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ABSTRACT

Sugarcane growers usually burn their cane to facilitate its
harvesting and transportation. Cane quality tends to deteriorate
after burning, so it must be delivered as soon as possible to the
mill for processing. This situation is dynamic and many factors,
including weather conditions, delivery quotas and previous
decisions taken, affect when and how much cane to burn. A
dynamic Bayesian decision network (DBDN) was developed,
using an iterative knowledge engineering approach, to represent
sugarcane growers’ adaptive pre-harvest burning decisions. It
was evaluated against five different scenarios which were crafted
to represent the range of issues the grower faces when making
these decisions. The DBDN was able to adapt reactively to delays
in deliveries, although the model did not have enough states
representing delayed delivery statuses. The model adapted
proactively to rain forecasts, but only adapted reactively to high
wind forecasts. The DBDN is a promising way of modelling such
dynamic, adaptive operational decisions.
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1 INTRODUCTION

The sugar supply chain is made up of two parts: the sugarcane
supply chain and the distribution chain [1]. In the sugarcane
supply chain, the sugarcane is grown and transported to the mill,
whereas in the distribution chain, the stabilised raw sugar product
is transported to markets and other processors [1]. The sugarcane
supply chain is particularly complex [2, 3], due to biophysical
challenges that include varying weather conditions; different
soils; and variation in crop growth; and the many participants in
the chain [4].

An agent-based simulation was developed to model the transport
complexities of a KwaZulu-Natal (KZN) sugarcane supply chain
[5]. In this model, the grower agents harvested cane daily without
taking into account uncertainties such as the weather, how much
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cane they had already harvested, or how far behind they were
with their deliveries. All these factors make growers’ harvesting
decisions complex and dynamic. Growers need to adapt their pre-
harvest burning decisions to their current situation, e.g. how
much cane is currently ready to be transported, and whether
deliveries are on target or behind. This situation changes over
time, depending on which decisions were previously taken.
Growers also need to anticipate the effects of uncertain weather
events, for example rain or high winds, which would disrupt
harvesting and therefore delivery.  This complexity and
dynamism needs to be modelled so that a more realistic cognitive
model of the grower’s decisions can be included in the simulation
model.

Recent work on farmers’ operational decisions, such as pre-
harvest burning, shows that farmers do not make operational
decisions or plans once and then implement that plan daily [6].
Rather, they make a partial plan that moves them towards some
goal, monitor progress towards the goal, and change the plan
continuously [7-9]. They make decisions based on uncertain
information, unexpected events (e.g. a storm, or equipment
breaking down), their own experience and expertise, as well as
their goals, constraints and preferences [7]. Farmers’ decisions
tend to be flexible, giving room for choosing future alternatives
[6], especially with respect to the weather [10]. They make
decisions which can be adapted to different circumstances [8].
They anticipate likely events and uncertainties and include those
in their plans, but if an unexpected event occurs, they adapt their
plans to respond to the new situation [6].

When modelling such uncertain and complex domains, Bayesian
decision networks (BDNs) have been used [11, 12], but these
models do not take changes over time into account. However,
dynamic Bayesian decision networks (DBDNs) extend BDNs to
represent change over time. This paper investigates and evaluates
DBDNs as a modelling and inference tool to represent the
adaptive and dynamic way that sugarcane growers make pre-
harvest burning decisions. To our knowledge, models of
sugarcane growers’ adaptive pre-harvesting burning decisions
have not been developed to date.

The layout of this paper is as follows: first, a literature review
describing Bayesian networks, their use in agriculture and
sugarcane supply chains is given. Factors affecting the grower’s
pre-harvest burning decisions are also provided. This is followed
by the methodology which outlines how the DBDN was
developed and evaluated. The description of the developed model
is followed by its evaluation. Finally conclusions and future work
are outlined.

2 LITERATURE REVIEW

2.1 Bayesian networks

Bayesian networks are useful formalisms for representing cause-
effect relationships under uncertainty [11, 13]. Bayesian
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networks are directed acyclic graphs [13]. This means that they
cannot have feedback loops. In Bayesian networks, chance nodes
represent variables. Each node has two or more discrete, mutually
exclusive and exhaustive states [11]. Each node contains a
conditional probability table (CPT) which contains the probability
of each of the states occurring. The nodes are linked with directed
arcs, which represent a cause-effect relationship [11]. The causal
arrows between nodes also reflect how humans think [14].

Making inputs into a Bayesian network is called recording
evidence. Evidence can be entered in one or more nodes at any
time, and the evidence will replace the a priori CPT values [15].
As one enters evidence, the Bayesian network updates the
likelihoods of each of the states of the nodes using the conditional
probability tables [11]. This is called inference or belief updating.
This means that after inputting one or more pieces of evidence,
the state of the whole system can be determined [16]. Bayesian
networks obey the Markov property in that each node is only
dependent on the nodes to which it is linked [11]. This simplifies
the inference calculations [11].

Bayesian networks have been extended with decision and utility
nodes to represent decision making under uncertain conditions
[11, 13]. These Bayesian decision networks (BDNs), or Influence
Diagrams, assume that all of the data needed for the decision is
known before making the decision. A disadvantage of BDNs is
that they do not allow feedback loops so they cannot represent
how the network changes over time.

Not allowing feedback loops has been rectified in dynamic
Bayesian networks (DBNs), which are Bayesian networks where
the static Bayesian network is repeated for a number of time slices
[11, 17]. The network also has inter-slice arcs which show how
variables from one time slice affect variables in the next time slice.
Dynamic Bayesian decision networks (DBDNs) build on DBNs, in
that they include decision and utility nodes [17]. The DBDN can
thus be used to represent an adaptive decision making process.

2.2 Models of operational farm decision
making

In agricultural settings, BDNs have been used for many strategic
agricultural decisions [6, 18, 19]. However, they do not reflect the
adaptive nature of how farmers actually make daily decisions,
especially in dynamic environments [6, 20].

In their review of adaptation in farm decision-making models,
Robert et al. [6] noted that farmers tend to make static plans which
could incorporate uncertainties, and dynamic decisions which
would adapt to a shock or other circumstances. They found that
recursive models and discrete stochastic programming were used
to represent both dynamic and static decision making processes.
Bayesian networks (or any extensions thereof) were not
mentioned by Robert et al [6] as a possible formalism for
representing these types of operational decisions.



In addition, none of the models reviewed by Robert et al. [6]
modelled farmers’ harvesting decisions. This is probably because
in most other crops, the harvesting period is shorter, so is less
likely to be affected by weather events as harvesting the
sugarcane crop is.

2.3 Use of BNs in sugarcane supply chains

In the sugarcane arena, Everingham et al. [21] and Shongwe [22]
have proposed Bayesian updating to help predict long term
sugarcane yields and shredder breakdowns at the mill
respectively. Drury et al. [23] have proposed text mining to
generate a BN of factors influencing sugarcane yield. In the
literature generally, the development of DBDNS is scarce. For
example, in the medical field, DBDNs have been proposed to
represent decisions over time [24, 25]. However, no DBNs or
DBDNs were found relating to the sugarcane supply chain or
growers’ pre-harvest burning decisions.

2.4 Factors affecting pre-harvest burning
decisions for sugarcane growers

The sugarcane harvesting season is a relatively long one,
compared to other agricultural crops [26]. In KwaZulu-Natal,
South Africa,
October/November [27]. This means that weather, particularly
rainfall, can and does play a disruptive part in harvesting the cane
and transporting it to the mill [26-29]. As cane is generally burned
before it is harvested, high winds can also disrupt the harvesting
process if there are runaway fires [27]. If cane is too wet when it
is burned, the grower will be transporting leaves and cane to the
mill, instead of just cane [28, 29].

cane is harvested from mid-March to

The decision of how much cane to burn is challenging for the
grower. Firstly, uncertainty must be taken into account. There is
uncertainty regarding the weather, and the grower’s belief of
what the weather will actually be like, given the weather forecast.
The grower also needs to take into account his belief in how dry
the cane is. Secondly, growers need to be flexible in their decision
making. In the sugarcane supply chain setting, growers anticipate
impending rains or wind in their burning decisions by sometimes
burning more than one day’s delivery quota in advance [29].
However, if there is a long period of soft soaking rain which
makes the cane too wet to burn [22, 27, 30], they make decisions
to catch up with their deliveries once the cane is dry enough to
burn. The third challenge in the burning decision is the time
factor. Growers need to deliver a consistent volume of cane to the
mill each week of the milling season. Some mills impose penalties
if this is not done. In addition, growers cannot burn too much
cane at one time, because the cane’s quality declines on burning
[31]. Delivering cane which was burned more than 72 hours
beforehand to the mill can risk penalties of loss of income to the
grower, especially if cane quality is used as one of the factors in

2 Ethical clearance HSS/0204/101.
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determining the cane price at the mill. In making the burning
decision, the grower will try to mitigate these risks.

3 METHODOLOGY

Growers and the cane procurement manager of a KwaZulu-Natal
mill were interviewed to learn their decision rules and understand
how their cane deliveries worked. The necessary ethical clearance
was granted?.

The iterative knowledge engineering approach to creating
Bayesian networks [11] was used to develop the DBDN. There
are three main ways of constructing a Bayesian network. The
network can be created manually, it can be generated from data,
or a combination of both [19].
engaging experts and stakeholders to help build the network.
Published papers can also be used to inform the structure and/or
conditional probabilities [12].

Manual construction involves

In this study, the hybrid approach was used. The structure of the
“weather” part of the network (wind, maximum temperature and
rain) was designed manually. Daily weather data from 1 Jan 1998
to 31 Dec 2015 for the mill area were downloaded from the SASA
weather portal [32]. Weather data for the next day were added to
the spreadsheet by phase shifting the existing data by one day.
Pearsons correlation tests were performed to ensure that each of
the weather variables were not correlated [33]. The CPTs of the
weather variables were imported using Netica [34]’s Expectation
Maximisation algorithm. Based on interviews with the mill’s cane
procurement manager and growers, the rainfall CPTs were
adjusted to reflect whether the rain was drizzle or thundershower:
in the summer months (December to March), for low daily
rainfalls of 0.1-4mm, half was assumed to be thundershowers and
the other half was assumed to be drizzle. Amounts of rain over
4mm was assumed to be thundershowers. For the rest of the year,
all low amounts of daily rain (0.1-4mm) were assumed to be
drizzle, while amounts >4mm were assumed to be
thundershowers.

The network was then imported to Hugin ver 7.8 [35] to allow the
creation of more than 15 nodes, and the structure of the DBDN
was developed by hand by the first author, based on interviews
with the mill’s cane procurement manager and growers and
literature. Node and state names were checked for vagueness [33]
and edited if necessary. States were checked that they covered
the full range of possible values of a node [11, 36]. The second
author checked the DBDN structure. The remaining CPTs were
compiled by hand by the first author. Based on the interviews,
literature and own assumptions [12], the following initial set of
rules guided the completion of the CPTs:

e cane would not be burned if it was wet;

e  cane would also not be burned if there were high winds;



e cane could be burned if it were damp and the grower
was behind with deliveries;

e if drizzle or thundershowers were forecast for a
particular day, the grower could still burn that day if the
cane were dry;

e the cane dryness recovers fast after thundershowers,
but soft soaking drizzle which lasts a few days leaves the
cane wet;

e wet or damp cane dries based on the maximum
temperature and the wind;

e  cane could be burned and harvested in exactly integer
multiples of the day’s delivery quota;

e growers could deliver up to two day’s cane delivery
quota on one day; and

e if cane was burned, then it could also be harvested and
delivered on the same day.

The convergent and discriminant validity of the network [36] was
checked by searching the literature for examples of BNs (or
extensions thereof) relating to farming, sugarcane, weather, and
harvesting decisions.

The predictive validity [36] of the DBDN was tested by adding
evidence for all the combinations of variables for a two time slice
version of the network. Adjustments to the CPTs were made
where necessary. A number of different scenarios were then
tested for more time slices, each testing different combinations

and complexities of the network (case based evaluation [11]). A
set of five scenarios were crafted to demonstrate the different
types of complexity the model needed to address, and represent
the range of different types of issues that the grower faces when
making the burning decision. The scenarios are:
1. Baseline scenario: May weather: low wind, medium
temperature, no rain; dry cane, deliveries on target
2. Similar to scenario 1, except that deliveries are behind;
they caught up, but became behind again due to cane
not being delivered
3. Spring: Drizzle is forecast. Cane becomes wet.
August: high wind, high temperatures
5. Using actual weather data from October 2016, with
damp cane.
Scenario 1 gives a baseline situation, where weather does not
interrupt burning decisions, and deliveries are on track. Scenario
2 keeps the same weather conditions, but investigates how the
grower catches up with delayed deliveries. Scenario 3 introduces
wet weather — particularly drizzle — which is problematic for
KwaZulu-Natal sugarcane supply chains. Scenario 4 looks at how
high levels of wind would affect the burning decision. Finally,
scenario 5 uses actual weather data for a rainy period in October
2016 to evaluate how the model responds. The network was then
evaluated against these scenarios.
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Figure 1: DBDN for deciding how much cane to burn each day (two time slices)



The continuous weather data were categorized into three states

Table 1: Nodes (and their states) which affect the burning (see Table 1). Wind is measured in average wind run in km per
decision day (the total amount of wind in km that was experienced at a
particular place) and maximum temperature in °C. The grower’s
Grower’s belief of wind G r’s belief of Grower’s belief of Grower’s belief . .
D : " m:‘:',:u:, ﬁintw: Dayis ofd,yn:ssof belief of the dryness of cane is affected by the dryness of cane on
temperature Dayn cane Day i the previous day, as well as the previous day’s actual weather
10 to 110 (low) 5 to 22 (low) No rain Dry ; : .
1015018 il AR S TR ba (wind, maximum temperature and rain type). The amount of cane
180.1 to 560 (high) 27.1 to 45 (high) Drizle Wet already burned on one day depends on the amount of cane that
was burned on the previous day less the amount delivered by the
Canv alvaady bisred Day Statiis of daliveries Day Decision to burn Dayn end of the previous day. Sugar mills often have a rule that
No cane burned On target Don't burn cane growers may not deliver cane that is older than 72 hours due to
1 day’s cane burned 1 day behind Burn 1 day’s cane . : . .
2 day's cane burned 2 days behind Bum 2 day's cane cane quality degradation [31]. Mills also have rules preventing
3 day’s cane burned More than 2 days behind Burn 3 day’s cane growers from over-delivering (delivering in advance), to ensure

fairness amongst all the growers, hence the worst delivery state
being “More than 2 days behind”.

4 DBDN MODEL

Two time slices of the DBDN for representing a sugarcane

grower’s burning and harvesting decisions is shown in Figure 1 5 RESULTS AND DISCUSSION

on the previous page. It is assumed that the burning decision for

a particular day is taken early in the morning (e.g. 6am). Factors 5.1 Scenario 1 (base scenario): Low wind,
affecting the burning decision (see Table 1) are: medium temperature, no rain, dry cane,
e the grower’s belief of the wind, maximum temperature deliveries are on target
and rain type, given the forecast for the day and the

The first scenario describes weather that does not pose a challenge
to burning: low wind, medium maximum temperature, no rain.
This is typical of May and June. In this case, too, the deliveries
are on target, no cane is already burned, and the grower believes

month
e the grower’s belief of the dryness of cane
e the amount of cane already burned

o the status of deliveries (on target or behind) that the cane is dry. After having entered the inputs for Day 1,
Day 1 Day 2 Day 3 Day 4 Day 5 Day & Day 7 Day 8 Day 9 Day 10
Grower's belief of Lews wind, Low wind, Lo wind, Law wind, Low wind, Low wind, Lew wind, Low wind, Low wind, Lew wind,
weather at 6am medium max medium max medium max medium max medium max medium max medium max medium max medium max medium max
temp, no rain temp, no rain temp, no rain temp, no rain temp, no rain temp, no rain temp, no rain temp, no rain temp, no rain temp, no rain
Grower's belief of Dry Dry. Dry Dry Dry Dry Dry Dry Dry Dry
dryness of cane at am
Cane aiready burned at [ 1 1 o 1] 1] 1 z 1 o
Bam
s.s"’m‘“"’”""‘"""’ " Mo. of days deliveries are behind
3

-

=

%2

-y

i

= 1

g

z

o o
2 3 4 5 & ? E ] 10
m— Netyork: Mo, of doys behind = Actual no. of days behind

Decision ta burn at 6am Network: Decision how much cane to burn

s
3
- 2
=1
g
®, 1 1 i 1 1 1 1 1
-
]
2o
2 3 4 5 [ 7 B ] 10
BN, of days’ cane to burn
No. of days’ eane 3 2 1 1 1 1 1 1 1 1
actually burned
Days cane delivered by 2 2 2 1 1 0 ] 2 2 1
end of day

Figure 2: Scenario 2 results. Catching up on deliveries, not delivering (days 6 & 7) and catching up again
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the network suggests that the grower should burn 1 day’s cane.
The grower then takes the advice to burn 1 day’s cane. The
weather on day 1 was the same as the grower’s belief of the
weather.

On the next day (day 2), the grower enters his beliefs of the
weather for the day, as well as the amount of cane delivered on
the previous day (1 day’s cane - ie. what was burned and
harvested on the previous day was delivered on that day too). The
network then deduces that the cane is dry, that there is no cane
already burned, and that the status of deliveries is on target.
Similar to the previous day, the network suggests burning 1 day’s
cane. If the network’s suggestions are accepted and entered as
evidence into the network for all the following days, and what is
burned is delivered, the burning decision remains to burn 1 day’s
cane. With all the same values, the network will consistently
advise burning 1 day’s cane. This is as expected.

5.2 Scenario 2: Deliveries are behind, caught
up and became behind again

Throughout scenario 2 (see Figure 2 on the previous page), the
weather remains the same (low wind, medium maximum
temperature and no rain). Cane is believed to be dry and there is
no cane already burned. However, deliveries start out more than
two days behind. Since deliveries are behind, a drastic measure of

burning 3 day’s cane occurs on day 1, two of which are delivered.
2 day’s cane is then burned the next day, followed by 1 day for the
rest of the scenario. By delivering 2 day’s cane on days 2 and 3,
deliveries are back on track by day 4. However, deliveries are not
made on days 6 and 7, so deliveries are behind again, but caught
up by day 10.

This scenario shows the adaptability of the burning decision to
deliveries. It should be said, though, that if deliveries are behind
and no deliveries are made, the network will continue to suggest
that one day’s cane be burned - to keep up with deliveries (not
shown in Figure 2). However, this will be problematic if no
deliveries are made for a number of days as the cane quality will
degrade, and cane older than 3 days will not be accepted at the
mill. In this case, the grower/user would have to keep track of the
age of the cane, as well as the quantity already burned each day.

5.3 Scenario 3: Drizzle is forecast; cane
becomes wet

In scenario 3 (see Figure 3), the weather changes over the days.
The cane starts out dry. The evidence entered into the “Grower’s
belief of dryness of cane” node is shown above the “Network:
Belief of dryness of cane graph”. The amount of cane already
burned is shown under this, followed by the network’s decision to
burn. The actual number of days’ cane that were burned is shown

Day 1
" Medium wind,

Day 2
Medium wind,

Day 3
Medium wind,

Day 4

‘Medium wind,

Day 5
l-\.!fe_d‘ium v\;i_nd-:

Day 6
“Medium wind,

Day 7

-M-ed"ium m;d,

Day 8§
Medium wind,

weather at Gam medium max temp, lew max temp, low max temp, low max temp, medium max temp, medium max temp,  medium max temp, medium max temp,
drizzle drizzle no rain no rain no rain no rain no rain no rain
Grower’s bellef of Network: Belief of dryness of cane
dryness of cane at
Sam 100 Dry Damp Wet Damp Damp Dry Dry Dry
# 50
o
1 2 3 ] 5 5 7 &
Bebiel: Dry cane - Beliel: Damp cane 1 Belief: Wet cane
Cane already burned 0 o 0 0 o (1] 0 4]
at 6am
Status of dellveries No. of days deliveries are behind
at am
2
-
=
£ 1
2
»
B
-
s 4
g -1
z

— Network: Mo, of diys bebind

— fctual no. of days behind

Decision to burn at

Network: Decision how much cane to burn

Gam [3 3 2 2
2 2
2 1 1
H
i
4 1] o o
g 0
w H 3 5 7 E
-1
: B, Of it bahe 10 0o,
Mo. of days’ cane 2 o 1] 0 1 2 2 1
actually burned
Cane delivered by 2 [v] o o 1 2 2 1
end of day

Figure 3: Scenario 3 results. Cane is dry, and drizzle is forecast; cane becomes wet and eventually dries out
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in the row below. The amount of cane actually delivered is shown
in the last row.

On day 1, drizzle is forecast, and materializes. With the drizzle
forecast, the network correctly suggests that more cane than
normal (2 day’s delivery quota) should be burned to mitigate the
effect of the wet weather. This means that the grower is one day
ahead (i.e. -1 days behind), but there is no state to recognize this
in the “Status of deliveries” node. When it drizzles for two days
(days 1 and 2), the cane becomes damp, then wet. It takes another
two days to dry out. As a result, burning, harvesting and
deliveries are delayed. The network behaves as expected here;
burning cane in advance of a spell of wet weather is a common
practice [29]. At another mill in the KwaZulu-Natal midlands, it
was found that it took the mill five days to recover from a rain
event [27], which is similar to what is shown in Figure 3.

5.4 Scenario 4: High wind, high temperatures

Scenario 4 shows what occurs when Berg winds (hot dry winds)
are forecast. In this scenario, the cane is dry, there is no cane
already burned, and deliveries are on target (see Figure 4).
Because high winds are forecast, and the grower believes the
forecast, he does not burn cane that day. In fact he has to wait
until the wind dies down - in this case until day 3. At that point,
he is able to catch up with burning and delivery activities.

Day1 Day2 Day3 Day 4 Day S
Grower’s belief of weather at 6am High wind, High wind, Medium wind, Medium wind, Medium wind,
high max temp, highmaxtemp,  medium maxtemp, medium maxtemp, medium max temp,
nO T8N no rain no r3in O fain no rain
‘Grower’s belief of dryness of cane. Dry Dry Dry Ory Dy
at 6am.
Cane already burned st 6am a [ [ o o
Status of deliveries at Sam No. of days deliveries are behind
2
-
e, e
%0 3
s 1 2 3 4 5
a
w— Network: No_of days behind Actual no. of days behind
MBS0 SARINE Olnk o Network: Decision how much cane to burn
H 2 2
e £ '
e =
2o |
e
F- 3 2 3 4 5
2
N, of days’ cane 10 burn
No. of days’ cane actuaily burned o o 2 2 1
‘Cane delivered by end of day ] o 2 2 1

Figure 4: Scenario 4 results. High winds forecast

The grower does not burn in high wind due to the threat of
runaway fires [29-31]. However, in this case, the network is not
behaving as the grower would: normally the grower would be
scanning the forecasts days ahead, and would be making
adjustments based on his belief of the upcoming weather.
However, with DBDNs, the Markov property states that one can
only access nodes from the current and previous time slices, so in
this instance, the network makes the grower fall further behind
than he would have normally been.

Day 1 Day 2 Day 3 Day 4 Day 5 Day & Day 7 Day 8 Day 9
Grower's belief of weather at Low wind, Medium wind, Medium wind, Medium wind, Medium wind, Medium wind, Medium wind, Medium wind, Low wind,
Bam Low max temp, high max temp, lenwr max temp, medium max temp, low max temp, medium max temp, high max temp, low max temp, low max temp,
no rain no rain drizzle drizzle drizzle no rain drizzle h
Growar's ballef of dryness of Network: Belief of dryness of cane
cane at 5am
100 Damp Damp Dry Wet Wet Wet Damp Wet Damp
# 50
o
1 2 3 4 5 3 7 8 £
Belief: Drycane Beliet: Damp cane W Belief: Wet cane
Days cane already burned at 1] a o 0 4] L] o ] o
Gam
Status of deliveries at 6a s : i
AR No. of days deliveries are behind
L 4
E
£3
R
-
; : - -
el
=0
-]
8 1 2 3 4 1 6 7 8 9
=
m— Network: No, of divi behind == Actual o, of days behind
Diecldon'ee: ier e Sty Network: Decision how much cane to burn
E F 2 2
52
3
-] 1 1
a4
3
= . . i o o o
&0
= 1 2 3 a 5 6 7 & 9
=]
= B No, of days' cane 1o burn
No. of days’ cane actually 1 1 2 [i] [i] [i] F] [i] 2
burned
Days cane dellvered by end of 1 1 2 0 1] L] 2 ] 2
day

Figure 5: Scenario 5 results. Actual weather 5 to 13 October 2016 was used. Cane started out damp.



5.5 Scenario 5: Using October 2016 weather
data

For scenario 5, actual weather data for 5 to 13 October 2016 for
the mill area was entered into the network (see Figure 5 on the
previous page). As there had been rain before 5 October, it was
assumed that the cane was damp. Throughout this scenario, there
was no cane already burned at the beginning of each day. The
status of deliveries was generally behind. On days 4 and 8,
deliveries caught up a bit, but lapsed due to the persistent wet
weather. The network recorded that deliveries were “More than
2 days behind”, whereas in fact they were 4 days behind by day 9.
On days 1, 2 and 7, cane was burned in spite of the fact that it was
damp. This was allowed because deliveries were behindhand.
This situation of not being able to burn cane, and therefore not
deliver, is common during the days of extended rainfall [28] which
is commonly experienced in the springtime [31]. In fact, rainfall
events have a widespread effect on the sugarcane supply chain as
a whole [28, 29].

5.6 Discussion

The DBDN adjusts and adapts burning decisions appropriately to
most weather conditions; the belief of the dryness of the cane;
how much cane is already burned at the time of making the
decision; and the delivery status.

5.6.1 Weather. The DBDN correctly anticipates impending
drizzle by burning two day’s cane so that deliveries can continue
to some extent during the wet weather. When berg wind
conditions (i.e. high wind and high temperature) are forecast, the
model correctly suggests that one should not burn that day, for
fear of runaway fires. However, in reality, growers would have
anticipated such conditions on previous days, and would have
burned in advance of berg winds so that deliveries could continue
in spite of the high winds. Because of the Markov property where
one can only use information for that day and the previous day,
the DBDN is not able to represent this grower behavior.

5.6.2 Status of deliveries. If the grower’s opinion of cane is dry,
and deliveries are behind, the decision to burn node keeps on
suggesting that the grower should burn cane (to catch up).
However, if there is a problem with the transport to the mill, or
the mill has stopped working (e.g. breakdown or maintenance),
the grower should override the decision to burn by not burning,
and keep track of how many days behind he actually is with
deliveries.

There are not enough states in the “Status of deliveries” node to
reflect exactly how many days behind with deliveries the grower
is. The node measures up to two days behind, and anything more
than that is classified as “More than 2 days behind”. The decision
to burn treats this last state as if it were representing three days
behind. The grower (or user of the network) needs to remember
how many days behind he is, and if it’s more than two days,
consistently choose the “More than two days behind” state until

96

deliveries are more on track (i.e. 2 or fewer days behind). In
addition, one could be in the “1 day ahead” state, as was
demonstrated in the 34 scenario.

While the DBDN does predict the cane already burned, given the
previous day’s deliveries, and to some extent the status of
deliveries, there are no checks built into the model to ensure that
the user records a plausible amount of cane delivered on the
previous day. For example, if there was no cane already available
yesterday and 1 day’s cane was burned, there is no safety net to
force the user to select either 1 or 0 day’s cane as being delivered
yesterday.

5.6.3 Cane quality. The DBDN merely gives an indication of how
much cane is already burned at the start of the day. It does not
keep track of when that cane was burned. For example, 3 day’s
cane burned three days ago is regarded as equivalent to 3 day’s
cane burned yesterday, or 1 day’s cane burned the day before
yesterday and 2 day’s cane burned yesterday. This means that the
grower needs to keep track of the cane quality as well as the status
of deliveries. If it should occur that deliveries were not possible,
cane would have to be abandoned, and the grower (or user) would
have to override the amount of cane already burned at the
beginning of the day.

5.6.4 Harvesting. The DBDN does not explicitly model the
harvesting of the cane, e.g. labor/machine availability. It is also
known that in wet weather, fields can be inaccessible [27], which
further delays the delivery process. However, these issues are not
covered in this model.

Table 2: Evaluation of scenarios

Scenariol Scenario2 Scenario3 Scenariod4 Scenario 5
Uncertainty ¥ ¥4 v 4 7 ” 4
Proactive adaptiveness NA NA 7 X ¥ 4
Reactive adaptiveness NA 4 — / —
Dynamism / / / / /
Represents grower’s
experience, goals, v v v v

constraints, preferences

5.6.5 Evaluation of the scenarios. A summary of the scenarios and
characteristics for evaluation can be seen in Table 2. The DBDN is
suitable representing  decisions
information, for example, the grower’s belief of the weather, and
of the dryness of cane. The first two scenarios did not lend
themselves to proactive adaptiveness, but scenarios 3 and 5
showed how the grower anticipated the imminent rain and
burned more cane in advance. However, scenario 4 (see Figure 4)
did not fare well with proactive adaptiveness, as there was not
enough warning for the farmer to burn before the strong wind
materialized (see Table 2). On the reactive adaptiveness score,
scenarios 2 and 4 reacted well and caught up the delayed

for based on uncertain



deliveries, which is what a grower would aim to do. Scenarios 3
and 5 also attempted to catch up with delayed deliveries, but did
not do well with the representation of the status of deliveries (one
day ahead, or more than two days behind). The grower would
typically know the status of his deliveries. If he inserted the
correct values into the network as evidence, the model would
work as expected. More states for being ahead could be added to
the model (e.g. 1 day ahead, 2 days ahead). However, if
considering adding more states representing the lateness of
deliveries, it is unclear how many would be needed. By the end
of scenario 5, the grower was four days behind, but in fact rain
continued for the rest of October and November in 2016. This is
a particularly pertinent issue, as each additional state means that
many more conditional probabilities need to be obtained for the
decision table.

All five scenarios showed dynamism in that the decision took
different time steps into account, letting the variables for time #+1
be affected by the variables for time t. In addition, in all five
scenarios, the model represents the grower’s experience, goals,
constraints and preferences: these are reflected in the conditional
probability tables and the utilities of the model.

5.6.6 Design decisions and tradeoffs. When representing the way
humans make decisions, the DBDN has marked advantages over
the normal (static) BDN, in that the latter assumes that all the
information needed for the decision is at hand, and the decision
will be made once. With DBDNSs, the process followed by humans
when making daily decisions is more closely matched. As
different information becomes available, the decision can be
adapted to the new circumstances.

Where data was available, it was used to populate the CPTs.
Unfortunately, there were many CPTs which needed to be
completed manually. Business rules were used to generate CPTs
to keep them consistent.

When designing this model, it was realized that the harvesting
decision actually started with a decision to burn the cane. The
burning decision is the more complex part of the harvesting
decision, so this aspect was emphasized in the model. Other
aspects of harvesting can be added later, using the iterative
knowledge engineering approach [11].

The DBDN model presented and evaluated here shows that this
formalism is a promising way of representing dynamic and
adaptive decision making.
enhancements, for example, finding a way of proactively adapting
to long-term weather forecasts; increasing the number of states
representing the status of deliveries; and reducing the number of
arcs entering the decision node [33, 37]. In addition, the model
needs to be evaluated by the growers at the mill [36].

This initial model needs several
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6 CONCLUSIONS

When making daily operational decisions, humans, and in this
case sugarcane growers, do not make a decision once and
implement it [8]. Rather, they aim for a goal, start working
towards it, and monitor where they have got to, and adjust where
necessary [8]. The DBDN is an apt modeling formalism to use to
model this dynamic and adaptive decision making.

A DBDN was used to model the burning decisions taken by a
sugarcane grower prior to harvesting. The model represented
uncertainty, dynamism and the grower’s experience, goals,
constraints and preferences well. When rain was expected, the
model proactively adapted the burning regime to the wet weather.
It was not as good at adapting proactively to high winds. The
model reactively adapted to delays in delivery by catching up (or
trying to do so). However, if deliveries were over two days
behind, the grower (or the model user) would have to remember
exactly how many days behind, and override what the model
suggested.  Overall, DBDNs are a promising approach to
representing such adaptive and dynamic decisions.

The contributions of the paper are the DBDN which represents
the complex and dynamic decisions taken by the grower; and the
evaluation of the model. DBDNs are not commonly cited or used
in the literature, and to our knowledge, no one has proposed using
them for modelling growers’ pre-harvest burning decisions or
anything else relating to the sugarcane supply chain. This kind of
model could be considered for other operational dynamic adaptive
decisions in the farming domain, as the DBDN represents a series
of decisions, as highlighted by Daydé et al. [8].

Future work includes further model refinement, model validation
with stakeholders, and using this model in an agent-based
simulation of the sugarcane supply chain [5], where this decision
making model will be incorporated into the cognitive mechanism
of a grower agent.
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