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1 INTRODUCTION 
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2 LITERATURE REVIEW 

2.1 Bayesian networks 

a priori

2.2 Models of operational farm decision 
making 

et al

et al
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2.3 Use of BNs in sugarcane supply chains  
et al

et al

2.4 Factors affecting pre-harvest burning 
decisions for sugarcane growers 

3 METHODOLOGY 
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Figure 1: DBDN for deciding how much cane to burn each day (two time slices) 
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4 DBDN MODEL 

5 RESULTS AND DISCUSSION 

5.1 Scenario 1 (base scenario): Low wind, 
medium temperature, no rain, dry cane, 
deliveries are on target 

Figure 2: Scenario 2 results.  Catching up on deliveries, not delivering (days 6 & 7) and catching up again 

Table 1: Nodes (and their states) which affect the burning 
decision 
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5.2 Scenario 2:  Deliveries are behind, caught 
up and became behind again 

5.3 Scenario 3: Drizzle is forecast; cane 
becomes wet 

Figure 3: Scenario 3 results.  Cane is dry, and drizzle is forecast; cane becomes wet and eventually dries out 
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5.4 Scenario 4: High wind, high temperatures 

Figure 5: Scenario 5 results.  Actual weather 5 to 13 October 2016 was used.  Cane started out damp. 

Figure 4: Scenario 4 results.  High winds forecast 
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5.5 Scenario 5: Using October 2016 weather 
data 

5.6 Discussion  

5.6.1 Weather. 

5.6.2 Status of deliveries. 

5.6.3 Cane quality. 

5.6.4 Harvesting.

5.6.5 Evaluation of the scenarios.

Table 2: Evaluation of scenarios 
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5.6.6 Design decisions and tradeoffs.

6 CONCLUSIONS 

et al
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