
h0 are two-loop contributions

from QCD corrections [46]. In this work, the most interesting contributions of Eq.(53)

are ∆m
2,t/t̃

h0 and ∆m2,QCD
h0 which are approximately given by [45]

∆m
2,t/t̃

h0 =
GF

√
2

π2
m4
t

[
log

(
m2
t

M2
S

){
−3

2
− 3

4

m2
Z

m2
t

cos 2β − m4
Z

m4
t

Λ cos2 2β −

− m2
Z

m2
A0

cos2 β cos 2β

(
6 +

3

2

m2
Z

m2
t

(1− 4 sin2 β)− m4
Z

m4
t

8Λ cos 2β sin2 β

)}
+

+

{
1

4

m2
Z

m2
t

− 11

80

m4
Z

m4
t

+
(Xt)

2

M2
S

(
3

2
− 1

2

m2
Z

m2
t

− 3

4

m2
t

M2
S

)
+

+
(Xt)

4

M4
S

(
−1

8
+

1

2

m2
t

M2
S

− 3

8

m4
t

M4
S

)
+

(Xt)
6

M6
S

(
− 3

40

m2
t

M2
S

+
3

10

m4
t

M4
S

− 1

4

m6
t

M6
S

)
+

+
(Xt)

6

M6
S

(
− 3

56

m4
t

M4
S

+
3

14

m6
t

M6
S

− 3

16

m8
t

M8
S

)}(
1 + 4

m2
Z

m2
A0

cos2 β cos 2β

)]
,

(54)

∆m2,QCD
h0 =− GF

√
2

π2

αs
π
m4
t

[
4 + 3 log2

(
m2
t

M2
S

)
+ 2 log

(
m2
t

M2
S

)
− 6

Xt

MS

−

− (Xt)
2

M2
S

{
3 log

(
m2
t

M2
S

)
+ 8

}
+

+
17

12

(Xt)
4

M4
S

](
1 + 4

m2
Z

m2
A0

cos2 β cos 2β

)
,

(55)

where Xt = At − µ/ tan β, At is the trilinear Higgs-stop coupling and MS =
√
mt̃1mt̃2 .

Λ is given by

Λ =
1

8
− 1

3

(
1− m2

W

m2
Z

)
+

4

9

(
1− m2

W

m2
Z

)2

. (56)
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In short, ∆m
2,t/t̃

h0 and ∆m2,QCD
h0 are proportional to m4

t and ∆m
2,b/b̃

h0 and ∆m
2,τ/τ̃

h0 are
proportional to m4

b and m
4
τ , respectively. Now, the upper limit to the mass of the h0 is

mh0 < 135 GeV [47] in accordance with the experimental value of mexp
H .

As we can see in [45], in the decoupling limit, when we only consider the corrections due
to one-loop contributions for the calculation of mh0 , the positions of extrema for the mass
of h0 are found

At − µ
tanβ

MS

=


√

6 (maximum)
0 (minimum)

−
√

6 (maximum)

. (57)

Now, taking into acccount the two-loop contribution ∆m2,QCD
h0 for the calculation of mh0 ,

the positions of extrema for the mass of h0 change in the following way

At − µ
tanβ

MS

=


√

6− αs
π

[
−1 + 3

√
6−
√

6 log
(
m2
t

M2
S

)]
(≈ +2; maximum)

−2αs
π

(≈ 0; minimum)

−
√

6 + αs
π

[
+1 + 3

√
6−
√

6 log
(
m2
t

M2
S

)]
(≈ −2; maximum)

, (58)

where the maxima are moved to smaller absolute values of
(
At − µ

tanβ

)
/MS and the

minimun stays close to zero.

Finally, in the same way as the SM, the Lagrangian of the MSSM has couplings of neutral
Higgs bosons with SM fermions [48]:

• Coupling with t quarks (idem to u and c quarks):

Lt̄t = − g2mt

2mW

cosα

sin β
t̄t h0 − g2mt

2mW

sinα

sin β
t̄t H0 +

g2mt

2mW

1

tan β
it̄γ5t A0, (59)

• Coupling with b quarks (idem to d and s quarks):

Lb̄b = +
g2mb

2mW

sinα

cos β
b̄b h0 − g2mb

2mW

cosα

cos β
b̄b H0 +

g2mb

2mW

tan βib̄γ5b A0. (60)

• Coupling with τ leptons (idem to e and µ leptons):

Lτ̄ τ = +
g2mτ

2mW

sinα

cos β
τ̄τ h0 − g2mτ

2mW

cosα

cos β
τ̄τ H0 +

g2mτ

2mW

tan βiτ̄γ5τ A0, (61)
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where, at tree level, the mixing angle α between mA0 and tan β has the form

tan(2α) =
m2
A0 +m2

Z

m2
A0 −m2

Z

tan(2β). (62)

Notice a very important fact, the Eqs.(59)−(61) have similar form that coupling of SM
Higgs boson HSM with fermions (39) but now it is necessary to include "MSSM correc-
tions" of the form of α and β trigonometric functions.

2.3.2 Sfermions: squarks and sleptons

In addition to the quarks and leptons that appear in the SM, the MSSM includes the
superpartners of these particles which are known as squarks and sleptons. For each
fermionic degree of freedom (fL, fR) we have two new sfermionic degree of freedom (f̃L, f̃R)
with spin 0. In order to get physical states [49] it is necessary to build a mass matrix M2

f̃

that contains mix terms which will mix with the eigenstates (f̃L, f̃R) as

Lsfermion mass = −
(
f̃ ∗L f̃ ∗R

)
M2

f̃

(
f̃L
f̃R

)
, (63)

where M2
f̃
contains, among other contributions, terms from the soft SUSY-breaking pa-

rameters that heavily a�ect the mass of sfermions, being these greater than the mass of
fermions. The mass matrix of the stops has the form [50]

M2
t̃ =

(
m2
t +M2

Q̃3
+DũL mt (At − µ/ tan β)

mt (At − µ/ tan β) m2
t +M2

ũ3
+DũR

)
, (64)

where MQ̃3
and Mũ3 are the soft SUSY-breaking mass parameters of the third genera-

tion of squarks and u-type squarks, respectively (In Appendix B it introduced MSUSY as
MSUSY = MQ̃3

= Mũ3). The form of DũL and DũR are function of tan β, mZ and another
parameters, but these complete expressions are not important for this work. The mass
matrix of the sbottoms and staus are built in a similar way, being these matrices [50]:

M2
b̃

=

(
m2
b +M2

Q̃3
+Dd̃L

mb (Ab − µ tan β)

mb (Ab − µ tan β) m2
b +M2

d̃3
+Dd̃R

)
, (65)

M2
τ̃ =

(
m2
τ +M2

L̃3
+DẽL mτ (Aτ − µ tan β)

mτ (Aτ − µ tan β) m2
τ +M2

ẽ3
+DẽR

)
, (66)
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where ML̃3
and Mẽ3 are the soft SUSY-breaking mass parameters of the third generation

of sleptons and Md̃3
are the soft SUSY-breaking mass parameters of the third generation

of d-type squarks. Same for Eq.(64), the complete expresions for Dd̃L
, Dd̃R

, DẽL and DẽR

are not important for this work. Notice that the non-diagonal elements in Eqs.(64)−(66)
are proportional to mt, mb and mτ , respectively.

Finally, in order to get physical states it is necessary to diagonalize the mass matrix. For
this, it is neccesary to include a rotation matrix Uf̃ that mixes the states (f̃L, f̃R) in order

to obtain the physical states (f̃1, f̃2) i.e. (f̃1, f̃2) are linear combinations of states (f̃L, f̃R).
For example, the mass eigenstates of physical stops (t̃1, t̃2) have the form

Lmt̃ = −
(
t̃∗1 t̃∗2

) ( m2
t̃1

0

0 m2
t̃2

)(
t̃1
t̃2

)
= −m2

t̃1
t̃∗1t̃1 −m2

t̃2
t̃∗2t̃2. (67)

The mix of the states (f̃L, f̃R) from the rotation matrix Uf̃ is obtain as follow(
t̃1
t̃2

)
=

(
cos θt̃ − sin θt̃
sin θt̃ cos θt̃

)(
t̃L
t̃R

)
, (68)

where θt̃ is the stop mixing angle. With an analogous procedure it is possible to developed
the mass eigenstates of physical sbottoms (b̃1, b̃2) and staus (τ̃1, τ̃2).

2.3.3 Gauge bosons and gauginos

In the MSSM, each of the electroweak gauge bosons (B and W i with i = 1, 2, 3) have
associated a superpartners with 1/2 spin called gauginos (B̃, W̃ (i) with i = 1, 2, 3) [51].
These superpartners are the electroweak gauginos fermions. In this new model, at the
same way to SM, the B boson and W (3) will mix to obtain the photon γ and the Z0

boson and the W (1) and W (2) will mix to form the W± bosons. On the other hand, the
gauginos are not physical states. As we will see in the following section, it is necessary
that these gauginos mix with Higgsinos in order to give rise to physical states i.e. to
give rise physical particles. This particles are called neutralinos and charginos which are
discussed in Sec. 2.3.4. Finally, the massless gluon g (the force-carrying particle of the
strong interaction) has associated a superpartners with 1/2 spin called gluino g̃ that,
unlike the g, it has mass [52].

2.3.4 Neutralinos and charginos

At the similar way to gauge bosons mix among them in order to obtain γ, Z0 andW±, the
Higgsinos and gauginos will mix in order to give rise physical particles which are called
neutralinos and charginos.
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The neutralinos χ̃0
i (with i = 1, 2, 3, 4) are the eigenstates formed by the mixture of neutral

higgsinos (H̃0
u, H̃

0
d) with the neutral gauginos (B̃, W̃ (3)). The mass matrix of neutralinos

MÑ can be written as [53]

MÑ =


M1 0 −mZ cos β sin θW mZ sin β sin θW
0 M2 mZ cos β cos θW −mZ sin β cos θW

−mZ cos β sin θW mZ cos β cos θW 0 −µ
mZ sin β sin θW −mZ sin β cos θW −µ 0

 ,

(69)
whereM1 andM2 are soft SUSY-breaking gauginos masses i.e. the neutralinos masses de-
pends onM1,M2 and two Higgs sector parameter (µ and tan β). From the diagonalization
of MÑ the mass of the four neutralinos mχ̃0

i
(i = 1, ..., 4) with mχ̃0

1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4

are the eigenvalues of Eq.(69). If M1 < M2 < µ then the mass of χ̃0
1 and χ̃0

2 will depend
ofM1 andM2, respectilvely, and the mass of χ̃0

3 and χ̃
0
4 will depend of |µ| [54]. From this,

it is important to highlight the lightest neutralino χ̃0
1 because is an excellent candidate

for Dark Matter, as will be discussed in Sec. 2.3.5.

On the other hand, analogously to the neutralinos, the charginos χ̃±i (with i = 1, 2) are the
eigenstates formed by the mixture of charged higgsinos (H̃+

u , H̃
−
d ) with charged gauginos

(W̃+, W̃−). The mass matrix of charginos MC̃ can be expressed as [53]

MC̃ =


0 0 M2

√
2 cos βmW

0 0
√

2 sin βmW µ

M2

√
2 sin βmW 0 0√

2 cos βmW µ 0 0

 , (70)

where, at the same way to Eq.(69), the charginos masses depend on M1, M2, µ and tan β.
From the diagonalization of MC̃ , the mass of the charginos can be written as follows [55]

mχ̃±1
=

1√
2

(
M2

2 + |µ|2 + 2m2
W−

−
√

(M2
2 + |µ|2 + 2m2

W )2 − 4|m2
W sin 2β − |µ|M2|2

)1/2

,

mχ̃±2
=

1√
2

(
M2

2 + |µ|2 + 2m2
W+

+
√

(M2
2 + |µ|2 + 2m2

W )2 − 4|m2
W sin 2β − |µ|M2|2

)1/2

,

(71)

where mχ̃±1
< mχ̃±2

and, unlike the masses of the neutralinos, it does not depend on M1

parameter.
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2.3.5 R-parity

Within the MSSM it is possible to include a new symmetry in order to solve some anoma-
lies of this model [56]. That new symmetry is called R-parity [57] and, in the MSSM, it
is assumed to be an exact symmetry. R-parity can be expressed as

R = (−1)3B+L+2s, (72)

where B and L are the baryon and lepton number, respectively, and s is the spin of the
particle [56]. As we be deduced in Eq.(72), all the SM particles have R-parity +1 (R-
parity even) and their superpartners have R-parity −1 (R-parity odd). Moreover, as it is
exposed in [58], it is necessary to show two corollaries:

• In colliders experiment, the supersymmetric particles can only be produced in pairs.

• Heavier supersymmetric particles can decay only into a SM particle and a lighter
SUSY particle.

According to these points, the most important consequence of R-parity conservation is
that the lightest supersymmetric particle (LSP) must be stable. In the MSSM, the LSP
corresponds with the lightest neutralino χ̃0

1 [58] which has not electric charge. As we know,
the Dark matter must be neutral9 thus the χ̃0

1 is a perfect candidate to Dark matter since
this supersymmetric particle is agree with its features because it is stable, neutral and it
can has only weak interaction.

2.3.6 Solutions to Standard Model problems

One of the reasons to consider the MSSM as a good candidate to replace the SM is
because it solves many of the �aws that this model has. In this section we show the
MSSM solutions to the problems mentioned in Sec. 2.1.6.

Candidate for dark matter

As we discussed in Sec. 2.3.5, the lightest neutralino is a perfect candidate to be dark
matter because it is stable, neutral and almost does not interact with the matter (only
weak interaction) so the search for particles with the neutralinos characteristics at the
LHC experiments it is important today [59]. In addition to that, there are SUSY theories
that include gravity know as Supergravity (SUGRA) theories [60], where the gravitino,
the superpartner of the graviton, can be a candidate to be dark matter.

9The Dark matter does not interact with electromagnetic radiation.
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Strong-Electroweak uni�cation at 1016 GeV

In the MSSM, with SUSY particles at a scale of ΛSUSY = O(1) TeV, it is possible to get
that the gauge couplings gs, g1 and g2 converge to a common value for a energy scale
around 1016 GeV when their particles contributions are introduced in the running (with
energy) of the gauge couplings. For a complete development of this result see [61].

Corrections to the Higgs boson mass

In 2002, the mass of the (light) Higgs boson had been predicted to be between 114 GeV
(the lower search bound from LEP) and 135 GeV (the upper limit from the radiative
corrections [10]). The experimental value lies might in this interval. As we can see
in Sec. 2.3.1, the completeness that the MSSM introduces in the Higgs sector is quite
remarkable and it responds very well to these experimental demands. First, because the
constribution of the superpartners particles into radiative corrections makes that the mass
of the Higgs boson does not diverge until the Planck scale. And, on the other hand, as it
is shown in Eqs.(50, 53, 54 and 55), the MSSM provides an analytical expression for the
Higgs boson mass (in the SM, it is a free parameter).

2.4 The W boson sector of the MSSM

In this section we will introduce the basic ideas in order to understand the prediction of
the mass of W boson within the MSSM mMSSM

W in constrast with the SM prediction mSM
W .

This section has the following structure:

• First, it shows an important experimental result which is an useful tool inside the
W boson sector at the time to make predictions.

• Then, we show all the contributions (one-loop) that could a�ect within the calcula-
tion of mW to a greater or lesser extent.

• With that, it is concluded with a comparison between present and future predictions
of mW , both experimental and theoretical.

In experimental physics, a way to determine the W boson mass is from the measurement
of the Fermi's constant Gµ which can be obtained from the muon decay rate [62], see
Fig. 3. At the current time, the accurate value of Gµ is [19]

Gµ = (1.1663787± 0.0000006) · 10−5 GeV−2. (73)
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As will be seen below, to know accurately Gµ is important to predict the mass of the W
boson. In addition to that, both in the SM and in the MSSM, Gµ can be written as [63]

Gµ√
2

=
e2

8

(
1− m2

W

m2
Z

)
m2
W

(1 + ∆r), (74)

where ∆r is the sum of the all (non-QED) quantum corrections (the QED radiative
corrections [64�66] are already included in Gµ) that are obtained from muon decay, see
Fig. 3. It is important to highlight that ∆r includes all contribution of the particles in
loop diagrams which implies that ∆r depends on all parameters of the model i.e.

∆r = ∆r(mW ,mZ ,mt, α, αs, ..., X), (75)

where X includes [63]

X =

{
mHSM (in the SM)
mh0 ,mA0 ,mH0 ,mH± , tan β,Af ,mf̃ , ... (in the MSSM)

.

Then, depending on the set of parameters (and their values) in ∆r(..., X), according to
Eq. (74), it is possible to obtain a theoretical prediction of mW . So, mSM

W (de�ned by
∆r(..., XSM), being XSM = mHSM) and mMSSM

W (de�ned by ∆r(..., XMSSM), being XMSSM

the free MSSM parameters) are the theoretical predictions of the mass of the W boson
in the SM and the MSSM, respectively. Here it should be kept in mind that the SM
prediction for the mass of the W boson is mSM

W = (80.361 ± 0.004) GeV [67] which
is below the current experimental value mexp

W = (80.379 ± 0.013) GeV, see also Tab. 3
(below).

Finally, studying di�erent set of parameters and comparing mMSSM
W −mSM

W with the exper-
imental value mexp

W it is possible to test the MSSM i.e. to delimit the value of the MSSM
free parameters.

Figure 3: Tree level diagram of muon decay in the SM. It is shown as the W boson is the

mediating particle of the interaction [68].
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However, evaluate ∆r(..., XMSSM) is not a simple task in the MSSM (From now on,
∆r(..., XMSSM) is expressed as ∆r). According to [63], the complet one-loop result for
∆r(α) has the form

∆r(α) = ∆α− cos2 θW
sin2 θW

∆ρ+ ∆r(α)
rem, (76)

where ∆α ∝ log
(
mf
mZ

)
of all fermions and ∆r

(α)
rem ∝ log

(
mh0
mW

)
. At last, ∆ρ ∝ m2

t and it

also receives sfermions contributions, in particular from the third generation squarks sec-
tor. According to the particles involved, it is possible to divide the one-loop constributions
to ∆r into four classes:

• The SM contributions of quark and lepton loops in the gauge boson self-energies.
Its respective Feynman diagram is shown in Fig. 4.

• The SUSY contributions of squark and slepton loops in the gauge boson self-energies.
Its respective Feynman diagram is shown in Fig. 5.

• The Higgs and gauge boson sector contributions in the gauge boson self-energies
(Fig. 6 and Fig. 7) and contribution of type vertex and box graphs (Fig. 8).

• The SUSY contributions of neutralinos and charginos in the gauge boson self-
energies (Fig. 9) and contribution of type vertex and box graphs (Fig. 10).

Figure 4: One loop diagram of lepton and quark contributions to ∆r(α) via gauge boson

self-energies. The V1, V2 = γ,W±, Z0 and f1, f2 = ν, l, u, d.
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Figure 5: One loop diagram of slepton and squark contributions to ∆r(α) via gauge boson

self-energies. The V1, V2 = γ,W±, Z0 and f̃ , f̃1, f̃2 = ν̃, l̃, ũ, d̃.

Figure 6: One loop diagram of gauge boson contributions to ∆r(α) via gauge boson and

fermion self-energies. The V1, V2, V3 = γ,W±, Z0 and the labels l and ν corresponds with

electron and muon and the corresponding neutrinos.

Figure 7: One loop diagram of MSSM Higgs bosons and Goldstone bosons contributions

to ∆r(α) via gauge boson self-energies. The s, s1, s2 = h0, H0, A0, H±, G0, G±.
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Figure 8: Gauge boson contributions to ∆r(α) via one-loop vertex and box diagrams. The

V1, V2 = γ,W±, Z0 and the labels l and ν corresponds with electron and muon and the

corresponding neutrinos.

Figure 9: One loop diagram of neutralino/chargino contributions to ∆r(α) via gauge

boson (1) and fermion self-energies (2). The V1, V2 = γ,W±, Z0 and the labels l and ν

corresponds with electron and muon and the corresponding neutrinos; the labels l̃ and ν̃

corresponds with their respective superpartners.

Figure 10: Neutralino and chargino contributions to ∆r(α) via one-loop vertex and box

diagrams. The V1, V2 = γ,W±, Z0 and the labels l and ν corresponds with electron and

muon and the corresponding neutrinos; the labels l̃ and ν̃ corresponds with their respective

superpartners.
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The form and diagrams for higher-order contributions are more complicated and their
expressions are not interesting for this work. For additional information, see [63].

However, in this work it is important to have an estimate of the precision of the theo-
retical predictions for mSM

W and mMSSM
W in order to �nd relevant deviations between both

predictions. In Tab. 3 we show the theoretical and experimental uncertainties for the
mass of the W boson at the current time and those expected values at the future.

Time δmexp
W / MeV δmSM

W / MeV δmMSSM
W / MeV δmtotal

W / MeV

Present 13 4 5− 9 18− 22

Future 3 1 2− 4 5− 7

Table 3: Theoretical and experimental uncertainties of the mass of the W boson at the

current and future time. The value of δmtotal
W is a combination of experimental and

theoretical uncertainty. The present and future experimental uncertainties have been

obtained from [11], [69], respectively. The present and future theoretical uncertainties

have been obtained from [70], [71] for the SM and from [72], [73] and [63] for the MSSM,

respectively. In the MSSM, the uncertainties δmMSSM
W decrease for increasing MSUSY and

vice versa.

The future accuracy of 3 MeV is expected from a �t to the measurement of the production
cross section of e+e− → W+W− at the Internacional Linear Collider (ILC). The ILC
would be a great tool to study the electroweak and the Higgs sectors, allowing us to check
models beyond the SM [74].

Finally, it is important to highlight that the theory uncertainty is caused by the missing
high-order corrections in the calculation of ∆r(..., X).
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3 Benchmark Scenarios

In Sec. 2.3, we have introduced the MSSM which is a candidate to extended the SM
because it solves many problems that this theory has. However, in favor of SM that
has 19 parameters, the MSSM has more than 100 parameters which have to be chosen by
hand 10. This complicates to make any phenomenological analysis. One way to circumvent
this problem is to give values to these parameters in so-called benchmark scenarios. The
parameters are �xed according to experimental evidences and should exemplify interesting
aspects of the MSSM phenomenology.

3.1 The mmod+
h scenario

In this work, we consider the mmod+
h scenario [76] which is in agreement with the discovery

of Higgs boson at the LHC. Before to expose the paremeter settings used for this scenario,
it is necessary to make some modi�cations of "traditional" set of mmod+

h parameters:

• Initially, mA0 and tan β were free parameters. However, after the discovery of Higgs
boson at the LHC, only a small region in the mA0 − tan β plane (For large mA0

values and low tan β [76]) is in agreement with this discovery. In this work, we �x
the value of tan β and mH± (since, when we work with complex parameters, the
eigenstates corresponding with h0, H0 and A0 are mixed among them.) according
to direct searches at the LHC [77].

• The Xt parameter is changed in order to get that mh0 is inside the range of the
measured value of Higgs boson discovered at the LHC. In this work, inside the
range mh0 = (125± 3) GeV due to numerical uncertainty.

• From direct searches for SUSY particles at the LCH [78] an increase of the gluino
mass is necessary. The low bound is mg̃ ≥ 800 GeV.

Based on the previous points, the paremeter settings for the mmod+
h are:

10With an understanding of the mechanism that breaks SUSY, the numbers of additional free pa-

rameters can likely be drastically reduced. As an example, the "constrained MSSM" (CMSSM) [75] is

described by four new free parameters.
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mt µ tan β mH± M1 M2 M3 MQ̃i,ũi
Md̃i

ML̃i,ẽi
At Ab Aτ

174.3 200 10 1005 100 200 1500 1500 1000 1000 2000 1500 1500

Table 4: The mmod+
h scenario input parameters used for the numerical analysis. The

couplings Au and Ac are equal to At, Ad and As are equal to Ab, Ae and Aµ are equal to

Aτ . Except for tan β (dimensionless), the units for all input parameters are given in GeV.

We �xmH± and tan β in our benchmark set-up. Later we will vary the relevant parameters
with respect to the ones in Tab. 4. Notice the top quark mass mt is an input �xed
parameter. The value of mt is somewhat outdated. However, using the current value,
which is about 1 GeV lower, would not change the results of this work in a relevant way.

3.2 The FeynHiggs code

As seen in the Sec. 2.3.1, the Higgs sector of the MSSM allows us to perform precise
theoretical predictions of the properties of the Higgs boson as measured by CMS and
ATLAS. This experimental discovery is a good tool to analyze the space of free parameters
of this model [79]. However, it is necessary to take into account some considerations.

On the one hand, at tree level, the Higgs sector depends on SM parameters plus two
additional MSSM parameters. Moreover, when radiative corrections are introduced the
number of free parameters is increased. All of this complicates the calculations. On the
other hand, the MSSM contains a spread spectrum of particles: all SM models particles
plus �ve Higgs boson and their respective superpartners. In addition to this, we have
already seen that some particles, for example the h0, have important quantum corrections
and others, for example the neutralinos, they are the mixture of the eigenstates of the
neutral higgsinos and gauginos. All of the above (and more), to get precise measurements
in the MSSM requires a considerable computational capacity.

One such program that can perform these calculations is FeynHiggs [10, 46, 49, 79�83]
which is a Fortran code that gives numerical predictions for the MSSM Higgs boson phe-
nomenology (such as masses, mixing angles, decay widths, ...). The most remarkable fea-
ture of this program is that combines the calculation of the masses of the Higgs bosons us-
ing the Feynmann-diagrammatic up to two-loop contributions O(αtαs, αbαs, α

2
t , αtαb, α

2
b)

with a resummation of large logarithmic contributions to all orders. For a more detailed
analysis see [79].
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These features do FeynHiggs to be the �rst "hybrid code" that uses a combination of
both types of calculation. In this work we will use FeynHiggs-2.14.2 in order to study
the dependence of the mass of h0 with the free parameters of the MSSM. Based on the
feautres previously exposed, the numerical uncertainty on the mass of the h0 is approxi-
mately 3 GeV. So, we will consider correct our predictions if they are within the allowed
region mh0 = (125± 3) GeV. Also the predictions of mSM

W and mMSSM
W are obtained with

FeynHiggs. The mMSSM
W calculation is based on [67], the mSM

W calculation on [70].
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4 Scanning the space of the MSSM parameters

As we discussed in Sec. 3.1, we consider the mmod+
h scenario where we assume the decou-

pling limit [44] (mH± = 1005 GeV ' mA0 � mZ) in which the light Higgs boson h0 has
a similar behavior to SM Higgs boson HSM. Moreover, in this situation, the other Higgs
bosons A0, H0 and H± are degenerate i.e. mA0 ≈ mH0 ≈ mH± and their couplings to the
rest of particles is nearly similar.

Now we shall be interested in obtaining the mass of h0 around 125 GeV and, in the
allowed parameter space, predict the mass of W boson. For it we use FeynHiggs-2.14.2.
Additionally we consider the following restrictions based on experimental results:

• The charginos χ̃±i (i = 1, 2) mass always greater than 100 GeV [19]. So the lower
limit we consider is mχ̃±i

≥ 100 GeV.

• The stops t̃i (i = 1, 2) mass always greater than 500 GeV [84]. So the lower limit
we consider is mt̃i ≥ 500 GeV.

• The sbottoms b̃i (i = 1, 2) mass always greater than 500 GeV [85]. So the lower
limit we consider is mb̃i

≥ 500 GeV.

• The charged sleptons ẽi, µ̃i and τ̃i (i = 1, 2) mass always greater than 100 GeV [86].
So the lower limit we consider is mẽ,µ̃,τ̃i ≥ 100 GeV.

• The neutral sleptons ν̃e, ν̃µ and ν̃τ mass always greater than 100 GeV [86]. So the
lower limit we consider is mν̃e,µ,τ ≥ 100 GeV.

These limits are only approximations to the current exclusion bounds. However, a detailed
treatment, involving specialized recasting tools, is beyond the scope of this work. In
addition to that, as we mentioned in Sec. 3.2, due to the precision of the code, the mass
of h0 should be always between 122 GeV and 128 GeV. So the mh0 range we consider is
mh0 = (125± 3) GeV.

In the following subsections we analyze the dependence of the mass of h0 with the free
parameters of the MSSM. First, we �xed our scenario and then we will vary the free
parameters in order to study their dependence with mh0 . In some cases the variation of
mh0 will be studied as a function one parameter but, in other cases, we will study the
variation of mh0 in a plane of these parameters. For all the cases analyzed, the rest of the
MSSM parameters are �xed to the values in Tab. 4. Finally, in the allowed region for the
mass of h0, in Sec. 5 we analyze the dependence of the mass of W boson in the MSSM
mMSSM
W with the two-fold purpose:

35



1. To �nd the parameters that mMSSM
W is most sensitive to.

2. To constrain the MSSM parameters space via the prediction of mMSSM
W .

4.1 Dependence of mh0 on the sfermions coupling

In this section we study how the mass of h0 changes as a function of trilinear Higgs-
sfermions coupling Af . However, we only study the contribution of the third generation
of sfermions (because we expect that the most important contribution on the mass of h0

come to the heaviest generation) and, in addition, we are only interested to the trilinear
Higgs-stops coupling At since the others third generation of sfermions contribution, Aτ
and Ab, is negligible (it is shown in Appendix A).
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Figure 11: Dependence of mh0 with At (left) and in the complex At plane (right). The red

area (left) denotes the allowed region where mh0 = (125 ± 3) GeV due to the numerical

uncertainty. The solid black line (right) denotes the value of mh0 = 125 GeV and the

dotted and dash-dotted lines denote the values of mh0 = 122 GeV and mh0 = 128 GeV,

respectively. The rest of the MSSM parameters are set to the values in themmod+
h scenario

(Tab. 4).

In Fig. 11 it is shown the variation of the mass of h0 by a change on the At where it exists a
strong dependence between themh0 and At. On the one hand, it can be seen in the left plot
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that the function presents a local minimum around At ' 0 (called minimal stop mixing
region) and two maxima (called maximal stop mixing region) around At ' −3000 GeV,
with mh0 ' 126 GeV, and At ' 3000 GeV, with mh0 ' 129 GeV i.e. approximately inside
the allowed region. According to Eq.(57), the function of mh0 presents two maxima for∣∣At− µ

tanβ

∣∣ ' √6MS when it is not considered two-loop corrections and
∣∣At− µ

tanβ

∣∣ ' 2MS

when these are considered as we can see in Eq.(58). In our scenario, MS ' 1500 GeV and
the predict maximum values is located in At ' 2MS + µ

tanβ
' ±3000 GeV in accordance

with Eq.(58). Moreover, for large values of |At|, the mass of h0 decreases quickly because
the contribution of At is high but negative, i.e. the contribution of stops sector tends to
decrease mh0 for large At. It is important to say that it is not possible put a very high At
value because the mass squared of the light stop becomes negative. On the other hand,
in the right plot we can also see that ΦAt a�ects the mass of h0 but it is important to
highlight that mh0 largest for At in the real line. In view of the foregoing, the coupling At
is an important paramenter in order to study the mass of h0. A more detailed discussion
will be give in Sec. 4.3.

4.2 Dependence of mh0 on the squarks soft SUSY-breaking mass

parameters

In this section we study how the mass of h0 evolves as a function the squarks soft SUSY-
breaking mass parameters MX̃3

(with X̃ = Q̃, ũ, d̃) which are fundamental to determine
the masses of the squarks as can be seen in the squarks mass matrices given in Eqs.(64)
and (65). Like the previous section, we only study the contribution of third generation of
squarks.

In Fig. 12 we show the variation of the mass of h0 with the soft SUSY-breaking mass
parameters of the squarks i.e. the dependence of mh0 withMQ̃3

,Mũ3 andMd̃3
for di�erent

At values. In all plots in Fig. 12 it can be seen that exists a strong in�uence ofMQ̃3
andMũ3

with mh0 because, according to Eq.(64), these soft SUSY-breaking parameters directly
a�ect the mass of the stops so that directly a�ect the stops sector and, as seen in Sec. 4.1,
this sector is the most important contribution to mh0 . Moreover, we can appreciate that
both functions for MQ̃3

and Mũ3 present a similar shape: the mass of h0 increases with
the value of MQ̃3

(or Mũ3) to a maximum value of mh0 where this maximum is similar for
each free parameterMQ̃3

,Mũ3 andMd̃3
in each of the analyzed cases. After this maximum

value, for large MQ̃3
and Mũ3 the mass of h0 decreases due to the negative contribution of

the stops masses because they are located in the denominator to Eq.(54). This decrease in
the mass of h0 is not so abrupt due to logarithmic contributions in Eq.(54). On the other
hand, for At = 1500 GeV (the top left plot in Fig. 12) it can be seen that the behaviour
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of MQ̃3
and Mũ3 is not similar to At = 2000 GeV and At = 2500 GeV. The reason for this

numerical behavior stems from the resummed logarithmic contributions, see [87].
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Figure 12: Dependence of mh0 with the squarks soft SUSY-breaking mass parameters

with At = 1500 GeV (top left), At = 2000 GeV (top right) and At = 2500 GeV (bottom).

The red area denotes the allowed region where mh0 = (125±3) GeV due to the numerical

uncertainty. The rest of the MSSM parameters are set to the values in the mmod+
h scenario

(Tab. 4).
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Finally, in all plots in Fig. 12 the dependence with Md̃3
is very small since its variation

does not change the mass of h0. The soft SUSY-breaking mass parameter Md̃3
, according

to Eq.(65), a�ects the sbottoms sector and, as seen in Appendix A, the contribution of
this sector to mh0 is practically negligible.
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Figure 13: Dependence of mh0 with the plane MQ̃3
− Mũ3 for At = 1500 GeV (left),

At = 2000 GeV (right) and At = 2500 GeV (bottom). The solid black line denotes

the value of mh0 = 125 GeV and the dotted and dash-dotted lines denote the values of

mh0 = 122 GeV and mh0 = 128 GeV, respectively. The rest of the MSSM parameters are

set to the values in the mmod+
h scenario (Tab. 4).

39



In the Fig. 13 is represented the variation of mh0 with the plane MQ̃3
−Mũ3 for di�erents

At values. It can be seen that the mass of the h0 strongly changes with the in�uence of
the plane MQ̃3

−Mũ3 as we had observed in Fig. 12. But now, this representation allows
us to see that mh0 symmetrically evolves with respect to the line MQ̃3

= Mũ3 . Moreover,
it can be seen that the mass of h0 achieves a maximum whenMQ̃3

+Mũ3 ' 12000 GeV for
At = 1500 GeV (nearly outside the limits imposed for this parameters by us) and for the
other cases MQ̃3

+ Mũ3 ' 2400 GeV for At = 2000 GeV and MQ̃3
+ Mũ3 ' 3000 GeV for

At = 2500 GeV. However, in the cases of At = 1500 GeV and At = 2500 GeV (at the left
and bottom of Fig. 13, respectively) it can be highlighted the following: in the �rst case
we can see two allowed regions separated by a forbidden region inMQ̃3

= Mũ3 ' 2300 GeV
where the mh0 is below 122 GeV. For the second case, it exists a small forbbiden region
inside all the allowed values of the plane MQ̃3

−Mũ3 . This forbbiden region is found in
MQ̃3

= Mũ3 ' 1800 GeV where the mh0 is above 128 GeV.

4.3 Dependence of mh0 on the squarks soft SUSY-breaking mass

parameters in the complex At plane

As seen in the Sec. 4.1 and Sec. 4.2, the most important constributions for the mass of
h0 come from the trilinear Higgs-stops coupling At and the squarks soft SUSY-breaking
mass parameters MQ̃3

and Mũ3 . Based on that, in this section we study how the mass of
h0 evolves as a function the complex plane of At for di�erent values of MQ̃3

and Mũ3 but
with the requeriment that MQ̃3

= Mũ3 .

In Fig. 14 we show the dependence of the mass of h0 with the complex At plane for
di�erent values of MQ̃3

and Mũ3 . First, as we expected for all plots, it can be seen that
mh0 is found largest in the real line of At and, in addition to that, the maximum value
of mh0 increases when the value of MQ̃3

and Mũ3 are larger. Moreover, three forbidden
regions can be appreciated in all of them but with some of di�erences that are going
to be analyzed below. On the one hand, the �rst forbidden region (central region with
mh0 < 122 GeV) at the bottom of Fig. 14 it is found for At values lower than 1500 GeV
and greater than −1500 GeV for ΦAt ∈ [0, 2π]. The second forbidden region (internal
region with mh0 > 128 GeV) is found in 3000 GeV < At < 5500 GeV whose width
decreases while we go through the complex plane up the negative values of the At in real
line, whose width is around 1000 GeV. The third forbidden region (external region with
mh0 < 122 GeV) is found for At values greater than 6000 GeV and lower than −5800 GeV
for ΦAt ∈ [0, 2π].
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Figure 14: Dependence of mh0 in the complex At with MQ̃3
= Mũ3 = 1500 GeV (left),

MQ̃3
= Mũ3 = 2000 GeV (right) and MQ̃3

= Mũ3 = 2500 GeV (bottom). The solid black

line denotes the value of mh0 = 125 GeV and the dotted and dash-dotted lines denote

the values of mh0 = 122 GeV and mh0 = 128 GeV, respectively. The rest of the MSSM

parameters are set to the values in the mmod+
h scenario (Tab. 4).

On the other hand, in the other plots in Fig. 14 the external forbidden region begins
at smaller values of At i.e. it is more restrictive. For MQ̃3

= Mũ3 = 1500 GeV (at the
left of Fig. 14) it is found in At > 3500 GeV and At < −3000 GeV and, at the right of
Fig. 14, that external forbidden region is found in At > 5000 GeV and At < −4000 GeV
for ΦAt ∈ [0, 2π] in both plots. Moreover, the internal forbidden region is smaller than
the case of MQ̃3

= Mũ3 = 2500 GeV (in the ranges 2500 GeV ≤ At ≤ 3000 GeV and
3000 GeV ≤ At ≤ 4500 GeV for the �rst and second case, respectively) and only it is
found for positive At values with ΦAt ∈

[
3π
2
, π

2

]
. The size of the central region is similar
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to At = 2500 GeV in both cases. All the rest of At complex plane is in accordance with
the prediction of the mass of h0 i.e. it is within the range of phenomenological validity for
our predictions.

4.4 Dependence of mh0 on the sleptons soft SUSY-breaking mass

parameters

In this section we study how the mass of h0 evolves as a function the sleptons soft SUSY-
breaking mass parameters MX̃3

(with X̃ = L̃, ẽ) which are fundamental to determine the
masses of the sleptons as can be seen in the sleptons mass matrix given in Eq.(66). Like
the previous section, we only study the contribution of third generation of sleptons.
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Figure 15: Dependence of mh0 with the sleptons soft SUSY-breaking mass. The rest of

the MSSM parameters are set to the values in the mmod+
h scenario (Tab. 4).

In Fig. 15 we show the dependence of mh0 with the soft SUSY-breaking mass of sleptons
i.e. ML̃3

and Mẽ3 . We can see a small in�uence of ML̃3
and Mẽ3 with the mass of h0

since, as we shown in Eq.(66), these soft SUSY-breaking mass parameters of the slepton
sector only a�ect the mass of the staus and, it is shown in Appendix A, his contribution
is practically negligible compared to the contribution of the stops. Thus, any slepton
contribution is not so important as the stop contribution for the mass of h0.
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5 Numerical analysis of mMSSM
W

In Sec. 4 we have scanned the space of the MSSM parameters in order to analyze the
dependence of mh0 with the free MSSM parameters and, with that, to �nd ranges of these
paramaters that are in agreement with mh0 = (125 ± 3) GeV. Now, in these allowed
regions, we will study how a�ect these MSSM parameters the prediction of the W boson
mass mMSSM

W , i.e. how much the MSSM prediction of the W boson mass di�ers from the
SM prediction mSM

W . Based on these results and the data indicated in Tab. 3, we will
indicate implications for the values of the MSSM free parameters.

5.1 Dependence of mMSSM
W on the stop coupling

In this section we study how the triliear Higgs-stop coupling At a�ects the mass of W
boson mMSSM

W and how much does it di�ers from the SM prediction mSM
W .

In Fig. 16 it is shown the variation of mMSSM
W as a function of At. On the one hand,

in the left plot of Fig. 16 we can identify three regions where the mass of h0 are not
excluded by our numerical uncertainty indicated by the white stripes. In addition to
that, the red area denotes the W boson mass uncertainty at the current time mexp,today

W =
(80.379± 0.018) GeV and the green area denotes the future uncertainty of the W boson
mass mexp,future

W = (80.379 ± 0.005) GeV. The �rst allowed region are found between
At = −3500 GeV and At = −1700 GeV where mMSSM

W changes a maximum of 7 MeV.
The second allowed region are found between At = 1450 GeV and At = 2450 GeV where
mMSSM
W changes a maximum of 2 MeV. For both regions, these e�ects are too small for

today's precision in mMSSM
W . Also with a future resolution of 5 MeV we can hardly see an

remarkable e�ect. However, the last allowed region are found between At = 3115 GeV
and At = 3700 GeV where mMSSM

W changes a maximum of 8 MeV. Within this region,
these e�ects are large enough in order to detect an important change of mMSSM

W because
of the SUSY-breaking parameters with the future's precision.

On the other hand, at the right of the Fig. 16 it is shown the di�erence between the MSSM
and the SM predictions of the W boson mass in the complex plane of At. As in Sec. 4,
the solid black line denotes the value of mh0 = 125 GeV and the dotted and dash-dotted
lines denote the values of mh0 = 122 GeV and mh0 = 128 GeV, respectively. First, we
can see that the largest and the smallest mMSSM

W −mSM
W values are found in the external

and central forbidden regions (both with mh0 < 122 GeV) where we can appreciate the
important in�uence that At has on the prediction of mMSSM

W since if the value of At is
increased the di�erence between the SM and the MSSM prediction of W boson mass will
grow. A complete analysis of this plot will be given in Sec. 5.3.
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Figure 16: Dependence of mMSSM
W on At (left) and the di�erence between the MSSM

prediction mMSSM
W and the SM prediction mSM

W with the complex At plane (right). The

gray area (left) denotes the forbidden region where mh0 6= (125 ± 3) GeV, the red area

denotes the present uncertainty with the actual experimental value of the W boson mass

and the green area denotes the future uncertainty with the actual experimental value

of the W boson mass, see Tab. 3. The solid black line (right) denotes the value of

mh0 = 125 GeV and the dotted and dash-dotted lines denote the values of mh0 = 122 GeV

and mh0 = 128 GeV, respectively. The rest of the MSSM parameters are set to the values

in the mmod+
h scenario (Tab. 4).

5.2 Dependence of mMSSM
W on the squarks soft SUSY-breaking

mass parameters

In this section we study how the soft SUSY-breaking mass parameters of squarks, MQ̃3

and Mũ3 (the plane MQ̃3
−Mũ3), a�ect the mass of W boson mMSSM

W and how much does

it di�ers from the SM prediction mSM
W .

In Fig. 17 we can see the di�erence between the MSSM and the SM prediction of the
W boson mass mMSSM

W − mSM
W with the plane MQ̃3

− Mũ3 for At = 1500 GeV (left),
At = 2000 GeV (right) and At = 2500 GeV (bottom). The solid black line denotes
the value of mh0 = 125 GeV and the dotted and dash-dotted lines denote the values of
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mh0 = 122 GeV and mh0 = 128 GeV, respectively. First, for all plots in Fig. 17, it is
important to highlight that the biggest di�erence between mMSSM

W and mSM
W is for small

values of MQ̃3
and Mũ3 (within the allowed region). This is due to the stop/sbottom

contribution to ∆ρ via the diagrams show in Fig. 5. Moreover, in the right and bottom
plots of Fig. 17, these larger di�erences are found in the vicinity of the mh0 = 125 GeV
solid black line. So, if we increase the value of MQ̃3

and Mũ3 the di�erence between the
SM and the MSSM prediction of W boson mass will decrease i.e. the third generation of
squarks soft SUSY-breaking mass parameters increase the mass of the squarks so these
particles do not have contribution and we recover the SM prediction.

At the left of Fig. 17 it is shown that the smallest mMSSM
W −mSM

W values are found for large
MQ̃3

and Mũ3 values and outside the allowed region (with mh0 < 122 GeV) where this
di�erence is around 8 MeV. The reason for this remaining di�erences, i.e. the fact that
mMSSM
W −mSM

W does not go to zero, are due to the rest of the SUSY spectrum, which is
�xed, i.e. not moved to higher mass values. The largest di�erences can be found inside the
allowed region (MQ̃3

= Mũ3 > 700 GeV) with MQ̃3
and Mũ3 values lower than 2000 GeV

where mMSSM
W −mSM

W is around 15 MeV forMQ̃3
= Mũ3 ' 1800 GeV and that di�erence is

around 27 MeV for MQ̃3
= Mũ3 ' 800 GeV. In view of all the above, it is possible to see

remarkable e�ects on the mass of W boson for values of MQ̃3
and Mũ3 below 1200 GeV

with the precision at the current time. However, all the plane MQ̃3
−Mũ3 studied shows

observable e�ects in mMSSM
W with the resolution at the future.

At the right and bottom of Fig. 17 (with At = 2000 GeV and At = 2500 GeV, respectively)
we can see a similar behavior between both plots: the smallest mMSSM

W −mSM
W values are

found for largeMQ̃3
andMũ3 values where these di�erences are around 6 MeV and 4 MeV,

respectively. On the other hand, the greater di�erences of mMSSM
W −mSM

W are found within
the region that surrounds the solid black line (at lower values of MQ̃3

and Mũ3) plus the
allowed region at the lowest values of MQ̃3

and Mũ3 , i.e. between MQ̃3
= Mũ3 ' 800 GeV

and MQ̃3
= Mũ3 ' 2000 GeV for At = 2000 GeV and between MQ̃3

= Mũ3 ' 1200 GeV

and MQ̃3
= Mũ3 ' 3000 GeV for At = 2500 GeV. In the �rst case (right), mMSSM

W −
mSM
W approximately changes 20 MeV and, in the second case (bottom), mMSSM

W − mSM
W

approximately changes 15 MeV as we can see in Fig. 17. Although these e�ects are not
clearly measurable with the current accuracy, this region (in both plots) becomes very
interesting with the future's resolution in order to detect an important change of mMSSM

W

and, with that, to constrain the space of the MSSM parameters.
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Figure 17: Dependence of the di�erence between the MSSM prediction mMSSM
W and the

SM prediction mSM
W with the plane MQ̃3

−Mũ3 for At = 1500 GeV (left), At = 2000 GeV

(right) and At = 2500 GeV (bottom). The solid black line denotes the value of mh0 =

125 GeV and the dotted and dash-dotted lines denote the values of mh0 = 122 GeV and

mh0 = 128 GeV, respectively. The rest of the MSSM parameters are set to the values in

the mmod+
h scenario (Tab. 4).
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5.3 Dependence of mMSSM
W on the squarks soft SUSY-breaking

mass parameters in the complex At plane

In this section we study how the complex plane of At a�ects the mass of W boson mMSSM
W

and how much does it di�ers from the SM prediction mSM
W for di�erent values of MQ̃3

and
Mũ3 but with the requemirent that MQ̃3

= Mũ3 .

In Fig. 18 we can see the di�erence between the MSSM and the SM predictions of the
W boson mass mMSSM

W − mSM
W with the complex At plane with di�erent values of MQ̃3

and Mũ3 . First, for all the analyzed cases, it can be seen that the largest mMSSM
W −mSM

W

is found in the external forbidden region (with mh0 < 122 GeV) and the smallest values
of mMSSM

W − mSM
W are found in the central forbidden region (with |At| < 1800 GeV and

mh0 < 122 GeV) of the complex plane of At. In particular, for the three cases that we
have studied, the smallest di�erence between the MSSM and the SM predictions of the
W boson mass is about 14 MeV. Moreover, we can see that the in�uence of At strongly
a�ects the MSSM prediction since, as we can see in all plots of Fig. 18, the di�erence
between the MSSM and the SM predictions is greater when more positive (or negative)
is the value of At. In addition to that, if we analyze the in�uence of ΦAt (as wee can
see in the right plot of Fig. 21, Appendix B) it can be seen that ΦAt practically does
not a�ect the mMSSM

W since the largest variation of mMSSM
W − mSM

W is about 3 MeV (for
At = 3500 GeV and MQ̃3

= Mũ3 = 1500 GeV) which is far from the best precision value

of mMSSM
W that it is expected at the future. So, it is not possible to get valid information

from mMSSM
W on the phase of At.

At the left of Fig. 18 we can see, in the allowed region (in the real At line, from
At = 1500 GeV to At = 2500 GeV, At = 3000 GeV to At = 3500 GeV and from
At = −1500 GeV to At = −3000 GeV), the di�erence between the MSSM and the
SM predictions increases with the value of |At| to the limit of the allowed region from
mMSSM
W −mSM

W ' 14 MeV to mMSSM
W −mSM

W ' 23 MeV. These changes within the allowed
region are remarkable because with the present (with At > 3000 GeV) and the future
resolution these e�ects in the mass of the W boson can be observable. At the right of
Fig. 18 we can see within the allowed region (in the real At line, from At = 1500 GeV
to At = 3000 GeV, from At = 4500 GeV to At = 5000 GeV and At = −1500 GeV to
At = −4500 GeV) the di�erence between the MSSM and the SM predictions increases
with the value of |At| to the limit of the allowed region from mMSSM

W −mSM
W ' 14 MeV

to mMSSM
W −mSM

W ' 19 MeV. Finally, at the bottom of Fig. 18 we can see (the allowed
region mainly includes the real At line from At = 1500 GeV to At = 3000 GeV, from
At = 5500 GeV to At = 6250 GeV, from At = −1500 GeV to At = −3500 GeV and
from At = −4500 GeV to At = −5750 GeV) the di�erence between the MSSM and the
SM predictions increases with the value of |At| to the limit of the allowed region from
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mMSSM
W −mSM

W ' 14 MeV to mMSSM
W −mSM

W ' 17 MeV. Unlike to the previous case, these
e�ects only can be observable with the future precision in the mass of the W boson for
both cases. The present resolution does not show valid information about these cases
according to the value of mMSSM

W .
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Figure 18: Dependence of the di�erence between the MSSM prediction mMSSM
W and the

SM prediction mSM
W in the complex At withMQ̃3

= Mũ3 = 1500 GeV (left), MQ̃3
= Mũ3 =

2000 GeV (right) and MQ̃3
= Mũ3 = 2500 GeV (bottom). The solid black line denotes

the value of mh0 = 125 GeV and the dotted and dash-dotted lines denote the values of

mh0 = 122 GeV and mh0 = 128 GeV, respectively. The rest of the MSSM parameters are

set to the values in the mmod+
h scenario (Tab. 4).
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Based on all the above, it can be concluded that, as we saw in Sec. 5.1, At strongly and
positively contributes in the MSSM prediction of the W boson mass and, in addition to
that, only when the value of the soft SUSY-breaking parameters MQ̃3

and Mũ3 are not

very large, as we saw in Sec. 5.2, we can observe detectable e�ects on the mMSSM
W which

has been completed with the analysis discussed in this section.

5.4 Dependence of mMSSM
W on the sleptons soft SUSY-breaking

mass parameters

In this section we study how the soft SUSY-breaking mass parameters of the third gener-
ation of sleptons MX̃3

(with X̃ = L̃, ẽ) a�ect the mass of W boson mMSSM
W and how much

does it di�ers from the SM prediction mSM
W .
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Figure 19: Dependence of mMSSM

W with the sleptons soft SUSY-breaking mass (left) and

the di�erence between the MSSM prediction mMSSM
W and the SM prediction mSM

W with

the plane ML̃3
−Mẽ3 (right). The red area (left) denotes the future uncertainty with the

actual experimental value of theW boson mass mfut
W = (80.379±0.005) GeV (The present

uncertainty �lls all the space studied). The rest of the MSSM parameters are set to the

values in the mmod+
h scenario (Tab. 4).

In Fig. 19 it is shown the dependence of the mass of W boson with di�erent values of
ML̃3

and Mẽ3 (left) and the di�erence between the MSSM and the SM prediction of the
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W boson mass mMSSM
W − mSM

W with the plane ML̃3
−Mẽ3 (right). In addition to that,

as we can see in Fig. 15, all the MX̃3
(with X̃ = L̃, ẽ) space that we have scanned it is

within the allowed region for mh0 . First, in the left plot of Fig. 19 we can see a strong
positive in�uence of ML̃3

with the mass of W i.e. the mass of mMSSM
W decreases with the

increase of ML̃3
to ML̃3

' 700 GeV from which the mass of W boson remains constant
for large values of ML̃3

. Moreover, the most important change of mMSSM
W (in the range

100 GeV ≤ ML̃3
≤ 160 GeV) will be able to detect with the future's precision since the

variation ofmMSSM
W is about 13 MeV within this range. On the other hand, the in�uence of

Mẽ3 with the mass ofW boson is practically negligible (it is around 1 MeV). Note that, for
ML̃3

= Mẽ3 > 700 GeV, mMSSM
W is constant and equal according to both SUSY-breaking

parameters.

Finally, in the right plot of Fig. 19 we show the dependence ofmMSSM
W −mSM

W with the plane
ML̃3

−Mẽ3 . We can see that the biggest di�erence between mMSSM
W and mSM

W is for small
values of ML̃3

and any value Mẽ3 (since its in�uence is negligible) where this di�erence
can be as large as 31 MeV. Note that this strong e�ect on mMSSM

W is within the current
resolution for the measurement of the mass of theW boson i.e. in other words, a persistent
discrepancy between mexp

W and mSM
W could be explained by the presence of very light staus

alone. In addition to that, as the value of ML̃3
is increased that di�erence betweeen

both predictions decreases to ML̃3
reaches a value of ' 400 GeV where mMSSM

W −mSM
W is

almost constante and its value is approximately 14 MeV which is only measurable with
the future's resolution. So, small values of ML̃3

positively a�ect the MSSM prediction
mMSSM
W and this contribution decreases according as its value increases.

In summary, as we saw in Sec. 2.4, these parameters a�ect directly at the W boson sector
in the MSSM. With this numerical analysis it has been determined the most relevant
ranges of MSSM parameters that produce a measurable e�ect on the mass of the W
boson mMSSM

W . These results are collected in the Tab. 5 which is shown in the next
section.
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6 Conclusions

In this work it has been scanned the MSSM space of parameters in order to analyze the
W boson sector within of this model. First, we have brie�y explained the SM and what
are the problems that this model has. Based on it, we have presented the MSSM and
it has been explained how this model solves the SM problems. Second, we have brie�y
discussed the mmod+

h scenario and we have studied the dependence of the mass of h0 with
the MSSM parameters within this scenario in order to get the range of these parameters
which mh0 is inside the region of phenomenological validity (i.e. mh0 = (125 ± 3) GeV)
in accordance with the experimental datas. Finally, in the allowed region given by the
mass of h0, we have analyzed the space of MSSM parameters in order to �nd those for
which mMSSM

W is more sensitive and, with that, to constrain the parameters space. In
view of all the above, the analysis realized in this master thesis has provided the following
conclusions:

• The trilinear Higgs-stop couplingAt has a very important e�ect on the mass of h0 but
it only shows three limited regions which provide a h0 with mass in agreement with
the region of phenomenological validity. The rest of MSSM parameters analyzed also
have in�uence but this almost always within the theoretical uncertainty of ±3 GeV.

• All the MSSM parameters scanned have a detectable impact on mMSSM
W when they

take their lower values (except At which increases the di�erence between the MSSM
and the SM predictions as At increases), i.e where we expect that SUSY has an
measurable in�uence. These e�ects on mMSSM

W limit the values that the MSSM
parameters can take (as we summarized in Tab. 5). In the future, with more accurate
resolution, it is expected to measure a small variation inW boson mass that indicates
what is the range of values of these MSSM parameters.

• In particular, if we consider that the present discrepancy between mexp
W and mSM

W is
the same at the future, we can explain that discrepancy due to the contribution of
very light staus alone.

• The Higgs boson mass is very sensitive to new physics i.e mh0 is very in�uenced for
the value of the other MSSM parameters. To get more theoretical precision in the
prediction would allow us to repeat this analysis in a more exhaustive way.
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Finally, in Tab. 5 are colleted all the results shown in Sec. 5 i.e. the ranges of MSSM
parameters scanned (in the mmod+

h scenario) that produce a measurable e�ect on the
mass of the mMSSM

W with the present resolution and the future precision that is expected
on the mass of W boson.

Time
At

(Real line)

MQ̃3
−Mũ3

(At = 1500 GeV)

MQ̃3
−Mũ3

(At = 2000 GeV)

MQ̃3
−Mũ3

(At = 2500 GeV)

Present − − − −
Future 3115− 3700 {700− 2000} {800− 2000} {1200− 3000}

Time
Complex At

(MQ̃3
= Mũ3 = 1500 GeV)

Complex At

(MQ̃3
= Mũ3 = 2000 GeV)

Present 3000− 3500 −

Future


(−1500)− (−3000)

1500− 2500

3000− 3500


(−1500)− (−4500)

1500− 3000

4500− 5000

Time
Complex At

(MQ̃3
= Mũ3 = 2500 GeV)

ML̃3

(At = 2000 GeV)

ML̃3
−Mẽ3

(At = 2000 GeV)

Present − − (100− 400)− (100− 700)

Future


(−1500)− (−3500)

(−4500)− (−5750)

1500− 3000

5500− 6250

100− 160 {100− 700}

Table 5: Ranges of the MSSM parameters that produce a measurable e�ect on mMSSM
W

with the present and future resolution. The value between braces (when we study the

planes MQ̃3
−Mũ3 and ML̃3

−Mẽ3 ) correspond with the range for both parameters.
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Appendix A Dependence ofmh0 with the stau and sbot-

tom couplings

In Fig. 20 we show the variation of the mass of h0 as a function of trilinear Higgs-sbottoms
coupling Ab (left) and trilinear Higgs-staus coupling Aτ (right).
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Figure 20: Dependence of mh0 with Ab (left) and Aτ (right). The rest of the MSSM

parameters are set to the values in the mmod+
h scenario (Tab. 4).

In both plots we can see that the change in the mass of h0 is practically negligible for
large values of Ab and Aτ (−8 TeV < Ab, Aτ < 8 TeV). As we can see in Eq.(53), the mass
of h0 are proportional to m4

t , m
4
b and m

4
τ in each respective sector. Compared with the

mass of top mt, the mass of bottom and tau (mb and mτ , respectively) are light and this
is the principal reason that explains this small dependence between m0

h with the sbottom
and stop couplings.
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Appendix B Other dependences of mMSSM
W

In this appendix we show how much does the W boson mMSSM
W di�ers from the SM

prediction mMSSM
W −mSM

W as function of the module (left) and the phase of At (right) with
|At| = 3500 GeV and the MSUSY parameter (bottom) i.e. how these parameters a�ect the
mass of the W boson mMSSM

W for MQ̃3
= Mũ3 = 1500 GeV inside the allowed region for

the mass of h0.
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Figure 21: Dependence of the di�erence between the MSSM prediction mMSSM
W and the

SM prediction mSM
W in the complex At (left and right) and with the MSUSY parameter

(bottom) for MQ̃3
= Mũ3 = 1500 GeV. The grey area denotes the forbidden region where

mh0 6= (125 ± 3) GeV. The rest of the MSSM parameters are set to the values in the

mmod+
h scenario (Tab. 4).
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