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Abstract

The Cooperative Co-Evolution model has been used in Evolutionary Computation to op-
timize the training of artificial neural networks (ANNs). This architecture has proven to be
a useful extension to domains such as Neuro-Evolution (NE), which is the training of ANNs
using concepts of natural evolution. However, there is a need for real-time systems and the
ability to solve more complex tasks which has prompted a further need to optimize these
Cooperative Co-Evolution methods. Cooperative Co-Evolution methods consist of a number
of phases, however the evaluation phase is still the most compute intensive phase, for some
complex tasks taking as long as weeks to complete. This study uses NE as a test case study
and we design a parallel Cooperative Co-Evolution processing framework and implement the
optimized serial and parallel versions using the Golang (Go) programming language. Go is a
multi-core programming language with first-class constructs, channels and goroutines, that
make it well suited to parallel programming. Our study focuses on Enforced Subpopulations
(ESP) for single-agent systems and Multi-Agent ESP for multi-agent systems. We evaluate
the parallel versions in the benchmark tasks; double pole balancing and prey-capture, for
single and multi-agent systems respectively, in tasks of increasing complexity. We observe a
maximum speed-up of 20x for the parallel Multi-Agent ESP implementation over our single
core optimized version in the prey-capture task and a maximum speedup of 16x for ESP in
the harder version of double pole balancing task. We also observe linear speed-ups for the
difficult versions of the tasks for a certain range of cores, indicating that the Go implemen-
tations are efficient and that the parallel speed-ups are better for more complex tasks. We
find that in complex tasks, the Cooperative Co-Evolution Neuro-Evolution (CCNE) meth-
ods are amenable to multi-core acceleration, which provides a basis for the study of even
more complex Cooperative Co-Evolution methods in a wider range of domains.
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1 Introduction

An artificial neutral network (ANN) [16] is a massively parallel distributed processor made up
of simple processing units that resembles the human brain. Like the human brain, knowledge
is acquired through learning and the acquired knowledge is stored. Supervised learning, where
the desired output is already known, is commonly used to train ANNs. However, in the last two
decades an unsupervised method that evolves ANNs, Neuro-Evolution (NE) [27], has grown in
popularity due to its efficiency in solving real world tasks [12]. NE uses Evolutionary Algorithms
(EAs) [1] to evolve ANNs, in order for them to perform a task. However for complex tasks this
training process is time consuming and a speed-up of even an order of magnitude will enable
simulations to be run at a faster rate which could prove cost effective and be suitable for real-
time systems. A real-time system may be defined as one in which the timing requirements
are an essential part of its specification. One common example is industrial process control
such as a chemical plant or active rocket guidance systems [13] which tend to have real-time
requirements. This speed-up can potentially be achieved by harnessing parallel computing [14].

In the past most software developers relied in advances in hardware to automatically increase the
speed of their applications, however, this is no longer the case. Around 2003, there was a shift
towards multi-core processors in order to reduce power consumption and heat dissipation issues
in the processor architectures at the time. These issues caused a limitation in the productive
processes that can be performed within each clock period within a single Central Processing
Unit (CPU) [41]. In the future in order to truly leverage the advances in hardware, software
developers need to write programs that utilise the available processor cores.

As described by Hwu et al. [25], designing the multi-processor has taken two trajectories: the
multi-core path and the many-core path. The multi-core trajectory has focused on maintaining
the execution speed while transitioning into multiple cores, for example multi-core processors
whilst the many-core path has focused on execution throughput of parallel applications, for
example the Graphics Processing Units (GPUs). The CPU is optimized for sequential code
performance whereas the GPU is designed to be a numeric computing engine, therefore an
application that includes data parallelism is well suited to GPUs. Data parallelism refers to
a program property whereby many arithmetic operations can be safely performed on a data
structure in a simultaneous manner, an example is matrix multiplication.

The success in speeding up parallel tasks using hardware has led to the development of libraries
and languages that leverage either multi-core or many-core architectures, or both, such as
Chapel [4], Threading Building Blocks (TBB) [18], MPI [33], CUDA [25] and Golang (Go) [26].
Even with the growing number of libraries available, selecting the right tool for a complex task
still remains a challenge. Developers still find themselves porting parallel programs from one
library or language to another in order to run on different parallel architectures. Such porting
of code has a cost implication as it usually entails rewriting large parts of the code and it is also
error prone. In some instances, tasks may have similar algorithms but if the implementations are
not sufficiently general then reusing the already written codebase may be a difficult task. The
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Go programming language has emerged in recent years and makes coding for the multi-core
easier, in that it has high level abstractions, that alleviate the programmer from concerning
themselves with threaded programming [31]. These abstractions enable tasks to be run in
parallel and to be easily synchronized. This is a very applicable pattern to the implementation
of parallel algorithms. Portability is also a key issue affecting parallel computing, Go addresses
this issue through advanced dependency management (compiling of programs into a single
executable binary) and cross compilation (ability to compile a program to be run on multiple
architectures), which enables a Go program to be run on multiple parallel architectures.

If useful environmental parameters are gathered at a fast rate, such fast learning could greatly
benefit real-time systems. Within the NE community, the focus has been on improving algo-
rithms or the creation of novel methods to evolve ANNs [12, 46] to efficiently search the state
space of a problem (a set of states that a problem can be in). NE methods have been successful
because of their ability to search large state spaces and to solve non-linear and partially ob-
servable tasks (for example, tasks that have incomplete state information). The time to search
large state spaces is still an overhead, as it can take up to several days to solve very complex
tasks. However, an evolutionary approach, Cooperative Co-Evolution [34] enables a problem
to be broken down into manageable sub-components and has been applied successfully to the
domain of NE to decompose large state spaces [13], so that they are solved concurrently. For
this reason, Cooperative Co-Evolution has provided a useful extension to NE. Another issue
affecting the training of ANNs is cost. When an ANN is trained to perform a control task such
as balancing a pole [44] or guiding a rocket [12], the task execution is initially simulated and
the parameters necessary to perform the task are then transferred to a physical model. This
limits the need for multiple trials on physical models, which can prove to be costly and also
reduces human interaction for dangerous tasks. Actually very few ANNs are then tested in
counter-part physical models, as they are easily transferrable [13]. If an ANN can be trained to
perform a task at a faster rate this could have a great cost benefit, in that less time is spent in
the simulation phase.

Cooperative Co-Evolution NE (CCNE) methods are population based, that is, each population
is comprised of individuals. Unlike Conventional Neuro-Evolution (CNE) the individuals form
partial solutions, that is the individual is not a complete ANN. Individuals are genotypes which
are the encoding of the ANNs. Research has shown [36] that decomposing the search space
into sub-genotype spaces, ensures that CCNE methods perform more efficient search than CNE
methods for large and complex search spaces. Most CCNE methods follow this process: 1) a
population of individuals is generated, 2) individuals are then selected to form an ANN or a
team of ANNs and, 3) the ANN (or team of ANNs) is then evaluated within a task environment.

In general, each individual participates in a certain number of network evaluations to gauge their
average fitness within the task. Their fitness is then used to evolve the population of individuals,
that is, the individuals with the greater fitness scores mate to form new stronger individuals
to replace the weaker ones. The evolutionary process continues until an ANN optimized for
the particular task is found. The network evaluations, because they are a series of trials, can
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be CPU intensive for very complex tasks. However, because evaluations can be carried out
independently they lend themselves naturally to parallelization. One promising approach is the
combination of Cooperative Co-Evolution and hardware, to spread evaluations across multiple
cores or processors, so that they are carried out in parallel [12].

1.1 Motivation

A review of the literature [32, 13] indicated that there is potential to exploit parallelism to
improve the performance of Cooperative Co-Evolution methods. Much of the focus has been
on making adjustments to synchronous Cooperative Co-Evolution algorithms to make them
asynchronous or on performance gains for specific Cooperative Co-Evolution algorithms [32].
Although these implementations have yielded some performance gains, there are a some issues
to be addressed: 1) there are limitations to how much an algorithm can be fine-tuned to
make it asynchronous, particularly if it does not leverage all the available cores, 2) if the
asynchronous algorithms are specific to a particular domain then they are not easily transferrable
to other Cooperative Co-Evolution methods, 3) if the implementations are specific to a particular
hardware then they are not easily portable, 4) it still takes a long time to evolve Cooperative
Co-Evolution methods in complex tasks, and 5) not much work has been done on speeding up
Cooperative Co-Evolution methods in tasks that have real-time requirements. This is the gap
in the state-of-the-art that this thesis would like to address.

To the best of our knowledge, currently no framework exists that can potentially parallelize any
Cooperative Co-Evolution method on multi-core architectures, one that is sufficiently general
that it can be applied to single-agent and multi-agent systems, but also to different Cooperative
Co-Evolution domains. In the literature reviewed the implementations were multi-threaded and
ran on specific hardware. Portability is a key issue that affects parallel computing and in this
study we will implement optimized serial and parallel versions in the Go programming language,
as it has high level abstractions that alleviate the programmer from threaded programming, and
can be run on different parallel hardware architectures. There is also a growing need for real-
time systems and the application of Cooperative Co-Evolution in more complex tasks, and
current implementations are not fast enough to address these requirements.

1.2 Aims and Objectives

The overall aim of this study is to provide a foundation for the parallelization of Cooperative Co-
Evolution methods on multi-core architectures. We aim to identify a parallelization approach
for accelerating Cooperative Co-Evolution methods that is sufficiently fast, portable and gen-
eral. Fast refers to the parallel speed-up of the evolution time of Cooperative Co-Evolution
methods versus single processor evolution time. Portable refers to the ability for the imple-
mented algorithm to be run on different parallel architectures. Finally general refers to the
implementation of multiple NE methods in a parallel processing architecture as demonstrated
by three case studies: Symbiotic Adaptive Neuro-Evolution (SANE) [30], Enforced SubPopula-
tions (ESP) [12] and Multi-Agent ESP [46]. The objective of this work is to empirically compare
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serial versions of three NE methods, namely SANE, ESP and Multi-agent ESP to their parallel
versions in the benchmark tasks: double pole balancing and prey-capture.

1.3 Approach

Several Cooperative Co-Evolution methods exist but the prime focus of this dissertation is the
Neuro-Evolution (NE) domain. NE is selected as a test case study given its wide use and
broad problem solving capabilities [27]. The approach is phased as follows: 1) first we design
a parallel processing framework, 2) we implement the optimized serial versions of three NE
methods: SANE, ESP and Multi-Agent ESP, 3) we implement the parallel versions of the NE
methods, by applying the parallel processing framework to the serial versions, 4) we validate
the serial and parallel versions and, 5) we benchmark the parallel versions in the double pole
balancing (for SANE and ESP) and prey-capture (for Multi-Agent ESP) tasks, to demonstrate
the performance gains when the parallel processing framework is applied. A single population
version of SANE, known as neuron SANE is implemented as part of our work, in order to
evaluate the performance advantage of the Cooperative Co-Evolution architecture over NE-
only approaches.

1.4 Contribution

The contribution of this work is three-fold: 1) we propose a parallel processing framework for
Cooperative Co-Evolution methods, that takes advantage of the concurrent nature of Coop-
erative Co-Evolution, combines that with the MapReduce model [7] and leverages the power
of parallel computers, 2) an empirical study that compares the different versions of the NE
methods in benchmark tasks: double pole balancing and prey-capture, and 3) optimized serial
and parallel implementations of the NE methods: SANE, ESP and Multi-Agent ESP.

1.5 Thesis Overview

Chapter 2 provides the background necessary to understand the current state of parallel com-
puting and how it relates to increasing the performance of Cooperative Co-Evolution methods.
First we introduce parallel computing, the current issues affecting it and how parallel program-
ming languages, such as Golang address some of these issues. We then give an overview of the
Cooperative Co-Evolution model, the building blocks of Neuro-Evolution (NE) and how NE
methods are evaluated. The next section then gives an overview of Cooperative Co-Evolution
Neuro-Evolution (CCNE) methods, and details three case studies: SANE, ESP and Multi-Agent
ESP. We then conclude the chapter with a literature review of the current state-of-the-art with
regard to the parallelization of Cooperative Co-Evolution methods.
Chapter 3 contains a detailed description of the design of the Cooperative Co-Evolution par-
allel processing framework, its application to the case study NE methods, and the design and
implementation challenges encountered.
Chapter 4 reports on the validation of the NE case study methods in the validation tasks:
double pole balancing (for SANE and ESP) and prey-capture (for Multi-Agent ESP).
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Chapter 5 then presents the results of the benchmaking of the case study methods in the
benchmark tasks: double pole balancing and prey-capture, on a High Performance Computing
(HPC) cluster.
Chapter 6 discusses the contributions of this study and suggests future work.
Appendix A contains the hardware specifications for the validation and benchmarking exper-
iments. Appendix B contains snapshots of our visualizations of the double pole balancing
and prey-capture tasks, and Appendix C lists the information required to access the Go
implementations of the Cooperative Co-Evolution Neuro-Evolution (CCNE) methods.
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2 Foundations

In this chapter we provide some background on parallel computing, Neuro-Evolution and Co-
operative Co-Evolution. We also give an overview on the current state-of-the-art and how our
work will contribute to enhancing it.

2.1 Parallel Computing

Parallel computing is the simultaneous use of multiple compute resources to solve a computa-
tional problem. The compute resources are normally a single computer with multiple processors
or cores, or a number of such computers connected by a network, for example a High Perfor-
mance Computing (HPC) cluster. The computational problem is partitioned into manageable
parts that are then then solved simultaneously. Parallel compute resources have been present
for a long time in the form of HPC, which was normally reserved for the scientific community,
due to the high cost implications, however they are now more prevalent in modern computer
architecture. To run parallel programs on a parallel computer, they need to be implemented
in a programming language, this language requires extra mechanism for it to be able to share
information among the processors or processor cores [14]. To enable this a variety of program-
ming paradigms have been developed. There are several parallel programming paradigms and
different parallel programming languages enforce different programming paradigms. According
to Grama et al. [14], three main factors influence the variations: 1) effort invested in writing
the parallel programs, 2) efficiency on certain parallel computer architectures, and 3) various
applications have different types of parallelism, so different languages exploit them. Examples of
parallel programming paradigms are: explicit, implicit, shared-address-space, message-passing,
data parallelism and control parallelism.

Explicit parallel programming is an approach where a parallel program is explicitly written.
This means that the programmer has to specify how the processors or processor cores will coop-
erate in order to solve the specified problem. This requires extra effort as the programmer needs
to determine the communication and synchronization points and explicitly program them. An-
other approach is called implicit parallel programming, where the programmer uses a sequential
programming language but it is up to the compiler to insert the parallel constructs to run the
program on a parallel computer. This type of automatic parallelization is very difficult [14] and
therefore most programming languages exploit explicit parallelism.
Another paradigm is shared-address-space, this is where data is stored in a globally accessible
memory and each processor accesses the shared data by reading or writing to shared variables.
The sharing of variables makes this paradigm subject to mutual-exclusion problems and there-
fore the programming languages that employ this paradigm need the appropriate constructs
to mitigate this. In contrast to the shared-address-space paradigm, in the message-passing
paradigm the programming languages have an ability to send and receive data among proces-
sors and cores and there is an emphasis on private and local variables [14].
Data parallelism is when the same operation is performed on a data set by assigning data
elements to various processors or processor cores. One common example of a data-parallel
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problem is matrix multiplication. Task parallelism (or control parallelism) on the other hand
focuses on distributing tasks across multiple processors or cores. Many problems exhibit a
certain amount of both data and task parallelism, however problems that do not exhibit data
parallelism are better suited to multi-core architectures whereas data parallelism is better suited
to Graphics Processing Units (GPUs).

2.2 Issues in Parallel computing

In order to fully utilize parallel computing a number of issues need to be addressed. One issue
is the design of parallel computers. Currently most vendor computers on the market are multi-
core computers and this is the area in parallel computing that has seen the most advances.
The most important aspect in their design remains their ability to scale up to a large number
of processors and support communication between those processors or processor cores [14].
Another issue is the ability to design efficient parallel algorithms. This entails the ability to
effectively break down a serial program into concurrent parts that can be executed in parallel. In
order to effectively gauge the performance gains due to parallelization, it is necessary to be able
to evaluate them; this is one aspect that is also important in parallel computing. Evaluation
allows us to determine how fast problems are solved and also how effectively the processors or
processor cores are utilized. Also of importance is parallel programming languages and tools.
Parallel programming languages are used to implement parallel algorithms, and tools, such as
debuggers, profilers and simulators are used to ensure correct and effective programming. The
language must provide both programming efficiency and tooling, one such language is Golang
(Go) [26].

Go is a general purpose programming language that was created to combine efficient compilation
with efficient execution and ease of programming which its creators felt was lacking in already
existent languages. Go’s concurrency model is inspired by Communicating sequential processes
(CSP ) [20], unlike other languages that support concurrency as an extension or library, Go has
built in concurrency. CSP is an algebraic formalisation for describing how concurrent systems
interact. Its support for concurrency is based on two first class constructs, goroutines and
channels. The two constructs are what we will leverage to implement an efficient and general
parallel processing framework. A goroutine is a lightweight thread managed by the Go runtime.
The go statement starts the execution of a goroutine, for example, to start a new goroutine
running f(x,y,z) :

go f(x,y,z)

Goroutines have several advantages over conventional threads, for example you can run more
goroutines on a typical system than you can conventional threads, because they are light-weight.
Goroutines can safely communicate with one another using another built in construct, known
as a channel. Channels are a typed conduit through which you can send and receive messages.
Channels allow for synchronization without the need for explicit locks or condition variables,
which alleviates the programmer from low level thread programming. Channels can be buffered
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or unbuffered. This approach ensures that only one goroutine has access to the data at a given
time [26].

Parallelization in Go is achieved via the Go runtime and a setting; GOMAXPROCS. This setting
allows a programmer to determine the number of logical CPUs (the number of physical cores x
the number of threads, that can run on each core through the use of hyperthreading) to be used
by a program. The Go runtime schedules goroutines to run within a logical processor that is
bound to a single operating system thread [26]. The GOMAXPROCS setting is by default set
to one, which allocates a single logical processor to execute all goroutines in a program. In order
to achieve true parallelism the GOMAXPROCS value must be increased and the scheduler has
to distribute goroutines across logical CPUs on a machine with multiple physical processors.
Another issue that Go addresses is portability, as it can be cross compiled to run on different
operating systems and parallel computers.

There are a variety of overheads associated with parallelism [23, 35]. These overheads result in
the ideal speed-up (a speed-up of N on N cores) not being achieved. A parallel program may
have to perform extra activities besides those performed by its serial counterpart. This results
in overheads which may be a result of 1) excess computation, activities not performed by the
serial program, 2) interprocess communication, 3) time spent idling, 4) inefficient scheduling
of work, and 5) a program not having enough parallelism. Interprocess communication refers
to the communication and exchange of data by processing elements in parallel programs, this
accounts for most of the processing overheads. Idling is when processing elements have to wait
for other processing elements to complete their work before they resume, this may be caused by
synchronization points or uneven distribution of work. Excess computation is another source
of overhead, because a parallel program may have to carry out extra computation, for example,
if some computation that is normally carried out serially has to be repeated on the processing
elements. Runtime schedulers are responsible for creation and scheduling of work, however if
the work that is partitioned is too small, then the cost of scheduling the work may be too large.
At times however, a serial program may not have enough parallelism or the task it is meant to
solve may be too simple, such that the cost of parallelism is large.

In recent work Nanz et al. [31] benchmarked the usability and performance of four multi-
core programming langauges in six benchmark programs. Of particular interest to this study
is the analysis that was done on Go. Nanz et al. reported a speed-up detoriation for Go
in two benchmarks tasks. They attributed this detoriation to excessive creation of goroutines,
generating scheduling and communication overheads. This analysis indicates that a Go program
may experience a detoriation in speed-up if the Go runtime has to schedule multiple goroutines
across multiple cores, that need to synchronize and exchange data.

2.3 Cooperative Co-Evolution

Co-Evolution in natural ecosystems refers to how organisms in a species either cooperate or
compete with other species in order to survive. This concept has been adopted in the domain
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of Evolutionary Computation (EC) to solve complex problems and there are two main types of
Co-Evolution approaches, competitive and cooperative.

Figure 2.1: The Cooperative Co-Evolution Framework. Three species are co-evolved in
a problem domain. Figure taken from Potter et al. [34].

Competitive Co-Evolution [40] in Evolutionary Computation (EC) focuses on competition,
where species go head to head in a sort of arms race producing increasingly stronger strate-
gies for the others to defeat. Cooperative Co-Evolution [34] on the other hand emphasizes
cooperation, and will be the focus of this study.

Cooperative Co-Evolution may be defined as a generalized architecture (Figure 2.1) for evolving
interacting co-adapted sub-components. The ecosystem consists of two or more species that, as
in nature, only mate with members of their own species. Mating restrictions are enforced by
evolving the species in separate populations [34]. Each individual within the species represents
a partial solution and the complete solution is formulated through cooperation within the tasks.
This modularization means that tasks can be broken down into sub-problems and optimized
concurrently. After evaluation only the most beneficial in solving the task are recombined and
the weaker individuals are discarded. This architecture is also heterogeneous in nature, mean-
ing heterogeneous representations are supported, that is, components may be implemented as
artificial neural networks (ANNs), whilst others may be implemented as symbolic rules. There-
fore depending on the problem the most appropriate evolutionary process and representation
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can be selected. These characteristics have enabled this architecture to be applied to different
domains, one such domain is Neuro-Evolution (NE), which we will describe in the next section.

2.4 Neuro-Evolution (NE)

Neuro-Evolution (NE) [27] is a form of machine learning where ANNs are modified using Evo-
lutionary Agorithms (EAs) [1] in order to learn a specific task. NE has been shown to be robust
and efficient at solving complex real world tasks, in areas such as robotics [8] and control [13].

One important feature of NE is its ability to adapt a broad range of ANN types, as opposed to
other ANN training methods. It is also able to modify weights, topologies (architectures) and
even teams of ANNs, which makes it a more general, and hence broadly applicable method.
The following subsections introduce the building blocks for Neuro-Evolution (NE). NE is an
unsupervised approach whereas previous approaches have been supervised.

2.4.1 Artificial Neural Networks (ANNs)

ANNs are massively parallel processors inspired by biological nervous systems, in particular the
animal brain. They model the way in which the brain performs a particular task or function of
interest [16]. ANNs have the ability to learn as well as to store the acquired knowledge.

Figure 2.2: A biological neural network. Figure taken from Shiffman et. al, The Nature of
Code [37].

Processing units known as neurons form the basis of ANNs, like biological neurons (Figure 2.2),
they are also inter-connected. The neurons form a layered structure and the number of layers,
input neurons or output neurons may be varied depending on the complexity of the task. For
example, for a three layer neural network such as the one shown in Figure 2.3a, the first layer
has input neurons which receive information from the environment that then activates the input
layer. The input layer then sends data via weighted synapses to the second layer of neurons,
then via more weighted synapses to the third layer of output neurons.

Each neuron i performs a transfer function fi of the form:

yi = fi(
∑n

j=1wixj − θi)

where yi is the output of the neuron i, xj is the jth input to the neuron and wij is the connection
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weight between the neurons i and j. θi is the threshold (or bias) of the neuron. Usually fi is
non-linear, such as Heaviside, Sigmoid, or Gaussian function [45].

Figure 2.3: Types of artificial neural networks. a) A feedforward network, no feedback
connections. b) A recurrent network, with feedback connections and hence a short-term memory.
Figure taken from Gomez et al. [12].

The network described above is known as a feedforward network, as information is projected or
fed forward and never vice-versa. Another type of network with cycles or feedback connections
is known as a recurrent network (Figure 2.3b). Recurrent networks can retain information,
and are well suited for tasks that require short-term memory, for example tasks that are par-
tially observable (not all state information is available). ANNs were traditionally trained using
gradient-based methods such as back-propagation [19], but more recently EAs have grown in
popularity due to their efficiency and broad capabilities.

2.4.2 Evolutionary Algorithms (EAs)

Evolutionary algorithms (EA) [1] are a family of stochastic problem solvers based on princi-
ples that can be found in natural evolution [9]. EAs are a superclass encompassing Genetic
Algorithms (GAs) [21], Evolution Strategies (ES) [15] and Evolutionary Programming (EP)
[10].

All of these algorithms use a population based search strategy. A general algorithm for EAs is
shown below [45]:

1. Generate the initial population G(0), and set i = 0;

2. REPEAT

(a) Evaluate each individual in the population;

(b) Select parents from G(i) based on their fitness in G(i);

(c) Apply search operators to parents and produce offspring which form G(i+1);

(d) i = i + 1 ;

3. UNTIL ’termination criterion’ is satisfied.
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Evolving ANNs using EAs has been shown to provide solutions to complex real world problems,
as they are less likely to be trapped in local minima than traditional gradient-based search
algorithms [45]. The next section details the application of EAs in the evolution of ANNs.

2.4.3 Using EAs to evolve ANNs

It has been shown that combinations of ANNs and EAs can lead to significantly better intelligent
systems than relying on ANNs or EAs alone [45]. Evolution of ANNs can be introduced at
various levels, namely: 1) Connection weights, 2) Architectures and, 3) Learning Rules. This
study focuses on the evolution of connection weights. Connection weights can be represented as
binary strings or real numbers and search operators such as crossover and mutation can be used
[45]. Two encoding schemes exist: 1) direct and 2) indirect. For direct encoding the details are
explicitly encoded on the geneotype (or chromosome), whereas in indirect encoding only the
important or implicit details are encoded on the genotype (or chromosome).

Many methods evolve connection weights only [13], but some evolve architectures (topology)
as well [30, 40]. Evolving neural networks using EAs is computationally intensive, as EAs are
global search procedures, that is, they evaluate a larger part of the search space. However
approaches such as Cooperative Co-Evolution provide an extension to EAs, enabling complex
problems (with large state spaces) to be decomposed into manageable parts that can potentially
leverage the increasing power of parallel computers.

2.5 Evaluation of NE methods

The following sections introduce two benchmark tasks commonly used in the evolutionary com-
putation community to evaluate NE methods. These tasks maintained longevity due to their
intuitive appeal and the ability to add variations to them to increase or decrease complexity.

2.5.1 The Pole Balancing Task

The pole balancing problem has been the de-facto standard for benchmarking algorithms, in
areas such as control theory [43], for many years. Although it is referred to using different
names in texts, for example: broom balancer, inverted pendulum, cart-pole, it is still inherently
the same task. It describes a general class of unstable systems and it is simple to visualise.

A basic pole system consists of a pole hinged on a wheeled cart on a finite track (Figure 2.4).
The objective is to apply a force, either left or right, to the cart at regular intervals such that
the pole does not fall over and the cart remains within the track. The state of the system is
described by the variables below:

x : position of the cart
ẋ : velocity of the cart

θi : angle of the i-th pole (i = 1,2)
θ̇i : angular velocity of the i-th pole
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Figure 2.4: The pole balancing task. The first problem, on the far left, shows a single pole
balanced on a cart. The second problem, in the middle, shows two poles balanced on a cart.
The third problem, on the far right, shows a jointed pole balanced on a cart. F represents the
the force applied to the cart. θ1 and θ2 represent the angles of the poles with respect to the
cart. Figure taken from Wieland et al. [44].

In early work the pole balancing problem was used to demonstrate the capability of a single
artificial neuron, ADALINE (Adaptive Linear Neuron) in controlling an unstable system [43]. A
motorized cart carrying an inverted pendulum was assembled and controlled by ADALINE. The
single neuron controller, which was termed a broom balancer, was required to keep the single
pendulum balanced and to keep the cart within certain bounds by applying a horizontal force
to the cart. The training of the ADALINE was supervised, the controller learnt by observing a
teacher.

Unsupervised approaches such as NE are now able to evolve ANNs to solve the pole balancing
problem, without the need of a teacher. For example Gomez et al. used the pole balancing task
to evaluate how effectively Enforced Subpopulations (ESP) evolved ANNs [24]. This allowed
ESP to be evaluated at different levels of complexity, which is a good attribute of the pole
balancing problem. Gomez asserts that the reasons for its longevity lay with its intuitive appeal,
that is, the fact that it is easy to understand and to visualise, and the fact that it embodies
aspects of a whole class of learning tasks that involve temporal credit assignment [24]. However
the basic (single) pole balancing task is too simple a task as it can be solved by a single neuron
and some NE methods find a solution within even the initial random population [24]. Wieland
et al. [44] suggested some variations to make the task harder. To make it more challenging,
one extension is modification of the system. This may involve adding an extra pole to make the
task non-linear or restricting state information, for example not providing the velocity of the
cart or the angular velocity of the pole. This requires that the network learn to compute the
difference between the previous inputs and the current inputs, in order to solve the task. To do
this memory capability is required, this means that ANNs with this ability are then required
to solve these tasks, such as recurrent networks. It has been determined that the double pole
balancing task (with incomplete state information) becomes more difficult as the poles assume
similar lengths [44]. This is termed the non-Markov task.

The most often used task parameters were the ones described by Barto et al. in 1983 [3].
However, some studies [11] have made efforts to standardise the problem as they believed that
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track limits ±2.4m
failure angles ±12◦
gravity (g) −9.8m/s2

length of pole (2l) 1m
mass of cart (mc) 1.0kg
mass of pole (mp) 0.1kg
magnitude of force (F ) 10.0N
integration time step 0.02s

Table 2.1: Common pole balancing parameters. There are however many variations to
these parameters.

published results were difficult to compare and that for most of the methods there is no clear
evidence of better performance than a random search method. Geva et al. suggested that often
used parameters (Table 2.1) be kept, except friction (in the equations of motion) and the failure
angle of 12◦. Geva et al. stated that in a real cart-pole, friction was difficult to determine and
that the failure angle was too restrictive [11]. A failure angle of 90◦ was recommended. They
also suggested initial state variables for the task.

2.5.2 The Prey-capture Task

The prey-capture task is a special kind of pursuit-evasion problem [29] that has been used
widely to test multi-agent behaviour. It, like the pole balancing task is easy to reason about
as it is similar to what can be found in nature. These tasks are complex in that they require
coordination with respect to the problem domain and although found everywhere in natural
ecosystems, they are still a challenge for even to the most effective learning systems. Such tasks
normally consist of one or more predators moving around a simulated environment attempting
to capture prey. These tasks are made considerably harder if the predator has a tactical disad-
vantage, for example if the predator has no knowledge of the position of the prey, but rather
has to guess or has to remember the prey’s last position. Yong et al. [46] used a variant of
the prey-capture task to evaluate the mult-agent method, Multi-Agent ESP. In other variants
of the task, the predators are required to surround the prey in order to capture it [17] and the
prey moves either randomly or slower than the predators. In Yong’s variant it is enough for one
predator to capture the prey by occupying the same grid cell as the prey and the prey moves at
the same speed as the predators and always away from the closest predator. This means that
the only way the predators can catch the prey has to be coordinated and cooperative. In this
study, we base our expermental setup on Yong’s variant.

2.6 Applications of Cooperative Co-Evolution in Neuro-Evolution

In early work, Holland et al. [22] explored extensions to the basic evolutionary model to support
co-adapted sub-components in their classifier system. In this system a population of rules was
evolved to provide a complete solution based on how well the rules interacted. The disadvantage
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of this work was that it was not general, that is, applicable to a wider range of representations
and domains. Therefore in later work Potter et al. [34] developed a general architecture,
Cooperative Co-Evolution. Another approach, Neuro-Evolution (NE) has also prompted the
extension of the basic evolutionary model, one example being Conventional Neuro-Evolution
(CNE). This is the standard NE approach that usually consists of a single population of chro-
mosomes (for example complete ANNs), evolved in a task [44, 13]. In challenging tasks the CNE
approach suffers from premature convergence; where the evolution of the population converges
at a non-optimal solution. To alleviate these issues a more powerful idea is the combination
of Cooperative Co-Evolution and NE to solve more complex tasks through improved search
effeciency. Instead of running the evolution at a complete solution level like CNE, the evolution
is run at the level of partial solutions. The next section introduces three such Cooperative Co-
Evolution Neuro-Evolution (CCNE) methods: Symbiotic Adaptive Neuro-Evolution (SANE)
and Enforced SubPopulations (ESP) and Multi-Agent ESP.

2.6.1 SANE

Unlike CNE methods, Symbiotic Adaptive Neuro-Evolution (SANE) [30] is a cooperative co-
evolutionary method that instead of evolving a population of ANNs, evolves two populations
simultaneously: a population of neurons and a population of network blueprints that specify
how the neurons are combined to form complete ANNs. SANE uses symbiosis, the interaction
of the individuals in the population, to find complete solutions to a task. Since individuals only
form a partial solution, this ensures that the population remains diverse, as those individuals
assume a kind of specialization. This diversity prevents convergence in the population. SANE
can therefore find solutions faster and tackle harder problems than conventional NE methods.
Moriaty et al. [30] carried out some experiments to compare SANE’s symbiotic evolution to
more standard neuroevolution techniques. To achieve this four evolutionary approaches were
tested in the Khepera simulator (1) SANE, (2) a standard neuroevolution approach using the
same aggressive selection strategy as SANE, (3) a standard neuroevolution approach using a
less aggressive, tournament selection strategy, and (4) a version of SANE without the network
blueprint population. The fourth evolutionary approach, that he termed, neuron SANE, is a
symbiotic neuron search without the higher level blueprint evolution. Instead of using a pop-
ulation of network blueprints to form the neural networks, neuron SANE forms networks by
randomly selecting subpopulations of neurons. This was done to effectively gauge the contri-
bution of the blueprint-level evolution to the SANE method. In this study we take a similar
approach and implement neuron SANE to gauge the contribution of Cooperative Co-Evolution
to NE methods. A big drawback of SANE is its inability to evolve recurrent networks. This
is a serious drawback as most interesting tasks require memory [13]. Figure 2.6 shows the evo-
lutionary process of SANE in a task environment. Our neuron SANE algorithm proceeds as
follows:

1. Initialization: Select neurons randomly from the population.
2. Create an artificial neural network (ANN) from the selected neurons.
3. Evaluation: Evaluate the ANN in the given task.
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4. Add the network’s score to each selected neuron’s fitness variable.
5. Repeat steps 2-5 a sufficient number of times, for example 10 trials per neuron.
6. Get each neuron’s average fitness score by dividing its cumulative fitness
values by the number of ANNs in which it was evaluated.
7. Recombination of the population. Perform crossover and mutation operations on the popu-
lation based on the average fitness value of each neuron. Discard the weaker neurons.

Figure 2.5: The SANE method. A population of neurons and network blueprints is evolved
in a task environment. Neurons are seleced randomly to form a feedforward network that is
evaluated in a task environment. Figure taken from Gomez et al. [12].

Gomez et al. extended SANE and presented a novel Cooperative Co-Evolution NE method,
Enforced Subpopulations (ESP) [13], which fully supports recurrent networks and solves tasks
that make use of short term memory. The next section describes ESP.

2.6.2 ESP

The ESP method, like SANE is a neuron level Cooperative Co-Evolution method, that is, the
individuals evolved are neurons and not complete networks. ESP however has the individuals
grouped in subpopulations and an individual can only be recombined with individuals in its
population (Figure 2.6). An individual in ESP is a neuron chromosome consisting of real
numbers that represent the connection weights. This specialization, grouping of neurons in
subpopulations, allows ESP to search more efficiently than SANE and also to evolve recurrent
networks. Gomez et al. [13] showed how effectively ESP could be used to evolve an active rocket
guidance controller [13], that could be easily transferred to the real world. Transfer means that
the controller trained in the simulation environment can be easily used in a real world scenario,
with minimal effort.

He also showed that ESP was able to find a solution to a difficult task, the double pole balancing
task, relatively faster than Conventional Neuro-Evolution (CNE) methods and other Coopera-
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Figure 2.6: The ESP method. Subpopulations of neurons are co-operatively co-evolved in a
task environment. Due to its broad capabilities ESP can also evolve recurrent networks. Figure
taken from Gomez et al. [12].

tive Co-Evolution methods such as SANE. According to his results ESP was roughly similar to
Neuro-Evolution of Augmenting Topologies (NEAT) [40], a direct method that evolves connec-
tion weights and topologies (architectures), in terms of performance. NEAT [38] unlike ESP is
a Competitive Co-Evolution method. ESP is however simpler, in that it requires far fewer user
parameters for each run. The ESP algorithm proceeds as follows:

1. Initialization: h subpopulations are created and initialized with n individuals (neurons).
2. Evaluation: h neurons are selected at random, one from each subpopulation, to form the
hidden units of an artificial neural network (ANN). The ANN is evaluated in the task and
awarded a fitness score. The score is added to the cumulative fitness of each neuron that
participated in the ANN.
3. Check Stagnation: When the ESP method stops making progress towards a solution after b
generations, burst mutation is performed. Burst mutation is a means of improving the current
population using the current best solution, by adding noise to the current population. If the
fitness has not improved after two burst mutations the network size is adapted.
4. Evolution of the population of neurons (recombination): The average fitness of each neuron
is calculated by dividing its cumulative fitness by the number of trials in which it participated.
Neurons are then ranked by average fitness within each subpopulation. Each neuron in the
top quartile is recombined with a higher ranking neuron using 1-point crossover and mutation
at low levels and the weaker performing neurons (the lower-ranking half) are replaced by the
stronger ones.
5. Repeat steps 2-4 until an ANN that performs sufficiently well in the task is found. A neuron
should participate in a trial a sufficient number of times, for example 10 times.

In the domain of single-agent systems ESP has been shown to be very efficient so much that
it has been extended to solve multi-agent learning tasks. Multi-Agent ESP [28] extends ESP
to evolve a group of ANNs (agents). If ESP is parallelised this could potentially speed up the
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training of a group of agents in multi-agent tasks, that have real world application in domains
such as gaming [39]. The next section details Multi-Agent ESP.

2.6.3 Multi-Agent ESP

Multi-agent problem solving involves several agents working together to achieve a common goal.
Multi-Agent ESP extends ESP because ESP offers a solid foundation, as it has been shown to
reliably solve problems faster and solve hard problems [13]. Each agent is controlled by an
ESP-evolved ANN.

Figure 2.7: The Multi-Agent ESP method. Each team member is controlled by an au-
tonomous agent that is evolved by the ESP method. The networks formed are feedforward
networks, and are evolved in the prey-capture task. Figure taken from Yong et al. [46].

In Multi-Agent ESP a team of neural networks is evolved using an Evolutionary Algorithm
(EA) to solve a cooperative task. Yong et al. [46] showed that evolving several autonomous,
cooperating, non-communicating neural networks to control individual team members was more
efficient and robust than evolving a single centralized controller to control the entire team.
Parallelization of this method will yield great benefit to multi-agent systems. This work’s focus
is on the autonomous multi-agent approach described by Yong that involves following steps
(Figure 2.7):

1. N autonomous agents are each controlled by their own network.
2. During an evolutionary cycle each network is formed using the ESP method.
3. the N networks are then evaluated together in the domain, as a team.
4. The fitness for the team (which is the average final distance from the prey) is then distributed
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among the neurons that contributed to the networks.

2.7 Parallelization of Cooperative Co-Evolution methods

In the field of Cooperative Co-Evolution the speed-up effects achieved from parallel implementa-
tions has been explored. Most implementations however have taken the approach to adjust the
synchronous algorithms to make them asynchronous [32, 5]. These implementations however
have not truly leveraged the power of multi-core architectures. Gomez et al. [13] implemented
a multi-threaded parallel version of ESP on a shared-memory multi-processor machine, the 14-
processor Sun Enterprise 5500 to carry out his simulations. His implementation at the time took
roughly a week to carry out his large simulations. However, that implementation was specific to
that particular hardware architecture and therefore not easily portable. He did however propose
a client-server parallel architecture with a shared file system, where subpopulations of neurons
are written to and read from. He highlighted that the clients would only synchronize after each
generation and that there would be low input-output overhead, as most CPU time is spent at
the evaluation phase. More recently Nielsen et al. [32] proposed a framework for asynchronous
Cooperative Co-Evolutionary Multi-Objective Algorithms (CCMOEAs). To evaluate his im-
plementations experiments were run on a dedicated node on an HPC cluster. The CCMOEAs
used four subpopupulations each of them evolved in parallel in a dedicated thread on one of
the four CPU cores used. The main disadvantages of the implementations highlighted is their
use of specific hardware and that they are multi-threaded. Gomez et al. focused on spread-
ing evaluations across multiple clients ,whereas Nielsen et al. focused on parallelization of the
evolution of the populations. In order to reap the benefits of parallel hardware a Cooperative
Co-Evolution implementation should be both general (applicable to different domains, and sin-
gle or multi-agent systems) and portable. We propose a general parallel processing framework,
one that focuses on spreading evaluations across multiple cores (as opposed to client computers)
and that can be run on any parallel computer.
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3 Design and Implementation

The parallel processing framework that we propose is designed to parallelize any Cooperative
Co-Evolution method. We aim to design a framework that breaks down the Cooperative Co-
Evolution components into concurrent processes that are easily parallelizable. The following
sections detail the design approach, the implementation details and the challenges encountered.

3.1 Approach

In order to effectively develop a parallel processing processing framework the serial algorithm
needs to be fully understood and the concurrent tasks identified. The Cooperative Co-Evolution
Neuro-Evolution (CCNE) components are as follows: 1) initialization of the population, 2) cre-
ation of artificial neural networks (ANNs) from individuals in the population, 3) evaluation
within the problem domain, and 4) recombination (evolution of the population of individuals).
In theory two components can be carried out concurrently: the evaluation phase and the evo-
lution of the individuals in the population, however from literature it has been established [12]
that the most compute intensive task for Neuro-Evolution (NE) is the evaluation phase. The
evaluation phase will therefore be the focus of our parallelization process. Gomez et al. high-
lighted that in his evaluation of ESP, the evaluation phase contributed to 98% of CPU time [13].
The algorithms, for SANE, ESP and Multi-Agent ESP can be functionally decomposed, that is,
1) serial initialization of the population, 2) serial creation of ANNs from the individuals in the
population, 3) parallel evaluation of the networks in the problem domain, then 4) serial evolu-
tion of the population of individuals. We can therefore in theory have a task-parallel processing
framework, which is naturally suited to multi-core architectures. As part of our approach we
considered four important aspects of parallel programs: communication, synchronization, data
dependencies and load balancing.

We identified if any communication was required between processes and if any data was subject
to being changed at the same time. We also needed to identify the scope of communications,
that is, for example, does it involve two tasks; with one task acting as a sender/producer of data,
and the other acting as the receiver/consumer. Also of importance is synchronization, that is,
managing the sequence of work and tasks. We identified the most appropriate synchronization
approach and the synchronization points. Another important aspect that we considered was
data dependencies. A dependence exists between program statements when the order of state-
ment execution affects the results of the program. Data dependencies can inhibit parallelism,
so we identified which parts of the algorithms had data dependencies. We also considered load
balancing. Which is the distribution of approximately equal amounts of work to the core proces-
sors. It is vital to parallel programs for performance reasons and we ensured that we factored it
into our design. We achieved load balancing by equally partitioning the work each core recieves,
therefore each core processed the same number of evaluations.
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Figure 3.1: A Parallel Processing Framework for Cooperative Co-Evolution meth-
ods. A goroutine is a lightweight thread, generated by the Golang runtime. Each core goroutine
spawns multiple goroutines. Channels are the communication conduits that are used for syn-
chronization and sharing of data between goroutines.

3.2 A Parallel Processing Framework

Our parallel processing framework is shown in Figure 3.1. This shows one generation of the
evolutionary process, and details the evaluation phase that occurs on each processor core. The
focus of our work begins at Step 1; load balancing. This is where the networks to be evaluated
are evenly distributed across multiple cores. Each split, a number of networks, is processed in
its own goroutine (a light-weight thread generated by the Golang runtime), for example if we
have to carry out 20 evaluations, that means 20 networks are created and evaluated, therefore
the split will be as follows:

[n1 ... n20] split [[n1 ... n5], [n6 ... n10], [n11 ... n15], [n16 ... n20]]
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If the total number of cores is four, then each core goroutine receives five networks to evaluate
as shown in Step 2. Each core goroutine then spawns separate goroutines to evaluate each
network in the task environment (Step 2). Step 3 represents the evaluation phase, the spawned
goroutines run the actual evaluate method. The fitness of a particular network is determined
on its spawned goroutine and the network (and its respective fitness) is sent via a channel to
the core goroutine. The channel represents the communication aspect of our process. This is
the producer or receiver pattern where the main goroutine on the core behaves as a receiver and
the spawned goroutines behave as producers. The evaluate method performs a map operation,
mapping a network to a network and fitness (key-value pair), since after evaluation a fitness
value is set for each participating network:

[network] evaluate [network, fitness], for example:

[n1] map [n1, 10]
[n5] map [n5, 5]

The goroutine in (Step 2 ) then recieves all networks from the spawned goroutines via a channel
and determines the best core network using a reduce operation:

[[n1, 10] ... [n5, 5]] reduce [n1, 10] (core best)

A barrier approach to synchronization is employed at this phase, as the channel blocks until it
recieves all the data from the spawned goroutines. This is our first synchronization point. The
list of network-fitness key-value pairs is reduced via an operation that determines the network
with largest fitness value. Each core goroutine then sends their best ANNs via a channel to
the main thread, which then determines the overall best network via another reduce operation.
Given for example that n18 is the core best on core four, and n1 is the best network on core
one, the operation would be as follows:

[[n1, 10], ... [n18, 8]] reduce [n1, 10] (overall best)

The overall best is again the network with the largest fitness value. The example just described
outlines the process followed by MapReduce. MapReduce is a programming model that has its
roots in functional programming. It consists of two functions, map and reduce. Map operates
on a list of values producing a new list of values. It does this by applying the same computation
to each value. The reduce operation takes a list of values and collapses or combines those
values into a single value (or a number of values), again by applying the same computation to
each value. This model has been proven to be particularly valuable for large datasets [7]. This
model works well on parallel hardware, where data items can be split across many processors
or processor cores.
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3.3 Challenges

Mutual exclusion is one common problem whenever writing concurrent algorithms. It should
always be clear which variables are shared and which ones are local. As part of our approach,
data dependencies were considered, however during the early phase of the parallel implemen-
tation, the neurons that participated in the evaluation phase were erroneously updated in the
evaluation phase (Step 3 of Figure 3.1). This is incorrect because a neuron may be selected
to form a number ANNs and there is the risk of race conditions if several goroutines update a
neuron’s fitness at the same time. This error resulted in the evolution time taking longer than
expected. To remedy this issue we made that particular operation a critical section. A critical
section is a code segment that needs to be executed atomically. The neuron fitness updates
were carried out serially on the main thread, after the evaluation phase. This ensured that our
data remained in a consistent state.

Another common problem is the producer-consumer problem. In this scenario a process or
processes generate data and the consumer receives it, for further computation. This is the
model we employ for communicating between goroutines, data is sent via a channel and a reduce
operation is carried out by the consuming-goroutine. According to Axford [2], for this model to
be acceptable: 1) the items must be received by the recieving-goroutine in the same order as they
were sent by the producing-goroutine, 2) no data must be lost in transit, and 3) there should
be no tampering of the data in transit. Also the mechanism for passing the data (the channel)
should itself employ some synchronization constraints on the producer-goroutine and consumer-
goroutine, for example, the consumer cannot receive until the producer sends or the channel
must hold data until consumer is ready to receive it. In our parallel processing framwework we
have a multiple producers and one consumer model. Golang’s first class primitives made this
issue easy to solve, as the author simply used Go channels that adhere to the rule-set described
by Axford.

Another challenge is how to identify blocking operations. During the early phase of the imple-
mentation we enabled profiling [26] for all our implementations. As a result we discovered the
use of the global rand function was causing a blocking operation. The rand function is used for
initializing our neuron synaptic weights. This had an impact on the speed of the evolutionary
process. To fix this we updated our code to use a non-global, non-blocking rand function.
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4 Validation

Validation aims to show that the implemented Cooperative Co-Evolution Neuro-Evolution
(CCNE) methods are correct. It is of particular importance as the original case study methods
[30, 12, 46] were implemented many years ago and their source code is difficult to run on modern
architectures. Our approach entails unit testing the software modules for low level confirma-
tion and then higher level confirmation of the new serial and parallel versions in two validation
tasks: double pole balancing and prey-capture. Double pole balancing is used to validate the
single-agent methods, SANE and ESP, whereas the prey-capture task is used to validate the
multi-agent method, Multi-Agent ESP.

The pole balancing task offers a good procedure for validation as it is analogous to the real
world and is easy to understand. When visualised the trained artificial neural network (ANN)
can be observed performing the task and based on the constraints of the simulation model, the
failure angle and track size, it is easy to determine whether the controller is actually performing
the task correctly. The same applies to the prey-capture task, as the prey being successfully
captured can be visualised. The validation results were based on whether or not the output was
within the defined acceptable bounds, and whether or not the visualization demonstrated that
the task was completed successfully.

In Golang (Go), packages are system directories that are used to organize source files. The
package ecosystem in Go encourages code reuse and modularity [26], this makes it possible
to unit test at the package level. Unit testing validates that each individual package works
correctly, whereas validation of the serial versions that the Go serial versions implemented work
as correctly as the original implementations. Validation of the parallel versions confirms that
the parallel versions are still correct after the parallel processing framework has been applied to
the serial implementations. Finally the visualizations provide a real world model that affirms
that the task is being performed correctly.

4.1 Unit Testing

Unit testing is a software development practice in which the parts of a program, called units,
are independently tested to determine correct operation [6]. This process can be carried out
manually but is often automated, that is, by writing test code and ensuring that running the tests
is repeatable. Go provides support for automated testing through its testing package. In our
study we treated each core package as a unit and wrote unit tests for those packages. Breaking
up a program into packages, allows the individual units to be reusable within any CCNE method,
with the only requirement being the adjustment to the parallel algorithm implementation where
required. In CCNE methods, neurons are segregated into multiple populations and an ANN
is formed by selecting neurons from the populations. The network is then evaluated within a
problem domain (environment). This formed the basis for selecting which core packages needed
to be unit tested in this study, therefore neuron, population, network and environment packages
were tested.
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The neuron package consists of a neuron source file and the corresponding unit test file. We
tested the neuron methods and this entailed; testing the initialization of a new neuron, the
creation of a new set of synaptic weights for a neuron and the setting of a new fitness value
for a neuron. To test the initialization of a new neuron, we tested whether after initialization
the neuron had the expected synaptic weight size. We did this by comparing the size value
specified at initialization to the neuron weight size after initialization, the weight values are set
to zero at initialization. To test the creation of the synaptic weights we compared the weight
values after creation to zero, to ensure that no weight values were zero. The setting of the
fitness was tested by setting the fitness for a single neuron a number of times and confirming
that the fitness thereafter matched the expected cumulative fitness, for example, if we set the
first fitness value to one, and then to one again, we expect a cumulative fitness of two.

The population package consists of a package source file and the corresponding unit test file. For
the population package the creation of a new population is tested. We did this by confirming
that the number of individuals (neurons) in the population after creation matched the size value
specified on creation. The network package is tested for two network types, feedforward and
recurrent. The main test is the creation of a new ANN, and additional tests confirm that the
correct gene size is returned. The calculation of the gene size differs depending on the network
type. This is because for recurrent networks the genesize is the sum of the number of inputs and
the number of hidden units, whereas for feedforward networks the genesize is the sum of the
the number of inputs and the number of outputs. The total inputs are verified, as the inputs
are based on whether there is a bias or not. The presence of a bias means an extra input.

The environment package is not necessarily a core package, as one may implement multiple
environments to evaluate a Cooperative Co-Evolution method. However due to the great deal
of calculations carried out in the double pole balancing task, the task was tested. The creation
of a new cartpole environment is tested, as well as the initialization of the state variables.
Finally a force being applied to the cart is tested, to ensure that it is not zero. This is because
this can be a source of error for the pole balancing task. For this reason, the force applied was
restricted to be no less than ±1/256 × 10 Newtons so that the controllers cannot maintain the
system in an unstable equilibrium by outputting a force of zero when the poles are vertical [13].
The units tests are available online1.

4.2 Methods for validation tasks

We began by determining the necessary input parameters for the validation tasks, based on
literature [13, 46]. Thereafter the programs (serial and parallel) were run in the validation tasks
and the output observed and captured into a file upon successful completion of the tasks. The
output files were then analysed to ensure that the output was within the correct bounds for
each task.

For the double pole balancing task, failure is based on two parameters: the position of the cart
1https://github.com/edmore/cooperative-coevolution
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within the task environment (the track) and the angles of the poles from the vertical. The
cart balances the poles (long pole length one metre and short pole length 0.1 metres) on a 4.8
metre track, and the position of the cart is measured from the centre of the track, therefore any
position in the range [-240, 240] centimetres is valid. For the poles, angles outside the range
[-36, 36] degrees represent failure.

The analysis of the validation output for the prey-capture task was based on whether or not
the coordinates of the predators and prey were within the toroidal (task) environment and
whether on capture, at least one of the predators was able to occupy the same position as
the prey. The output files were then used as input to visualization programs, to confirm that
the implementation behaved correctly, that is, the poles were balanced for the simulated time
period and the predators were able to successfully capture the prey. Our implementations use a
sim parameter, that when set to true, enables the capturing of successful states into an output
file. These states can then be replayed using the double pole balancing visualizer (Figure B.1)
and the prey-capture visualizer (Figure B.2). An additional parameter, markov, was used for
the new implementations of the double pole balancing task to indicate whether a task was
non-Markov or Markov. The parameter when set to false initializes the task as a double pole
balancing task with incomplete state information (non-Markov); it is set to true by default.

Since SANE is the precursor to ESP it was implemented at a time when the single pole balancing
task was deemed adequate. Moriarty [30] used the single pole balancing task for his work,
however for this work our neuron SANE implementation was validated on the double pole
balancing task with complete state information. The validation output was then replayed using
the double pole balancing visualization program. The program plays back the state variables for
each time step resulting in a visual view of the controller balancing the poles. Gomez [13] details
the parameters used for the pole balancing comparisons in the original implementation. Part
of our validation involved ensuring that the new implementations accepted all the parameters
he used and generated errors on invalid input. We used the same parameters Gomez used to
validate our work. These double pole balancing task parameters, are shown in Table 4.1.

SANE (markov) ESP (markov) ESP (non-markov)
h 5 5 5
n 40 40 40
b - 10 10
markov true true false
sim true true true

Table 4.1: The parameters for validating SANE and ESP in the double pole balancing
task. ESP was validated in both the Markov and non-Markov versions of the task. h represents
the number of hidden units, n the number of individuals in a population, b the burst mutation,
markov whether or not it is a markov task and sim denotes whether or not we capture the
states for playback in the visualization program.

The prey-capture task was used to validate the Multi-Agent ESP method, the parameters used
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are shown in Table 4.2. The prey-capture visualization program was then used to playback the
states of the predators as they captured the prey. The default parameters used by Yong [46]
were used, that is, one prey and three predators. The prey moves as fast as the predators and
always away from the nearest predator, meaning one predator cannot catch the prey. The prey
was started at coordinates [16,50] of a 100 x 100 square toroid and the predators were positioned
at the bottom left corner. The prey was started at the same position for all simulations so that
we could validate the serial and parallel versions from a single point of reference. An additional
validation task was performed where only one predator was tasked with catching the prey. This
was used to confirm that one prey would be unable to catch the prey. This was done by setting
a flag maxGens to limit the number of generations the controller (predator) was evolved and
also the pred flag was set to one so that only one predator was configured to capture prey.

Ten simulations were run to validate each implementation, however since the state variables
differ for each simulation the results in the next section show the analysis of only one of the
simulations, for each implementation.

Multi-Agent ESP
h 10
n 100
b 200
pred 3
prey 1
trialsPerEval 9
sim true

Table 4.2: The parameters for validating Multi-Agent ESP in the prey-capture task.
h represents the number of hidden units, n the number of individuals in a population, b the burst
mutation, pred the number of predators, prey the number of prey (one by default), trialsPerEval
the number of trials per evaluation and sim denotes whether or not we capture the states for
playback in the visualization program.

4.3 Results

The following section details the results of the NE methods: SANE, ESP and Multi-Agent ESP
in the validation tasks. All simulations were run on a single parallel computer running Mac
OS (Table A.1) and one hundred time steps represents approximately 30 minutes of simulated
time.

4.3.1 SANE

The position of the cart and the angles of the poles were within the acceptable bounds (de-
tailed in the methods section) for both the serial and parallel versions for the duration of the
simulation, as shown in Figure 4.1. For the serial version of SANE, the position of the cart is
maintained in the [30,40] centimetres range for most of the simulation (Figure 4.1a), which is
within the [-240, 240] centimetres acceptable range and the angles of the poles are within the
[-36, 36] degrees acceptable range. The results also demonstrate the ease at which the poles are

27



balanced, the pole angles are maintained within the [-2, 2] degrees range (Figure 4.1b), meaning
that they are upright on the cart. This is due to the simplicity of the double pole balancing
task with complete state information.

(a) (b)

(c) (d)

Figure 4.1: Balancing two poles with complete state information. SANE is shown to
balance the poles within the prescribed bounds for the entire simulation. a) The position of the
cart over 100,000 time steps for the serial version of SANE. b) The angles of the short pole and
long pole over 100,000 time steps for the serial version of SANE. c) The position of the cart
over 100,000 time steps for the parallel version of SANE. d) The angles of the short pole and
long pole over 100,000 time steps for the parallel version of SANE.

The results of the parallel version of SANE also show that the task parameters are within the
acceptable bounds. The position of the cart is maintained at approximately 200 centimetres,
from the centre of the task environment (Figure 4.1c) and the pole angles are within the [-
36,36] degrees range (Figure 4.1d). The last stage of validation involved replaying the states
in the visualization program. The visualizations of SANE serial and SANE parallel in the pole
balancing task also demonstrated the implementations correctly balancing the poles.

4.3.2 ESP

ESP was validated in the pole balancing task with complete (Figure 4.2) and incomplete (Fig-
ure 4.3) state information. The results show that for the markov version of the double pole
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(a) (b)

(c) (d)

Figure 4.2: Balancing two poles with complete state information. ESP is shown to
balance the poles within the prescribed bounds for the entire duration of the simulation a) The
position of the cart over 100,000 time steps for the serial version of ESP. b) The angles of the
short pole and long pole over 100,000 time steps for the serial version of ESP. c) The position
of the cart over 100,000 time steps for the parallel version of ESP. d) The angles of the short
pole and long pole over 100,000 time steps for the parallel version of ESP.

balancing task, the state variables are within the prescribed bounds for the entire simulation.
We observe the serial version (Figure 4.2a and 4.2b) balance the poles more erratically than
the parallel version (Figure 4.2c and 4.2d), but still within acceptable bounds. The parallel
version maintains the poles within the [-5, 5] degrees range for most of the simulation. This
means that the poles are vertical to the cart for most of the simulation.

For the non-Markov version of the task we observe that both versions balance the poles more
erratically but within the acceptable constraints. For the serial version (Figure 4.3b) the cart
position is close to the centre of the track for most of the simulation and for the parallel
version (Figure 4.3d), the cart position is more erratic (ranging between approximately [20, 160]
centimetres for the duration of the simulation). The movement of the cart for the parallel version
demonstrates the complexity of the non-Markov task over the markov version, as the poles are
not balanced to stability easily. The angles of the poles for the for the serial (Figure 4.3a) and
parallel (Figure 4.3c) versions are also within the acceptable bounds for both implementations.
The visualizations of ESP in the Markov and non-Markov tasks also confirmed the poles being
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balanced correctly.

(a) (b)

(c) (d)

Figure 4.3: Balancing two poles with incomplete state information (non-Markov).
ESP is shown to balance the poles within the prescribed bounds for the harder version of the
double pole balancing task. a) The position of the cart over 100,000 time steps for the serial
version of ESP. b) The angles of the short pole and long pole over 100,000 time steps for the
serial version of ESP. c) The position of the cart over 100,000 time steps for the parallel version
of ESP. d) The angles of the short pole and long pole over 100,000 time steps for the parallel
version of ESP.

4.3.3 Multi-Agent ESP

The results of the validation of the serial and parallel versions are shown in Figure 4.4. The
results show that the prey and predator movements are valid, that is, the coordinates for the
predators and prey remain within the toroidal environment and catches are observed by a
predator occupying the same position as the prey. In Figure 4.4a we observe the movements of
the predators and the prey for the serial version. The agents (predators and prey) remain within
the simulation environment and the prey-capture is demonstrated by the predator occupying
the same grid cell as the prey. Similarly for the parallel version Figure 4.4b, the agents remain
within the simulation environment and the prey is correctly captured.

To validate whether or not one predator could catch prey, the terminal output as the program
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(a) (b)

Figure 4.4: The prey-capture task. Multi-Agent ESP is evolved in the prey-capture task and
we observe the predators capture the prey by occupying the same grid cell as the prey. a) The
coordinates of the prey and predators in the prey-capture task for the serial version of Multi-
Agent ESP method. In the above illustration predator3 catches the prey. b) The coordinates
of the prey and predators in the prey-capture task for the serial version of Multi-Agent ESP
method. In the above illustration predator2 catches the prey.

ran had to be observed, as the states were never captured in the output file because for each
generation there were zero catches. This confirmed that the prey always moves away from the
nearest predator, and since they move at the same speed it can never catch the prey.

4.4 Conclusions

The analysis of the validation output and the visualizations of the implemented NE methods:
SANE, ESP and Multi-Agent ESP, gives us confidence that they are implemented correctly.
Their state variables all fall within the prescribed bounds of the validation tasks. Visualizations
mentioned in this chapter are available online2. In the next chapter the NE methods are
benchmarked to establish the performance gains due to the application of the parallel processing
framework.

2https://github.com/edmore/cooperative-coevolution
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5 Benchmarking

In this chapter we describe the experimental setup used for benchmarking the three parallelized
Neuro-Evolution (NE) methods: SANE, ESP and Multi-Agent ESP, and thereafter we discuss
the performance of the implementations. Benchmarking a parallel program demonstrates the
performance gains that parallelisation introduces to an initially serial program. Although the
double pole balancing task and the prey-capture task offer a good basis for validating the CCNE
methods, they also offer a good basis for benchmarking them. This is because these tasks are
easily configurable, tasks of increasing complexity can be easily setup and metrics (such as CPU
runtime) can be gathered after each run.

The evaluation phase is the most computationally intensive phase for SANE, ESP and Multi-
Agent ESP and therefore the benchmarking was structured in such a manner as to demonstrate
the effect that the evaluation phase has on runtime, and the performance gains due to the
application of the parallel processing framework. Benchmarking was carried out by evaluating
the speed-up attained when the NE methods were evaluated for an increasing number of cores.
In the context of this study, runtime refers to the CPU time taken for the artificial neural
network (ANN) or team of ANNs to be evolved in the benchmark tasks. The runtime is used
to calculate the speed-up, which is the ratio of the parallel to the sequential runtime. The ideal
speed-up for N cores is N speed-up. We expected a linear speed-up, a speed-up as the number
of cores was increased. The SANE method implemented in this work is a single population
NE method, referred to as neuron SANE; the algorithm lends itself naturally to the parallel
processing framework and was benchmarked to demonstrate the general nature of the parallel
framework and to provide a basis for gauging the efficiency of CCNE methods over NE-only
methods.

5.1 Experimental Setup

The following sections detail the experimental setup used to benchmark the NE methods. The
NE methods were all benchmarked on a Linux High Performance Computing (HPC) cluster
(Figure A.2). Each worker node utilized in the cluster had 64 cores, but our experiments used
up to 60 cores. The number of cores utilized for each experiment ensured that the evaluations
were evenly distributed across the available cores.

5.1.1 Pole Balancing Experiments

Drawing on the work of Gomez [24], the simulation environment for the double pole balancing
task in this study was implemented using a realistic physical model with friction, and fourth-
order Runge-Kutta integration with a step size of 0.01 seconds. The pole balancing task is
a series of cycles that begins when the ANN interacts with the simulation environment by
receiving state variables as inputs and then a non-zero force is output by the ANN, which is
then applied to the cart. At each time step (0.02 seconds of simulated time), the ANN receives
the new state variables. The cycle is repeated until a failure condition is reached, for example
the poles fall or the cart goes off the defined track. A task is considered solved if the controller
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can keep both poles within the specified angle range of [-36, 36] degrees from the vertical and
the cart between the specified bounds of the track (2.4 metres either side of the middle of the
track), and this should be done for 100,000 time steps, which is equal to over 30 minutes of
simulated time.

The primary metric, speed-up, was evaluated by increasing the number of cores and observing
whether the ANN was evolved faster, the more cores were added. 100 simulations were carried
out for each number of cores, for tasks of varying complexity (short pole lengths 0.6, 0.7, 0.8
and 0.85 metres) and the results of each experiment averaged. The length of the long pole is one
metre. The task parameters used for SANE and ESP are shown in Table 5.1. The difference was
that SANE was only benchmarked in the pole balancing task with complete state information,
as it can only evolve feedforward ANNs (Figure 5.1b) , whereas ESP was benchmarked in both
variations of the double pole balancing task. A fully recurrent ANN (Figure 5.1a) was evolved
using the ESP method, as feed-forward networks are unable to solve the non-Markov version of
the double pole balancing task.

(a) (b)

Figure 5.1: Artificial Neural Network (ANN) types and their state variables for the
double pole balancing task. a) An example of a recurrent ANN. This network type was
used to benchmark ESP in the non-Markov version of the double pole balancing task. b) An
example of a feedforward ANN. This network type was used to benchmark SANE and ESP in
the Markov version of the double pole balancing task. Figure taken from Gomez et al [13].

hiddent units (h) 5
individuals in the subpopulation (n) 120
cpu cores utilised (cpus) [1, 2, 4, 8, 12, 15, 20, 24, 30, 40, 50, 60]
length of short pole(spl) [0.6, 0.7, 0.8, 0.85] metres

Table 5.1: The double pole balancing task parameters. The parameters were used for
both the Markov (for SANE and ESP) and non-Markov (for ESP) tasks.

5.1.2 Prey-capture Experiments

Drawing on the work of Yong and Miikkulainen [46] the simulation environment consists of
three or more predators in a 100 × 100 toroidal environment, with no obstacles or barriers.
Each predator is autonomous (controlled by its own ANN) and does not communicate with the
other predators. The predators always start at the bottom-left corner of the environment and
the environment is stochastic only in the prey’s starting location. The prey capture task is a
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series of capture attempts that are deemed successful when the prey is caught. In our variant
of the task the prey is caught when the predator moves into the same grid cell as the prey. All
agents can move in four directions: north, south, east and west. Failure is when the predators
have not caught the prey in 150 moves. The best team of predators captures the prey in the
minimum number of moves. Also, the prey moves at the same speed as the predators, and
always away from the nearest predator and because of these constraints it is impossible to catch
the prey without cooperation [46]. What makes the prey-capture task such a challenge is that
the predators are co-evolved with no communication and the prey moves at the same speed as
the predators. A series of experiments were conducted to determine the effect of applying the
Cooperative Co-Evolution parallel processing framework to the Multi-agent ESP method. 100
simulations were performed to evaluate each benchmarked number of cores. The number of
predators was also varied, meaning one set of simulations was carried out with three predators
and another set with six. Table 5.2 shows the task parameters used for the task.

There were some variatons to Yong’s and Miikkulainen’s [46] setup to ensure that the tasks
demonstrated the effect that evaluations have on evolution time. Since the emphasis was on
reducing the time taken during the evaluation phase, no incremental evolution [13] was applied,
the neural networks were not gradually evolved, by steadily increasing the task complexity, they
were exposed to the hard task from the very beginning. Also burst mutation [13] was set to
only occur after 200 generations. Each evaluation is a series of trials, after each evaluation the
cumulative fitness is averaged. For each evaluation cycle there were 5,400 evaluations (number
of indviduals x 10) and for each evaluation, nine trials. This equates to 48,600 evaluations
(team evaluations x trials) in total. A large population size was used (540 neurons) to increase
the complexity of the task.

To perform the nine trials per evaluation, the toroidal simulation environment was split up into
nine equal squares (Figure 5.2) and the prey was started at the centre of each of the squares,
for each trial. The squares allow for the sampling of different starting positions [46].
A team of predators was only deemed to be successful if they had a 100% catch rate, that is,
caught the prey for every single evaluation.

preds 3 6
n 540 540
h 15 15
cpus [1, 2, 4, 8, 12, 18, 24, 36, 45,

54, 60]
[1, 2, 4, 8, 12, 18, 24, 36, 45,
54, 60]

trialsPerEval 9 9

Table 5.2: The prey-capture task parameters. preds represents the number of predators.
n the number of individuals in a population. h the number of hidden units. cpus the number
of cpu cores utilized and trialsPerEval the number of trials per evaluation.
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Figure 5.2: Prey-capture trials per evaluation. The simulation environment is split up into
nine equal squares. Each black dot represents a starting position for the prey for each trial,
that is, for each trial the prey is started at only one of those positions. The fitness scores for
the trials are averaged to give the fitness score for the evaluation.

5.2 Results and Discussion

We first discuss the results of our double pole balancing experiments and then we discuss the
results of the prey-capture experiments.

5.2.1 Pole Balancing Comparisons

Figure 5.3 shows the speed-up achieved by SANE and ESP in the double pole balancing task
with complete state information (Markov). The speed-up of SANE is shown in Figure 5.3a.
The maximum speed-up achieved by SANE is 5x for the short pole lengths 0.6, 0.7 and 0.8
metres. We observe that the Markov version of the task gets simpler the closer in length the
short pole is to the long pole, therefore it is not suprising that the maximum speed-up is with
the harder versions of the task. However, at two cores there is a speed-up of 3x for the easiest
task (short pole length of 0.85 metres). This spike in speed-up is most likely due to an inferior
serial implementation.
There is a linear speed-up for the short pole lengths of 0.7 and 0.8 metres for the range of
cores up to four cores. These variations of the task are harder than the version with a short
pole length of 0.85 metres. This indicates that for harder versions of the task we get a linear
speed-up and we can possibly expect the same for more complex tasks on more cores. An
interesting observation is that the speed-up stagnates at 8 cores. This indicates the simplicity
of the Markov version of the double pole balancing task, because even given the increase in
the number of cores and the overhead expected due to the goroutine (a Go light-weight thread)
communication, there is no speed-up after 8 cores. This task is simple and the speed-up suggests
minimal performance gains and that a parallel implementation is not justified, however factors
such as real-time requirements of certain tasks should be considered as a speedup of 5x could
greatly benefit such tasks.
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(a)

(b)

Figure 5.3: Balancing two poles with complete state information. The graphs show the
speed-up for up to 12 cores, as the speed-up stagnates thereafter. a) SANE efficiently solves the
task for a varying number of cores, for the short pole lengths 0.6 (blue), 0.7 (red), 0.8 (grey)
and 0.85 (yellow). The broken line represents the ideal speedup. b) ESP efficiently solves the
task for a varying number of cores, for the short pole lengths 0.6 (blue), 0.7 (red), 0.8 (grey)
and 0.85 (yellow). The broken line represents the ideal speedup.

We also observe a maximum speed-up of 5x when ESP is benchmarked in the Markov version
of the double pole balancing task (Figure 5.3b), for the short pole lengths of 0.6, 0.7 and 0.8
metres. Like SANE, the lower speed-up was observed for the simpler variant of the task, short
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pole length of 0.85 metres. There is also a steady speed-up then stagnation for ESP. However
ESP stagnates at four cores, relative to SANE’s stagnation at eight cores, meaning that ESP
achieves an optimal speed-up faster than SANE. ESP’s stagnation can also be attributed to
the simplicity of the Markov version of the double pole balancing task. We observe a linear
speed-up for the harder versions of the task (short pole lengths 0.6, 0.7 and 0.8 metres) up to
four cores. This again indicates that we can expect a linear speed-up for harder tasks on more
cores.

Figure 5.4: Balancing two poles with incomplete state information (non-Markov).
The speed-up of the parallel ESP implementation in the non-Markov version of the task. ESP
efficiently solves the task for a varying number of cores, for the short pole lengths 0.6 (red), 0.7
(grey), 0.8 (yellow) and 0.85 (blue). The broken line represents the ideal speedup.

Figure 5.4 shows the speed-up of ESP in the non-Markov version of the double pole balancing
task. We observe that the task gets harder the closer to the long pole the short pole length
is, which is the reverse of the observation with the Markov version of the task. The hardest
version of the task benefits from more cores, a maximum speed-up of 16x is achieved at 20 cores
for the short pole length of 0.85 metres. We also observe linear speed-up (with an R-squared
value of 0.94) for the range of cores up to 20 cores for the short-pole length of 0.85 metres.
This indicates that the parallel processing framework is likely to benefit more complex tasks
on more cores. For all versions of the task we observe a speed-up and then a reduction in the
speed-up. Of particular interest is the steep reduction in speed-up for the hardest version of
the task, and this can be attributed to high communication overhead [31] over 20 cores and
that the task is not complex enough to have performance gains over 20 cores. We also observe
a spike in the speed-up for the simpler versions of the task (short pole lengths 0.6, 0.7 and 0.8
metres), at four cores. This is likely due to a inferior serial implementation. There is however an
unexpected speed-up for the short pole lengths 0.7 metres and 0.85 metres at 60 cores and the
reason for this is unclear, as we would expect greater communication overheard and thus either
a stagnant speed-up or a reduced speed-up. The results however demonstrate the complexity
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of the non-Markov version of the task in comparison to the Markov version, as we achieve a
better speed-up for the more complex task.

5.2.2 Prey-capture Comparisons

Figure 5.5 shows the results of benchmarking Multi-Agent ESP in the prey-capture task. With
three predators we observe a maximum speed-up of 13x at 45 cores. We observe an expected
decline at 54 cores, due to scheduling and communication overheads [31], and the speed-up
stagnates from there onwards. At the maximum speed-up at 45 cores, the runtime for the serial
version is 13 minutes versus approximately one minute for the parallel version.

Figure 5.5: Prey-capture. The speed-up of the parallel Multi-Agent ESP implementation in
the prey-capture task for a varying number of cores.

We observe a maximum speed-up of 20x at 54 cores for six predators. We once again observe
linear speed-up (with an R-squared value of 0.99) for the range of cores up to 24 cores. This
indicates that the parallel processing framework is likely to work for more complex tasks, on
more cores. An expected decline in the speed-up to 19x is observed at 60 cores, due to scheduling
and communication overheads in the goroutines [31]. When the maximum speed-up is achieved,
for the six predator’s version of the task, the runtime for the serial version is 20 minutes versus
approximately one minute for the parallel version. This indicates that the task is harder with
more agents (six predators). An interesting observation is that over 36 cores both task versions
(three predators and six predators) converge at a runtime of approximately one minute. This
indicates that the speed-up is attributed to the evaluations being spread across multiple cores
and the number of predators has little effect on the runtime. This speed-up confirms the
viability of parallelization of the Multi-Agent ESP method, and demonstrates the complexity of
the prey-capture task. This speed-up could greatly benefit more complex multi-agent systems
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with real-time requirements such as real-time gaming [39].

5.3 Conclusions

The maximum speed-up of 16x for the parallel ESP implementation confirms the feasability
of its parallelization. The application of the parallel processing framework to the multi-agent
method, Multi-Agent ESP further confirms this. A maximum speed-up of 20x is achieved.
The speed-ups achieved in the evaluation of the CCNE methods in the complex versions of the
benchmark tasks demonstrates the parallel processing framework’s ability to speed-up complex
tasks. Although the performance gains for SANE and ESP in the double pole balancing task
with complete state information, are marginal in comparison to those observed for the harder
version of the task, we observe that this framework may also be suitable for tasks with real-time
requirements.

Our neuron SANE, single population NE implementation, also achieves performance gains.
However we observe the benefit of Cooperative Co-Evolution, in that ESP achieves a faster
evolution time in the simpler double pole balancing task, and also converges at an optimal speed-
up faster that neuron SANE. The results demonstrate the effectiveness of the parallel processing
framework, in reducing evolution time, as well as its generality: single agent (e.g ESP), as well
as multi-agent (for example Multi-Agent ESP) methods are successfully parallelized.
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6 Conclusions

We found that the Cooperative Co-Evolution Neuro-Evolution (CCNE) methods: ESP and
Multi-Agent ESP, are well suited to multi-core acceleration with the ESP implementaton yield-
ing a maximum speed-up of 16x in the non-Markov version of the double pole balancing task and
the Multi-Agent ESP implementation yielding a maximum speed-up of 20x in the prey-capture
task, over their serial versions. We also found that non-Cooperative Co-Evolution methods,
such as our implementation of neuron SANE can also benefit from multi-core acceleration,
however a greater benefit would be to CCNE methods which can solve tasks more efficiently
and can also solve more complex tasks (for example ones that require short-term memory).
These results demonstrate the feasibility of the parallel processing framework to Cooperative
Co-Evolution methods. This framework has a number of advantages, namely: 1) it is general, in
that it is applicable to single-agent as well as multi-agent systems, but also applicable to non-
coevolutionary Neuro-Evolution methods, 2) it is fast, as demonstrated by the performance
gains achieved by the parallel implementations, 3) it is easily implemented in a multi-core pro-
gramming language, such as Golang, which enables it to be highly portable, as demonstrated by
its validation on a single parallel computer running Mac OS and the benchmarking on a High
Performance Computing (HPC) cluster running a Linux operating system, 4) it is also expressed
in the MapReduce paradigm which is familiar to many software developers and enhances the
efficiency of the implementations and 5) it is scalable, as demonstrated by the the scalability of
the Go implementations, that is, their ability to be applied to tasks of increasing complexity.

The serial and parallel implementations of SANE, ESP and Multi-Agent ESP have potential
future use as they are structured as packages (core packages and simulation environments),
and can be used to implement other methods, and are not limited only to Cooperative Co-
evolution methods. The speed-up that may have been attained from the parallelisation of
the recombination phase (evolution of the neuron populations) was purposely omitted from
this study. This was done to focus primarily on the speed-up achieved from spreading the
evaluations across multiple cores, which is the most compute intensive phase of the evolutionary
process. This was confirmed by the effect of increasing the number of agents (predators) in the
prey-capture task, we observed that the number of agents had little effect on the runtime of
the task, particularly when more cores were utilized. Future enhancements could explore the
parallelization of the evolution of the neuron population, particulary when the population size
is large or there are a large number of agents.

We observed linear speed-ups for the hard versions of the benchmark tasks over a certain range
of cores, this indicates to us that the Go implementations are efficient and that the harder the
task the better the parallel speed-up. The performance gains demonstrated in this study provide
a valuable foundation for the parallelization of even more complex Cooperative Co-Evolution
methods within the NE domain, as well as within other Cooperative Co-Evolution domains.
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Appendices

A Hardware Specifications

Model MacBook Pro (Retina, 15-inch, 2017)
OS Mac OS Sierra
Processor 2.8 GHz Intel Core i7
Cores 8
Memory 16 GB 2133 MHz LPDR3

Table A.1: The specifications of a single multi-core computer. A Mac OS computer was
used to validate the implementations.

Model DELL C6145
OS SUSE Linux Enterprise Server 11 SP4
Processor 2300 MHz AMD Opteron 6274
Cores 64
Memory 128 GB 1600 MHz

Table A.2: The specifications of one High Performance Computing (HPC) worker
node. An HPC cluster was used to benchmark the single-agent (SANE, ESP) and multi-agent
(Multi-Agent ESP) implementations.
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B Visualizations

Figure B.1: A snapshot of a controller evolved by the ESP method in the double
pole balancing task. The controller balances the two poles on the cart.

Figure B.2: A snapshot of predators evolved by the Multi-Agent ESP method in the
prey-capture task. Predators are displayed in white and the prey in red.
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C Implementations

All Golang implementations are publicly accessible:

https://github.com/edmore/cooperative-coevolution
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