
Facultad de Ciencias

HDeepRM: Deep Reinforcement Learning
para la Gestión de Cargas de Trabajo

en Clústeres Heterogéneos
(HDeepRM: Deep Reinforcement Learning

for Workload Management
in Heterogeneous Clusters)

Trabajo de Fin de Máster
para acceder al

MÁSTER UNIVERSITARIO EN INGENIERÍA
INFORMÁTICA

Autor: Adrián Herrera Arcila

Director: Jose Luis Bosque Orero

Marzo - 2019

Contents

List of Figures vi

List of Tables viii

Acknowledgements ix

Abstract x

Resumen xi

1 Introduction 1

1.1 Workload management in HPC data centers . 1

1.2 Machine learning and neural networks . 2

1.3 Objectives . 3

1.4 Methodology . 4

1.5 Document structure . 5

2 Background 6

2.1 Concepts . 6

2.1.1 Resource heterogeneity . 6

2.1.2 Workload management . 7

2.1.3 Deep reinforcement learning . 8

2.2 Tools and algorithms . 9

2.2.1 Batsim ecosystem . 9

2.2.2 PyTorch and Gym . 10

ii

CONTENTS

2.2.3 REINFORCE and actor-critic . 10

2.3 Previous work . 11

3 HDeepRM: design decisions 13

3.1 Heterogeneity support . 13

3.1.1 Consequences of interdependence . 13

3.1.2 Platforms . 14

3.1.3 Workloads . 16

3.1.4 Components . 17

3.1.5 Simulation flow . 18

3.2 Deep reinforcement learning extension . 20

3.2.1 Extra components . 20

3.2.2 Agents . 21

3.2.3 Environment . 25

3.2.4 Reward functions . 28

4 HDeepRM: implementation details 30

4.1 Heterogeneity support . 30

4.1.1 Platforms . 30

4.1.2 Workloads . 33

4.1.3 Components . 34

4.1.4 Event handling: practical example . 35

4.2 Deep reinforcement learning extension . 37

4.2.1 Extra components . 37

4.2.2 Agents . 37

4.2.3 Environment . 39

4.3 Framework usage . 40

5 Evaluation 43

5.1 Platform and workload . 43

iii

5.2 Primer on simulation analysis . 44

5.2.1 Job life cycles . 44

5.2.2 Utilization and queue size . 45

5.2.3 Metric comparison between policies . 47

5.3 Demonstrating consequences of consolidation and spreading 48

5.4 Learning the optimal actions . 51

5.4.1 Scenario . 51

5.4.2 Expected results . 51

5.4.3 Losses . 51

5.4.4 Rewards . 52

5.4.5 Action preferences . 53

6 Conclusions 54

6.1 Achievements . 54

6.2 Future work . 55

Bibliography 57

Appendices 61

Appendix A Example job script 62

Appendix B Platform specification 63

B.1 Batsim + SimGrid compliant XML platform . 63

B.2 Minimal HDeepRM JSON platform . 63

B.3 Minimal HDeepRM node type . 63

B.4 Minimal HDeepRM network type . 64

B.5 Minimal HDeepRM memory type . 64

B.6 Minimal HDeepRM processor type . 64

Appendix C Workload specification 65

C.1 Minimal Batsim formatted workload . 65

iv

CONTENTS

C.2 SWF formatted workload . 65

Appendix D Events 66

D.1 Simulation begins . 66

D.2 Job submitted . 66

D.3 Job executed and alteration of cores . 66

D.4 State change confirmation and no more submissions 66

D.5 Job completed and simulation ends . 67

Appendix E Utilities 68

E.1 HDeepRM launcher . 68

E.2 HDeepRM visualizations . 68

E.3 HDeepRM metrics . 68

E.4 HDeepRM job statistics . 68

Appendix F Options file 69

Appendix G Example learning agent 70

v

List of Figures

1.1 Reinforcement learning loop . 4

3.1 Heterogeneous platform design . 15

3.2 Component layout . 18

3.3 Simulation flow. Events are sent between Simulator and Decision System 20

3.4 Component layout with Deep Reinforcement Learning extension 21

3.5 Two inner models for agents used in HDeepRM 23

3.6 Impact of void action (∅) when minimizing average job slowdown 28

4.1 Platform pipeline implementation . 31

4.2 HDeepRM base module structure . 34

4.3 HDeepRM base module interactions . 35

4.4 HDeepRM extended module structure . 37

4.5 HDeepRM extended module interactions . 38

5.1 Job life cycles for the Gaia cluster . 45

5.2 Job life cycles for the MetaCentrum2 grid . 45

5.3 Utilization for the Gaia cluster . 46

5.4 Queue size for the Gaia cluster . 47

5.5 Utilization and queue size for the shortest policy in MetaCentrum2 47

5.6 Metrics for first arrived and shortest policies in Gaia 48

5.7 Gantt charts with mapping of jobs to cores in Gaia 49

5.8 Comparison of metrics between high GFLOPs and high memory bandwidth agents 50

5.9 Memory bandwidth over-utilization spans for the Gaia cluster 50

vi

LIST OF FIGURES

5.10 Loss evolution for REINFORCE - 350 episodes 52

5.11 Reward evolution for REINFORCE - 350 episodes 52

5.12 Action preferences for REINFORCE - 350 episodes 53

vii

List of Tables

3.1 Batsim events utilized in the heterogeneous framework 19

3.2 Classic policies exposed through the Action Space 29

5.1 UniLu Gaia cluster configuration as in PWA . 44

viii

Acknowledgements

To my family, specially my parents who have always given me context and perspective as
presents.

To my friends, the ones that are always there and those belonging to older stages of my life.
The amount of emotional support, knowledge exchange and shared experiences are invaluable.

To every professor I have come across during my education. Thanks for giving me a glimpse of
what matters in life when I was little, and also for building the bridges of my path when I grew
up.

To anyone pursuing his/her passion for progress, in spite of the day-to-day difficulties the mo-
tivation and positivity always make you prevail, and that has a human impact which affects
individuals such as myself.

Finally, special thanks to José Luis Bosque for supporting my work since early Bachelor years,
including the results of this thesis. He has been an outstanding mentor, offering an ideal blend
of guidance and freedom in decision-making.

ix

Abstract

High Performance Computing (HPC) environments offer users computational capability as a
service. They are constituted by computing clusters, which are groups of resources available
for processing jobs sent by the users. Heterogeneous configurations of these clusters allow for
providing resources fitted to a wider spectrum of workloads, superior to that of traditional
homogeneous approaches. This in turn improves the computational and energetic efficiency of
the service.

Scheduling of resources for incoming jobs is undertaken by a workload manager following a
established policy. Classic policies have been developed for homogeneous environments, with
literature focusing on improving job selection policies. Nevertheless, in heterogeneous configu-
rations the resource selection is as relevant for optimizing the offered service.

Complexity of scheduling policies grows with the number of resources and degree of heterogeneity
in the service. Deep Reinforcement Learning (DRL) has been recently evaluated in homogeneous
workload management scenarios as an alternative to deal with complex patterns. It introduces
an artificial agent which estimates via learning the optimal scheduling policy for a given system.

In this thesis, HDeepRM, a novel framework for the study of DRL agents in heterogeneous
clusters is designed, implemented, tested and distributed. This leverages a state-of-the-art
simulator, and offers users a clean interface for developing their own bespoke agents, as well as
evaluating them before going into production.

Evaluations have been undertaken to demonstrate the validity of the framework. Two agents
based on well-known reinforcement learning algorithms are implemented over HDeepRM, and
results show the research potential in this area for the scientific community.

x

Resumen

Los entornos de High Performance Computing (HPC) ofrecen capacidad computacional como
servicio a sus usuarios. Están formados por clústeres de cómputo, grupos de recursos que acep-
tan y procesan trabajos enviados por los usuarios. Las configuraciones heterogéneas permiten
disponer de recursos adecuados a un espectro de cargas de trabajo superior al de los clústeres
homogéneos tradicionales, mejorando la eficiencia computacional y energética del servicio.

La asociación de trabajos con recursos del sistema es llevada a cabo por un gestor de cargas
de trabajo siguiendo una poĺıtica de planificación. Las poĺıticas clásicas han sido desarrolladas
para entornos homogéneos, y la literatura se centra en la selección del trabajo. Sin embargo, en
entornos heterogéneos la selección del recurso es de relevancia para la optimización del servicio.

La complejidad de las poĺıticas de planificación crece con el número de recursos y la hetero-
geneidad del sistema. El Aprendizaje Profundo por Refuerzo o Deep Reinforcement Learning
(DRL) ha sido recientemente objeto de estudio como alternativa para la gestión de cargas de
trabajo. En él, se propone un agente artifcial que estima mediante aprendizaje la poĺıtica de
planificación óptima para un determinado sistema.

En esta tesis se describe el proceso de creación de HDeepRM, un nuevo marco de trabajo cuyo
objetivo es el estudio de agentes basados en DRL para la estimación de poĺıticas de planificación
en clústeres heterogéneos. Implementado sobre un simulador actual, HDeepRM permite crear y
evaluar nuevos agentes antes de llevarlos a producción.

Se ha llevado a cabo el diseño, implementación, pruebas y empaquetado del software para poder
distribuirlo a la comunidad cient́ıfica. Finalmente, en las evaluaciones se demuestra la validez
del marco de trabajo, y se implementan sobre él dos agentes basados en algoritmos de DRL. La
comparación de estos con poĺıticas clásicas muestra el potencial de investigación en este área.

xi

xii

Chapter 1

Introduction

In this chapter, a high-level view of the main concepts associated to this thesis’ body of work will
be provided. Current issues in state-of-the-art High Performance Computing (HPC) workload
managers will be highlighted, remarking the need for heterogeneity and resource interference
support. A brief introduction to machine learning along with recent advances in deep learning
will be presented, showing the research potential and applicability to workload management.
Thesis’ objectives will be listed, followed by the pursued methodology, chronologically describing
the stages of work. Furthermore, the document structure will be offered for guidance.

1.1 Workload management in HPC data centers

High Performance Computing (HPC) refers to the use of supercomputers and parallel processing
for solving complex computational problems. Supercomputers are capable of yielding large val-
ues of operations per second when compared to general-purpose computers. They are composed
of several clusters, and offered as a service where users can launch instances of their jobs re-
questing necessary resources for their execution. Computing and storage resources are allocated
to the incoming jobs for a given period of time, and multiple jobs from multiple users might
coexist within the data center.

The scheduling of incoming jobs to available resources is known as workload management. Users’
jobs are enqueued in malleable queues, and a workload manager is in charge of inspecting them
and selecting which jobs are allocated to which resources. The job selection process is known
as job scheduling [1], and it is undertaken by a job scheduler. On the other hand, the resource
management refers to the operations over the cluster resources, such as allocation, provisioning
and monitoring. This is provided by a resource manager.

Job and resource selections are based on a policy pair, which defines the criteria for both selection
processes. In this thesis, classic policies are defined as those used in literature and in conventional
workload managers. For job selection, typical approaches include first come first served, shortest
job first and EASY backfilling [2]. In the case of resource selection, highest computing capability
or random are common choices.

There exists a lack of development in resource selection policies due to traditional clusters
offering homogeneous hardware. Nowadays, the majority of supercomputers, including those
in the TOP 500 list [3], are based on heterogeneous configurations. This allows for smooth
upgrades on cluster configurations, as well as performance gains due to the inclusion of hardware

1

accelerators and application specific architectures.

Nevertheless, the complexity of workload management also scales with heterogeneity, since the
selection of resources becomes relevant for achieving the objectives. For instance, the current
Intel Xeon E family of CPUs provides power optimized processors by the suffix of L, such as
the Xeon E5-2650L v4 [4]; this consumes about 40% less power than the no-L counterpart and
provides 14 cores with respect to 12 from the no-L, however it also works at 23% less clock rate,
reducing the single-core performance. This means that highly parallel loads which can leverage
the 14 cores may use the L processor more efficiently, but sequential loads will perform better
in the no-L version.

Another example of this complexity happens when deciding between GPU and FPGA based
nodes [5]. The former offer higher floating-point performance as well as memory bandwidth, and
their GDDR memories are optimized for sequential (streaming) memory accesses, such as those
in image processing. The latter are configurable architectures which may be optimized for non-
sequential memory accesses, which would make them perform better and consume considerably
less energy for applications such as Fast Fourier Transform.

On another note, classic policies are also oblivious to resource interference. Shared resources can
create points of conflict for jobs in the same compute node, decreasing individual performance
[6]. For instance, the processor’s memory controller yields a peak memory bandwidth specified
by the manufacturer; if a high number of memory-bandwidth heavy jobs are consolidated in the
same processor, the controller will be unable to serve all requests simultaneously, and some of
the jobs (depending on the priority scheme of the controller) will be delayed execution. This is
extendable to shared caches, network and filesystem.

Spreading jobs across multiple processors in the data center reduces resource conflicts, however
communication overhead grows, which may impact performance and energy consumption of
parallel applications. Moreover, energy efficiency decreases if few cores per processor are used,
since the shared system power is only amortized by the active cores. Finally, power consumption
due to heat dissipation in multiple areas also augments.

The early study of workload management policies is carried out by the use of simulation. Several
state-of-the-art workload management simulators have been studied in this thesis, including Alea
[7], ScSF [8], Accasim [9] and Batsim [10]. These allow for evaluating user-defined policies over
a simulated platform where incoming jobs are specified in a workload trace. Most of them
provide an event-flow interface, where events consist of job arrivals/completions and resource
state changes. Metrics are recorded during the simulation for analysis and gathering of insights;
these include waiting time, energy consumption or throughput.

In this thesis, HDeepRM is developed to overcome poorly supported heterogeneous platform
simulation in current frameworks. It is served as a layer on top of Batsim offering, among
other traits, multiple resource types, resource hierarchies, user-defined platforms and resource
conflicts.

1.2 Machine learning and neural networks

Learning refers to the ability of acquiring or modifying information in order to improve towards
an objective. Humans have this capability embedded in their brains and produced by the
connections between neurons, also known as synapses. The conception of this ability in digital
systems is known as machine learning. It consists of a broad range of techniques [11] allowing

2

CHAPTER 1. INTRODUCTION

for the system to enhance its capabilities without the need of traditional explicit programming.

In general, there are three distinct types of machine learning:

� Supervised learning : consists of learning a function that maps input(s) to output(s) given
examples of input-output pairs. An example of this might be a cat/dog image classifier:
the input is a picture, and the output is a label indicating whether it is a cat or a dog.

� Unsupervised learning : these set of techniques allow the system to learn the underlying
structure of unlabelled data inputs. For instance, autoencoders [12] learn a compressed
representation of the input by measuring the error between the uncompressed result and
the original one, without the need for labels.

� Reinforcement learning : refers to scenarios where an agent interacts with an environment
by observing its state and undertaking actions. Every action alters the environment, and
the agent is given a reward depending on how that alteration contributes to its objective.

Since the initial conception of the perceptron [13] in 1958, machine learning has been through
several unstable periods. During the 60s and 70s, the prominence of the Von Neumann archi-
tecture [14] along with the limitations of perceptrons for learning non-linearities [15] gave birth
to the first Artificial Intelligence (AI) winter.

Later, in 1986, the introduction of the backpropagation mechanism [16] allowed for the creation
of multi-layered perceptrons (MLPs), where multiple layers of artificial neurons were connected
to form an Artificial Neural Network (ANN) similar in structure to the human brain. In the 90s,
other methods such as Support Vector Machines (SVM) [17] were found to be more effective,
and thus a second AI winter began.

The current popularity trend dates back to 2006, when work by Geoff Hinton and others on
iterative training allowed for stacking more layers into the MLP design, making for a deep ar-
chitecture. Since then, deep learning has been applied successfully to several complex problems,
such as image classification, object recognition or natural language processing (NLP) [18].

Furthermore, deep learning has also permeated the reinforcement learning algorithm class in the
form of deep reinforcement learning (DRL). Agents are represented by deep ANNs which learn
the best actions to take in each state.

The work presented in [19], namely DeepRM, suggests that complex workload management
policies bespoke to the underlying platforms may be learned via DRL agents. These would
understand which job-resource pairings are optimal for each platform state. They show im-
provements of up to 50% for some workloads with respect to classic policies such as shortest job
first, however they only work with small synthetic and homogeneous platforms.

In this thesis, HDeepRM is developed as a novel iteration over DeepRM. It provides a DRL
workload management framework for evaluating the ideas proposed in [19] while applying them
to heterogeneous platforms and real data center traces. It also provides an interface for user-
defined agents as well as newly designed state/observation and action spaces.

1.3 Objectives

The principal goal of this thesis is to allow the study of deep reinforcement learning techniques
for workload management in heterogeneous environments. There are two main driving premises:
(1) the increasing complexity of heterogeneous configurations as new architectures appear in the

3

market; (2) the recent promising results achieved in [19] along with the room for improvement
from the base idea. The following specific objectives are then proposed:

� Development of a novel framework for simulating heterogeneous workload management
scenarios: studied state-of-the-art workload management simulators in section 2.2.1 do
not support neither heterogeneity nor resource interferences. The new framework should
allow both of these traits, while also exposing a user-friendly interface for defining platforms
and workloads. Furthermore, it should be fully functional by the end of the thesis.

� Extension of the framework for implementing deep reinforcement learning (DRL) agents.
It should model the reinforcement loop shown in figure 1.1. Moreover, it should also offer
the possibility of integrating user-defined agents without difficulty.

Figure 1.1: Reinforcement learning loop

� Validation of the framework main capabilities. Show the impact of heterogeneity and re-
source conflicts on performance of classic approaches. Introduce learning as an alternative
to estimate optimal hybrid policies which improve the overall objective accomplishment.

1.4 Methodology

In order to achieve the previously explained objectives, a research methodology has been pursued,
which is constituted by the following steps:

1. Study of workload management landscape: comprehend concepts behind workload man-
agement, understand classic selection policies, evaluate and compare several state-of-the-
art simulators.

2. Research of reinforcement learning and deep learning: the reinforcement learning loop,
agent and environment interactions, deep neural networks for approximating policies, up-
dating the networks, integration of the concepts within a workload management scenario.

3. Complete understanding of the chosen simulator ecosystem and interfaces: metrics, event
flow, callbacks, decision system, visualization tools.

4. Design of HDeepRM from scratch: abstract component interactions, user-focused design
for interfaces, extensibility and readability as priorities.

5. Implementation of HDeepRM: integration with the simulator, reinforcement and deep
learning libraries comparison, object-oriented approach, tool set development for ease of
use, metric system, event-flow debugging through logs.

6. Distribution of the framework: uploading to a public repository, documenting the full
project, automation of web documentation, versioning.

7. Evaluation of the solution: validation and verification through exhaustive experimentation,
policy comparison, analysis and insights.

4

CHAPTER 1. INTRODUCTION

1.5 Document structure

In chapter 2, the concepts introduced here will be further explained and specialized towards the
thesis body of work. Next, in chapter 3 a complete description of HDeepRM design decisions
will be offered, both concerning heterogeneity and deep reinforcement learning capabilities. In
chapter 4, implementation of the designed concepts will be explained, along with the integration
of tools and algorithms. Experiments are presented in chapter 5, where results showing validity of
the framework as well as research potential are reviewed. Finally, the current state of HDeepRM,
along with the accomplishment of objectives and future work will be showcased in chapter 6.

5

Chapter 2

Background

The following chapter is a recommended reading for further delving into concepts introduced in
chapter 1. Details about resource heterogeneity, workload management and deep reinforcement
learning will be presented. Next, an explanation of tools and algorithms utilized along the
journey is provided. A short chronological view of related work from early beginnings to recent
achievements will be exhibited for ending the chapter.

2.1 Concepts

In this section, details about the three main concepts in this thesis body of work are presented.
These are broad concepts, thus a set of rich references is provided in order to acquire further
knowledge; these references are not a requirement, however they are highly recommended read-
ings.

2.1.1 Resource heterogeneity

Through time, computing performance has mainly been achieved by the means of chip scaling.
Moore’s law [20] set a trend for transistor density doubling every 18 to 24 months. Chipmakers
adhered to this trend, scaling transistor specs by 0.7x, which in turn provided around 40%
performance boost and 50% area reduction for the same amount of power. This worked until
20nm gate voltage lengths, where channel control became inviable. FinFETs [21] were proposed
for under 20nm nodes, but their scaling was more difficult, and the cadence increased from
18 months to 2.5 years or longer. Nowadays, 7nm transistors are already in the market [22],
however the design and manufacture costs escalate, going from $51.3 million for 28nm to $542.2
million for 5nm [23]. Furthermore, fundamental thermal issues arise at lower scales for high
frequency processors; these are conceived in Dennard’s scaling law [24].

Parallel architectures were proposed as an alternative for tackling specially the thermal con-
straints. Instead of designing a one-core chip with high clock rate, several cores with lower clock
rate are integrated in the same processor, where they share resources (v.gr. memory hierarchy).
This requires parallel applications with the ability to leverage the budget of cores. Moreover,
there are fundamental limits to how parallelization gains diminish as serial sections of the pro-
gram stay constant or slightly decrease (due to reductions in clock frequency). This is known
as Amdahl’s law [25].

6

CHAPTER 2. BACKGROUND

Current trends point towards resource heterogeneity. Nowadays CPUs are complemented by
hardware accelerators, devices with specialised architectures targeted at specific workloads.
GPUs are used for tasks from pure graphic processing to highly data-parallel jobs, while Deep
Learning accelerators leverage MAC1 based designs for convolution speed-up. Aside from im-
proving performance, resource heterogeneity also improves energy efficiency; examples of this
are CPU architectures such as Arm’s big.LITTLE [27] or the recent chiplet [28] trend.

This thesis enables evaluation of systems composed of heterogeneous resources, which increase
both richness and complexity of workload management.

2.1.2 Workload management

Services provided by High Performance Computing clusters are controlled by a middleware
component known as workload manager. Users connect to frontend nodes, where utilities for
interacting with the workload management system are installed. In order to launch jobs, a script
specifying resource requirements for the job as well as the actual job load needs to be created
by the user.

When the job is launched via providing this script to the utilities, it is enqueued and set for
pending execution. The workload manager schedules pending jobs over available resources fol-
lowing a response scheme and a policy pair. The response scheme may be of two kinds: (1)
event-based responses: when a job is launched or completed, the scheduling is triggered; (2)
periodic responses: the scheduling is done in defined time periods.

On the other hand, policies define the priority scheme for both jobs and resources. During the
scheduling step, the highest priority resources are chosen to be allocated for the highest priority
jobs. For instance, in a shortest job first-highest computing capability policy pair, the job priority
is negative the requested time in the system; furthermore, the resource priority would be the
current FLOPs offered for processing.

Processing resources are known as compute nodes. In a heterogeneous clusters, three types of
compute node heterogeneity may be observable:

� Specification-based : nodes are constituted by the same processor micro-architectures, how-
ever specs may vary between them. For instance, the clock rate of each processor or the
available memory.

� Micro-architectural : processors provide the same Instruction Set Architecture (ISA), how-
ever the implementations vary between them. For example, Intel Xeon processors differ
from AMD EPYC ones, however their ISA (x86-64) is the same, thus a compiled program
for that ISA may run in either.

� Architectural : different devices, both in terms of architecture and functionality, coexist
within the cluster. These may be GPUs, Intel MICs, Google TPUs and other processor
architectures, such as IBM POWER ISA.

In HDeepRM, an event-based response scheme is supported by the underlying simulator. Up
to 25 classic policy-pairs associated to different priority schemes may be specified for launching
experiments. Furthermore, both specification-based and micro-architectural heterogeneity are
supported, whereas architectural is left as future work.

1MAC stands for multiplier-accumulator. Convolutions comprise over 90% of Deep Neural Networks operations
[26], and they are achieved by matrix-multiplications.

7

2.1.3 Deep reinforcement learning

Reinforcement Learning (RL) constitutes a family of machine learning methods distinguished
by one or more agents interacting with an environment. For each time step t, the agent observes
some state (st) of the environment and is asked to select an action (at). Applying this action is
known as an alteration, which makes the environment transition into its next state (st+1). The
agent receives a reward (rt) as a feedback for how positive was to take that action towards the
final objective. The agent then observes the new state and the process repeats. This loop (see
figure 1.1) is the foundation of RL.

The objective in RL is to maximize the discounted cumulative expected reward, given by the
equation in 2.1. This is the sum of the expected rewards at each time step, however a discount
factor (γ) is applied to each of them. This factor is a hyperparameter2 used to tune how much
future rewards lose their value according to how far away in time they are. A γ value close to
0 means the agent will only care about immediate rewards, while a value close to 1 will extend
its expectations further in time.

(2.1) Gt =

∞∑
k=0

γkrt+k+1 where γ ∈ [0, 1)

As the agent interacts with the environment, it gains knowledge of its decisions, and can tell the
outcome of selecting certain actions in specific states. There are two main ways of representing
this knowledge:

� Value-based : value of each state is given by the total amount of reward an agent can expect
to accumulate over the future being at that state. This is represented in equation 2.2. The
agent will then take the state with the highest value.

(2.2) vπ(s) = Eπ[rt+1 + γrt+2 + γ2rt+3 + ... | st = s]

� Policy-based : a policy function maps a state to a probability distribution over the ac-
tion space. In deterministic policies, the action which leads to the highest Gt is given a
probability of 1, whereas in stochastic policies, less productive actions are also given a
small chance of being selected, thus encouraging the agent to explore. This is pictured in
equation 2.3).

(2.3) π(a|s) = P[at = a|st = s]

In value-based RL, the value table which holds the actual values for each state can be big in
high-dimensional spaces. The policy function, on the other hand, needs to be programmed such
as to understand the meaning of being at each state. Both of these issues are tackled by the
inclusion of substitute artificial neural networks (ANNs) [29], which help estimate values and
policy functions respectively.

In order to train these networks, a loss function is calculated. This function depends on the
RL algorithm implemented, however it is always based on the rewards obtained by the agent in
each step of the episode. Higher rewards contribute to a lower loss.

2A hyperparameter is a parameter set before the learning process and external to the model, that is, it is not
derived via training.

8

CHAPTER 2. BACKGROUND

HDeepRM allows for implementing deep reinforcement learning agents based on a simple inter-
face. The user may specify the structure of the ANNs, the loss functions and the reinforcement
learning algorithm to be used.

2.2 Tools and algorithms

The majority of tools utilized during the thesis are open-source software. In this section, deci-
sions pertaining the selection of them along with the implemented algorithms are explained.

2.2.1 Batsim ecosystem

In order to create HDeepRM, a workload management simulator has been selected. A first idea
is to use the SLURM [30] workload manager as a platform for development. It is observed that
(1) its sched plugin is limited by interfaces with the rest of the system, (2) launch script input
options do not cover the thesis proposed range (i.e. memory bandwidth) and (3) its C-based
implementation would slow down idea testing.

Main requirements for the selected tool are (1) rich documentation, (2) easy extensibility, (3)
presence of analysis tools and (4) possibility of integration with other libraries. Several state-
of-the-art simulators are considered however not utilized:

� Alea v4 (2016, Klusácek et al. [7]): developed on top of GridSim [31], implemented in Java,
open-source. It uses its own internal representation of machines (nodes), and provides a
simple interface for creating management policies in Java. Not selected due to scarce
documentation and Java not being a suitable choice for DRL development.

� Scheduler Simulation Framework or ScSF (2017, Rodrigo et al. [8]): implemented as a
wrapper around a real SLURM instance. Experiments are defined in a controller, which
manages worker instances spawned in their own virtual machines. Components may be
distributed, and physical network latencies have an impact in the simulation. New algo-
rithms are implemented via SLURM plugins. Not selected due to complexity and lack of
a real distributed infrastructure to test the components.

� Accasim (2017, Galleguillos et al. [9]): discrete-event-based simulation. An event manager
processes events within the simulated system, and a dispatcher assigns jobs to resources
in the system. It defines job arrival, start and completion as main events. Implemented
in Python, with new algorithms integrated by extending base classes. Not selected due to
poor documentation and lack of analysis tools.

Batsim [10] ecosystem is found to be a suitable choice. It is a simulator framework developed
on top of SimGrid [32], which allows for deep customization of components. It consists of three
major elements3:

� Simulator (Batsim): process which runs the workload management simulation. Imple-
mented in C++, it leverages SimGrid’s features such as power management via P-states
or link bandwidth congestion. It communicates through several events related to job and
resource state in the cluster, which are sent to the decision system.

� Decision system: equivalent to the workload manager, it is in charge of mapping jobs to
resources in the cluster. Due to being detached from the simulator, it may be implemented

3Batsim ecosystem may be found in https://gitlab.inria.fr/batsim.

9

https://gitlab.inria.fr/batsim

in any language, with the requirement of establishing a connection to Batsim and handling
the emitted events. In this thesis PyBatsim, a Python-based decision system, is utilized
as a base for developing the framework.

� Analysis toolset (Evalys): during the simulation, Batsim gathers several metrics concerning
utilization, power consumption, waiting time, etc. Evalys, also implemented in Python,
provides utilities to analyse Batsim outcomes.

HDeepRM leverages Batsim ecosystem heavily. It relies on it for simulation, event handling and
result analysis.

2.2.2 PyTorch and Gym

Deep Learning (DL) frameworks have proliferated during last years, specially since the public
release of Google’s TensorFlow [33] in 2015. In this research, Facebook’s PyTorch [34] is selected
as a tool for implementing DL algorithms.

PyTorch is an open-source Python framework4 focused on fitting Python’s object-oriented pro-
gramming and facilitating model debugging. The primary element in DL is the computational
graph, which defines the order of operations within the model; in TensorFlow, these operations
are first defined and later run in what’s known as a session. This design decision is taken due
to efficiency, it is possible to optimize the graph and run it in parallel on a GPU-backed session.
This scenario is a good fit for production environments, when the model is already verified to
function properly, however it complicates its development, since Python debugging capabilities
are limited by the session interpreter. PyTorch uses a “define by run” approach, where op-
erations are executed at the definition point, that is, the graph is created dynamically. This
enhances user’s understanding of his/her model, as well as debugging capabilities.

In this thesis, PyTorch Modules are utilized along its functional package to create the agent’s
inner models, which are the artificial neural networks in charge of processing the agent’s obser-
vations.

On the other hand, reinforcement learning is implemented by the means of OpenAI’s Gym
library [35]. It provides standardized environment and action/observation spaces definitions. It
is used for encompassing the workload management environment, and describing both possible
actions (scheduling decisions) and observable states.

2.2.3 REINFORCE and actor-critic

Two reinforcement learning algorithms are implemented as examples of use on top of HDeepRM:

� REINFORCE [36]: REward Increment = Nonnegative Factor times Offset Reinforcement
times Characteristic Eligibility class algorithms constitute the fundamentals for policy-
based RL algorithms. In policy-based RL algorithms, actions taken by the agent derive
from a parametrized policy, where each action has a preference. In this thesis, preferences
are also parametrized by weights from a deep ANN implemented in PyTorch.

REINFORCE is a Monte Carlo policy-based RL algorithm, meaning that action prefer-
ences are updated at the end of each episode, which in this context is a complete simulation.

4PyTorch is available in https://github.com/pytorch/pytorch.

10

https://github.com/pytorch/pytorch

CHAPTER 2. BACKGROUND

� Actor-critic: this class of algorithms is a hybrid between value-based and policy-based
solutions. A critic estimates the long term value of the agent being at the current state
(value), and an actor produces the set of action preferences (policy), from which the agent
selects an action. Implementation in this research uses two independent deep ANNs. The
advantage function shown in equation 2.4 is also utilized to reduce variability of value-based
methods. It calculates the difference between the reward in each step and the estimated
value from the critic. This measures the improvement of taking an action with respect to
the average value of being at that state.

(2.4) Aπ(s, t) = rπ(t)− vπ(s, t)

For further understanding the intrinsics of these two algorithms, please refer to chapter 13 of
Sutton and Barto [37].

2.3 Previous work

Several work has been done in workload management over HPC clusters, however the majority
has been focused on job scheduling. The following listed contributions are relevant for this
thesis.

As of June 2017, six out of the top ten supercomputers in TOP500 were using the SLURM
workload manager [30], including top one at that time, Sunway TaihuLight. SLURM schedules
jobs based on their priorities; it supports two types: priority/basic, which uses job’s arrival time
as selecting criteria, and priority/multifactor, which allows for different properties to be selected
as criteria (time enqueued, number of nodes requested, running time, etc.). It also provides two
scheduling approaches: builtin, which selects based strictly on priority, and backfill, which may
allow jobs with lower priority to execute if they do not interfere with the highest priority one.

Backfill scheduling calculates interferences based on job properties. When a user submits a job
to Slurm, it does so via sbatch; this tool takes a description conveyed in a job script shown in
appendix A, where these properties are specified. One of them is “–time”, which specifies the
maximum amount of time the job may be running in the system. This is estimated by the user,
and it has been shown to be inaccurate with respect to the the actual running time [38], causes
being (1) users overestimating to reduce the probability of the job being killed and (2) modality
of the estimations.

Accuracy of estimates has been addressed in literature as a key factor for job scheduling perfor-
mance, and thus has been a research focus. Authors from [39] proposed a modified version of
EASY backfilling, named EASY++, where they introduce, among other contributions, system-
generated predictions. They observed high degree of repeatability in per-user job traces, leverag-
ing average runtime of the two most recent jobs from the same user as a predictor. They achieve
average job wait time reductions of up to 33% with respect to EASY, and average bounded
slowdown reductions of up to 47%. Nevertheless, performance-wise, EASY++ has obtained
results similar to shortest job first policies, nevertheless being fairer.

Further studies of improvements over accuracies have been carried out. Authors from [40]
propose a machine learning approach, where they fit a L2-regularized polynomial model for
predictions. They show this model outperforms EASY++ on average bounded slowdown by 11%.
Moreover, they compare these results with the optimal or clairvoyant EASY implementation,
where predictions equal running times; their results come close, however in some traces there is

11

still room for improvement. A number of features are inputted into the model, including user
estimate, statistics for the user based on history, time of the day, and occupied resources. In
[41], they also consider the job name and submission directory, whereas they use auto machine
learning frameworks to find the optimal model.

Parallel to accuracy improvements, another popular approach is policy search. Instead of sticking
to a single scheduling rule, such as first come first served, shortest job first or EASY, the actual
policy is inferred from both the incoming jobs and the resource states. Genetic algorithms have
been used successfully to optimize job sequencing [42], while RL has also been used [43] via
enhanced Q-learning [44]. Most recent solutions leverage deep ANNs for learning the optimal
scheduling policy; of relevance is DeepRM [19], an architecture developed at MIT based in DRL
and policy gradients.

To the authors knowledge, there is not as much work done in resource management, specially
in resource selection policies. This may be due to historical resource homogeneity. Main focus
of this thesis involves the development of a novel framework which (1) enables simulation of
heterogeneous platforms, (2) models resource conflicts and interdependence and (3) builds on
DeepRM ideas for DRL-based agent development.

12

Chapter 3

HDeepRM: design decisions

In this chapter, design decisions concerning both the developed heterogeneous framework and
the deep reinforcement learning extension are discussed. This chapter will bridge the inception
of the ideas with the concepts needed to implement them, whereas their actual implementation
is further described in chapter 4. The following contributions are derived from this chapter:

� A novel framework for heterogeneous workload management based on Batsim ecosystem,
supporting resource types, interdependence and selection policies.

� A deep reinforcement learning extension over the developed framework with roots in
DeepRM architecture. This includes novel action and observation spaces, reward func-
tions and a new agent interface.

3.1 Heterogeneity support

Heterogeneous computing grows relevant as (1) fundamental limits of general purpose architec-
tures are reached, (2) new trends such as machine learning arrive in the mainstream scene and
(3) other objectives being power costs or thermal control become relevant in spite of historical
performance focus.

One of the current disadvantages of workload management simulators is the lack of explicit
heterogeneity support. Computing resources are conceived as individual nodes to be allocated
to incoming jobs, however each of these nodes does not have its own characteristics further
than its availability. Moreover, these nodes are independent, meaning that there is no notion
of resource sharing and interdependence; due to this, there is no emphasis on resource selection
policies. In this section, several design choices are presented as a way to provide heterogeneity
support over the Batsim environment using HDeepRM.

3.1.1 Consequences of interdependence

Individuality of compute nodes in state-of-the-art designs does not reflect undesired effects of
resource interdependence. In the proposed solution, both node and processor scopes are defined.
Cores (compute nodes in state-of-the-art designs) in the same node share the node’s memory
capacity. Given a few memory-bound jobs j < n, where n is the number of cores in the node,
if they are scheduled into the same node, memory capacity may be completely utilized before

13

n− j free cores are allocated, potentially making them unusable.

On the other hand, cores belonging to the same processor scope share the present memory
bandwidth, meaning that too many memory-bandwidth-bound jobs in the same processor may
decrease individual core performance. Similarly, when only one core is processing a job within
the same processor, the shared resources power consumption cannot be amortized by idle cores,
decreasing overall computing efficiency.

These effects are relevant motivators of resource selection policies. They are reproduced in the
proposed framework as a way for the agents to learn rich selection rules. It is important to note
that as of now, HDeepRM does not model task dependencies; for instance, a job requesting 4
cores may launch 4 tasks which need communication and synchronization between them. This
is scheduled for future work.

3.1.2 Platforms

Batsim is developed on top of SimGrid, and relies on this framework for the actual simulation.
SimGrid is capable of simulating high-scale distributed systems. A system is defined in a platform
definition, which is an XML file with a structure briefly described in section 4.1.1.

This definition allows for specifying generic components of the simulated system. The following
list includes the ones utilized in the developed framework:

� platform: root element of the platform definition. Every other component is specified as
a child of the platform.

� zone: group of resources within the system. It is equivalent to a cluster in a data center.

� host : any resource with a explicit function within the system. May be computing or
storage related. It can be used to represent any level, from core, to processor to node.

� link : connection between two or more hosts.

� route: path between two hosts. Links are associated to routes via LinkConnections and
may belong to multiple of them.

� zoneRoute: path between zones in the data center.

� prop: generic way of defining a property associated to a host. Commonly used to express
power consumption parameters.

Each host has P-states, where each P-state is associated to a computational capacity and a
power consumption: ps = (c, p). Hosts may also be specified as multicore via the core XML
attribute, which indicates the number of cores. Computational capacity is shared among tasks
if their number is higher than the number of cores.

One of the premises that this research proposes is to be able to select and control individual
cores. The reason for this is to let the workload manager understand the implication of resource
conflicts when dispatching same resource-bound tasks on a single processor; for example, if
memory bandwidth intensive tasks are consolidated in the same processor, they will over-utilize
the channel capacity, and thus individual core performance will reduce. P-state combined with
the multicore scheme is a good start, however there is no way of maintaining per-core state,
unless each host represented a single core [45].

Another relevant premise is to reflect resource hierarchy and thus ownership and interdepen-
dence. Only cores from a certain processor may access its memory bandwidth capacity and not

14

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

other processors’ capacities. Due to SimGrid Document Type Definition (DTD) [46], it is not
possible to nest hosts inside other hosts, and the use of zones for hierarchy expression convolutes
the XML file heavily, making it harder to comprehend.

Bound to this limitation, the proposed approach is to design a new platform layer which is then
automatically transcribed into the XML format for SimGrid. Designed platform architecture in
the heterogeneous framework is observed in figure 3.1.

Figure 3.1: Heterogeneous platform design

The following components can be distinguished:

� Platform: same as in the XML definition, root element of the system.

� Main zone: root zone, owns all the resources in the data center and conveys communica-
tions between clusters.

� Master zone: separate zone containing the master host.

� Master host : special host in charge of executing workload management algorithms. In
this thesis, impact of algorithm execution overhead is not considered, however it can be
modelled on the basis of this host’s computational capacity.

� Cluster : range of nodes in a common space. In distributed data centers, such as MetaCen-
trum [47], clusters from different institutions in different places contribute computational
capacity to the platform.

� Router : bridge for communicating between clusters and the master host.

� Node: computational unit within a cluster. It owns several processors as well as memory
capacity. Equivalent to a data center blade with its sockets.

� Processor : computational unit within a node. May own one or more cores, which access
node’s memory through shared memory channels.

� Core: minimal computational unit in the system. Computational capacity and power con-
sumption depend on its P-state, which in turn depends on the processor/node congestion.
Resource manager selects resources at core-level.

� Memory and channels: every node has an amount of memory, and each processor in the
node has channels with a given memory bandwidth. Cores share the memory subsystem.

Hierarchy is expressed via several JSON formatted files described in detail in section 4.1.1.

Even though this approach does not leverage core attribute provided by SimGrid, it heavily
relies on P-states for core state. P-states are tuples of computational capacity and power
consumption. Computational capacity is expressed in [M/G]FLOPs, that is, number of floating
point operations per second. Power consumption is expressed in Watts. The objective for

15

learning agents is to understand implications of both consolidating and spreading loads across
the computing platform; in order to achieve it, the following four P-states are proposed:

� P0 : job is scheduled on the core, executed at 100% computational capability and consum-
ing 100% power.

� P1 : job is scheduled on the core, however memory bandwidth for the processor is over-
utilized. Job can be executed at 75% computational capability and 100% power.

� P2 : job is not scheduled on the core, however some other job is scheduled on the same
processor. Core is thus consuming 25% of power.

� P3 : job is not scheduled on the core, and processor is completely unused. Core is consum-
ing 5% power as of idle.

Take into consideration that these numbers are meant to serve as penalties for pivoting the agent
actions, they are not empirically obtained. A future approach would be to fine-tune them based
on real system benchmarks.

If the agent decides to consolidate the load, it has to consider the memory bandwidth usage,
since entering over-utilization (P1) would decrease performance of all jobs in the processor. If
it spreads the load, unused cores in under-utilized processors would consume more power (P2).

It is relevant to distinguish two views of this definition. Batsim, the simulator, only sees cores
as computing resources, each of them with an associated P-state; these are defined in the XML.
PyBatsim, the decision system, sees the whole hierarchy, understands about nodes, processors,
memory and interdependence between them. Benefit from this approach is that decoupling
decisions from the simulation allows for it to stay simpler and faster.

3.1.3 Workloads

Workloads constitute incoming jobs into the platform. Batsim provides a specific format for
describing workload composition, consisting of a JSON file with a structure briefly described in
4.1.2. Each job has a series of data fields documented in [48].

Batsim introduces the concept of profiles. Profiles describe how data is processed and moved
around the system for a certain job. There are at least eight types of profiles available1, however
in this thesis two of them are used at most, since network impact is not studied.

The first type is used during testing of the framework, and it is known as delay. It is the simplest
profile, defining just one data field delay with an indication of the number of seconds the job
will execute in. When Batsim observes this profile for a job, it schedules it for the amount of
time specified in the delay field.

The second type, and the one used in the current version of the framework, is the paral-
lel homogeneous. This profile defines two data fields: cpu indicates the number of floating point
operations to be computed in each core, and com the number of bytes sent a received by each
pair of distinct machines (as stated earlier, network is not modelled so com is not used). Batsim
calculates the time a job will be running in a core by dividing cpu by the core’s computational
capability in FLOPS.

One intermediate goal of this thesis is to develop the framework following current standards. In

1All types of profiles are available in Batsim’s documentation https://batsim.readthedocs.io/en/latest/input-
workload.html#profile-types-overview.

16

https://batsim.readthedocs.io/en/latest/input-workload.html#profile-types-overview
https://batsim.readthedocs.io/en/latest/input-workload.html#profile-types-overview

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

this sense, there is a reference workload format known as Standard Workload Format (SWF)
[49]. The 18 data fields defined in the standard2 convey both user request parameters and job
execution metrics, that is, they contain both the input and output of the simulation. This is
useful for contrasting user request accuracy or evaluating quality of service constraints.

Batsim provides converters from SWF to its own format, however they do not take into account
the inclusion of external data fields. A new converter has been developed to be able to add extra
data fields to the job profiles:

� profile.cpu: real amount of floating point operations associated to the job. SWF has a data
field Requested Time; this is the user estimated running time, which has been shown to
be off the real value. In order to estimate the real running time, a probability distribution
of accuracy similar to figure 2 of Tsafrir et al.[39] is used. This estimate is then converted
to floating point operations by taking a reference speed; this is based on the average
FLOPs per core in the system. The use of a reference speed allows for normalization of
job operations. It is important to note that the decision system does not know the real
running time of each job when making decisions, it is only seen by the simulator.

� profile.req time: user estimation of running time. Taken from Requested Time SWF data
field. This is seen by the decision system and used for time related job scheduling policies.

� profile.req ops: amount of requested floating point operations associated to the job. This is
used by the decision system to calculate remaining execution. Reason for using operations
instead of time is that time may vary with changes in resource P-states, whereas operations
are absolute.

� profile.mem: amount of memory in MB requested for the job. This is taken from Requested
Memory SWF data field, or if this is not present, from Used Memory data field. Jobs can
only be allocated if there are enough resources to fulfil the request, so these two fields are
equivalent. Original field is in KB, so it is transformed into MB for the framework.

� profile.mem bw : amount of memory bandwidth in GB/s requested for the job. There is no
information about memory bandwidth in SWF data fields, so it is decided to generate this
field from a random range going from 4 to 24 GB/s, which constitutes from 5% to 75%
of offered bandwidths, which are typically 32 to 51.2 GB/s as of spec sheets. Relevance
of this field is in teaching the agent implications of consolidating high memory bandwidth
jobs in a single processor.

Converter takes an SWF formatted trace, parses it and generates a Batsim-ready JSON trace
enhanced with extra data fields.

3.1.4 Components

Conception of the heterogeneous framework begins by identifying the main components, which
will then be implemented in the language of choice. It is important to note that Batsim is
leveraged for the simulation, so all the effort is applied to designing a decision system. An
overview of the design is observable in figure 3.2.

The Simulator represents the instance of Batsim. It has three main functions: instantiating the
platform, parsing the workload and communicating events to the decision system. Event scheme
will be further discussed in subsection 3.1.5.

2SWF data field list may be consulted in http://www.cs.huji.ac.il/labs/parallel/workload/swf.html.

17

http://www.cs.huji.ac.il/labs/parallel/workload/swf.html

Figure 3.2: Component layout

The Workload Manager is the entry point for the decision system. It communicates with the
Simulator via events. It handles job submissions, job completions, resource releases and changes
in P-states. Every decision step, it will call the Job Scheduler to pick the next job to schedule
and subsequently the Resource Manager to allocate resources for that job. Once ready, the
mapping between job and resources is communicated to the Simulator, followed by changes in
resource P-states.

The Job Scheduler selects the next job from the Job Queue to be scheduled in the platform.
Different scheduling policies may be implemented, current framework supports Random, First
Arrived, Shortest, Lowest memory and Lowest memory bandwidth.

New jobs arrive as simulation time advances. The Job Queue holds all incoming jobs before
being scheduled. Job Scheduler has ownership of the queue, and provides different operations
over it, like peeking, inserting or sorting jobs.

The Resource Manager is in control of the Core Pool. When the Workload Manager sends a job,
the Resource Manager checks for availability of resources given the ones requested by the user.
When serviceable, those resources’ states are updated to reflect their allocation and impact on
shared memory, bandwidth and power.

A Core Pool contains all cores in the platform, and allows for the Resource Manager to select
them based on its policy. Current framework supports the following management policies:
Random, Highest computing capability (FLOPs), Highest memory available, Highest memory
bandwidth available and Lowest energy consuming.

The Platform represents the hierarchy of resources as a local view to the decision system. It
provides relations between each type of resource, and allows for the Resource Manager to update
shared states between Cores in same Processors, Processors in same Nodes and Nodes in same
Clusters. This local view is not exposed to the Simulator, which only understands about hosts
and jobs being served by them.

3.1.5 Simulation flow

In its essence, HDeepRM leverages Batsim’s event oriented flow. One of the major contributions
from Batsim over SimGrid is the definition of a communication protocol. This protocol defines a

18

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

request-reply communication style, where the Simulator sends a request to the Decision System,
with content regarding what has happened in the platform, and the Decision System replies
with an action to be taken on the simulation side.

Several events are defined for communication over the protocol3. Three types of events may
be distinguished relative to the communication direction: simulator to decision system events,
decision system to simulator events and bidirectional events. For the current design, events in
table 3.1 are of relevance.

Table 3.1: Batsim events utilized in the heterogeneous framework

Simulator - Decision System

SIMULATION BEGINS Platform instantiated and workload ready to be parsed

JOB SUBMITTED Job’s submission time is reached

JOB COMPLETED Job is completed, that is, it has been fully processed

RESOURCE STATE CHANGED Core P-state has been altered in the simulation

SIMULATION ENDS Every job has been scheduled and completed

Decision System - Simulator

EXECUTE JOB Job with allocated resources and ready to be processed

SET RESOURCE STATE P-state alteration due to new job in core or local cores

Bidirectional

NOTIFY From Simulator when no more jobs are to be submitted

Framework event-based communication can be observed in figure 3.3, which shows the following
stages:

1. Before simulation begins, the Simulator has to instantiate the platform from the platform
definition. This generates all the computing resources (cores) and their default states. It
will also parse the workload trace in order to generate the sequence of job arrivals.

2. Once both platform and workload are enabled, the simulation is ready to begin, so the
Simulator sends a SIMULATION BEGINS request. It then starts looking for the next
event in the event loop, which, in the case of the figure, is a job submission. It thus sends
a JOB SUBMITTED request. It is important to note that in more complex scenarios,
such as the ones presented in chapter 5, several jobs may arrive at the same point in time.

3. The Decision System receives this request and triggers the decision process. At the end
of this stage, a job will be allocated some resources via both Job Scheduler and Resource
Manager. A reply EXECUTE JOB is sent back indicating the job is ready to be executed.

4. Allocated resources for the executed job have now a different state, and this has to be
communicated to the simulator in order to correctly measure times and power consump-
tion. State altering is done inside the Resource Manager, however the Workload Manager
is the one responsible to reply back with a SET RESOURCE STATE event.

5. Immediately after receiving this reply, the Simulator sends another request RESOURCE
STATE CHANGED indicating that the change has been effective inside the simulated
platform.

6. Next event in the loop is another job submission, but particularly in this case, it is the last
submitted job of the trace. In this situation, a NOTIFY request is sent after the JOB
SUBMITTED event. The alteration of states is the same as before.

3All Batsim’s protocol events may be found in https://batsim.readthedocs.io/en/latest/protocol.html#table-
of-events

19

https://batsim.readthedocs.io/en/latest/protocol.html#table-of-events
https://batsim.readthedocs.io/en/latest/protocol.html#table-of-events

7. When a job completes its processing inside the simulation, the Simulator sends a JOB
COMPLETED request. In the figure, this only triggers an alteration of the released
resources, reason being that there are no more jobs to be scheduled. If there were more
jobs waiting, this request would also trigger a scheduling step.

8. When all jobs are completed, the Simulator finally send a SIMULATION ENDS request,
which closes communications between both subsystems.

The naming request-reply refers to the need of the Decision System to handle the requests and
further generate the replies. Handling of events in the developed framework will be explored in
subsection 4.1.4.

Figure 3.3: Simulation flow. Events are sent between Simulator and Decision System

3.2 Deep reinforcement learning extension

Proposed solution in DeepRM [19] is simple in essence, principally due to being a proof of
concept. Currently only two types of resources are taken into account, computing capability and
memory capacity, and there are no dependencies between those two, meaning that each core may
potentially access the totality of memory. With development of the heterogeneous framework,
it is now possible to take into account resource interdependence and also a new resource type,
memory bandwidth. In contrast with cores and memory capacity, memory bandwidth is shared
between jobs, and might affect individual performance.

The purpose of DeepRM was proving that DRL can improve over other workload management
alternatives in literature, and for that they use a simple homogeneous scenario. In this thesis,
a novel DRL extension for agent development is designed. This enables researchers to test the
feasibility of DeepRM’s claims in heterogeneous environments provided by the framework. As a
proof of potential, both a REINFORCE and an actor-critic agent are built over the extension.

3.2.1 Extra components

Component overview in figure 3.2 relies on a Workload Manager element with a fixed policy
established when initiating the framework. This is fine for testing classic policies, however RL
problems include new concepts which should be included as an independent extension.

20

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

An updated overview of the components is shown in figure 3.4. The following is a brief description
of each component function within the system:

Figure 3.4: Component layout with Deep Reinforcement Learning extension

� HDeepRM Workload Manager : entry point when experimenting with Deep Reinforcement
Learning algorithms. It has been tuned from the base workload manager adding event
flow control between actions taken by the Agent, information reported by the Simulator
and observations made in the Environment.

� Environment : represents the actual workload management environment. It is important
to discern between the observable environment and the actual environment. The first one
consists of information received by the Agent via Observations, whereas the second one
includes both the present managers as well as the simulated platform. A useful analogy is
that of the agent observing the environment through a dashboard, in which it is possible
to take certain Actions.

� Agent : consists of the model in charge of observing and altering the environment in order
to optimize a given objective. As it interacts with the Environment through Observations
and Actions, the Agent learns a policy, which is a mapping between observations and
actions. Note that an observation is associated to a state, and it includes all information
perceivable by the Agent.

� Optimizer : learning process for the Agent consists of updating its preferences, which are
the set of parameters conditioning the probability distribution of actions. In order to
do that, a loss function is calculated, which measures how good did the agent do. The
Optimizer takes the output of the loss function and updates the preferences into a higher
performing version of the agent.

� Action Space: represents the set of all possible actions the Agent can choose from. Actions
are the output of the Agent, and they alter the Environment.

� Observation Space: consists of the set of observations available to the Agent as a view of
the Environment state. Observations are the inputs of the agent.

3.2.2 Agents

The entity in charge of taking management decisions is known as the Agent. The Reinforcement
Learning loop shown in figure 1.1 helps understand the flow of a generic decision. Initially, the
agent is proposed an objective, and its goal is to optimize it. Objectives evaluated in DeepRM
are the following:

21

� Average Job Slowdown: expressed as

∑J
j

Cj
Tj

J , where J is the set of jobs in the system, Cj
is the time between arrival and completion of the job, and Tj is the running time of the

job, with
Cj

Tj
≥ 1. It measures how much of the totality of time is due to the stalling in

the job queue. Agent’s objective is to minimize this expression.

� Average Job Completion Time: expressed as
Cj

J . Agent’s objective is to minimize this
value.

Three new objectives are developed for HDeepRM:

� Average Utilization: expressed as
∑T

t=0
ARt
TR

T , where T is the total number of time steps,
ARt is the number of active resources for step t, and TR is the total number of resources in
the system. It measures the number of active resources over the simulation time. Agent’s
objective is to maximize this expression.

� Makespan: expressed as
∑J

j Cj . It is the time span from the arrival of the absolute first
job until the completion of the absolute last job, essentially the time to complete the whole
workload. Agent’s objective is to minimize this value.

� Energy consumption: expressed as
∑R

r re, where re is the energy consumption of the
resource r over all the simulation time. This is the total amount of energy consumed
during the simulation. It is calculated by SimGrid as a function of hosts’ power usage. It
is expressed in Watts, and agent’s objective is to minimize it.

Reward functions, explained in subsection 3.2.4, are tightly coupled with agent’s objectives, as
they score agent’s steps through the simulation.

Going back to decisions, which are the agent’s main motive for existence, these are the steps in
the developed framework context for a scheduling decision:

1. Whenever there is a job event, submission or completion, a new observation is generated.
This gives information to the agent about the workload management environment state,
described in detail in subsection 3.2.3.1.

2. With this information, the agent selects an action. The way it does it is by forwarding
the observation through its inner model. This model might be a deep ANN or, in simpler
cases, a mapping between observations and actions. Actions are described in detail in
section 3.2.3.2.

3. An action produces an environment alteration, which consists of the result of allocating
requested resources to a selected job. This alteration is not directly observable by the
agent, it will rather be evaluated in the next active point, which may be another decision
or the end of the simulation if there are no more decisions to make.

4. When active point is reached, the agent is rewarded in order to provide feedback on the
impact of its actions. Furthermore, the agent observes again and the whole cycle repeats.

Each decision is known as a step, whereas a full simulation run is an episode. This design
is based on the idea of terminal state (refer to section 3.3 of Sutton and Barto [37] for more
details), where the episode ends and the environment is reset to a standard starting state. It is
in part reminiscent of DeepMind’s approaches to Atari games [50], where the agent movements
are considered steps, and the game level is the episode.

In the original DeepRM paper, REINFORCE is implemented and enhanced with Trust Region
Policy Optimization (TRPO) [51]. Agents implemented for validating the HDeepRM framework
include REINFORCE without enhancements and actor-critic. REINFORCE serves as the base

22

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

algorithm for policy-based RL approaches, while actor-critic is provided as a more sophisticated
approach. It is not this thesis objective to develop high performance agents, in fact this is what
HDeepRM enables. The user is thus endeavoured to develop new agent architectures adequate
to his/her system and workload.

Both agents may be observed in figure 3.5. In the REINFORCE model, only one pipeline of
five layers is present. The input layer is fed an observation, which is then forwarded through
three hidden layers, and a final output layer, where action preferences are generated. For
an initial architecture, every layer is dense, such that the layer outputs are of the form y =
activation(dot(W,x) + b), where y is the output, x is the input, W is the weight matrix, b is the
bias, dot is the dot product between input and weights and activation is the activation function.
A dense architecture is one where each neuron is connected to all neurons in the next layer, thus
constituting a fully connected network.

(a) REINFORCE architecture design

(b) Actor-critic architecture design

Figure 3.5: Two inner models for agents used in HDeepRM

Activation functions introduce non-linearities in the architecture, and allow the network to learn
more complex mappings. Leaky Rectified Linear Unit (LeakyReLU) is chosen as the activation
function; it is an improved version of ReLU, which is widely used in literature and has been
shown to perform better [52] than others such as Sigmoid or Hyperbolic Tangent. As observed
in equation 3.1, a clipping of negative values is applied element-wise to the output of the dot
product plus bias. In contrast to ReLU, where negative values are clipped directly to zero via

23

max(0, x), in Leaky ReLU the negative slope produces outputs slightly lower than zero, which
prevents gradients coming from last layers to be multiplied by zero, losing the error signal in
the backpropagation4 process.

(3.1) LeakyReLU(x) =

{
x, if x ≥ 0

negative slope ∗ x, otherwise

Softmax, expressed in equation 3.2, is applied to the last layer in order to generate a vector of
preferences (probability distribution), one for each action.

(3.2) Softmax(xi) =
exp(xi)∑
j exp(xj)

Actor-critic design takes REINFORCE pipeline and duplicates it, thus creating two separate
networks. The actor network is the one in charge of learning the policy, and it is identical to the
REINFORCE network. The critic network only shares the input layer with the actor network,
and is in charge of estimating a long-term value for being at a particular state. This way, the
agent can use the value of each step to update its parameters at the end of the episode. Softmax
is not applied to the output layer, since the value is a scalar, which means that the size of the
result will be one.

Learning of the agents is based on gradient descent. When an episode is finished, the weights
are adjusted based on how they affect the objective, which is the maximization of the expected
sum of discounted rewards Gt, as expressed in equation 2.1. This in turn depends on the action
probability distribution and, for actor-critic, on the value estimates. Loss derivatives or gradients
measure how much does each individual weight contribute to the final loss; they are calculated
and backpropagated from the last layers, and serve as factors for updating the weights in the
correct direction for maximizing the objective.

Both REINFORCE and the actor network base their learning on a policy loss. This is defined
in equation 3.3, where a is the selected action, π is the learned policy, θ is the set of weights in
the inner model and o is the observation; this is calculated for each decision step, and at the
end of the episode, its partial derivative with respect to θ is used for updating.

(3.3) Policy loss = −logprob(a|πθ(o)) ∗ r

The actor network utilizes the value loss for learning. It is defined in 3.4, and it is based on the
Huber loss [53], a more robust alternative to the Mean Squared Error [54]. The estimated value
is compared to the actual reward in each decision step, and gradient is applied at the end of the
episode in order to reduce the difference.

(3.4) V alue loss =

{
0.5(v, r)2, if |v − r| < 1

|v − r| − 0.5, otherwise

4Backpropagation refers to the distribution of the error signal from the last to the first layers in the neural
network. This is used as a method for weight updating.

24

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

The update operation is expressed in equation 3.5, where wij is the particular weight associated
to a pair of neurons i and j, dL

dwij
is the derivative of the loss function with respect to that

weight, and α is a hyperparameter known as learning rate. This defines how quickly the agent
learns from its losses, which is equivalent to how fast the weights are updated. Lower α means
the agent will learn slowly, and thus it would need more training steps, however with time it
would converge to a local optimum solution; if α is high, the agent will learn fast, nevertheless
big variations in weights may not let the agent stabilize in an optimum, meaning that it will
bounce around the loss space, even being able to diverge.

(3.5) wij = wij − α
dL

dwij

3.2.3 Environment

The scenario or context which the agent may observe and in which it may exert influence
through actions is known as the Environment. Interaction between the agent and the environ-
ment is framed in what’s known as a Markov Decision Process [55] or MDP (refer to section
3.1 of Sutton and Barto [37]). In MDP terms, the RL loop presented earlier in figure 1.1
is conceived as a trajectory, which is a sequence of states, actions and rewards of the form
S0, A0, R1, S1, A1, R2, S2, A2, R3, ...

An interesting problem lies in defining the boundary between the agent and the environment.
In general, anything that cannot be changed by the agent in an arbitrary way is considered to
be part of the environment. A good example of this presented in sec. 3.1 of [37] is a human
body, where bones, muscles and sensory organs may not be changed and thus be part of the
environment. In the developed framework, muscles may be equivalent to the Resource Manager
and the Job Scheduler, where each would be able to produce an alteration but not be altered
per se. In another note, reward functions are also externally defined, thus the agent would not
“obtain” a reward, it will rather be “rewarded“.

In DeepRM, the interaction is defined as a generalization of MDP, specifically a Partially Ob-
served Markov Decision Process or POMDP. This means that observations do not totally re-
semble the environment states, and thus the agent is constraint in the quality and/or quantity
of information received. In their case, this is due to the use of a bounded number of jobs M
whose characteristics are shown in the observation; these are the first M pending jobs, however,
in a given step, the Job Queue may have N > M jobs.

Decisions concerning observation and action design in HDeepRM are discussed in the following
subsections.

3.2.3.1 Observation space

The agent gathers information from the environment via observations defined in an Observation
Space. As stated earlier, an observation may be a complete or a partial view of the environment
state. In general, observations may be defined in any k-dimensional space, for example data
vectors in 1-D or images in 2-D.

In DeepRM, the observation space consists of cluster images, like that shown in figure 2 of their
paper [19]. In the vertical dimension, time is represented as a series of steps, corresponding to

25

the small squares. They define a time horizon, which is the number of time steps ahead the
workload manager may allocate resources to jobs, in this case the value is five. In the horizontal
dimension, both contemplated resources, CPU (cores) and memory, are represented. Each small
square represents an instance of that resource, that is one unit of CPU and one unit of memory.
There is no specific definition of what “unit” means in the paper, however it may be thought
of individual cores for CPU units and the minimal requested capacity for memory units. These
images are fed into a deep ANN, which constitutes the agent.

When designing HDeepRM, several limitations were found in the original design. Real traces,
such as the one discussed in section 5.1, involve thousands of computing resources, not three as
exposed in these observations. Requested times are highly varied, from few minutes to several
days; given that the time horizon has to be at least the maximum of the requested times, it
would grow considerably. Furthermore, traces consist of tens of thousands of jobs, meaning
that using small M values would not be representative of the queue status. The observation
size would grow in these three directions, making it unfeasible to train a network with such an
amount of inputs. An analogy to this is a dashboard with too much information; if the agent
cannot understand what is being shown, it will not make the correct decision.

A novel observation space design is then introduced for HDeepRM, which tries to provide a
compact and useful packet of information:

1. For each node, the fraction of memory capacity available is shown.

2. For each processor, the fraction of memory bandwidth capacity available is shown.

3. For each core, the current computing capability and power consumption fractions are
shown against the maximum possible for that core. Fraction remaining for completing
the scheduled job in that core is also shown; this is calculated from the provided user
estimation and the current execution span of the job.

4. For each kind of requested resource, being time, cores, memory and memory bandwidth,
five statistics are shown: the minimum, Q1, median, Q3 and maximum quantities in the
whole job queue. This gives the agent a brief idea of the pending jobs distribution for
resource request quantities.

5. Finally, a variation ratio of the queue size with respect to the last observation. This ratio
falls under the range [0.0, 1.0], with 0.5 meaning no variation between time steps. A new
hyperparameter, known as queue sensitivity is defined to control the responsiveness of
the environment observation to queue variations. When queue sensitivity is high, larger
variations are noticeable, however smaller ones are attenuated in the ratio. When it is low,
smaller variations are noticeable but larger ones are clipped outside the range, and thus
have no impact. For instance, if the sensitivity is 0.2, variations between −20% and 20%
are noticed; variations of less than −20% are clipped to 0.0, whereas variations of more
than 20% are clipped to 1.0. This hyperparameter needs to be adjusted to the workload
trace being simulated.

The reason for all the observation values to be fractions or ratios between 0 and 1 is due to
feature scaling. When features span in different ranges, artificial neural networks tend to weigh
greater values higher whereas smaller values lower. This is comprehended by taking the example
of memory availability per node and remaining operations per core; memory per node in the
current framework is measured in MB, and a node from the platforms used for experimenting
(see section 5.1) has up to one TB of capacity, meaning that the range of availability would be
0−1e6. Jobs may request up to 5.4e5 seconds of estimated running time, which translated with
a reference speed of 1 GFLOPs yields 5.4e14. This means that remaining operations per core
would have higher relevance than available memory per node.

26

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

Three types of observations are defined in relation to the amount of information provided. The
normal type provides all data previously listed, with a number of features equal to Nnodes +
Nprocessors+Ncores∗3+Nrestype∗5+1; the small type skips the per-core information (3rd
data item); the minimal type provides only the job distribution (4th item) and variation ratio
(5th item). These are meant to be used in varying complexity scenarios.

Data is arranged in a 1-D data vector and sent as input to the developed agents. The three-
dimension scaling issue in DeepRM representation is now reduced to a one-dimension scaling,
which makes it feasible for larger platforms. Bear in mind that this observation space still con-
stitutes a POMDP problem, since the agent does not know the full composition of the job queue.
However, instead of showing a fragment of the queue such as in DeepRM, an approximation of
the job queue distribution is used as a substitute, which provides a more holistic view of the
state.

3.2.3.2 Action space

Agent’s way of altering the environment is through actions. The Action Space is the set of
actions which can be selected by the agent to be applied over the environment. The nature of
the space may be discrete, when a set of well-defined actions are present, or continuous, when
an action is defined by the assignment of its definition parameters. A simple example in order to
comprehend this is a game character and its movements. The agent may be defined as moving
left or right, in which case the action space could be described as discrete, and of the form
As = {left, right}; in every step of the gameplay, the agent may only take one of those actions.
On the other hand, it may also be defined as moving in a certain direction and with a given
speed, which may be represented in radians and metres/second; this means the action space may
yield infinite actions depending on these values, and thus could be described as continuous, with
the form As = {direction, speed}.

In DeepRM, the designed action space is discrete, however they use the concepts of reservations
and impossible actions to allow for richness of decision. They define an action as a selection of a
job from any of the first M pending jobs, thus the action space is of the form As = {∅, 1, ...,M}.
A special void action (∅) is also incorporated in order for the agent to be able to stall; this is
intended to address cases where the result of any other action would result in a worse outcome.
An example of this may be observed in figure 3.6.

When a job is selected, resource requirements are checked against the system, and if not enough
resources can be allocated within the time horizon, the action is classified as impossible, meaning
no job is scheduled and the agent is rewarded negatively. If there are sufficient resources in the
current time step, the job is scheduled immediately; if not, but they are within the time horizon,
a reservation is set for the earliest time step in which the job requirements are met.

For every time step, several actions might be taken until either a void or an impossible action
is selected. This is unconventional, since in the formal definition of an MDP, only one action is
taken in each step.

Similar to the observation scaling problem, the action space also grows with the value of M .
Moreover, a bigger issue is that of no selection of resources, meaning that all of them are treated
as an homogeneous pool, which would not fit in a heterogeneous scenario.

In HDeepRM, limitations from this approach are treated by designing a new action space.
Instead of picking from the first M jobs of the queue, the proposed solution is a policy space.

27

(a) Scenario with no void action

(b) Scenario with void action

Figure 3.6: Impact of void action (∅) when minimizing average job slowdown

In this space, several classic policies are exposed for the agent to choose from in each time step.
A classic policy consists of a pair of (job selection policy, resource selection policy), which are
shown in table 3.2. In total, there are 36 combinations from classic policies; void action is also
incorporated, thus the action space size is 37.

Any subset of policies might be specified by the user to adjust the action space size in their
experiments.

When an action is selected, the environment will be altered to use the associated policies in
both Job Scheduler and Resource Manager. These policies are applied until there are no more
jobs that can be scheduled in the time step, this being because the queue is empty or due to
resource busyness. It has been observed that the average chosen jobs per time step can be as
low as two for the evaluated traces, since it is uncommon that multiple jobs arrive at the exact
same time step, as well as multiple resources being released in the same step. This means that
policy changes are more frequent, and thus provides more value to learning approaches.

3.2.4 Reward functions

A reward function or signal is passed from the environment to the agent every time the agent
alters the environment through an action. The reward is designed accordingly to the agent’s
objective, following the reward hypothesis:

That all of what we mean by goals and purposes can be well thought of as the maximization of
the expected value of the cumulative sum of a received scalar signal (called reward) [37]

28

CHAPTER 3. HDEEPRM: DESIGN DECISIONS

Table 3.2: Classic policies exposed through the Action Space

Job Selection Policies

Random Any job may be chosen for scheduling

First arrived Job with lowest submit time is chosen

Shortest Job with lowest user requested time is chosen

Smallest Job with lowest user requested cores is chosen

Lowest memory Job with lowest user requested memory is chosen

Lowest memory bandwidth
Job with lowest user requested memory bandwidth
is chosen

Resource Selection Policies

Random Any resource may be chosen for allocation

Highest computing capability Resource with highest current FLOPS is chosen

Highest core count available Resource with most available cores is chosen

Highest memory available
Resource associated to the node with most memory
is chosen

Highest memory bandwidth available
Resource associated to the processor with most
memory bandwidth is chosen

Lowest energy consuming Resource with lowest current Watts is chosen

As stated in the hypothesis, the reward is a scalar value, and at the end of the episode, the
agent will have received as many rewards as steps have occurred. Rewards are discounted by
a factor of gamma, which is defined to be in the interval [0, 1). When close to 0, only rewards
in the immediate future are considered for updating the model; as it approaches the value of
1, rewards from a more distant future will also be considered. Maximizing positive rewards or
minimizing negative ones brings the agent to optimize the given objective.

In DeepRM, two reward functions are proposed:

� Minimizing Average Job Slowdown: reward is
∑AJ

j
−1
Tj

, where AJ is the set of both sched-

uled and pending jobs (active jobs) in the system, and Tj is the user requested time or
expected duration. This constitutes the negative inverse summation of requested times,
with short jobs in the system contributing to a worst reward. If the agent is prioritizing
short jobs, slowdowns will also go down, because the working set of jobs will do too.

� Minimizing Average Job Completion Time: reward is −|AJ |, where |AJ | is the size of the
set of active jobs in the system. This is negative the number of unfinished jobs in the
system. Low throughput of jobs result in higher completion times.

In HDeepRM, three new reward functions are defined for the three new objectives:

� Maximizing Average Utilization: reward is |AR|, where |AR| is the size of the set of active
(busy) resources in the system.

� Minimizing Makespan: reward is
∑R

r Cr, where R is the set of all resources in the system,
and Cr is the computational capability being used in resource r. This is the summation of
current computational capabilities being used. It supports the idea that as the throughput
of operations per time unit in the system increases, all jobs will eventually finish earlier.

� Minimizing Energy consumption: reward is −
∑R

r Pr, where R is the set of all resources
in the system, and Pr is the power consumption being used in resource r. This is negative
the summation of power consumptions in the system. As power grows, reward becomes
less valuable.

29

Chapter 4

HDeepRM: implementation details

In this chapter, the implementation of the developed framework will be explained. Focus will
be on showing how tools mentioned in 2.2 have been used to achieve functionality. The content
structure has been designed to mirror that of chapter 3, thus it is recommended reading each
section while bearing in mind its design counterpart.

4.1 Heterogeneity support

The framework has been implemented following an object-oriented programming [57] approach.
Each component has been isolated into its own class, and inheritance has been leveraged to
increase code reuse and hierarchy semantics.

4.1.1 Platforms

Batsim accepts platforms following SimGrid’s XML Document Type Definition (DTD). This
states which XML elements are valid and how they may be arranged. A minimal example of a
Batsim + SimGrid compliant platform is shown in appendix B.1.

In this platform there is only one zone, which can be thought of as a cluster. In this zone,
there are two hosts: a master host, which is in charge of running the management entities,
and a compute host, which will be assigned jobs to process. It is important to note that the
master host notation is not standard in SimGrid, however it is required by Batsim. Each of
these hosts has a speed or computational capability expressed in GFLOPS (Gf).

Moreover, a link is defined with a bandwidth of 1 Gigabits per seconds (Gbps) and a latency
of 125 microseconds (us). A link has to be attached to a route via a link ctn. This route
communicates a src host with a dst host, in this case the only two there are in the system. By
default, the link bandwidth is shared between communication flows, meaning that if both hosts
are sending data simultaneously, each of them will receive half of the bandwidth.

In the platform design, cores are represented as hosts. Real platforms utilized in the experiments
consist of thousands of computing cores, thus the XML file turns unfeasible to write manually.
In HDeepRM, a new platform layer on top of this XML definition is implemented.

An overview of the platform pipeline can be observed in figure 4.1. The following is a description

30

CHAPTER 4. HDEEPRM: IMPLEMENTATION DETAILS

of each component, as well as representative examples for better understanding.

Figure 4.1: Platform pipeline implementation

The user initially writes a JSON platform definition. A minimal example can be observed in
appendix B.2. The user describes data center clusters and global links between them. In each
cluster, nodes are described along with local links connecting them.

All resource types are specified in separate files belonging to HDeepRM. For instance, if the user
needs a new processor type, he/she will have to extend the content of the type files. These are
described further in the following paragraphs:

� node types.json: contains node type definitions. An example of a minimal node type is
shown in appendix B.3. For each node, processors belonging to it are listed, with type and
number. Memory is associated to the node, and it is shared by its multiple processors; in
the current framework, Non-Uniform Memory Access (NUMA) effects are not taken into
account, thus capacity acts as a homogeneous pool for every processor.

� network types.json: comprises network type specifications. In appendix B.4 there is an
example for Gigabit Ethernet network technology. Bandwidth is expressed in Gigabits per
second (Gbps). Network is currently not modelled in the framework, however if the reader
is interested in extending this capability, two clarifications are relevant:

– The framework links leverage SimGrid’s SPLITDUPLEX model; this allows for up
and down independent flows, each with the bandwidth specified in the network type.
This is useful for modelling full duplex TCP connections.

– Latency can be expressed in the fields local links and global links of the platform
definition. This is because latency depends on the distance between endpoints, and
it is not exclusively dependent on the network type.

� memory types.json: contains memory type descriptions. An example for DDR3-1600 is
shown in appendix B.5. Latency expresses the product of memory clock cycle time by
the Column Address Strobe (CAS) [58] cycles. In the current framework, memory types
are not utilized, since memory access is not modelled; in future work, memory extensions
should adhere to this data format.

� processor types.json: processors are referenced from nodes, and their types are contained

31

in this file. A basic processor definition is shown in appendix B.6. Several fields define a
processor:

– uarch: microarchitecture of the processor. In the current framework it is purely
informational, therefore it is an optional field.

– id : unique identification of the processor type.

– type: device type, might be CPU, GPU, MIC or others. Current framework only
supports specification-based and micro-architectural heterogeneity, future work will
also include architectural (see 2.1.2).

– cores: number of cores in the processor. This is used by the Generator to create the
number of hosts related to this processor.

– clock rate: base number of processing cycles per second provided by the processor. It
is expressed in Gigahertz (GHz), and used for calculating maximum FLOPs provided.
Neither Turbo Boost [59] nor SpeedStep [60] are considered for this thesis.

– mem bw : total memory bandwidth shared between processor cores. This is expressed
en Gigabytes per second (GB/s).

– llc size: last-level cache size in Megabytes (MB). It is not used in the current frame-
work, however it is scheduled for an early extension as of future work. It is useful to
measure conflicts of jobs with different cache working sets [61] in the same processor.

– power : sustained power consumption of the processor in Watts (W). This is estimated
from Thermal Design Power (TDP) specifications in product sheets. As stated in [14]
sec. 1.5, average power consumption for a given computation is likely to be lower
than TDP. In this case, 0.75TDP is used as an estimation. In the relative comparison
of workload management algorithms, the accuracy of this estimation is not relevant,
since all executions are run with the same estimation range.

– dpflops per cycle: number of double-precision floating point operations achieved in
one cycle via vector extensions. This depends on the microarchitecture, and can range
from 4 in Intel SSE based systems to 32 in AVX-512 systems with Fused Multiply-Add
(FMA)1 operations. They are used for calculating maximum FLOPs provided by the
processor. In this thesis, loads from jobs are considered homogeneous in operation
composition. That is, all operations are double-precision floating point, and thus
when a core is allocated to a job, this can use the maximum computational capability
with the exception of conflicts due to other jobs. In future work, operation profiles
will be incorporated into the framework.

The HDeepRM platform definition in JSON is further parsed by a developed Platform Generator.
This is a Python script which possesses handles for all the JSON type files, and can resolve
references between them. This script produces two outputs:

� The XML platform definition compliant with latest versions of SimGrid and Batsim. It
structures hosts, links, routes and other components in order for them to be simulated in
Batsim. It also sets computing capability and power consumption for each host depending
on the processor type. The resulting platform is conceived in the platform.xml file.

� The Resource Hierarchy in Python. This is provided to the Resource Manager in PyBatsim
for understanding relations between hosts. It is a tree of Python dictionaries, where leaves
are Core objects. The Platform root dictionary has a reference to all the Clusters as well
as the reference speed for calculating operations from time. Each Cluster dictionary has
a reference to its local Nodes. Each Node to its local Processors, and each Processor to
its local Core objects. Every data element also has characteristics provided by the JSON
type files. In order to serialize it into a data file, the Python pickle2 library is used, and

1Executes a multiply and an addition (2 operations) in one cycle.
2The pickle library documentation is found in https://docs.python.org/3.6/library/pickle.html.

32

https://docs.python.org/3.6/library/pickle.html

CHAPTER 4. HDEEPRM: IMPLEMENTATION DETAILS

the resulting file is known as res hierarchy.pkl.

At the end of this pipeline, the platform.xml is ready to be served to Batsim, while the
res hierarchy.pkl file can be deserialized by PyBatsim. However, Batsim still needs the workload
definition, which is explained in the following section.

4.1.2 Workloads

Workload management simulators such as those described in section 2.2.1, present different
workload and platform specification formats. For the Batsim ecosystem, the workload specifi-
cation is a JSON based file, and a minimal example may be found in appendix C.1. In it, the
number of cores nb res is expressed at the top, followed by incoming jobs and associated profiles.
Both job and profile fields have been explained in section 3.1.3.

Nevertheless, the majority of simulators also provide tools to parse and adapt the Standard
Workload Format (SWF), which is an effort to transfer workload traces in a standard struc-
ture. Several traces from older research have been uploaded in SWF to the Parallel Workloads
Archive3, ranging from 1993 to 2015. The SWF format specifies one job per line, with data
fields separated by spaces and comments beginning with “;”. An example of a trace with two
jobs might be observed in appendix C.2.

It is noticeable that some data fields, such as memory requested (memReq), are provided as −1,
meaning that they are not available in the trace. For these cases, a data cleaning process is
issued before working with the trace; several cleaned traces are already in the archive.

Batsim offers converters located in the “tools” directory4, however they are limited to compute
and time data fields. Moreover, they have not been updated for changes introduced in latest
Batsim revision v3.0.0. For these reasons, a new converter is implemented as a Python script
for translating between SWF and Batsim workload format. It reads SWF file line by line and
produces a JSON Batsim-ready structure with profile fields described in section 3.1.3. This file
is known as workload.json, and it is served along with platform.xml to Batsim.

Moreover, due to the design of the observation space explained in section 3.2.3.1, resource request
upper limits are needed for calculating percentiles in the job distribution estimation. These are
usually specified in the workload manager middleware configuration, however the converter will
take care of obtaining them by analysing statistics from the workload trace. These limits indicate
the maximum amount of resource requested by an individual job:

� max time: upper limit for requested running time. In seconds.

� max mem: maximum for requested memory capacity. In MB.

� max mem bw : upper limit for requested memory bandwidth. In GB/s.

The limits are pickled in a job limits.pkl file, which is later loaded by PyBatsim in runtime.

3The Parallel Workloads Archive is accessible from http://www.cs.huji.ac.il/labs/parallel/workload/.
4Converters may be checked online in https://github.com/oar-team/batsim/tree/master/tools.

33

http://www.cs.huji.ac.il/labs/parallel/workload/
https://github.com/oar-team/batsim/tree/master/tools

4.1.3 Components

A new software package named hdeeprm is currently available in the Python official repository
index, PyPi5. Framework components have been divided into different Python modules as to
decouple functionality. The base module structure for the heterogeneous framework can be
observed in figure 4.2.

Figure 4.2: HDeepRM base module structure

The data directory contains all the JSON resource type files described in 4.1.1. It is used by
the Platform Generator for establishing relations between resources and generating both the
platform.xml and the res hierarchy.pkl files.

The entrypoints subpackage contains the BaseWorkloadManager.py module. PyBatsim needs
an entrypoint for instantiating a Batsim proxy, which is a local object to the decision system for
accessing and communicating with the Batsim simulation. Entrypoints are defined in their own
modules, and the name of the module needs to be the same as the class inside it. For instance,
the BaseWorkloadManager.py module provides a single class named BaseWorkloadManager. All
entrypoint classes have to inherit from the PyBatsim BatsimScheduler class. This provides event
handlers for processing messages received from the simulation.

The cmd module provides command line utilities for easily launching HDeepRM experiments
and analysing the results. They will be explored in section 4.3.

The manager module provides both the Job Scheduler and the Resource Manager implemen-
tations. Any of the policies specified in table 3.2 may be applied by modifying the sorting key
parameter. In essence, when the Agent selects an action, it alters the sorting keys of both
managers in order to change the selection policies.

The resource module contains the Core class, which is the leaf resource in the resource hierarchy.
Cores provide methods for updating and consulting their state, which consists of their current
computing capability and power consumption. They are also linked to the job they are serving
and the parent resources for hierarchy exploration.

Finally, the util module supplies the platform and workload generators. These are called during
the launch of an experiment to produce the set of files needed for both Batsim and PyBatsim.

In order to better understand the module relations, a class diagram with interactions is shown
in figure 4.3. All classes and methods have been documented and are available online at the
time of this writing [62]. Source code can be explored for each module, and it is also available
on GitHub [63].

5hdeeprm can be accessed and downloaded from https://pypi.org/project/hdeeprm/.

34

https://pypi.org/project/hdeeprm/

CHAPTER 4. HDEEPRM: IMPLEMENTATION DETAILS

Figure 4.3: HDeepRM base module interactions

4.1.4 Event handling: practical example

In this section a simplified framework execution will be detailed in order to understand the flow
of events. The following reduced platform and workload will be used:

� Platform: one cluster, with one node and one dual-core processor. This means there are
2 computing resources in the system within the same processor scope. Each of the cores
provides 109 FLOPs in P-state 0. The processor’s memory controller can handle 24 GB/s
of memory bandwidth, while there are 16 GB of memory in the node.

� Workload: one job needing 509 total operations. It requires 8 GB of memory and a
sustained memory bandwidth of 2 GB/s. Its arrival time is at t = 0.

When the launcher is called, all the files (platform.xml, workload.json, res hierarchy.pkl and
job limits.pkl) are generated. Immediately, Batsim and PyBatsim are executed as independent
processes, and both establish a connection over the local network. The first message is sent by
Batsim at t = 0, and it indicates the beginning of the simulation, as shown in appendix D.1.

A message consists of JSON content carrying multiple events. The message includes a timestamp

35

indicating the simulation time at its emission. The request-reply system induces no latency,
meaning that message reception timestamps are the same as emission ones. For each event, the
type field indicates the kind of event as specified in table 3.1.

The event payload is conceived in the data field. Number and characteristics of resources
available in the platform, as well as workload references are within this field. In spite of profiles
being specified explicitly in the SIMULATION BEGINS event, jobs are generated dynamically
by reading the workload.json file; this is because the vast amount of them would incur high
network traffic and thus slow down the simulation. Another relevant aspect is the ID established
automatically by Batsim to the workload: 62b680. This is used in conjunction with the profile
name to do the job-profile mapping.

When PyBatsim receives this message, it stores the platform and workload information locally.
There is no special handling for this event type in HDeepRM, however the request-reply protocol
mandates a response. By default, PyBatsim sends a message with an empty set of events.

The simulation instance forwards until the next event, which is the arrival of the job at t = 0.
When this happens, it sends a new message shown in appendix D.2. The JOB SUBMITTED
event contains a reference to the job’s profile, where further information about requirements is
specified. PyBatsim has received all profiles from the SIMULATION BEGINS event, and it can
index the job’s profile by the provided workload ID and profile name. The onJobSubmission()
callback is triggered, and the Workload Manager sends the job to the Job Scheduler so it ends
up in the Job Queue.

Any job submission or completion triggers the scheduling process, since new jobs or resources
are available for the decision. In this case, the Workload Manager decides to associate the job
to the first core in the platform. This in turn triggers a change in resource states; since the
processor is now active, both cores are consuming power, in particular the first core will be in
P0, whereas the second one will be in P2 (refer to section 3.1.2 for more on P-states). This
information is sent to Batsim in another message shown in appendix D.3. Notice that both alloc
and resources indicate the core IDs, not the number of them.

Batsim receives the message, alters the P-states and starts executing the job. Based on the
cpu field in the job’s profile and the speed field in the core XML specification, it calculates the
running time for the job. In this case, the speed provided by the core is 109 FLOPs, while the
cpu operations are 509, so this job would run in 5 seconds. Batsim schedules an event at t = 5
and forwards to the next event.

Whenever there is a request for changing P-states, Batsim responds with an immediate message
confirming the change in the simulation. Observe that the simulation time is still t = 0, since
there are more messages to be processed. It happens that at this time step, there are no more
jobs to be submitted, since the workload was composed of only one. A notification indicating
this is concatenated with the state change confirmations in the same response message, shown
in appendix D.4.

HDeepRM does handle these events with an empty response, since there are no processing needs.
Batsim forwards to the next event, which happens at t = 5, and it is the completion of the job.
Batsim processes the event, sending a completion message to PyBatsim. It also recognizes
that once this job is completed, the simulation is finished: there are no more jobs pending or
active. Due to this, it also concatenates the SIMULATION ENDS event, which when received
by PyBatsim will shut down the simulation. This is shown in appendix D.5.

A summary of the event flow is described in section 3.1.5. This pattern is also observed in com-

36

CHAPTER 4. HDEEPRM: IMPLEMENTATION DETAILS

plex traces, however it is harder to identify due to interlacing of distinct job submission/com-
pletion flows. When the simulation is not working as expected, understanding how to interpret
the flow is necessary for the user to debug his/her deployment; on the other hand, Evalys6, the
analysis toolset for the Batsim ecosystem, also utilizes it for visualizations.

4.2 Deep reinforcement learning extension

Deep reinforcement learning functionality has been developed in separate modules and appended
to the base implementation. In this section, the final module structure is described, and details
about each new component are introduced, encompassing the agent API, environment and
reward system.

4.2.1 Extra components

The extended module structure from that shown in figure 4.2 can be observed in figure 4.4, and
may also be found in the same GitHub repository [63].

Figure 4.4: HDeepRM extended module structure

A new entrypoint named HDeepRMWorkloadManager is introduced to the framework. Ex-
tended from BaseWorkloadManager, it integrates the event flow shown in section 4.1.4 with the
Reinforcement Learning loop.

The agent module provides all superclasses in the agent API. Users should utilize these for
defining their own agents for the simulation. They will be further detailed in section 4.2.2.

The environment module implements the HDeepRM workload management environment. This
contains both the action and observation definitions, and it also provides the reward system for
the agent. It will be explained in section 4.2.3.

The final relation diagram can be found in figure 4.5. Base modules have been reduced for
clarity.

4.2.2 Agents

The main value behind the extension is allowing users to experiment and evaluate their own
Deep reinforcement learning agents. HPC services are diverse in both resources offered and
job arrival/requirement patterns from users. An agent inner model conditions the latency of
decision steps, thus it is relevant to adequate the complexity of this to that of the environment.

6Evalys is hosted in https://gitlab.inria.fr/batsim/evalys

37

https://gitlab.inria.fr/batsim/evalys

Figure 4.5: HDeepRM extended module interactions

HDeepRM provides a flexible agent API for definition and integration inside the framework. A
base Agent is defined as the superclass of all agents. This extends the PyTorch nn.Module7

interface for inner model implementation, providing the agent with a set of parameters. These
are updated each time the agent is trained against a given scenario.

An agent may carry out the following operations:

� observe: given the environment, the agent can request an observation in order to obtain
information from the current state.

� decide: from the observation the agent makes a decision, which consists of selecting the
most valuable action for that state.

� alter : applies the selected action to the environment. This modifies the Job Scheduler and
Resource Manager policies, and triggers the scheduling of jobs over resources.

� rewarded : once the action is applied, the agent asks the environment for a reward. Rewards
are stored in the agent, and are later utilized for calculating the performance loss.

7Module API can be found in https://pytorch.org/docs/stable/nn.html#module.

38

https://pytorch.org/docs/stable/nn.html#module

CHAPTER 4. HDEEPRM: IMPLEMENTATION DETAILS

The ClassicAgent offers the possibility of creating agents based on fixed classical selection policy-
pairs, supporting combinations from any of the policies in table 3.2. In particular, the agent
will always make the same decision based on its policy, thus its inner model is just a mapping
to the action ID. The purpose of this interface is for the user to compare developed agents to
classical approaches, thus establishing performance baselines.

The LearningAgent is the superclass for all trainable agents. During the decision step, learning
agents process the observation through their inner model, which generally consists of forwarding
through a defined artificial neural network (ANN). Layers and activation functions of this ANN
are implemented using PyTorch’s functional API8. In order to update the agent’s parameters,
a loss function is calculated based on the reward history; these are previously discounted and
normalized through transform rewards.

A PolicyLearningAgent utilizes policy gradients for conceiving a near-optimal mapping of ob-
servations to actions. The process method output, and thus the inner model output is the
probability distribution over all possible actions given an observation. Deciding involves select-
ing an action from the distribution; there is always a chance of picking lower probability actions,
encouraging exploration. The policy loss is implemented from the definition in section 3.2.2.

The ValueLearningAgent learns an estimation of the expected future reward for being at a given
state. It does not decide by itself, instead it is meant to be used as a critic in actor-critic
approaches. The value loss is also implemented from the definition in section 3.2.2.

When designing and evaluating agents, the user should follow these four rules:

1. Specify the policy pair for a fixed-policy approach in the options file, which will be intro-
duced in section 4.3. There is no need for extending the ClassicAgent class.

2. Extend PolicyLearningAgent for designing independent policy gradient agents and actors
in actor-critic algorithms.

3. Extend ValueLearningAgent for defining critics in actor-critic algorithms.

4. Extend directly LearningAgent for defining other types of agents, such as those based on
Q-learning [44].

The REINFORCE and actor-critic implementations are available as examples under agent examples
in the repository.

4.2.3 Environment

Standardization of the environment was carried out by utilizing OpenAI’s Gym library. In this
framework, an environment provides an observation space and an action space. It also offers a
principal method step, which takes an action to be applied over the current state. When called,
step minimally returns the new observation and the reward for the effect of the action.

In HDeepRM, step has been modularized for easier readability. A new method observation offers
the current observation of the environment; it may be called multiple times without altering the
environment. The step method is reduced to only applying the alteration; this decision is based
on the semantics, which imply dynamism. Finally, a reward method provides the agent with the
feedback for its actions; since the reward depends on the optimization objective, this method is
mapped to the adequate function from those detailed in 3.2.4.

8PyTorch’s functional API may be found in https://pytorch.org/docs/stable/nn.html#torch-nn-functional.

39

https://pytorch.org/docs/stable/nn.html#torch-nn-functional

4.2.3.1 Observation space

The observation space is based on a Box space from the Gym library. Boxes are n-dimensional
spaces, just like tensors are n-dimensional data structures. They are bounded by maximum and
minimum values.

The shape of the box for HDeepRM is a 1-dimension array, with size calculated as expressed in
section 3.2.3.1. The lower bound is an array of all zeroes, and the upper bound an array of all
ones. The reason for the scaling of observation features to the range [0, 1] was also explained in
the mentioned section.

When the agent observes the environment, a new observation is formed compliant with the
observation space specification.

4.2.3.2 Action space

For the action space, a Discrete space from Gym library is utilized. This defines a set of actions
of size n. In HDeepRM, the number of actions is 37, including the void one (see section 3.2.3.2).

The agent processes the observation and selects an action through its decide method. The
environment is passed this action in the step method call, where it is asserted to exist within
the action space. If it does not, an error is raised.

4.3 Framework usage

In this last section, the usage flow of the framework will be introduced. This is intended for
users to understand the main steps in defining and running experiments.

On installing the framework, an integrated experiment launcher is provided. This is immediately
accessible in the command line as hdeeprm-launch. It accepts several options shown in appendix
E.1.

The options file is a JSON formatted file containing the options defining the experiment. The
following global options are currently accepted:

� seed : random seed for reproducibility.

� nb resources: total number of cores in the simulated platform.

� nb jobs: number of jobs to be generated from the original workload.

� workload file path: location of the original workload in SWF format.

� platform file path: location of the original platform defined with HDeepRM JSON syntax.

Options for the PyBatsim decision system are specified in their own entry. Currently, the
following are supported:

� log level : logging level9 for obtaining insights from the simulation.

� Environment options:
9Accepted logging levels are those defined by Python, check https://docs.python.org/3/library/logging.html#logging-

levels.

40

https://docs.python.org/3/library/logging.html#logging-levels
https://docs.python.org/3/library/logging.html#logging-levels

CHAPTER 4. HDEEPRM: IMPLEMENTATION DETAILS

– objective: metric for optimization during the simulation run. One of avg job slowdown,
avg completion time, avg utilization, makespan or enery consumption.

– actions: user-defined subset of actions based on those implemented by HDeepRM.
Allows for different dimension experiments.

– observation: type of observation, one of normal, small or minimal, as defined in
section 3.2.3.1.

– queue sensitivity : sensitivity of the observation to variations in job queue size.

� Common agent options:

– type: type of agent to be utilized. One of CLASSIC or LEARNING.

� Learning agent options:

– run: type of run for the learning agent. One of train or test. When training, the
agent’s inner model is updated, whereas testing is meant for evaluation purposes.

– hidden: number of units in each hidden layer from the agent’s inner model.

– lr : learning rate for updating the agent’s inner model.

– gamma: discount factor for rewards.

Appendix F contains an example of an experiment involving a learning agent. Notice that
classic agent options can be excluded when utilizing a learning agent and vice versa. For further
examples, the reader is encouraged to check the official documentation [62].

For learning agents, there are three optional parameters. The AGENT refers to a path to the
Python file where the user has defined the actual agent. Agents should be defined in classes
extending LearningAgent or any of its subclasses. HDeepRM reads this file and it dynamically
imports, generates and integrates the agent within the framework.

An example of a minimal learning agent file is shown in appendix G. The constructor param-
eters are passed from the options file, and should be always defined. The integration with the
environment to observe, decide and get rewarded is provided by superclasses.

A custom workload specified in Batsim JSON format can be passed with the -cw option. This
allows for manually defining workloads, which would be tedious to do in SWF format.

When training agents, HDeepRM is capable of saving the inner model parameters for bootstrap-
ping from pre-trained agents. The INMODEL is the path where the pre-trained model is located;
if indicated, this will be loaded into the agent previous to the simulation. The OUTMODEL is
the path where to save the model parameters after the simulation; if not specified, parameters
will not be saved.

Notice that all these paths may be provided in their relative form, HDeepRM will take care of
finding the absolute location within the system.

When called, hdeeprm-launch will carry out the following steps:

1. Check for the existence of the workload.json, platform.xml, res hierarchy.pkl and job limits.pkl
files in the current directory. If they do exist, it will skip regenerations from originals. This
may also be utilized as a way of creating a custom workload directly from the Batsim JSON
format, without providing a SWF trace.

2. Generate all missing files from paths specified in options.

3. Execute pybatsim as a background process passing its options entry. Moreover execute
batsim as a foreground process for obtaining event flow information during the simulation.

41

Once the simulation is over, several files are produced as a result. For Batsim output files, the
official documentation can serve as a source10. As part of the software package, HDeepRM also
offers the hdeeprm-visual and hdeeprm-metrics utilities. These may be utilized for visualising
the outcomes and comparing simulation runs metrics, respectively. They also have the ability
to save the produced figures via the -s option, which indicates the output file name.

hdeeprm-visual utilizes the evalys library as part of the Batsim ecosystem, and can be observed
in appendix E.2. Currently, these types of visualization are supported:

� queue size: plots the evolution of the Job Queue size over the simulation time.

� utilization: show the utilization of cores over the simulation time.

� lifecycle: for all jobs, visualise arriving, scheduling and completion event timestamps over
time.

� gantt : a Gantt chart showing the occupancy of jobs over cores in the system. Jobs are
labelled by their job ID inside Batsim.

� gantt no label : same as gantt but without labelling.

� core bubbles, mem bubbles and mem bw overutilization: show core and memory conflicts
over time, as well as spans for bandwidth over-utilization in each processor.

� losses, rewards, action preferences: provide evolution of losses and rewards, along with the
dominance of actions over different simulation episodes.

Examples from these and more visualisations are available in evalys official documentation11.

hdeeprm-metrics is implemented over matplotlib12, and its usage may be observed in appendix
E.3.

It takes the out schedule.csv files from the Batsim output of the two simulation runs in order
to load, plot and compare the metrics. This, along with hdeeprm-visual, is utilized in chapter 5
for plotting purposes.

For the analysis of the workload trace, hdeeprm-jobstat may be used. This can calculate different
statistics such as mean, median or percentiles over job data fields. Currently, req time, size, mem
and mem bw are supported. Its usage may be observed in appendix E.4.

HDeepRM also generates two output files on top of the Batsim outcome: insights.log provides
step by step information about several parameters and events such as observation composition,
actions taken or memory bandwidth overutilizations; rewards.log contains the cumulative sum
of all rewards obtained by the agent during the simulation. It is designed to be appended by
consecutive simulation results when training an agent.

Finally, a hdeeprm-clean utility is provided for fast testing, which erases every file except for the
options file in the current directory. This should be used with care.

10Batsim output files and descriptions are available in https://batsim.readthedocs.io/en/latest/tuto-result-
analysis/tuto.html#files-overview.

11Evalys documentation available in https://evalys.readthedocs.io/.
12Matplotlib is the most popular Python 2D plotting library, documentation can be found in

https://matplotlib.org/.

42

https://batsim.readthedocs.io/en/latest/tuto-result-analysis/tuto.html#files-overview
https://batsim.readthedocs.io/en/latest/tuto-result-analysis/tuto.html#files-overview
https://evalys.readthedocs.io/
https://matplotlib.org/

Chapter 5

Evaluation

In this chapter, an exhaustive validation of HDeepRM functionality has been carried out by un-
dertaking several experiments. Real traces from the Parallel Workloads Archive are simulated
in conjunction with the heterogeneous platform they were generated from. Learning capabilities
are demonstrated and explored in a multiple outcome scenario. Results show (1) completeness
and validity of the framework, (2) trade-offs derived from heterogeneous configurations and (3)
potential of learning strategies for obtaining near-optimal solutions. All experiment configura-
tions are available under thesis experiments in the official repository [63].

5.1 Platform and workload

Several platforms have been implemented based on traces from the Parallel Workloads Archive
(PWA), all of them are available under platform examples in the repository [63]. In these
experiments, the Gaia Cluster from the University of Luxemburg is utilized. The platform is
available as platform examples/gaia.json. It contains a single heterogeneous cluster composed
of 153 nodes, 342 processors and 2280 cores. Configuration of resources is found in table 5.1.
Bear in mind that the simulation of this system would not have been possible in plain Batsim,
since it does not natively support resource hierarchies and heterogeneous resources.

The workload trace is the second most recent in the PWA, spanning from May 2014 to August
2014. During these three months, 51987 jobs were recorded coming from 6 main users. In the
experiments, continuous fragments of the trace involving a lower number of jobs will be used for
clarity. Besides, the first 4 jobs from the trace have been cleaned due to being issued considerably
earlier than the rest of them. The exclusion of these is not significant for the simulation, and
helps for consistency of visualizations. The Gaia SWF may be obtained from PWA’s portal [64].

The evaluation has been carried out in a commercial computer, specifically an Acer Aspire E1-
571 laptop composed of a 2.6 GHz Intel Core i5-3230M CPU. Nevertheless, a 2x speed-up for
Gaia trial runs with 10000 jobs has been observed when using a 3.2 GHz Intel Core i5-650. This
means that HDeepRM benefits from having higher single-core performance. Bear in mind that
GPUs are not utilized for the simulation. In a future iteration, both the forward passes and the
backpropagation to update the model parameters will be offloaded to a GPU.

43

Table 5.1: UniLu Gaia cluster configuration as in PWA

Node type NumN Mem Processor type NumP Cores ClockRate MBW

Bullx B500 (0) 60 48 Xeon L5640 2 6 9.04 32

Bullx B505 (0) 2 96 Xeon L5640 2 6 9.04 32

Bullx B505 (1) 10 96 Xeon L5640 2 6 9.04 32

Bullx S6030 1 1024 Xeon E7-4850 16 10 8 51.2

Dell R820 1 1024 Xeon E5-4640 4 8 19.2 51.2

Dell R720 5 64 Xeon E5-2260 2 8 17.6 51.2

Bullx B500 (1) 72 48 Xeon X5670 2 6 11.72 32

Delta D88x-M8-BI 1 3072 Xeon E7-8880 v2 8 15 20 85

SGI UV-2000 1 4096 Xeon E5-4650 v2 16 10 19.2 59.7

NumN Number of nodes of that type in the cluster

Mem Memory capacity in each node (in GB)

NumP Number of processors of that type in each node

ClockRate Clock frequency for each core in the processor (in GFLOPs)

MBW Memory bandwidth in each processor (in GB/s)

5.2 Primer on simulation analysis

This experiment is designed to demonstrate the validity of HDeepRM for simulating heteroge-
neous platforms. It also verifies the correct functionality of the ClassicAgent interface. Along the
Gaia cluster, one more real heterogeneous platform is simulated for demonstrating versatility:
the MetaCentrum2 grid (Czech Republic, January 2013 - April 2015 period). More information
on this HPC service is available in its the PWA web page [65].

Two classic policy-pairs are compared as to explore metrics: first-high gflops and shortest-
high gflops. A total of 1000 jobs from each of the workload traces corresponding to the simulated
platforms are used. Moreover, HDeepRM tools such as hdeeprm-visual and hdeeprm-metrics are
utilized for analysing the results based on evalys plotting capabilities.

5.2.1 Job life cycles

In order to understand the impact of scheduling policies in job processing, the lifecycle visu-
alization may be used. It provides information on when each of the jobs has arrived, started
execution and completed. There are three horizontal regions, one representing each event type;
the Y-axis for each region represents the number of cores requested by each job. The life cycle
for the Gaia cluster is observable in figure 5.1.

It can be seen that the shortest job selection policy reduces delays between arrivals and comple-
tions for short jobs, with executions being concentrated at the beginning of the simulation. In
the first arrived job selection policy, both long and short jobs are selected indistinctly, thus there
is higher dispersion among life stages. It is noticeable that the makespans (total completion time
for the whole workload trace) are practically the same.

Figure 5.2 shows the life cycles for the MetaCentrum2 grid. As opposed to Gaia, jobs arriving
in this grid of clusters are in their majority short, with a few very long jobs; this can be
further observed via hdeeprm-jobstat, which provides a maximum job requested time of 2592000,
whereas the 95th percentile is 86400, and even the 99th percentile is 439776, less than 20% of

44

CHAPTER 5. EVALUATION

Figure 5.1: Job life cycles for the Gaia cluster

the maximum value.

In this case, the job selection policy does not seem to affect the life stage distribution. In order
to understand this, along with the invariance of makespans in the Gaia cluster, other kind of
visualizations may be explored, which are explained in the following section.

Figure 5.2: Job life cycles for the MetaCentrum2 grid

5.2.2 Utilization and queue size

For better understanding the reasons behind the two phenomena highlighted in the previous
section, the utilization and queue size visualizations may be used. In figure 5.3, the utilization
of cores within the Gaia cluster is represented. It is observable that during approximately 40%
of the simulation, the load peaks at 100%, meaning that all cores are being utilized. The long
period of overutilization is an indicator of high queue size; this can be confirmed by looking at
figure 5.4.

45

Figure 5.3: Utilization for the Gaia cluster

The queue size is measured in pending core requests in the queue. For shortest job, the queue size
is considerably smaller than for first arrived, reason being that the job processing throughput is
higher. Furthermore, steep declines are observable when job arrival rate decreases.

From a theory perspective, makespan is directly conditioned by compute throughput, that is
the number of operations per second currently being used within the HPC service. Utilization
bubbles constitute compute throughput inefficiencies, where one or more cores within the service
are unused due to inability of serving the next selected job. This for instance may happen when
there are not sufficient cores for a large job or when memory capacity is over-utilized.

Usually, shortest selection policies result in lower (better) makespans due to bubbles spanning
shorter periods of time. In this case, this does not happen because of (1) the size distribution
of jobs and (2) the memory requirements.

At a glance, it seems the majority of jobs request between 0 and 40 cores; via hdeeprm-jobstat,
it is confirmed that the 95th percentile of job size is 36 cores requested, and the median is just 6
cores. This means that core contention bubbles when the cluster is over-utilized will likely leave
less than 1% of the cluster cores unused. Even if these bubbles span longer in the first arrived
policy, they are not significant for the final makespan.

On the other hand, memory requirements for the first 1000 jobs in the Gaia cluster trace are
minimal relative to the service’s memory capacity. 95% of the jobs request 2 or less GB, with
a median of 11 MB and a maximum request of 9.5 GB. This may be compared with the lowest
memory-per-core value in Gaia, which is provided by Bullx B500 and Dell R720 nodes as 4
GB per core. When considering all 51987 jobs, statistics vary slightly, with a p95th of 829 MB,
median of 72 MB and maximum of 38.5 GB. This is an over-dimensioned cluster for the memory
needs of their users. Utilization metrics extracted from the simulation reflect no memory bubbles
in any execution, so makespan is not affected by them.

The second phenomenon indicates no variability in life stage distribution for the two policies
over the MetaCentrum2 grid. This is an indicator that utilization is low for the service, which is
confirmed in figure 5.5. This HPC platform is considerably larger than Gaia with 10002 cores,

46

CHAPTER 5. EVALUATION

Figure 5.4: Queue size for the Gaia cluster

thus 1000 jobs do not fully occupy them. On the other hand, jobs are also very small across the
trace, with a 99th percentile of 64 cores requested.

Figure 5.5: Utilization and queue size for the shortest policy in MetaCentrum2

5.2.3 Metric comparison between policies

Aside from visualizations, several simulation metrics may be observed in order to understand
the effects of each scheduling policy. Both first arrived and shortest policy metrics are shown
for the Gaia cluster in figure 5.6.

Both energy consumed and makespan are practically the same due to reasons discussed in
previous sections. The slowdown measures how much of the turnaround time is constituted by

47

Figure 5.6: Metrics for first arrived and shortest policies in Gaia

the waiting time, and it is expressed as the ratio between turnaround and running time (
Cj

Tj
).

A slowdown of 5 indicates the turnaround time is 5 times the running time, and thus 4
5 of the

turnaround time is due to waiting.

In this case, the maximum slowdown is approximately 93 times greater (worse) for the first
arrived policy, while the mean slowdown is 33.5 times more. The reason behind this is that
in first arrived, multiple short jobs are stalled in the queue; since slowdown is expressed as
Cj

Tj
=

Tj+Wj

Tj
, for small Tj every time unit of Wj increases the slowdown considerably. On the

other hand, in shortest policy long jobs (high Tj) are stalled in the queue making each time unit
of Wj less impactful in the ratio.

This principle also applies to turnaround and waiting time, sine they are all related. It can
be concluded that there is an evident trade-off between fairness and response time: in first
arrived policy, no job is delayed by future arriving jobs, thus acting like a traditional fair queue;
in shortest policy, short jobs may delay long jobs with the advantage of decreasing response
time. From a pragmatic perspective, this last approach improves performance for a considerable
amount of user jobs by slightly (relatively) reducing the performance for a few long ones.

5.3 Demonstrating consequences of consolidation and spreading

In this experiment, effects of job consolidation and spreading are highlighted. Only the first
100 jobs from the Gaia workload trace are utilized for better clarity of results. Two different
strategies are confronted in order to understand the existent trade-offs. Results show consol-
idation leading to 43% less energy consumption than spreading, however both makespan and
turnaround (completion) time also augment 20% with respect to spreading.

Two classic agents are compared when performing the simulation:

� shortest-high gflops: selects shortest jobs from the queue and cores with the highest peak
GFLOPs in the core pool. This agent will pack the jobs in highest computing capabil-
ity processors, without taking into account memory availability or memory bandwidth
utilization.

� shortest-high mem bw : schedules cores based on the currently available memory band-
width in the their processor scope. This will start serving cores in processors with the
highest memory bandwidth, but as they are allocated, the available memory bandwidth
will decrease, and it will start spreading jobs over other processors.

The job to core mapping is observable via Gantt charts in figure 5.7. Notice that the Y-axis

48

CHAPTER 5. EVALUATION

contains all the cores ordered as they are in table 5.1. This means that Xeon L5640 processors
are near the 0, whereas Xeon E5-4650 v2 and Xeon E7-8880 v2 are close to 2280. Results show
two different strategies are applied depending on the established policy:

� Consolidation: the high GFLOPs agent always looks for the highest peak computing
capability resource. In Gaia, these are the 120 Xeon E7-8880 v2 (20 GFLOPs), the 160
Xeon E5-4650 v2 (19.2 GFLOPs) and the 32 Xeon E5-4640 (19.2 GFLOPs) cores. The
former two range from core number 2000 to 2280, and are observable as active in the top
of the chart. The latter is observed in the lower middle of the chart. When these 312 cores
are fully occupied, the agent selects from the next highest computing capability cores,
corresponding to Xeon E5-2260 and Xeon X5670 processors. These are represented in the
top-middle of the chart.

� Spreading : with the high memory bandwidth agent, the jobs are spread across the cluster,
occupying every processor available, but not all of its cores.

Figure 5.7: Gantt charts with mapping of jobs to cores in Gaia

These two strategies lead to two sets of metrics compared in figure 5.8. The high gflops agent has
consolidated the load in a subset of available cores, which has reduced the energy consumption
with respect to the high mem bw agent in approximately 43%. This is due to majority of cores
being in P3 (idle, 5% power), whereas with high mem bw every processor has been active, and
thus its unused cores have been in P2 (25% power).

However, consolidation has also brought up the memory bandwidth overutilization problem,
where too many jobs demanding access to memory interfere with each other and individual
performance decays. This is observable both in the makespan and the turnaround time, which
is the completion time of a job. In the experiment, both of them are about 20% worse for
high gflops.

Notice that, for some metrics, the Y-axis is expressed in scientific notation, with power being
expressed on the top-left corner of each chart. In addition, bear in mind that no waiting time
is measured due to all jobs being served at arrival.

Going further, the mem bw overutilization visualization, which has been developed as part of

49

Figure 5.8: Comparison of metrics between high GFLOPs and high memory bandwidth agents

HDeepRM, helps realize metric differences. In figure 5.9, memory bandwidth overutilization
spans are shown for both agents; these are the time spans from entering overutilization until
going back to normal for each processor. It is observable that for high gflops, overutilization lasts
the complete simulation; this is because every time a job completes, another one is scheduled
in that core, since it is the highest computing capability available, which keeps overutilization
active. On the other hand, the high mem bw reduces these spans due to scheduling cores where
memory bandwidth is high. Because no over-utilizations are found from approximately 60% of
the simulation time, the makespan improves considerably.

Figure 5.9: Memory bandwidth over-utilization spans for the Gaia cluster

This simple experiment highlights the trade-off when the agent has to decide between consolidat-
ing and spreading. In most situations, the value proposition for users is the speed and guarantees
of job completions, whereas for providers it is the energy and operation cost. Therefore, a hybrid
approach based on energy efficiency would lead to a common content.

This hybrid approach is complicated to express algorithmically, since it depends on the previous
and current state of the service. A learning agent may be applied to adapt its internal policy to
the nuances of the service over time. HDeepRM may be used as a learning framework, which
will be shown in the following sections.

50

CHAPTER 5. EVALUATION

5.4 Learning the optimal actions

Previous sections have explored fixed policy scenarios. Each agent may only select a single action
for every decision step, which lowers flexibility of scheduling. Learning agents are presented with
a subset of actions available for choice, and they have to figure out which of them are optimal
towards their objective. In this experiment, a minimal scenario is presented to a policy-learning
agent in order to evaluate its ability to adapt. Results show that the agent correctly converges
into the optimal actions in approximately 350 simulations.

5.4.1 Scenario

The synthetic scenario consists of a platform with one cluster, one node and two dual-core
processors within the node. Both of them provide 32 GB/s memory bandwidth capacity; the
former offers 4 GFLOPs per core at 80 watts, whereas the latter is slightly faster and more
power hungry, with 4.4 GFLOPs per core and 100 watts.

Two jobs arrive at t = 0. They both request one core and 24 GB/s of memory bandwidth for 5
seconds. If they are both scheduled in a single processor (occupying both the cores), the memory
bandwidth will become over-utilized.

The agent is based on the REINFORCE implementation presented in 3.2.2. 16 hidden units are
used for each of the three hidden layers, with a learning rate of 0.005 and a discount factor of
0.99.

A reduced action space of 5 actions is enabled: shortest-high gflops, shortest-high mem bw,
shortest-low power, first-high gflops and first-high mem bw. The observation utilized is of the
minimal type, since the scenario is relatively simple. Queue sensitivity is set to 0.05, however it
is not relevant in this experiment since there is only one arrival. Proposed objective is makespan.

The agent is trained for 350 simulation episodes of a single step.

5.4.2 Expected results

The idea is for the agent to understand that, even though the second processor is objectively
faster, if both jobs are scheduled on it the makespan will increase due to memory bandwidth
over-utilization. If each job is scheduled in different processors, there will be no conflicts and
makespan will decrease.

The actions that achieve the optimal outcome are shortest-high mem bw and first-high mem bw,
with all others leading to a sub-optimal resolution. The agent should learn to select among these
two actions for this scenario.

5.4.3 Losses

The losses measure how good the agent is deciding in order to achieve its objective. Good
(optimal) decisions lower the loss value, whereas bad decisions increase it. In a training scenario,
the loss should approach to 0 as the agent comprehends the optimal set of actions to be taken.

51

The losses visualization helps with showing the agent’s loss evolution along the 350 simulation
episodes. This is shown in figure 5.10.

Figure 5.10: Loss evolution for REINFORCE - 350 episodes

At the beginning, the agent is selecting between all 5 available actions, which makes the loss
vary within a considerable range. This is because the agent still does not know how good
optimal actions are relative to others. From the 200th until the 250th episode, this range
decreases significantly. This phenomenon is due to worst actions being less probable, as well as
preferences of selected actions becoming similar during that stage, as will be observed in section
5.4.5. As training time passes, the agent understands that some of the actions are always better
than others, and thus it sticks to them until the loss converges to zero.

Since this agent is based on stochastic policy gradient, sub-optimal decisions are taken towards
the end in spite of their selection probability being lower. They are represented by the high
pikes.

5.4.4 Rewards

Rewards are the agent’s feedback on its decisions, and they are designed to represent the final
objective. Makespan reward can be observed in section 3.2.4. In order to understand the reward
evolution over the training period, the rewards visualization in figure 5.11 may be explored.

Figure 5.11: Reward evolution for REINFORCE - 350 episodes

Similar to the loss evolution, at the exploratory stage the agent rewards oscillate between the
three possible values, 6, 6.6 and 8.4. The first reward corresponds to the low power approach,
where the two jobs are consolidated in the slowest processor and over-utilizing its memory
bandwidth; the second one happens when they are consolidated in the fastest processor, whereas
the latter occurs when they are spread among both.

52

CHAPTER 5. EVALUATION

Towards the end, the worst reward is not received anymore since the low-power action has been
discarded. Finally, the agent learns that spreading is the best strategy and converges to the best
reward.

5.4.5 Action preferences

As the agent explores the action space, preferences or probabilities for the actions vary with
the inner model updates. The action preferences visualization in figure 5.12 helps realize this
progress.

Figure 5.12: Action preferences for REINFORCE - 350 episodes

When the training starts, action preferences are randomly initialized with similar probabilities.
This encourages exploration of the space. From the 200th episode, the agent learns that using the
low power strategy leads to consistently worse rewards, so its probability lowers. The shortest-
high gflops strategy also goes down even though it does not result in the worst reward, reason
being it has been selected few times during the simulations (49 with respect to 61 for first-
high mem bw and 124 for shortest-high mem bw), and the agent does not want to risk it being
worse at that stage.

At approximately the 275th step, a divergence of preferences occurs, meaning that the agent
has now converged to the optimal action, shortest-high mem bw. Bear in mind that the first-
high mem bw is also optimal, however the agent does not have the ability to alternate between
them; for other seeds, the agent may also converge to the latter.

53

Chapter 6

Conclusions

This chapter completes the thesis by providing (1) an overview of main achievements, mapped
to the initial objectives described in section 1.3, and (2) several directions for future work both
in extending HDeepRM and utilizing it for research.

6.1 Achievements

As this thesis concludes, a retrospective on the attainment of initial objectives expressed in
section 1.3 is of relevance. Hereunder, specific achievements are mapped to each of the proposed
objectives:

� A complete framework for heterogeneous workload management, HDeepRM, has been de-
signed, implemented, tested and distributed. It allows for defining heterogeneous environ-
ments composed of distinct resource types, these being processing speed, power consump-
tion, memory and memory bandwidth. It also models resource conflicts by quantifying
the amount of resource available in processor and node scopes. A new platform specifi-
cation has been designed, while several converters have been developed for parsing and
instantiating both the platform and the workload trace. In order to simplify experimenting
with HDeepRM, these have been abstracted from the user via hdeeprm-launch and other
command line utilities, allowing future researchers to focus on the experiment design and
result analysis. The evaluation in chapter 5 endorses the final functionality and validity
of HDeepRM.

This covers the proposal of the first objective and provides extra value: configurable
policies, usage and analysis utilities, distribution for easy installation and documentation.

� A deep reinforcement learning extension has been developed, compliant with the rein-
forcement loop observed in 1.3. Its modular structure shown in section 4.2.1 provides the
framework with extensibility. A specific HDeepRM workload manager is implemented,
which merges the reinforcement loop into Batsim event-flow, in a way that it is abstracted
from the user. In addition, an agent API is offered for users to define external agents, which
are automatically integrated and used in simulation runs. Two algorithms, REINFORCE
and actor-critic, are provided as examples for the agent API usage. The base agent meth-
ods (observe, device, alter, rewarded) have been designed such that they are semantically
logical for the user, and improve readability with respect to previous approaches.

The second objective is covered in its extent, plus additional advantages are provided:

54

CHAPTER 6. CONCLUSIONS

novel environment, observation and action space designs allow for study and modification
of the framework, hyperparameter tuning via usage utilities, insights log for the agent
performance in simulations.

� Several experiments have been carried out to demonstrate HDeepRM capabilities. In the
first one shown in section 5.2, a deep dive into the framework capabilities has provided
guidance in which tools to use in order to gain insights of the simulation; job cycles,
metrics, as well as utilization and queue size charts have been leveraged, while hdeeprm-
jobstat has helped with specific details. In the second one, the consolidation and spreading
strategies are confronted by means of varying the resource selection policy; it is observed
that the former leads to less power consumption but also less performance, thus exposing
a trade-off. Finally, in the third experiment a complete learning pipeline is explained,
exploring losses, rewards and action preferences; the agent manages to converge to the
optimal action for that scenario in approximately 350 episodes.

The third objective is then achieved, providing the framework with robustness. Neverthe-
less, there is still more learning validation to do, since the third experiment was an initial
minimal approach. The user should also be able to base his/her experiments on the roots
here provided.

Another relevant contribution is the use of standardization in the framework. Both the utiliza-
tion of the Standard Workload Format (SWF) and the environment definitions from OpenAI
Gym library grant the framework with forward compatibility and maintainability.

6.2 Future work

During this thesis, several directions of work with high potential for improving HDeepRM have
been considered. Due to time constraints, they have not been undertaken, however they are
listed hereunder:

� Backfilling algorithm integration: the majority of current workload managers, including
SLURM, utilize a version of the EASY backfilling algorithm [2]. This is based on the
first come first served classic policy, however it allows for shorter jobs to be scheduled if
they do not delay the first next job to be served. Current HDeepRM iteration does not
implement backfill, and it would be relevant to compare it with learned policies.

� Architectural heterogeneity: at this time, HDeepRM supports both specification-based
and micro-architectural heterogeneity, as expressed in section 2.1.2. With architectural
heterogeneity, different types of devices could be offered from the platforms, including
different CPU ISAs, GPUs, MICs and other hardware accelerators. This would better
resemble the current state of the data center.

� Memory access modelling: memory hierarchy conflicts are currently modelled by means of
quantifying both the capacity in node scope and the bandwidth in processor scope. This is
valid for the agent to understand the consequences of interdependence expressed in section
3.1.1, however it does not realistically model these conflicts. Memory access traces could
be gathered and added to the workload definition, while HDeepRM should be extended to
achieve this level of modelling.

� Network modelling: there is no network simulation in HDeepRM. This works given the
assumption that job tasks are independent, thus they do not need communication and
synchronization. In reality, there would generally be some interaction between them, and
this would require network traces for each job in order to be simulated. SimGrid can model
networks natively, so HDeepRM should not need to be modified extensively.

55

� Last level cache (LLC) conflicts: LLC size definition is already supported in the designed
platform specification format. Conflicts between jobs with different working set [61] size
should more realistically model the consolidation effects.

� Instruction composition of loads: for simplification purposes, in this thesis jobs instruc-
tions are all double-precision floating point operations. This may resemble highly efficient
computing tasks, where large amounts of operations are applied to the same data, for
instance different convolution filters over an image. However, in reality not all jobs possess
these characteristics, thus a trace with instruction composition could be used for better
resemblance.

� Job tasks and dependencies: each job is composed of different job tasks. Some of them
might be executed in parallel, while others require a synchronization point. This is typically
seen in MPI [66] workloads, which are supported natively by SimGrid. Directed Acyclic
Graphs (DAGs) [67] express dependencies between tasks, and would allow HDeepRM to
understand each job workflow.

� User-defined observations, actions and rewards: the observation and action spaces are, at
the moment, part of the HDeepRM framework. In a future iteration, they are scheduled
to be externalized for the user to modify and integrate his/her own. This would require
tuning the framework for more flexibility.

56

Bibliography

[1] Volker Hamscher et al. “Evaluation of job-scheduling strategies for grid computing”. In:
International Workshop on Grid Computing. Springer. 2000, pp. 191–202.

[2] David A Lifka. “The anl/ibm sp scheduling system”. In: Workshop on Job Scheduling
Strategies for Parallel Processing (1995), pp. 295–303.

[3] TOP500.org. TOP500 List - November 2018. url: https://tinyurl.com/y6va3oxn.
(accessed: 06.01.2019).

[4] Intel Corporation. Intel Xeon Processor E5-2650L v4. url: https : / / tinyurl . com /

yygtryta. (accessed: 12.03.2019).

[5] Brahim Betkaoui, David B Thomas, and Wayne Luk. “Comparing performance and energy
efficiency of FPGAs and GPUs for high productivity computing”. In: 2010 International
Conference on Field-Programmable Technology. IEEE. 2010, pp. 94–101.

[6] Sriram Govindan et al. “Cuanta: quantifying effects of shared on-chip resource interference
for consolidated virtual machines”. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing. ACM. 2011, p. 22.

[7] Dalibor Klusáček, Šimon Tóth, and Gabriela Podolńıková. “Complex Job Scheduling Sim-
ulations with Alea 4”. In: Proceedings of the 9th EAI International Conference on Sim-
ulation Tools and Techniques. ICST (Institute for Computer Sciences, Social-Informatics
and . . . 2016, pp. 124–129.

[8] Gonzalo P Rodrigo et al. “ScSF: a scheduling simulation framework”. In: Workshop on
Job Scheduling Strategies for Parallel Processing. Springer. 2017, pp. 152–173.

[9] Cristian Galleguillos, Zeynep Kiziltan, and Alessio Netti. “AccaSim: an HPC simulator for
workload management”. In: Latin American High Performance Computing Conference.
Springer. 2017, pp. 169–184.

[10] Pierre-François Dutot et al. “Batsim: a realistic language-independent resources and jobs
management systems simulator”. In: Job Scheduling Strategies for Parallel Processing.
Springer. 2015, pp. 178–197.

[11] Ayon Dey. “Machine Learning Algorithms : A Review”. In: 2016.

[12] Pierre Baldi. “Autoencoders, unsupervised learning, and deep architectures”. In: Proceed-
ings of ICML workshop on unsupervised and transfer learning. 2012, pp. 37–49.

[13] Frank Rosenblatt. “The perceptron: a probabilistic model for information storage and
organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[14] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

[15] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to computational
geometry. MIT press, 2017.

57

https://tinyurl.com/y6va3oxn
https://tinyurl.com/yygtryta
https://tinyurl.com/yygtryta

[16] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. “Learning representa-
tions by back-propagating errors”. In: Cognitive modeling 5.3 (), p. 1.

[17] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. “A training algorithm for
optimal margin classifiers”. In: Proceedings of the fifth annual workshop on Computational
learning theory. ACM. 1992, pp. 144–152.

[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: nature 521.7553
(2015), p. 436.

[19] Hongzi Mao et al. “Resource management with deep reinforcement learning”. In: Proceed-
ings of the 15th ACM Workshop on Hot Topics in Networks. ACM. 2016, pp. 50–56.

[20] Gordon E Moore. “Cramming more components onto integrated circuits, Reprinted from
Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff.” In: IEEE Solid-State Circuits
Society Newsletter 11.3 (2006), pp. 33–35.

[21] Digh Hisamoto et al. “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm”.
In: IEEE Transactions on Electron Devices 47.12 (2000), pp. 2320–2325.

[22] Andrei Frumusanu. The Apple A12 - First Commercial 7nm Silicon. url: https : / /

tinyurl.com/y94xq72b. (accessed: 09.01.2019).

[23] Mark Lapedus. Big Trouble At 3nm. url: https://tinyurl.com/yby9t3wu. (accessed:
09.01.2019).

[24] Robert H Dennard et al. “Design of ion-implanted MOSFET’s with very small physical
dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268.

[25] Gene M Amdahl. “Validity of the single processor approach to achieving large scale com-
puting capabilities”. In: Proceedings of the April 18-20, 1967, spring joint computer con-
ference (1967), pp. 483–485.

[26] Vivienne Sze et al. “Hardware for machine learning: Challenges and opportunities”. In:
2017 IEEE Custom Integrated Circuits Conference (CICC) (2017), pp. 1–8.

[27] Violaine Villebonnet et al. ““Big, Medium, Little”: Reaching Energy Proportionality
with Heterogeneous Computing Scheduler”. In: Parallel Processing Letters 25.03 (2015),
p. 1541006.

[28] Ed Sterling. Getting Down To Business On Chiplets. url: https : / / tinyurl . com /

ya2ssvjb. (accessed: 10.01.2019).

[29] Anil K Jain, Jianchang Mao, and K Moidin Mohiuddin. “Artificial neural networks: A
tutorial”. In: Computer 29.3 (1996), pp. 31–44.

[30] SchedMD LLC. Main page. url: https://www.schedmd.com/. (accessed: 23.01.2019).

[31] Rajkumar Buyya and Manzur Murshed. “Gridsim: A toolkit for the modeling and simu-
lation of distributed resource management and scheduling for grid computing”. In: Con-
currency and computation: practice and experience 14.13-15 (2002), pp. 1175–1220.

[32] Henri Casanova et al. “Versatile, scalable, and accurate simulation of distributed appli-
cations and platforms”. In: Journal of Parallel and Distributed Computing 74.10 (2014),
pp. 2899–2917.

[33] Mart́ın Abadi et al. “Tensorflow: a system for large-scale machine learning.” In: OSDI.
Vol. 16. 2016, pp. 265–283.

[34] Adam Paszke et al. “Automatic differentiation in pytorch”. In: (2017).

[35] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[36] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist re-
inforcement learning”. In: Machine learning 8.3-4 (1992), pp. 229–256.

58

https://tinyurl.com/y94xq72b
https://tinyurl.com/y94xq72b
https://tinyurl.com/yby9t3wu
https://tinyurl.com/ya2ssvjb
https://tinyurl.com/ya2ssvjb
https://www.schedmd.com/

BIBLIOGRAPHY

[37] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[38] Ahuva W. Mu’alem and Dror G. Feitelson. “Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling”. In: IEEE transactions on
parallel and distributed systems 12.6 (2001), pp. 529–543.

[39] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. “Backfilling using system-generated pre-
dictions rather than user runtime estimates”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 18.6 (2007), pp. 789–803.

[40] Eric Gaussier et al. “Improving backfilling by using machine learning to predict running
times”. In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. ACM. 2015, p. 64.

[41] Mehmet Soysal, Marco Berghoff, and Achim Streit. “Analysis of Job Metadata for En-
hanced Wall Time Prediction”. In: Workshop on Job Scheduling Strategies for Parallel
Processing. Springer. 2018, pp. 1–14.

[42] F Pezzella, G Morganti, and G Ciaschetti. “A genetic algorithm for the flexible job-shop
scheduling problem”. In: Computers & Operations Research 35.10 (2008), pp. 3202–3212.

[43] M Emin Aydin and Ercan Öztemel. “Dynamic job-shop scheduling using reinforcement
learning agents”. In: Robotics and Autonomous Systems 33.2-3 (2000), pp. 169–178.

[44] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning 8.3-4
(1992), pp. 279–292.

[45] SimGrid Team. Modeling Multicore Machines - Pinning tasks to cores. url: https://
tinyurl.com/y2f6hmbo. (accessed: 11.02.2019).

[46] SimGrid Team. SimGrid DTD. url: https://tinyurl.com/yyx8gkrp. (accessed: 11.02.2019).

[47] Metacentrum. Metacentrum - Virtual Organization. url: https://tinyurl.com/y4bwcmpn.
(accessed: 11.02.2019).

[48] Batsim team. Job definition. url: https://tinyurl.com/y3mhhsj7. (accessed: 18.03.2019).

[49] Steve J Chapin et al. “Benchmarks and standards for the evaluation of parallel job sched-
ulers”. In: Workshop on Job Scheduling Strategies for Parallel Processing. Springer. 1999,
pp. 67–90.

[50] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint
arXiv:1312.5602 (2013).

[51] John Schulman et al. “Trust region policy optimization”. In: International Conference on
Machine Learning. 2015, pp. 1889–1897.

[52] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted boltzmann
machines”. In: Proceedings of the 27th international conference on machine learning (ICML-
10). 2010, pp. 807–814.

[53] Wikipedia. Huber loss. url: https://tinyurl.com/y4skyytu. (accessed: 03.03.2019).

[54] Wikipedia. Mean squared error. url: https://tinyurl.com/ps65mcn. (accessed: 03.03.2019).

[55] Oguzhan Alagoz et al. “Markov decision processes: a tool for sequential decision making
under uncertainty”. In: Medical Decision Making 30.4 (2010), pp. 474–483.

[56] Hongzi Mao. DeepRM Demo. url: https://tinyurl.com/y3yyjwds. (accessed: 14.02.2019).

[57] Brad J Cox. “Object-oriented programming: an evolutionary approach”. In: (1986).

[58] Wikipedia. CAS latency. url: https://tinyurl.com/ak72lqt. (accessed: 15.02.2019).

[59] Wikipedia. Intel Turbo Boost. url: https://tinyurl.com/ca9p5fe. (accessed: 19.02.2019).

59

https://tinyurl.com/y2f6hmbo
https://tinyurl.com/y2f6hmbo
https://tinyurl.com/yyx8gkrp
https://tinyurl.com/y4bwcmpn
https://tinyurl.com/y3mhhsj7
https://tinyurl.com/y4skyytu
https://tinyurl.com/ps65mcn
https://tinyurl.com/y3yyjwds
https://tinyurl.com/ak72lqt
https://tinyurl.com/ca9p5fe

[60] Wikipedia. SpeedStep. url: https://tinyurl.com/ceecf6s. (accessed: 19.02.2019).

[61] Peter J Denning. “The working set model for program behavior”. In: Proceedings of the
first ACM symposium on Operating System Principles. ACM. 1967, pp. 15–1.

[62] Adrián Herrera Arcila. HDeepRM documentation. url: https://tinyurl.com/y4epzmzc.
(accessed: 03.03.2019).

[63] Adrián Herrera Arcila. HDeepRM GitHub repository. url: https : / / tinyurl . com /

yy5hjxbs. (accessed: 05.03.2019).

[64] Parallel Workloads Archive. The University of Luxemburg Gaia Cluster log. url: https:
//tinyurl.com/y56sa2wu. (accessed: 11.03.2019).

[65] Parallel Workloads Archive. The MetaCentrum 2 log. url: https : / / tinyurl . com /

y4lcuwmo. (accessed: 16.03.2019).

[66] Edgar Gabriel et al. “Open MPI: Goals, concept, and design of a next generation MPI
implementation”. In: European Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting. Springer. 2004, pp. 97–104.

[67] Wikipedia. Directed acyclic graph. url: https : / / tinyurl . com / cs965c8. (accessed:
12.03.2019).

60

https://tinyurl.com/ceecf6s
https://tinyurl.com/y4epzmzc
https://tinyurl.com/yy5hjxbs
https://tinyurl.com/yy5hjxbs
https://tinyurl.com/y56sa2wu
https://tinyurl.com/y56sa2wu
https://tinyurl.com/y4lcuwmo
https://tinyurl.com/y4lcuwmo
https://tinyurl.com/cs965c8

Appendices

61

Appendix A

Example job script

#!/usr/bin/env bash

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=8

#SBATCH --time=00:20:00

#SBATCH --job-name=mandelbrot

#SBATCH --mail-type=ALL

#SBATCH --mail-user=abc.123@gmail.com

Run the program

srun mandelbrot

This job script expresses the following information:

� nodes: minimum compute resources required by the job to be allocated. These refer to
processors.

� ntasks-per-node: number of processes to be spawned in each node. This is useful when
dealing with hybrid MPI/OpenMP loads, where each process would be one thread running
in the processor cores.

� time: limit on total run time of the job. Format is HH:MM:SS. If this limit is surpassed,
all tasks belonging to the job are killed.

� job-name: name of the job.

� mail-type: notify the job’s user when an event affects the job. In this case, any event,
including start, end and fail, will be notified.

� mail-user : user email address.

62

Appendix B

Platform specification

B.1 Batsim + SimGrid compliant XML platform

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE platform

SYSTEM 'https://simgrid.org/simgrid/simgrid.dtd'>

<platform version="4.1">

<zone id="zone0" routing="Full">

<host id="master_host" speed="1.0Gf"/>

<host id="compute_host" speed="10.0Gf"/>

<link id="link0" bandwidth="1.0Gbps" latency="125us"/>

<route src="master_host" dst="compute_host">

<link_ctn id="link0"/>

</route>

</zone>

</platform>

B.2 Minimal HDeepRM JSON platform

{"clusters": [

{"id": "cluster0",

"nodes": [

{"type": "Basic", "number": 1}

],

"local_links":

{"type": "Gigabit Ethernet 1000BASE-T", "latency": "75us"}}

],

"global_links":

{"type": "Gigabit Ethernet 1000BASE-T", "latency": "125us"}}

B.3 Minimal HDeepRM node type

63

{"BasicNode": {

"id": "basic_node",

"processors": [

{"type": "BasicProc", "number": 2}

],

"memory": {"type": "DDR3-1600", "capacity": 32}}}

B.4 Minimal HDeepRM network type

{"Gigabit Ethernet 1000BASE-T": {"bandwidth": "1.0Gbps"}}

B.5 Minimal HDeepRM memory type

{"DDR3-1600": {"latency": "103.75ns"}}

B.6 Minimal HDeepRM processor type

{"BasicProc": {

"uarch": "basic_arch", "id": "basic_proc", "type": "CPU",

"cores": 2, "clock_rate": 1, "mem_bw": 32,

"llc_size": 8, "power": 100, "dpflops_per_cycle": 4}}

64

Appendix C

Workload specification

C.1 Minimal Batsim formatted workload

{"nb_res": 8,

"jobs": [

{"id": "job0", "subtime": 0, "res": 2, "profile": "A"},

{"id": "job1", "subtime": 5, "res": 4, "profile": "B"}

],

"profiles": {

"A": {"type": "parallel_homogeneous", "com": 0, "cpu": 1e10,

"req_time": 100, "req_ops": 22e11, "mem": 500, "mem_bw": 16},

"B": {"type": "parallel_homogeneous", "com": 0, "cpu": 5e10,

"req_time": 300, "req_ops": 66e11, "mem": 2000, "mem_bw": 24}}}

C.2 SWF formatted workload

id subT waitT runT resAlloc cpuUsed memUsed resReq timeReq memReq ...

1 278659 2 268225 4 4023 4864 4 345600 -1

2 339016 1 305581 24 1783 14805 24 432000 -1

65

Appendix D

Events

D.1 Simulation begins

{"now": 0.000000,

"events": [{"timestamp": 0.000000, "type": "SIMULATION_BEGINS",

"data": {"nb_resources": 2, "nb_compute_resources": 2,

"...": "...",

"compute_resources": [

{"id": 0, "name": "cor_0", "state": "idle",

"properties": {"...": "..."}},

{"id": 1, "name": "cor_1", "state": "idle",

"properties": {"...": "..."}}],

"...": "...",

"workloads": {"62b680": "/workspace/workload.json"},

"profiles": {"62b680": {"A": {"...": "..."}}}}}]}

D.2 Job submitted

{"now": 0.000000,

"events": [{"timestamp": 0.000000, "type": "JOB_SUBMITTED",

"data": {"job_id": "62b680!job0",

"job": {"id": "62b680!job0",

"subtime": 0,

"res": 1,

"profile": "A"}}}]}

D.3 Job executed and alteration of cores

D.4 State change confirmation and no more submissions

66

APPENDIX D. EVENTS

{"timestamp": 0.000000,

"events": [{"timestamp": 0.0, "type": "EXECUTE_JOB",

"data": {"job_id": "62b680!job0", "alloc": "0"}},

{"timestamp": 0.0, "type": "SET_RESOURCE_STATE",

"data": {"resources": "0", "state": "0"}},

{"timestamp": 0.0, "type": "SET_RESOURCE_STATE",

"data": {"resources": "1", "state": "2"}}]}

{"now": 0.000000,

"events": [{"timestamp": 0.000000, "type": "NOTIFY",

"data": {"type": "no_more_static_job_to_submit"}},

{"timestamp": 0.000000, "type": "RESOURCE_STATE_CHANGED",

"data": {"resources": "0", "state": "0"}},

{"timestamp": 0.000000, "type": "RESOURCE_STATE_CHANGED",

"data": {"resources": "1", "state": "2"}}]}

D.5 Job completed and simulation ends

{"now": 5.000000,

"events": [{"timestamp": 5.000000, "type": "JOB_COMPLETED",

"data": {"job_id": "62b680!job0",

"job_state": "COMPLETED_SUCCESSFULLY",

"return_code": 0, "alloc": "0"}},

{"timestamp": 5.000000, "type": "SIMULATION_ENDS",

"data": {}}]}

67

Appendix E

Utilities

E.1 HDeepRM launcher

hdeeprm-launch -a <AGENT> -cw <CUSTOM_WORKLOAD_PATH> -im <INMODEL>\

-om <OUTMODEL> <options_file>

E.2 HDeepRM visualizations

hdeeprm-visual -s SAVE <visualization>

E.3 HDeepRM metrics

hdeeprm-metrics -s SAVE <results1.csv> <results2.csv>

E.4 HDeepRM job statistics

hdeeprm-jobstat <workload.json> <job_data_field> <statistic>

68

Appendix F

Options file

{

"seed": 20091995,

"nb_resources": 64,

"nb_jobs": 5000,

"workload_file_path": "/workspace/workloads/my_workload.swf",

"platform_file_path": "/workspace/platforms/my_platform.json",

"pybatsim": {

"log_level": "WARNING",

"env": {

"objective": "avg_utilization",

"actions": {

"selection": [

{"shortest": ["high_gflops", "high_mem"]},

{"first": ["high_mem_bw"]}

],

"void": false

},

"observation": "small",

"queue_sensitivity": 0.03

},

"agent": {

"type": "LEARNING",

"run": "train",

"hidden": 128,

"lr": 0.001,

"gamma": 0.95

}

}

}

69

Appendix G

Example learning agent

import torch.nn as nn

import torch.nn.functional as F

from hdeeprm.agent import PolicyLearningAgent

class MyLearningAgent(PolicyLearningAgent):

def __init__(self, gamma, hidden, action_size, observation_size):

self.input = nn.Linear(observation_size, hidden)

self.output = nn.Linear(hidden, action_size)

def forward_policy(self, observation):

out_0 = F.leaky_relu(self.input(observation))

return F.softmax(self.output(out_0), dim=1)

70

	List of Figures
	List of Tables
	Acknowledgements
	Abstract
	Resumen
	Introduction
	Workload management in HPC data centers
	Machine learning and neural networks
	Objectives
	Methodology
	Document structure

	Background
	Concepts
	Resource heterogeneity
	Workload management
	Deep reinforcement learning

	Tools and algorithms
	Batsim ecosystem
	PyTorch and Gym
	REINFORCE and actor-critic

	Previous work

	HDeepRM: design decisions
	Heterogeneity support
	Consequences of interdependence
	Platforms
	Workloads
	Components
	Simulation flow

	Deep reinforcement learning extension
	Extra components
	Agents
	Environment
	Reward functions

	HDeepRM: implementation details
	Heterogeneity support
	Platforms
	Workloads
	Components
	Event handling: practical example

	Deep reinforcement learning extension
	Extra components
	Agents
	Environment

	Framework usage

	Evaluation
	Platform and workload
	Primer on simulation analysis
	Job life cycles
	Utilization and queue size
	Metric comparison between policies

	Demonstrating consequences of consolidation and spreading
	Learning the optimal actions
	Scenario
	Expected results
	Losses
	Rewards
	Action preferences

	Conclusions
	Achievements
	Future work

	Bibliography
	Appendices
	Appendix Example job script
	Appendix Platform specification
	Batsim + SimGrid compliant XML platform
	Minimal HDeepRM JSON platform
	Minimal HDeepRM node type
	Minimal HDeepRM network type
	Minimal HDeepRM memory type
	Minimal HDeepRM processor type

	Appendix Workload specification
	Minimal Batsim formatted workload
	SWF formatted workload

	Appendix Events
	Simulation begins
	Job submitted
	Job executed and alteration of cores
	State change confirmation and no more submissions
	Job completed and simulation ends

	Appendix Utilities
	HDeepRM launcher
	HDeepRM visualizations
	HDeepRM metrics
	HDeepRM job statistics

	Appendix Options file
	Appendix Example learning agent

