
Benchmarking a Mobile Implementation of the
Social Engineering Prevention Training Tool

Francois Mouton
Defence, Peace, Safety & Security

Council for Scientific and Industrial Research
Pretoria, South Africa

E-mail: moutonf@gmail.com

Marcel Teixeira
Department of Computer Science

University of Cape Town
Cape Town, South Africa

E-mail: marceltex@gmail.com

Thomas Meyer
Department of Computer Science

University of Cape Town and CAIR
Cape Town, South Africa

E-mail: tmeyer@cs.uct.ac.za

Abstract—As the nature of information stored digitally be-
comes more important and confidential, the security of the
systems put in place to protect this information needs to be
increased. The human element, however, remains a vulnerability
of the system and it is this vulnerability that social engineers
attempt to exploit. The Social Engineering Attack Detection
Model version 2 (SEADMv2) has been proposed to help people
identify malicious social engineering attacks. Prior to this study,
the SEADMv2 had not been implemented as a user friendly
application or tested with real subjects. This paper describes
how the SEADMv2 was implemented as an Android application.
This Android application was tested on 20 subjects, to determine
whether it reduces the probability of a subject falling victim to
a social engineering attack or not. The results indicated that the
Android implementation of the SEADMv2 significantly reduced
the number of subjects that fell victim to social engineering
attacks. The Android application also significantly reduced the
number of subjects that fell victim to malicious social engineering
attacks, bidirectional communication social engineering attacks
and indirect communication social engineering attacks. The
Android application did not have a statistically significant effect
on harmless scenarios and unidirectional communication social
engineering attacks.

Index Terms—Android, Awareness, Cyber Security, Mobile
Development, Social Engineering, Social Engineering Attack
Detection Model, Social Engineering Attack Framework

I. INTRODUCTION

Social engineering refers to various techniques that are
utilised to obtain information through the exploitation of
human vulnerability in order to bypass security systems [1].
Social engineers exploit the helping and trusting nature that
most humans inherently have. Social engineers also prey on
the fact that most people never expect to be a victim of social
engineering and are rather careless at times [2].

Successful social engineering attacks have proven to be
extremely expensive. In the UK, for example, it is estimated
that identity theft1 related crimes cost the UK economy around
1.2 billion pounds in 2009 [3]. While all of this cannot be
attributed to social engineering attacks, it is reasonable to
expect that a significant proportion of these losses will be
related to such attacks.

1The fraudulent acquisition and use of a person’s private identifying
information, usually for financial gain.

Losses from phishing2 were around 23.2 million pounds in
2005. This is almost double the amount lost due to phishing
in 2004, which was 12.2 million pounds [3]. In 2004, the US
Department of Justice concluded that one in three people are
likely to become a victim of social engineering in their lifetime
[4]. It is likely that these numbers have inceased since then,
and it is therefore essential that an effective social engineering
prevention tool be implemented, tested and made available to
the public to save individuals and corporations from losing
millions.

There are limited techniques available to detect social
engineering attacks. Some of the detection mechanisms, that
have been proposed, assist the user to identify whether they
are the victim of a social engineering attack or not, while
other mechanisms use an automated system to detect social
engineering attacks. The Social Engineering Attack Detection
Model version 2 (SEADMv2), proposed by Mouton et al.,
[5] is the most prominent social engineering attack detection
mechanism and therefore it was used for this study. The
SEADMv2 achieves detection of social engineering attacks by
using a series of states that require a user to provide yes/no
answers for each question in the state. Based on the user’s
answers to the questions, the SEADMv2 gives the user an
indication as to whether the provided scenario is a social
engineering attack or not. The SEADMv2 was chosen since it
can be used to detect both textual and verbal social engineering
attacks. In addition, it can be used to detect unidirectional,
bidirectional or indirect social engineering attacks, making it
a very well-rounded and versatile social engineering attack
detection model.

There are currently limited resources available to aid in
the detection and prevention of social engineering attacks. In
addition, there is a general lack of knowledge about social
engineering and the techniques used by attackers to manipulate
their target. As a result, the probability of successful social
engineering attacks is relatively high. The research question,
of this study, is formally stated as follows: Can an Android
application that implements the SEADMv2 reduce the proba-
bility of a subject falling victim to a social engineering attack?

2The activity of defrauding an online account holder of financial informa-
tion by posing as a legitimate company.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UCT Computer Science Research Document Archive

https://core.ac.uk/display/232196697?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We hypothesise that an Android application that implements
the SEADMv2 will reduce the probability of a person falling
victim to a social engineering attack, since it is less likely that
a person will fall victim to an attack with the aid of a model
that serves its intended purpose correctly.

This paper will describe how the SEADMv2 [5] was im-
plemented as an Android application called Social Engineer-
ing Prevention Training Tool (SEPTT). It also describes the
experiment that was carried out to test whether the Android
implementation of the SEADMv2 serves its intended purpose
and improves people’s ability to detect malicious social engi-
neering attacks correctly. The results obtained from performing
the experiment were analysed, using appropriate statistical
measures, to ensure that the results are statistically significant.
The Android implementation of the SEADMv2 was found to
significantly reduce the number of subjects that fell victim
to social engineering attacks, the only exceptions are that the
model did not significantly reduce the number of people who
fell victim to unidirectional communication social engineering
attacks and harmless scenarios.

The remainder of this paper is structured as follows: Section
II provides a brief background of social engineering, the
SEADMv2 [5], the Social Engineering Attack Framework
(SEAF) [6] and the classification of social engineering attacks.
Section III describes how the Android application, which was
developed for this experiment, was designed and implemented.
Section IV describes how the experiment was conducted and
the scenarios used for the experiment. Section V analyses and
discusses the results obtained. Section VI draws conclusions
from the results and discusses these conclusions. Section VII
suggests improvements that could be made to the SEADMv2
and the SEPTT Android application.

II. BACKGROUND

Social engineering is defined as the techniques used to
exploit human vulnerability to bypass security systems in order
to gather information [1]. In social engineering attacks, the
vulnerability of the system is considered to be the human
element. The attacker exploits the trusting nature that most
humans inherently have, in order to get the information they
desire. It is common for attackers to pose as an authoritative
figure, such as a manager or IT support, in order to make the
receiver of the call more inclined to provide them with the
information they desire [7].

In order to implement the SEPTT Android application, it
was essential to review all social engineering detection models
that have been proposed in literature. Five such detection mod-
els were found and compared. It was also vital to analyse the
various social engineering attack frameworks that have been
proposed. It is important that the social engineering attack
scenarios, generated for the experiment, adhere to a social
engineering attack framework. In addition, social engineering
attacks can be classified into three distinct categories, namely
unidirectional communication, bidirectional communication
and indirect communication. The differences between these
categories have to be properly comprehended in order to

Fig. 1. Social Engineering Attack Detection Model version 2 (SEADMv2)

classify the social engineering scenarios, generated for the
experiment, into one of the three categories.

A. Social Engineering Detection Models

Multiple social engineering detection models have been
proposed in literature. These detection models include, the
Social Engineering Attack Detection Model (SEADM) [8],
[9], the Social Engineering Attack Detection Model version
2 (SEADMv2) [5], detecting social engineering attacks using
neural networks [3], the Social Engineering Defense Archi-
tecture (SEDA) [7] and detection of social engineering using
natural language processing [10]. Table I, provides a summary
of the advantages and the disadvantages of each of these social
engineering detection models.

The SEADMv2 was chosen to be implemented, in an An-
droid application, and tested. Figure 1 provides an illustration
of the SEADMv2. It illustrates the states that the user is
required to progress through in order to reach a final state.
There are two possible final states a user can end up in. One
final state indicates that the user can trust the requester, i.e.
Perform the Request. The other final state indicates that the
user is the potential victim of a social engineering attack, i.e.
Defer or Refer Request.

The colours used for the states in Figure 1 are to differ-
entiate the different types of states supported by the model.



TABLE I
COMPARISON OF SOCIAL ENGINEERING DETECTION MODELS

Detection Model Used: Advantages: Disadvantages:
SEADM Modular design. Requires user to determine own emotional state.

Only caters for bidirectional communication.
SEADMv2 Colour codes to differentiate types of states.

More state transitions than the SEADM.
More modular design than the SEADM.
Caters for bidirectional, unidirectional and indirect
communication.

No states to examine the emotional state of the user.

Social Engineering Detec-
tion using Neural Net-
works

Accurate at detecting attacks. Never been tested in a real world scenario.
Tedious for the user to enter values into the input
nodes.

SEDA No user interaction required.
Prevents same social engineer targeting different em-
ployees.

Social engineer could trick the system by using voice
recordings of the person they are imitating.
Only works for verbal social engineering attacks.

Social Engineering Detec-
tion using Natural Lan-
guage Processing

No user interaction required.
Processes text rapidly.
Accurate at detecting attacks.

Only works for textual social engineering attacks.

Yellow states are request states and they deal with the request
itself. Blue states are receiver states and they deal with whether
an individual understands what is requested or not. The green
states deal with the requester and any information that can
be determined about the requester and the red states are third
party states and refer to whether the requester can be verified
using a third party [5].

In addition to having coloured states, the SEADMv2 can
be used to detect both verbal and textual social engineering
attacks. It can also be used for bidirectional communication,
unidirectional communication and indirect communication so-
cial engineering attacks.

B. Social Engineering Attack Frameworks

A social engineering attack framework provides all the
components required to generate a social engineering attack. In
addition, a social engineering attack framework adds temporal
data such as flow and time [6], making the scenario easier
for the reader to relate to. It is for these reasons, that it
was essential to use a social engineering attack framework
when generating social engineering attack scenarios for the
experiment. Various authors have proposed social engineering
attack frameworks, each with different phases that make up
an attack. Some of the proposed social engineering attack
frameworks include, the Social Engineering Attack Cycle
(SEAC) proposed by Mitnick [1], the Social Engineering
Attack Phases proposed by Laribee [11], Harley’s Social En-
gineering Attack Mechanism [12] and the Social Engineering
Attack Framework (SEAF) proposed by Mouton [6].

It was decided to use the SEAF [6] to generate social
engineering attack scenarios for the experiment. The SEAF
improves on the SEAC [1] by including more phases to
make generation of social engineering attacks more structured.
The phases included in the SEAF are as follows, attack
formulation, information gathering, preparation, develop a
relationship, exploit the relationship and debrief.

In the attack formulation phase, the attacker identifies their
target. This is usually based on the knowledge the target
possesses or the information which the target has access to.

During the information gathering phase, the attacker gathers
as much information about their target as possible [13], [14].
Social networks have made this phase particularly easy for
social engineers, as people tend to share quite a substantial
amount of personal information on social networks. During
the preparation phase, the attacker analyses the information
they have gathered about their target and formulates a scenario
that would most likely result in the target giving the attacker
the desired information. The next phase involves developing
a relationship with the target, this is either achieved through
technological means or by meeting the target in person and
building a relationship. Once the attacker has established a re-
lationship with their target, the next phase involves exploiting
this relationship. In this phase, the attacker starts to probe the
target for the information they require. The debrief phase is
aimed at returning the target to a ‘stable’ emotional state. The
purpose of this phase is to reassure the target that they were
not under attack and that everything is fine.

The SEAF was used when generating the social engineering
scenarios for the experiment. It was essential to ensure that
each scenario went through all the phases of the SEAF. This
made the scenarios more believable and easier for the test
subjects to relate to.

C. Classification of Social Engineering Attacks

The type of communication used in a social engineering
attack is classified into one of three categories, namely uni-
directional communication, bidirectional communication and
indirect communication. It was important to understand each
of these communication types, to ensure that at least one
example of each communication type was included in the
scenarios used for the experiment.

Unidirectional communication is a type of direct commu-
nication that occurs when the conversation is one-way only,
i.e. from the attacker to the target [15]. Typical unidirectional
communication social engineering scenarios include, when
an attacker sends a paper letter to their victim with no
return address. Phishing attacks are also considered to be
unidirectional communication social engineering attacks.



Bidirectional communication is a type of direct communi-
cation in which both parties participate in the conversation,
i.e. the attacker and the target communicate with one another
[15]. Examples of bidirectional communication include, when
an email is sent form the attacker to the target and the target
replies to the email or when the attacker phones the target and
has a telephonic conversation with the target.

Indirect communication occurs when there is no actual
communication between the attacker and the target. Indirect
communication occurs through a third party medium [15]. An
example of communication occurring through a third party
medium, is when an attacker infects a USB flash drive and
leaves it in a public place to be found by a random target.

III. SYSTEM DESIGN AND IMPLEMENTATION

Figure 2 illustrates a high level overview of the system
that was built. The system was designed using a three-layered
architecture. In a three-layered architecture, the system is
divided into three distinct layers that each serve a well-defined
purpose. This results in the system achieving faster responses
and processing of users’ requests [16]. The interface layer
consists of both an Android application as well as a web
application. The web application is similar to the Android
application, just the application is available in a web browser3.
The services layer contains the logic of the system and it is
where the SEADMv2 model will be implemented. This layer
was tested thoroughly during development, since it is vital to
the validity of the experiment. The finite state machine for
the social engineering attack detection model was used for
testing the integrity of the application [17]. If this layer does
not implement the SEADMv2 correctly, the entire experiment
will be invalid. The back-end layer stores user analytical data
obtained from users using the models through either the web
or Android applications. It also provides an interface for an
administrator to update the SEADMv2 model, should any
changes need to be made to the model in the future.

Figure 3 is a screenshot of the Android application that was
developed and used for the experiment. The application was
developed using the Rapid Application Development (RAD)
methodology. This methodology uses minimal planning in
favour of rapid prototyping [18]. Using this methodology
ensured that a working prototype of the application was
always available. The visual design and user interface of
the application went through numerous iterations in order
to optimise the user experience. In the early iterations of
the application, the entire interface was completely textual
with no colours or any indication of progression through the
SEADMv2. Figure 3 is a screenshot of the final version of
the application and it is clear that improvements were made
to the user interface. The Yes and No buttons were made green
and red respectively. This change made it easier for users to
differentiate the buttons, without necessarily reading the text
on the buttons. A state progression bar was added to the top
of the interface. This progression bar gives the users a sense

3http://social-engineer.co.za/

Fig. 2. High Level Overview of SEPTT System

of how far they are from reaching a final state. In addition, it
gives the user a sense of progression, since new chevrons are
highlighted as the user answers questions. A readily available
help button was added to the bottom of the interface. This
button uses a question mark icon to indicate that it is intended
to help the user. Upon touching the button, the user is provided
with a more thorough description of the question currently
displayed. Haptic feedback (vibration) was also implemented
in the application. Upon reaching a final state, the user’s device
vibrates for 100ms drawing the user’s attention to the fact that
they have reached a final state. The application was completed
on 3 October 2016. It was released, as a free application, on the
Google Play Store, listed as Social Engineering Training4, with
the intention that it will be used as a cybersecurity educational
tool.

IV. METHODOLOGY

A. Experiment Design

Before describing how the experiment was conducted, a
few details to note about the experiment, are as follows.
This experiment consisted of a single factor (a controlled
independent variable) and it had a single measure (dependent
variable which is measured). The factor was the use of the
model, which has two levels (without model and with model).
This factor was a within-subjects factor, meaning that each
subject is tested at each level of the factor. The measure of
this experiment was the number of errors made by the subjects
when answering the scenarios with and without the aid of the
model.

This experiment was performed on 20 subjects. Since the
only factor was a within-subjects factor, all 20 of the subjects
were required to use both levels of the factor. This experiment
contained both a fixed effect and a random effect. The fixed
effect was the use of the model and the random effect was
the subjects. The levels of the subject (age, gender, faculty

4https://play.google.com/store/apps/details?id=za.co.social engineer.www.
socialengineer



Fig. 3. Screenshot of the SEPTT Android Application

of study, etc.) do not really influence the outcome of this
experiment and therefore it is classified as a random effect.

Initially, the subjects were planned to be recruited by means
of sending out a bulk email to the entire University of Cape
Town (UCT) community. This email would have requested
that any interested students sign up and take part in this
experiment. The intention was to recruit approximately 50
subjects using the convenience random sampling technique.
Convenience random sampling is the basic random sampling
technique where a group of subjects are selected, for a study,
from a larger group[19]. However, due to the shutdown that
occurred on the UCT campus from 16 September 2016 until
17 October 2016, alternative plans had to be made to recruit
subjects. The chosen option was to use a snowball sampling
technique, which is a non-probability sampling technique

where study subjects recruit future subjects from among their
acquaintances[20]. Initially a small group of students (peers)
were approached and asked to volunteer to be subjects in
the experiment. They, in turn, were asked to approach other
student. This process was iterated until 20 volunteers were
recruited. Due to the slow nature of snowball sampling, as
opposed to convenience random sampling, the number of
subjects was reduced, from the initial goal of 50 subjects, to
20 subjects. Using 20 subjects was enough to obtain sufficient
results, which could be analysed to test the hypothesis.

This experiment was conducted by giving each subject
a total of 10 different scenarios. Eight of the scenarios
were malicious social engineering attacks and the remaining
two scenarios were harmless scenarios. The scenarios were
presented to each subject in a completely random order to
eliminate any ordering effects. Ordering effects refer to the
differences in research participants’ responses that result from
the order in which experimental materials are presented to
them[21]. Each scenario had four possible answers associated
with it and the order in which these answers were provided to
the subjects was also randomised. An electronic questionnaire,
which was created using Google Forms, was used. Google
Forms made it easy to randomise the order in which the
scenarios were provided to the subjects, as well as randomise
the order in which the answers to each scenario were provided.
Google Forms also made it easy to capture the results from
the experiment.

Every subject was given each of the 10 scenarios twice.
The first time they were required to select an answer using
their own intuition, without the aid of the model. The second
time they were presented with the same 10 scenarios, but this
time they were also provided with the Android implementation
of the SEADMv2 to assist them in selecting the most correct
answer. The order in which the subjects answered the scenarios
was fixed, i.e. the subjects always first answered the scenarios
without the aid of the model first and then with the aid of
the model. The purpose of this, was to eliminate any lasting
effects the use of the model could have on the subjects which
would influence their answers without the use of the model.

Even though the entire questionnaire was available online5

and the Android application was published to the Google Play
Store, the investigator was still present during each experiment.
This was to ensure the subject understood exactly what was
expected of them, as well as to answer any questions the
subject might have while doing the experiment. The measure
of this experiment was the total number of errors made by each
subject. This was measured by comparing a subjects answers
to the correct answers. If the subject got an answer incorrect,
that would be counted as an error. It stands to reason that
the less errors a subject made, the better they did at correctly
identifying the social engineering attacks.

Ethical clearance was applied for and obtained from the
UCT Science Faculty Research Ethics Committee. Each partic-
ipant was also required to sign a consent form before partaking

5Questionnaire available at https://goo.gl/forms/H0Z8PPnJR72rqJim1



in the experiment, agreeing that they are voluntarily partaking
in the experiment and that their results will be kept completely
anonymous and only used for the purpose of this experiment.

B. Summary of Scenarios Used

The scenarios, provided to the subjects in the experiment,
were generated using the SEAF. An effort was made to
ensure that there were scenarios from each of the three social
engineering attack communication categories, namely bidi-
rectional communication, unidirectional communication and
indirect communication. In Section II, it was specified that the
only two possible final states provided by the SEADMv2 are
Perform the Request or Defer or Refer Request. Performing the
Request, could either mean perform the request without asking
questions or perform the request with caution. Similarly,
Deferring or Referring the Request could either mean to not
perform the request at all or refer the request to someone else.
Therefore, it was decided that there would be two possible
correct answers for each scenario. A short description of the
scenarios, used for the experiment, are provided below.

1) Bidirectional Communication Scenarios: Four of the ten
scenarios provided to the subjects, during the experiment,
were bidirectional communication scenarios. All four of the
bidirectional communication scenarios were malicious social
engineering attacks. Therefore, the correct answers for these
scenarios was either to refer the attacker’s request to someone
who has the authority to handle such a request or to refuse to
help the attacker entirely. Two of the bidirectional scenarios
were phone calls from an attacker who impersonated someone
who has the authority to obtain the requested information
from the victim. The phone call in one of the scenarios
took place over the Christmas holiday. The attacker was
targeting the victim’s emotional state over this period, since
over the holidays people do not want to be bothered with work
related problems and will give away sensitive information,
less reluctantly, just to end the phone call. Another of the
bidirectional communication scenarios was a conversation over
a popular instant messaging platform, Facebook Messenger.
The attacker and the victim have never met in person, so there
is no way the victim can be sure the attacker is who they say
they are. The attacker first builds a virtual relationship with the
victim and then exploits this relationship requesting sensitive
information, namely the victim’s Facebook login credentials.
The last bidirectional communication scenario, used in the
experiment, was an attacker posing as a student and asking
another student, the victim, to swipe him into the computer
lab, since he had lost his student card.

2) Unidirectional Communication Scenarios: Five of the
ten scenarios, used for the experiment, were unidirectional
communication scenarios. Two of these scenarios were harm-
less scenarios, while the remaining three were malicious social
engineering attack scenarios. The two harmless scenarios both
entailed an email sent from one party to another. In the one
scenario, a recruiter from LinkedIn sent an email and in the
other scenario a new employee at an accounting firm sent an
email. In both these scenarios, the two people had not met

in person. However, both emails came from domains owned
by the two companies that the recruiter and the employee at
the accounting firm worked for respectively. This is already a
strong indication that the people sending the emails are who
they say they are. Another indication was the signatures of the
emails contained both the senders’ positions at their companies
as well as their contact details. Therefore, it would be relatively
easy to verify that both the people who sent the emails are who
they say they are.

The three unidirectional malicious social engineering attack
scenarios entailed emails sent from unverifiable domains as
well as a guest lecturer requesting sensitive information. In the
one scenario an email was sent from a lecturer to a student,
however, the lecturer’s email was not sent from the typical
Vula (the online teaching system used at UCT) announcement
system and the domain of the lecturer’s email address was not
the university’s domain. As a result, there is no way for the
student to verify that this email was in fact sent from their
lecturer. Another of the unidirectional malicious scenarios,
involved a student emailing their incomplete assignment to
another student, requesting some assistance. Both students had
never met in person and there was, once again, no way to
verify the person sending the email. The last unidirectional
malicious social engineering attack, involved a guest lecturer
requesting students to complete forms. However, these forms
required the students to provide sensitive information, such as
their identity numbers. Since there is no way of verifying the
guest lecturer’s identity, the correct answer was to refuse to
complete that section of the form (deferring the request) or
telling the guest lecturer to obtain that information from the
university’s records (referring the request).

3) Indirect Communication Scenarios: There was only one
example of an indirect communication scenario, in the ten
scenarios used for the experiment. Indirect communication
scenarios are more difficult to generate, due to the fact that
the attacker and the victim do not have a direct channel of
communication, but rather communicate through a third-party
medium. The indirect communication scenario, used in the
experiment, involved the victim picking up a USB flash drive,
lying unattended on a university campus. The USB flash drive
is not labelled with any name or contact details, so there is
no way for the victim to identify the owner of the USB flash
drive, without inserting the USB flash drive into a computer
and inspecting the files. The SEADMv2 has a question that
asks the user whether or not they have the authority to perform
the action. Since you do not have the authority to plug
someone else’s USB flash drive into your computer, without
their permission, the correct action to take would be to leave
the flash drive where you found it (deferring the request) or
taking the flash drive to lost and found (referring the request).

V. RESULTS AND DISCUSSION

The results obtained from the 20 subjects was exported as
a CSV file6 from Google Forms. This CSV file was rather

6http://www.social-engineer.co.za/data/SEPTTOutputOriginalAnswers.csv



TABLE II
CHANGES TO ANSWERS

Description of Change: Number of Changes: Percentage:
Incorrect to correct 57 28.5%
Correct to incorrect 25 12.5%
Remained correct 80 40%

Remained incorrect 38 19%

verbose and as a result, a Python script was written to extract
the required information from it. Four different sets of results
were extracted from the raw data, namely how the subjects’
answers changed when they answered the scenarios with the
aid of the model opposed to when they answered the scenarios
without the aid of the model. How the number of errors made
without the aid of the model compare to the number of errors
made with the aid of the model. How the number of errors
made with and without the aid of the model for malicious
social engineering attacks compare to the number of errors
made with and without the aid of the model for harmless social
engineering attacks. Lastly, how the number of errors made
with and without the aid of the model for unidirectional com-
munication scenarios, bidirectional communication scenarios
and indirect communication scenarios compare.

A. Comparison of Changes to Answers

The possible changes to answers were grouped into four
categories, namely a subject’s answer changes from incorrect
without the model to correct with the aid of the model, a
subject’s answer changes from correct without the model to
incorrect with the aid of the model, a subject’s answer remains
incorrect with and without the aid of the model, and a subject’s
answer remains correct with and without the aid of the model.
It should be obvious, that if the subject’s answer changes from
incorrect without the model to correct with the aid of the model
or if their answer remains correct with and without the model,
this is seen as positive and the model is serving its intended
purpose. Similarly, if a subject’s answer changes from correct
without the model to incorrect with the aid of the model or if
their answer remains incorrect with and without the model, this
is seen as negative and the model is not serving its intended
purpose. To obtain these results, the raw data CSV file was
manipulated by a Python script to produce a new CSV file7.
This CSV file contained columns that tally the number of times
a subject’s answer changed from incorrect to correct or vice
versa or remained either correct or incorrect.

Table II tabulates the results obtained, describing the num-
ber of changes in each category as well as the percentage
associated with each category. It is clear that the use of
the model had a significant affect in changing the answers
positively. The use of the model improved the subject’s answer
from incorrect to correct 28.5% of the time. The model also
kept the subject’s answer correct 40% of the time. This means
the model served its intended purpose more than two thirds of
the time (68.5%). The remaining 31.5% of the time the model

7http://www.social-engineer.co.za/data/SEPTTSummaryAnalysis.csv

did not serve its intended purpose. However, this is a much
smaller fraction of the time, compared to when the model did
serve its intended purpose. The times when the model failed
to serve its purpose can also be attributed to the subjects not
understanding the wording used in the model and subjects
getting tired during the experiment (both these factors were
observed while watching subjects complete the experiment).

B. Comparison of Total Errors Made

The comparison of the total errors made with and without
the aid of the model, is the measure that gives the best
indication of whether the model is serving its intended purpose
or not. Another Python script was used to tally the total errors
made by each subject across all the scenarios and create a CSV
file8 of the results. An error, in this context, refers to when
a subject chose an incorrect answer for a particular scenario.
These results were analysed to test for statistical significance.
For this experiment, the significance threshold was set at 0.05.
This means that any p-value obtained that is less than 0.05 is
statistically significant, any other p-value is not statistically
significant.

First the distribution of data needed to be determined, since
this would give an indication of which statistical tests could be
used to analyse the data. It was suspected that the data would
follow a Poisson distribution, since errors and error rates
usually tend to follow this sort of distribution. To determine
the distribution of the data, a Chi-Squared goodness of fit test
was run on both the number of errors with and without the
aid of the model. The Chi-Squared goodness of fit indicated
that the errors made with the aid of the model did follow
a Poisson distribution, since p > 0.05 and therefore it does
not significantly deviate from a Poisson distribution. However,
running the same test on the data without the aid of the model,
produced p < 0.05, which means the data does significantly
deviate from a Poisson distribution and therefore it does not
follow a Poisson distribution.

The two data sets did not both follow the same distribution
and therefore a non-parametric statistical test had to be used
to test for significance. This experiment contained one within-
subjects factor with exactly two levels (with model and without
model) and, as a result, a Wilcoxon signed-rank test was run
to determine if there is a significant difference between the
results. It was found, that there is a significant difference
between the number of errors made with the aid of the model
and the number of errors made without the model (p < 0.05).
The box plots of the errors made with and without the aid
of the model, illustrated in Figure 4, shows this significant
difference clearly. From Figure 4, it is clear that the first
quartile of the number of errors made without the model
is equal to the third quartile of the number errors made
with the model. This strengthens the result obtained with
the Wilcoxon signed-rank test. It is clear that the use of an
Android application that implements the SEADMv2 model

8http://www.social-engineer.co.za/data/SEPTTErrorRate.csv



Fig. 4. Box plots of errors with and without the model

does significantly decrease the number of errors made when
identifying social engineering attacks.

C. Comparison of Errors Made Based on
Type of Scenario

As an additional comparison, it was decided to separate
the scenarios into two categories, namely attack and harmless
scenarios. Attack scenarios are scenarios in which an attacker
is trying to manipulate the victim with malicious intent, while
harmless scenarios are those scenarios in which there is no
malicious intent. This comparison was performed to provide
insight into whether the SEADMv2 is actually reducing the
number of errors in malicious social engineering attacks or if
the reduction of errors is only occurring in harmless scenarios.
A Python script was again used to separate the scenarios into
attack scenarios and harmless scenarios and two new CSV
data files910 were created for analysis.

Similar to the total errors, the distribution of the data had to
first be determined to provide an indication of which statistical
tests can be used for analysis. After running the Chi-squared
goodness of fit test on the results with the model and without
the model for malicious attack scenarios. It was found that the
errors with the aid of the model followed a Poisson distribution
(p > 0.05), while the errors without the aid of the model did
not follow a Poisson distribution (p < 0.05). Since the data

9http://www.social-engineer.co.za/data/SEPTTErrorRateAttack.csv
10http://www.social-engineer.co.za/data/SEPTTErrorRateHarmless.csv

does not follow the same distribution and there is one within-
subjects factor with exactly two levels (with model and without
model), a Wilcoxon signed-rank test was the most appropriate
statistical test to use. Since this is a post hoc test, an adjustment
needed to be made to the original significance threshold to
account for the additional hypotheses that were introduced.
This adjustment is known as the Bonferroni correction and it
is introduced to avoid the null hypothesis (a default hypothesis
that claims there is no relationship between the two measure-
ments) being rejected incorrectly. The Bonferroni correction
adjusts the original significance threshold as follows, α/κ,
where α is the original significance threshold and κ is the
number of hypotheses introduced in the post hoc test. In this
case there were two hypotheses introduced, namely harmless
scenarios and attack scenarios. Using the Bonferroni correction
on the original significance threshold, we get an adjusted
significance threshold of 0.05/2 = 0.025. After running
the Wilcoxon signed-rank test, it was found that there is a
significant difference between the number of errors made with
the aid of the model and the number of errors made without
the model for attack scenarios (p < 0.025).

The same procedure was followed for the errors with and
without the model for harmless scenarios. First the distribution
was determined using a Chi-squared goodness of fit test. The
errors with the aid of the model followed a Poisson distribution
(p > 0.05), while the errors without the aid of the model did
not follow a Poisson distribution (p < 0.05). Once again,
a Wilcoxon signed-rank test was used to determine statistical
significance. However, it was found that there is no significant
difference between the number of errors made with the aid of
the model and the number of errors made without the model
for harmless scenarios (p > 0.025). The box plots of the
errors made with and without the aid of the model for harmless
scenarios, in Figure 5, supports this result. In Figure 5, the
medians are identical, this is a strong indicator of no significant
difference.

Since there was a significant difference between the number
of errors with and without the model overall and there was
also a significant difference between the number of errors
with and without the model for attack scenarios. It stands to
reason, that the SEADMv2 is helping subjects detect malicious
social engineering attacks well, but not having much of an
effect on the way subjects react to harmless scenarios. This is
acceptable, since the purpose of the SEADMv2 is to prevent
users from falling victim to malicious social engineering
attacks, which it has proven to do correctly. Figure 6 is a
stacked graph, which clearly illustrates how the number of
errors made in harmless scenarios with and without the model
is practically the same. Figure 6 also illustrates that there is a
big difference, overall, between the number of errors made
with and without the model and this difference is clearly
caused by the attack scenarios and not the harmless scenarios.



Fig. 5. Box plots of errors with and without the model for harmless scenarios

Fig. 6. Stacked bar graph showing the number of errors with and without
the model for harmless and attack scenarios

D. Comparison of Errors Made Based on
Communication Category of Scenario

The last comparison performed was to test whether the
SEADMv2 works better for a given communication category
of scenarios. Similar to before, a Python script was used to
separate the scenarios into bidirectional, unidirectional and
indirect communication and three new CSV data files111213

were created for analysis. Since this is another post hoc test,
the Bonferroni correction had to be applied to the original
significance threshold. This time there were three hypotheses
introduced and the Bonferroni correction adjusted the signif-
icance threshold to be 0.05/3 = 0.017. This adjusted signifi-
cance threshold was used to determine statistical significance
for the three communication categories described below.

1) Bidirectional Communication Scenarios: The errors
with and without the model for the bidirectional commu-
nication scenarios were first analysed to see if a common
distribution could be found using the Chi-squared goodness
of fit test. The number of errors with the model did fit a
Poisson distribution (p > 0.05), however, the number of errors
without the aid of the model did not fit a Poisson distribution
(p < 0.05). Therefore, the Wilcoxon signed-rank test would
have to be used to test for statistical significance between the
number of errors with and without the model. There was found
to be a significant difference between the number of errors
with and without the model for bidirectional communication
scenarios (p < 0.017). This indicates that the model serves
its intended purpose and significantly reduces the number of
errors for bidirectional communication scenarios.

2) Unidirectional Communication Scenarios: Similar to
bidirectional communication, the number of errors with and
without the model for the unidirectional communication sce-
narios were first analysed, to see if a common distribution
could be found using the Chi-squared goodness of fit test.
However, in the case of the unidirectional communication
scenarios a rather interesting observation was made. The
number of errors with and without the model were identically
distributed. This is illustrated in Figure 7, which shows the
box plots for number of errors with and without the use of
the model for unidirectional communication scenarios. Since
the distributions of the number of errors with and without
the model are identical, it would be unnecessary to run any
statistical tests. It is quite clear that there is no difference
between the number of errors with and without the model for
unidirectional scenarios. Therefore, the SEADMv2 does not
serve its intended purpose for unidirectional scenarios.

3) Indirect Communication Scenarios: Lastly, the number
of errors with and without the model, for indirect communica-
tion scenarios, were analysed to see if a common distribution
could be found using the Chi-squared goodness of fit test. The
number of errors with the model did fit a Poisson distribution
(p > 0.05), however, the number of errors without the aid

11http://www.social-engineer.co.za/data/SEPTTErrorRateBi.csv
12http://www.social-engineer.co.za/data/SEPTTErrorRateUni.csv
13http://www.social-engineer.co.za/data/SEPTTErrorRateIndirect.csv



Fig. 7. Box plots of errors with and without the model for unidirectional
communication scenarios

of the model did not fit a Poisson distribution (p < 0.05).
Therefore, the Wilcoxon signed-rank test would have to be
used to test for statistical significance between the number of
errors with and without the model for indirect communication
scenarios. There was found to be a significant difference
between the number of errors with and without the model for
indirect communication scenarios (p < 0.017). This indicates
that the model serves its intended purpose and significantly
reduces the number of errors for indirect communication
scenarios.

VI. CONCLUSIONS

The results analysed in Section V can be used to draw vital
conclusions. The most important result obtained, is that an
Android implementation of the SEADMv2 does significantly
reduce the number of errors made by subjects when identifying
social engineering scenarios, opposed to when no model is
used. This answers the research question of this paper and
agrees with the hypothesis.

The model was also shown to be statistically significant at
reducing the number of errors made for malicious attack sce-
narios. However, the model did not have any significant affect
on reducing the number of errors made for harmless scenarios.
The model was also statistically significant at reducing the
number of errors made for both bidirectional communication
and indirect communication scenarios. However, the model
did not have any significant effect on the number of errors
made for unidirectional communication scenarios. Therefore,

it can be concluded that an Android implementation of the
SEADMv2 is effective at reducing the probability of a subject
falling victim to malicious attack scenarios, bidirectional com-
munication scenarios and indirect communication scenarios.
However, an Android implementation of the SEADMv2 is not
effective at reducing the probability of a subject falling vic-
tim to unidirectional communication scenarios and harmless
scenarios.

The Android implementation of the SEADMv2 was also
good at positively influencing the subjects’ answers. It changed
the subjects’ answers from incorrect to correct 28.5% of the
time and kept the subjects’ answers correct 40% of the time.
This means 68.5% of the time, the model influenced the
subjects positively. This is more than the 12.5% of the time
that the model changed the subjects’ answers from correct to
incorrect or the 19% of the time when the model kept the
subjects’ answers incorrect. This leads us to the conclusion
that an Android implementation of the SEADMv2 influences a
subjects’ answers positively more often than when it influences
a subjects’ answers negatively.

On the whole, the Android implementation of the
SEADMv2 did have a statistically significant positive influ-
ence on the detection of social engineering attacks. Therefore,
it can be concluded that the Android implementation of the
SEADMv2 does reduce the probability of a subject falling
victim to a social engineering attack.

VII. FUTURE WORK

This paper described the first experiment with the
SEADMv2 on actual subjects. As a result, a few aspects of the
model, which may have worked well in theory, were not as
effective in reality. The most notable aspect is the wording of
some of the questions in the model. Numerous subjects either
asked for clarification on what a question meant or made use
of the help provided in the SEPTT Android application, to
clarify some of the questions in the model. The wording of
some of the questions should be revised in future iterations
of the SEADM. In addition, the model was found to not de-
crease the number of errors for unidirectional communication
scenarios and harmless scenarios. This should definitely be
investigated and future iterations of the SEADM should also
significantly decrease the number of errors for unidirectional
communication scenarios and harmless scenarios.

The Android application that was developed for this exper-
iment is fully functional and was tested thoroughly. However,
an aspect that bothered some subjects during the experiment,
is that the progress bar, visible at the top of the interface, does
not accurately indicate a user’s distance from reaching a final
state. For example, if a user had to answer No to the first
two questions, the progress bar would jump from state 2 to
the final state. This is due to the way the underlying model
is designed. Future work on the Android application could
involve writing an algorithm to enable the state progress bar
to more accurately indicate the user’s distance from reaching
a final state.



REFERENCES

[1] K. D. Mitnick and W. L. Simon, The art of deception: Controlling the
human element of security. John Wiley & Sons, 2011.

[2] F. Mouton, L. Leenen, M. M. Malan, and H. Venter, “Towards
an ontological model defining the social engineering domain,”
in ICT and Society, ser. IFIP Advances in Information and
Communication Technology, K. Kimppa, D. Whitehouse, T. Kuusela,
and J. Phahlamohlaka, Eds. Springer Berlin Heidelberg, 2014,
vol. 431, pp. 266–279. [Online]. Available: http://dx.doi.org/10.1007/
978-3-662-44208-1 22

[3] H. Sandouka, A. Cullen, and I. Mann, “Social engineering detection
using neural networks,” in CyberWorlds, 2009. CW’09. International
Conference on. IEEE, 2009, pp. 273–278.

[4] M. Workman, “Gaining access with social engineering: An empirical
study of the threat,” Information Systems Security, vol. 16, no. 6, pp.
315–331, 2007.

[5] F. Mouton, L. Leenen, and H. S. Venter, “Social engineering attack
detection model: Seadmv2,” in International Conference on Cyberworlds
(CW), Visby, Sweden, October 2015, pp. 216–223.

[6] F. Mouton, M. M. Malan, L. Leenen, and H. Venter, “Social engineering
attack framework,” in Information Security for South Africa, Johannes-
burg, South Africa, Aug 2014, pp. 1–9.

[7] M. Hoeschele and M. Rogers, “Detecting social engineering,” in Ad-
vances in Digital Forensics. Springer, 2005, pp. 67–77.

[8] M. Bezuidenhout, F. Mouton, and H. Venter, “Social engineering attack
detection model: Seadm,” in Information Security for South Africa,
Johannesburg, South Africa, August 2010, pp. 1–8.

[9] F. Mouton, M. Malan, and H. Venter, “Development of cognitive
functioning psychological measures for the seadm,” in Human Aspects
of Information Security & Assurance, Crete, Greece, June 2012, pp.
40–51.

[10] Y. Sawa, R. Bhakta, I. G. Harris, and C. Hadnagy, “Detection of
social engineering attacks through natural language processing of con-
versations,” in 2016 IEEE Tenth International Conference on Semantic
Computing (ICSC). IEEE, 2016, pp. 262–265.

[11] L. Laribee, “Development of methodical social engineering taxonomy
project,” Ph.D. dissertation, Monterey, California. Naval Postgraduate
School, 2006.

[12] D. Harley, “Re-floating the titanic: Dealing with social engineering
attacks,” London: EICAR, p. 13, 1998.

[13] F. Mouton, M. M. Malan, K. K. Kimppa, and H. S. Venter, “Necessity
for ethics in social engineering research,” Computers & Security, vol. 55,
pp. 114–127, 2015.

[14] F. Mouton, M. M. Malan, K. K. Kimppa, and H. Venter, “Necessity
for ethics in social engineering research,” Computers & Security,
vol. 55, pp. 114 – 127, September 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404815001224

[15] F. Mouton, L. Leenen, and H. Venter, “Social engineering attack
examples, templates and scenarios,” Computers & Security, vol. 59, pp.
186 – 209, 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167404816300268

[16] D. T. Liu and X. W. Xu, “A review of web-based product data
management systems,” Computers in industry, vol. 44, no. 3, pp. 251–
262, 2001.

[17] F. Mouton, A. Nottingham, L. Leenen, and H. Venter, “Underlying finite
state machine for the social engineering attack detection model,” in
Information Security for South Africa, Johannesburg, South Africa, Aug
2017, pp. 1–8.

[18] J. Martin, Rapid application development. Macmillan New York, 1991,
vol. 8.

[19] M. N. Marshall, “Sampling for qualitative research,” Family practice,
vol. 13, no. 6, pp. 522–526, 1996.

[20] P. Biernacki and D. Waldorf, “Snowball sampling: Problems and tech-
niques of chain referral sampling,” Sociological methods & research,
vol. 10, no. 2, pp. 141–163, 1981.

[21] S. M. Gass and M. J. A. Torres, “Attention when?: An investigation of
the ordering effect of input and interaction,” Studies in Second Language
Acquisition, vol. 27, no. 01, pp. 1–31, 2005.


