
Investigating the feasibility of digital repositories
in private clouds

Mushashu Lumpa and Hussein Suleman[0000−0002−4196−1444]

University of Cape Town, South Africa
{mushashu@gmail.com,hussein@cs.uct.ac.za}

http://dl.cs.uct.ac.za/

Abstract. Installing and configuring a digital repository toolkit for an
organisation is a non-trivial task for which many organisations now seek
external third-party service providers. Some of these service providers of-
fer a cloud-hosted environment. However, universities increasingly have
such cloud infrastructure in-house to support internal systems, and to
maintain control and custody of data and systems. This study investi-
gated the feasibility of using a private cloud internal to an organisation
for the management of digital repositories. The results show that private
cloud environments can run institutional repositories with negligible per-
formance degradation as the number of virtual machine instances in the
cloud are increased. A usability study of the prototype tool received posi-
tive feedback. Participants in the study were able to install and customise
their own DSpace repositories.

Keywords: private clouds · digital repositories · institutional reposito-
ries.

1 Introduction

Cloud computing can be described it as a model of enabling on-demand network
access to a shared pool of computing resources, which can be provisioned and
released with minimal management effort [26]. Cloud computing has promised
cost-effectiveness, flexibility and scalability for software and hardware require-
ments of organisations [19].

Digital repositories are software tools that are used to manage digital con-
tent, share it and provide the means for potential long-term preservation of that
content. Digital repository tools are used extensively by libraries and institutions
like universities that continually generate original content through scholarly pub-
lications and teaching materials.

If institutions can deploy digital repositories in cloud environments, they
can leverage the benefits that cloud computing provides. Institutions could then
devote more time to managing their digital content than their compute infras-
tructure and the software make-up of the digital repositories. And on the in-
frastructure end, administrative functions would benefit a lot from the internal
management features of a cloud environment coupled with the efficient usage of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. Lumpa and H. Suleman

their computing resources. Institutions’ digital repository content is always grow-
ing and, as such, infrastructures that scale and provide inherent elastic features
are ideal to contain this content growth. Also, digital repositories are required
to contribute to the preservation of their content, and running them in cloud
infrastructures have a benefit of having their data potentially replicated in the
variety of storage options that cloud environments provide.

For institutions to take advantage of the benefits of the cloud, it is important
that there exist tools that simplify the deployment, management and monitoring
of the digital repositories. One option is to adopt a service such as that provided
by Bepress or Duraspace, where third party and public cloud infrastructure is
used as the basis for digital repositories. Private clouds, based on equipment
hosted completely within an organisation, are an alternative as institutions in-
creasingly adopt this technology for local infrastructure; arguably, this could
serve as the platform for the institution’s own digital repositories as well.

This study therefore explores the feasibility of using private clouds for hosting
of digital repositories. The key questions asked in this study focus on: the effi-
ciency of the current generation of private cloud tools coupled with the current
digital repository tools; and the feasibility of managing repository management
at a high level on top of low-level private cloud tools.

2 Literature Review

2.1 Digital Repository Toolkits

There are different types of digital repository software toolkits available, and
some of the commonly [6] used ones include DSpace [12][28], EPrints [15] and
Fedora [23]. These repository tools share similar features, and to some extent are
developed using the same technologies. A number of studies [6][21][1][31] have
been done to compare the different features that each of these provide.

DSpace is an open source product, which is widely used and has an active de-
veloper community. It is developed in the Java programming language and runs
off a PostgresSQL or Oracle database backend. Execution of Java requires the
use of a Java Container and the commonly used one is Tomcat. DSpace instal-
lation [13] requires running commands that may require users to have technical
skills [22]. Installation of DSpace is not trivial and often requires multiples tries
and some amount of time to get it right.

Installation, configuration and customisation of EPrints and Fedora are not
any less complicated compared to DSpace. They do not come with a guided in-
stallation graphical user interface [16][17]. They both require one to have some
technical skills to run the commands that are shared in their installation docu-
mentation.

Like installation and configuration, open source repository tools require some-
one with some degree of familiarity with software development to be able to cus-
tomise them. Familiarity with HTML and XLST are some of the skills required
for a successful basic customisation of DSpace, for instance. Customisation of



Feasibility of digital repositories in private clouds 3

repositories is desirable as it allows institutions to brand their repositories to
adhere to their branding policies, while also improving the aesthetics of the
repository to enhance its appeal. Verno [32] documented Boston Biomedical
Consultants, Inc’s experience in implementing a DSpace instance. As much as it
was successful, the difficulties with the installation, configuration and customi-
sation of DSpace were highlighted. These complexities need to be addressed in
any cloud implementation.

2.2 IaaS and Eucalyptus

Infrastructure as a Service forms the basic layer of service delivery in cloud
computing. Consumers/end-users are aware of their interactions with the lower
level features of the computing infrastructure, they can decide which operating
system to use, what and how applications can be installed, request to use more
RAM, persistent storage, etc. All these features are provided to end users in a
manner very different from traditional computing - end users have no need to
directly interact with the physical machines, and can quickly change their pref-
erences and effect them in a matter of seconds or minutes. However, to provide
this abstraction, elasticity, machine orchestration, and on-demand features that
cloud computing promises/provides, cloud computing software is used. They
could be thought of as cloud computing operating systems. These software can
be used to run either public clouds or private clouds. Examples of some of these
cloud computing software platforms include: Amazon AWS [3], OpenStack [27],
Eucalyptus [25], and OpenNebula [29].

Sharing of compute resources on servers to provide IaaS is achieved using
virtualisation technology - virtual machines are created on the servers with user
determined specifications. Cloud systems manage and monitor the creation of
virtual machines using hypervisors [33][18]. Hypervisors are software programs
that enable operating systems to host one or more virtual machines. Examples
of hypervisors include Xen [7], KVM [8], Nitro [4], and vSphere [34].

For this study, Eucalyptus was used as the IaaS platform. Eucalyptus is an
open source cloud computing operating system that can be utilised for build-
ing Infrastructure as a Service environments both for private and public cloud
deployments [25]. Eucalyptus was developed to have interfaces that use sim-
ilar commands as Amazon’s very popular EC2 system. Eucalyptus comprises
of 5 components that deliver a complete implementation of a cloud computing
system. The components are: Cloud Controller (CLC), Cluster Controller (CC),
Walrus Storage Controller (WS3), Storage Controller (SC) and Node Controllers
(NC) [20].

2.3 Repositories in Clouds

Wu, et al. described their work in migrating CiteSeerX into a private cloud en-
vironment [36]. Long terms costs, compared to migrating to a public cloud, were
one of the reasons for their motivation to set up a private cloud infrastructure
to host their digital repository. Their custom setup utilises proprietary software



4 M. Lumpa and H. Suleman

- VMware ESXi - for the hypervisor and VMware VSphere for instance pro-
visioning and general cloud orchestration and monitoring. Aljenaa, et al. have
explored the possibility of hosting e-learning systems in cloud based environ-
ments [2]. Their evaluation leads them to recommend hosting their systems in a
private cloud environment. They discuss the on-demand and elasticity features
of cloud computing environments as a major reason to recommend the use of
cloud computing.

The Texas Digital Library described their efforts in first replicating their in-
house computing infrastructure onto EC2, then completely migrating all their
digital library services to Amazon’s EC2 [24]. In the cloud, their services are
provided on 48 virtual machine instances. Overall, they describe their move
to the public cloud environment as a positive one. Their work demonstrates
the successful implementation of a repository on virtualised, albeit public, in-
frastructure. Thakar, et al. [30] described their experience migrating the Sloan
Digital Sky Survey science archive, which has a 5TB database. They describe
their experience as frustrating based on two reasons: degraded performance of
the queries run off the database compared to their in-house infrastructure; and
their inability to transfer the entire 5TB to the cloud. Their experience suggests
that performance is a factor in assessing feasibility.

Others have looked into content preservation across cloud environments. Du-
raCloud [14], for instance, utilises different public cloud storage options to repli-
cate content, providing the needed redundancy and potential data preservation.
Digital repository tools can store content to DuraSpace through the different
interfaces that DuraCloud provides. Kindura [35] is another project that is en-
couraged by the possibilities of content preservation using cloud storage systems.
Both DuraCloud and Kindura are driven by long term content preservation needs
and public cloud infrastructure, but suggest that repository management within
a cloud can be feasible.

3 Methodology

3.1 System Development and Deployment

This study involved hosting digital repositories in a private cloud computing en-
vironment. The process involved simplifying the installation/configuration pro-
cess of DSpace and automating its installation in a virtual machine instance.

A browser based application was developed to aid the installation process,
customisation of DSpace and virtual machine management for ordinary repos-
itory end users. Installation was performed with a high degree of automation,
and provided the necessary information required to identify and log on to the
DSpace repository installed. The application also enabled end users to perform
customisation of the DSpace, branding it with colors and logos according to an
institution’s branding policies.

A private cloud computing environment was setup using Eucalyptus, an In-
frastructure as a Service (IaaS) software tool. Eucalyptus came bundled with



Feasibility of digital repositories in private clouds 5

the Ubuntu operating system and went by the alias of Ubuntu Enterprise Cloud
(UEC). Version 10.10 of UEC was used for this study. The institutional digital
repository used was DSpace v1.8. Installation and configuration of DSpace was
achieved through use of an orchestration and configuration management Python
API called Fabric. The repository management tool was developed using the
Django Web framework [11]. Django Celery [10] formed a core part of the over-
all solution: it enabled execution of tasks (e.g. installation and customisation of
repositories) in an asynchronous manner.

3.2 User Front End

The process flow begins with a user logging onto the prototype application that
was developed called Lilu, using a username and password. Figure 1 shows what
is presented to a user or system administrator once they have logged in, as well
as the functions that can be carried out on existing installations. At this point,
the user/system administrator are able to carry out a DSpace installation or
manage already existing repositories.

Fig. 1. Features on a repository once it is installing or it has fully installed

Installation of a new DSpace instance starts with providing information that
should be associated with a given repository - this is repository-identifying in-
formation and system administrator credentials. The needed information is pro-
vided via a Web form. Installation of the repository takes over 10 minutes to
complete. However, the browser does not block until the installation has com-
pleted. Control is returned to the user, who can continue to perform other tasks
provided by the prototype. Progress status of the installation is given - a suc-
cessfully completed installation will have a green tick and its progress status
information is updated accordingly.

While the installation is progressing or has completed successfully, basic cus-
tomisation can be performed on the given repository or any repository associated
with the currently logged in user. Figure 1 shows how to access the customisa-
tion function. The customisation feature allows for making minor modifications
to the repository’s overall look and feel. Positioning of the repository’s logo can
be switched between left and right, custom images for logos can be used, colors
on the site can be changed, and the name of the repository and text on the



6 M. Lumpa and H. Suleman

body of the repository can be adjusted. Figure 2 shows the customisation page,
showing the different parts of the repository that can be customised.

Other features available include shutting down the repository, restarting the
repository and completely deleting the repository.

Fig. 2. Repository customisation page

3.3 Backend

The application on the backend manages the workflows that are needed to com-
plete the requests made from the frontend. It does so by interacting with Eu-
calyptus cloud’s APIs via euca2ools1 [20]. euca2ools provides an abstraction
and a set of programmable functions that enable administrative management
of Eucalyptus cloud services. Some of the euca2ools functions utilised in this
experimental solution are described below:

1. Start (run) virtual machine instances - this is achieved by executing the
euca-run-instance from the commandline or run_instance python function
of the euca2ools API. This function essentially boots the instance, bringing
to life the virtual machine instance. Depending on the image used to run the
instance, the virtual machine may or may not have an operating system in it.
For this study, the image that was used had the Ubuntu operating system.
Each instance that is run will have a system generated ID by Eucalyptus.

2. Terminate virtual machine instances - the commandline function as-
sociated with this function is euca-terminate-instances, with the equivalent

1 euca2ools, https://wiki.debian.org/euca2ools



Feasibility of digital repositories in private clouds 7

python API call being terminate_instances. This call destructs the running
virtual machine that is being terminated. It is the equivalent of shutting
down and powering off a computer. All computing resources i.e. RAM, Vol-
umes, CPU etc., will be freed up and ready for use by another virtual machine
instance.

3. Reboot virtual machine instances - rebooting a virtual machine main-
tains all the instance’s information and its connected peripheral devices. The
command for this function is euca-reboot-instances. This call is used when
the virtual instance needs to maintain its state of its connected peripheral
devices and all other data saved on its ephemeral volume.

4. Create and delete block storage volumes - block storage volumes are
what are used to persist data for virtual machine instances. The call to create
volumes is euca_create_volume while the one used to delete the volume is
euca_delete_volume. A given volume can only be deleted when it is not
attached to a running virtual machine instance.

5. Attach block storage volumes to instances - this will attach the created
block storage volume to a running instance. The euca2ools function called to
attach volume(s) is euca-attach-volume. This function only ends at attaching
the volume to the running instance. For the volume to be usable, it would
need to be mounted by the operating system of the virtual machine and
also formatted - formatting of the volume is only done once. Subsequent
attachment of the same volume to instances requires no formatting unless it
is the user’s preference to do so.

6. Check the status of virtual machines and volumes - euca_describe_volumes
and euca_describe_instances will check the status of virtual machine in-
stances and available volumes in the cloud, respectively. Virtual machines
will be in either of 2 states: running or terminating. Once terminated, the
virtual machine ceases to exist. Volumes too will be in one of 3 states: delet-
ing, available, or attached. The available state indicates that the volume is
ready for use by an instance.

7. Monitoring of the clouds’ resource utilisation - euca-describe-availability-
zones is one of the important functions that helps ascertain the amount of
resources that are in use against the capacity of the cloud environment.
The function can be used to determine whether the cloud still has enough
resources to run another virtual machine instance.

The application builds on these functions to provide the features available on
the user frontend. The backend application will receive the requests, namely 1)
install DSpace, 2) customise DSpace, 3) shutdown DSpace, and 4) start DSpace.

Install DSpace (install new repository) is the primary function in the
developed application prototype. When the request to install DSpace is received,
the backend application goes through the following phases:

1. Via the cloud’s API, boot a new virtual machine instance.
2. If the instance booted successfully, the application will check if there is any

available free block storage volume. If not, a new volume will be created.
The successfully booted instance will have a private IP address.



8 M. Lumpa and H. Suleman

3. The volume in step 2 will then be attached to the booted instance. The
application will generate a unique identifier for this volume. This identifier
will also be associated with the user requesting this installation.

4. The attached volume will be formatted and prepared for use in the virtual
machine instance.

5. Using Fabric, DSpace and its dependency libraries will be installed on the
virtual machine instance.

6. Configuration will be done for the DSpace PostgreSQL database and the
location where the DSpace bitstreams should be saved. All data that should
be persisted will be saved on the attached volume.

7. Restart Tomcat server on the virtual machine instance.
8. Assign this instance a URL and register it on the primary front-facing

Apache Web server. This URL will be used to access the DSpace instance
in the cloud. The URL will be mapped to the instance’s private IP address
in the cloud environment. Note that the DSpace instance in the cloud is
using Apache Tomcat as its Web server and Java Container. The rerouting
of external calls via the front-facing Apache server to the Tomcat server is
achieved by using an Apache module called mod_alias2 - this is installed on
the front-facing Apache server, where the publicly accessible URL is mapped
to the internal private IP address for the virtual machine instance.

Customise DSpace. When the backend receives this request to customise a
given repository, it keeps a copy of the customisations to be made before publish-
ing them to the DSpace instance. The customisation process entails overwriting
files on the target DSpace instance. Overwriting of files is achieved through
rysnc3 calls. Using Django Celery, the user can perform the customisation while
the DSpace instance installation is ongoing.

Shutdown DSpace. When this request is received on the server, the appli-
cation will detach the volume from the instance before terminating the virtual
machine instance. Detaching of the volume is only carried out once the Postgres
database and Web servers (i.e. Tomcat and Apache) have been stopped success-
fully. Termination of the virtual machine instance is via calls to the Eucalyptus
API terminate-instance. This API call results in the equivalent process of shut-
ting down the machine’s operating system and powering off the virtual machine.
Termination of an instance frees up the compute resources that can be used for
other purposes. Note that this is transparent to the front-end user, who will have
the perception of a traditional computer shutdown.

Start DSpace (or restart DSpace). This action can only be executed in
the event that the DSpace instance was previously shutdown. Starting a DSpace
instance follows the same process as installing a new DSpace instance. The dif-
ference is that there is no DSpace installation and configuration required. A start
DSpace task reattaches the volume that was detached during the shutdown. This
volume will still have all the information about the DSpace instance before it
was shutdown.
2 mod_alias, https://httpd.apache.org/docs/2.4/mod/mod_alias.html
3 rsync, https://linux.die.net/man/1/rsync



Feasibility of digital repositories in private clouds 9

3.4 Evaluation
Two types of evaluations were carried out: 1) performance measurement to assess
impact of virtual environment on typical activities; and 2) usability study of
the developed browser-based application for installation and customisation of
DSpace.

Performance Experiment The objective of the performance experiment was
to measure ingestion and viewing/downloading of items in DSpace and ascertain
if there is any effect on performance when the number of instances in the cloud
are increased or when concurrent requests are made to different instances.

The hardware and specifications used for this test are listed in Table 1.

Table 1. Hardware specifications used in performance experiment

Main Server Nodes Virtual machines Client laptop
CPU 3.2 GHz Intel Core i5 (4 cores) 3.2 GHz QEMU Virtual

CPU (2 cores)
2.5 GHz Intel Core i7
(4 cores)

RAM 8 G 1 GB 16 GB
Hard Disk 300 GB 5 GB 500 GB

Apache JMeter4 was used to simulate repository user actions and also take
response time measurements.

The experiment began by running a number of virtual machine instances in
the cloud environment. Once the virtual machine instances had fully booted,
DSpace was installed in each one of the instances, following the steps outlined
previously. Using JMeter, 15 items were ingested into DSpace installed in each
of the running virtual machine instances. Item ingestions in a single DSpace
instance were carried out sequentially, while ingestions in all the other running
instances in the cloud were run in parallel. The length of time to ingest an item
was measured, which in this study is called ingestion time.

Once the 15 items in each DSpace instance were successfully ingested, JMeter
was used to view (load) the item. This was to mimic the process of viewing and
downloading items with their associated attachments/documents. This step was
used to measure the performance of accessing items in a DSpace instance run-
ning in a cloud environment. The process of booting virtual machine instances,
installing DSpace in the instances, ingesting and viewing all 15 items in each of
the running DSpace instances constituted a single run in the experiment. Each
run consisted of one or more instances running in parallel.

Each run had a different number of instances running in the cloud - 1, 2,
5, 8 and 11 - and every run had 5 replications to establish a stable average
measurement.

Figure 3 has a detailed breakdown of the average ingestion times by instance
and also ingestion order of the item.
4 https://jmeter.apache.org/



10 M. Lumpa and H. Suleman

Fig. 3. Overall average ingestion time by order of ingestion and number of instances

It can be deduced from the data that an increase in the number of instances
does not have a considerable effect on the performance of the ingestion of an
item in DSpace. The overall average ingestion time remains between 30 and 35
seconds. The average ingestion time by 1, 2, 5, 8 and 11 instances are 32.27,
32.98, 32.86, 32.93 and 32.86 seconds respectively.

The initial ingestion time into DSpace is marginally higher than the rest
of the ingestions. This can be attributed to Apache server on the central cloud
server making its first connection with the Tomcat server on the DSpace instance
in the cloud. In addition, at first run, Tomcat on the DSpace instance will be
loading the necessary resources, which may contribute to this slowness. Once
connections have been established and other configurations cached by Apache
on the main server and the Tomcat server has been loaded fully, subsequent
requests are noticeably faster.

The average view and download response times are shown in Figure 4.

Overall, the average response times for the two tasks - item view and item
download - are all under one eighth of a second. However, there is a noticeable
linear decrease in performance as the number of instances running in the cloud
are incrementally increased to full capacity. This difference would be hardly
felt by users of the system. Using the ANOVA test to compare the differences
between the view times of 1, 2, 5, 8 and 11 instances, an F-statistic of 72.57
and p-value of 2.23 is obtained. Since p>0.05, it cannot be said that there is a
significant difference in the view times experienced.



Feasibility of digital repositories in private clouds 11

Fig. 4. Overall average item view and download time by number of instances

Usability Evaluation The System Usability Scale (SUS) [9] was adopted for
this study. SUS is widely used5, has respectable reliability [5] and is available
for free use without a licence. Users were also asked to comment on satisfaction
and provide any additional comments.

The evaluation exercise involved completion of 2 main tasks that were the
core features of the developed prototype: installation and customisation of a
digital repository.

Twenty two (22) postgraduate student participants were recruited for this
study. The minimum requirements for participants were that they should be
familiar with Web technologies and be everyday users of the Internet. Based on
prior experience with installation of complex software applications, participants
were identified to fall into 3 categories: non-expert, intermediate and expert.

The overall average SUS score from the evaluation was 74. SUS is scored out
of 100, and the global average from the SUS project is stated as 68. There was
an observed difference in the average scores by each of the categories that were
devised: experts scored an average of 81, intermediates scored 65 and non-experts
scored 70.

Responses to the question, What did you like about the application? and
What did you NOT like about the application? were grouped and analysed by
common themes. There was a total of 39 unique positive comments and 27 unique
negative comments. "Ease of use", "ease of learning" and "a clean interface" were
the most mentioned positive comments. "Installation time", "responsiveness",
"system help" and "minor bugs" were the most mentioned negative comments.

The time taken to complete the installation is a constraint of the cloud en-
vironment’s response times. A number of techniques can be applied to ensure
that users do not have to wait for over 8 minutes to start administering their

5 Measuring Usability with the System Usability
Scale,https://www.measuringusability.com/sus.php



12 M. Lumpa and H. Suleman

repositories. One option would be to create instances in advance - once they
are allocated to users, their only task would be to configure the system to their
preferences.

The results from this evaluation indicate that users are able to complete
tasks of installation and customisation of the system, and there is an above
average satisfaction in interacting with repositories in the cloud through use of
the developed system.

4 Conclusions and Future Work

This study set out to investigate the feasibility of hosting a digital repository
system in a managed way in a private cloud environment. The system that was
developed was functional, usable and had an acceptable level of system per-
formance. Thus, a private cloud is indeed a feasible option for such software
systems. Current interest in containerisation of software tools, through mecha-
nisms such as Docker, are highly compatible with cloud management systems,
as they each address a different aspect of the ease of management equation.

During the course of this research, no substantive changes were made to the
DSpace repository toolkit. Thus, the move to a managed repository ecosystem,
whether in a private cloud or elsewhere, can likely treat existing tools as black
boxes to be encapsulated and managed at a higher level.

This form of turnkey management will ease the burden on administrators,
many of whom are repository managers rather than systems administrators, and
enable the adoption of repositories more easily than is the case at present.

Future work can investigate hybrid models that include replication and scal-
ability, as well as managed containerisation of future back-end systems.

Acknowledgements

This research was partially funded by the National Research Foundation of South
Africa (Grant numbers: 85470 and 105862) and University of Cape Town. The
authors acknowledge that opinions, findings and conclusions or recommendations
expressed in this publication are that of the authors, and that the NRF accepts
no liability whatsoever in this regard.

References

1. Adewumi, A.O., Omoregbe, N.A.: Institutional repositories: Features, architecture,
design and implementation technologies. Journal of Computing 2(8) (2011)

2. Aljenaa, E., Al-Anzi, F.S., Alshayeji, M.: Towards an Efficient e-Learning
System Based on Cloud Computing. In: Proceedings of the Second Kuwait
Conference on e-Services and e-Systems. pp. 13:1—-13:7. KCESS ’11,
ACM, New York, NY, USA (2011). https://doi.org/10.1145/2107556.2107569,
http://doi.acm.org/10.1145/2107556.2107569



Feasibility of digital repositories in private clouds 13

3. Amazon: Overview of Amazon Web Services - Overview of Amazon Web
Services (2018), https://docs.aws.amazon.com/aws-technical-content/latest/aws-
overview/introduction.html

4. Amazon Web Services: Amazon EC2 FAQs - Nitro Hypervisor (2018),
https://aws.amazon.com/ec2/faqs/#compute-optimized

5. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system us-
ability scale. Intl. Journal of Human–Computer Interaction 24(6), 574–594 (2008)

6. Bankier, J., Gleason, G.: Institutional Repository software comparison, vol. 33.
United Nations Educational, Scientific and Cultural Organization (2014),
http://works.bepress.com/jean_gabriel_bankier/22/

7. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: ACM SIGOPS
operating systems review. vol. 37, pp. 164–177. ACM (2003)

8. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track. vol. 41, p. 46 (2005)

9. Brooke, J.: SUS-A quick and dirty usability scale. Usability evaluation in industry
189, 194 (1996)

10. Celery Project: Celery - Distributed Task Queue (2019),
http://docs.celeryproject.org/en/latest/index.html

11. Django Foundation: Django Web Framework (2019),
https://www.djangoproject.com/start/overview/

12. DSpace: DSpace - A Turnkey Instutitional Repository Application (2018),
https://duraspace.org/dspace/

13. DSpace: Installing DSpace - DSpace 6.x Documentation - DuraSpace Wiki (2018),
https://wiki.duraspace.org/display/DSDOC6x/Installing+DSpace

14. DuraSpace: DuraCloud Guide (2019), https://wiki.duraspace.org/display/
DURACLOUDDOC/DuraCloud+Guide#DuraCloudGuide-WhatisDuraCloud?

15. EPrints: EPrints Services (2018), http://www.eprints.org/uk/
16. EPrints: Installing EPrints on Debian/Ubuntu - EPrints Documentation (2018),

https://wiki.eprints.org/w/Installing_EPrints_on_Debian/Ubuntu
17. Fedora: Installation and Configuration - Fe-

dora 3.8 Documentation - DuraSpace Wiki (2016),
https://wiki.duraspace.org/display/FEDORA38/Installation+and+Configuration

18. Freet, D., Agrawal, R., Walker, J.J., Badr, Y.: Open source cloud management
platforms and hypervisor technologies: A review and comparison. In: SoutheastCon
2016. pp. 1–8. IEEE (mar 2016). https://doi.org/10.1109/SECON.2016.7506698,
http://ieeexplore.ieee.org/document/7506698/

19. Han, Y.: On the clouds: A new way of computing. In-
formation Technology and Libraries 29(2), 87–92 (2010),
https://search.proquest.com/docview/325033464/fulltextPDF/
A52FC66FB8DE4D9BPQ/1?accountid=14500

20. Johnson, D., Kiran, M., Murthy, R., Suseendran, R., Yogesh, G.: Eucalyptus Begin-
ner ’ s Guide UEC Edition Eucalyptus Beginner ’ s Guide - UEC Edition. Eucalyp-
tus, v2.0 edn. (2010), http://cssoss.files.wordpress.com/2010/12/eucabookv2-0.pdf

21. Kökörčený, M., Bodnárová, A.: Comparison of Digital Libraries Systems. In: Pro-
ceedings of the 9th WSEAS International Conference on Data Networks, Com-
munications, Computers. pp. 97–100. DNCOCO’10, World Scientific and Engi-
neering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2010),
http://dl.acm.org/citation.cfm?id=1948805.1948823



14 M. Lumpa and H. Suleman

22. Körber, N., Suleman, H.: Usability of Digital Repository Software: A Study of
DSpace Installation and Configuration. In: Buchanan, G., Masoodian, M., Cun-
ningham, S.J. (eds.) Digital Libraries: Universal and Ubiquitous Access to Infor-
mation: 11th International Conference on Asian Digital Libraries, ICADL 2008,
Bali, Indonesia, December 2-5, 2008. Proceedings, pp. 31–40. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89533-6_4,
https://doi.org/10.1007/978-3-540-89533-6_4

23. Lagoze, C., Payette, S., Shin, E., Wilper, C.: Fedora: an architecture for
complex objects and their relationships. International Journal on Digital Li-
braries 6(2), 124–138 (apr 2006). https://doi.org/10.1007/s00799-005-0130-3,
http://link.springer.com/10.1007/s00799-005-0130-3

24. Nuernberg, P., Leggett, J., McFarland, M.: Cloud as Infrastructure at
the Texas Digital Library. Journal of Digital Information 13(1) (2012),
http://journals.tdl.org/jodi/index.php/jodi/article/view/5881

25. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Yous-
eff, L., Zagorodnov, D.: The eucalyptus open-source cloud-computing
system. In: Cluster Computing and the Grid, 2009. CCGRID’09. 9th
IEEE/ACM International Symposium on. pp. 124–131. IEEE (2009),
http://ieeexplore.ieee.org/document/5071863/

26. Peter, M., Timothy, G.: The NIST Definition of Cloud Computing (2011),
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

27. Sefraoui, O., Aissaoui, M., Eleuldj, M.: Openstack: Toward an open-source solution
for cloud computing. International Journal of Computer Applications 55(3), 38–42
(2012)

28. Smith, M., Barton, M., Branschofsky, M., McClellan, G., Walker, J.H., Bass,
M., Stuve, D., Tansley, R.: DSpace - An Open Source Dynamic Digital Reposi-
tory. D-Lib Magazine 9(1) (jan 2003). https://doi.org/10.1045/january2003-smith,
http://www.dlib.org/dlib/january03/smith/01smith.html

29. Sotomayor, B., Montero, R.S., Llorente, I.M., Foster, I.: Virtual In-
frastructure Management in Private and Hybrid Clouds. IEEE Internet
Computing 13(5), 14–22 (sep 2009). https://doi.org/10.1109/MIC.2009.119,
http://ieeexplore.ieee.org/document/5233608/

30. Thakar, A., Szalay, A.: Migrating a (large) science database to the cloud.
In: Proceedings of the 19th ACM International Symposium on High Per-
formance Distributed Computing - HPDC ’10. p. 430. ACM Press, New
York, New York, USA (jun 2010). https://doi.org/10.1145/1851476.1851539,
http://dl.acm.org/citation.cfm?id=1851476.1851539

31. Tramboo, S., Humma, Shafi, S.M., Gul, S.: A Study on the Open Source Digital
Library Software’s: Special Reference to DSpace, EPrints and Greenstone. CoRR
abs/1212.4 (2012), http://arxiv.org/abs/1212.4935

32. Verno, A.: IVDB . . . for Free! Implementing an Open-Source Digital Repos-
itory in a Corporate Library. Journal of Electronic Resources Librar-
ianship 25(2), 89–99 (2013). https://doi.org/10.1080/1941126X.2013.785286,
http://dx.doi.org/10.1080/1941126X.2013.785286

33. Vmware: What is a hypervisor? (2018), https://www.vmware.com/topics/glossary/
content/hypervisor

34. VMware: vSphere Hypervisor (2019), https://www.vmware.com/products/vsphere-
hypervisor.html

35. Waddington, S., Zhang, J., Knight, G., Hedges, M., Jensen, J., Downing, R.: Kin-
dura: Repository services for researchers based on hybrid clouds. Journal of digital
Information 13(1) (2012)



Feasibility of digital repositories in private clouds 15

36. Wu, J., Teregowda, P., Williams, K., Khabsa, M., Jordan, D., Treece,
E., Wu, Z., Giles, C.L.: Migrating a Digital Library to a Private
Cloud. In: 2014 IEEE International Conference on Cloud Engineer-
ing. pp. 97–106 (mar 2014). https://doi.org/10.1109/IC2E.2014.77,
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6903462


