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Abstract

We propose an architecture for agent control,
where the agent stores its beliefs and environ-
ment models as logical sentences. Given succes-
sive observations, the agent’s current state (of be-
liefs) is maintained by a combination of proba-
bility, POMDP and belief change theory. Two ex-
isting logics are employed for knowledge repre-
sentation and reasoning: the stochastic decision
logic of Rens et al. (2015) and p-logic of Zhuang
et al. (2017) (a restricted version of a logic de-
signed by Fagin et al. (1990)). The proposed ar-
chitecture assumes two streams of observations:
active, which correspond to agent intentions and
passive, which is received without the agent’s di-
rect involvement. Stochastic uncertainty, and ig-
norance due to lack of information are both dealt
with in the architecture. Planning, and learning
of environment models are assumed present but
are not covered in this proposal.

1 Introduction
In this paper, we propose an architecture for an agent
to manage its stochastic beliefs, given streams of noisy
observations and the execution of actions with uncertain
effects. The architecture is not meant to compete with
well-established cognitive and generally intelligent archi-
tectures. However, we see an opportunity to combine sev-
eral formalisms being studied in AI in a coherent way, and
to suggest some extensions of these formalisms to make the
whole architecture more generally applicable and robust.

Most of the detail of the architecture will focus on the
probabilistic knowledge management of the agent. This
management draws mainly from probabilistic knowledge
representation, probabilistic belief change and decision
theory. A key aspect of the proposed agent architecture is
that it can cope with incomplete information, that is, the
agent can still function (albeit poorly, depending on the de-
gree of incompleteness) with only partial knowledge about
the environment and its dynamics. We shall specify how an
agent’s beliefs should change, given its current (possibly in-
complete) beliefs, the actions it takes and the observations
it receives.

In this version of the architecture, observations are of
two kinds, those associated directly with the agent’s per-
formed actions, and those which are received continually
(in a stream), independent of the agent’s actions. When
we say independent, we mean those observations which
the agent cannot tell whether they are caused by one of its
actions. Observation will also be classified as either ontic
(caused by a physical action or event) or epistemic (having
a purely informational source, like an announcement).

It will be seen that, given an observation, the agent’s be-
liefs are perpetuated in particular and (usually) different
ways, depending on (i) whether the observation is associ-
ated with an agent action, or extracted form the passively
received stream, (ii) whether the observation is ontic or
epistemic and (iii) whether sufficient knowledge about the
environmental dynamics is had by the agent at the time of
perceiving the observation.

The agent uses its current belief base to inform a planner
which generates a policy of actions, conditioned on obser-
vations. Planning is performed online, that is, in real-time,
while the agent is deployed. The architecture assumes that
the agent’s reward function (the value it attaches to its ac-
tions) is kept up to date (e.g., with reinforcement learning).
And it is assumed that various machine learning tools and
AI techniques are used to form and recognize observations,
whether action-associated observations or from the pas-
sively received data steam. Language or text understanding
technology is also assumed available.

Agents with reasoning and high-level control based on
the proposed architecture will be better suited to deploy-
ment in environments with relatively heterogeneous infor-
mation sources. A typical domain for such an agent is a
robot moving around in a building, where it may be given
instructions and clarifying information about its surround-
ings.

To summarize, this paper makes the following contribu-
tions.

1. It proposes a coherent framework for general agent
knowledge management and decision-making under
uncertainty and ignorance.

2. It presents a means to deal with two kinds of steams of
observations: active and passive, where observations
from different streams are dealt with differently.
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3. It presents a technique for belief maintenance which
takes into account whether beliefs should be revised
(due to erroneous beliefs) or updated (due to changes
in the environment).

In the next section, we define some concepts and for-
malisms which are used in the rest of the paper. Section 3
presents the proposed agent architecture, providing detail
about some of the components. Section 4 explains the vari-
ous operators the agent may use to maintain its belief base,
and how it selects the appropriate operator. We summarize
our research and discuss some of the issues and shortcom-
ings of this work in Section 5.

2 Background
All information in this architecture, including environment
models and the agent’s current state, is represented in
formal/logical languages. All observations (pieces of ev-
idence) are interpreted as sentences of these languages.
An observation classified as ontic is always a propositional
logic sentence, and an observation classified as epistemic is
always a p-logic (Sect. 2.3) sentence. The agent’s state is also
represented with p-logic. Models about the environment
are represented with the stochastic decision logic (Sect. 2.2).

2.1 Notation
To assist the reader, we list some of the symbols and abbre-
viations used in this paper.

• SBM: stochastic belief management

• SDL: stochastic decision logic

• LP : the propositional language

• ϕ,φ,ψ: sentences in LP

• LSDL: the language of SDL

• LPL: the language of p-logic

• Φ,Ψ: sentence in LSDL or LPL

• Ω: set of observation names

• ω: an observation name inΩ

• BG BB: background belief-base

• OB: observation buffer

• FG OB: foreground observation-buffer (sequence of
SBM observations)

• SB: state base (part of the BG BB)

• DTB: decision-theory base (part of the BG BB)

• S: a SB

• D : a DTB

• Z : a FG OB

• z: an SBM observation element in Z

• Π: the set of all probability distributions

• ΠB : the set of distributions satisfying all constraints
(sentences) in B

To simplify things, the symbols for the transition func-
tion/relation (T ) and the observation function / perceiv-
ability relation (O) will be overloaded. This should not
cause confusion in the contexts they are used.

2.2 Stochastic Decision Logic
The stochastic decision logic (SDL) [Rens et al., 2015] was
developed for (i) representing partially observable Markov
decision processes (POMDPs) [Monahan, 1982; Lovejoy,
1991] in a logical language and (ii) ascertaining the truth
of a query (statements in the language of SDL), given a
knowledge-base of POMDP information and any additional
knowledge expressible in the language.

Syntax
The vocabulary of the language contains six sorts of objects:

1. a finite set of fluents F = { f1, . . . , f`},

2. a finite set of names of atomic actions A = {a1, . . . , am},

3. a countable set of action variables VA = {v A
1 , v A

2 , . . .},

4. a finite set of names of atomic observations Ω =
{ω1, . . . ,ωn},

5. a countable set of observation variables
VΩ = {vΩ1 , vΩ2 , . . .}.

6. all real numbers R,

Fluents represent particular features of the environment.
Sentences formed by combining fluents using ∧ (and), ∨
(or) and ¬ (not) are statements about the (static) environ-
ment, may be true or false, and are denoted as LP . Sen-
tences may be prefixed with ∀v or ∃v to say that sentence
holds in all cases, respectively, at least one case for variable
v in the sentence replaced by the appropriate action or ob-
servation name.

Intuitively, �a+ω�Φmeans ‘Φ holds in the belief state re-
sulting from performing action a and then perceiving ob-
servation ω’. For instance, �a1 +ω1� �a2 +ω2�Φ expresses
that the agent executes a1 then perceives ω1 then executes
a2 then perceives ω2, after whichΦ is true.

Let ./ ∈ {<,≤,=, ≥, >}. [a]ϕ./ p is read ‘The probability
x of reaching a ϕ-world after executing a is such that x ./
p’. (ω|a) ./ p is read ‘The probability x of perceiving ω,
given a was performed is such that x ./ p’. B is a modal
operator for belief. Bϕ ./ p is read ‘The degree of belief
x in ϕ is such that x ./ p’. Performing Λ = �a1��a2� · · · �ak�
means that a1 is performed, then a2 then . . . then ak . U
is a modal operator for utility. UΛ ./ r is thus read ‘The
utility x of performing Λ is such that x ./ r ’. Evaluating
some sentence Ψ after a sequence of k update operations,
means that Ψ will be evaluated after the agent’s belief state
has been updated according to the sequence

�a +ω� · · · �a′+ω′�︸ ︷︷ ︸
k times

of actions and observations. ϕ⇒ Φ is read ‘It is a general
law of the domain that Φ holds in all situations (worlds)
which satisfy ϕ’.

The following sentence atoms are also available. c = c ′
for testing identity between action names or between ob-
servation names, and Reward(r ) and Cost(a,r ) for state-
ments about the immediate reward, respectively, cost.

Given a complete formalization K of the scenario
sketched here, a robot, for example, may have the follow-
ing queries:



• Is the degree of belief that I’ll have the oil-can in my
gripper greater than or equal to 0.9, after I attempt
grabbing it twice in a row? That is, does �grab +
obsNil� �grab+obsNil �Bholding≥ 0.9 follow from
K ?

• After grabbing the can, then perceiving that it has
medium weight, is the utility of drinking the con-
tents of the oil-can, then placing it on the floor, more
than 6 units? That is, does �grab+obsNil� �weigh+
obsMedium� U�drink��replace� > 6 follow from K ?

The language of SDL, denoted LSDL, is the set of all sen-
tences which can be constructed from the atoms described
above and the connectives ∧, ∨, ¬ and ⇒, with some re-
strictions [Rens et al., 2015].

Semantics
The SDL is based on POMDP theory. Formally, a partially
observable Markov decision process (POMDP) is a tuple 〈Σ,
A, T, R, Ω, O, b0〉: a finite set of states Σ = {s1, s2, . . . , sn}; a
finite set of actions A = {a1, a2, . . . , ak }; the state-transition
function, where T (s, a, s′) is the probability of being in s′
after performing action a in state s; the reward function,
where R(a, s) is the reward gained for executing a while in
state s; a finite set of observations Ω = {ω1,ω2, . . . ,ωm}; the
observation function, where O(s′, a,ω) is the probability of
observing ω in state s′ resulting from performing action a
in some other state; and b0 is the initial probability distri-
bution over all states in Σ.

Let b be a total function from Σ into R. Each state s is
associated with a probability b(s) = p ∈ R, such that b is a
probability distribution over the set Σ of all states. b can be
called a belief state.

An important function in POMDP theory is the function
that updates the agent’s belief state, or the state estimation
function SE. SE(a,ω,b) = bn , where bn(s′) is the probabil-
ity of the agent being in state s′ in the ‘new’ belief state bn ,
relative to a, ω and the ‘old’ belief state b. Notice that SE(·)
requires an action, an observation and a belief state as in-
puts to determine the new belief state.

When the states an agent can be in are belief-states (as
opposed to objective, single states in Σ), the reward func-
tion R must be lifted to operate over belief states. The ex-
pected reward ρ(a,b) for performing an action a in a belief
state b is defined as

∑
s∈ΣR(a, s)b(s).

Let w : F → {0,1} be a total function (aka, a world) as-
signing a truth value to each fluent. Let C be the set of 2|F |
conceivable worlds, that is, all possible functions w .

Definition 2.1. An SDL structure is a tuple D = 〈T,P,U 〉 such
that

• T : A → {Ta | a ∈ A}, where Ta : (C ×C ) → [0,1] is a total
function from pairs of worlds into the reals. That is, T
provides a transition (accessibility) relation Ta for each
action in A. For every w− ∈ C , it is required that either∑

w+∈C Ta(w−, w+) = 1 or
∑

w+∈C Ta(w−, w+) = 0.

• O : A → {Oa | a ∈ A}, where Oa : (C ×Ω) → [0,1] is a
total function from pairs in C ×Ω into the reals. That
is, O provides a perceivability relation Oa for each ac-
tion in A. For all w+ ∈ C , if there exists a w− ∈ C

such that Ta(w−, w+) > 0, then
∑
ω∈ΩOa(w+,ω) = 1,

else
∑
ω∈ΩOa(w+,ω) = 0;

• U is a pair 〈Re,Co〉, where Re : C → R is a reward func-
tion and Co is a mapping that provides a cost function
Coa : C →R for each a ∈ A.

Definition 2.2. The probability of reaching the next belief
state b′ from the current belief state b, given a and ω, is
PrNB(a,ω,b) =∑

w ′∈C Oa(ω, w ′)
∑

w∈C Ta(w, w ′)b(w).

The above definition is from standard POMDP theory.

Definition 2.3. A belief update function BU (a,ω,b) = b′ is
defined such that

b′(w ′) = Oa(w ′,ω)
∑

w∈C Ta(w, w ′)b(w)

PrNB(a,ω,b)
,

for PrNB(a,ω,b) 6= 0.

BU (·) has the same intuitive meaning as the state estima-
tion function [Kaelbling et al., 1998] of POMDP theory.

A reward function over belief states is derived for the
SDL in a similar fashion as in POMDP theory, however,
including the notion of cost: RC(a,b) = ∑

w∈C (Re(w) −
Coa(w))b(w).

A sentenceΦ ∈ LSDL is satisfiable if there exists a structure
D, a belief state b and a world w such that Φ is true when
evaluated with respect to D, b and w (denoted Dbw |=Φ),
else Φ is unsatisfiable. Satisfaction is defined by Rens et al.
(2015). Let K ⊂ LSDL. K is said to entailΦ (denoted K |=Φ) if
for all structures D, all belief states b, all w ∈C : if Dbw |= κ
for every κ ∈ K , then Dbw |= Φ. There exists an SDL deci-
sion procedure for entailment [Rens, 2014].

Domain Specification
Rens et al. (2015) present a framework for domain specifi-
cation. “[T]he knowledge engineer should adapt the frame-
work as necessary for the particular domain being mod-
eled.” In the context of the SDL, the domain of interest can
be divided into five parts:

Static laws (denoted as the set SL) have the form φ ⇒
ϕ, where φ and ϕ are propositional sentences, and φ is
the condition under which ϕ is always satisfied. They are
the basic laws and facts of the domain. For instance, “A
full battery allows me at most four hours of operation”, “I
sink in liquids” and “The charging station is in sector 14”.
Such static laws cannot be explicitly stated in traditional
POMDPs.

Action rules (denoted as the set AR) must be specified.
The basic kind is the effect axiom. For every action a, ef-

fect axioms take the form

φ1 ⇒ [a]ϕ11 = p11 ∧·· ·∧ [a]ϕ1n = p1n

φ2 ⇒ [a]ϕ21 = p21 ∧·· ·∧ [a]ϕ2n = p2n

...

φ j ⇒ [a]ϕ j 1 = p j 1 ∧·· ·∧ [a]ϕ j n = p j n ,

where (i) for every rule i , the sum of transition probabilities
pi 1, . . . , pi n must lie in the range [0,1] (preferably 1), (ii) for
every rule i , for any pair of effects ϕi k and ϕi k ′ , ϕi k ∧ϕi k ′ ≡
⊥ and (iii) for any pair of conditionsφi andφi ′ ,φi ∧φi ′ ≡⊥.



The knowledge engineer must keep in mind that if the
transition probabilities do not sum to 1, the specification is
incomplete, for instance, when for some rule i , pi 1 + ·· · +
pi n < 1.

Perception rules (denoted as the set PR) must be speci-
fied. Let E(a) = {ϕ11, ϕ12, . . . , ϕ21, ϕ22, . . . , ϕ j n} be the set of
all effects of action a executed under all executable condi-
tions. For every action a, perception rules typically take the
form

φ1 ⇒ (ω11 | a) = p11 ∧·· ·∧ (ω1m | a) = p1m

φ2 ⇒ (ω21 | a) = p21 ∧·· ·∧ (ω2m | a) = p2m

...

φk ⇒ (ωk1 | a) = pk1 ∧·· ·∧ (ωkm | a) = pkm ,

where (i) the sum of perception probabilities pi 1, . . . , pi m
of any rule i must lie in the range [0,1] (preferably 1), (ii)
for any pair of conditions φi and φi ′ , φi ∧φi ′ ≡ ⊥ and (iii)
φ1∨φ2∨·· ·∨φk ≡∨

ϕ∈E(a)ϕ. If the sum of perception prob-
abilities pi 1, . . . , pi m of any rule i is 1, then any observations
not mentioned in rule i are automatically unperceivable in
a φi -world.

Utility rules (denoted as the set UR) must be specified.
Utility rules typically take the form

φ1 ⇒ Reward(r1), . . . , φ j ⇒ Reward(r j ),

meaning that in all worlds where φi is satisfied, the agent
gets ri units of reward. And for every action a,

φ1 ⇒ Cost(a,r1), . . . , φ j ⇒ Cost(a,r j ),

meaning that the cost for performing a in a world where
φi is satisfied is ri units. The conditions are disjoint as for
action and perception rules.

A specification of the worlds the agent should believe it
is in when it becomes active, and probabilities associated
with those worlds should be provided. The agent’s (partial)
initial belief state (denoted IB) can be specified in the SDL
– and will have the form

Bϕ1 ./ p1 ∧ Bϕ2 ./ p2 ∧ ·· · ∧ Bϕn ./ pn ,

where the ϕi are mutually exclusive propositional sen-
tences (i.e., for all 1 ≤ i , j ≤ n s.t. i 6= j , ϕi ∧ϕ j ≡ ⊥). In
the SBM architecture, however, the agent’s state is specified
with p-logic, for reasons which will become clear. Note, that
any set of p-logic sentences can be translated into an SDL
(partial) belief state specification at the time of reasoning.

Suppose the union of SL, AR, PR and UR is an agent’s
background knowledge and denoted KSDL. In practical
terms, the question to be answered in the SDL is whether
KSDL |= IB →Φ− holds, where KSDL ⊂ LSDL, IB is as described
above, and Φ− ∈ LSDL is some sentence of interest, which
excludes subformulae of the form ϕ⇒ Φ (i.e., concerning
laws and rules).

Several nuances about domain specification with the
SDL have not been covered here. The interested reader is
referred to the literature [Rens, 2014; Rens et al., 2015].

2.3 P-logic and P-revision
P-logic [Zhuang et al., 2017] has three kinds of atomic
(p-)formulae:

• p(φ)./ t

• p(φ)./ c ·p(ψ)

• p(φ)./ p(ψ)+ t

where φ ∈ F , p(φ) is read ‘the probability of φ, ./ ∈ {≤,=,≥}
and t and c are rational numbers such that 0 ≤ t ≤ 1 and
c > 0. A p-formula is a conjunction of atomic p-formulae.

Let LPL(F ) be the language/set of all p-formulae which
can be formed by (repeated) application of conjunction,
and which involves all propositions in F . From here on-
wards, we write LPL instead of LPL(F ), assuming F to be im-
plicitly known.

Probability distribution b satisfies an atomic p-formula

• p(φ)./ t iff b(φ)./ t

• p(φ)./ c ·p(ψ) iff b(φ)./ c ·b(ψ)

• p(φ)./ p(ψ)+ t iff b(φ)./ b(ψ)+ t

where the φ and ψ can be considered events in the jargon
of probability theory.

b satisfies a p-formula Φ∧Ψ iff it satisfies Φ and Ψ. We
denote the fact that b satisfiesΦ as b Φ.

Zhuang et al. (2017) define a function ∗ : 2LPL × LPL →
2LPL , which they call a p-revision function. They prove that
a p-revision function satisfies six properties which are the
p-logic versions of the six basic AGM revision postulates
– AGM being the dominant framework in belief revision
[Alchourrón et al., 1985; Gärdenfors, 1988], “which repre-
sents the agent’s beliefs and input information as formulas
of some background logic that subsumes classical logic.”

2.4 Sets of Distributions and Entropy Optimiztion
What we have called a fluent and an atomic proposition,
is called an event in the jargon of probability theory (as-
suming an event can only be true/occurred or false/not oc-
curred). An assignment of true/false to every event is called
an atomic event in probability theory. Hence, the atomic
events are exactly the possible worlds W of propositional
logic.

Let W be a set of possible worlds. Let Π(W ) be all possi-
ble probability distributions (aka, belief states) over the el-
ements in W . We shall always assume that the worlds in W
are all the logical truth assignments of F , and that any belief
state mentioned is a distribution over a given W induced by
a given F .

Let S be a subset of LPL representing an agent’s state, that
is, let S be the agent’s state base (SB). S can be thought of
as a set of constraints over the distributions in Π(W ). From
here onwards, we shall write Π instead of Π(W ). Then we
define

ΠS := {b ∈Π | ∀Φ ∈ S,b Φ}

to be the set of belief states consistent with (satisfying all
sentences in) S.

The principle of maximum entropy can be stated as fol-
lows: The true belief state is estimated to be the one consis-
tent with known constraints, but is otherwise as unbiased



as possible, or “Given no other knowledge, assume that ev-
erything is as random as possible. That is, the probabilities
are distributed as uniformly as possible consistent with the
available information,” [Poole and Mackworth, 2010].

The Shannon entropy of a distribution b is defined as

H(b) :=− ∑
w∈W

b(w) lnb(w),

where b is a belief state. Traditionally, given some set of
distributions Π′, the most entropic distribution in Π′ is de-
fined as argmaxb∈Π′ H(b). One can thus represent ΠS (and
thus S) by the single ‘least biased’ belief state, that is, the
belief state inΠS with maximum entropy:

ME(S) := argmax
b∈ΠS

H(b).

It has been extensively argued [Jaynes, 1978; Shore and
Johnson, 1980; Paris and Vencovská, 1997] that maximum
entropy is a reasonable inference mechanism, if not the
most reasonable one (w.r.t. probability constraints).

Suppose Ta(w, w ′) is only partially specified. That
is, suppose there are two or more worlds w ′ for which
Ta(w, w ′) is unknown, given a and w . Oa(w,ω) may be sim-
ilarly underspecified: there could be two or more observa-
tions ω for which Oa(w,ω) is unknown, given a and w .

Similarly as is done to find a representative distribution
of a SB employing entropy optimization, the fully specified

transition and observation functions T full
a (·) and Ofull

a (·) can
be inferred from the underspecified versions as follows. Let
D ⊂ LSDL be an agent’s decision-theory base (DTB). We de-
fine the set of possible transition functions compatible with
D as

ΠTa (w) := {b ∈Π | w ′ ∈W and

if b(w ′) = p, p ′ 6= p, then D 6|=φw ⇒ [a]ϕw ′ = p ′},

where ϕw ′
is a proposition satisfied by w ′ and no other

world, and φw is a proposition satisfied by w and no other
world. Informally, ΠTa (w) is the set of distributions repre-
senting the transition function (for action a in w) which are
not disallowed by the action rules in D . Then

T full
a (w, w ′) = bTa (w)(w ′),

where
bTa (w) = argmax

b∈ΠTa (w)
H(b).

From now on, we write T full
a (w, w ′) as T D (w, a, w ′), where

D is a DTB.
Suppose, for instance, that the propositional vocabulary

(F ) is {q,r } and let w1  q ∧r , w2  q ∧¬r , w3 ¬q ∧r and
w4  ¬q ∧¬r . And suppose the transition information for
some action a2 executed in w3 is captured by

¬q ∧ r ⇒ [a2](q ∧ r ) = 0.4∧ [a2](q ∧¬r ) = 0.3 ∈ D

Then T full
a2

(w3, ·) is determined/inferred using entropy max-
imization as the distribution

{(w1,0.4), (w2,0.3), (w3,0.15), (w4,0.15)}

over arrival worlds.
Let ΠΩ be all possible probability distributions over the

set of observations Ω. We define the set of possible obser-
vation functions compatible with D as

ΠOa (w) := {b ∈ΠΩ |ω ∈Ω and

if b(w ′) = p, p ′ 6= p, then D 6|=φw ⇒ (ω | a) = p ′}.

Then
Ofull

a (w,ω) = bOa (w)(ω),

where
bOa (w) = argmax

b∈ΠOa (w)
H(b).

Representation of and reasoning with observation prob-
abilities needs to be dealt with in a special way to be use-
ful in this work. In particular, we want a way to deal
with observations as propositional sentences, but to use a
POMDP-style observation function to reason about obser-
vation noise. We thus need a way to go from a function de-
fined in terms of observation names (of objects) in Ω to a
function defined in terms of observations in LP .

Events can and are viewed as evidence, and in belief
change theory, the notion of evidence is often used inter-
changeably with the notion of observation. In this work, we
want to be able to assign a probability to any proposition
(received as an observation; w.r.t. a world and an action).
Therefore, we shall demand that there is a POMDP obser-
vation for every possible world (atomic event).

Let there be a bijection ζ between observations in Ω and
worlds in W . This implies that there are as many obser-
vation names as there are worlds. Denote the observation
name that w maps to as ζ(w). Then we define

OD (a,φ, w) := ∑
w ′∈W,w ′φ

Ofull
a (w,ζ(w ′)).

To illustrate the idea, suppose again that F = {q,r } and
that

q ∧¬r ⇒ (ω1 | a1) = 0.2∧ (ω2 | a1) = 0.6 ∈ D.

Let ζ = {(w1,ω1), (w2,ω2), (w3,ω3), (w4,ω4)}. Now suppose
we need to know the probability of an observation in w2

given a1 was executed to reach w2. Given ζ, Ofull
a1

(w2, ·) is
determined using entropy maximization as the distribution

{(w1,0.2), (w2,0.6), (w3,0.1), (w4,0.1)}

over observations. Hence, the (inferred) probability of ob-
serving r is OD (a1,r, w2) = 0.2+0.1 = 0.3 and of observing
¬q∨¬r is OD (a1,¬q∨¬r, w2) = 0.6+0.1+0.1 = 0.8. It is diffi-
cult to see how OD could be so generally applicable without
defining ζ as it is.

3 Conceptual Model of Architecture
Figure 1 shows the conceptual model of the stochastic be-
lief management (SBM) architecture for agent control. The
following subsections discuss the architecture components
in detail.



Figure 1: Conceptual model of architecture.

3.1 Observation Streams

There are two kinds of observation streams: active (atv) and
passive (psv). Observations in the passive stream are as-
sumed to be extracted from the stream periodically, for in-
stance, every second or millisecond. Observations in the
passive stream are not associated with a particular ‘trig-
ger’ in the sense that the agent cannot attach a cause (ac-
tion, event, request, intention) to the observation. Whereas
the passive stream is periodic and continuous, the ac-
tive stream is less rhythmic, due to every observation be-
ing paired with a preceding action or request for infor-
mation, which is asynchronous. If a robot pushes a cup
off a table and then the cup falls, then all the images and
sounds associated with a cup falling on the ground can be
placed in the context of the pushing action. The action
thus provides an agent with contextual information help-
ing it to update its beliefs more accurately. An action can
also be a sensing action, for instance, get-new-info or
read-paragraph. Sensing actions also create context;
they help inform agents how to revise their beliefs.

For both streams, observations can be either ontic (phys-
ical cause) or epistemic (purely informational). Whether or
not an observation has a physical cause can be quite philo-
sophical. We live in a physical world, hence separating in-
formation from its physical representation can be challeng-
ing. However, we can use some common sense here: Sup-
pose you are walking in town and a shop has a radio play-
ing and the voice on the radio mentions the temperature in
a neighboring city is 33 degrees. Considering the informa-
tion of the city’s temperature as an observation, what is its
cause? In this case, we would say that ‘neighboring city is
33 degrees’ is an epistemic observation. And this observa-
tion would come through the passive stream because it was

received without your solicitation.
Now suppose you know someone who lives in the neigh-

boring city. You phone them up and ask what the temper-
ature there is and they say it is 33 degrees. In this case, the
observation is still ‘neighboring city is 33 degrees’ and it is
still an epistemic observation. However, now it would come
through the active stream because it was received due to a
particular soliciting (sensing) action.

An element which is in the

• active stream and is ontic has the form (a,φ), where a
is the action associated with observation φ.

• active stream and is epistemic has the form Φ, where
Φ ∈ LPL.

• passive stream and is ontic has the form φ.

• passive stream and is epistemic has the formΦ, where
Φ ∈ LPL.

Hence, all ontic elements involve a formula in LP and all
epistemic elements involve a formula in LPL.

In the case of ontic observations in the active stream, a
in element (a,φ), may loosely be thought of as the ‘cause’
of φ, but in general, φ is simply the dominant and mean-
ingfully a-associated observation directly following the ex-
ecution of a.

3.2 The Background Belief Base

For this version of the architecture, we divide the back-
ground belief base (BG BB) into two distinct parts. The state
base (SB) tells the agent what possible situations it is in and,
to some degree of completeness, the probability distribu-
tion over the possible situations. The decision-theory base
(DTB) informs the agent about its decision-theory, that is,



about the dynamics and utilities involved in the environ-
ment it inhabits.

SDL formulae of the form Bϕ./ p could have been used
to represent the SB, but we shall use p-logic due to its
greater expressivity with respect to specifying constraints
on belief states. By using p-logic, more sophisticated ob-
servations can be considered for SB maintenance and more
sophisticated queries can be considered by the reasoner of
the decision making component.

We propose that the the language of SDL be used to rep-
resent the DTB. It is an adequate language to specify (par-
tial) POMDPs, using action rules, perception rules and util-
ity rules as discussed in Section 2.2. In this study, we do
not investigate how the the DTB is maintained due to inter-
actions with the environment. But we assume that at any
moment the DTB represents what the agent knows about
the environmental dynamics and utilities.

Consider the SDL sentence of the form �a +ω�Bϕ ./ p.
This cannot be translated into a p-formula, yet it involves
state information, that is, information about the agent’s
state after executing a and perceivingω. Having knowledge
about future degrees of belief (after a sequence of actions)
is useful. For now, however, we shall assume that no SDL
formulae involving future degrees of belief occur in the BG
BB. Their inclusion is left for future work.

SDL static laws specify features of the environment
which are immutable. They should thus have an influence
on the agent’s state beliefs, that is, on the SB. Again, in order
to focus on the salient aspects of the proposed architecture,
we assume that static law sentences do not occur in the BG
BB.

3.3 The Foreground Observation Buffer
The foreground observation buffer (FG OB) keeps a record
of the observations received from the passive and active
streams. Observations are kept in the order which they
were received. Therefore, an FG OB Z is of the form

(z1, z2, . . . , zn),

where zi occurs before/to the left of z j iff zi was output
temporally before z j by the applicable stream processing
module.

The SB is modified by z1 via one of the appropriate belief
change operations as soon as computational resources are
available/allocated for the operation. Then z1 is removed
from Z , resulting in

Z = (z2, z3 . . . , zn , zn+1, . . . , zn+k ),

where k new observations have been stored in the time it
takes to accommodate z1 in the SB. Then z2 is taken out of
Z to modify the SB as soon as resources become available
for the operation, and so on.

3.4 Belief Change Operations
Observations are removed from the FG OB as described in
Section 3.3 and used to modify the agent’s BG BB, specif-
ically, the SB. Depending on the characteristics of the ob-
servation, an appropriate belief change operation must be
selected to modify the SB. Several reference operations and
a selection mechanism are discussed in Section 4.2.

3.5 Decision Making

The decision-making component comprises two sub-
components: a planner for generating behavior policies in
real-time, and a reasoner for answering queries. Planning
and reasoning in the SBM architecture are not the focus of
this paper. Nonetheless, we can make some remarks.

Any state-of-the-art online POMDP algorithm/planner
[Ross et al., 2008] can be used to generate a finite policy
for the agent to execute. A policy in the SBM architecture
is taken to be finite length sequences of actions in a tree
structure, with branching due to possible observations af-
ter actions. Such a tree structured policy is typical of on-
line POMDP algorithms employing finite horizon forward
search planning. Such algorithms require as input, a sin-
gle current (root) belief state and a fully specified POMDP
model. A single representative belief state b can be inferred
from the SB S as b = ME(S), and a (complete) transition
function T D and (complete) observation function OD can
be inferred from the (possibly incomplete) DTB D also via
entropy optimization, as explained in Section 2.4.

Reasoning can be performed by asking whether some
query Φ posed to the agent logically follows from the BG
BB. In the case of queries about the agent’s decision theory,
the SDL decision procedure [Rens et al., 2015] can be used
– asking whether D |= Φ holds, where D is the DTB. In the
case of queries about the agent’s current state (of mind), the
decision procedure [Fagin et al., 1990] for the logic of which
p-logic is a restricted version can be used – asking whether
S |= Φ holds, where S is the SB. Although these two proce-
dures exist and have been shown to be correct and termi-
nating, they have not, to our knowledge, been implemented
and optimized/analyzed with respect to efficiency.

4 General Belief Change

4.1 Appropriate Belief Representation

In this paper, we focus on the (stochastic) belief manage-
ment of the state base (SB) part of the agent’s background
belief base (BG BB). The SB S is a set of probability con-
straints, not a belief state. Hence, it makes sense that p-
revision is applied to S. But update as defined above op-
erates on belief states, not sets of constraints. S represents
the set of belief states consistent with it. Unfortunately, per-
forming update of each belief state represented by S would
not terminate when S represents an infinite number of be-
lief states, which is typically the case.

One potential solution to this problem with update in
this framework is to estimate a single belief state b to rep-
resent S and then apply the applicable update operation to
b, producing b′. However, it is unknown how to change S,
given b′. We would not want to simply keep on represent-
ing the agent’s belief as a single belief state, because (i) the
agent’s ignorance is then ignored and (ii) p-revision is no
longer applicable.

Another potential solution to this problem with update
in this framework is to initially select a finite set of repre-
sentative belief states Rep(ΠS ) and then never construct a
new SB, but always operate on a set of belief states. This ap-



proach would mean that p-revision would not be applica-
ble. A different kind of revision would have to be employed.

A third potential solution to this problem with update in
this framework is to select a finite set of representative be-
lief states Rep(ΠS ) and then apply the applicable update op-
eration to every b ∈ Rep(ΠS ), producing (Rep(ΠS ))′. An up-
dated SB S′ can then be induced from (Rep(ΠS ))′. This is
the method proposed by Rens et al. (2016) where they per-
formed revision (via “generalized imaging”) on a finite set
of belief states. This approach is perhaps more acceptable,
because it seems to retain some (if not all) of the ignorance
captured by an SB.

In this work, we shall assume that one can always ex-
tract a finite and sufficient representative set of belief states
Rep(ΠS ) from S. Denote the procedure of translating a set
of belief states into a set of sentences (subset of LPL) as
Sentencify. Then we can define the update of a SB S due
to observation z as

S∆z := Sentencify((ΠS )∆z ),

where

(ΠS )∆z := {b′ ∈Π | b′ = b∆z, b ∈ Rep(ΠS )},

where∆ is one of the four “∆” operations defined below and
z is an observation of the appropriate kind from the FG OB.

4.2 Operators and Operator Selection

Depending on whether an observation comes from the ac-
tive or passive stream, the SB is changed differently. Fur-
thermore, ontic observations are understood to require be-
lief update, and epistemic observations are understood to
require belief revision. Conventionally, update occurs when
information is received in a dynamic environment [Kat-
suno and Mendelzon, 1992], while revision occurs when in-
formation is received in a static environment [Alchourrón
et al., 1985]. Consider the following scenario. You are new
in the faculty department and you hear from someone that
the door into the staff kitchen is open. Then a little while
later, you hear that the kitchen-door is closed. Depend-
ing on whether you have the background knowledge that
“things around here never change,” you will likely process
the ‘kitchen-door is closed’ evidence differently. Assum-
ing all information sources are trustworthy, with the back-
ground info that things do not change, one would revise
one’s beliefs in a way that considers the initial belief that
the door was open as a misunderstanding. On the other
hand, without the background info, one would likely sim-
ply assume someone closed the door, and thus update one’s
belief according to the ‘door-closing’ context.

One can categorize observations broadly as raw and
marked. A raw observation is simply the observation on its
own without any information attached; the range of the de-
grees of belief of raw observations remain open until later
processing (e.g., as an argument in a POMDP observation
function). Marked observations are taken to be accompa-
nied by information about the degree to which it can be
believed, such as p-logic formulae. Another assumption
made in this work is that epistemic observations are always

marked. These are simplifying assumptions in order to get
the project off the ground.

Regarding the dynamics of the environment, endoge-
nous actions (of the agent) and exogenous events (in the
environment; with origin outside the agent) cause tran-
sitions from one state to another. The probabilities with
which these transitions occur (due to stochastic processes)
my not always be known by the agent. We propose two
kinds of update (when update is applicable): one method
which uses state transition probabilities and one method
which uses only information implicit in the structure of the
available knowledge. A form of imaging will be used in the
latter case.

Just as passive observations (not mentioning actions ex-
plicitly) can be ontic in nature, requiring update, so active
observations can mention sensing actions, which trigger
the reception of epistemic observations, requiring revision.
Examples of sensing action are ‘request information’, ‘acti-
vate sensor 3’ and ‘focus visual attention to quadrant 1’.

To summarize, we shall employ six kinds of belief change:

1. active ontic, requiring update – with state transition
information

2. active ontic, requiring update – with implicit structure
information

3. active epistemic, requiring revision

4. passive ontic, requiring update – with state transition
information

5. passive ontic, requiring update – with implicit struc-
ture information

6. passive epistemic, requiring revision

We shall assume that the agent recognizes every action
as either ontic or sensing, thus allowing the agent to iden-
tify the subsequent observation as ontic, respectively, epis-
temic. We shall assume that observations extracted from
the passive stream are marked as either ontic or epistemic.
The final assumption we make is that for ontic observa-
tions, the agent can decide for every belief update, whether
its transition information is sufficient for use during the up-
date operation, or whether the less informative structural
information should be used. Observation functions will al-
ways be deemed sufficient. That is, entropy optimization
will always be used to infer OD (a,φ, w), for all a,φ and w .

Table 1 summarizes which of the five belief change oper-
ators (to be defined below) is used in which of the six cases.

Table 1: Belief change operation per observation reception con-
text.

ontic epistemic
transition info?
3 7

active ∆atv
trn ∆atv

dst ∗
passive ∆

psv
trn ∆

psv
dst ∗

The process for deciding on which operator to use in dif-
ferent contexts of observation is presented in Figure 2.



Figure 2: Process for deciding which operator to use for different observation contexts.

Definition 1 is taken almost directly from the POMDP state
estimation function for update [Kaelbling et al., 1998]. Def-
inition 2 is generalized form of Lewis imaging [Lewis, 1976].
Definitions 3 is adapted from Rens (2016a).

Figure 2 is a data-flow diagram depicting the process for
deciding which operator to use for different observation
contexts.

Active Ontic with Transition Info
When (a,φ) is extracted from the active stream and φ is
identified as being ontic and the agent deems its current
model of state transitions due to a as sufficient, then belief
update occurs and is defined as

b∆atv
trn a,φ(w) := 1

γ
OD (a,φ, w)

∑
w ′∈W

b(w ′)T D (w ′, a, w), (1)

where

γ := ∑
w∈W

OD (a,φ, w)
∑

w ′∈W

b(w ′)T D (w ′, a, w),

and where OD (a,φ, w) and T D (w ′, a, w) are inferred, via
entropy maximization, from the observation likelihood, re-
spectively, transition information in D – as described in
Section 2.4.

Active Ontic without Transition Info
When (a,φ) is extracted from the active stream and φ is
identified as being ontic and the agent deems its current
model of state transitions due to a as insufficient, then be-
lief update occurs and is defined as

b∆atv
dst a,φ(w) := 1

γ
OD (a,φ, w)

∑
w ′∈W

b(w ′)δ(φ, w ′, w), (2)

where

γ := ∑
w∈W

OD (a,φ, w)
∑

w ′∈W

b(w ′)δ(φ, w ′, w),

and where OD (a,φ, w) is inferred – via entropy maximiza-
tion – from the observation likelihood information in D and
δ(φ, w ′, w) is an inverse-distance weight function, which
has been designed for use with a generalized version [Rens
and Meyer, 2017] of Lewis imaging.

Active Epistemic
When (a,Φ) is extracted from the active stream and Φ is
identified as being epistemic, then belief revision occurs
and is defined as

S ← S ∗Φ,
where ∗ is a p-revision operator and S is a SB. Action a is,
for instance, get-new-info, andΦ is a p-formula.

Passive Ontic with Transition Info
When φ is extracted from the passive stream and is identi-
fied as being ontic and the agent deems its current model
of state transitions with respect to φ due to (exogenous)
events as sufficient, then belief update occurs and is de-
fined as

b∆psv
trn φ(w) :=

1

γ
OD (null,φ, w)

∑
w ′∈W

∑
e∈ε

b(w ′)E(e, w)T D (w ′,e, w),

(3)

where

γ := ∑
w∈W

OD (null,φ, w)
∑

w ′∈W

∑
e∈ε

b(w ′)E(e, w)T D (w ′,e, w),

and where OD (null,φ, w) and T D (w ′,e, w) are inferred – via
entropy optimization, ε is a set of (exogenous) events and E
is the event likelihood function such that E(e, w) = P (e | w)
is the probability of the occurrence of event e in w . The
SDL can easily be extended to represent/specify event like-
lihood functions; we do not expound on this here. We shall
simply assume that E can be extracted from the DTB.



Passive Ontic without Transition Info
When φ is extracted from the passive stream and is identi-
fied as being ontic and the agent deems its current model
of state transitions with respect to φ due to (exogenous)
events as insufficient, then belief update occurs and is de-
fined as ∆psv

dst , which is exactly the same as ∆atv
dst , except that

the action a in OD (a,φ, w) is taken to be null. The agent de-
signer must define OD (null,φ, w) appropriately for the do-
main of interest.

Passive Epistemic
When Φ is extracted from the passive stream and is iden-
tified as being epistemic, then belief revision occurs via p-
revision (∗) to change the SB, just as in the active epistemic
case.

5 Conclusion and Future Work
Admittedly, this is a very preliminary proposal for an archi-
tecture, meant only to propose a basic framework and thus
generate a discussion and ideas for its improvement. Un-
fortunately, time and other resources were unavailable to
implement and evaluate a system based on the architec-
ture.

There are many ways to sophisticate the architecture. In
a sense, we have presented a skeleton framework, that is,
a basic version of an agent architecture which can be ex-
panded and elaborated upon. For instance [Van Harmelen
et al., 2008; Russell and Norvig, 2010; Wang and Goertzel,
2012], a generally intelligent agent should be able to repre-
sent and reason with

• the notion of defeasibility of knowledge

• independence of knowledge and conditional probabil-
ities, e.g., employing Bayes nets

• ontologies of taxonomies

• notions of time and space

• notions of desires, intentions and goals

• notions of motivations and emotions

• knowledge abstraction and chunking

The representation and observation languages could be
made richer. Belief change is a kind of learning, however,
there is a need for much more learning and adaptation for
an agent to be more general and autonomous. For instance,
it is important that the agent can learn and maintain tran-
sition, observation and reward models. Planning and high-
level control must, of course, be attended to. Attention fo-
cus is an important aspect of a sophisticated agent to be
effective in the real world.

Although the SBM architecture is based on POMDPs,
which assume a finite set of states, the set of states need not
remain fixed over the agent’s lifetime: Doshi-Velez (2009)
suggests a framework called Infinite POMDP (iPOMDP)
“that does not require knowledge of the size of the state
space; instead, it assumes that the number of visited states
will grow as the agent explores its world and only models
visited states explicitly.” Moreover, environment models

(represented as probability distributions) need not be com-
pletely known; as new environment dynamics are learnt,
they can be incorporated as logical sentences, while the un-
specified/unknown parts of the models are estimated us-
ing entropy optimization methods, as explained in the text.
Also, Bayesian reinforcement learning has made headway
in learning POMDP models [Ross et al., 2011].

To make our architecture applicable to more general-
purpose systems, where the system often runs into novel
situations that have never happened before, there must be
mechanisms that allow the system to compare the current
situation to the past ones, and handle similarity evaluation
and conflict resolution, in case that the current situation is
similar to several previous ones when considering different
aspects. In this regard, one could appeal to techniques of
case based reasoning [Richter and Weber, 2013] to enhance
the SMB architecture.

Although the capabilities mentioned above are necessary
for a general and autonomous agent, it is unlikely that we
shall be able to spend time on most of them in the foresee-
able future. Where feasible, some of the capabilities could
be included into the architecture as black-box modules.

The following is most likely to be our future work with
the SBM architecture. Techniques for probabilistic belief
change is an active area of research at this time; we would
like to integrate the latest findings into the SBM architec-
ture, as they develop. We are interested in ‘embeddedness’
of knowledge/beliefs: How should a belief base with dif-
ferent degrees of knowledge-embeddedness be maintained
for different observation contexts and how should such a
belief base be used during decision making?

With respect to planning and goal management, and for
real-time planning in large POMDPs, ideas from (e.g.) the
Hybrid POMDP-BDI agent architecture [Rens and Moodley,
2017], respectively, (e.g.) Partially Observable Monte-Carlo
Planning (POMCP) [Silver and Veness, 2010] could be used
to instantiate the planning component of the SBM archi-
tecture.

This work was inspired by Rens (2016b) who, in turn, was
inspired by Voorbraak’s Partial Probability Theory [Voor-
braak, 1999]. And we quote Rens (2016b):

Besides the work already cited in this paper,
the following may be used as a bibliography to
better place the present work in context, and to
point to methods, approaches and techniques
not covered in the proposed framework, which
could possibly be added to it.

• Probabilistic logics for reasoning with de-
faults and for belief change or learning
[Goldszmidt and Pearl, 1996; Lukasiewicz,
2007].

• Nonmonotonic reasoning systems with op-
timum entropy inference as central con-
cept [Bourne and Parsons, 2003; Beierle and
Kern-Isberner, 2008; 2009].

• Dynamic epistemic logics for reasoning
about probabilities [Van Benthem et al.,
2009; Sack, 2009].



Kern-Isberner and Lukasiewicz (2017) have written a
useful, brief survey on reasoning under uncertainty, incon-
sistency, vagueness, and preferences.
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