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a b s t r a c t 

Description Logics (DLs) under Rational Closure (RC) is a well-known framework for non- 

monotonic reasoning in DLs. In this paper, we address the concept subsumption decision 

problem under RC for nominal safe ELO ⊥ , a notable and practically important DL rep- 

resentative of the OWL 2 profile OWL 2 EL. Our contribution here is to define a polyno- 

mial time subsumption procedure for nominal safe ELO ⊥ under RC that relies entirely on 

a series of classical, monotonic EL ⊥ subsumption tests. Therefore, any existing classical 

monotonic EL ⊥ reasoner can be used as a black box to implement our method. We then 

also adapt the method to one of the known extensions of RC for DLs, namely Defeasible 

Inheritance-based DLs without losing the computational tractability. 
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1. Introduction 

Description logics (DLs) provide the logical foundation of formal ontologies of the OWL family. 1 Among the various ex-

tensions proposed to enhance the representational capabilities of DLs, endowing them with non-monotonic features is still

a main issue, as documented by the past 20 years of technical development (see e.g. [8,20,27,47] and references therein, and

Section 6 ). 

We recall that a typical problem that can be addressed using non-monotonic formalisms is reasoning with ontologies in

which some classes are exceptional w.r.t. some properties of their super classes. 

Example 1. We know that avian red blood cells , mammalian red blood cells , and hence also bovine red blood cells are vertebrate

red blood cells , and that vertebrate red blood cells normally have a cell membrane . We also know that vertebrate red blood

cells normally have a nucleus , but that mammalian red blood cells normally don’t. 

A classical formalisation of the ontology above would imply that mammalian red blood cells do not exist, since, being a

subclass of vertebrate red blood cells, they would have a nucleus, but in the meantime, they are an atypical subclass that

does not have a nucleus. Therefore, mammalian red blood cells would and would not have a nucleus at the same time.

Unlike a classical approach, the use of a non-monotonic formalism may allow us to deal with such exceptional classes. 

Among the various proposals to inject non-monotonicity into DLs, the preferential approach has recently gained atten-

tion [10,12–17,22,26,28–30,46] as it is based on one of the major frameworks for non-monotonic reasoning in the proposi-
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tional case, namely the KLM approach [37] . One of the main constructions in the preferential approach is Rational Closure

(RC) [40] . RC has some interesting properties: the conclusions are intuitive, and the decision procedure can be reduced

to a series of classical decision problems, sometimes preserving the computational complexity of the underlying classical

decision problem. 

In this paper, we address the concept subsumption decision problem under RC for nominal safe ELO ⊥ [35] , a computa-

tionally tractable and practically important DL representative of the OWL 2 profile OWL 2 EL. 2 In fact, (i) nominal safe ELO ⊥ 
is the language EL [3] , extended with the bottom concept (denoted ⊥ ) and with the so-called ObjectHasValue construct

(also denoted as B in the DL literature), which is an existential quantification. Roughly, nominal safe ELO ⊥ is as ELO ⊥ , 
except for the fact that a nominal may only occur in concept expressions of the form ∃ r .{ a }, or in inclusion axioms of the

form { a } � C , stating that individual a is an instance of concept C (note that so-called role assertions can be also expressed

via { a } �∃ r .{ b }); and (ii) in [35] it is shown that many OWL EL ontologies are nominal safe and that an EL ⊥ reasoner is

sufficient to decide the subsumption problem, decreasing the inference time significantly in practice. 

In summary, our contributions are as follows. 

1. We describe a subsumption decision procedure under RC for nominal safe ELO ⊥ that runs in polynomial time. Al feature

of our approach is that our procedure relies entirely on a series of classical, monotonic EL ⊥ subsumption tests, and, thus,

any existing EL ⊥ reasoner can be used as a black box to implement our method. Note that e.g., in [12] it is shown that

the use of a DL reasoners as a black box for RC under ALC is scalable in practice. We conjecture that this property holds

with respect to RC under nominal safe ELO ⊥ as well. 

2. We will also illustrate how to adapt our procedure to a relevant modification of RC for DLs, namely Defeasible

Inheritance-based DLs [14] . We recall that Defeasible Inheritance-based DLs have been introduced to overcome some

inference limitations of RC [13] : in fact, in [14, Appendix A] it is shown that Defeasible Inheritance-based DLs behave

better than RC w.r.t. most of the “benchmark” examples illustrated there. A feature of our proposed procedure is that it

runs in polynomial time and maintains the advantage of the previous point. 

In the following, we will proceed as follows: for the sake of completeness, Section 2 introduces nominal safe ELO ⊥ and

recaps salient notions about Rational Closure for ALC [12,13,46] ; Section 3 we describe a polynomial time procedure to

decide subsumption under RC for defeasible EL ⊥ ; in Section 4 , we adapt our procedure for the Defeasible Inheritance-

based ELO ⊥ . In Section 5 we address nominal safe ELO ⊥ and show how we polynomially reduce reasoning within it to

defeasible EL ⊥ , and thus inherit the computational complexity of reasoning of the subsumption decision problem from

defeasible EL ⊥ and its RC extensions. Section 6 discusses related work and Section 7 concludes and addresses future work.

All relevant proofs are in the appendixes. 3 

2. Preliminaries 

To make the paper self-contained, in the following we briefly present the DLs EL ⊥ , ELO ⊥ , and nominal safe ELO ⊥ , 
and an exponential time procedure to decide subsumption in the DL ALC under RC via series of classical ALC subsump-

tion tests. The latter is important here as we will adapt it to decide the subsumption problem for nominal safe ELO ⊥ in

polynomial time. 

2.1. The DLs EL ⊥ , ELO ⊥ , and nominal safe ELO ⊥ 

EL ⊥ is the DL EL with the addition of the empty concept ⊥ [3] . It is a proper sublanguage of ALC . Note that con-

sidering EL alone would not make sense in our case as EL ontologies are always concept-satisfiable, while the notion of

defeasible reasoning is built over a notion of conflict (see Example 1 ) which needs to be expressible in the language. 

ELO ⊥ is EL ⊥ extended with so-called nominal concepts (denoted with the letter O in the DL literature, while nominal

safe ELO ⊥ is ELO ⊥ with some restrictions on the occurrence of nominals. 

Syntax The vocabulary is given by a set of atomic concepts N C 

= { A 1 , . . . , A n } , a set of atomic roles N R 

= { r 1 , . . . , r m 

} 
and a set of individuals N O 

= { a, b, c, . . . } . All these sets are assumed to be finite. ELO ⊥ concept expressions C, D, . . . are

built according to the following syntax: 

C, D → A | � | ⊥ | C � D | ∃ r.C | { a } . 
An ontology T (or TBox , or knowledge base ) is a finite set of Generalised Concept Inclusion (GCI) axioms C � D ( C is subsumed

by D ), meaning that all the objects in the concept C are also in the concept D . We use the expression C = D as shorthand

for having both C � D and D � C . 

The DL EL ⊥ A concept of the form { a } is called a nominal . EL ⊥ is ELO ⊥ without nominals. 

The DL nominal safe ELO ⊥ Nominal safe ELO ⊥ is ELO ⊥ with some restrictions on the occurrence of nominals and is

defined as follows [35] . An ELO ⊥ concept C is safe if C has only occurrences of nominals in subconcepts of the form ∃ r .{ a };
2 https://www.w3.org/TR/owl2-profiles/ 
3 A preliminary version of some results in Sections 3 and 4 appear in the Technical Report [18] . 
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C is negatively safe (in short, n-safe ) if C is either safe or a nominal. A GCI C � D is safe if C is n-safe and D is safe. An ELO ⊥
ontology is nominal safe if all its GCIs are safe. It is worth noting that nominal safeness is a quite commonly used pattern

of nominals in OWL EL ontologies, as reported in [35] . Semantics An interpretation is a pair I = 〈 �I , ·I 〉 , where �I is a

non-empty set, called interpretation domain and ·I is an interpretation function that 

1. maps atomic concepts A into a set A 

I ⊆ �I ; 

2. maps � (resp. ⊥ ) into a set � 

I = �I (resp. ⊥ 

I = ∅ ); 
3. maps roles r into a set r I ⊆ �I × �I ; 

4. maps individuals a ∈ N O 

into an object a I ∈ �I . 

The interpretation function ·I is extended to complex concept expressions as follows: 

(C � D ) I = C I ∩ D 

I 

(∃ r.C) I = { o ∈ �I | ∃ o ′ ∈ �I s. t. 〈 o, o ′ 〉 ∈ r I and o ′ ∈ C I } 
{ a } I = { a I } . 

An interpretation I satisfies (is a model of) C � D if C I ⊆ D 

I , denoted I |� C � D . I satisfies (is a model of) an ontology T 
if it satisfies each axiom in it. An axiom α is entailed by a T if every model of T is a model of α, denoted as T |� α . 

Remark 1. Note that a so-called concept assertion a : C ( a is an instance of concept C ) and a role assertion ( a , b ): r ( a and b are

related via role r ) can easily be represented in nominal safe ELO ⊥ via the mapping a : C �→ { a } � C and ( a , b ): r �→ { a } �∃ r .{ b }. 

In the following, we recap here some salient facts related to nominal safe ELO ⊥ [35, Appendix A] , which we will use

once we present our entailment decision algorithm for nominal safe ELO ⊥ . Specifically, we can replace nominals in a

nominal safe ELO ⊥ ontology T with newly introduced concept names, yielding an EL ⊥ ontology T ′ , such that T ′ 
supports the same entailments as T [35] . Hence, an entailment decision procedure for EL ⊥ suffices to decide entailment

for nominal safe ELO ⊥ (but not for unrestricted ELO ⊥ ). 

Consider an ELO ⊥ ontology T . For each individual a occurring in T consider a new atomic concept N a . For X an ELO ⊥
concept, GCI, or ontology, we define N ( X ) to be the result of replacing each occurrence of each nominal { a } in X with N a .

The following proposition provides a sufficient condition to check entailment. 

Proposition 1 ( [35] , Lemma 5 and Corollary 2) . Let T be an ELO ⊥ ontology and α an ELO ⊥ axiom that do not contain atomic

concepts of the form N a . Then 

1. if N(T ) |� N(α) then T |� α ; 

2. if N(T ) |� N a � ⊥ for some a then T is not satisfiable. �

The converse of Proposition 1 does not hold in general but holds for nominal safe ELO ⊥ . 

Proposition 2 ( [35] , Theorem 4) . Let T be a nominal safe ELO ⊥ ontology and α a safe ELO ⊥ axiom that do not contain

atomic concepts of the form N a . Then 

1. if N(T ) �|� N a � ⊥ for all a then T is satisfiable; 

2. if T |� α then N (T ) |� N (α) . �

Note that Proposition 2 fails if the use of nominals is not safe. 

Example 2 ( [35] , Remark 2) . Consider 

T = { A � { a } , B � { a } , A � ∃ r.B } . 
It is easily verified that T is satisfiable and that T |� A � B . However, for 

N(T ) = { A � N a , B � N a , A � ∃ r.B } 
we have that N(T ) is satisfiable, N(A � B ) = A � B, but N(T ) �|� A � B . 

2.2. Rational Closure in ALC 

We briefly recap RC for the DL ALC (see, e.g. [12] ), which in turn is based on its original formulation for Propositional

Logic [40] . 

The DL ALC is the DL EL ⊥ extended with concept negation, i.e. concept expressions of the form ¬C and semantics

(¬ C ) I = �I \ C I . Note that by using the negation ¬ and the conjunction � we can introduce also, e.g. the disjunction �,

i.e. C �D is a macro for ¬( ¬C �¬D ), that is, it is interpreted as (C � D ) I = C I ∪ D 

I . 

A defeasible GCI axiom is of the form C � ∼ D, that is read as ‘Typically, an instance of C is also an instance of D ’. We

extend ontologies with a DBox D, i.e. a finite set of defeasible GCIs and denote an ontology as K = 〈T , D〉 , where T is a

TBox and D is a DBox. 
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Example 3. We can formalise the information in Example 1 in EL ⊥ and, thus, in ALC with the following ontology K =
〈T , D〉 , with 

4 

T = { BRBC � MRBC , 

ARBC � VRBC , 

MRBC � VRBC , 

∃ hasN . � � NotN � ⊥ } 
D = { VRBC 

� ∼∃ hasCM . � , 

VRBC 

� ∼∃ hasN . � , 

MRBC 

� ∼NotN } . 
Given a KB K = 〈T , D〉 , RC satisfies some basic desiderata: the axioms in T and D are included into the set of the

derivable axioms, that moreover is closed under the following properties. 

Reflexivity (Ref), Left Logical Equivalence (LLE), Right Conjunction (And), Left Disjunction (Or), and Right Weakening (RW)

are all properties that correspond to well-known properties of the classical subsumption relation � . Cautious Monotonicity

(CM) and Rational Monotonicity (RM) are constrained forms of Monotonicity that are useful and desirable in modelling

defeasible reasoning. (CM) guarantees that our inferences are cumulative, that is, whatever we can conclude about typical

C s (e.g. that they are in D ), we can add such information to C ( C �D ) and still derive all the information associated to typical

C s ( C � D 

� ∼E ). The stronger principle (RM) is necessary to model the principle of presumption of typicality , that is, if the

typical elements of a class C satisfy certain properties (e.g. E ) and we are not informed that the typical elements of C do

not satisfy the properties of D ( ), then we can assume that the typical elements of C �D satisfy all the properties

characterising the typical elements of C ( C � D 

� ∼E ). We refer to [37,45] for a deeper explanation of the meaning of such

properties and why they are desirable for modelling defeasible reasoning. 

RC is a form of inferential closure that satisfies all the properties above; it is based on the semantic notion of ranked

interpretation and on the directly connected notion of ranked entailment, which we illustrate next. 

Definition 1 (Ranked interpretation) . A ranked interpretation is a triple R = 〈 �R , ·R , ≺R 〉 , where �R and · R are as in the

classical DL interpretations, while ≺R is a modular preference relation over �R , that is, a strict partial order satisfying the

following property: 

Modularity ≺R is modular if and only if there is a ranking function rk : �R −→ N s.t. for every o , p ∈ �R , o ≺R p iff

rk ( o ) < rk ( p ). 

In the definition above, o ≺R p means that the object o is considered more typical than the object p . The order ≺R allows

us to partition the domain �R of a ranked interpretation R into a sequence of layers , 〈 L R 0 , . . . , L 
R 
n , . . . 〉 where for every object

o , o ∈ L R 
0 

iff o ∈ min ≺R (�R ) and o ∈ L R 
i +1 

iff o ∈ min ≺R (�R \ ⋃ 

0 ≤ j≤i L 
R 
j 
) . 5 From this partition, we can define the height of an

individual a as 

h R (a ) = i iff a R ∈ L R i . 

The lower the height, the more typical the individual in the interpretation is taken to be. We can also extend this to a level

of typicality for concepts: the height of a concept C in an interpretation R , h R ( C ), as the lowest (most typical) layer in which

the concept’s extension is non-empty, i.e., 

h R (C) = min { i | (C R ) ∩ L R � = ∅} . 
i 

4 The acronyms stand for: BRBC - Bovine Red Blood Cells; MRBC - Mammalian Red Blood Cells; ARBC - Avian Red Blood Cells; VRBC - Vertebrate Red 

Blood Cells; hasN - has Nucleus; hasCM - has Cell Membrane. 
5 Given a set X and the order ≺ defined over X , min ≺(X ) = { x ∈ X |� ∃ y ∈ X s.t. y ≺ x } 
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If in a model R there is no individual satisfying a concept C , we set h R (C) = ∞ . 

Definition 2 (Ranked model) . An interpretation R = 〈 �R , ·R , ≺R 〉 satisfies (is a model of ) C � D (denoted R �C � D ) iff C R ⊆D 

R ,

and satisfies (is a model of ) C 
� ∼D iff min ≺R (C R ) ⊆ D 

R (denoted R |� C 
� ∼D ). R satisfies (is a model of ) K = 〈T , D〉 iff R �α for

all axioms α ∈ T ∪ D . �

Hence, C 
� ∼D is satisfied by R iff all the most typical individuals in C R are also in D 

R . We say that two ontologies are rank

equivalent iff they are satisfied by exactly the same ranked models, and that an ontology is rank satisfiable iff there is at

least a ranked model that satisfies it. 

Remark 2. Note that from the above definition of the satisfiability of an axiom C 
� ∼D we obtain the following correspon-

dence: for every ranked model R , 

R |� C � ⊥ iff R |� C 
� ∼⊥ . 

This allows for the translation of every classical axiom C � D into a defeasible axiom C � ¬ D 

� ∼⊥ . Note also that such a

translation is not feasible in ELO ⊥ , as ¬ is not supported in EL ⊥ . 

Now, the definition of ranked entailment follows directly from the notion of a ranked model. So, let R 

K be the class of

the ranked models of an ontology K . 

Definition 3 (Ranked Entailment) . Given an ontology K = 〈T , D〉 and a defeasible axiom C 
� ∼D, K rationally entails C 

� ∼D 

(denoted K |�R 

C 
� ∼D ) iff ∀ R ∈ R 

K , R |� C 
� ∼D . 

The main drawbacks of ranked entailment are that it is too weak from the inferential point of view and does not sat-

isfy the(RM) property [12,40] . RC is a kind of entailment that extends Ranked Entailment, allowing us to overcome these

limitations. It is based on a notion of exceptionality that is built on Ranked Entailment. 

Definition 4 (Exceptionality) . A concept C is exceptional w.r.t. an ontology K = 〈T , D〉 iff K |�R 

� 

� ∼¬ C . That is to say, C is

exceptional w.r.t. K iff, for every ranked model R ∈ R 

K , 

C R ∩ min 

≺R 
(�R ) = ∅ . 

An axiom C 
� ∼D is exceptional w.r.t. K iff C is exceptional. 

Intuitively, a concept is exceptional w.r.t. an ontology iff it is not possible to have it satisfied by any typical individual (i.e.,

an individual in the layer 0, that corresponds to min ≺R (�R ) ) in any ranked model of the ontology. Iteratively applied, the

notion of exceptionality allows to associate to every concept C a rank value w.r.t. an ontology K = 〈T , D〉 in the following

way (called RC ranking procedure ). 

1. A concept C has rank 0 ( r K (C) = 0 ) iff it is not exceptional w.r.t. K (that is, h R (C) = 0 for some model R of K ). In this

case we set r K (C 
� ∼D ) = 0 for every defeasible axiom having C as antecedent. The set of the axioms in D with rank 0 is

denoted as D 0 . 

2. For i > 0, C has rank i iff it does not have rank i − 1 and it is not exceptional wrt K 

i = 〈T , D \ ⋃ i −1 
j=0 D j 〉 . If r K (C) = i, 

then we set r K (C 
� ∼D ) = i . The set of the axioms in D with rank i is denoted as D i . 

3. By iterating the previous step a finite number of times, we finally reach a (possibly empty) subset E ⊆ D s.t. all the

axioms in E are exceptional w.r.t. 〈T , E〉 . 6 If E � = ∅ we define the rank value of the axioms in E as ∞ , and the set E 
is denoted as D ∞ 

. 

As a consequence, according to the procedure above, D can be partitioned into a finite sequence 〈D 0 , . . . , D n , D ∞ 

〉 
( n ≥ 0), where D ∞ 

may be possibly empty. This semantic procedure allows us to give a rank value to every concept and

every defeasible subsumption. Using the rank values, we can define the notion of RC as follows: 

Definition 5 (Rational Closure) . C 
� ∼D is in the RC of an ontology K iff

r K (C � D ) < r K (C � ¬ D ) or r K (C) = ∞ . 

Informally, the above definition says that C 
� ∼D is in the rational closure of K if the most typical instances of C happen

to be all instances of C �D , and not of C �¬D . 

Given an ontology K = 〈T , D〉 , distinct ways of defining models of K characterising its RC can be found in [12] (sum-

marised also here in Appendix A and presented also in [46, Section 4.1] ) and in [29] . Both such kinds of models can be

described as minimal models of the ontology 〈T , D〉 . Paraphrasing Definition 23 in [29] , we can define a preference relation
< among ranked interpretations in the following way. 

6 Since D is finite, we must reach such a point. 
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Definition 6 ( [29] , Definition 23) . Let R = 〈 �R , ·R , ≺R 〉 and R ′ = 〈 �R ′ , ·R ′ , ≺R ′ 〉 be two ranked interpretations s.t. �R = �R ′ 

and C R = C R 
′ 

for every concept C . R is preferred to R ′ ( R < R ′ ) iff for every x ∈ �R , h R (x ) ≤ h R ′ (x ) , and there is a y ∈ �R s.t.

h R (y ) < h R ′ (y ) . An interpretation R is minimal w.r.t. an ontology K if it is a model of K and there is no model R ′ of K s.t.

R ′ < R . 

The reason behind the use of minimal models in characterising RC is in the direct connection between minimality and

the presumption of typicality : in minimal models we maximise the amount of typicality for each individual in the domain,

modulo the satisfaction of the ontology. We will go back to the role of minimality in Section 5 . 

The type of reasoning we are primarily interested in modelling is subsumption checking in ALC under RC, that is,

deciding whether a defeasible subsumption C 
� ∼D is or is not a consequence under RC of an ontology 〈T , D〉 . In [12] a

detailed decision procedure for subsumption checking in ALC under RC is described, which we recap here. 7 This will be

useful, as our subsumption decision procedure for defeasible EL ⊥ will be a variant of it. The key step in translating the

semantic procedure into a correspondent one, based on classical ALC decision steps, is given by the following proposition. 

Proposition 3. For every concept C and every ontology K = 〈T , D〉 , if 
T |� �{¬ E � F | E � ∼F ∈ D} � ¬ C (1)

then C is exceptional w.r.t. K . 

By Proposition 3 , checking exceptionality can be done by using a classical DL reasoner for ALC . Now, consider an ALC 
defeasible ontology K = 〈T , D〉 and a defeasible GCI C 

� ∼D . In order to decide whether C 
� ∼D is in the RC of an ontology

K, we perform two steps: the first one is a ranking procedure, that transforms the initial ontology K = 〈T , D〉 into a rank

equivalent ontology K 

• = 〈T •, D 

•〉 , where D 

• is partitioned into a sequence D 

•
0 , . . . , D 

•
n , with each D 

•
i 

containing the

defeasible axioms with rank i ; the second one uses K 

• to decide whether an axiom C 
� ∼D is in the RC of K . 

Specifically, define the function e that, given any ontology 〈T ′ , D 

′ 〉 , returns exceptional axioms as 

e (T ′ , D 

′ ) = { C � ∼D ∈ D 

′ | T ′ |� �{¬ E � F | E � ∼F ∈ D 

′ } � ¬ C} . (2)

The function e gives back axioms in D 

′ that are exceptional w.r.t. 〈T ′ , D 

′ 〉 (see also [12, Section 6] ). 
Now in order to decide whether C 

� ∼D is in the RC of K, we execute the following two steps shown below, which

we will call RC.Step 1 and RC.Step 2 . Note that RC.Step 1 will correspond to procedure ComputeRanking , while RC.Step

2 is encoded in procedure RationalClosure , both presented in Section 3 later on. Also, the execution of RC.Step 1 , i.e.,

procedure ComputeRanking , can be followed e.g. in Example 4 ), which also illustrates why Steps 1.1 and 1.2 may need to be

repeated more than once to extract all the needed information. 

RC.Step 1 Let T 0 = T , D D 

0 = D and i = 0 . Repeat Steps 1.1 and 1.2 until D 

∞ 

i 
= ∅ . 

.1 Given 〈T i , D 

i 〉 , construct the sequence E 0 , E 1 , . . . 
E 0 = D 

i 

E j+1 = e (T i , E j ) . 

Since D 

i is finite, the iteration will terminate with (a possibly empty) fixed-point of e (T i , ·) . 
.2 For a defeasible GCI E 

� ∼F ∈ D 

i , define the rank of E 
� ∼F and of concept E as 

r i (E 
� ∼F ) = 

⎧ ⎨ 

⎩ 

j if E 
� ∼F ∈ E j and E 

� ∼F �∈ E j+1 

∞ if E 
� ∼F ∈ E j for all j 

r i (E) = r i (E 
� ∼F ) . 

Define 

D 

i 
j = { E � ∼F ∈ D 

i | r i (E 
� ∼F ) = j} . 

It follows that D 

i is partitioned into sets D 

i 
0 
, . . . , D 

i 
m 

, D 

i ∞ 

, for some m , with D 

i ∞ 

possibly empty. Finally, define 

T i +1 = T i ∪ { E � ⊥ | E � ∼F ∈ D 

i 
∞ 

} 
D 

i +1 = D 

i \ D 

i 
∞ 

. 

RC.Step 1 terminates after building a sequence of ontologies 〈T 0 , D 

0 〉 , . . . , 〈T k , D 

k 〉 and ranking functions r 0 , . . . , r k , for

some k ≤ |D| , once we reach the point where D 

k ∞ 

= ∅ . Let r k partition D 

k into D 

k 
1 
, . . . , D 

k 
n for some n . Furthermore, let

T • = T k , D 

• = D 

k , and D 

•
i 

= D 

k 
i 

for every 0 ≤ i ≤ n . 

Once we have applied RC.Step 1 , Proposition 3 holds also in the opposite direction. 
7 The procedure is based on the one by Casini and Straccia [13] and paired with a proper semantics; the latter needed to be modified slightly since it 

does not always give back the expected result in case D r ∞ � = ∅ . The procedure presented in [12] have been presented (and peer-reviewed) also in [46] . 
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Proposition 4. Given an ontology K 

• = 〈T •, D 

•〉 , obtained from the application of RC.Step1 to an ontology K = 〈T , D〉 , then

for every concept C , 

T • |� �{¬ E � F | E � ∼F ∈ D 

•} � ¬ C 

if and only if C is exceptional w.r.t. K 

• . 

RC.Step 2 So, let T • = T k , D 

• = D 

k , r • = r k , and D 

• be partitioned into D 

•
0 
, . . . , D 

•
n . 

.1 For 0 ≤ i ≤ n define the concept 

H i = �{¬ E � F | E � ∼F ∈ D 

•
i ∪ . . . ∪ D 

•
n } . 

Note that if j < i then �H j � H i . 

.2 Finally, given C 
� ∼D, let H C be the first concept H i of the sequence H 0 , . . . , H n such that T • �|� H i � ¬ C . If there is no such

H i let H C be � . Then, we say that C 
� ∼D is derivable from K iff T • |� C � H C � D . 

C � D is derivable from K iff T • |� C � ¬ D 

� ∼⊥ (see Remark 2 ). 

With K � rc C 
� ∼D (resp. K � rc C � D ) we will denote that C 

� ∼D (resp. C � D ) is derivable from K via RC.Step 2 . In [12,46] it

is shown that RC.Step 1 is correct w.r.t. the semantic definition of ranking, and that RC.Step 2 is correct w.r.t. the semantic

definition of RC ( Definition 5 ). That is, respectively, 

Proposition 5 ( [12] , Proposition 7) . Given an ontology K = 〈T , D〉 and a concept C , then r K (C) = r •(C) holds. 

Proposition 6 ( [12] , Theorem 5) . Given an ontology K = 〈T , D〉 , and concepts C , D , then C 
� ∼D is in the RC of K iff K � rc C 

� ∼D

. 

Remark 3. Note that an indispensable requirement of the above described defeasible subsumption procedure for ALC under

RC is to have a classical DL subsumption decision procedure supporting the empty concept, concept conjunction, negation

and disjunction. 

From [12] , the following propositions are immediate. 

Proposition 7. A classical GCI C � D is in the RC of K = 〈T , D〉 iff T • |� C � D, where T • has been computed using RC.Step 1 .

Corollary 8 ( [12] , Corollary 2) . An ontology K = 〈T , D〉 does not have a ranked model iff T • |� � � ⊥ , where T • has been

computed using RC.Step 1 . 

3. Rational closure in EL ⊥ 

We now present a subsumption decision procedure under RC for EL ⊥ by adapting the procedure for ALC under RC to

EL ⊥ . By Remark 3 , as EL ⊥ does not support concept negation and disjunction, the main problem we have to address is to

find a way to overcome this limitation. Concretely, we will define alternative ways both to 

1. express whether an EL ⊥ concept is exceptional using a classical EL ⊥ subsumption problem only; 

2. express the subsumption problems in Steps 2.1 and 2.2 above in terms of EL ⊥ subsumption problems only. 

3.1. A Subsumption Decision Procedure for EL ⊥ under RC 

Consider a defeasible EL ⊥ ontology K = 〈T , D〉 . As for ALC , we will define two procedures. The first one is a ranking

procedure that transforms the initial ontology K = 〈T , D〉 into a rank equivalent ontology K 

∗ = 〈T ∗, D 

∗〉 , where D 

∗ is

partitioned into a sequence D 0 , . . . , D n , with each D i containing the defeasible axioms with rank i . The second one uses

K 

∗ to decide whether an axiom C 
� ∼D is in the RC of K . The Ranking Procedure Given an ontology 〈T , D〉 , the ranking

procedure is defined by means of two procedures: one for finding exceptional axioms and one for determining the rank

value of axioms, as defined in Section 2.2 . 

In the following, given an ontology 〈T , E〉 , and a new atomic concept δE (with E indicating a set of defeasible sub-

sumptions), we define T δE as 

T δE = T ∪ { E � δE � F | E � ∼F ∈ E} . (3)

Informally, we introduce the atom δE as a way of representing the information that characterises the lowest rank. Hence,

its introduction is aimed at the formalisation of the typicality of the lowest layer: C � δE is introduced to represent the

individuals in C that are in the lowest layer. 

Remark 4. The aim of the definition for T δE is to replace the ALC subsumption test in Proposition 3 with the EL ⊥ sub-

sumption test 

T δ |� C � δD � ⊥ , 
D 
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for an ontology 〈T , D〉 . 
We obtain an analogue of Proposition 3 . 

Proposition 9. For every concept C and every ontology K = 〈T , D〉 , if 
T δD |� C � δD � ⊥ , (4) 

where δD is a new atomic concept, then C is exceptional w.r.t. K . 

Procedure Exceptional illustrates how to compute the exceptional axioms. 

Procedure: Exceptional( T , E ) 

Input : T and E ⊆ D 

Output : E ′ ⊆ E such that E ′ is a set of exceptional axioms w.r.t. ~〈T , E〉 
1 E ′ := ∅ ; 

2 T δE = T ∪ { E � δE � F | E 

� ∼F ∈ E} , where δE is a new atomic concept; 

3 foreach E 

� ∼F ∈ E do 

4 if T δE |� E � δE � ⊥ then 

5 E ′ := E ′ ∪ { E 

� ∼F } ; 
6 return E ′ 

The procedure ComputeRanking instead, shows how we implement RC.Step 1 in EL ⊥ , which we comment shortly on

next. 

We start by considering an ontology K = 〈T , D〉 . Lines 8–10 loop until we reach a (possibly empty) fixed-point of ex-

ceptional axioms. Then, each axiom C 
� ∼D in the fixed point of the exceptionality function is eliminated from D 

∗ (line 12)

and we add C �⊥ to T ∗ (line 13). We repeat the loop in lines 5–13 until no exceptional axioms can be found anymore (i.e.,

E i = E i +1 = ∅ , for some i ≥ 0). 

Remark 5. Note that the loop in between lines 5–13 allows us to move all the strict knowledge possibly ‘hidden’ inside the

DBox to the TBox. That is, there may be defeasible axioms in the DBox that are actually equivalent to classical axioms, and,

thus, can be moved from the DBox to the TBox as classical inclusion axioms. Example 4 illustrates such a case. 

Procedure: ComputeRanking( K ) 

Input : Ontology K = 〈T , D〉 
Output : Ontology 〈T ∗, D 

∗〉 , partitioning (ranking) R = {D 0 , . . . , D n } of D 

∗

1 T ∗:= T ; 
2 D 

∗:= D; 
3 R := ∅ ; 
4 repeat 
5 i := 0; 
6 E 0 := D 

∗; 
7 E 1 := Exceptional (T ∗, E 0 ); 
8 while E i +1 � = E i do 

9 i := i + 1; 
10 E i +1 := Exceptional (T ∗, E i ); 
11 D ∞ 

:= E i ; 
12 D 

∗ := D 

∗ \ D ∞ 

; 
13 T ∗ := T ∗ ∪ { E � ⊥ | E 

� ∼ F ∈ D ∞ 

} ; 
14 until D ∞ 

= ∅ ; 
15 for j = 1 to i do 

16 D j−1 := E j−1 \ E j ; 
17 R := R ∪ {D j−1 } ; 
18 return 〈 〈T ∗, D 

∗〉 , R 〉 

Lines 15–17 determine the rank value of the remaining defeasible axioms not in D ∞ 

. That is, set D j−1 is the set of

axioms of rank j − 1 (1 ≤ j ≤ i ), which are the axioms in E j−1 \ E j . 
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The following can easily be shown. 

Proposition 10. Consider an ontology K = 〈T , D〉 . Then ComputeRanking (K) returns the ontology 〈T ∗, D 

∗〉 , where D 

∗ is

partitioned into a sequence D 0 , . . . , D n , where T ∗, D 

∗ and all D i are equal to the sets T •, D 

• and D 

•
0 
, . . . , D 

•
n obtained via

RC.Step 1 . 

Also, once we have applied the procedure ComputeRanking , the proposition corresponding in the EL ⊥ framework to

Proposition 4 holds. 

Proposition 11. Given an ontology K 

∗ = 〈T ∗, D 

∗〉 , obtained from the application of the procedure ComputeRanking to an on-

tology K = 〈T , D〉 , for every concept C , 

T ∗δD ∗ |� C � δD ∗ � ⊥ , 

if and only if C is exceptional w.r.t. K 

∗ . 

Next, we describe some examples that illustrate the behaviour of the ranking procedure. The following example shows

a case in which there is non-defeasible knowledge ‘hidden’ in a DBox and that more than one cycle of the lines 4–14 in

ComputeRanking is needed to extract this information. 

Example 4. Let K = 〈T , D〉 be an ontology with 

T = { A � B, 

B � D � ⊥ } 
D = { B 

� ∼C, 

A 

� ∼D, 

E 
� ∼∃ r.A } . 

It can be verified that the execution of ComputeRanking (K) is as follows: 

T ∗ = T , D 

∗ = D, R = ∅ 
repeat 1 i = 0 E 0 = D 

∗, E 1 = { A 

� ∼D } 
i = 1 E 2 = { A 

� ∼D } (end while) 

D ∞ 

= E 2 = { A 

� ∼D } 
D 

∗ = D 

∗ \ { A 

� ∼D } = { B 

� ∼C, E 
� ∼∃ r.A } 

T ∗ = T ∗ ∪ { A � ⊥} = { A � B, B � D � ⊥ , A � ⊥} 

repeat 2 i = 0 E 0 = D 

∗, E 1 = { E � ∼∃ r.A } 
i = 1 E 2 = { E � ∼∃ r.A } (end while) 

D ∞ 

= E 2 = { E � ∼∃ r.A } 
D 

∗ = D 

∗ \ { E � ∼∃ r.A } = { B 

� ∼C} 
T ∗ = T ∗ ∪ { E � ⊥} = { A � B, B � D � ⊥ , A � ⊥ , E � ⊥} 

repeat 3 i = 0 E 0 = D 

∗, E 1 = ∅ 
i = 1 E 2 = ∅ (end while) 

D ∞ 

= E 2 
D 

∗ = D 

∗ \ ∅ = { B 

� ∼C} 
T ∗ = T ∗ ∪ ∅ = { A � B, B � D � ⊥ , A � ⊥ , E � ⊥} (end repeat) 

for j = 1 D 0 = E 0 \ E 1 = { B 

� ∼C} 
R = R ∪ {D 0 } = {D 0 } (end for) 

Therefore, ComputeRanking (K) terminates with 

T ∗ = { A � B, B � D � ⊥ , A � ⊥ , E � ⊥ } 
D 

∗ = { B 

� ∼C } 
R = { D 0 } 
D 0 = { B 

� ∼C } . 
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The only defeasible axiom in D 

∗ is B 
� ∼C, which has rank 0. Axioms A 

� ∼D and E 
� ∼∃ r.A have rank ∞ instead, and so

are substituted by the classical axioms A �⊥ and E �⊥ . Note that we need to iterate the loop in lines 5–13 in procedure

ComputeRanking more than once to determine such ranking values. In fact, in the first round we get A �⊥ , while the second 

round we get also E �⊥ . 

Example 5. Consider the ontology K in Example 3 . It can be verified that the execution of ComputeRanking (K) is as

follows: 

T ∗ = T , D 

∗ = D, R = ∅ 
repeat 1 i = 0 E 0 = D 

∗, E 1 = { MRBC 

� ∼NotN } 
i = 1 E 2 = ∅ 
i = 2 E 3 = ∅ (end while) 

D ∞ 

= E 3 = ∅ 
D 

∗ = D 

∗ \ ∅ = D 

T ∗ = T ∗ ∪ ∅ = T (end repeat) 

for j = 1 D 0 = E 0 \ E 1 = { VRBC 

� ∼∃ hasCM . � , VRBC 

� ∼∃ hasN . �} 
R = R ∪ {D 0 } = {D 0 } 

j = 2 D 1 = E 1 \ E 2 = { MRBC 

� ∼NotN } 
R = R ∪ {D 1 } = {D 0 , D 1 } (end for) 

Therefore, ComputeRanking (K) terminates with 

T ∗ = { BRBC � MRBC , ARBC � VRBC , MRBC � VRBC , ∃ hasN . � � NotN � ⊥ } 
D 

∗ = { VRBC 

� ∼∃ hasCM . � , VRBC 

� ∼∃ hasN . � , MRBC 

� ∼NotN } 
R = { D 0 , D 1 } 
D 0 = { VRBC 

� ∼∃ hasCM . � , VRBC 

� ∼∃ hasN . � } 
D 1 = { MRBC 

� ∼NotN } . 
Defeasible axioms in D 0 have rank value 0, while the axiom in D 1 has rank value 1. 

Remark 6. From Propositions 7 and 10 , and Corollary 8 , we immediately also get decision procedures for EL ⊥ to determine

both whether classical GCIs are in the RC of an ontology and whether an ontology has a ranked model, so we do not address

these decision problems further. 

The Subsumption Decision Procedure So far, we have defined a procedure that determines the rank value of the axioms in

a KB, which is based on a sequence of classical EL ⊥ subsumption decision steps (those in the Exceptional procedure, line

4). As next, we illustrate how we are going to implement RC.Step 2 using EL ⊥ subsumption tests only and, thus, get an

algorithm to decide whether a defeasible axiom C 
� ∼D is in the RC of an EL ⊥ KB. Specifically, given a KB K, let us assume

that we have applied to it the ComputeRanking procedure and, thus, the returned KB does not have defeasible inclusion

axioms with ∞ as rank value. 

In the following, given K = 〈T , D〉 as the output of the ComputeRanking procedure, with D partitioned into D 0 , . . . , D n ,

and given new atomic concepts δi (0 ≤ i ≤ n ), we define T δi 
as 

T δi 
= T ∪ { E � δi � F | E � ∼F ∈ D i ∪ . . . ∪ D n } . (5)

Remark 7. The purpose of definition T δi 
is to encode the concepts H i in RC. Step 2.2 as EL ⊥ GCIs. Specifically, the aim is

to replace the subsumption tests 

T ∗ �|� H i � ¬ C (6) 

T ∗ |� C � H i � D (7) 

in Step 2.2 with the two equivalent EL ⊥ subsumptions tests 

T ∗δi 
�|� C � δi � ⊥ (8) 

T ∗δ |� C � δi � D . (9) 

i 
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respectively. 

Proposition 12. By referring to Remark 7 , the subsumption test (6) (resp. 7 ) is equivalent to the subsumption test (8) (resp. 9 ). 

Example 6. Example 5 cont. From 〈〈T ∗, D 

∗〉 , R 〉 in Example 5 , we get by definition that 

T ∗δ0 
= T ∗ ∪ { VRBC � δ0 � ∃ hasCM . � , 

VRBC � δ0 � ∃ hasN . � , 

MRBC � δ0 � NotN } . 
and 

T ∗δ1 
= T ∗ ∪ { MRBC � δ1 � NotN } . 

Note that we get the following results: 

T ∗δ0 
|� MRBC � δ0 � ⊥ 

T ∗δ0 
�|� VRBC � δ0 � ⊥ 

T ∗δ1 
�|� MRBC � δ1 � ⊥ 

Procedure RationalClosure illustrates how we implement the subsumption decision procedure for ALC under RC, using

EL ⊥ subsumption tests only. Note that essentially lines 1–7 implement RC.Step 1 , while lines 8 - 18 implement RC.Step 2 . 

Procedure: RationalClosure( K, α ) 

Input : Ontology K and defeasible axiom α of the form C 

� ∼ D 

Output : true iff C 

� ∼ D is in the Rational Closure of K 

1 CL := T |� C � D //Check if α holds classically; 
2 if CL then 

3 return CL 

4 〈 〈T ∗, D 

∗〉 , {D 0 , . . . , D n }〉 := ComputeRanking (K); 
5 CL := T ∗ |� C � D //Check if α holds classically, after finding strict knowledge in D; 
6 if CL then 

7 return CL 

8 //Compute C’s rank i ; 
9 i := 0; D R 

:= D 

∗; 
10 T δ0 

:= T ∗ ∪ { E � δ0 � F | E 

� ∼ F ∈ D R 

} , where δ0 is a new atomic concept; 

11 while T δi 
|� C � δi � ⊥ and D R 

� = ∅ do 

12 D R 

:= D R 

\D i ; i := i + 1 ; 
13 T δi 

:= T ∗ ∪ { E � δi � F | E 

� ∼ F ∈ D R 

} , where δi is a new atomic concept; 

14 // Check now if α holds under RC; 
15 if T δi 

�|� C � δi � ⊥ then 

16 return T δi 
|� C � δi � D 

17 else 

18 return CL 

Example 7. ( Example 6 cont.) We want to decide whether the red blood cells of a bovine ( BRBC ) should presumably have

a nucleus, that is, whether BRBC 

� ∼∃ hasN . � , BRBC 

� ∼notN , or neither of them are in the RC of K . 

First of all, we determine the rank of BRBC , then we check whether we can conclude that the typical elements of BRBC

are in hasN . � (or in notN ). We have that 

T ∗δ0 
|� BRBC � δ0 � ⊥ 

T ∗δ1 
�|� BRBC � δ1 � ⊥ . 

Hence BRBC is of rank 1, and we can associate with it the defeasible information of rank 1, that is, we can use the TBox

T ∗
δ1 

. 

T ∗δ1 
�|� BRBC � δ1 � ∃ hasN . � 

T ∗δ |� BRBC � δ1 � notN . 

1 
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Therefore, we conclude that it’s not the case that the red blood cells of bovines presumably have a nucleus. That is,

RationalClosure (K, BRBC 

� ∼∃ hasN . � ) and RationalClosure (K, BRBC 

� ∼notN ) return respectively false and true . 

By Propositions 6, 10 , and 12 , and by construction of the RationalClosure procedure, we immediately get the following

result. 

Proposition 13. Consider an EL ⊥ ontology K = 〈T , D〉 and a defeasible GCI C 
� ∼D . Then, C 

� ∼D is in the RC of K iff

RationalClosure (K, C 
� ∼D ) returns true. 

3.2. Computational Complexity 

Classical subsumption can be decided in polynomial time for EL ⊥ [3] . We next show that our subsumption decision

procedure under RC requires a polynomial number of classical subsumption test and, thus, is polynomial overall w.r.t. the

size of a KB. 

As we have seen, the entire procedure can be reduced to a sequence of classical entailments tests, while all other op-

erations are linearly bounded by the size of the KB. Therefore, in order to determine the computational complexity of our

method, we have to check, given a KB K = 〈T , D〉 as input, how many classical entailment tests are required in the worst

case. 

It is easily verified that Exceptional (T , E ) performs at most |E| ∈ O (|D | ) subsumption tests. Now, let us analyse

ComputeRanking (K) . Line 7 requires O (|D | ) subsumption test. Lines 8–10 require at most O (|D | 2 ) subsumption tests

as at each round, |E i +1 | is |E i | − 1 in the worst case. At each repeat round |D 

∗| decreases in size (at line 12), and thus

the repeat loop is iterated at most O (|D | ) times. Therefore, ComputeRanking requires at most O (|D | 3 ) subsumption

tests. This gives us the following proposition: 

Proposition 14. Given a KB K = 〈T , D〉 , procedure ComputeRanking runs in polynomial time w.r.t. the size of K . 

Note that if the KB remains unchanged in between several defeasible subsumption tests, then the ranking procedure

needs to be executed only once. 

Now consider RationalClosure (K, α) . Lines 1–3 require one subsumption test. In line 4, the value of n is bounded by

|D| and line 4 requires at most O (|D | 3 ) subsumption tests. Lines 5–7 require one subsumption test. The loop in lines

11–13 is executed at most |D| times (as at each loop |D R 

| decreases), at each iteration we execute one subsumption test

only, and there are at most two subsumption tests between lines 15–18. Hence, RationalClosure (K, α) requires at most

O (|D | 3 + |D | ) subsumption tests. Therefore, 

Proposition 15. Procedure RationalClosure , that decides whether the defeasible inclusion axiom C 
� ∼D is in the RC of K =

〈T , D〉 , runs in polynomial time w.r.t. the size of K . 

3.3. Normal Form. 

Usually, a classical EL ⊥ ontology is transformed into a normal form to which one then applies a subsumption decision

procedure [3] . In the following, we extend the notion of normal form to defeasible EL ⊥ ontologies, and show that our

subsumption decision procedure works fine for normalised ontologies as well. 8 That is, the normal form transformation of

an ontology K is a conservative extension of K also w.r.t. RC. So, let us recap that a classical EL ⊥ ontology is in normal

form if the axioms in it have the form: 

• C 1 � D 

• C 1 �C 2 � D 

• ∃ r . C 1 � D 

• C 1 �∃ r . C 2 
where C 1 , C 2 ∈ N C 

∪ {�} and D ∈ N C 

∪ {� , ⊥} . One may transform axioms into normal form by applying the following

rules: 

1: C � 

ˆ D � E �→ 

ˆ D � A, C � A � E ; 

2: ∃ r. ̂  C � D �→ 

ˆ C � A, ∃ r.A � D ; 

3: ⊥� D �→∅ . 

4: ˆ C � 

ˆ D �→ 

ˆ C � A, A � 

ˆ D ; 

5: B � ∃ r. ̂  C �→ B � ∃ r.A, A � 

ˆ C ; 
6: B � C �D �→ B � C , B � D , 

8 KBs in normal form are also needed in Section 4 . 
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where ˆ C , ˆ D / ∈ N C 

∪ {�} , and A is a new atomic concept. Rules R1-R3 are applied first, then rules R4–R6 are applied, until

no more rule can be applied. It is easily verified that the transformation is time polynomial and entailment preserving, i.e.,

given a TBox T and its normal form transformation T ′ , then T |� C � D iff T ′ |� C � D for every C , D not using any of

the newly introduced atomic concepts A by the rules R 1 − R 6 above. 

The above result is not sufficient to guarantee that we can apply this kind of transformation also to defeasible KBs. The

problem is that the notion of logical equivalence in a preferential setting, or rank equivalence as we have called it up to now,

follows rules that are slightly different from the ones characterising logical equivalence in classical reasoning. In particular,

we are allowed to substitute a concept with a logically equivalent one on the left of a defeasible subsumption relation (LLE

allows it) and on the right (a consequence of RW). However, there are cases that are equivalent in their classical formulation

but not equivalent in the preferential one. For example, the two axioms C � D and �� ¬C �D are equivalent, while C 
� ∼D and

� 

� ∼¬ C � D are not rank equivalent (in fact, they convey different meanings, with the former indicating that all the most

typical C’s are D’s, and the latter indicating that the most typical objects are either not C’s or D’s). Therefore, the normal

form transformation rules have to preserve rank equivalence, which we are going to check next. 

So, let K = 〈T , D〉 be a defeasible ontology. We say that D is in normal form if each defeasible axiom in D is of the

form A 

� ∼B, where A, B ∈ N C 

. We say that K is in normal form if T and D are in normal form. We next show how to

transform K = 〈T , D〉 into normal form. First, we replace every axiom C 
� ∼D ∈ D with an axiom A C 

� ∼A D (with A C , A D new

atomic concepts), and add A C = C and A D = D to the TBox T (they are both valid EL ⊥ expressions); then we apply the

classical EL ⊥ normalisation steps to the axioms in T . In this way, we end up with a new knowledge base 〈T ′ , D 

′ 〉 that is

in normal form. This transformation still remains, of course, time polynomial. 

Example 8. A normal form of the KB in Example 3 is K = 〈T , D〉 with 

T = { BRBC � MRBC , 

ARBC � VRBC , 

MRBC � VRBC , 

∃ hasN . � � A 1 , 

A 1 � ∃ hasN . � , 

∃ hasCM . � � A 2 , 

A 2 � ∃ hasCM . � , 

A 1 � NotN � ⊥ } 
D = { VRBC 

� ∼A 2 , 

VRBC 

� ∼A 1 , 

MRBC 

� ∼NotN } . 
We can prove that the ranking procedure gives back equivalent results whether we apply it to K = 〈T , D〉 or to its

normal form transformation K 

′ = 〈T ′ , D 

′ 〉 . To this end, it suffices to show the following. 

Proposition 16. Given an ontology K = 〈T , D〉 , C 
� ∼D ∈ D and the corresponding ontology in normal form K 

′ = 〈T ′ , D 

′ 〉 , then C

is exceptional w.r.t. K iff A C is exceptional w.r.t. K 

′ , where A C is the new atomic concept introduced by the normalisation procedure

to replace C 
� ∼D with A C 

� ∼A D . 

Therefore, given an ontology K = 〈T , D〉 , C 
� ∼D ∈ D and the corresponding ontology in normal form K 

′ = 〈T ′ , D 

′ 〉 , by

Proposition 16 and by construction of the ComputeRanking procedure it follows that C 
� ∼D ∈ D i iff A C 

� ∼A D ∈ D 

′ 
i 
, where

R = {D 0 , . . . , D n } and R 

′ = {D 

′ 
0 
, . . . , D 

′ 
n } are the partitions computed by the ranking procedure applied to K and K 

′ , 
respectively. From this, we immediately get the following result. 

Proposition 17. Given an ontology K = 〈T , D〉 and its normal form translation K 

′ = 〈T ′ , D 

′ 〉 , then for every pair of atomic

EL ⊥ -concepts A , B occurring in K, K � rc A 

� ∼B iff K 

′ � rc A 

� ∼B . 

Observe that, using a KB in normal form, all steps of our RC decision procedure use classical EL ⊥ TBoxes in normal

form(as axioms A C �δi � A D are in normal form, too). 

4. Defeasibleinheritance-based description logics 

So far, we have considered RC [37,41] : both the procedural and the semantic characterisations are well defined, and

directly model a principle that is at the core of typicality reasoning: the presumption of typicality . Moreover, RC is a syntac-

tically independent form of closure. That is, all the KBs that are rank equivalent generate the same RC (to the best of our

knowledge, no other form of closure extending RC satisfies this property). 
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Proposition 18. Let K = 〈T , D〉 and K 

′ = 〈T ′ , D 

′ 〉 be rank equivalent. For every EL ⊥ defeasible GCI C 
� ∼D, C 

� ∼D is in the RC

of K iff C 
� ∼D is in the RC of K 

′ . 

Yet, it is well-known that the main limitation of RC, from an inferential point of view, is that an exceptional subclass

cannot inherit any of the typical properties of its superclass (also known as Drowning Effect ) 

Example 9. Consider Examples 5 and 7 . The mammalian red blood cells are an exceptional subclass of the vertebrate red

blood cells since they do not have a nucleus. So, the conflict determining the exceptionality of MRBC is determined by the

axioms VRBC 

� ∼∃ hasN . � and MRBC 

� ∼NotN , while there is no conflict w.r.t. the axiom VRBC 

� ∼∃ hasCM . � . Hence, it seems

still reasonable to conclude that mammalian red blood cells have a cell membrane (i.e., MRBC 

� ∼∃ hasCM . � ). However, as

shown in Example 5 , VRBC 

� ∼∃ hasCM . � ∈ D 0 and the rank of MRBC is 1 and, thus, we cannot conclude MRBC 

� ∼∃ hasCM . �
under RC. 

In order to overcome such inferential limits, some closure operations extending RC have been proposed in DLs: for ex-

ample, the defeasible Inheritance-based approach [14] , the Relevant Closure [15] , and the Lexicographic Closure [16] . Here

we consider a modification of RC based on the use of inheritance nets to identify the axioms taking part in each specific

conflict [14] . As we are going to see, the Defeasible Inheritance-based approach is interesting when considering the EL ⊥ 
framework since both it allows to overcome the drowning effect and preserves computational tractability. 9 

Remark 8. At the time of writing, we neither found a tractable procedure to decide defeasible subsumption under Relevant

Closure nor for Lexicographic Closure [15,16] . In fact, we conjecture that no tractable procedures exist for these cases. 

In the Defeasible Inheritance-based approach [14] the axioms in the TBox and in the DBox are translated into an inher-

itance net [32] . Such a construction allows us to apply the RC procedure locally, in such a way that if we want to decide

whether C 
� ∼D holds, the exceptionality ranking and the RC are calculated considering only the information in the KB that

has some connection to C and D . For more details about the formalisation and inference properties of the approach, we refer

the reader to [14] . 

Basic notions on Inheritance Nets Nevertheless, for the sake of self-containedness, we briefly recap here some salient

notions from [14] . In Defeasible Inheritance Nets , or simply Inheritance Nets (INs) [32] there are classes ( nodes ), a strict sub-

sumption relation and a defeasible subsumption relation among such classes ( links ). An IN is a pair N = 〈 S, D 〉 , where S is

a set of strict links , while D is a set of defeasible links . Every link in N is a direct link, and it can be strict or defeasible,

positive or negative. Specifically, 

1. C ⇒ D : class C is subsumed by class Q [positive strict link]; 

2. C �⇔ D : class C and class Q are disjoint [negative strict link]; 

3. C → D : an element of the class C is usually an element of the class D [positive defeasible link]; 

4. C �→ D : an element of the class C is usually not an element of the class Q [negative defeasible link]. 

Definition 7 (Course, Definition 3.1 in [14] ) . Courses are defined as follows (where � ∈ {⇒ , �⇔ , → , �→} ): 
1. every link C � D in N is a course π = 〈 C, D 〉 in N ; and 

2. if π = 〈 σ, C〉 is a course and C � D is a link in N that does not already appear in π , then π ′ = 〈 π, D 〉 is a course in N . 

Roughly, courses are simply routes on the net following the direction of the arrows, without considering if each of them

is a positive or a negative arrow. 

In [14] , INs have been extended to, so-called Boolean Inheritance Nets (BINs), that allow additionally to represent the

negation, conjunction and disjunction of nodes. For what concerns us here, given nodes C , D and E , a conjunction link is of

the form C , D ⇔ 

∧ E (read as the conjunction of C and D is equivalent to E ). We will assume that inheritance nets containing

such links are closed according to the following rule: if there is C , D ⇔ 

∧ E in a net, then there are also E ⇒ C and E ⇒ D in the

net. Furthermore, the notion of courses is extended to BINs, calling them ducts [14, Definition 3.2] . That is, we consider not

only ‘linear’ routes from one node to another, but also ‘parallel’ routes, in order to model the introduction of the conjunction.

Roughly, 

π = 〈 C, 
σ

σ ′ , D 〉 
will indicate a duct π that starts at node C and develops through the ducts σ and σ ′ , both reaching the node D . 

Definition 8 (Duct, Definition 3.2 in [14] ) . Ducts are defined as follows (where � ∈ {⇒ , �⇔ , → , �→} ): 
1. every link C � D in N is a duct π = 〈 C, D 〉 in N ; 

2. if π = 〈 C, σ, D 〉 is a duct and D � E is a link in N that does not already appear in σ , then π ′ = 〈 C, σ, D, E〉 is a duct in N

; 
9 In [14, Appendix A] it is also shown that the defeasible inheritance-based approach behaves well and better than RC w.r.t. most of the “benchmark”

examples illustrated there. 
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3. if π = 〈 C, σ, D 〉 is a duct and E � C is a link in N that does not already appear in σ , then π ′ = 〈 E, C, σ, D 〉 is a duct in N

; 

4. if 〈 C , σ , D 〉 and 〈 C , σ ′ , E 〉 are ducts and D , E ⇔ 

∧ F is a link in N that does not already appear in 〈 C , σ , D 〉 and in 〈 C , σ ′ ,
E 〉 , then 〈 C, σ,D 

σ ′ ,E , F 〉 is a duct. 

A Decision procedure for INs-based EL ⊥ Now, the adaptation of the inheritance-based decision procedure [14, Section 5] to

EL ⊥ can be formalised in the following way. First of all, we assume that a KB 〈T , D〉 has already been transformed into

normal form , as discussed in Section 3.3 . Then, we create an inheritance net N K representing the content of the KB. The

procedure is essentially the one in [14] , just constrained to EL ⊥ . 

That is, given a KB 〈T , D〉 : 
1. for every atomic concept appearing in the axioms in K, we create a corresponding node in the net; 

2. for every axiom A 

� ∼B ∈ D, we add the defeasible link A → B to the net; 

3. for every axiom A � B � ⊥ ∈ T we add the symmetric incompatibility link A �⇔ B to the net; 

4. for all the remaining axioms (in normal form) C � D ∈ T , we introduce (if not already present) two nodes in the net

representing the concepts C and D , respectively, and add the strict connection C ⇒ D to the net; 

5. we then complete the inheritance net N K doing a total classification of the concepts appearing as nodes in the net. That

is, for concepts C , D , where C and concept D are either atomic concepts or of the form ∃ r . F , and E (not being � ), that

have a node representation in N K , if T |� C � D � E holds then we add also a link C , D ⇔ 

∧ E to the net N K . 

Note that nodes in N K represent concepts that are either ⊥ , � , atomic, of the form ∃ r . F or the conjunction of two atomic

concepts. 

Now, the procedure for the closure of a KB 〈T , D〉 using the Defeasible Inheritance-based approach, adapted to EL ⊥ , is

as follows [14] : 

1. Given K = 〈T , D〉 , check if K has a ranked model (see Corollary 8 and Remark 6 ). If yes, then define an inheritance net

N K from K, as illustrated before. 

2. Set D in = D . For every pair of nodes 〈 C , D 〉 such that C and D appear in the net N K , do the following: 

• determine the set �C , D of defeasible links E → F appearing in a duct from C to D ; 

• consider the KB K 

′ = 〈T , D 

′ 〉 , where D 

′ ⊆ D is the set of the defeasible axioms corresponding to the defeasible links

in �C , D ; 

• if C 
� ∼D is in the RC of K 

′ (i.e. K 

′ � rc C 
� ∼D ), then add C 

� ∼D to D in . 

3. Finally, let K in = 〈T , D in 〉 . We can use the decision procedure for RC on K in , defining the non-monotonic inference

relation � in as 

K � in C 
� ∼D iff K in � rc C 

� ∼D . 

The above steps are implemented in procedure InheritanceBasedRationalClosure . 

Procedure: InheritanceBasedRationalClosure( K, α ) 

Input : Ontology K and defeasible EL ⊥ axiom α
Output : true iff K � in α

1 〈K , α〉 := Normalise (K , α) //normalise both K and α; 

2 CT D : = RationalClosure (K, � 

� ∼⊥ ) //Check if K rank unsatisfiable; 
3 if CTD then 

4 return CT D 

5 N K := BuildInheritanceNet (K) //Build inheritance net N K from K; 
6 D in := D; 
7 foreach C, D ∈ N K do 

8 �C,D := { E � F | E � F defeasible link occurring in a duct from C to D } ; 
9 D 

′ := { E 

� ∼F ∈ D | E → F ∈ �C,D } ∪ { E 

� ∼¬ F ∈ D | E �→ F ∈ �C,D } ; 
10 K 

′ := 〈T , D 

′ 〉 ; 
11 if RationalClosure (K 

′ , C 

� ∼D ) then 

12 D in := D in ∪ { C 

� ∼D } 
13 // Check now if α holds under Inheritance-Based RC; 
14 K in := 〈T , D in 〉 ; 
15 IRC : = RationalClosure (K in , α) ; 
16 return IRC; 
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Remark 9. One may wonder whether the third item in Step 2 may be replaced with the simpler form 

 

∗) if C 
� ∼D is in D 

′ then add C 
� ∼D to D in . 

Unfortunately, this choice does not provide the intended behaviour as the following variant of the “penguin” example

illustrates (see also [14, Example 3.1] ). Consider K = 〈T , D〉 with 

10 

T = { F � NF � ⊥ 

D = { P 

� ∼B , B 

� ∼F , P 

� ∼NF , P 

� ∼W} 
and corresponding inheritance net: 

B

P NF

F

W

It then can be shown (as desired) that 

K � in P 

� ∼W , 

In fact, as �P , W 

= { P 

� ∼B , B 

� ∼W} , by item three in Step 2., we add P 

� ∼W to D in , which is not the case if ( ∗) is used instead.

Therefore, as P is an exceptional subclass of B , we have 

K �� rc P 

� ∼W 

K �� in P 

� ∼W , if using (∗) instead . 

The correspondence of this procedure to the more general ALC procedure in [14] is guaranteed by Proposition 13 ,

proving that the procedure RationalClosure is correct and complete w.r.t. RC, and the fact that the present definition of

ducts is just the EL ⊥ restriction of the more general definition for ALC ( [14] , Definition 3.2). 

Example 10. ( Example 8 cont.) Consider Example 8 . The inheritance net N K built from K is illustrated in Fig. 1 . 

We want to check whether K � in MRBC 

� ∼∃ hasCM . � holds. To do so, we compute all ducts between MRBC and

hasCM . � . There is only one and it includes the defeasible link representing VRBC 

� ∼A 2 . Therefore, in Step 10 of the

InheritanceBasedRationalClosure procedure, we set D 

′ = { VRBC 

� ∼A 2 } . It can be verified that MRBC 

� ∼A 2 is in the RC

of K 

′ = 〈T , D 

′ 〉 and, thus, by Step 12, MRBC 

� ∼A 2 is added to D in , from which K � in MRBC 

� ∼∃ hasCM . � follows. 

Next, we want also to show that indeed K �� in MRBC 

� ∼∃ hasN . � . Now, observe that for nodes C ∈ { MRBC } and D ∈
{ A 1 , hasN . �} , D 

′ in line 9 of the procedure is 

D 

′ = { MRBC 

� ∼hasN . � , MRBC 

� ∼NotN } . 
10 P , B , W, F stand for Penguin, Bird, Wing and Fly, respectively. 
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Therfore, for D ∈ { A 1 , hasN . �} 
K 

′ �� rc MRBC 

� ∼D , 

holds and, thus, MRBC 

� ∼D is not added to D in . Consequently, for D ∈ { A 1 , hasN . �} 
K �� in MRBC 

� ∼D 

holds, as expected. 

Computational Complexity Let us now address the computational complexity of the InheritanceBasedRationalClosure

procedure. To start with, note that the normalisation Step 1 can be done in linear time [3] , yielding a normalised

KB whose size is linear in the size of K . From the procedure described in Section 3 , it follows that Step 2 of

InheritanceBasedRationalClosure requires at most O (|D | 3 + |D | ) subsumption tests. 

Let us now estimate the cost of Step 5. The first step of the construction of N K creates as many nodes as there are

atomic concepts in K and, thus, both size and time bound are O(|K| ) . The second step is obviously bounded both in

time and size of number of edges by O (|D | ) . Similarly, the third and fourth step can be done together and are bounded

both in time and size of number of new nodes and edges by O(|T | ) . Therefore, Steps 1–4 can be done in time O(|K| ) , 
while for network N K , the number of both nodes and edges is bounded by O(|K| ) . Eventually, it can easily be verified

that, including the fifth step of the construction of N K , the overall time bound of the construction of N K is time and size

(number of nodes as well as edges) bounded by O(|K| 2 ) . 
The number of iterations of Steps 7–12 is bounded by O(|K| 4 ) , as there are at most O(|K| 2 ) nodes in N K . Step 8 is

the same step as illustrated in [14] , in which it is shown that �C , D can be computed in polynomial time w.r.t. the size of K
[14, Sections 3.1.6 and 3.2.5] . For ease of presentation, let us indicate with δK the time bound to compute �C , D . Moreover,

the size of both �C , D and D 

′ is bounded by O (|D | ) and, thus, the size of K 

′ is bounded by O(|K| ) . Therefore, Step 12

requires at most O (|D | 3 + |D | ) subsumption tests. In summary, the computation time of iterations Steps 7–12 is bounded

by O(δK · |K| 4 ) plus the time required to perform O(|K| 4 | (|D| 3 + |D| )) subsumption tests. 

Finally, the size of D in is bounded by O(|K| 2 ) and, thus, Step 15 may require at most O(|K| 6 + |K| 2 ) subsumption

tests. Therefore, we have the following result. 

Proposition 19. Procedure InheritanceBasedRationalClosure , that decides whether a defeasible inclusion axiom C 
� ∼D is in

the Inheritance-based RC of K = 〈T , D〉 , i.e. decides whether K � in C 
� ∼D holds, runs in polynomial time w.r.t. the size of K . 

5. Rational closure for nominal safe ELO ⊥ 

In order to reason about individuals in a defeasible framework, more than one option is possible. Here we present an

idea in which we use concept nominals, i.e. concepts of the form { a }. There are other options as well developed in a formal

framework analogous to the one we are going to present here and compatible with it [12–14] . In [27,29] other ways of

reasoning about individuals in the preferential framework has been proposed, while in [8] a different kind of semantics is

introduced. 

Recall that by using nominals we can easily translate an assertion as a GCI as pointed out in Remark 1 , and that the

standard interpretation of nominals is a singleton from the domain. 

Our approach to deal with nominals in defeasible ELO ⊥ starts with the possibility to express defeasible information

about individuals by using axioms of the form { a } � ∼C (read as “presumably, individual a is an instance of concept C ”) and

{ a } � ∼∃ r. { b} (“presumably, individual a is connected via role r to individual b ”). Since we are working in a defeasible framework,

we would like to apply the presumption of typicality (see Section 2.2 ) also to individuals. That is, we want to reason under the

assumption that each individual behaves in the most typical possible way, compatibly with the information at our disposal.

A main problem in enforcing the typicality of individuals is that role connections may possibly create situations in which

the defeasible information associated with an individual prevents it from associating some defeasible information to another

individual, and vice-versa, as illustrated in the next example. 

Example 11. Consider the following defeasible ELO ⊥ KB K = 〈T , D〉 with 

T = {{ a } � ∃ r. { b} , C � D � ⊥} 
D = {� 

� ∼C, ∃ r.C 
� ∼D } . 

By applying the ranking procedure to K, it can be shown that D is partitioned into 

D 0 = {� 

� ∼C} 
D 1 = {∃ r.C 

� ∼D } . 
Now, let’s try to create a minimal model for this KB, in order to maximise the typicality also of the individuals (see

Section 2.2 ). If we position the interpretation of individual a in layer 0, 11 then both � 

� ∼C and ∃ r.C � ∼D may be ‘applied’
11 See the definition of layers at page 8. 
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to a and, thus, a : C holds. But then we are forced to position b on layer 1 to impose that b : C does not hold, as otherwise

we would have also a : ∃ r . C and a : D , and then we would be forced to conclude a : ⊥ (since C �D �⊥ ). On the other hand, if

we put b on layer 0 we would be forced to put a on layer 1 to impose that a : C does not hold, again to avoid a : ⊥ to hold.

Therefore, we have at least two (minimal) ranked models. 

Note that if we would apply the so far developed RC procedure to ELO ⊥ (see page 12) we would infer instead that

both { a } � ∼C and { b} � ∼C hold, and, thus, { a } � ∼D would follow, from which we would conclude { a } � ∼⊥ . I.e., we get an

inconsistency. 

Eventually, note that we face with the same problem with the following KB K 

′ = 〈T ′ , D 

′ 〉 : 
T ′ = { A = { a } , B = { b} , A � ∃ r.B, C � D � ⊥} 
D 

′ = {� 

� ∼C, ∃ r.C 
� ∼D } . 

That is, not only individual a (resp. b ) does not have the same rank among all ranked models of K 

′ , but the same applies

to atomic concept A (resp. B ). 

The multiplicity of incompatible minimal configurations allows us to make a distinction between two distinct kinds of

presumptive reasoning. Roughly, on one hand we have presumptive reasoning, that can be modelled taking under considera-

tion all the most expected situations: an individual a presumably satisfies a property C iff a R ∈ C R in all the minimal models R

(of an ontology K ). On the other hand we have prototypical reasoning, where we associate a property C to an individual a if

all the preferred instantiations of a fall under C ; that is, a property C belongs to the prototype of an individual a if a R ∈ C R for

every minimal model R of K in which a R is in the lowest possible rank. 12 We refer the reader to Appendix B ( Definitions 10,

11 and 12 ) for a formal distinction among the two above mentioned approaches. 

While the presumptive reasoning solution can be modelled following previous proposals [12,14] , no polynomial time

algorithm of its application to ELO ⊥ seems to exist so far (see also Section 6 ). 

In this work, we rather investigate the second option. In order to model this kind of reasoning, we propose to introduce a

change in the interpretation of nominals. Our approach not only will allow us to model prototypical reasoning, but provides

us also with a simple way to use the decision procedure presented so far. An important side effect is that we can preserve

the polynomial time result for the subsumption problem. 

Specifically, our intuition is that reasoning about individuals in a defeasible framework means to assign to them proper-

ties that we only presume to hold. In order to model such a semantics, we interpret each individual (i.e., each nominal) not

as a singleton, but as a set of objects : each of them represents a possible instantiation of the individual, considering, on the

one hand, the information at our disposal, and, on the other, different possible levels of typicality. In this latter case, this

corresponds to consider different rankings of the individual (kind of ‘set of prototypes of an individual). 

The DL EL 〈O〉 ⊥ Formally, we introduce a new kind of nominal, referred to as defeasible nominal , and denoted with 〈 a 〉 ,
where a ∈ N O 

. The interpretation function ·I of an interpretation I is extended to defeasible nominals by mapping them

into sets, i.e. 

• 〈 a 〉 I ⊆ �I for every individual a ∈ N O 

. 

The defeasible version of ELO ⊥ , referred to as EL 〈O〉 ⊥ , is EL ⊥ extended with defeasible nominals: 

C, D → A | � | ⊥ | C � D | ∃ r.C | 〈 a 〉 . 
Our reasoning mechanism for EL 〈O〉 ⊥ under RC remains the same as EL ⊥ under RC (and the extension of RC we have

investigated in this work), simply by treating defeasible nominals as new classical atomic concepts in our procedures . 13 There-

fore, we will continue to use the entailment notation � rc also for the extension to defeasible nominals of our entailment

relation for RC. 

The following example illustrates the behaviour of the RC procedure applied to EL 〈O〉 ⊥ . 

Example 12. Consider the ontology in Example 3 extended with the axioms 〈 a 〉 � BRBC and 〈 b〉 � ARBC , dictating that

we know that a specific cell a is a red blood cell from a cow, while b refers to a red blood cell from a bird. Now, it can be

shown that, by applying the ranking procedure, we end up with the same partition of D as in Example 5 . That is 

T ∗ = { 〈 a 〉 � BRBC , 〈 b〉 � ARBC , BRBC � MRBC , 

ARBC � VRBC , MRBC � VRBC , ∃ hasN . � � NotN � ⊥ } 
D 0 = { VRBC 

� ∼∃ hasCM . � , VRBC 

� ∼∃ hasN . � } 
D 1 = { MRBC 

� ∼NotN } . 
12 A similar distinction was also made by Lehmann in the framework of propositional logic [41] . 
13 The interpretation of defeasible nominals as classical atomic concepts implies that some results required here and valid for EL ⊥ extend to EL 〈O〉 ⊥ 

too: namely, the FMP and FCMP properties defined for defeasible ALC ; also, the procedures Exceptional , ComputeRanking , RationalClosure and 

InheritanceBasedRationalClosure remain the same. 
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Moreover, as for Example 6 , we end up with the following entailments: 

T ∗δ0 
|� 〈 a 〉 � δ0 � ⊥ 

T ∗δ0 
�|� 〈 b〉 � δ0 � ⊥ 

T ∗δ1 
�|� 〈 a 〉 � δ1 � ⊥ . 

Hence we have that defeasible nominal 〈 a 〉 has rank 1 (the most prototypical instantiation of a must be of rank 1), while

〈 b 〉 has rank 0 (it is conceivably an instantiation of b in the lowest layer). 

We can now check whether 〈 a 〉 and 〈 b 〉 have a nucleus, following the same procedure as in Example 7 . Since 

T ∗δ1 
�|� 〈 a 〉 � δ1 � ∃ hasN . � 

T ∗δ1 
|� 〈 a 〉 � δ1 � notN 

T ∗δ0 
|� 〈 b〉 � δ0 � ∃ hasN . � , 

we can conclude now that presumably the cell a does not have a nucleus (i.e., 〈 a 〉 � ∼notN ), while b does (i.e., 〈 b〉 � ∼∃ hasN . � ).

Such an approach carries the risk to be incompatible with the classical part of our reasoning, where nominals are as-

sumed to be interpreted as singletons. Yet, we will show that the results in [35] , reported here as Propositions 1 and 2 ,

justify our reasoning about nominals by interpreting them as concepts, provided the safeness condition is satisfied. That is,

for nominal safe ontologies, the strict part of our knowledge behaves exactly as if we would have interpreted the nominals

as individuals (see Proposition 24 later on). 

To start with, given an EL 〈O〉 ⊥ concept (resp. GCI, ontology) α, we indicate with α{} the ELO ⊥ concept (resp. GCI,

ontology) obtained by substituting every occurrence of each defeasible nominal 〈 a 〉 with a nominal { a }. Vice-versa, given

an ELO ⊥ concept (resp. GCI, ontology) α, we indicate with α〈〉 the EL 〈O〉 ⊥ concept (resp. GCI, ontology) obtained by

substituting every nominal { a } by 〈 a 〉 . Now, it is easy to see that one transformation is the inverse of the other. That is, for

every EL 〈O〉 ⊥ expression α, α = (α{} ) 〈〉 , and for every ELO ⊥ expression α, α = (α〈〉 ) {} . 

The notion of safeness (see Section 2.1 ) is naturally extended to EL 〈O〉 ⊥ : 

• C is safe iff C {} is safe; 

• C is n-safe iff C {} is n-safe; 

• C � D is safe iff ( C � D ) {} is safe; 

• C 
� ∼D is safe iff C is n-safe and D is safe. 

Finally, a defeasible EL 〈O〉 ⊥ ontology K = 〈T , D〉 is nominal safe if it contains only safe axioms. 

Next, we address two aspects of using defeasible nominals that prove that using them instead of standard nominals does

not change the classical part of our reasoning, provided that the ontology is nominal safe. 

The first observation is about the ranking procedure. With respect to this point, we can naturally extend the notion of

exceptionality to nominals as follows. 

• A nominal { a } is exceptional w.r.t. an ELO ⊥ ontology K = 〈T , D〉 iff, for every ranked model R ∈ R 

K , { a } R ∩
min ≺R (�R ) = ∅ . 

• A defeasible nominal 〈 a 〉 is exceptional w.r.t. an EL 〈O〉 ⊥ ontology K = 〈T , D〉 iff, for every ranked model R ∈ R 

K , 〈 a 〉 R ∩
min ≺R (�R ) = ∅ . 
The respective notion of ranking r K follows the same definition from Section 2.2 . 

Now, we prove the correctness of the ranking procedure ComputeRanking extended to EL 〈O〉 ⊥ by treating defeasible

nominals as atomic concepts. In particular, we prove that the axioms that have infinite rank w.r.t. an EL 〈O〉 ⊥ ontology

correspond to the axioms that have infinite rank w.r.t. the correspondent ELO ⊥ ontology. Specifically, the following propo-

sitions can be shown. 14 

Proposition 20. For every n-safe ELO ⊥ concept C and every nominal safe ELO ⊥ ontology K = 〈T , D〉 , the following holds:

r K (C) = i iff r K 〈〉 (C 〈〉 ) = i . �

Proposition 21. For every n-safe EL 〈O〉 ⊥ concept C and every nominal safe EL 〈O〉 ⊥ ontology K = 〈T , D〉 , r K (C) = i iff

r N(K {} ) (N(C {} )) = i . 

From Propositions 20 and 21 it follows that the information of infinite rank w.r.t. an ELO ⊥ defeasible ontology K 

corresponds exactly to the information of infinite rank w.r.t. K 〈〉 . That is, 

Proposition 22. Let K = 〈T , D〉 be a nominal safe EL 〈O〉 ontology, with C 
� ∼D ∈ D . Then, the following are equivalent: 
⊥ 

14 See the RC ranking procedure at page 9 for the definition of the rank r K (C) of a concept C w.r.t. a knowledge base K, while see page 5 for the 

definition of N ( · ). 
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1. r K (C 
� ∼D ) = ∞ ; 

2. r K {} (C {} 
� ∼D {} ) = ∞ ; 

3. r N(K {} ) (N(C {} 
� ∼D {} )) = ∞ . �

An immediate consequence is that we can safely use ComputeRanking over EL 〈O〉 ⊥ ontologies to move the axioms with

infinite rank into the TBox. 

Corollary 23. Let K = 〈T , D〉 be a nominal safe EL 〈O〉 ⊥ ontology, with C 
� ∼D ∈ D . Let T • be the TBox obtained from K after

applying RC.Step 1 , while let (N(T {} )) ∗ be the TBox obtained from N(K {} ) using the ComputeRanking procedure. Then, the 

following are equivalent: 

1. C 
� ∼⊥ ∈ T • ; 

2. N(C {} 
� ∼⊥ ) ∈ (N(T {} )) ∗ ; 

3. r K {} (C {} 
� ∼D {} ) = ∞ . �

Propositions 20 –22 guarantee that the ranking of concepts (and nominals) done using an EL 〈O〉 ⊥ ontology corresponds

to the ranking over the correspondent ELO ⊥ ontology, while Corollary 23 guarantees that we are correct in using the

ComputeRanking procedure to distinguish the classical part of an ontology from the defeasible part (provided nominal safe-

ness is assumed). 

The next step is now to prove that the classical conclusions that we derive using defeasible nominals correspond to the

conclusions we would derive using classical nominals. So, let K {} = 〈T {} , D {} 〉 be an ELO ⊥ ontology and let D 

� 
{} , ∞ 

:= { C �
D | C � ∼D ∈ D {} and r K {} (C 

� ∼D ) = ∞} ; hence T {} ∪ D 

� 
{} , ∞ 

defines the classical part of the information contained in K {} . The

following holds. 

Proposition 24. Let K = 〈T , D〉 be a nominal safe EL 〈O〉 ⊥ ontology. For every safe GCI C � D , we have that the following are

equivalent: 

1. C � D is in the RC of K ; 

2. N ( C {} � D {} ) is in the RC of N(K {} ) ; 
3. T {} ∪ D 

� 
{} , ∞ 

|� C {} � D {} . �

This proves that, under the nominal safeness assumption (i) entailments about classical GCIs in EL 〈O〉 ⊥ are the same as

for ELO ⊥ ; (ii) all the decision procedures we have introduced in the previous sections can be applied without any change

to EL 〈O〉 ⊥ ontologies, provided that we replace defeasible nominals with fresh concept names ; and (iii) the results connected to

the computational complexity shown in the previous sections remain unchanged. That is, Propositions 14, 15 , and 19 remain

valid for nominal safe EL 〈O〉 ⊥ ontologies as well. 

In relation to the problematic Example 11 , 〈 a 〉 � ∼C is interpreted as ‘the most prototypical instantiation of a is an instance

of concept C ’, while 〈 b〉 � ∼C is interpreted as ‘the most prototypical instantiation of b is instance of C ’. That is, we are not

inferring that it is possible to have a model where we have at the same time a unique object representing the prototypical

a and a unique object representing the prototypical b (i.e., they are both in the lowest layer of the model), but rather that

both the most prototypical interpretation of a and the most prototypical interpretation of b are in the layer 0. The following

example illustrates the details. 

Example 13. Consider the ontology in Example 11 . Its translation in EL 〈O〉 ⊥ is K 〈〉 = 〈T 〈〉 , D 〈〉 〉 and, thus, 

T 〈〉 = { 〈 a 〉 � ∃ r. 〈 b〉 , C � D � ⊥} 
D 〈〉 = D = {� 

� ∼C, ∃ r.C 
� ∼D } . 

As for K, D 〈〉 is partitioned by the ranking procedure into D 0 = {� 

� ∼C} and D 1 = {∃ r.C � ∼D } . Now, both 〈 a 〉 and 〈 b 〉 have

rank 0 as 

T ∗〈〉 ,δ0 
�|� 〈 a 〉 � δ0 � ⊥ 

T ∗〈〉 ,δ0 
�|� 〈 b〉 � δ0 � ⊥ 

hold. Furthermore, as 

T ∗〈〉 ,δ0 
|� 〈 a 〉 � δ0 � C 

T ∗〈〉 ,δ0 
|� 〈 b〉 � δ0 � C 

hold, we can infer both 〈 a 〉 � ∼C and 〈 b〉 � ∼C . But now, as defeasible nominals are interpreted as atomic concepts, we cannot

infer 〈 a 〉 � ∼D anymore and, consequently, we do not derive 〈 a 〉 � ∼⊥ . 

Essentially, since defeasible nominals are interpreted as sets of individuals, we conclude that the most prototypical inter-

pretation of individual a is an instance of C , and the most prototypical interpretation of b is instance of C as well. However,
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we are not forced to relate through role r the most prototypical interpretation of a to the most prototypical interpretation

of b : in fact, as 〈 a 〉�∃ r . 〈 b 〉 holds, the most prototypical elements of 〈 a 〉 can be related to exceptional interpretations of b .

That is, to individuals of 〈 b 〉 with a rank higher than 0 and not being an instance of C . 

For further insights, we refer the reader to Appendix B and, specifically, to Proposition 32 . 

6. Related work 

While there has been extensive work by now related to non-monotonic DLs, such as [2,4,8,10,11,13,14,19,23,27,29,31,50] ,

we will focus here on low-complexity non-monotonic DLs extensions only. We refer the reader to e.g. [8,27] , in order to

avoid an unnecessary replication, for a general in-depth discussion on non-monotone DLs and their characteristics. Also,

but somewhat less related, are approaches based on some form of integration of non-monotone logic programs with DLs,

as [20,33,34,36,42–44,47] , although we will not address them here, except for those cases involving tractable computational

complexity. 

We believe that our results are significant. Indeed, let us recap that non-monotonic DLs extensions involving low-

complexity DLs, such as [5–7,9,12–16,19,21,24,25] , only in few cases the tractability of the underlying DL is preserved [5–

8,30] . 

Specifically, [7] considers circumscription in low-complexity DLs such as DL-Lite [1] and EL and identifies few fragments

whose computational complexity of the decision problem at hand is in PTime . That is, deciding subsumption, instance check-

ing and concept consistency decision problems are in PTime for Circ f ix (LL EL ) , i.e. Left Local EL ⊥ 15 under circumscription

with fixed atomic concepts. The same holds for Circ v ar ( EL ) , where all atomic concepts are varying as circumscription col-

lapses to classical EL reasoning. The work [5] follows the same spirit of [7] , by considering EL with default attributes ,

i.e. defeasible GCIs of the form A 

� ∼∃ r.B under circumscription with fixed atomic concepts, but where KBs are assumed to

be conflict safe and without assertions. In that case, [5] shows that one may determine the set of normalised concepts sub-

suming a given concept in polynomial time. These results have been extended in [6] , where EL 

++ [3] has been considered

in place of EL ⊥ , but requiring a further adaption of the conflict safe notion. In [8] a non-monotone extension of DLs is

proposed based on a notion of overriding and supporting normality concepts of the form N C that denote the prototypi-

cal/normal instances of a concept C . Defeasible GCIs are of the form C 
� ∼D, with a priority relation ≺ among such GCIs and

intended meaning: “normally the instances of C are instances of D , unless stated otherwise” meaning that higher-priority

defeasible GCI may override C 
� ∼D . A remarkable feature of this proposal is that the reasoning problems are tractable for any

underlying tractable classical DL, as the reasoning algorithm, as for our case, is built up on a sequence of DL subsumption

tests. 

In [30] , the DL SROEL (� , ×) R T is proposed, i.e. the DL SROEL (� , ×) [38] extended with typicality concepts T ( C ), whose

instances are intended to be the typical C elements. A defeasible GCI C 
� ∼D can be expressed in SROEL (� , ×) R T as T ( C ) � D ,

meaning that “the typical C elements are Ds”, but additionally, SROEL (� , ×) R T allows to express also e.g. D � T ( C ) (“the Cs

are typical elements of Ds”). In summary, in this work, the authors show that 

1. the instance checking problem under minimal entailment is �p 
2 

-hard for SROEL (� , ×) R T . 

2. the instance checking problem under rational entailment and rational closure 16 is in PTime for SROEL (� , ×) R T . The au-

thors propose to extend the Datalog set of rules for SROEL (� , ×) [38] with an appropriate set of stratified Datalog rules

with negation to deal with the typicality operator. Additionally, the authors point to the fact that the correspondence be-

tween the rational closure construction and the canonical minimal model semantics in [29] is lost if e.g. nominals occur

in an ontology and, thus, a semantical characterisation is missing so far. 

Let us note that a major difference with our approach is that we may rely entirely on an EL ⊥ reasoner as black box,

while this is not true for the Datalog encoding of SROEL (� , ×) R T , as in the latter case there are interacting rules between

rules dealing with defeasible knowledge and the set of rules for SROEL (� , ×) [38] . 

In [48] an extension of RC and Relevant Closure [15] for EL ⊥ has been proposed, in order to maximise also the typicality

of the concepts that are under the scope of an existential quantification. The proposal is in line with the expressivity of the

proposal in [8] , uses the ranking procedure defined for ALC as presented in Section 2.2 and, thus, the procedure does not

run in polynomial time. 17 

Concerning the somewhat related ‘hybrid’ approaches, i.e. those that in some way combine non-monotone logic pro-

grams with (low-complexity) DLs, there are some results that still preserve tractability (but only w.r.t. data complexity),

such as [20,33,34,36,42–44] . Very roughly, in these works data complexity tractability is preserved for some form of hy-

brid normal logic programs under some well-founded semantics, provided that the underlying DL has a tractable instance

checking procedure. 
15 Roughly, left-hand sides of GCIs contain no qualified existential restrictions and defeasible axioms are syntactically of the form A 
� ∼∃ r.B . 

16 In this case, a knowledge base has to be simple , i.e. the typicality operator T occurs on the left of a GCI only. 
17 By personal communication, we were informed that in [49] a similar construction as the one proposed in Equation (3) (and, thus, like the one proposed 

in [18] ) to determine exceptionality for EL ⊥ has been described. 
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7. Conclusions 

Contribution We have shown that the subsumption problem under RC in EL ⊥ can be decided in polynomial time, as is

the case for the monotone counterpart, via a polynomial number of classical EL ⊥ subsumption tests and, thus, can be imple-

mented by relying on any current reasoners for EL ⊥ . Furthermore, we have adapted the algorithm also to one refinement of

RC for DLs, Defeasible Inheritance-based Closure, that overcomes the drowning effect, a main RC’s inferential limit, showing

that the subsumption problem remains polynomial. We also have presented a novel, polynomial time decision procedure

to deal with nominals. To this end, we propose the introduction of the notion of defeasible nominals , which is compatible

with monotone classical nominal safe ELO ⊥ . The main result here is that we may still use the RC procedure presented

for EL ⊥ (and its extension) to deal with nominal safe ELO ⊥ without an increase in the computational complexity of the

subsumption problem. 

Future Work Concerning future work, one of our aims is to determine whether the subsumption problem under RC still

remains polynomial for various other tractable DLs such as those of the DL-Lite family [1] and those of the so-called Horn-DL

family [39] , which are at the core of the OWL 2 profiles OWL QL and OWL RL, respectively. Another direction is to implement

our method and test it in a similar way as done in [12,46] , where the latter confirmed that the use of DL reasoners as a

black box is scalable in practice. 
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Appendix A. Characteristic DL model for rational closure 

In [12, Section 5] the following DL model characterising rational closure for ALC is introduced. Let K = 〈T , D〉 be a

defeasible ontology and R 

K be the set of all the ranked models of K . Let � be any countable infinite domain, and R 

K 
�

be the set of ranked models of K that have � as domain. We can use the set of models R 

K 
�

to define a single model

characterising rational closure. Let R ∪ K = 〈 �R ∪ K , ·R ∪ K , ≺R ∪ K 〉 be a ranked model obtained in the following way. 

• For the domain �R ∪ K , we consider in �R ∪ K one copy of � for each model in R 

K 
�

. Specifically, given � = { x, y . . . } , we

indicate as �R = { x R , y R , . . . } a copy of the domain � associated with an interpretation R ∈ R 

K 
�

and define 

�R ∪ K = 

⋃ 

R ∈ R 

K 
�

�R . 

• The interpretation function and the preferential relation are defined referring directly to the models in R 

K 
�

. That is, for

every x R , y R ′ ∈ �R ∪ K , every atomic concept A and every role r , 

• x R ∈ A 

R ∪ K iff x ∈ A 

R ; 

• (x R , y R ′ ) ∈ r R 
∪ 
K iff R = R ′ and ( x , y ) ∈ r R ; 

• x R ≺R ∪ K y R ′ iff h R (x ) < h R ′ (y ) . 

It is easy to check by induction on the construction of the concepts that, for every x R ∈ �R ∪ K and every concept C , 

• x R ∈ C R 
∪ 
K iff x ∈ C R ; 

and that every individual x R ∈ �R ∪ K preserves its original height, that is, 

• h R ∪ K 
(x R ) = h R (x ) . 

R ∪ K is a ranked model characterising the Rational Closure of K [12, Theorem 4 and Corollary 1] . That is, given a KB

K = 〈T , D〉 , for every concept inclusion C 
� ∼D, 

C 
� ∼D is in the RC of K iff R 

∪ 
K |� C 

� ∼D. (A.1) 

Remark 10. From now on, given a set of ranked models S , we will indicate the model obtained using a procedure like the

one used here above as the ranked merge of the models in S . That is, R ∪ K is the ranked merge of the models in R 

K 
�

. 

In [12, Theorem 4] the correspondence of � rc with the model R ∪ K has been proved. That is, for every ALC KB K = 〈T , D〉
and every inclusion C 

� ∼D (resp. C � D ), K � rc C 
� ∼D (resp., K � rc C � D ) iff R ∪ K |� C 

� ∼D (resp., R ∪ K |� C � D ). 

In what follows we are going to prove that the above characterisation of RC using the model R ∪ K is equivalent to the one

introduced in [29] , which we will use then in Appendix B . The following results are valid for DL languages more expressive

than EL ⊥ , but not containing nominals, as e.g. for ALC . 

First we restrict our attention to a subset of the models in R 

K 
�

. Specifically, those that are: 

1. minimal w.r.t. the relation < , as defined in [29] and reported here as Definition 6 . 
2. canonical , as defined in [29] , which we report below for the sake of completeness. 
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Definition 9 ( [29] , Definition 24) . Let K = 〈T , D〉 be a knowledge base in defeasible ALC , and S be the set of concepts

appearing in K . A ranked model R = 〈 �R , ·R , ≺R 〉 of K is a canonical model if, for every set of concepts { C 1 , . . . , C n } ⊆ S 

consistent with K there is at least an x ∈ �R s.t. x ∈ (C 1 � . . . � C n ) R . 

Let min 

c 
< (R 

K 
�

) (resp. min 

c 
< (R 

K ) ) be the set of the minimal models in R 

K 
�

(resp. R 

K ) w.r.t. < that are also canonical.

The following proposition shows that, for every concept C , every canonical minimal model in R 

K associates to C the same

height. 

Proposition 25. For every R , R ′ in min 

c 
< (R 

K ) and every concept C , 

h R ′ (C) = h R (C) . 

Proof. Given two ranked interpretations R = 〈 �R , ·R , ≺R 〉 and R ′ = 〈 �R ′ , ·R ′ , ≺R ′ 〉 and an ontology K = 〈T , D〉 , let 	K be the

set of the subconcepts appearing in K and, for o ∈ �R , let [ o R K ] R ′ = { o ′ ∈ �R ′ | for every concept C ∈ 	, o ∈ C R iff o ′ ∈ C R 
′ } .

Also, let h R ′ ([ o R K ] R ′ ) = min { h R ′ (o ′ ) | o ′ ∈ [ o R K ] R ′ } . 
Assume to the contrary that there are two R, R ′ ∈ min 

c 
< (R 

K ) and a concept C s.t. h R ′ (C) < h R (C) . Since R , R ′ are canoni-

cal, this implies that for some o ∈ C R there is an object o ′ ∈ [ o R K ] R ′ s.t. h R ′ (o ′ ) < h R (o) . 

Let R ∗ = 〈 �R ∗ , ·R ∗ , ≺R ∗ 〉 be s.t. �R ∗ = �R , ·R ∗ = ·R , and, for every o ∈ �R ∗ h R ∗ (o) = min { h R (o) , h R ′ ([ o R K ] R ′ ) } . It is easy to

check that R ∗ is a model of K : first check by induction on the construction of the concepts that for every o ∈ �R ∗ and for

every concept C , o ∈ C R 
∗

iff o ∈ C R ; then it follows that for every strict inclusion C � D , R ∗�C � D iff R �C � D ; eventually, using

the definition of h R ∗ (o) , we can prove that for every C 
� ∼D ∈ D, h R ∗ (C � D ) < h R ∗ (C � ¬ D ) or h R ∗ (C) = ∞ . So R ∗ is a model

of K and R ∗ < R , against the hypothesis that R ∈ min 

c 
< (R 

K ) . �

We can prove easily that also the following lemma holds. Let R 
∪ c , min 
K be the ranked merge of min 

c 
< (R 

K 
�

) . 

Lemma 26. For every KB K = 〈T , D〉 and every concept C , 

h R ∪ K (C) = h 

R 
∪ 
c , min 

K 
(C) . 

Proof. For every concept C , h R ∪ K 
(C) = h R (C) for some R ∈ min < (R 

K 
�

) , that is, some R ∈ R 

K 
�

that is minimal w.r.t. < . We

have to prove that if there is a model R ∈ min < (R 

K 
�

) s.t. h R ∪ K 
(C) = h R (C) , then there must be a model R ′ ∈ min 

c 
< (R 

K 
�

) s.t.

h R ∪ K 
(C) = h R ′ (C) . 

Let R ∗ be a model in min 

c 
< (R 

K 
�

) , and R ∗∗ be the ranked merge of R and R ∗; it is easy to prove that R ∗∗ is still a model

of K, and in particular it must be a minimal canonical model of K : it must be minimal, otherwise R and R ∗ would not be

minimal, and it must be canonical, since R ∗ is canonical. Hence, for every concept C , h R ∗∗ (C) = min { h R (C ) , h R ∗ (C ) } ≤ h R ∪ K 
(C) ,

and, since R ∗ is merged into R ∪ K , h R ∗∗ (C) = h R ∪ K 
(C) . Also, the domain of R ∗∗, �R ∗∗

, must be countably infinite, since it is

obtained by merging two countably infinite domains. 

Since �R ∗∗
is countably infinite, we can define a bijection b between �R ∗∗

and �, and using b we can define a model

R ∗∗
�

corresponding to R ∗∗ but having � as domain (that is, for every C 
� ∼D, R ∗∗ |� C 

� ∼D iff R ∗∗
�

|� C 
� ∼D ); it is sufficient to

define ·R ∗∗
� as: 

• for every A ∈ N C 

, A 

R ∗∗
� = { o ∈ � | b −(o) ∈ A 

R ∗∗ } ; 
• for every r ∈ N R 

, r R 
∗∗
� = { (o, o ′ ) ∈ � × � | (b −(o) , b −(o ′ )) ∈ r R 

∗∗ } ; 
and for every o ∈ �, set h R ∗∗

�
(o) = h R ∗∗ (b −(o)) . R ∗∗

�
must be in min 

c 
< (R 

K 
�

) and h R ∗∗
�

(C) = h R ∪ K 
(C) . 

So, for every concept C there is a model R ′ ∈ min 

c 
< (R 

K 
�

) s.t. h R ′ (C) = h R ∪ K 
(C) . By Proposition 25 , that implies that h R (C) =

h R ∪ K 
(C) for every R ∈ min 

c 
< (R 

K 
�

) , that in turn implies that h 
R 

∪ 
c , min 

K 
(C) = h R ∪ K 

(C) for every concept C . �

From Lemma 26 and Definition 2 it follows that RC can be characterised merging the minimal canonical models of K 

having � as domain. 

Proposition 27. For every inclusion C 
� ∼D, 

R 

∪ 
K |� C 

� ∼D iff R 

∪ c , min 

K |� C 
� ∼D 

Expression A.2 here below corresponds to the semantic characterisation of RC for ALC presented in [27,29] . For every

KB K = 〈T , D〉 and every inclusion C 
� ∼D, 

C 
� ∼D is in the RC of K iff R |� C 

� ∼D, for every R ∈ min 

c 

< (R 

K ) . (A.2)

In particular, Expression A.2 is a rephrasing in our framework of Theorem 8 in [29] . We want to prove that, indeed,

our characterisation of RC (Expression A.1 ) is equivalent to the one presented in [29] (Expression A.2 ). First, we prove that,

starting from the Expression A.2 , we can restrict our attention only to the minimal canonical models in R 

K 
�

( Lemma 28 );

then ( Proposition 29 ) we are going to prove that such a characterisation corresponds to the one using R 
∪ c , min . 
K 
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Lemma 28. For every canonical model R of a KB K = 〈T , D〉 , there is a canonical model R � of K that has a countably infinite

domain � and s.t. for every inclusion axiom C 
� ∼D, R |� C 

� ∼D iff R � |� C 
� ∼D . 

Proof. Let R = 〈 �R , ·R , ≺R 〉 be a canonical model of K . The possible cases are three. 

1. �R is countably infinite. Then we can build an equivalent model having � as domain and preserving the height of each

concept (see the proof of Lemma 26 ). 

2. �R is finite. Then we can build an equivalent model with a countably infinite domain: just make a countably infinite

number of copies of R and rank-merge them in a single model (that preserves the height of each concept). Then the

result follows from case 1. 

3. �R is uncountably infinite. Also, in this case we can build an equivalent model with a countably infinite domain. To

build it we can use the Finite Model Property (FMP, [12, Theorem 7] ) and the Finite Counter-Model Property (FCMP, [12,

Proposition 15] ) that hold for defeasible ALC . The latter indicates that, if there is a model of an ontology K that does

not satisfy an inclusion C 
� ∼D, then there is a finite model of K that does not satisfy C 

� ∼D . 

FMP and FCMP are based on the following construction [12, pp. 78-79] : let 	 be a set of concepts { C 1 , . . . , C n } s.t. 	 is

obtained closing under sub-concepts and negation the concepts appearing in K (plus the concepts C and D , if we are

looking for a model of K that also falsifies C 
� ∼D ). Now we define the equivalence relation ∼	 as 

∀ x, y ∈ �R , x ∼	 y iff ∀ C ∈ 	, x ∈ C R iff y ∈ C R . 

We indicate with [ x ] 	 the equivalence class of the individuals that are related to an individual x through ∼	 : 

[ x ] 	 = { y ∈ �R | x ∼	 y } . 
We introduce a new model R ′ = 〈 �R ′ , ·R ′ , ≺R ′ 〉 , defined as: 

• �R ′ = { [ x ] 	 | x ∈ �R } ; 
• for every A ∈ N C 

∩ 	, A 

R ′ = { [ x ] 	 | x ∈ A 

R } ; 
• for every A / ∈ N C 

∩ 	, A 

R ′ = ∅ ; 
• for every r ∈ N R 

, r R 
′ = {〈 [ x ] 	, [ y ] 	〉 | 〈 x, y 〉 ∈ r R } ; 

• For every [ x ] 	, [ y ] 	 ∈ �R ′ , [ x ] 	 ≺R ′ [ y ] 	 if there is an object z ∈ [ x ] 	 s.t. for all v ∈ [ y ] 	, z ≺R v ; 
• for every a ∈ N I , a R 

′ = [ x ] 	 iff a R = x . 

It is easy to see that this construction gives back a ranked interpretation that preserves the relative height of the con-

cepts, that is, for every C , D ∈ 	, h R ′ (C) ≤ h R ′ (D ) iff h R ( C ) ≤ h R ( D ). Also, since the set S in Definition 9 is a subset of 	,

also canonicity is preserved. 

Now, given the model R , let 
� ∼−

R = { C � ∼D | R �|� C 
� ∼D } . Since we have assumed a finitely generated vocabulary (see

Section 2.1 ), we will have a countably infinite number of inclusion statements that can be generated (this can be proven

using some Gödel-style numerical encoding of the inclusions); hence 
� ∼−

R must be countably infinite too (it cannot be a

finite set, since it is easy to check that for every inclusion there is in our language an infinite number of inclusions that

are logically equivalent to it). 

For each inclusion C 
� ∼D in 

� ∼−
R , take a finite model R 

C 
� ∼D 

of K that falsifies C 
� ∼D . Let R ∗ be the interpretation obtained

by merging all the models R 
C 

� ∼D 
, with C 

� ∼D ∈ 

� ∼−
R . It is easy to check that R ∗ is a model of K that satisfies the desired

constraints and has a countably infinite domain (it is obtained by merging a countably infinite number of finite models).

Then, the result follows from case 1. 

�

We can now prove that in Expression A.2 we can restrict our attention from all the minimal canonical models of an

ontology K (that is, the minimal canonical models in R 

K ) to the minimal canonical models of K having � as domain

(that is, the minimal canonical models in R 

K 
�

). Indeed, the following proposition follows immediately from Lemma 28 . 

Proposition 29. For every KB K = 〈T , D〉 and every inclusion C 
� ∼D, R |� C 

� ∼D for every model R ∈ min 

c 
< (R 

K ) iff R ′ |� C 
� ∼D 

for every model R ′ ∈ min 

c 
< (R 

K 
�

) . 

Now, the correspondence between our semantics for RC (Expression A.1 ) and the one presented in [29] (Expression A.2 )

follows. 

Proposition 30. model R ∈ min 

c 
< (R 

K ) if and only if R ∪ K |� C 
� ∼D . Expression A.1 and Expression A.2 are equivalent. 

Proof. The following holds: 

C 
� ∼D is in the RC of K iff R 

∪ 
K |� C 

� ∼D (ExpressionA. 1) 

iff R 

∪ c , min 

K |� C 
� ∼D (P roposition 27) 

iff R |� C 
� ∼D for every R ∈ min 

c 

< (R 

K 
�) (P roposition 25) 
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iff R |� C 
� ∼D for every R ∈ min 

c 

< (R 

K ) (P roposition 29) 

iff C 
� ∼D is in the RC of K (accordingtoExpressionA. 2) , 

which concludes. �

Appendix B. Prototypicalreasoning over the individuals 

As shown in Example 11 , once we introduce presumptive reasoning involving individuals, we are faced with the possibil-

ity of multiple minimal configurations. Such an observation allows us to distinguish two kinds of reasoning concerning the

individuals (see Section 5 ): one is a presumptive reasoning, modelled by a skeptical approach that takes under consideration

what holds in all the most typical situations satisfying our KB; the second possible approach is to take under consideration

only the most typical instantiations of the individual we are interested in. That is, we attribute presumptively a property C

to an individual a if a falls under C in all the models in which a is interpreted in the most prototypical way. Given a nominal

safe ELO ⊥ ontology K = 〈T , D〉 and an individual a ∈ N O 

, the latter kind of reasoning would correspond to taking under

consideration only those minimal models of K in which also the interpretation of a is minimal. 

In Appendix A we have modelled our reasoning using R ∪ K , R 
∪ c , min 
K , or, equivalently, min 

c 
< (R 

K 
�

) , that are equivalent

options to characterise the RC of a KB, if we do not allow nominals. 

We can extend the definition of < , and hence the definition of min 

c 
< (R 

K 
�

) , also to languages containing nominals. As

Example 11 shows, Proposition 25 does not hold for the minimal models of ontologies that have also nominals: in such an

example we would have that in some minimal models { a } is interpreted on layer 0 and { b } on layer 1, and in other minimal

models the other way around. Therefore, in presence of nominals, we have two options regarding the kind of minimality we

want to use. On one hand we can continue to use a notion of entailment relation �rc built using the entire set of models in

min 

c 
< (R 

K 
�

) as done in [12,14] . That is: 

Definition 10. K |�rc C 
� ∼D iff R |� C 

� ∼D for every R ∈ min 

c 
< (R 

K 
�

) . 

Another option, and which is what we are going to analyse here, is more appropriate for modelling prototypical reason-

ing. If we are investigating about which properties are to be associated to the prototype of a certain individual a , we consider

only the minimal models in which a is interpreted in the lowest possible layer. That is, if we are wondering whether some

inclusion { a } � ∼C holds, we do not refer to all the models in min 

c 
< (R 

K 
�

) , but only to those models in which the individ-

ual a is interpreted at its minimal height. Specifically, let us define R ∈ min 

c ,a 
< (R 

K 
�

) iff R ∈ min 

c 
< (R 

K 
�

) and h R (a ) ≤ h R ′ (a ) 

for every R ′ ∈ min 

c 
< (R 

K 
�

) . Based on this notion, we can now define a different consequence relation |�′ 
rc to reason about

nominals. 

Definition 11. K |�′ 
rc { a } � ∼C iff a R ∈ C R for every R ∈ min 

c ,a 
< (R 

K 
�

) . 

To illustrate the difference between |�′ 
rc and �rc , consider the knowledge base in Example 11 . According to |�′ 

rc we

consider only the models in which a is at rank 0 if we are asking something about a (for example, whether the prototype of

a satisfies C ), while we consider only the models in which b is at rank 0, if we are asking something about b (for example, if

the prototype of b satisfies C ). According to �rc , we neither can conclude that presumably a satisfies C nor that presumably b

satisfies C (each of them is falsified in some typical situations), while according to |�′ 
rc we can conclude that the prototypes

of both a and b satisfy C (in the preferred situations w.r.t. a , a falls under C , and analogously for b ). 

We can generalise the definition of |�′ 
rc to the entire language of nominal-safe ELO ⊥ . Specifically, given a nominal safe

ontology K = 〈T , D〉 , a ranked model R of K, and an n-safe concept C , let us define R ∈ min 

c ,C 
< (R 

K 
�

) iff R ∈ min 

c 
< (R 

K 
�

) 

and for every model R ′ ∈ min 

c 
< (R 

K 
�

) , h R (C) ≤ h R ′ (C) . Then, Definition 11 can be generalised as follows. 

Definition 12. Given a nominal safe ELO ⊥ ontology K = 〈T , D〉 and a safe inclusion C 
� ∼D, K |�′ 

rc C 
� ∼D iff min ≺R (C R ) ⊆ D 

R 

for every R ∈ min 

c ,C 
< (R 

K 
�

) . 

Note that if we are not using nominals, that is, we are using EL ⊥ , there is no difference between �rc and |�′ 
rc , since

they both correspond to RC entailment. 

Proposition 31. Given a defeasible EL ⊥ ontology K = 〈T , D〉 and an EL ⊥ inclusion C 
� ∼D, then K |�′ 

rc C 
� ∼D iff K |�rc C 

� ∼D iff

K � rc C 
� ∼D . �

Proof. The correspondence between |�′ 
rc and �rc in EL ⊥ is an immediate consequence of Proposition 25 . The correspon-

dence between � rc and Expression A.1 has been proved in [12, Theorem 4] , Proposition 30 proves the correspondence be-

tween Expression A.1 and Expression A.2 , and Expression A.2 corresponds to �rc by Definition 10 . �

We can now prove that the decision procedure defined in Section 5 using defeasible nominals corresponds to prototypical

reasoning over the individuals, that is, it corresponds exactly to |�′ 
rc . 

Proposition 32. Let K = 〈T , D〉 be a nominal safe ELO ⊥ ontology. For every safe C 
� ∼D, K |�′ 

rc C 
� ∼D iff K 〈〉 � rc C 〈〉 

� ∼D 〈〉 . 
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Proof. Since K 〈〉 and C 〈〉 
� ∼D 〈〉 are EL ⊥ expressions, by Proposition 31 , K 〈〉 � rc C 〈〉 

� ∼D 〈〉 iff K 〈〉 |�′ 
rc C 〈〉 

� ∼D 〈〉 . So, it is sufficient

to prove that for every safe C 
� ∼D, K |�′ 

rc C 
� ∼D iff K 〈〉 |�′ 

rc C 〈〉 
� ∼D 〈〉 . 

( ⇐ ). Assume K 〈〉 |�′ 
rc C 〈〉 

� ∼D 〈〉 . Consider each model R in min 

c ,C 
< (R 

K ) and extend its interpretation function · R by impos-

ing that, for every a ∈ N O 

, 〈 a 〉 R = { a } R : R becomes also a model of K 〈〉 and it must hold that R ∈ min 

c ,C 〈〉 
< (R 

K 〈〉 ) . Assume

the latter is not the case: then there is an R ∗ ∈ min 

c ,C 〈〉 
< (R 

K 〈〉 ) s.t. R ∗ < R ; extend ·R ∗ s.t., for every a ∈ N O 

, { a } R ∗ = 〈 a 〉 R ∗
(Since R ∗ < R , it must be 〈 a 〉 R ∗ = 〈 a 〉 R , hence also in R ∗ every defeasible nominal is interpreted into a single object), and

then we have R ∗ ∈ R 

K with R ∗ < R , contrary to the assumption R in min 

c ,C 
< (R 

K ) . 

Therefore, since every R in min 

c ,C 
< (R 

K ) is also in min 

c ,C 〈〉 
< (R 

K 〈〉 ) , K 〈〉 |�′ 
rc C 〈〉 

� ∼D 〈〉 implies that R |� C 〈〉 
� ∼D 〈〉 and, since in

every such R , for every a ∈ N O 

, 〈 a 〉 R = { a } R , R |� C 
� ∼D follows and we can conclude K |�′ 

rc C 
� ∼D . 

( ⇒ ). Assume K 〈〉 �|�′ 
rc C 〈〉 

� ∼D 〈〉 . We need to prove that K �|�′ 
rc C 

� ∼D . 

K 〈〉 �|�′ 
rc C 〈〉 

� ∼D 〈〉 implies that there is a model R = 〈 �R , ·R , ≺R 〉 in min 

c ,C 〈〉 
< (R 

K 〈〉 ) s.t. R �|� C 〈〉 
� ∼D 〈〉 , and we need to prove

that there is a model R ∗ in min 

c ,C 
< (R 

K ) s.t. R ∗ �|� C 
� ∼D . 

From R we define a ranked interpretation R ′ = 〈 �R ′ , ·R ′ , ≺R ′ 〉 using the procedure explained in the proof of Lemma 34 .

Specifically, 18 

• �R ′ = { x •E , x E | R �|� E � ⊥ , where E is a safe EL 〈O〉 ⊥ concept } ∪ { x 〈 a 〉 | a ∈ N O 

} ; 
• 〈 a 〉 R ′ = { x 〈 a 〉 ∈ �R ′ } , for every defeasible nominal 〈 a 〉 ; 
• A 

R ′ = { x E ∈ �R ′ | R |� E � A } ∪ { x •E ∈ �R ′ | R |� E 
� ∼A } ∪ { x 〈 a 〉 ∈ �R ′ | R |� 〈 a 〉 � ∼A } , for every safe EL 〈O〉 ⊥ concept E , every

defeasible nominal 〈 a 〉 , and every atomic EL ⊥ concept A ; 

• r R 
′ = {〈 x E , x F 〉 ∈ �R ′ × �R ′ | R |� E � ∃ r.F } ∪ {〈 x •E , x F 〉 ∈ �R ′ × �R ′ | R |� E 

� ∼∃ r.F } ∪ {〈 x 〈 a 〉 , x F 〉 ∈ �R ′ × �R ′ | R |� 〈 a 〉 � ∼∃ r.F } , 
for every safe EL 〈O〉 ⊥ concepts E and F , and every defeasible nominal 〈 a 〉 ; 

• h R ′ (x •E ) = h R (E) , for every x •E ∈ �R ′ ; 

• h R ′ (x 〈 a 〉 ) = h R ( 〈 a 〉 ) , for every defeasible nominal 〈 a 〉 ; 
• x •F ≺R ′ x E for every x •F , x E ∈ �R ′ . 

We have proved in the proof of Lemma 34 that R ′ is still a model of K 〈〉 . Specifically, for every pair of safe EL 〈O〉 ⊥ 
concepts E , F , we have 

1. R �E � F and R �|� E � ⊥ iff x E ∈ F R 
′ 

; 

2. R |� E 
� ∼F and R �|� E � ⊥ iff x •E ∈ F R 

′ 
. 

And, for every pair 〈 a 〉 , E where a ∈ N O 

and E is safe , we have, 

3. R |� 〈 a 〉 � ∼E iff x 〈 a 〉 ∈ E R 
′ 

. 

This implies that for every safe concept E such that R �|� E � ⊥ , x •E , x E ∈ E R 
′ 
, and for every 〈 a 〉 , 〈 a 〉 R ′ = { x 〈 a 〉 } . Moreover,

by construction of R ′ , for every safe concept E 〈〉 , x E ∈ min 

R ′ 
≺ (E R 

′ 
〈〉 ) (otherwise it is easy to obtain a contradiction using 2. and

3.) and, consequently, h R ′ (E 〈〉 ) = h R (E 〈〉 ) . We can conclude that R ′ is a model of K 〈〉 s.t. R ′ �|� C 〈〉 
� ∼D 〈〉 . Since in R ′ every

defeasible nominal 〈 a 〉 is interpreted into a single object, extending ·R ′ by imposing that, for every a ∈ N O 

, { a } R ′ = 〈 a 〉 R ′ =
{ x 〈 a 〉 } , we can conclude that R ′ is a model of K s.t. R ′ �|� C 

� ∼D, that is, there is an object o s.t. o ∈ min ≺R ′ (C R 
′ 
) and o / ∈ D 

R ′ 

. 

If R ′ is in min 

c ,C 
< (R 

K ) , we conclude our proof. It could be that R ′ / ∈ min 

c ,C 
< (R 

K ) , and, in case, we need to prove that the

existence of R ′ implies the existence of another model R ∗ s.t. R ∗ �|� C 
� ∼D with R ∗ in min 

c ,C 
< (R 

K ) . 

So, let R ∗ be a model in min 

c ,C 
< (R 

K ) and such that R ∗ < R ′ ; we have to prove that R ∗ �|� C 
� ∼D . 

As above, extend ·R ∗ for defeasible nominals by imposing that, for every a ∈ N O 

, { a } R ′ = 〈 a 〉 R ′ = { x 〈 a 〉 } = { x 〈 a 〉 } . R ∗ is a

model of K 〈〉 and R ∗ ∈ min 

c ,C 
< (R 

K ) implies R ∗ ∈ min 

c ,C 〈〉 
< (R 

K 〈〉 ) (as shown in the ( ⇐ )-part of this proof). 

By Proposition 25 , since R and R ∗ are both in min 

c ,C 〈〉 
< (R 

K 〈〉 ) , for every safe concept E 〈〉 it holds h R ∗ (E 〈〉 ) = h R (E 〈〉 ) . We

have already seen that for every safe concept E 〈〉 , h R ′ (E 〈〉 ) = h R (E 〈〉 ) . 
Hence we can conclude that, for every safe concept E 〈〉 , h R ∗ (E 〈〉 ) = h R ′ (E 〈〉 ) , that is, for every safe concept E , h R ∗ (E) =

h R ′ (E) . Remember that object o , introduced above, is an object s.t. o ∈ min ≺R ′ (C R 
′ 
) (that is, h R ′ (o) = h R ′ (C) ) and o / ∈ D 

R ′ .

We have the following: 

• h R ∗ (C) = h R ′ (C) ; 
∗ ′ R ∗ R ∗
• since R < R , o ∈ C , o / ∈ D , and h R ∗ (o) ≤ h R ′ (o) . 

18 Recall that we introduce x • E as an object that represents a typical instance of the concept E , while x E represents an atypical instance of the concept E . 
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So, it must be h R ∗ (o) = h R ′ (o) = h R ′ (C) = h R ∗ (C) , that is, also in R ∗ it is the case that o ∈ min ≺R ∗ (C R 
∗
) and o / ∈ D 

R ∗ . 

Therefore, we can conclude that R ∗ ∈ min 

c ,C 
< (R 

K ) with R ∗ �|� C 
� ∼D, and, thus, K �|�′ 

rc C 
� ∼D . �

Appendix C. Various proofs 

Proposition 3 and 4 can be derived from the result [12, Proposition 7] . However, since there are no proper statements and

proofs of them, we add them here for convenience. 

Proposition 3 For every concept C and every ontology K = 〈T , D〉 , if 
T |� �{¬ E � F | E � ∼F ∈ D} � ¬ C (C.1)

then C is exceptional w.r.t. K . 

Proof. Let K = 〈T , D〉 be an ontology, and assume that T |� �{¬ E � F | E � ∼F ∈ D} � ¬ C, but C is not exceptional w.r.t. K .

The latter means that there is a ranked interpretation R such that it is a model of K and there is an object o in the lower

layer L R 
0 

of R s.t. o ∈ C R . However, since R is a model of K and o is in the lower layer, for every axiom E 
� ∼F ∈ D it must be

that either o �∈ E R or o ∈ F R . That is , o ∈ (�{¬ E � F | E � ∼F ∈ D} � C) , against T |� �{¬ E � F | E � ∼F ∈ D} � ¬ C . �

Proposition 4 Given an ontology K 

• = 〈T •, D 

•〉 , obtained from the application of RC.Step 1 to an ontology K = 〈T , D〉 , for

every concept C , then 

T • |� �{¬ E � F | E � ∼F ∈ D 

•} � ¬ C 

if and only if C is exceptional w.r.t. K 

• . 

Proof. Let K 

• = 〈T •, D 

•〉 be specified as in the statement. One half of the statement is valid due to Proposition 3 . We have

to prove the other half. 

Assume C is exceptional w.r.t. K 

•, but T • �|� �{¬ E � F | E � ∼F ∈ D 

•} � ¬ C . Then there is a classic DL interpretation M =
〈 �M , ·M 〉 that is a model of T • and such that there is an object o ∈ (�{¬ E � F | E � ∼F ∈ D 

•} � C) M . 

Now consider the canonical model of the RC of K 

•, R ∪ K • = 〈 �R ∪ K • , ·R ∪ K • , ≺R ∪ K • 〉 , built as described in Appendix A (see

also [12] ). Define a ranked interpretation R ′ = 〈 �R ′ , ·R ′ , ≺R ′ 〉 in the following way: 

• �R ′ = �R ∪ K • ∪ �M ; 

• for every atomic concept A , A 

R ′ = A 

R ∪ K • ∪ A 

M ; 

• for every role r , r R 
′ = r R 

∪ 
K • ∪ r M ; 

• for every x ∈ �R ∪ K • , h R ′ (x ) = h R ∪ K •
(x ) ; 

• for every x ∈ �M , h R ′ (x ) = i, if i is the lowest value s.t. x ∈ ( H i ) 
M , 

where D 

•
0 
, . . . , D 

•
n is the partition of D 

• obtained by RC.Step 1 and H i = �{¬ E � F | E � ∼F ∈ D 

•
i 

∪ . . . ∪ D 

•
n } , as defined in

RC.Step 2 . 

By induction on the construction of the concepts, it is easy to see that for every concept C and for every x ∈ �R ′ , x ∈ C R 
′

iff either x ∈ �M and x ∈ C M or x ∈ �R ∪ K • and x ∈ C R 
∪ 
K • . Hence R ′ is a model of T • . Now we show that it is also a model

of D 

• . Assume that there is an axiom E 
� ∼F ∈ D 

• s.t. R ′ �|� E 
� ∼F ; in particular, let E 

� ∼F ∈ D 

•
i 

for some i . That is, there is

an object p ∈ �R ′ s.t. p ∈ min ≺
R ′ (E R 

′ 
) and p ∈ (E � ¬ F ) R 

′ 
. As R ∪ K • is a model of K 

•, it must be that p ∈ �M . Due to our

construction of R ′ , it must be h R ′ (p) > i . As R ∪ K • is a minimal canonical model of the RC of K 

• and E 
� ∼F ∈ D 

•
i 
, it must be

the case that h R ∪ K •
(E) = i and h R ∪ K •

(E � F ) = i (it follows immediately from [12, Proposition 7] , which by construction of R ′

implies h R ′ (E) = i and h R ′ (E � F ) = i . Hence it cannot be the case that p ∈ min ≺
R ′ (E R 

′ 
) . Therefore, R ′ must be a model of

K 

• . 

As a consequence, we end up with an interpretation R ′ that is a ranked model of K 

•, and such that there is an object

o ∈ (�{¬ E � F | E � ∼F ∈ D 

•} � C) R 
′ 

. Due to our construction of R ′ , the fact that o satisfies �{¬ E � F | E � ∼F ∈ D 

•} , that is, H 0 ,

implies that h R ′ (o) = 0 . Therefore, R ′ is a ranked model of K 

• that has an object satisfying C in the lower layer. Hence C

cannot be exceptional w.r.t. K 

•, and we have a contradiction. �

Proposition 7 A classical GCI C � D is in the RC of K = 〈T , D〉 iff T • |� C � D, where T • has been computed using RC.Step 1

. �

Proof. C � D is in the RC of K = 〈T , D〉 iff also C �¬D �⊥ is in it, that is, iff C � ¬ D 

� ∼⊥ is in the RC of K = 〈T , D〉 . 
By RC.Step 2 , C � ¬ D 

� ∼⊥ is in the RC of K = 〈T , D〉 iff one of two following conditions are satisfied: 

• there is a concept H i , as defined in RC.Step 2 in Section 2.2 , such that 

T • �|� H i � ¬ (C � ¬ D ) and 

T • |� (C � ¬ D ) � H i � ⊥ , 

that is an impossible occurrence; 
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• H C�¬ D = � and, thus, T • |� (C � ¬ D ) � ⊥ , and this must be the case. 

�

The proofs of Propositions 9 –12 are immediate once we prove the following lemma. 

Lemma 33. Consider any DL that is closed under boolean operators. Given a finite set of defeasible axioms D and a concept C ,

the following two subsumption tests are equivalent: 

T |� �{¬ E � F | E � ∼F ∈ D} � ¬ C (C.2) 

T ∪ { E � δD � F | E � ∼F ∈ D} |� C � δD � ⊥ . (C.3) 

where δD is a new atomic concept. 

Proof. It is easily verified that (C.2) is equivalent to 

T |� C � � 

E 
� ∼F ∈D (¬ E � F ) � ⊥ . (C.4) 

Therefore, it suffices to show the equivalence among (C.4) and (C.3) . 

So, assume (C.4) holds and assume to the contrary that (C.3) does not hold. Then there is an interpretation I such that

I |� T , I |� E � δD � F , for all E 
� ∼F ∈ D and o ∈ (C � δD ) I for some o ∈ �I , i.e., o ∈ C I and o ∈ δI D . But, I |� E � δD � F 

means that �I = (¬ E � ¬ δD � F ) I . As o ∈ δI D , o ∈ (¬ E � F ) I follows. It follows that 

o ∈ (C � � 

E 
� ∼F ∈D (¬ E � F )) I , (C.5) 

which is absurd as (C.4) holds by assumption 

Conversely, assume that (C.3) holds and assume to the contrary that (C.4) does not hold. Therefore, there is an interpre-

tation I such that I |� T and (C.5) holds for some o ∈ �I . Now, extend I to δD by setting 

δI 
D = (� 

E 
� ∼F ∈D (¬ E � F )) I . 

Note that o ∈ δI D . Then, by construction I |� E � δD � F , for all E 
� ∼F ∈ D holds. Therefore, I is a model of the antecedent

in (C.3) with o ∈ (C � δD ) I , which is absurd as (C.3) holds by assumption. �

Proposition 9 For every concept C and every ontology K = 〈T , D〉 , if 
T δD |� C � δD � ⊥ , (C.6) 

where δD is a new atomic concept, then C is exceptional w.r.t. K . 

Proof. It is an immediate consequence of Lemma 33 and Proposition 3 . �

Proposition 10 Consider an ontology K = 〈T , D〉 . Then ComputeRanking (K) returns the ontology 〈T ∗, D 

∗〉 , where D 

∗ is

partitioned into a sequence D 0 , . . . , D n , where T ∗, D 

∗ and all D i are equal to the sets T •, D 

• and D 

•
0 
, . . . , D 

•
n obtained via

RC.Step 1 . �

Proof. By Lemma 33 , e (T ′ , E ′ ) is the same set retuned by Exceptional (T ′ , E ′ ) , for any T ′ and E ′ . Now, the only difference

between RC.Step 1 and ComputeRanking procedures is in the way to compute the exceptional concepts. But, since these are

the same, ComputeRanking (K) returns the ontology 〈T ∗, D 

∗〉 , where D 

∗ is partitioned into a sequence D 0 , . . . , D n , where

T ∗, D 

∗ and all D i are equal to the sets T •, D 

• and D 

•
0 
, . . . , D 

•
n obtained via RC.Step 1 . �

Proposition 11 Given an ontology K 

∗ = 〈T ∗, D 

∗〉 , obtained from the application of the procedure ComputeRanking to an

ontology K = 〈T , D〉 , for every concept C , 

T ∗δD ∗ |� C � δD ∗ � ⊥ , 

if and only if C is exceptional w.r.t. K 

∗ . 

Proof. It is an immediate consequence of Lemma 33, Proposition 4 and Proposition 10 . �

Proposition 12 By referring to Remark 7 , the subsumption test ( 6 ) (resp. 7 ) is equivalent to the subsumption test ( 8 ) (resp. 9 ). 

Proof. As in Sections 2.2 and 3 , E i = D i ∪ . . . ∪ D n and H i = �{¬ E � F | E � ∼F ∈ E i } . We have to show that both the two sub-

sumption tests 

T ∗ �|� H i � ¬ C (C.7) 

T ∗ ∪ { E � δ � F | E � ∼F ∈ E } �|� C � δ � ⊥ (C.8) 
i i i 
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are equivalent, and that 

T ∗ |� C � H i � D (C.9)

T ∗ ∪ { E � δi � F | E � ∼F ∈ E i } |� C � δi � D (C.10)

are equivalent. The proof is essentially the same as for Lemma 33 . For illustrative purpose, we show that (C.7) and (C.8) are

equivalent. The other case can be shown in a similar way. 

Assume (C.7) holds. Let us show that (C.8) holds as well. By (C.7) , there is a model I of T ∗ with 

o ∈ (C � � 

E 
� ∼F ∈E i 

(¬ E � F )) I , (C.11)

for some o ∈ �I . Now, let us extend I to δi by defining 

δI 
i = (� 

E 
� ∼F ∈E i 

(¬ E � F )) I . 

Note that by definition o ∈ C I and o ∈ δI 
i 

. By construction, I |� E � δi � F , for all E 
� ∼F ∈ E i . Therefore, I is a model of the

antecedent in (C.8) with o ∈ (C � δi ) 
I and, thus, (C.8) holds. 

Vice-versa, assume (C.8) holds. Let us show that (C.7) holds as well. By (C.8) , there is a model I of T ∗ such that

I |� E � δi � F , for all E 
� ∼F ∈ E i and o ∈ (C � δi ) 

I for some o ∈ �I , i.e., o ∈ C I and o ∈ δI 
i 

. But, I |� E � δi � F means that

�I = (¬ E � ¬ δi � F ) I . As o ∈ δI 
i 
, o ∈ (¬ E � F ) I follows. Therefore, 

o ∈ (� 

E 
� ∼F ∈E i 

(¬ E � F )) I (C.12)

with o ∈ C I and, thus, (C.7) holds. �

Proposition 16 Given an ontology K = 〈T , D〉 , C 
� ∼D ∈ D and the corresponding ontology in normal form K 

′ = 〈T ′ , D 

′ 〉 , 
then C is exceptional w.r.t. K iff A C is exceptional w.r.t. K 

′ , where A C is the new atomic concept introduced by the normalisation

procedure to replace C 
� ∼D with A C 

� ∼A D . 

Proof. By Proposition 9 we have that C is exceptional w.r.t. K iff T δD |� C � δD � ⊥ , where δD is a new atomic concept.

From this it suffices to show that T δD |� C � δD � ⊥ iff T ′ 
δD 

|� A C � δD � ⊥ . 

So, let 〈T + , D 

+ 〉 the KB obtained adding to T the axioms A E = E and A F = F for every axiom E 
� ∼F ∈ D ( A E , A F being

new atomic concepts), while D 

+ is obtained by replacing in D every axiom E 
� ∼F with A E 

� ∼A F . Now, let us prove that

T δD |� C � δD � ⊥ iff T + 
δD 

|� A C � δD � ⊥ . 

The proof from left to right is immediate: assume I |� T + 
δD 

. Then I |� A C = C, I |� T δD and, thus, I |� C � δD � ⊥ and

I |� A C � δD � ⊥ . 

From right to left, if T δD �|� C � δD � ⊥ then there is a model I of T δD (that interprets only the concepts appearing in

T δD ) s.t. (C � δ0 ) 
I � = ∅ . Now, extend the interpretation function ·I of I in such a way that A 

I 
E = E I for all E 

� ∼F ∈ D ; Then

I |� T + 
δD 

with (A C � δD ) I � = ∅ and, thus, T + 
δD 

�|� A C � δD � ⊥ . 

Since T ′ 
δD 

is the normal form of T + 
δD 

, that preserves satisfaction, it follows that for every C 
� ∼D ∈ D, T δD |� C � δ0 � ⊥ 

iff T ′ 
δD 

|� A C � δ0 � ⊥ , which concludes the proof. �

Proposition 18 Let K = 〈T , D〉 and K 

′ = 〈T ′ , D 

′ 〉 be rank equivalent. for every EL ⊥ defeasible GCI C 
� ∼D, C 

� ∼D is in the RC

of K iff C 
� ∼D is in the RC of K 

′ . 

Proof. In the following, we refer to the semantic construction in Appendix A . Now, K = 〈T , D〉 and K 

′ = 〈T ′ , D 

′ 〉 being

rank equivalent means that, for every ranked interpretation R , R is a model of K iff it is a model of K 

′ (see Section 2 ). In

turn, this implies that, given a countably infinite domain �, the set of models of K having � as domain corresponds to the

set of models of K 

′ having � as domain ( R 

K 
�

= R 

K ′ 
�

). The latter implies that the characteristic model of the RC of K, R ∪ K , 
is also a characteristic model of the RC of K 

′ , which suffices to conclude. �

In order to prove Proposition 20 , we need the following lemma. 

Lemma 34. An n-safe ELO ⊥ concept C is exceptional w.r.t. a safe ELO ⊥ ontology K = 〈T , D〉 iff the n-safe concept C 〈〉 is

exceptional w.r.t. the nominal safe EL 〈O〉 ⊥ ontology K 〈〉 = 〈T 〈〉 , D 〈〉 〉 . �

Proof. Assume C is not exceptional w.r.t. K . So, there is a ranked model R of K s.t. C R ∩ min ≺R (�R ) � = ∅ . Now, extend

the interpretation function · R of R imposing that for every a ∈ N O 

, 〈 a 〉 R = { a } R ; then R is model of K 〈〉 and C 〈〉 is not

exceptional, i.e. C R 〈〉 ∩ min ≺R (�R ) � = ∅ . 
For the other direction, assume C 〈〉 is not exceptional w.r.t. K 〈〉 . So, there is a model R of K 〈〉 s.t. C R 〈〉 ∩ min ≺R (�R ) � = ∅ .

Now, we build a ranked interpretation R ′ = 〈 �R ′ , ·R ′ , ≺R ′ 〉 in the following way: 
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• �R ′ = { x •D , x D | R �|� D � ⊥ , where D is a safe EL 〈O〉 ⊥ concept } ∪ { x 〈 a 〉 | a ∈ N O 

} ; 
• 〈 a 〉 R ′ = { x 〈 a 〉 ∈ �R ′ } , for every defeasible nominal 〈 a 〉 ; 
• A 

R ′ = { x D ∈ �R ′ | R |� D � A } ∪ { x •D ∈ �R ′ | R |� D 

� ∼A } ∪ { x 〈 a 〉 ∈ �R ′ | R |� 〈 a 〉 � ∼A } , for every safe EL 〈O〉 ⊥ concept D , every

defeasible nominal 〈 a 〉 , and every atomic EL ⊥ concept A ; 

• r R 
′ = {〈 x D , x E 〉 ∈ �R ′ × �R ′ | R |� D � ∃ r.E} ∪ {〈 x •D , x E 〉 ∈ �R ′ × �R ′ | R |� D 

� ∼∃ r.E} ∪ {〈 x 〈 a 〉 , x E 〉 ∈ �R ′ × �R ′ | R |� 〈 a 〉 � ∼∃ r.E} , 
for every safe EL 〈O〉 ⊥ concepts D and E , and every defeasible nominal 〈 a 〉 ; 

• h R ′ (x •D ) = h R (D ) , for every x •D ∈ �R ′ ; 

• h R ′ (x 〈 a 〉 ) = h R ( 〈 a 〉 ) , for every defeasible nominal 〈 a 〉 ; 
• x •D ≺R ′ x E for every x •D , x E ∈ �R ′ . 

Note: using x • D we want to introduce an object that represents a typical instance of a concept D , while with x D we want

to represent an atypical instance of a concept D . Only for defeasible nominals we introduce a single object representing

them. What we need to impose in the interpretation R ′ is that every object x • D is more typical (is positioned in a lower layer)

than any atypical objects x E satisfying the concept D ; such a condition is easily satisfied if we impose the last constraint in

the above definition of R ′ : for every pair of concepts D and E , x •D ≺R ′ x E ; that is, we move all the objects x E , representing

an atypical occurrence of some concept E , to the upper layer. 

As next, we prove that R ′ is still a model of K 〈〉 . The first step is to prove that for every pair of concepts D , E where D

and E are safe , we have, 

1. R �D � E and R �|� D � ⊥ iff x D ∈ E R 
′ 

; 

2. R |� D 

� ∼E and R �|� D � ⊥ iff x •D ∈ E R 
′ 

. 

And, for every pair 〈 a 〉 , E where a ∈ N O 

and E is safe , we have, 

3. R |� 〈 a 〉 � ∼E iff x 〈 a 〉 ∈ E R 
′ 

. 

The proofs are by induction on the construction of E . The only relevant steps are E = ∃ r.F (case a ) and E = ∃ r. 〈 b〉 (case

b ). 

1. 

a. If R �D �∃ r . F and R �|� D � ⊥ then 

〈 x D , x F 〉 ∈ r R 
′ 

. By induction hypothesis, x F ∈ F R 
′ 
, hence x D ∈ (∃ r.F ) R ′ . Vice-versa, if x D ∈ (∃ r.F ) R ′ , then 〈 x D , x G 〉 ∈ r R 

′ 

for some x G ∈ F R 
′ 

. By construction, R �|� D � ⊥ , R �D �∃ r . G , and by induction hypothesis, R �G � F , hence R �D �∃ r . F . 
b. If R �D �∃ r . 〈 b 〉 and R �|� D � ⊥ then 〈 x D , x 〈 b〉 〉 ∈ r R 

′ 
. Clearly x 〈 b〉 ∈ ( 〈 b〉 ) R ′ , and x D ∈ (∃ r. 〈 b〉 ) R ′ . Vice-versa, if x D ∈

(∃ r. 〈 b〉 ) R ′ , then 〈 x D , x 〈 b〉 〉 ∈ r R 
′ 

and, by construction, R �D �∃ r . 〈 b 〉 and R �|� D � ⊥ . 

2. 

a. If R |� D 

� ∼∃ r.F and R �|� D � ⊥ then 〈 x •D , x F 〉 ∈ r R 
′ 

. By induction point 1, x F ∈ F R 
′ 
, and consequently x D ∈ (∃ r.F ) R ′ .

Vice-versa, if x •D ∈ (∃ r.F ) R ′ , then 〈 x •D , x G 〉 ∈ r R 
′ 

for some x G ∈ F R 
′ 

. By construction, R �|� D � ⊥ , R |� D 

� ∼∃ r.G, and

by point 1, R �G � F , hence R |� D 

� ∼∃ r.F . 

b. If R |� C 
� ∼∃ r. 〈 b〉 and R �|� D � ⊥ then 〈 x •D , x 〈 b〉 〉 ∈ r R 

′ 
. By construction, x 〈 b〉 ∈ ( 〈 b〉 ) R ′ , hence x D ∈ (∃ r. 〈 b〉 ) R ′ . Vice-

versa, if x •D ∈ (∃ r. 〈 b〉 ) R ′ , then 〈 x •D , x 〈 b〉 〉 ∈ r R 
′ 
, and, by construction, R |� D 

� ∼∃ r. 〈 b〉 and R �|� D � ⊥ . 

3. Analogously to point 2. 

Now we prove that R ′ satisfies the safe EL 〈O〉 ⊥ ontology 〈T 〈〉 , D 〈〉 〉 : 
• Case D � E ∈ T 〈〉 . If x F ∈ D 

R ′ , with F a safe concept, by point 1, R �F � D , that, combined with R �D � E , implies R �F � E , and,

again by point 1, x F ∈ E R 
′ 

. If x •F ∈ D 

R ′ , with F a safe concept, by point 2, R |� F 
� ∼D, that, combined with R �D � E , implies

R |� F 
� ∼E, and, again by point 2, x F ∈ E R 

′ 
. Eventually, if x 〈 a 〉 ∈ D 

R ′ , by point 3, R |� 〈 a 〉 � ∼D, that, combined with R �D � E ,

implies R |� 〈 a 〉 � ∼E, and, again by point 3, x 〈 a 〉 ∈ E R 
′ 

. 

• Case D 

� ∼E ∈ D 〈〉 . By construction of R ′ , for any F , it cannot be x F ∈ min ≺R ′ (D 

R ′ ) : only an object of kind x • F or x 〈 a 〉
can be in min ≺R ′ (D 

R ′ ) . If x •F ∈ min ≺R ′ (D 

R ′ ) then h R ′ (x •F ) = h R ′ (x •D ) , and by construction h R (F ) = h R (D ) . Also, by

point 2 R |� F 
� ∼D . It can then be verified that h R (F ) = h R (D ) , R |� F 

� ∼D and R |� D 

� ∼E together imply that R |� F 
� ∼E,

that by point 2 implies x •F ∈ E R 
′ 

. Analogously, if x 〈 a 〉 ∈ min ≺R ′ (D 

R ′ ) then h R ′ (x 〈 a 〉 ) = h R ′ (x •D ) , and by construction

h R ( 〈 a 〉 ) = h R (D ) . Also, by point 3 R |� 〈 a 〉 � ∼D . Then it can be verified that h R ( 〈 a 〉 ) = h R (D ) , R |� 〈 a 〉 � ∼D and R |� D 

� ∼E 

together imply that R |� 〈 a 〉 � ∼E, that by point 3 implies x 〈 a 〉 ∈ E R 
′ 

. 

Therefore, the ranked interpretation R ′ is a model of 〈T 〈〉 , D 〈〉 〉 . Note that since we imposed that C 〈〉 is not exceptional in

R , in R ′ we have the object x C 〈〉 in layer 0, with x C 〈〉 ∈ (C 〈〉 ) R 
′ 

; hence C 〈〉 is not exceptional also in R ′ . 
Now we can trivially extend the interpretation R ′ to classical nominals: 

R ′ R ′ 
• { a } = 〈 a 〉 = { x 〈 a 〉 } for every a ∈ N O 

. 
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It can easily be proved now that R ′ is also a model of K = 〈T , D〉 . To prove it, it is sufficient to check that for every

n-safe concept D and every object x , x ∈ D 

R ′ iff x ∈ (D {} ) R 
′ 

. This can be proved by induction on the construction of the

concept D ; the only relevant steps are 

• D = 〈 a 〉 . By construction, x ∈ 〈 a 〉 R ′ iff x ∈ { a } R ′ . 

• D = ∃ r. 〈 a 〉 . x ∈ (∃ r. 〈 a 〉 ) R ′ iff 〈 x, x 〈 a 〉 〉 ∈ r R 
′ 

iff x ∈ (∃ r. { a } ) R ′ . 

Hence R ′ is a model of K . Since in Layer 0 we have x C 〈〉 , and x C 〈〉 ∈ (C 〈〉 ) R 
′ 
, we also have x C 〈〉 ∈ (C) R 

′ 
. That is, C R 

′ ∩
min ≺R ′ (�R ′ ) � = ∅ , i.e. C is not exceptional in w.r.t. K . �

Now we can easily prove Proposition 20 . 

Proposition 20 . For every n-safe ELO ⊥ concept C and every nominal safe ELO ⊥ ontology K = 〈T , D〉 , r K (C) = i iff

r K 〈〉 (C 〈〉 ) = i . �

Proof. Consider a nominal safe ELO ⊥ ontology K = 〈T , D〉 and the nominal safe EL 〈O〉 ⊥ ontology K 〈〉 . Lemma 34 tells

us that for every safe ELO ⊥ GCI C 
� ∼D, C 

� ∼D is exceptional w.r.t. K iff C 〈〉 
� ∼D 〈〉 is exceptional w.r.t. K 〈〉 . Then we can easily

prove the proposition by induction on the construction of the ranking. �

Next, we address Proposition 21 . 

Proposition 21 . For every n-safe EL 〈O〉 ⊥ concept C and every nominal safe EL 〈O〉 ⊥ ontology K = 〈T , D〉 the following holds:

r K (C) = i iff r N(K {} ) (N(C {} )) = i . 

Proof. The proof of this proposition is quite immediate. Assume that there is a ranked interpretation R that is a model of K
and such that there is an object in layer 0 satisfying C . Now define an EL ⊥ ranked interpretation R ′ that is identical to R ,

by imposing that for every atomic concept N a , N a 
R ′ = 〈 a 〉 R . It is easy to check by induction on the construction of a concept

D that, for every object o ∈ �R , o ∈ D 

R iff o ∈ (N(D {} )) R 
′ 

. Hence R ′ is a model of N(K {} ) and N ( C {} ) is not exceptional in R ′ .
Repeating exactly the same transformation and reasoning in the other direction, we can conclude that C is exceptional in K 

iff N ( C {} ) is exceptional in N(K {} ) . This property can be immediately extended to the definition of the rankings ( Section 2.2 ),

proving the proposition. �

Corollary 23 . Let K = 〈T , D〉 be a nominal safe EL 〈O〉 ⊥ ontology, with C 
� ∼D ∈ D . Let T • be the TBox obtained from K 

after applying RC.Step 1 , while let (N(T {} )) ∗ be the TBox obtained from N(K {} ) using the ComputeRanking procedure. Then,

the following are equivalent: 

1. C 
� ∼⊥ ∈ T • ; 

2. N(C {} 
� ∼⊥ ) ∈ (N(T {} )) ∗ ; 

3. r K {} (C {} 
� ∼D {} ) = ∞ . 

Proof. The extension of Proposition 10 from EL ⊥ ontologies to EL 〈O〉 ⊥ ontologies is immediate: since defeasible nominals

behave exactly like atomic concepts, it is sufficient to go through the proof of Proposition 10 by taking into account also

defeasible nominals. This, combined with Proposition 21 , guarantees that the application of the above-mentioned procedures

gives back the same results for an EL 〈O〉 ⊥ ontology K and the correspondent ELO ⊥ ontology N(K {} ) . �

The following Lemma is needed to prove Proposition 24 . 

Lemma 35. Let K = 〈T , D〉 be a nominal safe EL 〈O〉 ⊥ ontology. Then N(T {} ∪ D 

� 
{} , ∞ 

) is logically equivalent to (N(T {} )) ∗ (where

(N(T {} )) ∗ is defined as in Corollary 23 ). 

Proof. From Proposition 21 we know that C 
� ∼D ∈ D {} , ∞ 

iff N(C 
� ∼D ) ∈ (N(D {} )) ∞ 

(that is, the axioms in D {} that have

infinite rank w.r.t. K {} correspond to the axioms in N(D {} ) that have infinite rank w.r.t. N(K {} ) ), hence N(T {} ∪ D 

� 
{} , ∞ 

) is

the same as to N(T {} ) ∪ (N(D {} )) � ∞ 

. 

Now, we have to prove that N(T {} ) ∪ (N(D {} )) � ∞ 

is logically equivalent to (N(T {} )) ∗ . To this purpose, it is sufficient to

prove that every axiom in (N(D {} )) � ∞ 

is derivable from (N(T {} )) ∗ and every axiom in (N(T {} )) ∗ \ N(T {} ) is derivable from

N(T {} ) ∪ (N(D {} )) � ∞ 

. 

So, assume C � D ∈ (N(D {} )) � ∞ 

. Then C 
� ∼D ∈ (N(D {} )) ∞ 

. By procedure ComputeRanking , an axiom C �⊥ has been added

to (N(T {} )) ∗ \ N(T {} ) (line 13 of the procedure). If C � ⊥ ∈ (N(T {} )) ∗, then (N(T {} )) ∗ |� C � D . 

Vice-versa, assume C � ⊥ ∈ (N(T {} )) ∗ \ N(T {} ) (due to line 13 of procedure ComputeRanking , only axioms with the form

C �⊥ can be in (N (T {} )) ∗ \ N (T {} ) ). This implies that an axiom C 
� ∼D is in (N(D {} )) ∞ 

(due to the construction of N(T {} )) ∗

in the line 13 of procedure ComputeRanking ), and so C � D ∈ (N(D {} )) � ∞ 

. By Proposition 10 , we know that C 
� ∼D ∈ (N(D {} )) ∞

iff it is in the fixed point of the exceptionality procedure: that is, C 
� ∼D ∈ (N(D {} )) and 

(N(T {} )) |� �{¬ E � F | E � ∼F ∈ (N(D {} )) ∞ 

} � ¬ C 
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Since 

N(T {} ) ∪ (N(D {} )) � ∞ 

|� � � �{¬ E � F | E � ∼F ∈ (N(D {} )) ∞ 

} 
we end up with N(T {} ) ∪ (N(D {} )) � ∞ 

|� � � ¬ C, that is, 

N(T {} ) ∪ (N(D {} )) � ∞ 

|� C � ⊥ 

for every C � ⊥ ∈ (N(T {} )) ∗ \ N(T {} ) , which concludes. �

Proposition 24 . Let K = 〈T , D〉 be a nominal safe EL 〈O〉 ⊥ ontology. For every safe GCI C � D , we have that the following are

equivalent: 

1. C � D is in the RC of K ; 

2. N ( C {} � D {} ) is in the RC of N(K {} ) ; 
3. T {} ∪ D 

� 
{} , ∞ 

|� C {} � D {} . 

Proof. That C � D is in the RC of K iff N ( C {} � D {} ) is in the RC of N(K {} ) follows easily from Proposition 21 and from the fact

that RationalClosure is invariant to the substitution of every 〈 a 〉 with an atomic concept N a (it can be proven semantically

in a similar way as in the proof of Proposition 21 ). From Proposition 7 we know that N ( C {} � D {} ) is in the RC of N(K {} ) iff

(N(T {} )) ∗ |� N(C {} � D {} ) , that, by Propositions 1 and 2 and Lemma 35 holds iff T {} ∪ D 

� 
{} , ∞ 

|� C {} � D {} . �
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